Home | History | Annotate | Download | only in InstCombine
      1 //===- InstCombineCasts.cpp -----------------------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the visit functions for cast operations.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "InstCombine.h"
     15 #include "llvm/Analysis/ConstantFolding.h"
     16 #include "llvm/IR/DataLayout.h"
     17 #include "llvm/IR/PatternMatch.h"
     18 #include "llvm/Target/TargetLibraryInfo.h"
     19 using namespace llvm;
     20 using namespace PatternMatch;
     21 
     22 #define DEBUG_TYPE "instcombine"
     23 
     24 /// DecomposeSimpleLinearExpr - Analyze 'Val', seeing if it is a simple linear
     25 /// expression.  If so, decompose it, returning some value X, such that Val is
     26 /// X*Scale+Offset.
     27 ///
     28 static Value *DecomposeSimpleLinearExpr(Value *Val, unsigned &Scale,
     29                                         uint64_t &Offset) {
     30   if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
     31     Offset = CI->getZExtValue();
     32     Scale  = 0;
     33     return ConstantInt::get(Val->getType(), 0);
     34   }
     35 
     36   if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) {
     37     // Cannot look past anything that might overflow.
     38     OverflowingBinaryOperator *OBI = dyn_cast<OverflowingBinaryOperator>(Val);
     39     if (OBI && !OBI->hasNoUnsignedWrap() && !OBI->hasNoSignedWrap()) {
     40       Scale = 1;
     41       Offset = 0;
     42       return Val;
     43     }
     44 
     45     if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
     46       if (I->getOpcode() == Instruction::Shl) {
     47         // This is a value scaled by '1 << the shift amt'.
     48         Scale = UINT64_C(1) << RHS->getZExtValue();
     49         Offset = 0;
     50         return I->getOperand(0);
     51       }
     52 
     53       if (I->getOpcode() == Instruction::Mul) {
     54         // This value is scaled by 'RHS'.
     55         Scale = RHS->getZExtValue();
     56         Offset = 0;
     57         return I->getOperand(0);
     58       }
     59 
     60       if (I->getOpcode() == Instruction::Add) {
     61         // We have X+C.  Check to see if we really have (X*C2)+C1,
     62         // where C1 is divisible by C2.
     63         unsigned SubScale;
     64         Value *SubVal =
     65           DecomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset);
     66         Offset += RHS->getZExtValue();
     67         Scale = SubScale;
     68         return SubVal;
     69       }
     70     }
     71   }
     72 
     73   // Otherwise, we can't look past this.
     74   Scale = 1;
     75   Offset = 0;
     76   return Val;
     77 }
     78 
     79 /// PromoteCastOfAllocation - If we find a cast of an allocation instruction,
     80 /// try to eliminate the cast by moving the type information into the alloc.
     81 Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI,
     82                                                    AllocaInst &AI) {
     83   // This requires DataLayout to get the alloca alignment and size information.
     84   if (!DL) return nullptr;
     85 
     86   PointerType *PTy = cast<PointerType>(CI.getType());
     87 
     88   BuilderTy AllocaBuilder(*Builder);
     89   AllocaBuilder.SetInsertPoint(AI.getParent(), &AI);
     90 
     91   // Get the type really allocated and the type casted to.
     92   Type *AllocElTy = AI.getAllocatedType();
     93   Type *CastElTy = PTy->getElementType();
     94   if (!AllocElTy->isSized() || !CastElTy->isSized()) return nullptr;
     95 
     96   unsigned AllocElTyAlign = DL->getABITypeAlignment(AllocElTy);
     97   unsigned CastElTyAlign = DL->getABITypeAlignment(CastElTy);
     98   if (CastElTyAlign < AllocElTyAlign) return nullptr;
     99 
    100   // If the allocation has multiple uses, only promote it if we are strictly
    101   // increasing the alignment of the resultant allocation.  If we keep it the
    102   // same, we open the door to infinite loops of various kinds.
    103   if (!AI.hasOneUse() && CastElTyAlign == AllocElTyAlign) return nullptr;
    104 
    105   uint64_t AllocElTySize = DL->getTypeAllocSize(AllocElTy);
    106   uint64_t CastElTySize = DL->getTypeAllocSize(CastElTy);
    107   if (CastElTySize == 0 || AllocElTySize == 0) return nullptr;
    108 
    109   // If the allocation has multiple uses, only promote it if we're not
    110   // shrinking the amount of memory being allocated.
    111   uint64_t AllocElTyStoreSize = DL->getTypeStoreSize(AllocElTy);
    112   uint64_t CastElTyStoreSize = DL->getTypeStoreSize(CastElTy);
    113   if (!AI.hasOneUse() && CastElTyStoreSize < AllocElTyStoreSize) return nullptr;
    114 
    115   // See if we can satisfy the modulus by pulling a scale out of the array
    116   // size argument.
    117   unsigned ArraySizeScale;
    118   uint64_t ArrayOffset;
    119   Value *NumElements = // See if the array size is a decomposable linear expr.
    120     DecomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset);
    121 
    122   // If we can now satisfy the modulus, by using a non-1 scale, we really can
    123   // do the xform.
    124   if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 ||
    125       (AllocElTySize*ArrayOffset   ) % CastElTySize != 0) return nullptr;
    126 
    127   unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize;
    128   Value *Amt = nullptr;
    129   if (Scale == 1) {
    130     Amt = NumElements;
    131   } else {
    132     Amt = ConstantInt::get(AI.getArraySize()->getType(), Scale);
    133     // Insert before the alloca, not before the cast.
    134     Amt = AllocaBuilder.CreateMul(Amt, NumElements);
    135   }
    136 
    137   if (uint64_t Offset = (AllocElTySize*ArrayOffset)/CastElTySize) {
    138     Value *Off = ConstantInt::get(AI.getArraySize()->getType(),
    139                                   Offset, true);
    140     Amt = AllocaBuilder.CreateAdd(Amt, Off);
    141   }
    142 
    143   AllocaInst *New = AllocaBuilder.CreateAlloca(CastElTy, Amt);
    144   New->setAlignment(AI.getAlignment());
    145   New->takeName(&AI);
    146   New->setUsedWithInAlloca(AI.isUsedWithInAlloca());
    147 
    148   // If the allocation has multiple real uses, insert a cast and change all
    149   // things that used it to use the new cast.  This will also hack on CI, but it
    150   // will die soon.
    151   if (!AI.hasOneUse()) {
    152     // New is the allocation instruction, pointer typed. AI is the original
    153     // allocation instruction, also pointer typed. Thus, cast to use is BitCast.
    154     Value *NewCast = AllocaBuilder.CreateBitCast(New, AI.getType(), "tmpcast");
    155     ReplaceInstUsesWith(AI, NewCast);
    156   }
    157   return ReplaceInstUsesWith(CI, New);
    158 }
    159 
    160 /// EvaluateInDifferentType - Given an expression that
    161 /// CanEvaluateTruncated or CanEvaluateSExtd returns true for, actually
    162 /// insert the code to evaluate the expression.
    163 Value *InstCombiner::EvaluateInDifferentType(Value *V, Type *Ty,
    164                                              bool isSigned) {
    165   if (Constant *C = dyn_cast<Constant>(V)) {
    166     C = ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/);
    167     // If we got a constantexpr back, try to simplify it with DL info.
    168     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
    169       C = ConstantFoldConstantExpression(CE, DL, TLI);
    170     return C;
    171   }
    172 
    173   // Otherwise, it must be an instruction.
    174   Instruction *I = cast<Instruction>(V);
    175   Instruction *Res = nullptr;
    176   unsigned Opc = I->getOpcode();
    177   switch (Opc) {
    178   case Instruction::Add:
    179   case Instruction::Sub:
    180   case Instruction::Mul:
    181   case Instruction::And:
    182   case Instruction::Or:
    183   case Instruction::Xor:
    184   case Instruction::AShr:
    185   case Instruction::LShr:
    186   case Instruction::Shl:
    187   case Instruction::UDiv:
    188   case Instruction::URem: {
    189     Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned);
    190     Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
    191     Res = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
    192     break;
    193   }
    194   case Instruction::Trunc:
    195   case Instruction::ZExt:
    196   case Instruction::SExt:
    197     // If the source type of the cast is the type we're trying for then we can
    198     // just return the source.  There's no need to insert it because it is not
    199     // new.
    200     if (I->getOperand(0)->getType() == Ty)
    201       return I->getOperand(0);
    202 
    203     // Otherwise, must be the same type of cast, so just reinsert a new one.
    204     // This also handles the case of zext(trunc(x)) -> zext(x).
    205     Res = CastInst::CreateIntegerCast(I->getOperand(0), Ty,
    206                                       Opc == Instruction::SExt);
    207     break;
    208   case Instruction::Select: {
    209     Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
    210     Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned);
    211     Res = SelectInst::Create(I->getOperand(0), True, False);
    212     break;
    213   }
    214   case Instruction::PHI: {
    215     PHINode *OPN = cast<PHINode>(I);
    216     PHINode *NPN = PHINode::Create(Ty, OPN->getNumIncomingValues());
    217     for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) {
    218       Value *V =EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned);
    219       NPN->addIncoming(V, OPN->getIncomingBlock(i));
    220     }
    221     Res = NPN;
    222     break;
    223   }
    224   default:
    225     // TODO: Can handle more cases here.
    226     llvm_unreachable("Unreachable!");
    227   }
    228 
    229   Res->takeName(I);
    230   return InsertNewInstWith(Res, *I);
    231 }
    232 
    233 
    234 /// This function is a wrapper around CastInst::isEliminableCastPair. It
    235 /// simply extracts arguments and returns what that function returns.
    236 static Instruction::CastOps
    237 isEliminableCastPair(
    238   const CastInst *CI, ///< The first cast instruction
    239   unsigned opcode,       ///< The opcode of the second cast instruction
    240   Type *DstTy,     ///< The target type for the second cast instruction
    241   const DataLayout *DL ///< The target data for pointer size
    242 ) {
    243 
    244   Type *SrcTy = CI->getOperand(0)->getType();   // A from above
    245   Type *MidTy = CI->getType();                  // B from above
    246 
    247   // Get the opcodes of the two Cast instructions
    248   Instruction::CastOps firstOp = Instruction::CastOps(CI->getOpcode());
    249   Instruction::CastOps secondOp = Instruction::CastOps(opcode);
    250   Type *SrcIntPtrTy = DL && SrcTy->isPtrOrPtrVectorTy() ?
    251     DL->getIntPtrType(SrcTy) : nullptr;
    252   Type *MidIntPtrTy = DL && MidTy->isPtrOrPtrVectorTy() ?
    253     DL->getIntPtrType(MidTy) : nullptr;
    254   Type *DstIntPtrTy = DL && DstTy->isPtrOrPtrVectorTy() ?
    255     DL->getIntPtrType(DstTy) : nullptr;
    256   unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy,
    257                                                 DstTy, SrcIntPtrTy, MidIntPtrTy,
    258                                                 DstIntPtrTy);
    259 
    260   // We don't want to form an inttoptr or ptrtoint that converts to an integer
    261   // type that differs from the pointer size.
    262   if ((Res == Instruction::IntToPtr && SrcTy != DstIntPtrTy) ||
    263       (Res == Instruction::PtrToInt && DstTy != SrcIntPtrTy))
    264     Res = 0;
    265 
    266   return Instruction::CastOps(Res);
    267 }
    268 
    269 /// ShouldOptimizeCast - Return true if the cast from "V to Ty" actually
    270 /// results in any code being generated and is interesting to optimize out. If
    271 /// the cast can be eliminated by some other simple transformation, we prefer
    272 /// to do the simplification first.
    273 bool InstCombiner::ShouldOptimizeCast(Instruction::CastOps opc, const Value *V,
    274                                       Type *Ty) {
    275   // Noop casts and casts of constants should be eliminated trivially.
    276   if (V->getType() == Ty || isa<Constant>(V)) return false;
    277 
    278   // If this is another cast that can be eliminated, we prefer to have it
    279   // eliminated.
