1 //===- InstCombineCasts.cpp -----------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the visit functions for cast operations. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InstCombine.h" 15 #include "llvm/Analysis/ConstantFolding.h" 16 #include "llvm/IR/DataLayout.h" 17 #include "llvm/IR/PatternMatch.h" 18 #include "llvm/Target/TargetLibraryInfo.h" 19 using namespace llvm; 20 using namespace PatternMatch; 21 22 #define DEBUG_TYPE "instcombine" 23 24 /// DecomposeSimpleLinearExpr - Analyze 'Val', seeing if it is a simple linear 25 /// expression. If so, decompose it, returning some value X, such that Val is 26 /// X*Scale+Offset. 27 /// 28 static Value *DecomposeSimpleLinearExpr(Value *Val, unsigned &Scale, 29 uint64_t &Offset) { 30 if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) { 31 Offset = CI->getZExtValue(); 32 Scale = 0; 33 return ConstantInt::get(Val->getType(), 0); 34 } 35 36 if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) { 37 // Cannot look past anything that might overflow. 38 OverflowingBinaryOperator *OBI = dyn_cast<OverflowingBinaryOperator>(Val); 39 if (OBI && !OBI->hasNoUnsignedWrap() && !OBI->hasNoSignedWrap()) { 40 Scale = 1; 41 Offset = 0; 42 return Val; 43 } 44 45 if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) { 46 if (I->getOpcode() == Instruction::Shl) { 47 // This is a value scaled by '1 << the shift amt'. 48 Scale = UINT64_C(1) << RHS->getZExtValue(); 49 Offset = 0; 50 return I->getOperand(0); 51 } 52 53 if (I->getOpcode() == Instruction::Mul) { 54 // This value is scaled by 'RHS'. 55 Scale = RHS->getZExtValue(); 56 Offset = 0; 57 return I->getOperand(0); 58 } 59 60 if (I->getOpcode() == Instruction::Add) { 61 // We have X+C. Check to see if we really have (X*C2)+C1, 62 // where C1 is divisible by C2. 63 unsigned SubScale; 64 Value *SubVal = 65 DecomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset); 66 Offset += RHS->getZExtValue(); 67 Scale = SubScale; 68 return SubVal; 69 } 70 } 71 } 72 73 // Otherwise, we can't look past this. 74 Scale = 1; 75 Offset = 0; 76 return Val; 77 } 78 79 /// PromoteCastOfAllocation - If we find a cast of an allocation instruction, 80 /// try to eliminate the cast by moving the type information into the alloc. 81 Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI, 82 AllocaInst &AI) { 83 // This requires DataLayout to get the alloca alignment and size information. 84 if (!DL) return nullptr; 85 86 PointerType *PTy = cast<PointerType>(CI.getType()); 87 88 BuilderTy AllocaBuilder(*Builder); 89 AllocaBuilder.SetInsertPoint(AI.getParent(), &AI); 90 91 // Get the type really allocated and the type casted to. 92 Type *AllocElTy = AI.getAllocatedType(); 93 Type *CastElTy = PTy->getElementType(); 94 if (!AllocElTy->isSized() || !CastElTy->isSized()) return nullptr; 95 96 unsigned AllocElTyAlign = DL->getABITypeAlignment(AllocElTy); 97 unsigned CastElTyAlign = DL->getABITypeAlignment(CastElTy); 98 if (CastElTyAlign < AllocElTyAlign) return nullptr; 99 100 // If the allocation has multiple uses, only promote it if we are strictly 101 // increasing the alignment of the resultant allocation. If we keep it the 102 // same, we open the door to infinite loops of various kinds. 103 if (!AI.hasOneUse() && CastElTyAlign == AllocElTyAlign) return nullptr; 104 105 uint64_t AllocElTySize = DL->getTypeAllocSize(AllocElTy); 106 uint64_t CastElTySize = DL->getTypeAllocSize(CastElTy); 107 if (CastElTySize == 0 || AllocElTySize == 0) return nullptr; 108 109 // If the allocation has multiple uses, only promote it if we're not 110 // shrinking the amount of memory being allocated. 111 uint64_t AllocElTyStoreSize = DL->getTypeStoreSize(AllocElTy); 112 uint64_t CastElTyStoreSize = DL->getTypeStoreSize(CastElTy); 113 if (!AI.hasOneUse() && CastElTyStoreSize < AllocElTyStoreSize) return nullptr; 114 115 // See if we can satisfy the modulus by pulling a scale out of the array 116 // size argument. 117 unsigned ArraySizeScale; 118 uint64_t ArrayOffset; 119 Value *NumElements = // See if the array size is a decomposable linear expr. 120 DecomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset); 121 122 // If we can now satisfy the modulus, by using a non-1 scale, we really can 123 // do the xform. 124 if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 || 125 (AllocElTySize*ArrayOffset ) % CastElTySize != 0) return nullptr; 126 127 unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize; 128 Value *Amt = nullptr; 129 if (Scale == 1) { 130 Amt = NumElements; 131 } else { 132 Amt = ConstantInt::get(AI.getArraySize()->getType(), Scale); 133 // Insert before the alloca, not before the cast. 134 Amt = AllocaBuilder.CreateMul(Amt, NumElements); 135 } 136 137 if (uint64_t Offset = (AllocElTySize*ArrayOffset)/CastElTySize) { 138 Value *Off = ConstantInt::get(AI.getArraySize()->getType(), 139 Offset, true); 140 Amt = AllocaBuilder.CreateAdd(Amt, Off); 141 } 142 143 AllocaInst *New = AllocaBuilder.CreateAlloca(CastElTy, Amt); 144 New->setAlignment(AI.getAlignment()); 145 New->takeName(&AI); 146 New->setUsedWithInAlloca(AI.isUsedWithInAlloca()); 147 148 // If the allocation has multiple real uses, insert a cast and change all 149 // things that used it to use the new cast. This will also hack on CI, but it 150 // will die soon. 151 if (!AI.hasOneUse()) { 152 // New is the allocation instruction, pointer typed. AI is the original 153 // allocation instruction, also pointer typed. Thus, cast to use is BitCast. 154 Value *NewCast = AllocaBuilder.CreateBitCast(New, AI.getType(), "tmpcast"); 155 ReplaceInstUsesWith(AI, NewCast); 156 } 157 return ReplaceInstUsesWith(CI, New); 158 } 159 160 /// EvaluateInDifferentType - Given an expression that 161 /// CanEvaluateTruncated or CanEvaluateSExtd returns true for, actually 162 /// insert the code to evaluate the expression. 163 Value *InstCombiner::EvaluateInDifferentType(Value *V, Type *Ty, 164 bool isSigned) { 165 if (Constant *C = dyn_cast<Constant>(V)) { 166 C = ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/); 167 // If we got a constantexpr back, try to simplify it with DL info. 168 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 169 C = ConstantFoldConstantExpression(CE, DL, TLI); 170 return C; 171 } 172 173 // Otherwise, it must be an instruction. 174 Instruction *I = cast<Instruction>(V); 175 Instruction *Res = nullptr; 176 unsigned Opc = I->getOpcode(); 177 switch (Opc) { 178 case Instruction::Add: 179 case Instruction::Sub: 180 case Instruction::Mul: 181 case Instruction::And: 182 case Instruction::Or: 183 case Instruction::Xor: 184 case Instruction::AShr: 185 case Instruction::LShr: 186 case Instruction::Shl: 187 case Instruction::UDiv: 188 case Instruction::URem: { 189 Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned); 190 Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned); 191 Res = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 192 break; 193 } 194 case Instruction::Trunc: 195 case Instruction::ZExt: 196 case Instruction::SExt: 197 // If the source type of the cast is the type we're trying for then we can 198 // just return the source. There's no need to insert it because it is not 199 // new. 200 if (I->getOperand(0)->getType() == Ty) 201 return I->getOperand(0); 202 203 // Otherwise, must be the same type of cast, so just reinsert a new one. 204 // This also handles the case of zext(trunc(x)) -> zext(x). 205 Res = CastInst::CreateIntegerCast(I->getOperand(0), Ty, 206 Opc == Instruction::SExt); 207 break; 208 case Instruction::Select: { 209 Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned); 210 Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned); 211 Res = SelectInst::Create(I->getOperand(0), True, False); 212 break; 213 } 214 case Instruction::PHI: { 215 PHINode *OPN = cast<PHINode>(I); 216 PHINode *NPN = PHINode::Create(Ty, OPN->getNumIncomingValues()); 217 for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) { 218 Value *V =EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned); 219 NPN->addIncoming(V, OPN->getIncomingBlock(i)); 220 } 221 Res = NPN; 222 break; 223 } 224 default: 225 // TODO: Can handle more cases here. 226 llvm_unreachable("Unreachable!"); 227 } 228 229 Res->takeName(I); 230 return InsertNewInstWith(Res, *I); 231 } 232 233 234 /// This function is a wrapper around CastInst::isEliminableCastPair. It 235 /// simply extracts arguments and returns what that function returns. 236 static Instruction::CastOps 237 isEliminableCastPair( 238 const CastInst *CI, ///< The first cast instruction 239 unsigned opcode, ///< The opcode of the second cast instruction 240 Type *DstTy, ///< The target type for the second cast instruction 241 const DataLayout *DL ///< The target data for pointer size 242 ) { 243 244 Type *SrcTy = CI->getOperand(0)->getType(); // A from above 245 Type *MidTy = CI->getType(); // B from above 246 247 // Get the opcodes of the two Cast instructions 248 Instruction::CastOps firstOp = Instruction::CastOps(CI->getOpcode()); 249 Instruction::CastOps secondOp = Instruction::CastOps(opcode); 250 Type *SrcIntPtrTy = DL && SrcTy->isPtrOrPtrVectorTy() ? 251 DL->getIntPtrType(SrcTy) : nullptr; 252 Type *MidIntPtrTy = DL && MidTy->isPtrOrPtrVectorTy() ? 253 DL->getIntPtrType(MidTy) : nullptr; 254 Type *DstIntPtrTy = DL && DstTy->isPtrOrPtrVectorTy() ? 