    280   if (const CastInst *CI = dyn_cast<CastInst>(V))
    281     if (isEliminableCastPair(CI, opc, Ty, DL))
    282       return false;
    283 
    284   // If this is a vector sext from a compare, then we don't want to break the
    285   // idiom where each element of the extended vector is either zero or all ones.
    286   if (opc == Instruction::SExt && isa<CmpInst>(V) && Ty->isVectorTy())
    287     return false;
    288 
    289   return true;
    290 }
    291 
    292 
    293 /// @brief Implement the transforms common to all CastInst visitors.
    294 Instruction *InstCombiner::commonCastTransforms(CastInst &CI) {
    295   Value *Src = CI.getOperand(0);
    296 
    297   // Many cases of "cast of a cast" are eliminable. If it's eliminable we just
    298   // eliminate it now.
    299   if (CastInst *CSrc = dyn_cast<CastInst>(Src)) {   // A->B->C cast
    300     if (Instruction::CastOps opc =
    301         isEliminableCastPair(CSrc, CI.getOpcode(), CI.getType(), DL)) {
    302       // The first cast (CSrc) is eliminable so we need to fix up or replace
    303       // the second cast (CI). CSrc will then have a good chance of being dead.
    304       return CastInst::Create(opc, CSrc->getOperand(0), CI.getType());
    305     }
    306   }
    307 
    308   // If we are casting a select then fold the cast into the select
    309   if (SelectInst *SI = dyn_cast<SelectInst>(Src))
    310     if (Instruction *NV = FoldOpIntoSelect(CI, SI))
    311       return NV;
    312 
    313   // If we are casting a PHI then fold the cast into the PHI
    314   if (isa<PHINode>(Src)) {
    315     // We don't do this if this would create a PHI node with an illegal type if
    316     // it is currently legal.
    317     if (!Src->getType()->isIntegerTy() ||
    318         !CI.getType()->isIntegerTy() ||
    319         ShouldChangeType(CI.getType(), Src->getType()))
    320       if (Instruction *NV = FoldOpIntoPhi(CI))
    321         return NV;
    322   }
    323 
    324   return nullptr;
    325 }
    326 
    327 /// CanEvaluateTruncated - Return true if we can evaluate the specified
    328 /// expression tree as type Ty instead of its larger type, and arrive with the
    329 /// same value.  This is used by code that tries to eliminate truncates.
    330 ///
    331 /// Ty will always be a type smaller than V.  We should return true if trunc(V)
    332 /// can be computed by computing V in the smaller type.  If V is an instruction,
    333 /// then trunc(inst(x,y)) can be computed as inst(trunc(x),trunc(y)), which only
    334 /// makes sense if x and y can be efficiently truncated.
    335 ///
    336 /// This function works on both vectors and scalars.
    337 ///
    338 static bool CanEvaluateTruncated(Value *V, Type *Ty) {
    339   // We can always evaluate constants in another type.
    340   if (isa<Constant>(V))
    341     return true;
    342 
    343   Instruction *I = dyn_cast<Instruction>(V);
    344   if (!I) return false;
    345 
    346   Type *OrigTy = V->getType();
    347 
    348   // If this is an extension from the dest type, we can eliminate it, even if it
    349   // has multiple uses.
    350   if ((isa<ZExtInst>(I) || isa<SExtInst>(I)) &&
    351       I->getOperand(0)->getType() == Ty)
    352     return true;
    353 
    354   // We can't extend or shrink something that has multiple uses: doing so would
    355   // require duplicating the instruction in general, which isn't profitable.
    356   if (!I->hasOneUse()) return false;
    357 
    358   unsigned Opc = I->getOpcode();
    359   switch (Opc) {
    360   case Instruction::Add:
    361   case Instruction::Sub:
    362   case Instruction::Mul:
    363   case Instruction::And:
    364   case Instruction::Or:
    365   case Instruction::Xor:
    366     // These operators can all arbitrarily be extended or truncated.
    367     return CanEvaluateTruncated(I->getOperand(0), Ty) &&
    368            CanEvaluateTruncated(I->getOperand(1), Ty);
    369 
    370   case Instruction::UDiv:
    371   case Instruction::URem: {
    372     // UDiv and URem can be truncated if all the truncated bits are zero.
    373     uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
    374     uint32_t BitWidth = Ty->getScalarSizeInBits();
    375     if (BitWidth < OrigBitWidth) {
    376       APInt Mask = APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth);
    377       if (MaskedValueIsZero(I->getOperand(0), Mask) &&
    378           MaskedValueIsZero(I->getOperand(1), Mask)) {
    379         return CanEvaluateTruncated(I->getOperand(0), Ty) &&
    380                CanEvaluateTruncated(I->getOperand(1), Ty);
    381       }
    382     }
    383     break;
    384   }
    385   case Instruction::Shl:
    386     // If we are truncating the result of this SHL, and if it's a shift of a
    387     // constant amount, we can always perform a SHL in a smaller type.
    388     if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
    389       uint32_t BitWidth = Ty->getScalarSizeInBits();
    390       if (CI->getLimitedValue(BitWidth) < BitWidth)
    391         return CanEvaluateTruncated(I->getOperand(0), Ty);
    392     }
    393     break;
    394   case Instruction::LShr:
    395     // If this is a truncate of a logical shr, we can truncate it to a smaller
    396     // lshr iff we know that the bits we would otherwise be shifting in are
    397     // already zeros.
    398     if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
    399       uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
    400       uint32_t BitWidth = Ty->getScalarSizeInBits();
    401       if (MaskedValueIsZero(I->getOperand(0),
    402             APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth)) &&
    403           CI->getLimitedValue(BitWidth) < BitWidth) {
    404         return CanEvaluateTruncated(I->getOperand(0), Ty);
    405       }
    406     }
    407     break;
    408   case Instruction::Trunc:
    409     // trunc(trunc(x)) -> trunc(x)
    410     return true;
    411   case Instruction::ZExt:
    412   case Instruction::SExt:
    413     // trunc(ext(x)) -> ext(x) if the source type is smaller than the new dest
    414     // trunc(ext(x)) -> trunc(x) if the source type is larger than the new dest
    415     return true;
    416   case Instruction::Select: {
    417     SelectInst *SI = cast<SelectInst>(I);
    418     return CanEvaluateTruncated(SI->getTrueValue(), Ty) &&
    419            CanEvaluateTruncated(SI->getFalseValue(), Ty);
    420   }
    421   case Instruction::PHI: {
    422     // We can change a phi if we can change all operands.  Note that we never
    423     // get into trouble with cyclic PHIs here because we only consider
    424     // instructions with a single use.
    425     PHINode *PN = cast<PHINode>(I);
    426     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
    427       if (!CanEvaluateTruncated(PN->getIncomingValue(i), Ty))
    428         return false;
    429     return true;
    430   }
    431   default:
    432     // TODO: Can handle more cases here.
    433     break;
    434   }
    435 
    436   return false;
    437 }
    438 
    439 Instruction *InstCombiner::visitTrunc(TruncInst &CI) {
    440   if (Instruction *Result = commonCastTransforms(CI))
    441     return Result;
    442 
    443   // See if we can simplify any instructions used by the input whose sole
    444   // purpose is to compute bits we don't care about.
    445   if (SimplifyDemandedInstructionBits(CI))
    446     return &CI;
    447 
    448   Value *Src = CI.getOperand(0);
    449   Type *DestTy = CI.getType(), *SrcTy = Src->getType();
    450 
    451   // Attempt to truncate the entire input expression tree to the destination
    452   // type.   Only do this if the dest type is a simple type, don't convert the
    453   // expression tree to something weird like i93 unless the source is also
    454   // strange.
    455   if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) &&
    456       CanEvaluateTruncated(Src, DestTy)) {
    457 
    458     // If this cast is a truncate, evaluting in a different type always
    459     // eliminates the cast, so it is always a win.
    460     DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
    461           " to avoid cast: " << CI << '\n');
    462     Value *Res = EvaluateInDifferentType(Src, DestTy, false);
    463     assert(Res->getType() == DestTy);
    464     return ReplaceInstUsesWith(CI, Res);
    465   }
    466 
    467   // Canonicalize trunc x to i1 -> (icmp ne (and x, 1), 0), likewise for vector.
    468   if (DestTy->getScalarSizeInBits() == 1) {
    469     Constant *One = ConstantInt::get(Src->getType(), 1);
    470     Src = Builder->CreateAnd(Src, One);
    471     Value *Zero = Constant::getNullValue(Src->getType());
    472     return new ICmpInst(ICmpInst::ICMP_NE, Src, Zero);
    473   }
    474 
    475   // Transform trunc(lshr (zext A), Cst) to eliminate one type conversion.
    476   Value *A = nullptr; ConstantInt *Cst = nullptr;
    477   if (Src->hasOneUse() &&
    478       match(Src, m_LShr(m_ZExt(m_Value(A)), m_ConstantInt(Cst)))) {
    479     // We have three types to worry about here, the type of A, the source of
    480     // the truncate (MidSize), and the destination of the truncate. We know that
    481     // ASize < MidSize   and MidSize > ResultSize, but don't know the relation
    482     // between ASize and ResultSize.
    483     unsigned ASize = A->getType()->getPrimitiveSizeInBits();
    484 
    485     // If the shift amount is larger than the size of A, then the result is
    486     // known to be zero because all the input bits got shifted out.
    487     if (Cst->getZExtValue() >= ASize)
    488       return ReplaceInstUsesWith(CI, Constant::getNullValue(CI.getType()));
    489 
    490     // Since we're doing an lshr and a zero extend, and know that the shift
    491     // amount is smaller than ASize, it is always safe to do the shift in A's
    492     // type, then zero extend or truncate to the result.
    493     Value *Shift = Builder->CreateLShr(A, Cst->getZExtValue());
    494     Shift->takeName(Src);
    495     return CastInst::CreateIntegerCast(Shift, CI.getType(), false);
    496   }
    497 
    498   // Transform "trunc (and X, cst)" -> "and (trunc X), cst" so long as the dest
    499   // type isn't non-native.
    500   if (Src->hasOneUse() && isa<IntegerType>(Src->getType()) &&
    501       ShouldChangeType(Src->getType(), CI.getType()) &&
    502       match(Src, m_And(m_Value(A), m_ConstantInt(Cst)))) {
    503     Value *NewTrunc = Builder->CreateTrunc(A, CI.getType(), A->getName()+".tr");
    504     return BinaryOperator::CreateAnd(NewTrunc,
    505                                      ConstantExpr::getTrunc(Cst, CI.getType()));
    506   }
    507 
    508   return nullptr;
    509 }
    510 
    511 /// transformZExtICmp - Transform (zext icmp) to bitwise / integer operations
    512 /// in order to eliminate the icmp.
    513 Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, Instruction &CI,
    514                                              bool DoXform) {
    515   // If we are just checking for a icmp eq of a single bit and zext'ing it
    516   // to an integer, then shift the bit to the appropriate place and then
    517   // cast to integer to avoid the comparison.
    518   if (ConstantInt *Op1C = dyn_cast<ConstantInt>(ICI->getOperand(1))) {
    519     const APInt &Op1CV = Op1C->getValue();
    520 
    521     // zext (x <s  0) to i32 --> x>>u31      true if signbit set.
    522     // zext (x >s -1) to i32 --> (x>>u31)^1  true if signbit clear.
    523     if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV == 0) ||
    524         (ICI->getPredicate() == ICmpInst::ICMP_SGT &&Op1CV.isAllOnesValue())) {
    525       if (!DoXform) return ICI;
    526 
    527       Value *In = ICI->getOperand(0);
    528       Value *Sh = ConstantInt::get(In->getType(),
    529                                    In->getType()->getScalarSizeInBits()-1);
    530       In = Builder->CreateLShr(In, Sh, In->getName()+".lobit");
    531       if (In->getType() != CI.getType())
    532         In = Builder->CreateIntCast(In, CI.getType(), false/*ZExt*/);
    533 
    534       if (ICI->getPredicate() == ICmpInst::ICMP_SGT) {
    535         Constant *One = ConstantInt::get(In->getType(), 1);
    536         In = Builder->CreateXor(In, One, In->getName()+".not");
    537       }
    538 
    539       return ReplaceInstUsesWith(CI, In);
    540     }
    541 
    542     // zext (X == 0) to i32 --> X^1      iff X has only the low bit set.
    543     // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
    544     // zext (X == 1) to i32 --> X        iff X has only the low bit set.
    545     // zext (X == 2) to i32 --> X>>1     iff X has only the 2nd bit set.
    546     // zext (X != 0) to i32 --> X        iff X has only the low bit set.
    547     // zext (X != 0) to i32 --> X>>1     iff X has only the 2nd bit set.
    548     // zext (X != 1) to i32 --> X^1      iff X has only the low bit set.
    549     // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
    550     if ((Op1CV == 0 || Op1CV.isPowerOf2()) &&
    551         // This only works for EQ and NE
    552         ICI->isEquality()) {
    553       // If Op1C some other power of two, convert:
    554       uint32_t BitWidth = Op1C->getType()->getBitWidth();
    555       APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
    556       computeKnownBits(ICI->getOperand(0), KnownZero, KnownOne);
    557 
    558       APInt KnownZeroMask(~KnownZero);
    559       if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1?
    560         if (!DoXform) return ICI;
    561 
    562         bool isNE = ICI->getPredicate() == ICmpInst::ICMP_NE;
    563         if (Op1CV != 0 && (Op1CV != KnownZeroMask)) {
    564           // (X&4) == 2 --> false
    565           // (X&4) != 2 --> true
    566           Constant *Res = ConstantInt::get(Type::getInt1Ty(CI.getContext()),
    567                                            isNE);
    568           Res = ConstantExpr::getZExt(Res, CI.getType());
    569           return ReplaceInstUsesWith(CI, Res);
    570         }
    571 
    572         uint32_t ShiftAmt = KnownZeroMask.logBase2();
    573         Value *In = ICI->getOperand(0);
    574         if (ShiftAmt) {
    575           // Perform a logical shr by shiftamt.
    576           // Insert the shift to put the result in the low bit.
    577           In = Builder->CreateLShr(In, ConstantInt::get(In->getType(),ShiftAmt),
    578                                    In->getName()+".lobit");
    579         }
    580 
    581         if ((Op1CV != 0) == isNE) { // Toggle the low bit.
    582           Constant *One = ConstantInt::get(In->getType(), 1);
    583           In = Builder->CreateXor(In, One);
    584         }
    585 
    586         if (CI.getType() == In->getType())
    587           return ReplaceInstUsesWith(CI, In);
    588         return CastInst::CreateIntegerCast(In, CI.getType(), false/*ZExt*/);
    589       }
    590     }
    591   }
    592 
    593   // icmp ne A, B is equal to xor A, B when A and B only really have one bit.
    594   // It is also profitable to transform icmp eq into not(xor(A, B)) because that
    595   // may lead to additional simplifications.
    596   if (ICI->isEquality() && CI.getType() == ICI->getOperand(0)->getType()) {
    597     if (IntegerType *ITy = dyn_cast<IntegerType>(CI.getType())) {
    598       uint32_t BitWidth = ITy->getBitWidth();
    599       Value *LHS = ICI->getOperand(0);
    600       Value *RHS = ICI->getOperand(1);
    601 
    602       APInt KnownZeroLHS(BitWidth, 0), KnownOneLHS(BitWidth, 0);
    603       APInt KnownZeroRHS(BitWidth, 0), KnownOneRHS(BitWidth, 0);
    604       computeKnownBits(LHS, KnownZeroLHS, KnownOneLHS);
    605       computeKnownBits(RHS, KnownZeroRHS, KnownOneRHS);
    606 
    607       if (KnownZeroLHS == KnownZeroRHS && KnownOneLHS == KnownOneRHS) {
    608         APInt KnownBits = KnownZeroLHS | KnownOneLHS;
    609         APInt UnknownBit = ~KnownBits;
    610         if (UnknownBit.countPopulation() == 1) {
    611           if (!DoXform) return ICI;
    612 
    613           Value *Result = Builder->CreateXor(LHS, RHS);
    614 
    615           // Mask off any bits that are set and won't be shifted away.
    616           if (KnownOneLHS.uge(UnknownBit))
    617             Result = Builder->CreateAnd(Result,
    618                                         ConstantInt::get(ITy, UnknownBit));
    619 
    620           // Shift the bit we're testing down to the lsb.
    621           Result = Builder->CreateLShr(
    622                Result, ConstantInt::get(ITy, UnknownBit.countTrailingZeros()));
    623 
    624           if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
    625             Result = Builder->CreateXor(Result, ConstantInt::get(ITy, 1));
    626           Result->takeName(ICI);
    627           return ReplaceInstUsesWith(CI, Result);
    628         }
    629       }
    630     }
    631   }
    632 
    633   return nullptr;
    634 }
    635 
    636 /// CanEvaluateZExtd - Determine if the specified value can be computed in the
    637 /// specified wider type and produce the same low bits.  If not, return false.
    638 ///
    639 /// If this function returns true, it can also return a non-zero number of bits
    640 /// (in BitsToClear) which indicates that the value it computes is correct for
    641 /// the zero extend, but that the additional BitsToClear bits need to be zero'd
    642 /// out.  For example, to promote something like:
    643 ///
    644 ///   %B = trunc i64 %A to i32
    645 ///   %C = lshr i32 %B, 8
    646 ///   %E = zext i32 %C to i64
    647 ///
    648 /// CanEvaluateZExtd for the 'lshr' will return true, and BitsToClear will be
    649 /// set to 8 to indicate that the promoted value needs to have bits 24-31
    650 /// cleared in addition to bits 32-63.  Since an 'and' will be generated to
    651 /// clear the top bits anyway, doing this has no extra cost.
    652 ///
    653 /// This function works on both vectors and scalars.
    654 static bool CanEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear) {
    655   BitsToClear = 0;
    656   if (isa<Constant>(V))
    657     return true;
    658 
    659   Instruction *I = dyn_cast<Instruction>(V);
    660   if (!I) return false;
    661 
    662   // If the input is a truncate from the destination type, we can trivially
    663   // eliminate it.
    664   if (isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty)
    665     return true;
    666 
    667   // We can't extend or shrink something that has multiple uses: doing so would
    668   // require duplicating the instruction in general, which isn't profitable.
    669   if (!I->hasOneUse()) return false;
    670 
    671   unsigned Opc = I->getOpcode(), Tmp;
    672   switch (Opc) {
    673   case Instruction::ZExt:  // zext(zext(x)) -> zext(x).
    674   case Instruction::SExt:  // zext(sext(x)) -> sext(x).
    675   case Instruction::Trunc: // zext(trunc(x)) -> trunc(x) or zext(x)
    676     return true;
    677   case Instruction::And:
    678   case Instruction::Or:
    679   case Instruction::Xor:
    680   case Instruction::Add:
    681   case Instruction::Sub:
    682   case Instruction::Mul:
    683     if (!CanEvaluateZExtd(I->getOperand(0), Ty, BitsToClear) ||
    684         !CanEvaluateZExtd(I->getOperand(1), Ty, Tmp))
    685       return false;
    686     // These can all be promoted if neither operand has 'bits to clear'.
    687     if (BitsToClear == 0 && Tmp == 0)
    688       return true;
    689 
    690     // If the operation is an AND/OR/XOR and the bits to clear are zero in the
    691     // other side, BitsToClear is ok.
    692     if (Tmp == 0 &&
    693         (Opc == Instruction::And || Opc == Instruction::Or ||
    694          Opc == Instruction::Xor)) {
    695       // We use MaskedValueIsZero here for generality, but the case we care
    696       // about the most is constant RHS.
    697       unsigned VSize = V->getType()->getScalarSizeInBits();
    698       if (MaskedValueIsZero(I->getOperand(1),
    699                             APInt::getHighBitsSet(VSize, BitsToClear)))
    700         return true;
    701     }
    702 
    703     // Otherwise, we don't know how to analyze this BitsToClear case yet.
    704     return false;
    705 
    706   case Instruction::Shl:
    707     // We can promote shl(x, cst) if we can promote x.  Since shl overwrites the
    708     // upper bits we can reduce BitsToClear by the shift amount.
    709     if (ConstantInt *Amt = dyn_cast<ConstantInt>(I->getOperand(1))) {
    710       if (!CanEvaluateZExtd(I->getOperand(0), Ty, BitsToClear))
    711         return false;
    712       uint64_t ShiftAmt = Amt->getZExtValue();
    713       BitsToClear = ShiftAmt < BitsToClear ? BitsToClear - ShiftAmt : 0;
    714       return true;
    715     }
    716     return false;
    717   case Instruction::LShr:
    718     // We can promote lshr(x, cst) if we can promote x.  This requires the
    719     // ultimate 'and' to clear out the high zero bits we're clearing out though.
    720     if (ConstantInt *Amt = dyn_cast<ConstantInt>(I->getOperand(1))) {
    721       if (!CanEvaluateZExtd(I->getOperand(0), Ty, BitsToClear))
    722         return false;
    723       BitsToClear += Amt->getZExtValue();
    724       if (BitsToClear > V->getType()->getScalarSizeInBits())
    725         BitsToClear = V->getType()->getScalarSizeInBits();
    726       return true;
    727     }
    728     // Cannot promote variable LSHR.
    729     return false;
    730   case Instruction::Select:
    731     if (!CanEvaluateZExtd(I->getOperand(1), Ty, Tmp) ||
    732         !CanEvaluateZExtd(I->getOperand(2), Ty, BitsToClear) ||
    733         // TODO: If important, we could handle the case when the BitsToClear are
    734         // known zero in the disagreeing side.
    735         Tmp != BitsToClear)
    736       return false;
    737     return true;
    738 
    739   case Instruction::PHI: {
    740     // We can change a phi if we can change all operands.  Note that we never
    741     // get into trouble with cyclic PHIs here because we only consider
    742     // instructions with a single use.
    743     PHINode *PN = cast<PHINode>(I);
    744     if (!CanEvaluateZExtd(PN->getIncomingValue(0), Ty, BitsToClear))
    745       return false;
    746     for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i)
    747       if (!CanEvaluateZExtd(PN->getIncomingValue(i), Ty, Tmp) ||
    748           // TODO: If important, we could handle the case when the BitsToClear
    749           // are known zero in the disagreeing input.
    750           Tmp != BitsToClear)
    751         return false;
    752     return true;
    753   }
    754   default:
    755     // TODO: Can handle more cases here.
    756     return false;
    757   }
    758 }
    759 
    760 Instruction *InstCombiner::visitZExt(ZExtInst &CI) {
    761   // If this zero extend is only used by a truncate, let the truncate be
    762   // eliminated before we try to optimize this zext.
    763   if (CI.hasOneUse() && isa<TruncInst>(CI.user_back()))
    764     return nullptr;
    765 
    766   // If one of the common conversion will work, do it.
    767   if (Instruction *Result = commonCastTransforms(CI))
    768     return Result;
    769 
    770   // See if we can simplify any instructions used by the input whose sole
    771   // purpose is to compute bits we don't care about.
    772   if (SimplifyDemandedInstructionBits(CI))
    773     return &CI;
    774 
    775   Value *Src = CI.getOperand(0);
    776   Type *SrcTy = Src->getType(), *DestTy = CI.getType();
    777 
    778   // Attempt to extend the entire input expression tree to the destination
    779   // type.   Only do this if the dest type is a simple type, don't convert the
    780   // expression tree to something weird like i93 unless the source is also
    781   // strange.