255 DL->getIntPtrType(DstTy) : nullptr; 256 unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy, 257 DstTy, SrcIntPtrTy, MidIntPtrTy, 258 DstIntPtrTy); 259 260 // We don't want to form an inttoptr or ptrtoint that converts to an integer 261 // type that differs from the pointer size. 262 if ((Res == Instruction::IntToPtr && SrcTy != DstIntPtrTy) || 263 (Res == Instruction::PtrToInt && DstTy != SrcIntPtrTy)) 264 Res = 0; 265 266 return Instruction::CastOps(Res); 267 } 268 269 /// ShouldOptimizeCast - Return true if the cast from "V to Ty" actually 270 /// results in any code being generated and is interesting to optimize out. If 271 /// the cast can be eliminated by some other simple transformation, we prefer 272 /// to do the simplification first. 273 bool InstCombiner::ShouldOptimizeCast(Instruction::CastOps opc, const Value *V, 274 Type *Ty) { 275 // Noop casts and casts of constants should be eliminated trivially. 276 if (V->getType() == Ty || isa<Constant>(V)) return false; 277 278 // If this is another cast that can be eliminated, we prefer to have it 279 // eliminated. 280 if (const CastInst *CI = dyn_cast<CastInst>(V)) 281 if (isEliminableCastPair(CI, opc, Ty, DL)) 282 return false; 283 284 // If this is a vector sext from a compare, then we don't want to break the 285 // idiom where each element of the extended vector is either zero or all ones. 286 if (opc == Instruction::SExt && isa<CmpInst>(V) && Ty->isVectorTy()) 287 return false; 288 289 return true; 290 } 291 292 293 /// @brief Implement the transforms common to all CastInst visitors. 294 Instruction *InstCombiner::commonCastTransforms(CastInst &CI) { 295 Value *Src = CI.getOperand(0); 296 297 // Many cases of "cast of a cast" are eliminable. If it's eliminable we just 298 // eliminate it now. 299 if (CastInst *CSrc = dyn_cast<CastInst>(Src)) { // A->B->C cast 300 if (Instruction::CastOps opc = 301 isEliminableCastPair(CSrc, CI.getOpcode(), CI.getType(), DL)) { 302 // The first cast (CSrc) is eliminable so we need to fix up or replace 303 // the second cast (CI). CSrc will then have a good chance of being dead. 304 return CastInst::Create(opc, CSrc->getOperand(0), CI.getType()); 305 } 306 } 307 308 // If we are casting a select then fold the cast into the select 309 if (SelectInst *SI = dyn_cast<SelectInst>(Src)) 310 if (Instruction *NV = FoldOpIntoSelect(CI, SI)) 311 return NV; 312 313 // If we are casting a PHI then fold the cast into the PHI 314 if (isa<PHINode>(Src)) { 315 // We don't do this if this would create a PHI node with an illegal type if 316 // it is currently legal. 317 if (!Src->getType()->isIntegerTy() || 318 !CI.getType()->isIntegerTy() || 319 ShouldChangeType(CI.getType(), Src->getType())) 320 if (Instruction *NV = FoldOpIntoPhi(CI)) 321 return NV; 322 } 323 324 return nullptr; 325 } 326 327 /// CanEvaluateTruncated - Return true if we can evaluate the specified 328 /// expression tree as type Ty instead of its larger type, and arrive with the 329 /// same value. This is used by code that tries to eliminate truncates. 330 /// 331 /// Ty will always be a type smaller than V. We should return true if trunc(V) 332 /// can be computed by computing V in the smaller type. If V is an instruction, 333 /// then trunc(inst(x,y)) can be computed as inst(trunc(x),trunc(y)), which only 334 /// makes sense if x and y can be efficiently truncated. 335 /// 336 /// This function works on both vectors and scalars. 337 /// 338 static bool CanEvaluateTruncated(Value *V, Type *Ty) { 339 // We can always evaluate constants in another type. 340 if (isa<Constant>(V)) 341 return true; 342 343 Instruction *I = dyn_cast<Instruction>(V); 344 if (!I) return false; 345 346 Type *OrigTy = V->getType(); 347 348 // If this is an extension from the dest type, we can eliminate it, even if it 349 // has multiple uses. 350 if ((isa<ZExtInst>(I) || isa<SExtInst>(I)) && 351 I->getOperand(0)->getType() == Ty) 352 return true; 353 354 // We can't extend or shrink something that has multiple uses: doing so would 355 // require duplicating the instruction in general, which isn't profitable. 356 if (!I->hasOneUse()) return false; 357 358 unsigned Opc = I->getOpcode(); 359 switch (Opc) { 360 case Instruction::Add: 361 case Instruction::Sub: 362 case Instruction::Mul: 363 case Instruction::And: 364 case Instruction::Or: 365 case Instruction::Xor: 366 // These operators can all arbitrarily be extended or truncated. 367 return CanEvaluateTruncated(I->getOperand(0), Ty) && 368 CanEvaluateTruncated(I->getOperand(1), Ty); 369 370 case Instruction::UDiv: 371 case Instruction::URem: { 372 // UDiv and URem can be truncated if all the truncated bits are zero. 373 uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits(); 374 uint32_t BitWidth = Ty->getScalarSizeInBits(); 375 if (BitWidth < OrigBitWidth) { 376 APInt Mask = APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth); 377 if (MaskedValueIsZero(I->getOperand(0), Mask) && 378 MaskedValueIsZero(I->getOperand(1), Mask)) { 379 return CanEvaluateTruncated(I->getOperand(0), Ty) && 380 CanEvaluateTruncated(I->getOperand(1), Ty); 381 } 382 } 383 break; 384 } 385 case Instruction::Shl: 386 // If we are truncating the result of this SHL, and if it's a shift of a 387 // constant amount, we can always perform a SHL in a smaller type. 388 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) { 389 uint32_t BitWidth = Ty->getScalarSizeInBits(); 390 if (CI->getLimitedValue(BitWidth) < BitWidth) 391 return CanEvaluateTruncated(I->getOperand(0), Ty); 392 } 393 break; 394 case Instruction::LShr: 395 // If this is a truncate of a logical shr, we can truncate it to a smaller 396 // lshr iff we know that the bits we would otherwise be shifting in are 397 // already zeros. 398 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) { 399 uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits(); 400 uint32_t BitWidth = Ty->getScalarSizeInBits(); 401 if (MaskedValueIsZero(I->getOperand(0), 402 APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth)) && 403 CI->getLimitedValue(BitWidth) < BitWidth) { 404 return CanEvaluateTruncated(I->getOperand(0), Ty); 405 } 406 } 407 break; 408 case Instruction::Trunc: 409 // trunc(trunc(x)) -> trunc(x) 410 return true; 411 case Instruction::ZExt: 412 case Instruction::SExt: 413 // trunc(ext(x)) -> ext(x) if the source type is smaller than the new dest 414 // trunc(ext(x)) -> trunc(x) if the source type is larger than the new dest 415 return true; 416 case Instruction::Select: { 417 SelectInst *SI = cast<SelectInst>(I); 418 return CanEvaluateTruncated(SI->getTrueValue(), Ty) && 419 CanEvaluateTruncated(SI->getFalseValue(), Ty); 420 } 421 case Instruction::PHI: { 422 // We can change a phi if we can change all operands. Note that we never 423 // get into trouble with cyclic PHIs here because we only consider 424 // instructions with a single use. 425 PHINode *PN = cast<PHINode>(I); 426 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 427 if (!CanEvaluateTruncated(PN->getIncomingValue(i), Ty)) 428 return false; 429 return true; 430 } 431 default: 432 // TODO: Can handle more cases here. 433 break; 434 } 435 436 return false; 437 } 438 439 Instruction *InstCombiner::visitTrunc(TruncInst &CI) { 440 if (Instruction *Result = commonCastTransforms(CI)) 441 return Result; 442 443 // See if we can simplify any instructions used by the input whose sole 444 // purpose is to compute bits we don't care about. 445 if (SimplifyDemandedInstructionBits(CI)) 446 return &CI; 447 448 Value *Src = CI.getOperand(0); 449 Type *DestTy = CI.getType(), *SrcTy = Src->getType(); 450 451 // Attempt to truncate the entire input expression tree to the destination 452 // type. Only do this if the dest type is a simple type, don't convert the 453 // expression tree to something weird like i93 unless the source is also 454 // strange. 455 if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) && 456 CanEvaluateTruncated(Src, DestTy)) { 457 458 // If this cast is a truncate, evaluting in a different type always 459 // eliminates the cast, so it is always a win. 460 DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type" 461 " to avoid cast: " << CI << '\n'); 462 Value *Res = EvaluateInDifferentType(Src, DestTy, false); 463 assert(Res->getType() == DestTy); 464 return ReplaceInstUsesWith(CI, Res); 465 } 466 467 // Canonicalize trunc x to i1 -> (icmp ne (and x, 1), 0), likewise for vector. 468 if (DestTy->getScalarSizeInBits() == 1) { 469 Constant *One = ConstantInt::get(Src->getType(), 1); 470 Src = Builder->CreateAnd(Src, One); 471 Value *Zero = Constant::getNullValue(Src->getType()); 472 return new ICmpInst(ICmpInst::ICMP_NE, Src, Zero); 473 } 474 475 // Transform trunc(lshr (zext A), Cst) to eliminate one type conversion. 476 Value *A = nullptr; ConstantInt *Cst = nullptr; 477 if (Src->hasOneUse() && 478 match(Src, m_LShr(m_ZExt(m_Value(A)), m_ConstantInt(Cst)))) { 479 // We have three types to worry about here, the type of A, the source of 480 // the truncate (MidSize), and the destination of the truncate. We know that 481 // ASize < MidSize and MidSize > ResultSize, but don't know the relation 482 // between ASize and ResultSize. 