    782   unsigned BitsToClear;
    783   if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) &&
    784       CanEvaluateZExtd(Src, DestTy, BitsToClear)) {
    785     assert(BitsToClear < SrcTy->getScalarSizeInBits() &&
    786            "Unreasonable BitsToClear");
    787 
    788     // Okay, we can transform this!  Insert the new expression now.
    789     DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
    790           " to avoid zero extend: " << CI);
    791     Value *Res = EvaluateInDifferentType(Src, DestTy, false);
    792     assert(Res->getType() == DestTy);
    793 
    794     uint32_t SrcBitsKept = SrcTy->getScalarSizeInBits()-BitsToClear;
    795     uint32_t DestBitSize = DestTy->getScalarSizeInBits();
    796 
    797     // If the high bits are already filled with zeros, just replace this
    798     // cast with the result.
    799     if (MaskedValueIsZero(Res, APInt::getHighBitsSet(DestBitSize,
    800                                                      DestBitSize-SrcBitsKept)))
    801       return ReplaceInstUsesWith(CI, Res);
    802 
    803     // We need to emit an AND to clear the high bits.
    804     Constant *C = ConstantInt::get(Res->getType(),
    805                                APInt::getLowBitsSet(DestBitSize, SrcBitsKept));
    806     return BinaryOperator::CreateAnd(Res, C);
    807   }
    808 
    809   // If this is a TRUNC followed by a ZEXT then we are dealing with integral
    810   // types and if the sizes are just right we can convert this into a logical
    811   // 'and' which will be much cheaper than the pair of casts.
    812   if (TruncInst *CSrc = dyn_cast<TruncInst>(Src)) {   // A->B->C cast
    813     // TODO: Subsume this into EvaluateInDifferentType.
    814 
    815     // Get the sizes of the types involved.  We know that the intermediate type
    816     // will be smaller than A or C, but don't know the relation between A and C.
    817     Value *A = CSrc->getOperand(0);
    818     unsigned SrcSize = A->getType()->getScalarSizeInBits();
    819     unsigned MidSize = CSrc->getType()->getScalarSizeInBits();
    820     unsigned DstSize = CI.getType()->getScalarSizeInBits();
    821     // If we're actually extending zero bits, then if
    822     // SrcSize <  DstSize: zext(a & mask)
    823     // SrcSize == DstSize: a & mask
    824     // SrcSize  > DstSize: trunc(a) & mask
    825     if (SrcSize < DstSize) {
    826       APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
    827       Constant *AndConst = ConstantInt::get(A->getType(), AndValue);
    828       Value *And = Builder->CreateAnd(A, AndConst, CSrc->getName()+".mask");
    829       return new ZExtInst(And, CI.getType());
    830     }
    831 
    832     if (SrcSize == DstSize) {
    833       APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
    834       return BinaryOperator::CreateAnd(A, ConstantInt::get(A->getType(),
    835                                                            AndValue));
    836     }
    837     if (SrcSize > DstSize) {
    838       Value *Trunc = Builder->CreateTrunc(A, CI.getType());
    839       APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize));
    840       return BinaryOperator::CreateAnd(Trunc,
    841                                        ConstantInt::get(Trunc->getType(),
    842                                                         AndValue));
    843     }
    844   }
    845 
    846   if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
    847     return transformZExtICmp(ICI, CI);
    848 
    849   BinaryOperator *SrcI = dyn_cast<BinaryOperator>(Src);
    850   if (SrcI && SrcI->getOpcode() == Instruction::Or) {
    851     // zext (or icmp, icmp) --> or (zext icmp), (zext icmp) if at least one
    852     // of the (zext icmp) will be transformed.
    853     ICmpInst *LHS = dyn_cast<ICmpInst>(SrcI->getOperand(0));
    854     ICmpInst *RHS = dyn_cast<ICmpInst>(SrcI->getOperand(1));
    855     if (LHS && RHS && LHS->hasOneUse() && RHS->hasOneUse() &&
    856         (transformZExtICmp(LHS, CI, false) ||
    857          transformZExtICmp(RHS, CI, false))) {
    858       Value *LCast = Builder->CreateZExt(LHS, CI.getType(), LHS->getName());
    859       Value *RCast = Builder->CreateZExt(RHS, CI.getType(), RHS->getName());
    860       return BinaryOperator::Create(Instruction::Or, LCast, RCast);
    861     }
    862   }
    863 
    864   // zext(trunc(X) & C) -> (X & zext(C)).
    865   Constant *C;
    866   Value *X;
    867   if (SrcI &&
    868       match(SrcI, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Constant(C)))) &&
    869       X->getType() == CI.getType())
    870     return BinaryOperator::CreateAnd(X, ConstantExpr::getZExt(C, CI.getType()));
    871 
    872   // zext((trunc(X) & C) ^ C) -> ((X & zext(C)) ^ zext(C)).
    873   Value *And;
    874   if (SrcI && match(SrcI, m_OneUse(m_Xor(m_Value(And), m_Constant(C)))) &&
    875       match(And, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Specific(C)))) &&
    876       X->getType() == CI.getType()) {
    877     Constant *ZC = ConstantExpr::getZExt(C, CI.getType());
    878     return BinaryOperator::CreateXor(Builder->CreateAnd(X, ZC), ZC);
    879   }
    880 
    881   // zext (xor i1 X, true) to i32  --> xor (zext i1 X to i32), 1
    882   if (SrcI && SrcI->hasOneUse() &&
    883       SrcI->getType()->getScalarType()->isIntegerTy(1) &&
    884       match(SrcI, m_Not(m_Value(X))) && (!X->hasOneUse() || !isa<CmpInst>(X))) {
    885     Value *New = Builder->CreateZExt(X, CI.getType());
    886     return BinaryOperator::CreateXor(New, ConstantInt::get(CI.getType(), 1));
    887   }
    888 
    889   return nullptr;
    890 }
    891 
    892 /// transformSExtICmp - Transform (sext icmp) to bitwise / integer operations
    893 /// in order to eliminate the icmp.
    894 Instruction *InstCombiner::transformSExtICmp(ICmpInst *ICI, Instruction &CI) {
    895   Value *Op0 = ICI->getOperand(0), *Op1 = ICI->getOperand(1);
    896   ICmpInst::Predicate Pred = ICI->getPredicate();
    897 
    898   if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
    899     // (x <s  0) ? -1 : 0 -> ashr x, 31        -> all ones if negative
    900     // (x >s -1) ? -1 : 0 -> not (ashr x, 31)  -> all ones if positive
    901     if ((Pred == ICmpInst::ICMP_SLT && Op1C->isNullValue()) ||
    902         (Pred == ICmpInst::ICMP_SGT && Op1C->isAllOnesValue())) {
    903 
    904       Value *Sh = ConstantInt::get(Op0->getType(),
    905                                    Op0->getType()->getScalarSizeInBits()-1);
    906       Value *In = Builder->CreateAShr(Op0, Sh, Op0->getName()+".lobit");
    907       if (In->getType() != CI.getType())
    908         In = Builder->CreateIntCast(In, CI.getType(), true/*SExt*/);
    909 
    910       if (Pred == ICmpInst::ICMP_SGT)
    911         In = Builder->CreateNot(In, In->getName()+".not");
    912       return ReplaceInstUsesWith(CI, In);
    913     }
    914   }
    915 
    916   if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
    917     // If we know that only one bit of the LHS of the icmp can be set and we
    918     // have an equality comparison with zero or a power of 2, we can transform
    919     // the icmp and sext into bitwise/integer operations.
    920     if (ICI->hasOneUse() &&
    921         ICI->isEquality() && (Op1C->isZero() || Op1C->getValue().isPowerOf2())){
    922       unsigned BitWidth = Op1C->getType()->getBitWidth();
    923       APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
    924       computeKnownBits(Op0, KnownZero, KnownOne);
    925 
    926       APInt KnownZeroMask(~KnownZero);
    927       if (KnownZeroMask.isPowerOf2()) {
    928         Value *In = ICI->getOperand(0);
    929 
    930         // If the icmp tests for a known zero bit we can constant fold it.
    931         if (!Op1C->isZero() && Op1C->getValue() != KnownZeroMask) {
    932           Value *V = Pred == ICmpInst::ICMP_NE ?
    933                        ConstantInt::getAllOnesValue(CI.getType()) :
    934                        ConstantInt::getNullValue(CI.getType());
    935           return ReplaceInstUsesWith(CI, V);
    936         }
    937 
    938         if (!Op1C->isZero() == (Pred == ICmpInst::ICMP_NE)) {
    939           // sext ((x & 2^n) == 0)   -> (x >> n) - 1
    940           // sext ((x & 2^n) != 2^n) -> (x >> n) - 1
    941           unsigned ShiftAmt = KnownZeroMask.countTrailingZeros();
    942           // Perform a right shift to place the desired bit in the LSB.
    943           if (ShiftAmt)
    944             In = Builder->CreateLShr(In,
    945                                      ConstantInt::get(In->getType(), ShiftAmt));
    946 
    947           // At this point "In" is either 1 or 0. Subtract 1 to turn
    948           // {1, 0} -> {0, -1}.
    949           In = Builder->CreateAdd(In,
    950                                   ConstantInt::getAllOnesValue(In->getType()),
    951                                   "sext");
    952         } else {
    953           // sext ((x & 2^n) != 0)   -> (x << bitwidth-n) a>> bitwidth-1
    954           // sext ((x & 2^n) == 2^n) -> (x << bitwidth-n) a>> bitwidth-1
    955           unsigned ShiftAmt = KnownZeroMask.countLeadingZeros();
    956           // Perform a left shift to place the desired bit in the MSB.
    957           if (ShiftAmt)
    958             In = Builder->CreateShl(In,
    959                                     ConstantInt::get(In->getType(), ShiftAmt));
    960 
    961           // Distribute the bit over the whole bit width.
    962           In = Builder->CreateAShr(In, ConstantInt::get(In->getType(),
    963                                                         BitWidth - 1), "sext");
    964         }
    965 
    966         if (CI.getType() == In->getType())
    967           return ReplaceInstUsesWith(CI, In);
    968         return CastInst::CreateIntegerCast(In, CI.getType(), true/*SExt*/);
    969       }
    970     }
    971   }
    972 
    973   return nullptr;
    974 }
    975 
    976 /// CanEvaluateSExtd - Return true if we can take the specified value
    977 /// and return it as type Ty without inserting any new casts and without
    978 /// changing the value of the common low bits.  This is used by code that tries
    979 /// to promote integer operations to a wider types will allow us to eliminate
    980 /// the extension.
    981 ///
    982 /// This function works on both vectors and scalars.
    983 ///
    984 static bool CanEvaluateSExtd(Value *V, Type *Ty) {
    985   assert(V->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits() &&
    986          "Can't sign extend type to a smaller type");
    987   // If this is a constant, it can be trivially promoted.
    988   if (isa<Constant>(V))
    989     return true;
    990 
    991   Instruction *I = dyn_cast<Instruction>(V);
    992   if (!I) return false;
    993 
    994   // If this is a truncate from the dest type, we can trivially eliminate it.
    995   if (isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty)
    996     return true;
    997 
    998   // We can't extend or shrink something that has multiple uses: doing so would
    999   // require duplicating the instruction in general, which isn't profitable.
   1000   if (!I->hasOneUse()) return false;
   1001 
   1002   switch (I->getOpcode()) {
   1003   case Instruction::SExt:  // sext(sext(x)) -> sext(x)
   1004   case Instruction::ZExt:  // sext(zext(x)) -> zext(x)
   1005   case Instruction::Trunc: // sext(trunc(x)) -> trunc(x) or sext(x)
   1006     return true;
   1007   case Instruction::And:
   1008   case Instruction::Or:
   1009   case Instruction::Xor:
   1010   case Instruction::Add:
   1011   case Instruction::Sub:
   1012   case Instruction::Mul:
   1013     // These operators can all arbitrarily be extended if their inputs can.
   1014     return CanEvaluateSExtd(I->getOperand(0), Ty) &&
   1015            CanEvaluateSExtd(I->getOperand(1), Ty);
   1016 
   1017   //case Instruction::Shl:   TODO
   1018   //case Instruction::LShr:  TODO
   1019 
   1020   case Instruction::Select:
   1021     return CanEvaluateSExtd(I->getOperand(1), Ty) &&
   1022            CanEvaluateSExtd(I->getOperand(2), Ty);
   1023 
   1024   case Instruction::PHI: {
   1025     // We can change a phi if we can change all operands.  Note that we never
   1026     // get into trouble with cyclic PHIs here because we only consider
   1027     // instructions with a single use.
   1028     PHINode *PN = cast<PHINode>(I);
   1029     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
   1030       if (!CanEvaluateSExtd(PN->getIncomingValue(i), Ty)) return false;
   1031     return true;
   1032   }
   1033   default:
   1034     // TODO: Can handle more cases here.
   1035     break;
   1036   }
   1037 
   1038   return false;
   1039 }
   1040 
   1041 Instruction *InstCombiner::visitSExt(SExtInst &CI) {
   1042   // If this sign extend is only used by a truncate, let the truncate be
   1043   // eliminated before we try to optimize this sext.
   1044   if (CI.hasOneUse() && isa<TruncInst>(CI.user_back()))
   1045     return nullptr;
   1046 
   1047   if (Instruction *I = commonCastTransforms(CI))
   1048     return I;
   1049 
   1050   // See if we can simplify any instructions used by the input whose sole
   1051   // purpose is to compute bits we don't care about.
   1052   if (SimplifyDemandedInstructionBits(CI))
   1053     return &CI;
   1054 
   1055   Value *Src = CI.getOperand(0);
   1056   Type *SrcTy = Src->getType(), *DestTy = CI.getType();
   1057 
   1058   // Attempt to extend the entire input expression tree to the destination
   1059   // type.   Only do this if the dest type is a simple type, don't convert the
   1060   // expression tree to something weird like i93 unless the source is also
   1061   // strange.
   1062   if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) &&
   1063       CanEvaluateSExtd(Src, DestTy)) {
   1064     // Okay, we can transform this!  Insert the new expression now.
   1065     DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
   1066           " to avoid sign extend: " << CI);
   1067     Value *Res = EvaluateInDifferentType(Src, DestTy, true);
   1068     assert(Res->getType() == DestTy);
   1069 
   1070     uint32_t SrcBitSize = SrcTy->getScalarSizeInBits();
   1071     uint32_t DestBitSize = DestTy->getScalarSizeInBits();
   1072 
   1073     // If the high bits are already filled with sign bit, just replace this
   1074     // cast with the result.
   1075     if (ComputeNumSignBits(Res) > DestBitSize - SrcBitSize)
   1076       return ReplaceInstUsesWith(CI, Res);
   1077 
   1078     // We need to emit a shl + ashr to do the sign extend.
   1079     Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize);
   1080     return BinaryOperator::CreateAShr(Builder->CreateShl(Res, ShAmt, "sext"),
   1081                                       ShAmt);
   1082   }
   1083 
   1084   // If this input is a trunc from our destination, then turn sext(trunc(x))
   1085   // into shifts.
   1086   if (TruncInst *TI = dyn_cast<TruncInst>(Src))
   1087     if (TI->hasOneUse() && TI->getOperand(0)->getType() == DestTy) {
   1088       uint32_t SrcBitSize = SrcTy->getScalarSizeInBits();
   1089       uint32_t DestBitSize = DestTy->getScalarSizeInBits();
   1090 
   1091       // We need to emit a shl + ashr to do the sign extend.
   1092       Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize);
   1093       Value *Res = Builder->CreateShl(TI->getOperand(0), ShAmt, "sext");
   1094       return BinaryOperator::CreateAShr(Res, ShAmt);
   1095     }
   1096 
   1097   if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
   1098     return transformSExtICmp(ICI, CI);
   1099 
   1100   // If the input is a shl/ashr pair of a same constant, then this is a sign
   1101   // extension from a smaller value.  If we could trust arbitrary bitwidth
   1102   // integers, we could turn this into a truncate to the smaller bit and then
   1103   // use a sext for the whole extension.  Since we don't, look deeper and check
   1104   // for a truncate.  If the source and dest are the same type, eliminate the
   1105   // trunc and extend and just do shifts.  For example, turn:
   1106   //   %a = trunc i32 %i to i8
   1107   //   %b = shl i8 %a, 6
   1108   //   %c = ashr i8 %b, 6
   1109   //   %d = sext i8 %c to i32
   1110   // into:
   1111   //   %a = shl i32 %i, 30
   1112   //   %d = ashr i32 %a, 30
   1113   Value *A = nullptr;
   1114   // TODO: Eventually this could be subsumed by EvaluateInDifferentType.
   1115   ConstantInt *BA = nullptr, *CA = nullptr;
   1116   if (match(Src, m_AShr(m_Shl(m_Trunc(m_Value(A)), m_ConstantInt(BA)),
   1117                         m_ConstantInt(CA))) &&
   1118       BA == CA && A->getType() == CI.getType()) {
   1119     unsigned MidSize = Src->getType()->getScalarSizeInBits();
   1120     unsigned SrcDstSize = CI.getType()->getScalarSizeInBits();
   1121     unsigned ShAmt = CA->getZExtValue()+SrcDstSize-MidSize;
   1122     Constant *ShAmtV = ConstantInt::get(CI.getType(), ShAmt);
   1123     A = Builder->CreateShl(A, ShAmtV, CI.getName());
   1124     return BinaryOperator::CreateAShr(A, ShAmtV);
   1125   }
   1126 
   1127   return nullptr;
   1128 }
   1129 
   1130 
   1131 /// FitsInFPType - Return a Constant* for the specified FP constant if it fits
   1132 /// in the specified FP type without changing its value.
   1133 static Constant *FitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) {
   1134   bool losesInfo;
   1135   APFloat F = CFP->getValueAPF();
   1136   (void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo);
   1137   if (!losesInfo)
   1138     return ConstantFP::get(CFP->getContext(), F);
   1139   return nullptr;
   1140 }
   1141 
   1142 /// LookThroughFPExtensions - If this is an fp extension instruction, look
   1143 /// through it until we get the source value.
   1144 static Value *LookThroughFPExtensions(Value *V) {
   1145   if (Instruction *I = dyn_cast<Instruction>(V))
   1146     if (I->getOpcode() == Instruction::FPExt)
   1147       return LookThroughFPExtensions(I->getOperand(0));
   1148 
   1149   // If this value is a constant, return the constant in the smallest FP type
   1150   // that can accurately represent it.  This allows us to turn
   1151   // (float)((double)X+2.0) into x+2.0f.
   1152   if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
   1153     if (CFP->getType() == Type::getPPC_FP128Ty(V->getContext()))
   1154       return V;  // No constant folding of this.
   1155     // See if the value can be truncated to half and then reextended.
   1156     if (Value *V = FitsInFPType(CFP, APFloat::IEEEhalf))
   1157       return V;
   1158     // See if the value can be truncated to float and then reextended.
   1159     if (Value *V = FitsInFPType(CFP, APFloat::IEEEsingle))
   1160       return V;
   1161     if (CFP->getType()->isDoubleTy())
   1162       return V;  // Won't shrink.
   1163     if (Value *V = FitsInFPType(CFP, APFloat::IEEEdouble))
   1164       return V;
   1165     // Don't try to shrink to various long double types.
   1166   }
   1167 
   1168   return V;
   1169 }
   1170 
   1171 Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) {
   1172   if (Instruction *I = commonCastTransforms(CI))
   1173     return I;
   1174   // If we have fptrunc(OpI (fpextend x), (fpextend y)), we would like to
   1175   // simpilify this expression to avoid one or more of the trunc/extend
   1176   // operations if we can do so without changing the numerical results.
   1177   //
   1178   // The exact manner in which the widths of the operands interact to limit
   1179   // what we can and cannot do safely varies from operation to operation, and
   1180   // is explained below in the various case statements.
   1181   BinaryOperator *OpI = dyn_cast<BinaryOperator>(CI.getOperand(0));
   1182   if (OpI && OpI->hasOneUse()) {
   1183     Value *LHSOrig = LookThroughFPExtensions(OpI->getOperand(0));
   1184     Value *RHSOrig = LookThroughFPExtensions(OpI->getOperand(1));
   1185     unsigned OpWidth = OpI->getType()->getFPMantissaWidth();
   1186     unsigned LHSWidth = LHSOrig->getType()->getFPMantissaWidth();
   1187     unsigned RHSWidth = RHSOrig->getType()->getFPMantissaWidth();
   1188     unsigned SrcWidth = std::max(LHSWidth, RHSWidth);
   1189     unsigned DstWidth = CI.getType()->getFPMantissaWidth();
   1190     switch (OpI->getOpcode()) {
   1191       default: break;
   1192       case Instruction::FAdd:
   1193       case Instruction::FSub:
   1194         // For addition and subtraction, the infinitely precise result can
   1195         // essentially be arbitrarily wide; proving that double rounding
   1196         // will not occur because the result of OpI is exact (as we will for
   1197         // FMul, for example) is hopeless.  However, we *can* nonetheless
   1198         // frequently know that double rounding cannot occur (or that it is
   1199         // innocuous) by taking advantage of the specific structure of
   1200         // infinitely-precise results that admit double rounding.
   1201         //
   1202         // Specifically, if OpWidth >= 2*DstWdith+1 and DstWidth is sufficient
   1203         // to represent both sources, we can guarantee that the double
   1204         // rounding is innocuous (See p50 of Figueroa's 2000 PhD thesis,
   1205         // "A Rigorous Framework for Fully Supporting the IEEE Standard ..."
   1206         // for proof of this fact).
   1207         //
   1208         // Note: Figueroa does not consider the case where DstFormat !=
   1209         // SrcFormat.  It's possible (likely even!) that this analysis
   1210         // could be tightened for those cases, but they are rare (the main
   1211         // case of interest here is (float)((double)float + float)).
   1212         if (OpWidth >= 2*DstWidth+1 && DstWidth >= SrcWidth) {
   1213           if (LHSOrig->getType() != CI.getType())
   1214             LHSOrig = Builder->CreateFPExt(LHSOrig, CI.getType());
   1215           if (RHSOrig->getType() != CI.getType())
   1216             RHSOrig = Builder->CreateFPExt(RHSOrig, CI.getType());
   1217           Instruction *RI =
   1218             BinaryOperator::Create(OpI->getOpcode(), LHSOrig, RHSOrig);
   1219           RI->copyFastMathFlags(OpI);
   1220           return RI;
   1221         }
   1222         break;
   1223       case Instruction::FMul:
   1224         // For multiplication, the infinitely precise result has at most
   1225         // LHSWidth + RHSWidth significant bits; if OpWidth is sufficient
   1226         // that such a value can be exactly represented, then no double
   1227         // rounding can possibly occur; we can safely perform the operation
   1228         // in the destination format if it can represent both sources.
   1229         if (OpWidth >= LHSWidth + RHSWidth && DstWidth >= SrcWidth) {
   1230           if (LHSOrig->getType() != CI.getType())
   1231             LHSOrig = Builder->CreateFPExt(LHSOrig, CI.getType());
   1232           if (RHSOrig->getType() != CI.getType())
   1233             RHSOrig = Builder->CreateFPExt(RHSOrig, CI.getType());
   1234           Instruction *RI =
   1235             BinaryOperator::CreateFMul(LHSOrig, RHSOrig);
   1236           RI->copyFastMathFlags(OpI);
   1237           return RI;
   1238         }
   1239         break;
   1240       case Instruction::FDiv:
   1241         // For division, we use again use the bound from Figueroa's
   1242         // dissertation.  I am entirely certain that this bound can be
   1243         // tightened in the unbalanced operand case by an analysis based on
   1244         // the diophantine rational approximation bound, but the well-known
   1245         // condition used here is a good conservative first pass.
   1246         // TODO: Tighten bound via rigorous analysis of the unbalanced case.