483 unsigned ASize = A->getType()->getPrimitiveSizeInBits(); 484 485 // If the shift amount is larger than the size of A, then the result is 486 // known to be zero because all the input bits got shifted out. 487 if (Cst->getZExtValue() >= ASize) 488 return ReplaceInstUsesWith(CI, Constant::getNullValue(CI.getType())); 489 490 // Since we're doing an lshr and a zero extend, and know that the shift 491 // amount is smaller than ASize, it is always safe to do the shift in A's 492 // type, then zero extend or truncate to the result. 493 Value *Shift = Builder->CreateLShr(A, Cst->getZExtValue()); 494 Shift->takeName(Src); 495 return CastInst::CreateIntegerCast(Shift, CI.getType(), false); 496 } 497 498 // Transform "trunc (and X, cst)" -> "and (trunc X), cst" so long as the dest 499 // type isn't non-native. 500 if (Src->hasOneUse() && isa<IntegerType>(Src->getType()) && 501 ShouldChangeType(Src->getType(), CI.getType()) && 502 match(Src, m_And(m_Value(A), m_ConstantInt(Cst)))) { 503 Value *NewTrunc = Builder->CreateTrunc(A, CI.getType(), A->getName()+".tr"); 504 return BinaryOperator::CreateAnd(NewTrunc, 505 ConstantExpr::getTrunc(Cst, CI.getType())); 506 } 507 508 return nullptr; 509 } 510 511 /// transformZExtICmp - Transform (zext icmp) to bitwise / integer operations 512 /// in order to eliminate the icmp. 513 Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, Instruction &CI, 514 bool DoXform) { 515 // If we are just checking for a icmp eq of a single bit and zext'ing it 516 // to an integer, then shift the bit to the appropriate place and then 517 // cast to integer to avoid the comparison. 518 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(ICI->getOperand(1))) { 519 const APInt &Op1CV = Op1C->getValue(); 520 521 // zext (x <s 0) to i32 --> x>>u31 true if signbit set. 522 // zext (x >s -1) to i32 --> (x>>u31)^1 true if signbit clear. 523 if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV == 0) || 524 (ICI->getPredicate() == ICmpInst::ICMP_SGT &&Op1CV.isAllOnesValue())) { 525 if (!DoXform) return ICI; 526 527 Value *In = ICI->getOperand(0); 528 Value *Sh = ConstantInt::get(In->getType(), 529 In->getType()->getScalarSizeInBits()-1); 530 In = Builder->CreateLShr(In, Sh, In->getName()+".lobit"); 531 if (In->getType() != CI.getType()) 532 In = Builder->CreateIntCast(In, CI.getType(), false/*ZExt*/); 533 534 if (ICI->getPredicate() == ICmpInst::ICMP_SGT) { 535 Constant *One = ConstantInt::get(In->getType(), 1); 536 In = Builder->CreateXor(In, One, In->getName()+".not"); 537 } 538 539 return ReplaceInstUsesWith(CI, In); 540 } 541 542 // zext (X == 0) to i32 --> X^1 iff X has only the low bit set. 543 // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set. 544 // zext (X == 1) to i32 --> X iff X has only the low bit set. 545 // zext (X == 2) to i32 --> X>>1 iff X has only the 2nd bit set. 546 // zext (X != 0) to i32 --> X iff X has only the low bit set. 547 // zext (X != 0) to i32 --> X>>1 iff X has only the 2nd bit set. 548 // zext (X != 1) to i32 --> X^1 iff X has only the low bit set. 549 // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set. 550 if ((Op1CV == 0 || Op1CV.isPowerOf2()) && 551 // This only works for EQ and NE 552 ICI->isEquality()) { 553 // If Op1C some other power of two, convert: 554 uint32_t BitWidth = Op1C->getType()->getBitWidth(); 555 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 556 computeKnownBits(ICI->getOperand(0), KnownZero, KnownOne); 557 558 APInt KnownZeroMask(~KnownZero); 559 if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1? 560 if (!DoXform) return ICI; 561 562 bool isNE = ICI->getPredicate() == ICmpInst::ICMP_NE; 563 if (Op1CV != 0 && (Op1CV != KnownZeroMask)) { 564 // (X&4) == 2 --> false 565 // (X&4) != 2 --> true 566 Constant *Res = ConstantInt::get(Type::getInt1Ty(CI.getContext()), 567 isNE); 568 Res = ConstantExpr::getZExt(Res, CI.getType()); 569 return ReplaceInstUsesWith(CI, Res); 570 } 571 572 uint32_t ShiftAmt = KnownZeroMask.logBase2(); 573 Value *In = ICI->getOperand(0); 574 if (ShiftAmt) { 575 // Perform a logical shr by shiftamt. 576 // Insert the shift to put the result in the low bit. 577 In = Builder->CreateLShr(In, ConstantInt::get(In->getType(),ShiftAmt), 578 In->getName()+".lobit"); 579 } 580 581 if ((Op1CV != 0) == isNE) { // Toggle the low bit. 582 Constant *One = ConstantInt::get(In->getType(), 1); 583 In = Builder->CreateXor(In, One); 584 } 585 586 if (CI.getType() == In->getType()) 587 return ReplaceInstUsesWith(CI, In); 588 return CastInst::CreateIntegerCast(In, CI.getType(), false/*ZExt*/); 589 } 590 } 591 } 592 593 // icmp ne A, B is equal to xor A, B when A and B only really have one bit. 594 // It is also profitable to transform icmp eq into not(xor(A, B)) because that 595 // may lead to additional simplifications. 596 if (ICI->isEquality() && CI.getType() == ICI->getOperand(0)->getType()) { 597 if (IntegerType *ITy = dyn_cast<IntegerType>(CI.getType())) { 598 uint32_t BitWidth = ITy->getBitWidth(); 599 Value *LHS = ICI->getOperand(0); 600 Value *RHS = ICI->getOperand(1); 601 602 APInt KnownZeroLHS(BitWidth, 0), KnownOneLHS(BitWidth, 0); 603 APInt KnownZeroRHS(BitWidth, 0), KnownOneRHS(BitWidth, 0); 604 computeKnownBits(LHS, KnownZeroLHS, KnownOneLHS); 605 computeKnownBits(RHS, KnownZeroRHS, KnownOneRHS); 606 607 if (KnownZeroLHS == KnownZeroRHS && KnownOneLHS == KnownOneRHS) { 608 APInt KnownBits = KnownZeroLHS | KnownOneLHS; 609 APInt UnknownBit = ~KnownBits; 610 if (UnknownBit.countPopulation() == 1) { 611 if (!DoXform) return ICI; 612 613 Value *Result = Builder->CreateXor(LHS, RHS); 614 615 // Mask off any bits that are set and won't be shifted away. 616 if (KnownOneLHS.uge(UnknownBit)) 617 Result = Builder->CreateAnd(Result, 618 ConstantInt::get(ITy, UnknownBit)); 619 620 // Shift the bit we're testing down to the lsb. 621 Result = Builder->CreateLShr( 622 Result, ConstantInt::get(ITy, UnknownBit.countTrailingZeros())); 623 624 if (ICI->getPredicate() == ICmpInst::ICMP_EQ) 625 Result = Builder->CreateXor(Result, ConstantInt::get(ITy, 1)); 626 Result->takeName(ICI); 627 return ReplaceInstUsesWith(CI, Result); 628 } 629 } 630 } 631 } 632 633 return nullptr; 634 } 635 636 /// CanEvaluateZExtd - Determine if the specified value can be computed in the 637 /// specified wider type and produce the same low bits. If not, return false. 638 /// 639 /// If this function returns true, it can also return a non-zero number of bits 640 /// (in BitsToClear) which indicates that the value it computes is correct for 641 /// the zero extend, but that the additional BitsToClear bits need to be zero'd 642 /// out. For example, to promote something like: 643 /// 644 /// %B = trunc i64 %A to i32 645 /// %C = lshr i32 %B, 8 646 /// %E = zext i32 %C to i64 647 /// 648 /// CanEvaluateZExtd for the 'lshr' will return true, and BitsToClear will be 649 /// set to 8 to indicate that the promoted value needs to have bits 24-31 650 /// cleared in addition to bits 32-63. Since an 'and' will be generated to 651 /// clear the top bits anyway, doing this has no extra cost. 652 /// 653 /// This function works on both vectors and scalars. 654 static bool CanEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear) { 655 BitsToClear = 0; 656 if (isa<Constant>(V)) 657 return true; 658 659 Instruction *I = dyn_cast<Instruction>(V); 660 if (!I) return false; 661 662 // If the input is a truncate from the destination type, we can trivially 663 // eliminate it. 664 if (isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty) 665 return true; 666 667 // We can't extend or shrink something that has multiple uses: doing so would 668 // require duplicating the instruction in general, which isn't profitable. 669 if (!I->hasOneUse()) return false; 670 671 unsigned Opc = I->getOpcode(), Tmp; 672 switch (Opc) { 673 case Instruction::ZExt: // zext(zext(x)) -> zext(x). 674 case Instruction::SExt: // zext(sext(x)) -> sext(x). 675 case Instruction::Trunc: // zext(trunc(x)) -> trunc(x) or zext(x) 676 return true; 677 case Instruction::And: 678 case Instruction::Or: 679 case Instruction::Xor: 680 case Instruction::Add: 681 case Instruction::Sub: 682 case Instruction::Mul: 683 if (!CanEvaluateZExtd(I->getOperand(0), Ty, BitsToClear) || 684 !CanEvaluateZExtd(I->getOperand(1), Ty, Tmp)) 685 return false; 686 // These can all be promoted if neither operand has 'bits to clear'. 687 if (BitsToClear == 0 && Tmp == 0) 688 return true; 689 690 // If the operation is an AND/OR/XOR and the bits to clear are zero in the 691 // other side, BitsToClear is ok. 692 if (Tmp == 0 && 693 (Opc == Instruction::And || Opc == Instruction::Or || 694 Opc == Instruction::Xor)) { 695 // We use MaskedValueIsZero here for generality, but the case we care 696 // about the most is constant RHS. 697 unsigned VSize = V->getType()->getScalarSizeInBits(); 698 if (MaskedValueIsZero(I->getOperand(1), 699 APInt::getHighBitsSet(VSize, BitsToClear))) 700 return true; 701 } 702 703 // Otherwise, we don't know how to analyze this BitsToClear case yet. 704 return false; 705 706 case Instruction::Shl: 707 // We can promote shl(x, cst) if we can promote x. Since shl overwrites the 708 // upper bits we can reduce BitsToClear by the shift amount. 709 if (ConstantInt *Amt = dyn_cast<ConstantInt>(I->getOperand(1))) { 710 if (!CanEvaluateZExtd(I->getOperand(0), Ty, BitsToClear)) 711 return false; 712 uint64_t ShiftAmt = Amt->getZExtValue(); 713 BitsToClear = ShiftAmt < BitsToClear ? BitsToClear - ShiftAmt : 0; 714 return true; 715 } 716 return false; 717 case Instruction::LShr: 718 // We can promote lshr(x, cst) if we can promote x. This requires the 719 // ultimate 'and' to clear out the high zero bits we're clearing out though. 720 if (ConstantInt *Amt = dyn_cast<ConstantInt>(I->getOperand(1))) { 721 if (!CanEvaluateZExtd(I->getOperand(0), Ty, BitsToClear)) 722 return false; 723 BitsToClear += Amt->getZExtValue(); 724 if (BitsToClear > V->getType()->getScalarSizeInBits()) 725 BitsToClear = V->getType()->getScalarSizeInBits(); 726 return true; 727 } 728 // Cannot promote variable LSHR. 729 return false; 730 case Instruction::Select: 731 if (!CanEvaluateZExtd(I->getOperand(1), Ty, Tmp) || 732 !CanEvaluateZExtd(I->getOperand(2), Ty, BitsToClear) || 733 // TODO: If important, we could handle the case when the BitsToClear are 734 // known zero in the disagreeing side. 735 Tmp != BitsToClear) 736 return false; 737 return true; 738 739 case Instruction::PHI: { 740 // We can change a phi if we can change all operands. Note that we never 741 // get into trouble with cyclic PHIs here because we only consider 742 // instructions with a single use. 743 PHINode *PN = cast<PHINode>(I); 744 if (!CanEvaluateZExtd(PN->getIncomingValue(0), Ty, BitsToClear)) 745 return false; 746 for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) 747 if (!CanEvaluateZExtd(PN->getIncomingValue(i), Ty, Tmp) || 748 // TODO: If important, we could handle the case when the BitsToClear 749 // are known zero in the disagreeing input. 750 Tmp != BitsToClear) 751 return false; 752 return true; 753 } 754 default: 755 // TODO: Can handle more cases here. 756 return false; 757 } 758 } 759 760 Instruction *InstCombiner::visitZExt(ZExtInst &CI) { 761 // If this zero extend is only used by a truncate, let the truncate be 762 // eliminated before we try to optimize this zext. 763 if (CI.hasOneUse() && isa<TruncInst>(CI.user_back())) 764 return nullptr; 765 766 // If one of the common conversion will work, do it. 767 if (Instruction *Result = commonCastTransforms(CI)) 768 return Result; 769 770 // See if we can simplify any instructions used by the input whose sole 771 // purpose is to compute bits we don't care about. 772 if (SimplifyDemandedInstructionBits(CI)) 773 return &CI; 774 775 Value *Src = CI.getOperand(0); 776 Type *SrcTy = Src->getType(), *DestTy = CI.getType(); 777 778 // Attempt to extend the entire input expression tree to the destination 779 // type. Only do this if the dest type is a simple type, don't convert the 780 // expression tree to something weird like i93 unless the source is also 781 // strange. 782 unsigned BitsToClear; 783 if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) && 784 CanEvaluateZExtd(Src, DestTy, BitsToClear)) { 785 assert(BitsToClear < SrcTy->getScalarSizeInBits() && 786 "Unreasonable BitsToClear"); 787 788 // Okay, we can transform this! Insert the new expression now. 789 DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type" 790 " to avoid zero extend: " << CI); 791 Value *Res = EvaluateInDifferentType(Src, DestTy, false); 792 assert(Res->getType() == DestTy); 793 794 uint32_t SrcBitsKept = SrcTy->getScalarSizeInBits()-BitsToClear; 795 uint32_t DestBitSize = DestTy->getScalarSizeInBits(); 796 797 // If the high bits are already filled with zeros, just replace this 798 // cast with the result. 799 if (MaskedValueIsZero(Res, APInt::getHighBitsSet(DestBitSize, 800 DestBitSize-SrcBitsKept))) 801 return ReplaceInstUsesWith(CI, Res); 802 803 // We need to emit an AND to clear the high bits. 804 Constant *C = ConstantInt::get(Res->getType(), 805 APInt::getLowBitsSet(DestBitSize, SrcBitsKept)); 806 return BinaryOperator::CreateAnd(Res, C); 807 } 808 809 // If this is a TRUNC followed by a ZEXT then we are dealing with integral 810 // types and if the sizes are just right we can convert this into a logical 811 // 'and' which will be much cheaper than the pair of casts. 812 if (TruncInst *CSrc = dyn_cast<TruncInst>(Src)) { // A->B->C cast 813 // TODO: Subsume this into EvaluateInDifferentType. 814 815 // Get the sizes of the types involved. We know that the intermediate type 816 // will be smaller than A or C, but don't know the relation between A and C. 817 Value *A = CSrc->getOperand(0); 818 unsigned SrcSize = A->getType()->getScalarSizeInBits(); 819 unsigned MidSize = CSrc->getType()->getScalarSizeInBits(); 820 unsigned DstSize = CI.getType()->getScalarSizeInBits(); 821 // If we're actually extending zero bits, then if 822 // SrcSize < DstSize: zext(a & mask) 823 // SrcSize == DstSize: a & mask 824 // SrcSize > DstSize: trunc(a) & mask 825 if (SrcSize < DstSize) { 826 APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize)); 827 Constant *AndConst = ConstantInt::get(A->getType(), AndValue); 828 Value *And = Builder->CreateAnd(A, AndConst, CSrc->getName()+".mask"); 829 return new ZExtInst(And, CI.getType()); 830 } 831 832 if (SrcSize == DstSize) { 833 APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize)); 834 return BinaryOperator::CreateAnd(A, ConstantInt::get(A->getType(), 835 AndValue)); 836 } 837 if (SrcSize > DstSize) { 838 Value *Trunc = Builder->CreateTrunc(A, CI.getType()); 839 APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize)); 840 return BinaryOperator::CreateAnd(Trunc, 841 ConstantInt::get(Trunc->getType(), 842 AndValue)); 843 } 844 } 845 846 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src)) 847 return transformZExtICmp(ICI, CI); 848 849 BinaryOperator *SrcI = dyn_cast<BinaryOperator>(Src); 850 if (SrcI && SrcI->getOpcode() == Instruction::Or) { 851 // zext (or icmp, icmp) --> or (zext icmp), (zext icmp) if at least one 852 // of the (zext icmp) will be transformed. 853 ICmpInst *LHS = dyn_cast<ICmpInst>(SrcI->getOperand(0)); 854 ICmpInst *RHS = dyn_cast<ICmpInst>(SrcI->getOperand(1)); 855 if (LHS && RHS && LHS->hasOneUse() && RHS->hasOneUse() && 856 (transformZExtICmp(LHS, CI, false) || 857 transformZExtICmp(RHS, CI, false))) { 858 Value *LCast = Builder->CreateZExt(LHS, CI.getType(), LHS->getName()); 859 Value *RCast = Builder->CreateZExt(RHS, CI.getType(), RHS->getName()); 860 return BinaryOperator::Create(Instruction::Or, LCast, RCast); 861 } 862 } 863 864 // zext(trunc(X) & C) -> (X & zext(C)). 865 Constant *C; 866 Value *X; 867 if (SrcI && 868 match(SrcI, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Constant(C)))) && 869 X->getType() == CI.getType()) 870 return BinaryOperator::CreateAnd(X, ConstantExpr::getZExt(C, CI.getType())); 871 872 // zext((trunc(X) & C) ^ C) -> ((X & zext(C)) ^ zext(C)). 873 Value *And; 874 if (SrcI && match(SrcI, m_OneUse(m_Xor(m_Value(And), m_Constant(C)))) && 875 match(And, m_OneUse(m_And(m_Trunc(m_Value(X)), m_Specific(C)))) && 876 X->getType() == CI.getType()) { 877 Constant *ZC = ConstantExpr::getZExt(C, CI.getType()); 878 return BinaryOperator::CreateXor(Builder->CreateAnd(X, ZC), ZC); 879 } 880 881 // zext (xor i1 X, true) to i32 --> xor (zext i1 X to i32), 1 882 if (SrcI && SrcI->hasOneUse() && 883 SrcI->getType()->getScalarType()->isIntegerTy(1) && 884 match(SrcI, m_Not(m_Value(X))) && (!X->hasOneUse() || !isa<CmpInst>(X))) { 885 Value *New = Builder->CreateZExt(X, CI.getType()); 886 return BinaryOperator::CreateXor(New, ConstantInt::get(CI.getType(), 1)); 887 } 888 889 return nullptr; 890 } 891 892 /// transformSExtICmp - Transform (sext icmp) to bitwise / integer operations 893 /// in order to eliminate the icmp. 894 Instruction *InstCombiner::transformSExtICmp(ICmpInst *ICI, Instruction &CI) { 895 Value *Op0 = ICI->getOperand(0), *Op1 = ICI->getOperand(1); 896 ICmpInst::Predicate Pred = ICI->getPredicate(); 897 898 if (Constant *Op1C = dyn_cast<Constant>(Op1)) { 899 // (x <s 0) ? -1 : 0 -> ashr x, 31 -> all ones if negative 900 // (x >s -1) ? -1 : 0 -> not (ashr x, 31) -> all ones if positive 901 if ((Pred == ICmpInst::ICMP_SLT && Op1C->isNullValue()) || 902 (Pred == ICmpInst::ICMP_SGT && Op1C->isAllOnesValue())) { 903 904 Value *Sh = ConstantInt::get(Op0->getType(), 905 Op0->getType()->getScalarSizeInBits()-1); 906 Value *In = Builder->CreateAShr(Op0, Sh, Op0->getName()+".lobit"); 907 if (In->getType() != CI.getType()) 908 In = Builder->CreateIntCast(In, CI.getType(), true/*SExt*/); 909 910 if (Pred == ICmpInst::ICMP_SGT) 911 In = Builder->CreateNot(In, In->getName()+".not"); 912 return ReplaceInstUsesWith(CI, In); 913 } 914 } 915 916 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) { 917 // If we know that only one bit of the LHS of the icmp can be set and we 918 // have an equality comparison with zero or a power of 2, we can transform 919 // the icmp and sext into bitwise/integer operations. 920 if (ICI->hasOneUse() && 921 ICI->isEquality() && (Op1C->isZero() || Op1C->getValue().isPowerOf2())){ 922 unsigned BitWidth = Op1C->getType()->getBitWidth(); 923 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 924 computeKnownBits(Op0, KnownZero, KnownOne); 925 926 APInt KnownZeroMask(~KnownZero); 927 if (KnownZeroMask.isPowerOf2()) { 928 Value *In = ICI->getOperand(0); 929 930 // If the icmp tests for a known zero bit we can constant fold it. 931 if (!Op1C->isZero() && Op1C->getValue() != KnownZeroMask) { 932 Value *V = Pred == ICmpInst::ICMP_NE ? 