   1247         if (OpWidth >= 2*DstWidth && DstWidth >= SrcWidth) {
   1248           if (LHSOrig->getType() != CI.getType())
   1249             LHSOrig = Builder->CreateFPExt(LHSOrig, CI.getType());
   1250           if (RHSOrig->getType() != CI.getType())
   1251             RHSOrig = Builder->CreateFPExt(RHSOrig, CI.getType());
   1252           Instruction *RI =
   1253             BinaryOperator::CreateFDiv(LHSOrig, RHSOrig);
   1254           RI->copyFastMathFlags(OpI);
   1255           return RI;
   1256         }
   1257         break;
   1258       case Instruction::FRem:
   1259         // Remainder is straightforward.  Remainder is always exact, so the
   1260         // type of OpI doesn't enter into things at all.  We simply evaluate
   1261         // in whichever source type is larger, then convert to the
   1262         // destination type.
   1263         if (LHSWidth < SrcWidth)
   1264           LHSOrig = Builder->CreateFPExt(LHSOrig, RHSOrig->getType());
   1265         else if (RHSWidth <= SrcWidth)
   1266           RHSOrig = Builder->CreateFPExt(RHSOrig, LHSOrig->getType());
   1267         Value *ExactResult = Builder->CreateFRem(LHSOrig, RHSOrig);
   1268         if (Instruction *RI = dyn_cast<Instruction>(ExactResult))
   1269           RI->copyFastMathFlags(OpI);
   1270         return CastInst::CreateFPCast(ExactResult, CI.getType());
   1271     }
   1272 
   1273     // (fptrunc (fneg x)) -> (fneg (fptrunc x))
   1274     if (BinaryOperator::isFNeg(OpI)) {
   1275       Value *InnerTrunc = Builder->CreateFPTrunc(OpI->getOperand(1),
   1276                                                  CI.getType());
   1277       Instruction *RI = BinaryOperator::CreateFNeg(InnerTrunc);
   1278       RI->copyFastMathFlags(OpI);
   1279       return RI;
   1280     }
   1281   }
   1282 
   1283   // (fptrunc (select cond, R1, Cst)) -->
   1284   // (select cond, (fptrunc R1), (fptrunc Cst))
   1285   SelectInst *SI = dyn_cast<SelectInst>(CI.getOperand(0));
   1286   if (SI &&
   1287       (isa<ConstantFP>(SI->getOperand(1)) ||
   1288        isa<ConstantFP>(SI->getOperand(2)))) {
   1289     Value *LHSTrunc = Builder->CreateFPTrunc(SI->getOperand(1),
   1290                                              CI.getType());
   1291     Value *RHSTrunc = Builder->CreateFPTrunc(SI->getOperand(2),
   1292                                              CI.getType());
   1293     return SelectInst::Create(SI->getOperand(0), LHSTrunc, RHSTrunc);
   1294   }
   1295 
   1296   IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI.getOperand(0));
   1297   if (II) {
   1298     switch (II->getIntrinsicID()) {
   1299       default: break;
   1300       case Intrinsic::fabs: {
   1301         // (fptrunc (fabs x)) -> (fabs (fptrunc x))
   1302         Value *InnerTrunc = Builder->CreateFPTrunc(II->getArgOperand(0),
   1303                                                    CI.getType());
   1304         Type *IntrinsicType[] = { CI.getType() };
   1305         Function *Overload =
   1306           Intrinsic::getDeclaration(CI.getParent()->getParent()->getParent(),
   1307                                     II->getIntrinsicID(), IntrinsicType);
   1308 
   1309         Value *Args[] = { InnerTrunc };
   1310         return CallInst::Create(Overload, Args, II->getName());
   1311       }
   1312     }
   1313   }
   1314 
   1315   // Fold (fptrunc (sqrt (fpext x))) -> (sqrtf x)
   1316   // Note that we restrict this transformation based on
   1317   // TLI->has(LibFunc::sqrtf), even for the sqrt intrinsic, because
   1318   // TLI->has(LibFunc::sqrtf) is sufficient to guarantee that the
   1319   // single-precision intrinsic can be expanded in the backend.
   1320   CallInst *Call = dyn_cast<CallInst>(CI.getOperand(0));
   1321   if (Call && Call->getCalledFunction() && TLI->has(LibFunc::sqrtf) &&
   1322       (Call->getCalledFunction()->getName() == TLI->getName(LibFunc::sqrt) ||
   1323        Call->getCalledFunction()->getIntrinsicID() == Intrinsic::sqrt) &&
   1324       Call->getNumArgOperands() == 1 &&
   1325       Call->hasOneUse()) {
   1326     CastInst *Arg = dyn_cast<CastInst>(Call->getArgOperand(0));
   1327     if (Arg && Arg->getOpcode() == Instruction::FPExt &&
   1328         CI.getType()->isFloatTy() &&
   1329         Call->getType()->isDoubleTy() &&
   1330         Arg->getType()->isDoubleTy() &&
   1331         Arg->getOperand(0)->getType()->isFloatTy()) {
   1332       Function *Callee = Call->getCalledFunction();
   1333       Module *M = CI.getParent()->getParent()->getParent();
   1334       Constant *SqrtfFunc = (Callee->getIntrinsicID() == Intrinsic::sqrt) ?
   1335         Intrinsic::getDeclaration(M, Intrinsic::sqrt, Builder->getFloatTy()) :
   1336         M->getOrInsertFunction("sqrtf", Callee->getAttributes(),
   1337                                Builder->getFloatTy(), Builder->getFloatTy(),
   1338                                NULL);
   1339       CallInst *ret = CallInst::Create(SqrtfFunc, Arg->getOperand(0),
   1340                                        "sqrtfcall");
   1341       ret->setAttributes(Callee->getAttributes());
   1342 
   1343 
   1344       // Remove the old Call.  With -fmath-errno, it won't get marked readnone.
   1345       ReplaceInstUsesWith(*Call, UndefValue::get(Call->getType()));
   1346       EraseInstFromFunction(*Call);
   1347       return ret;
   1348     }
   1349   }
   1350 
   1351   return nullptr;
   1352 }
   1353 
   1354 Instruction *InstCombiner::visitFPExt(CastInst &CI) {
   1355   return commonCastTransforms(CI);
   1356 }
   1357 
   1358 Instruction *InstCombiner::visitFPToUI(FPToUIInst &FI) {
   1359   Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
   1360   if (!OpI)
   1361     return commonCastTransforms(FI);
   1362 
   1363   // fptoui(uitofp(X)) --> X
   1364   // fptoui(sitofp(X)) --> X
   1365   // This is safe if the intermediate type has enough bits in its mantissa to
   1366   // accurately represent all values of X.  For example, do not do this with
   1367   // i64->float->i64.  This is also safe for sitofp case, because any negative
   1368   // 'X' value would cause an undefined result for the fptoui.
   1369   if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) &&
   1370       OpI->getOperand(0)->getType() == FI.getType() &&
   1371       (int)FI.getType()->getScalarSizeInBits() < /*extra bit for sign */
   1372                     OpI->getType()->getFPMantissaWidth())
   1373     return ReplaceInstUsesWith(FI, OpI->getOperand(0));
   1374 
   1375   return commonCastTransforms(FI);
   1376 }
   1377 
   1378 Instruction *InstCombiner::visitFPToSI(FPToSIInst &FI) {
   1379   Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
   1380   if (!OpI)
   1381     return commonCastTransforms(FI);
   1382 
   1383   // fptosi(sitofp(X)) --> X
   1384   // fptosi(uitofp(X)) --> X
   1385   // This is safe if the intermediate type has enough bits in its mantissa to
   1386   // accurately represent all values of X.  For example, do not do this with
   1387   // i64->float->i64.  This is also safe for sitofp case, because any negative
   1388   // 'X' value would cause an undefined result for the fptoui.
   1389   if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) &&
   1390       OpI->getOperand(0)->getType() == FI.getType() &&
   1391       (int)FI.getType()->getScalarSizeInBits() <=
   1392                     OpI->getType()->getFPMantissaWidth())
   1393     return ReplaceInstUsesWith(FI, OpI->getOperand(0));
   1394 
   1395   return commonCastTransforms(FI);
   1396 }
   1397 
   1398 Instruction *InstCombiner::visitUIToFP(CastInst &CI) {
   1399   return commonCastTransforms(CI);
   1400 }
   1401 
   1402 Instruction *InstCombiner::visitSIToFP(CastInst &CI) {
   1403   return commonCastTransforms(CI);
   1404 }
   1405 
   1406 Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) {
   1407   // If the source integer type is not the intptr_t type for this target, do a
   1408   // trunc or zext to the intptr_t type, then inttoptr of it.  This allows the
   1409   // cast to be exposed to other transforms.
   1410 
   1411   if (DL) {
   1412     unsigned AS = CI.getAddressSpace();
   1413     if (CI.getOperand(0)->getType()->getScalarSizeInBits() !=
   1414         DL->getPointerSizeInBits(AS)) {
   1415       Type *Ty = DL->getIntPtrType(CI.getContext(), AS);
   1416       if (CI.getType()->isVectorTy()) // Handle vectors of pointers.
   1417         Ty = VectorType::get(Ty, CI.getType()->getVectorNumElements());
   1418 
   1419       Value *P = Builder->CreateZExtOrTrunc(CI.getOperand(0), Ty);
   1420       return new IntToPtrInst(P, CI.getType());
   1421     }
   1422   }
   1423 
   1424   if (Instruction *I = commonCastTransforms(CI))
   1425     return I;
   1426 
   1427   return nullptr;
   1428 }
   1429 
   1430 /// @brief Implement the transforms for cast of pointer (bitcast/ptrtoint)
   1431 Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) {
   1432   Value *Src = CI.getOperand(0);
   1433 
   1434   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) {
   1435     // If casting the result of a getelementptr instruction with no offset, turn
   1436     // this into a cast of the original pointer!
   1437     if (GEP->hasAllZeroIndices() &&
   1438         // If CI is an addrspacecast and GEP changes the poiner type, merging
   1439         // GEP into CI would undo canonicalizing addrspacecast with different
   1440         // pointer types, causing infinite loops.
   1441         (!isa<AddrSpaceCastInst>(CI) ||
   1442           GEP->getType() == GEP->getPointerOperand()->getType())) {
   1443       // Changing the cast operand is usually not a good idea but it is safe
   1444       // here because the pointer operand is being replaced with another
   1445       // pointer operand so the opcode doesn't need to change.
   1446       Worklist.Add(GEP);
   1447       CI.setOperand(0, GEP->getOperand(0));
   1448       return &CI;
   1449     }
   1450 
   1451     if (!DL)
   1452       return commonCastTransforms(CI);
   1453 
   1454     // If the GEP has a single use, and the base pointer is a bitcast, and the
   1455     // GEP computes a constant offset, see if we can convert these three
   1456     // instructions into fewer.  This typically happens with unions and other
   1457     // non-type-safe code.
   1458     unsigned AS = GEP->getPointerAddressSpace();
   1459     unsigned OffsetBits = DL->getPointerSizeInBits(AS);
   1460     APInt Offset(OffsetBits, 0);
   1461     BitCastInst *BCI = dyn_cast<BitCastInst>(GEP->getOperand(0));
   1462     if (GEP->hasOneUse() &&
   1463         BCI &&
   1464         GEP->accumulateConstantOffset(*DL, Offset)) {
   1465       // Get the base pointer input of the bitcast, and the type it points to.
   1466       Value *OrigBase = BCI->getOperand(0);
   1467       SmallVector<Value*, 8> NewIndices;
   1468       if (FindElementAtOffset(OrigBase->getType(),
   1469                               Offset.getSExtValue(),
   1470                               NewIndices)) {
   1471         // If we were able to index down into an element, create the GEP
   1472         // and bitcast the result.  This eliminates one bitcast, potentially
   1473         // two.