933 ConstantInt::getAllOnesValue(CI.getType()) : 934 ConstantInt::getNullValue(CI.getType()); 935 return ReplaceInstUsesWith(CI, V); 936 } 937 938 if (!Op1C->isZero() == (Pred == ICmpInst::ICMP_NE)) { 939 // sext ((x & 2^n) == 0) -> (x >> n) - 1 940 // sext ((x & 2^n) != 2^n) -> (x >> n) - 1 941 unsigned ShiftAmt = KnownZeroMask.countTrailingZeros(); 942 // Perform a right shift to place the desired bit in the LSB. 943 if (ShiftAmt) 944 In = Builder->CreateLShr(In, 945 ConstantInt::get(In->getType(), ShiftAmt)); 946 947 // At this point "In" is either 1 or 0. Subtract 1 to turn 948 // {1, 0} -> {0, -1}. 949 In = Builder->CreateAdd(In, 950 ConstantInt::getAllOnesValue(In->getType()), 951 "sext"); 952 } else { 953 // sext ((x & 2^n) != 0) -> (x << bitwidth-n) a>> bitwidth-1 954 // sext ((x & 2^n) == 2^n) -> (x << bitwidth-n) a>> bitwidth-1 955 unsigned ShiftAmt = KnownZeroMask.countLeadingZeros(); 956 // Perform a left shift to place the desired bit in the MSB. 957 if (ShiftAmt) 958 In = Builder->CreateShl(In, 959 ConstantInt::get(In->getType(), ShiftAmt)); 960 961 // Distribute the bit over the whole bit width. 962 In = Builder->CreateAShr(In, ConstantInt::get(In->getType(), 963 BitWidth - 1), "sext"); 964 } 965 966 if (CI.getType() == In->getType()) 967 return ReplaceInstUsesWith(CI, In); 968 return CastInst::CreateIntegerCast(In, CI.getType(), true/*SExt*/); 969 } 970 } 971 } 972 973 return nullptr; 974 } 975 976 /// CanEvaluateSExtd - Return true if we can take the specified value 977 /// and return it as type Ty without inserting any new casts and without 978 /// changing the value of the common low bits. This is used by code that tries 979 /// to promote integer operations to a wider types will allow us to eliminate 980 /// the extension. 981 /// 982 /// This function works on both vectors and scalars. 983 /// 984 static bool CanEvaluateSExtd(Value *V, Type *Ty) { 985 assert(V->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits() && 986 "Can't sign extend type to a smaller type"); 987 // If this is a constant, it can be trivially promoted. 988 if (isa<Constant>(V)) 989 return true; 990 991 Instruction *I = dyn_cast<Instruction>(V); 992 if (!I) return false; 993 994 // If this is a truncate from the dest type, we can trivially eliminate it. 995 if (isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty) 996 return true; 997 998 // We can't extend or shrink something that has multiple uses: doing so would 999 // require duplicating the instruction in general, which isn't profitable. 1000 if (!I->hasOneUse()) return false; 1001 1002 switch (I->getOpcode()) { 1003 case Instruction::SExt: // sext(sext(x)) -> sext(x) 1004 case Instruction::ZExt: // sext(zext(x)) -> zext(x) 1005 case Instruction::Trunc: // sext(trunc(x)) -> trunc(x) or sext(x) 1006 return true; 1007 case Instruction::And: 1008 case Instruction::Or: 1009 case Instruction::Xor: 1010 case Instruction::Add: 1011 case Instruction::Sub: 1012 case Instruction::Mul: 1013 // These operators can all arbitrarily be extended if their inputs can. 1014 return CanEvaluateSExtd(I->getOperand(0), Ty) && 1015 CanEvaluateSExtd(I->getOperand(1), Ty); 1016 1017 //case Instruction::Shl: TODO 1018 //case Instruction::LShr: TODO 1019 1020 case Instruction::Select: 1021 return CanEvaluateSExtd(I->getOperand(1), Ty) && 1022 CanEvaluateSExtd(I->getOperand(2), Ty); 1023 1024 case Instruction::PHI: { 1025 // We can change a phi if we can change all operands. Note that we never 1026 // get into trouble with cyclic PHIs here because we only consider 1027 // instructions with a single use. 1028 PHINode *PN = cast<PHINode>(I); 1029 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 1030 if (!CanEvaluateSExtd(PN->getIncomingValue(i), Ty)) return false; 1031 return true; 1032 } 1033 default: 1034 // TODO: Can handle more cases here. 1035 break; 1036 } 1037 1038 return false; 1039 } 1040 1041 Instruction *InstCombiner::visitSExt(SExtInst &CI) { 1042 // If this sign extend is only used by a truncate, let the truncate be 1043 // eliminated before we try to optimize this sext. 1044 if (CI.hasOneUse() && isa<TruncInst>(CI.user_back())) 1045 return nullptr; 1046 1047 if (Instruction *I = commonCastTransforms(CI)) 1048 return I; 1049 1050 // See if we can simplify any instructions used by the input whose sole 1051 // purpose is to compute bits we don't care about. 1052 if (SimplifyDemandedInstructionBits(CI)) 1053 return &CI; 1054 1055 Value *Src = CI.getOperand(0); 1056 Type *SrcTy = Src->getType(), *DestTy = CI.getType(); 1057 1058 // Attempt to extend the entire input expression tree to the destination 1059 // type. Only do this if the dest type is a simple type, don't convert the 1060 // expression tree to something weird like i93 unless the source is also 1061 // strange. 1062 if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) && 1063 CanEvaluateSExtd(Src, DestTy)) { 1064 // Okay, we can transform this! Insert the new expression now. 1065 DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type" 1066 " to avoid sign extend: " << CI); 1067 Value *Res = EvaluateInDifferentType(Src, DestTy, true); 1068 assert(Res->getType() == DestTy); 1069 1070 uint32_t SrcBitSize = SrcTy->getScalarSizeInBits(); 1071 uint32_t DestBitSize = DestTy->getScalarSizeInBits(); 1072 1073 // If the high bits are already filled with sign bit, just replace this 1074 // cast with the result. 1075 if (ComputeNumSignBits(Res) > DestBitSize - SrcBitSize) 1076 return ReplaceInstUsesWith(CI, Res); 1077 1078 // We need to emit a shl + ashr to do the sign extend. 1079 Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize); 1080 return BinaryOperator::CreateAShr(Builder->CreateShl(Res, ShAmt, "sext"), 1081 ShAmt); 1082 } 1083 1084 // If this input is a trunc from our destination, then turn sext(trunc(x)) 1085 // into shifts. 1086 if (TruncInst *TI = dyn_cast<TruncInst>(Src)) 1087 if (TI->hasOneUse() && TI->getOperand(0)->getType() == DestTy) { 1088 uint32_t SrcBitSize = SrcTy->getScalarSizeInBits(); 1089 uint32_t DestBitSize = DestTy->getScalarSizeInBits(); 1090 1091 // We need to emit a shl + ashr to do the sign extend. 1092 Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize); 1093 Value *Res = Builder->CreateShl(TI->getOperand(0), ShAmt, "sext"); 1094 return BinaryOperator::CreateAShr(Res, ShAmt); 1095 } 1096 1097 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src)) 1098 return transformSExtICmp(ICI, CI); 1099 1100 // If the input is a shl/ashr pair of a same constant, then this is a sign 1101 // extension from a smaller value. If we could trust arbitrary bitwidth 1102 // integers, we could turn this into a truncate to the smaller bit and then 1103 // use a sext for the whole extension. Since we don't, look deeper and check 1104 // for a truncate. If the source and dest are the same type, eliminate the 1105 // trunc and extend and just do shifts. For example, turn: 1106 // %a = trunc i32 %i to i8 1107 // %b = shl i8 %a, 6 1108 // %c = ashr i8 %b, 6 1109 // %d = sext i8 %c to i32 1110 // into: 1111 // %a = shl i32 %i, 30 1112 // %d = ashr i32 %a, 30 1113 Value *A = nullptr; 1114 // TODO: Eventually this could be subsumed by EvaluateInDifferentType. 1115 ConstantInt *BA = nullptr, *CA = nullptr; 1116 if (match(Src, m_AShr(m_Shl(m_Trunc(m_Value(A)), m_ConstantInt(BA)), 1117 m_ConstantInt(CA))) && 1118 BA == CA && A->getType() == CI.getType()) { 1119 unsigned MidSize = Src->getType()->getScalarSizeInBits(); 1120 unsigned SrcDstSize = CI.getType()->getScalarSizeInBits(); 1121 unsigned ShAmt = CA->getZExtValue()+SrcDstSize-MidSize; 1122 Constant *ShAmtV = ConstantInt::get(CI.getType(), ShAmt); 1123 A = Builder->CreateShl(A, ShAmtV, CI.getName()); 1124 return BinaryOperator::CreateAShr(A, ShAmtV); 1125 } 1126 1127 return nullptr; 1128 } 1129 1130 1131 /// FitsInFPType - Return a Constant* for the specified FP constant if it fits 1132 /// in the specified FP type without changing its value. 1133 static Constant *FitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) { 1134 bool losesInfo; 1135 APFloat F = CFP->getValueAPF(); 1136 (void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo); 1137 if (!losesInfo) 1138 return ConstantFP::get(CFP->getContext(), F); 1139 return nullptr; 1140 } 1141 1142 /// LookThroughFPExtensions - If this is an fp extension instruction, look 1143 /// through it until we get the source value. 1144 static Value *LookThroughFPExtensions(Value *V) { 1145 if (Instruction *I = dyn_cast<Instruction>(V)) 1146 if (I->getOpcode() == Instruction::FPExt) 1147 return LookThroughFPExtensions(I->getOperand(0)); 1148 1149 // If this value is a constant, return the constant in the smallest FP type 1150 // that can accurately represent it. This allows us to turn 1151 // (float)((double)X+2.0) into x+2.0f. 1152 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { 1153 if (CFP->getType() == Type::getPPC_FP128Ty(V->getContext())) 1154 return V; // No constant folding of this. 1155 // See if the value can be truncated to half and then reextended. 1156 if (Value *V = FitsInFPType(CFP, APFloat::IEEEhalf)) 1157 return V; 1158 // See if the value can be truncated to float and then reextended. 1159 if (Value *V = FitsInFPType(CFP, APFloat::IEEEsingle)) 1160 return V; 1161 if (CFP->getType()->isDoubleTy()) 1162 return V; // Won't shrink. 1163 if (Value *V = FitsInFPType(CFP, APFloat::IEEEdouble)) 1164 return V; 1165 // Don't try to shrink to various long double types. 1166 } 1167 1168 return V; 1169 } 1170 1171 Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) { 1172 if (Instruction *I = commonCastTransforms(CI)) 1173 return I; 1174 // If we have fptrunc(OpI (fpextend x), (fpextend y)), we would like to 1175 // simpilify this expression to avoid one or more of the trunc/extend 1176 // operations if we can do so without changing the numerical results. 1177 // 1178 // The exact manner in which the widths of the operands interact to limit 1179 // what we can and cannot do safely varies from operation to operation, and 1180 // is explained below in the various case statements. 1181 BinaryOperator *OpI = dyn_cast<BinaryOperator>(CI.getOperand(0)); 1182 if (OpI && OpI->hasOneUse()) { 1183 Value *LHSOrig = LookThroughFPExtensions(OpI->getOperand(0)); 1184 Value *RHSOrig = LookThroughFPExtensions(OpI->getOperand(1)); 1185 unsigned OpWidth = OpI->getType()->getFPMantissaWidth(); 1186 unsigned LHSWidth = LHSOrig->getType()->getFPMantissaWidth(); 1187 unsigned RHSWidth = RHSOrig->getType()->getFPMantissaWidth(); 1188 unsigned SrcWidth = std::max(LHSWidth, RHSWidth); 1189 unsigned DstWidth = CI.getType()->getFPMantissaWidth(); 1190 switch (OpI->getOpcode()) { 1191 default: break; 1192 case Instruction::FAdd: 1193 case Instruction::FSub: 1194 // For addition and subtraction, the infinitely precise result can 1195 // essentially be arbitrarily wide; proving that double rounding 1196 // will not occur because the result of OpI is exact (as we will for 1197 // FMul, for example) is hopeless. However, we *can* nonetheless 1198 // frequently know that double rounding cannot occur (or that it is 1199 // innocuous) by taking advantage of the specific structure of 1200 // infinitely-precise results that admit double rounding. 1201 // 1202 // Specifically, if OpWidth >= 2*DstWdith+1 and DstWidth is sufficient 1203 // to represent both sources, we can guarantee that the double 1204 // rounding is innocuous (See p50 of Figueroa's 2000 PhD thesis, 1205 // "A Rigorous Framework for Fully Supporting the IEEE Standard ..." 1206 // for proof of this fact). 1207 // 1208 // Note: Figueroa does not consider the case where DstFormat != 1209 // SrcFormat. It's possible (likely even!) that this analysis 1210 // could be tightened for those cases, but they are rare (the main 1211 // case of interest here is (float)((double)float + float)). 1212 if (OpWidth >= 2*DstWidth+1 && DstWidth >= SrcWidth) { 1213 if (LHSOrig->getType() != CI.getType()) 1214 LHSOrig = Builder->CreateFPExt(LHSOrig, CI.getType()); 1215 if (RHSOrig->getType() != CI.getType()) 1216 RHSOrig = Builder->CreateFPExt(RHSOrig, CI.getType()); 1217 Instruction *RI = 1218 BinaryOperator::Create(OpI->getOpcode(), LHSOrig, RHSOrig); 1219 RI->copyFastMathFlags(OpI); 1220 return RI; 1221 } 1222 break; 1223 case Instruction::FMul: 1224 // For multiplication, the infinitely precise result has at most 1225 // LHSWidth + RHSWidth significant bits; if OpWidth is sufficient 1226 // that such a value can be exactly represented, then no double 1227 // rounding can possibly occur; we can safely perform the operation 1228 // in the destination format if it can represent both sources. 1229 if (OpWidth >= LHSWidth + RHSWidth && DstWidth >= SrcWidth) { 1230 if (LHSOrig->getType() != CI.getType()) 1231 LHSOrig = Builder->CreateFPExt(LHSOrig, CI.getType()); 1232 if (RHSOrig->getType() != CI.getType()) 1233 RHSOrig = Builder->CreateFPExt(RHSOrig, CI.getType()); 1234 Instruction *RI = 1235 BinaryOperator::CreateFMul(LHSOrig, RHSOrig); 1236 RI->copyFastMathFlags(OpI); 1237 return RI; 1238 } 1239 break; 1240 case Instruction::FDiv: 1241 // For division, we use again use the bound from Figueroa's 1242 // dissertation. I am entirely certain that this bound can be 1243 // tightened in the unbalanced operand case by an analysis based on 1244 // the diophantine rational approximation bound, but the well-known 1245 // condition used here is a good conservative first pass. 1246 // TODO: Tighten bound via rigorous analysis of the unbalanced case. 1247 if (OpWidth >= 2*DstWidth && DstWidth >= SrcWidth) { 1248 if (LHSOrig->getType() != CI.getType()) 1249 LHSOrig = Builder->CreateFPExt(LHSOrig, CI.getType()); 1250 if (RHSOrig->getType() != CI.getType()) 1251 RHSOrig = Builder->CreateFPExt(RHSOrig, CI.getType()); 1252 Instruction *RI = 1253 BinaryOperator::CreateFDiv(LHSOrig, RHSOrig); 1254 RI->copyFastMathFlags(OpI); 1255 return RI; 1256 } 1257 break; 1258 case Instruction::FRem: 1259 // Remainder is straightforward. Remainder is always exact, so the 1260 // type of OpI doesn't enter into things at all. We simply evaluate 1261 // in whichever source type is larger, then convert to the 1262 // destination type. 1263 if (LHSWidth < SrcWidth) 1264 LHSOrig = Builder->CreateFPExt(LHSOrig, RHSOrig->getType()); 1265 else if (RHSWidth <= SrcWidth) 1266 RHSOrig = Builder->CreateFPExt(RHSOrig, LHSOrig->getType()); 1267 Value *ExactResult = Builder->CreateFRem(LHSOrig, RHSOrig); 1268 if (Instruction *RI = dyn_cast<Instruction>(ExactResult)) 1269 RI->copyFastMathFlags(OpI); 1270 return CastInst::CreateFPCast(ExactResult, CI.getType()); 1271 } 1272 1273 // (fptrunc (fneg x)) -> (fneg (fptrunc x)) 1274 if (BinaryOperator::isFNeg(OpI)) { 1275 Value *InnerTrunc = Builder->CreateFPTrunc(OpI->getOperand(1), 1276 CI.getType()); 1277 Instruction *RI = BinaryOperator::CreateFNeg(InnerTrunc); 1278 RI->copyFastMathFlags(OpI); 1279 return RI; 1280 } 1281 } 1282 1283 // (fptrunc (select cond, R1, Cst)) --> 1284 // (select cond, (fptrunc R1), (fptrunc Cst)) 1285 SelectInst *SI = dyn_cast<SelectInst>(CI.getOperand(0)); 1286 if (SI && 1287 (isa<ConstantFP>(SI->getOperand(1)) || 1288 isa<ConstantFP>(SI->getOperand(2)))) { 1289 Value *LHSTrunc = Builder->CreateFPTrunc(SI->getOperand(1), 1290 CI.getType()); 1291 Value *RHSTrunc = Builder->CreateFPTrunc(SI->getOperand(2), 1292 CI.getType()); 1293 return SelectInst::Create(SI->getOperand(0), LHSTrunc, RHSTrunc); 1294 } 1295 1296 IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI.getOperand(0)); 1297 if (II) { 1298 switch (II->getIntrinsicID()) { 1299 default: break; 1300 case Intrinsic::fabs: { 1301 // (fptrunc (fabs x)) -> (fabs (fptrunc x)) 1302 Value *InnerTrunc = Builder->CreateFPTrunc(II->getArgOperand(0), 1303 CI.getType()); 1304 Type *IntrinsicType[] = { CI.getType() }; 1305 Function *Overload = 1306 Intrinsic::getDeclaration(CI.getParent()->getParent()->getParent(), 1307 II->getIntrinsicID(), IntrinsicType); 1308 1309 Value *Args[] = { InnerTrunc }; 1310 return CallInst::Create(Overload, Args, II->getName()); 1311 } 1312 } 1313 } 1314 1315 // Fold (fptrunc (sqrt (fpext x))) -> (sqrtf x) 1316 // Note that we restrict this transformation based on 1317 // TLI->has(LibFunc::sqrtf), even for the sqrt intrinsic, because 1318 // TLI->has(LibFunc::sqrtf) is sufficient to guarantee that the 1319 // single-precision intrinsic can be expanded in the backend. 1320 CallInst *Call = dyn_cast<CallInst>(CI.getOperand(0)); 1321 if (Call && Call->getCalledFunction() && TLI->has(LibFunc::sqrtf) && 1322 (Call->getCalledFunction()->getName() == TLI->getName(LibFunc::sqrt) || 1323 Call->getCalledFunction()->getIntrinsicID() == Intrinsic::sqrt) && 1324 Call->getNumArgOperands() == 1 && 1325 Call->hasOneUse()) { 1326 CastInst *Arg = dyn_cast<CastInst>(Call->getArgOperand(0)); 1327 if (Arg && Arg->getOpcode() == Instruction::FPExt && 1328 CI.getType()->isFloatTy() && 1329 Call->getType()->isDoubleTy() && 1330 Arg->getType()->isDoubleTy() && 1331 Arg->getOperand(0)->getType()->isFloatTy()) { 1332 Function *Callee = Call->getCalledFunction(); 1333 Module *M = CI.getParent()->getParent()->getParent(); 1334 Constant *SqrtfFunc = (Callee->getIntrinsicID() == Intrinsic::sqrt) ? 1335 Intrinsic::getDeclaration(M, Intrinsic::sqrt, Builder->getFloatTy()) : 1336 M->getOrInsertFunction("sqrtf", Callee->getAttributes(), 1337 Builder->getFloatTy(), Builder->getFloatTy(), 1338 NULL); 1339 CallInst *ret = CallInst::Create(SqrtfFunc, Arg->getOperand(0), 1340 "sqrtfcall"); 1341 ret->setAttributes(Callee->getAttributes()); 1342 1343 1344 // Remove the old Call. With -fmath-errno, it won't get marked readnone. 1345 ReplaceInstUsesWith(*Call, UndefValue::get(Call->getType())); 1346 EraseInstFromFunction(*Call); 1347 return ret; 1348 } 1349 } 1350 1351 return nullptr; 1352 } 1353 1354 Instruction *InstCombiner::visitFPExt(CastInst &CI) { 1355 return commonCastTransforms(CI); 1356 } 1357 1358 Instruction *InstCombiner::visitFPToUI(FPToUIInst &FI) { 1359 Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0)); 1360 if (!OpI) 1361 return commonCastTransforms(FI); 1362 1363 // fptoui(uitofp(X)) --> X 1364 // fptoui(sitofp(X)) --> X 1365 // This is safe if the intermediate type has enough bits in its mantissa to 1366 // accurately represent all values of X. For example, do not do this with 1367 // i64->float->i64. This is also safe for sitofp case, because any negative 1368 // 'X' value would cause an undefined result for the fptoui. 1369 if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) && 1370 OpI->getOperand(0)->getType() == FI.getType() && 1371 (int)FI.getType()->getScalarSizeInBits() < /*extra bit for sign */ 1372 OpI->getType()->getFPMantissaWidth()) 1373 return ReplaceInstUsesWith(FI, OpI->getOperand(0)); 1374 1375 return commonCastTransforms(FI); 1376 } 1377 1378 Instruction *InstCombiner::visitFPToSI(FPToSIInst &FI) { 1379 Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0)); 1380 if (!OpI) 1381 return commonCastTransforms(FI); 1382 1383 // fptosi(sitofp(X)) --> X 1384 // fptosi(uitofp(X)) --> X 1385 // This is safe if the intermediate type has enough bits in its mantissa to 1386 // accurately represent all values of X. For example, do not do this with 1387 // i64->float->i64. This is also safe for sitofp case, because any negative 1388 // 'X' value would cause an undefined result for the fptoui. 