   1474         Value *NGEP = cast<GEPOperator>(GEP)->isInBounds() ?
   1475           Builder->CreateInBoundsGEP(OrigBase, NewIndices) :
   1476           Builder->CreateGEP(OrigBase, NewIndices);
   1477         NGEP->takeName(GEP);
   1478 
   1479         if (isa<BitCastInst>(CI))
   1480           return new BitCastInst(NGEP, CI.getType());
   1481         assert(isa<PtrToIntInst>(CI));
   1482         return new PtrToIntInst(NGEP, CI.getType());
   1483       }
   1484     }
   1485   }
   1486 
   1487   return commonCastTransforms(CI);
   1488 }
   1489 
   1490 Instruction *InstCombiner::visitPtrToInt(PtrToIntInst &CI) {
   1491   // If the destination integer type is not the intptr_t type for this target,
   1492   // do a ptrtoint to intptr_t then do a trunc or zext.  This allows the cast
   1493   // to be exposed to other transforms.
   1494 
   1495   if (!DL)
   1496     return commonPointerCastTransforms(CI);
   1497 
   1498   Type *Ty = CI.getType();
   1499   unsigned AS = CI.getPointerAddressSpace();
   1500 
   1501   if (Ty->getScalarSizeInBits() == DL->getPointerSizeInBits(AS))
   1502     return commonPointerCastTransforms(CI);
   1503 
   1504   Type *PtrTy = DL->getIntPtrType(CI.getContext(), AS);
   1505   if (Ty->isVectorTy()) // Handle vectors of pointers.
   1506     PtrTy = VectorType::get(PtrTy, Ty->getVectorNumElements());
   1507 
   1508   Value *P = Builder->CreatePtrToInt(CI.getOperand(0), PtrTy);
   1509   return CastInst::CreateIntegerCast(P, Ty, /*isSigned=*/false);
   1510 }
   1511 
   1512 /// OptimizeVectorResize - This input value (which is known to have vector type)
   1513 /// is being zero extended or truncated to the specified vector type.  Try to
   1514 /// replace it with a shuffle (and vector/vector bitcast) if possible.
   1515 ///
   1516 /// The source and destination vector types may have different element types.
   1517 static Instruction *OptimizeVectorResize(Value *InVal, VectorType *DestTy,
   1518                                          InstCombiner &IC) {
   1519   // We can only do this optimization if the output is a multiple of the input
   1520   // element size, or the input is a multiple of the output element size.
   1521   // Convert the input type to have the same element type as the output.
   1522   VectorType *SrcTy = cast<VectorType>(InVal->getType());
   1523 
   1524   if (SrcTy->getElementType() != DestTy->getElementType()) {
   1525     // The input types don't need to be identical, but for now they must be the
   1526     // same size.  There is no specific reason we couldn't handle things like
   1527     // <4 x i16> -> <4 x i32> by bitcasting to <2 x i32> but haven't gotten
   1528     // there yet.
   1529     if (SrcTy->getElementType()->getPrimitiveSizeInBits() !=
   1530         DestTy->getElementType()->getPrimitiveSizeInBits())
   1531       return nullptr;
   1532 
   1533     SrcTy = VectorType::get(DestTy->getElementType(), SrcTy->getNumElements());
   1534     InVal = IC.Builder->CreateBitCast(InVal, SrcTy);
   1535   }
   1536 
   1537   // Now that the element types match, get the shuffle mask and RHS of the
   1538   // shuffle to use, which depends on whether we're increasing or decreasing the
   1539   // size of the input.
   1540   SmallVector<uint32_t, 16> ShuffleMask;
   1541   Value *V2;
   1542 
   1543   if (SrcTy->getNumElements() > DestTy->getNumElements()) {
   1544     // If we're shrinking the number of elements, just shuffle in the low
   1545     // elements from the input and use undef as the second shuffle input.
   1546     V2 = UndefValue::get(SrcTy);
   1547     for (unsigned i = 0, e = DestTy->getNumElements(); i != e; ++i)
   1548       ShuffleMask.push_back(i);
   1549 
   1550   } else {
   1551     // If we're increasing the number of elements, shuffle in all of the
   1552     // elements from InVal and fill the rest of the result elements with zeros
   1553     // from a constant zero.
   1554     V2 = Constant::getNullValue(SrcTy);
   1555     unsigned SrcElts = SrcTy->getNumElements();
   1556     for (unsigned i = 0, e = SrcElts; i != e; ++i)
   1557       ShuffleMask.push_back(i);
   1558 
   1559     // The excess elements reference the first element of the zero input.
   1560     for (unsigned i = 0, e = DestTy->getNumElements()-SrcElts; i != e; ++i)
   1561       ShuffleMask.push_back(SrcElts);
   1562   }
   1563 
   1564   return new ShuffleVectorInst(InVal, V2,
   1565                                ConstantDataVector::get(V2->getContext(),
   1566                                                        ShuffleMask));
   1567 }
   1568 
   1569 static bool isMultipleOfTypeSize(unsigned Value, Type *Ty) {
   1570   return Value % Ty->getPrimitiveSizeInBits() == 0;
   1571 }
   1572 
   1573 static unsigned getTypeSizeIndex(unsigned Value, Type *Ty) {
   1574   return Value / Ty->getPrimitiveSizeInBits();
   1575 }
   1576 
   1577 /// CollectInsertionElements - V is a value which is inserted into a vector of
   1578 /// VecEltTy.  Look through the value to see if we can decompose it into
   1579 /// insertions into the vector.  See the example in the comment for
   1580 /// OptimizeIntegerToVectorInsertions for the pattern this handles.
   1581 /// The type of V is always a non-zero multiple of VecEltTy's size.
   1582 /// Shift is the number of bits between the lsb of V and the lsb of
   1583 /// the vector.
   1584 ///
   1585 /// This returns false if the pattern can't be matched or true if it can,
   1586 /// filling in Elements with the elements found here.
   1587 static bool CollectInsertionElements(Value *V, unsigned Shift,
   1588                                      SmallVectorImpl<Value*> &Elements,
   1589                                      Type *VecEltTy, InstCombiner &IC) {
   1590   assert(isMultipleOfTypeSize(Shift, VecEltTy) &&
   1591          "Shift should be a multiple of the element type size");
   1592 
   1593   // Undef values never contribute useful bits to the result.
   1594   if (isa<UndefValue>(V)) return true;
   1595 
   1596   // If we got down to a value of the right type, we win, try inserting into the
   1597   // right element.
   1598   if (V->getType() == VecEltTy) {
   1599     // Inserting null doesn't actually insert any elements.
   1600     if (Constant *C = dyn_cast<Constant>(V))
   1601       if (C->isNullValue())
   1602         return true;
   1603 
   1604     unsigned ElementIndex = getTypeSizeIndex(Shift, VecEltTy);
   1605     if (IC.getDataLayout()->isBigEndian())
   1606       ElementIndex = Elements.size() - ElementIndex - 1;
   1607 
   1608     // Fail if multiple elements are inserted into this slot.
   1609     if (Elements[ElementIndex])
   1610       return false;
   1611 
   1612     Elements[ElementIndex] = V;
   1613     return true;
   1614   }
   1615 
   1616   if (Constant *C = dyn_cast<Constant>(V)) {
   1617     // Figure out the # elements this provides, and bitcast it or slice it up
   1618     // as required.
   1619     unsigned NumElts = getTypeSizeIndex(C->getType()->getPrimitiveSizeInBits(),
   1620                                         VecEltTy);
   1621     // If the constant is the size of a vector element, we just need to bitcast
   1622     // it to the right type so it gets properly inserted.
   1623     if (NumElts == 1)
   1624       return CollectInsertionElements(ConstantExpr::getBitCast(C, VecEltTy),
   1625                                       Shift, Elements, VecEltTy, IC);
   1626 
   1627     // Okay, this is a constant that covers multiple elements.  Slice it up into
   1628     // pieces and insert each element-sized piece into the vector.
   1629     if (!isa<IntegerType>(C->getType()))
   1630       C = ConstantExpr::getBitCast(C, IntegerType::get(V->getContext(),
   1631                                        C->getType()->getPrimitiveSizeInBits()));
   1632     unsigned ElementSize = VecEltTy->getPrimitiveSizeInBits();
   1633     Type *ElementIntTy = IntegerType::get(C->getContext(), ElementSize);
   1634 
   1635     for (unsigned i = 0; i != NumElts; ++i) {
   1636       unsigned ShiftI = Shift+i*ElementSize;
   1637       Constant *Piece = ConstantExpr::getLShr(C, ConstantInt::get(C->getType(),
   1638                                                                   ShiftI));
   1639       Piece = ConstantExpr::getTrunc(Piece, ElementIntTy);
   1640       if (!CollectInsertionElements(Piece, ShiftI, Elements, VecEltTy, IC))
   1641         return false;
   1642     }
   1643     return true;
   1644   }
   1645 
   1646   if (!V->hasOneUse()) return false;
   1647 
   1648   Instruction *I = dyn_cast<Instruction>(V);
   1649   if (!I) return false;
   1650   switch (I->getOpcode()) {
   1651   default: return false; // Unhandled case.
   1652   case Instruction::BitCast:
   1653     return CollectInsertionElements(I->getOperand(0), Shift,
   1654                                     Elements, VecEltTy, IC);
   1655   case Instruction::ZExt:
   1656     if (!isMultipleOfTypeSize(
   1657                           I->getOperand(0)->getType()->getPrimitiveSizeInBits(),
   1658                               VecEltTy))
   1659       return false;
   1660     return CollectInsertionElements(I->getOperand(0), Shift,
   1661                                     Elements, VecEltTy, IC);
   1662   case Instruction::Or:
   1663     return CollectInsertionElements(I->getOperand(0), Shift,
   1664                                     Elements, VecEltTy, IC) &&
   1665            CollectInsertionElements(I->getOperand(1), Shift,
   1666                                     Elements, VecEltTy, IC);
   1667   case Instruction::Shl: {
   1668     // Must be shifting by a constant that is a multiple of the element size.
   1669     ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1));
   1670     if (!CI) return false;
   1671     Shift += CI->getZExtValue();
   1672     if (!isMultipleOfTypeSize(Shift, VecEltTy)) return false;
   1673     return CollectInsertionElements(I->getOperand(0), Shift,
   1674                                     Elements, VecEltTy, IC);
   1675   }
   1676 
   1677   }
   1678 }
   1679 
   1680 
   1681 /// OptimizeIntegerToVectorInsertions - If the input is an 'or' instruction, we
   1682 /// may be doing shifts and ors to assemble the elements of the vector manually.
   1683 /// Try to rip the code out and replace it with insertelements.  This is to
   1684 /// optimize code like this:
   1685 ///
   1686 ///    %tmp37 = bitcast float %inc to i32
   1687 ///    %tmp38 = zext i32 %tmp37 to i64
   1688 ///    %tmp31 = bitcast float %inc5 to i32
   1689 ///    %tmp32 = zext i32 %tmp31 to i64
   1690 ///    %tmp33 = shl i64 %tmp32, 32
   1691 ///    %ins35 = or i64 %tmp33, %tmp38
   1692 ///    %tmp43 = bitcast i64 %ins35 to <2 x float>
   1693 ///
   1694 /// Into two insertelements that do "buildvector{%inc, %inc5}".
   1695 static Value *OptimizeIntegerToVectorInsertions(BitCastInst &CI,
   1696                                                 InstCombiner &IC) {
   1697   // We need to know the target byte order to perform this optimization.
   1698   if (!IC.getDataLayout()) return nullptr;
   1699 
   1700   VectorType *DestVecTy = cast<VectorType>(CI.getType());
   1701   Value *IntInput = CI.getOperand(0);
   1702 
   1703   SmallVector<Value*, 8> Elements(DestVecTy->getNumElements());
   1704   if (!CollectInsertionElements(IntInput, 0, Elements,
   1705                                 DestVecTy->getElementType(), IC))
   1706     return nullptr;
   1707 
   1708   // If we succeeded, we know that all of the element are specified by Elements
   1709   // or are zero if Elements has a null entry.  Recast this as a set of
   1710   // insertions.
   1711   Value *Result = Constant::getNullValue(CI.getType());
   1712   for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
   1713     if (!Elements[i]) continue;  // Unset element.
   1714 
   1715     Result = IC.Builder->CreateInsertElement(Result, Elements[i],
   1716                                              IC.Builder->getInt32(i));
   1717   }
   1718 
   1719   return Result;
   1720 }
   1721 
   1722 
   1723 /// OptimizeIntToFloatBitCast - See if we can optimize an integer->float/double
   1724 /// bitcast.  The various long double bitcasts can't get in here.
   1725 static Instruction *OptimizeIntToFloatBitCast(BitCastInst &CI,InstCombiner &IC){
   1726   // We need to know the target byte order to perform this optimization.
   1727   if (!IC.getDataLayout()) return nullptr;
   1728 
   1729   Value *Src = CI.getOperand(0);
   1730   Type *DestTy = CI.getType();
   1731 
   1732   // If this is a bitcast from int to float, check to see if the int is an
   1733   // extraction from a vector.
   1734   Value *VecInput = nullptr;
   1735   // bitcast(trunc(bitcast(somevector)))
   1736   if (match(Src, m_Trunc(m_BitCast(m_Value(VecInput)))) &&
   1737       isa<VectorType>(VecInput->getType())) {
   1738     VectorType *VecTy = cast<VectorType>(VecInput->getType());
   1739     unsigned DestWidth = DestTy->getPrimitiveSizeInBits();
   1740 
   1741     if (VecTy->getPrimitiveSizeInBits() % DestWidth == 0) {
   1742       // If the element type of the vector doesn't match the result type,
   1743       // bitcast it to be a vector type we can extract from.
   1744       if (VecTy->getElementType() != DestTy) {
   1745         VecTy = VectorType::get(DestTy,
   1746                                 VecTy->getPrimitiveSizeInBits() / DestWidth);
   1747         VecInput = IC.Builder->CreateBitCast(VecInput, VecTy);
   1748       }
   1749 
   1750       unsigned Elt = 0;
   1751       if (IC.getDataLayout()->isBigEndian())
   1752         Elt = VecTy->getPrimitiveSizeInBits() / DestWidth - 1;
   1753       return ExtractElementInst::Create(VecInput, IC.Builder->getInt32(Elt));
   1754     }
   1755   }
   1756 
   1757   // bitcast(trunc(lshr(bitcast(somevector), cst))
   1758   ConstantInt *ShAmt = nullptr;
   1759   if (match(Src, m_Trunc(m_LShr(m_BitCast(m_Value(VecInput)),
   1760                                 m_ConstantInt(ShAmt)))) &&
   1761       isa<VectorType>(VecInput->getType())) {
   1762     VectorType *VecTy = cast<VectorType>(VecInput->getType());
   1763     unsigned DestWidth = DestTy->getPrimitiveSizeInBits();
   1764     if (VecTy->getPrimitiveSizeInBits() % DestWidth == 0 &&
   1765         ShAmt->getZExtValue() % DestWidth == 0) {
   1766       // If the element type of the vector doesn't match the result type,
   1767       // bitcast it to be a vector type we can extract from.
   1768       if (VecTy->getElementType() != DestTy) {
   1769         VecTy = VectorType::get(DestTy,
   1770                                 VecTy->getPrimitiveSizeInBits() / DestWidth);
   1771         VecInput = IC.Builder->CreateBitCast(VecInput, VecTy);
   1772       }
   1773 
   1774       unsigned Elt = ShAmt->getZExtValue() / DestWidth;
   1775       if (IC.getDataLayout()->isBigEndian())
   1776         Elt = VecTy->getPrimitiveSizeInBits() / DestWidth - 1 - Elt;
   1777       return ExtractElementInst::Create(VecInput, IC.Builder->getInt32(Elt));
   1778     }
   1779   }
   1780   return nullptr;
   1781 }
   1782 
   1783 Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
   1784   // If the operands are integer typed then apply the integer transforms,
   1785   // otherwise just apply the common ones.
   1786   Value *Src = CI.getOperand(0);
   1787   Type *SrcTy = Src->getType();
   1788   Type *DestTy = CI.getType();
   1789 
   1790   // Get rid of casts from one type to the same type. These are useless and can
   1791   // be replaced by the operand.
   1792   if (DestTy == Src->getType())
   1793     return ReplaceInstUsesWith(CI, Src);
   1794 
   1795   if (PointerType *DstPTy = dyn_cast<PointerType>(DestTy)) {
   1796     PointerType *SrcPTy = cast<PointerType>(SrcTy);
   1797     Type *DstElTy = DstPTy->getElementType();
   1798     Type *SrcElTy = SrcPTy->getElementType();
   1799 
   1800     // If we are casting a alloca to a pointer to a type of the same
   1801     // size, rewrite the allocation instruction to allocate the "right" type.
   1802     // There is no need to modify malloc calls because it is their bitcast that
   1803     // needs to be cleaned up.
   1804     if (AllocaInst *AI = dyn_cast<AllocaInst>(Src))
   1805       if (Instruction *V = PromoteCastOfAllocation(CI, *AI))
   1806         return V;
   1807 
   1808     // If the source and destination are pointers, and this cast is equivalent
   1809     // to a getelementptr X, 0, 0, 0...  turn it into the appropriate gep.
   1810     // This can enhance SROA and other transforms that want type-safe pointers.
   1811     Constant *ZeroUInt =
   1812       Constant::getNullValue(Type::getInt32Ty(CI.getContext()));
   1813     unsigned NumZeros = 0;
   1814     while (SrcElTy != DstElTy &&
   1815            isa<CompositeType>(SrcElTy) && !SrcElTy->isPointerTy() &&
   1816            SrcElTy->getNumContainedTypes() /* not "{}" */) {
   1817       SrcElTy = cast<CompositeType>(SrcElTy)->getTypeAtIndex(ZeroUInt);
   1818       ++NumZeros;
   1819     }
   1820 
   1821     // If we found a path from the src to dest, create the getelementptr now.
   1822     if (SrcElTy == DstElTy) {
   1823       SmallVector<Value*, 8> Idxs(NumZeros+1, ZeroUInt);
   1824       return GetElementPtrInst::CreateInBounds(Src, Idxs);
   1825     }
   1826   }
   1827 
   1828   // Try to optimize int -> float bitcasts.
   1829   if ((DestTy->isFloatTy() || DestTy->isDoubleTy()) && isa<IntegerType>(SrcTy))
   1830     if (Instruction *I = OptimizeIntToFloatBitCast(CI, *this))
   1831       return I;
   1832 
   1833   if (VectorType *DestVTy = dyn_cast<VectorType>(DestTy)) {
   1834     if (DestVTy->getNumElements() == 1 && !SrcTy->isVectorTy()) {
   1835       Value *Elem = Builder->CreateBitCast(Src, DestVTy->getElementType());
   1836       return InsertElementInst::Create(UndefValue::get(DestTy), Elem,
   1837                      Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
   1838       // FIXME: Canonicalize bitcast(insertelement) -> insertelement(bitcast)
   1839     }
   1840 
   1841     if (isa<IntegerType>(SrcTy)) {
   1842       // If this is a cast from an integer to vector, check to see if the input
   1843       // is a trunc or zext of a bitcast from vector.  If so, we can replace all
   1844       // the casts with a shuffle and (potentially) a bitcast.
   1845       if (isa<TruncInst>(Src) || isa<ZExtInst>(Src)) {
   1846         CastInst *SrcCast = cast<CastInst>(Src);
   1847         if (BitCastInst *BCIn = dyn_cast<BitCastInst>(SrcCast->getOperand(0)))
   1848           if (isa<VectorType>(BCIn->getOperand(0)->getType()))
   1849             if (Instruction *I = OptimizeVectorResize(BCIn->getOperand(0),
   1850                                                cast<VectorType>(DestTy), *this))
   1851               return I;
   1852       }
   1853 
   1854       // If the input is an 'or' instruction, we may be doing shifts and ors to
   1855       // assemble the elements of the vector manually.  Try to rip the code out
   1856       // and replace it with insertelements.
   1857       if (Value *V = OptimizeIntegerToVectorInsertions(CI, *this))
   1858         return ReplaceInstUsesWith(CI, V);
   1859     }
   1860   }
   1861 
   1862   if (VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy)) {
   1863     if (SrcVTy->getNumElements() == 1) {
   1864       // If our destination is not a vector, then make this a straight
   1865       // scalar-scalar cast.
   1866       if (!DestTy->isVectorTy()) {
   1867         Value *Elem =
   1868           Builder->CreateExtractElement(Src,
   1869                      Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
   1870         return CastInst::Create(Instruction::BitCast, Elem, DestTy);
   1871       }
   1872 
   1873       // Otherwise, see if our source is an insert. If so, then use the scalar
   1874       // component directly.
   1875       if (InsertElementInst *IEI =
   1876             dyn_cast<InsertElementInst>(CI.getOperand(0)))
   1877         return CastInst::Create(Instruction::BitCast, IEI->getOperand(1),
   1878                                 DestTy);
   1879     }
   1880   }
   1881 
   1882   if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(Src)) {
   1883     // Okay, we have (bitcast (shuffle ..)).  Check to see if this is
   1884     // a bitcast to a vector with the same # elts.
   1885     if (SVI->hasOneUse() && DestTy->isVectorTy() &&
   1886         DestTy->getVectorNumElements() == SVI->getType()->getNumElements() &&
   1887         SVI->getType()->getNumElements() ==
   1888         SVI->getOperand(0)->getType()->getVectorNumElements()) {
   1889       BitCastInst *Tmp;
   1890       // If either of the operands is a cast from CI.getType(), then
   1891       // evaluating the shuffle in the casted destination's type will allow
   1892       // us to eliminate at least one cast.
   1893       if (((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(0))) &&
   1894            Tmp->getOperand(0)->getType() == DestTy) ||
   1895           ((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(1))) &&
   1896            Tmp->getOperand(0)->getType() == DestTy)) {
   1897         Value *LHS = Builder->CreateBitCast(SVI->getOperand(0), DestTy);
   1898         Value *RHS = Builder->CreateBitCast(SVI->getOperand(1), DestTy);
   1899         // Return a new shuffle vector.  Use the same element ID's, as we
   1900         // know the vector types match #elts.
   1901         return new ShuffleVectorInst(LHS, RHS, SVI->getOperand(2));
   1902       }
   1903     }
   1904   }
   1905 
   1906   if (SrcTy->isPointerTy())
   1907     return commonPointerCastTransforms(CI);
   1908   return commonCastTransforms(CI);
   1909 }
   1910 
   1911 Instruction *InstCombiner::visitAddrSpaceCast(AddrSpaceCastInst &CI) {
   1912   // If the destination pointer element type is not the the same as the source's
   1913   // do the addrspacecast to the same type, and then the bitcast in the new
   1914   // address space. This allows the cast to be exposed to other transforms.
   1915   Value *Src = CI.getOperand(0);
   1916   PointerType *SrcTy = cast<PointerType>(Src->getType()->getScalarType());
   1917   PointerType *DestTy = cast<PointerType>(CI.getType()->getScalarType());
   1918 
   1919   Type *DestElemTy = DestTy->getElementType();
   1920   if (SrcTy->getElementType() != DestElemTy) {
   1921     Type *MidTy = PointerType::get(DestElemTy, SrcTy->getAddressSpace());
   1922     if (VectorType *VT = dyn_cast<VectorType>(CI.getType())) {
   1923       // Handle vectors of pointers.
   1924       MidTy = VectorType::get(MidTy, VT->getNumElements());
   1925     }
   1926 
   1927     Value *NewBitCast = Builder->CreateBitCast(Src, MidTy);
   1928     return new AddrSpaceCastInst(NewBitCast, CI.getType());
   1929   }
   1930 
   1931   return commonPointerCastTransforms(CI);
   1932 }
   1933