1389 if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) && 1390 OpI->getOperand(0)->getType() == FI.getType() && 1391 (int)FI.getType()->getScalarSizeInBits() <= 1392 OpI->getType()->getFPMantissaWidth()) 1393 return ReplaceInstUsesWith(FI, OpI->getOperand(0)); 1394 1395 return commonCastTransforms(FI); 1396 } 1397 1398 Instruction *InstCombiner::visitUIToFP(CastInst &CI) { 1399 return commonCastTransforms(CI); 1400 } 1401 1402 Instruction *InstCombiner::visitSIToFP(CastInst &CI) { 1403 return commonCastTransforms(CI); 1404 } 1405 1406 Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) { 1407 // If the source integer type is not the intptr_t type for this target, do a 1408 // trunc or zext to the intptr_t type, then inttoptr of it. This allows the 1409 // cast to be exposed to other transforms. 1410 1411 if (DL) { 1412 unsigned AS = CI.getAddressSpace(); 1413 if (CI.getOperand(0)->getType()->getScalarSizeInBits() != 1414 DL->getPointerSizeInBits(AS)) { 1415 Type *Ty = DL->getIntPtrType(CI.getContext(), AS); 1416 if (CI.getType()->isVectorTy()) // Handle vectors of pointers. 1417 Ty = VectorType::get(Ty, CI.getType()->getVectorNumElements()); 1418 1419 Value *P = Builder->CreateZExtOrTrunc(CI.getOperand(0), Ty); 1420 return new IntToPtrInst(P, CI.getType()); 1421 } 1422 } 1423 1424 if (Instruction *I = commonCastTransforms(CI)) 1425 return I; 1426 1427 return nullptr; 1428 } 1429 1430 /// @brief Implement the transforms for cast of pointer (bitcast/ptrtoint) 1431 Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) { 1432 Value *Src = CI.getOperand(0); 1433 1434 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) { 1435 // If casting the result of a getelementptr instruction with no offset, turn 1436 // this into a cast of the original pointer! 1437 if (GEP->hasAllZeroIndices() && 1438 // If CI is an addrspacecast and GEP changes the poiner type, merging 1439 // GEP into CI would undo canonicalizing addrspacecast with different 1440 // pointer types, causing infinite loops. 1441 (!isa<AddrSpaceCastInst>(CI) || 1442 GEP->getType() == GEP->getPointerOperand()->getType())) { 1443 // Changing the cast operand is usually not a good idea but it is safe 1444 // here because the pointer operand is being replaced with another 1445 // pointer operand so the opcode doesn't need to change. 1446 Worklist.Add(GEP); 1447 CI.setOperand(0, GEP->getOperand(0)); 1448 return &CI; 1449 } 1450 1451 if (!DL) 1452 return commonCastTransforms(CI); 1453 1454 // If the GEP has a single use, and the base pointer is a bitcast, and the 1455 // GEP computes a constant offset, see if we can convert these three 1456 // instructions into fewer. This typically happens with unions and other 1457 // non-type-safe code. 1458 unsigned AS = GEP->getPointerAddressSpace(); 1459 unsigned OffsetBits = DL->getPointerSizeInBits(AS); 1460 APInt Offset(OffsetBits, 0); 1461 BitCastInst *BCI = dyn_cast<BitCastInst>(GEP->getOperand(0)); 1462 if (GEP->hasOneUse() && 1463 BCI && 1464 GEP->accumulateConstantOffset(*DL, Offset)) { 1465 // Get the base pointer input of the bitcast, and the type it points to. 1466 Value *OrigBase = BCI->getOperand(0); 1467 SmallVector<Value*, 8> NewIndices; 1468 if (FindElementAtOffset(OrigBase->getType(), 1469 Offset.getSExtValue(), 1470 NewIndices)) { 1471 // If we were able to index down into an element, create the GEP 1472 // and bitcast the result. This eliminates one bitcast, potentially 1473 // two. 1474 Value *NGEP = cast<GEPOperator>(GEP)->isInBounds() ? 1475 Builder->CreateInBoundsGEP(OrigBase, NewIndices) : 1476 Builder->CreateGEP(OrigBase, NewIndices); 1477 NGEP->takeName(GEP); 1478 1479 if (isa<BitCastInst>(CI)) 1480 return new BitCastInst(NGEP, CI.getType()); 1481 assert(isa<PtrToIntInst>(CI)); 1482 return new PtrToIntInst(NGEP, CI.getType()); 1483 } 1484 } 1485 } 1486 1487 return commonCastTransforms(CI); 1488 } 1489 1490 Instruction *InstCombiner::visitPtrToInt(PtrToIntInst &CI) { 1491 // If the destination integer type is not the intptr_t type for this target, 1492 // do a ptrtoint to intptr_t then do a trunc or zext. This allows the cast 1493 // to be exposed to other transforms. 1494 1495 if (!DL) 1496 return commonPointerCastTransforms(CI); 1497 1498 Type *Ty = CI.getType(); 1499 unsigned AS = CI.getPointerAddressSpace(); 1500 1501 if (Ty->getScalarSizeInBits() == DL->getPointerSizeInBits(AS)) 1502 return commonPointerCastTransforms(CI); 1503 1504 Type *PtrTy = DL->getIntPtrType(CI.getContext(), AS); 1505 if (Ty->isVectorTy()) // Handle vectors of pointers. 1506 PtrTy = VectorType::get(PtrTy, Ty->getVectorNumElements()); 1507 1508 Value *P = Builder->CreatePtrToInt(CI.getOperand(0), PtrTy); 1509 return CastInst::CreateIntegerCast(P, Ty, /*isSigned=*/false); 1510 } 1511 1512 /// OptimizeVectorResize - This input value (which is known to have vector type) 1513 /// is being zero extended or truncated to the specified vector type. Try to 1514 /// replace it with a shuffle (and vector/vector bitcast) if possible. 1515 /// 1516 /// The source and destination vector types may have different element types. 1517 static Instruction *OptimizeVectorResize(Value *InVal, VectorType *DestTy, 1518 InstCombiner &IC) { 1519 // We can only do this optimization if the output is a multiple of the input 1520 // element size, or the input is a multiple of the output element size. 1521 // Convert the input type to have the same element type as the output. 1522 VectorType *SrcTy = cast<VectorType>(InVal->getType()); 1523 1524 if (SrcTy->getElementType() != DestTy->getElementType()) { 1525 // The input types don't need to be identical, but for now they must be the 1526 // same size. There is no specific reason we couldn't handle things like 1527 // <4 x i16> -> <4 x i32> by bitcasting to <2 x i32> but haven't gotten 1528 // there yet. 1529 if (SrcTy->getElementType()->getPrimitiveSizeInBits() != 1530 DestTy->getElementType()->getPrimitiveSizeInBits()) 1531 return nullptr; 1532 1533 SrcTy = VectorType::get(DestTy->getElementType(), SrcTy->getNumElements()); 1534 InVal = IC.Builder->CreateBitCast(InVal, SrcTy); 1535 } 1536 1537 // Now that the element types match, get the shuffle mask and RHS of the 1538 // shuffle to use, which depends on whether we're increasing or decreasing the 1539 // size of the input. 1540 SmallVector<uint32_t, 16> ShuffleMask; 1541 Value *V2; 1542 1543 if (SrcTy->getNumElements() > DestTy->getNumElements()) { 1544 // If we're shrinking the number of elements, just shuffle in the low 1545 // elements from the input and use undef as the second shuffle input. 1546 V2 = UndefValue::get(SrcTy); 1547 for (unsigned i = 0, e = DestTy->getNumElements(); i != e; ++i) 1548 ShuffleMask.push_back(i); 1549 1550 } else { 1551 // If we're increasing the number of elements, shuffle in all of the 1552 // elements from InVal and fill the rest of the result elements with zeros 1553 // from a constant zero. 1554 V2 = Constant::getNullValue(SrcTy); 1555 unsigned SrcElts = SrcTy->getNumElements(); 1556 for (unsigned i = 0, e = SrcElts; i != e; ++i) 1557 ShuffleMask.push_back(i); 1558 1559 // The excess elements reference the first element of the zero input. 1560 for (unsigned i = 0, e = DestTy->getNumElements()-SrcElts; i != e; ++i) 1561 ShuffleMask.push_back(SrcElts); 1562 } 1563 1564 return new ShuffleVectorInst(InVal, V2, 1565 ConstantDataVector::get(V2->getContext(), 1566 ShuffleMask)); 1567 } 1568 1569 static bool isMultipleOfTypeSize(unsigned Value, Type *Ty) { 1570 return Value % Ty->getPrimitiveSizeInBits() == 0; 1571 } 1572 1573 static unsigned getTypeSizeIndex(unsigned Value, Type *Ty) { 1574 return Value / Ty->getPrimitiveSizeInBits(); 1575 } 1576 1577 /// CollectInsertionElements - V is a value which is inserted into a vector of 1578 /// VecEltTy. Look through the value to see if we can decompose it into 1579 /// insertions into the vector. See the example in the comment for 1580 /// OptimizeIntegerToVectorInsertions for the pattern this handles. 1581 /// The type of V is always a non-zero multiple of VecEltTy's size. 1582 /// Shift is the number of bits between the lsb of V and the lsb of 1583 /// the vector. 1584 /// 1585 /// This returns false if the pattern can't be matched or true if it can, 1586 /// filling in Elements with the elements found here. 1587 static bool CollectInsertionElements(Value *V, unsigned Shift, 1588 SmallVectorImpl<Value*> &Elements, 1589 Type *VecEltTy, InstCombiner &IC) { 1590 assert(isMultipleOfTypeSize(Shift, VecEltTy) && 1591 "Shift should be a multiple of the element type size"); 1592 1593 // Undef values never contribute useful bits to the result. 1594 if (isa<UndefValue>(V)) return true; 1595 1596 // If we got down to a value of the right type, we win, try inserting into the 1597 // right element. 1598 if (V->getType() == VecEltTy) { 1599 // Inserting null doesn't actually insert any elements. 1600 if (Constant *C = dyn_cast<Constant>(V)) 1601 if (C->isNullValue()) 1602 return true; 1603 1604 unsigned ElementIndex = getTypeSizeIndex(Shift, VecEltTy); 1605 if (IC.getDataLayout()->isBigEndian()) 1606 ElementIndex = Elements.size() - ElementIndex - 1; 1607 1608 // Fail if multiple elements are inserted into this slot. 1609 if (Elements[ElementIndex]) 1610 return false; 1611 1612 Elements[ElementIndex] = V; 1613 return true; 1614 } 1615 1616 if (Constant *C = dyn_cast<Constant>(V)) { 1617 // Figure out the # elements this provides, and bitcast it or slice it up 1618 // as required. 1619 unsigned NumElts = getTypeSizeIndex(C->getType()->getPrimitiveSizeInBits(), 1620 VecEltTy); 1621 // If the constant is the size of a vector element, we just need to bitcast 1622 // it to the right type so it gets properly inserted. 1623 if (NumElts == 1) 1624 return CollectInsertionElements(ConstantExpr::getBitCast(C, VecEltTy), 1625 Shift, Elements, VecEltTy, IC); 1626 1627 // Okay, this is a constant that covers multiple elements. Slice it up into 1628 // pieces and insert each element-sized piece into the vector. 1629 if (!isa<IntegerType>(C->getType())) 1630 C = ConstantExpr::getBitCast(C, IntegerType::get(V->getContext(), 1631 C->getType()->getPrimitiveSizeInBits())); 1632 unsigned ElementSize = VecEltTy->getPrimitiveSizeInBits(); 1633 Type *ElementIntTy = IntegerType::get(C->getContext(), ElementSize); 1634 1635 for (unsigned i = 0; i != NumElts; ++i) { 1636 unsigned ShiftI = Shift+i*ElementSize; 1637 Constant *Piece = ConstantExpr::getLShr(C, ConstantInt::get(C->getType(), 1638 ShiftI)); 1639 Piece = ConstantExpr::getTrunc(Piece, ElementIntTy); 1640 if (!CollectInsertionElements(Piece, ShiftI, Elements, VecEltTy, IC)) 1641 return false; 1642 } 1643 return true; 1644 } 1645 1646 if (!V->hasOneUse()) return false; 1647 1648 Instruction *I = dyn_cast<Instruction>(V); 1649 if (!I) return false; 1650 switch (I->getOpcode()) { 1651 default: return false; // Unhandled case. 1652 case Instruction::BitCast: 1653 return CollectInsertionElements(I->getOperand(0), Shift, 1654 Elements, VecEltTy, IC); 1655 case Instruction::ZExt: 1656 if (!isMultipleOfTypeSize( 1657 I->getOperand(0)->getType()->getPrimitiveSizeInBits(), 1658 VecEltTy)) 1659 return false; 1660 return CollectInsertionElements(I->getOperand(0), Shift, 1661 Elements, VecEltTy, IC); 1662 case Instruction::Or: 1663 return CollectInsertionElements(I->getOperand(0), Shift, 1664 Elements, VecEltTy, IC) && 1665 CollectInsertionElements(I->getOperand(1), Shift, 1666 Elements, VecEltTy, IC); 1667 case Instruction::Shl: { 1668 // Must be shifting by a constant that is a multiple of the element size. 1669 ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1)); 1670 if (!CI) return false; 1671 Shift += CI->getZExtValue(); 1672 if (!isMultipleOfTypeSize(Shift, VecEltTy)) return false; 1673 return CollectInsertionElements(I->getOperand(0), Shift, 1674 Elements, VecEltTy, IC); 1675 } 1676 1677 } 1678 } 1679 1680 1681 /// OptimizeIntegerToVectorInsertions - If the input is an 'or' instruction, we 1682 /// may be doing shifts and ors to assemble the elements of the vector manually. 1683 /// Try to rip the code out and replace it with insertelements. This is to 1684 /// optimize code like this: 1685 /// 1686 /// %tmp37 = bitcast float %inc to i32 1687 /// %tmp38 = zext i32 %tmp37 to i64 1688 /// %tmp31 = bitcast float %inc5 to i32 1689 /// %tmp32 = zext i32 %tmp31 to i64 1690 /// %tmp33 = shl i64 %tmp32, 32 1691 /// %ins35 = or i64 %tmp33, %tmp38 1692 /// %tmp43 = bitcast i64 %ins35 to <2 x float> 1693 /// 1694 /// Into two insertelements that do "buildvector{%inc, %inc5}". 1695 static Value *OptimizeIntegerToVectorInsertions(BitCastInst &CI, 1696 InstCombiner &IC) { 1697 // We need to know the target byte order to perform this optimization. 1698 if (!IC.getDataLayout()) return nullptr; 1699 1700 VectorType *DestVecTy = cast<VectorType>(CI.getType()); 1701 Value *IntInput = CI.getOperand(0); 1702 1703 SmallVector<Value*, 8> Elements(DestVecTy->getNumElements()); 1704 if (!CollectInsertionElements(IntInput, 0, Elements, 1705 DestVecTy->getElementType(), IC)) 1706 return nullptr; 1707 1708 // If we succeeded, we know that all of the element are specified by Elements 1709 // or are zero if Elements has a null entry. Recast this as a set of 1710 // insertions. 1711 Value *Result = Constant::getNullValue(CI.getType()); 1712 for (unsigned i = 0, e = Elements.size(); i != e; ++i) { 1713 if (!Elements[i]) continue; // Unset element. 1714 1715 Result = IC.Builder->CreateInsertElement(Result, Elements[i], 1716 IC.Builder->getInt32(i)); 1717 } 1718 1719 return Result; 1720 } 1721 1722 1723 /// OptimizeIntToFloatBitCast - See if we can optimize an integer->float/double 1724 /// bitcast. The various long double bitcasts can't get in here. 1725 static Instruction *OptimizeIntToFloatBitCast(BitCastInst &CI,InstCombiner &IC){ 1726 // We need to know the target byte order to perform this optimization. 1727 if (!IC.getDataLayout()) return nullptr; 1728 1729 Value *Src = CI.getOperand(0); 1730 Type *DestTy = CI.getType(); 1731 1732 // If this is a bitcast from int to float, check to see if the int is an 1733 // extraction from a vector. 1734 Value *VecInput = nullptr; 1735 // bitcast(trunc(bitcast(somevector))) 1736 if (match(Src, m_Trunc(m_BitCast(m_Value(VecInput)))) && 1737 isa<VectorType>(VecInput->getType())) { 1738 VectorType *VecTy = cast<VectorType>(VecInput->getType()); 1739 unsigned DestWidth = DestTy->getPrimitiveSizeInBits(); 1740 1741 if (VecTy->getPrimitiveSizeInBits() % DestWidth == 0) { 1742 // If the element type of the vector doesn't match the result type, 1743 // bitcast it to be a vector type we can extract from. 1744 if (VecTy->getElementType() != DestTy) { 1745 VecTy = VectorType::get(DestTy, 1746 VecTy->getPrimitiveSizeInBits() / DestWidth); 1747 VecInput = IC.Builder->CreateBitCast(VecInput, VecTy); 1748 } 1749 1750 unsigned Elt = 0; 1751 if (IC.getDataLayout()->isBigEndian()) 1752 Elt = VecTy->getPrimitiveSizeInBits() / DestWidth - 1; 1753 return ExtractElementInst::Create(VecInput, IC.Builder->getInt32(Elt)); 1754 } 1755 } 1756 1757 // bitcast(trunc(lshr(bitcast(somevector), cst)) 1758 ConstantInt *ShAmt = nullptr; 1759 if (match(Src, m_Trunc(m_LShr(m_BitCast(m_Value(VecInput)), 1760 m_ConstantInt(ShAmt)))) && 1761 isa<VectorType>(VecInput->getType())) { 1762 VectorType *VecTy = cast<VectorType>(VecInput->getType()); 1763 unsigned DestWidth = DestTy->getPrimitiveSizeInBits(); 1764 if (VecTy->getPrimitiveSizeInBits() % DestWidth == 0 && 1765 ShAmt->getZExtValue() % DestWidth == 0) { 1766 // If the element type of the vector doesn't match the result type, 1767 // bitcast it to be a vector type we can extract from. 1768 if (VecTy->getElementType() != DestTy) { 1769 VecTy = VectorType::get(DestTy, 1770 VecTy->getPrimitiveSizeInBits() / DestWidth); 1771 VecInput = IC.Builder->CreateBitCast(VecInput, VecTy); 1772 } 1773 1774 unsigned Elt = ShAmt->getZExtValue() / DestWidth; 1775 if (IC.getDataLayout()->isBigEndian()) 1776 Elt = VecTy->getPrimitiveSizeInBits() / DestWidth - 1 - Elt; 1777 return ExtractElementInst::Create(VecInput, IC.Builder->getInt32(Elt)); 1778 } 1779 } 1780 return nullptr; 1781 } 1782 1783 Instruction *InstCombiner::visitBitCast(BitCastInst &CI) { 1784 // If the operands are integer typed then apply the integer transforms, 1785 // otherwise just apply the common ones. 1786 Value *Src = CI.getOperand(0); 1787 Type *SrcTy = Src->getType(); 1788 Type *DestTy = CI.getType(); 1789 1790 // Get rid of casts from one type to the same type. These are useless and can 1791 // be replaced by the operand. 1792 if (DestTy == Src->getType()) 1793 return ReplaceInstUsesWith(CI, Src); 1794 1795 if (PointerType *DstPTy = dyn_cast<PointerType>(DestTy)) { 1796 PointerType *SrcPTy = cast<PointerType>(SrcTy); 1797 Type *DstElTy = DstPTy->getElementType(); 1798 Type *SrcElTy = SrcPTy->getElementType(); 1799 1800 // If we are casting a alloca to a pointer to a type of the same 1801 // size, rewrite the allocation instruction to allocate the "right" type. 1802 // There is no need to modify malloc calls because it is their bitcast that 1803 // needs to be cleaned up. 1804 if (AllocaInst *AI = dyn_cast<AllocaInst>(Src)) 1805 if (Instruction *V = PromoteCastOfAllocation(CI, *AI)) 1806 return V; 1807 1808 // If the source and destination are pointers, and this cast is equivalent 1809 // to a getelementptr X, 0, 0, 0... turn it into the appropriate gep. 1810 // This can enhance SROA and other transforms that want type-safe pointers. 1811 Constant *ZeroUInt = 1812 Constant::getNullValue(Type::getInt32Ty(CI.getContext())); 1813 unsigned NumZeros = 0; 1814 while (SrcElTy != DstElTy && 1815 isa<CompositeType>(SrcElTy) && !SrcElTy->isPointerTy() && 1816 SrcElTy->getNumContainedTypes() /* not "{}" */) { 1817 SrcElTy = cast<CompositeType>(SrcElTy)->getTypeAtIndex(ZeroUInt); 1818 ++NumZeros; 1819 } 1820 1821 // If we found a path from the src to dest, create the getelementptr now. 1822 if (SrcElTy == DstElTy) { 1823 SmallVector<Value*, 8> Idxs(NumZeros+1, ZeroUInt); 1824 return GetElementPtrInst::CreateInBounds(Src, Idxs); 1825 } 1826 } 1827 1828 // Try to optimize int -> float bitcasts. 1829 if ((DestTy->isFloatTy() || DestTy->isDoubleTy()) && isa<IntegerType>(SrcTy)) 1830 if (Instruction *I = OptimizeIntToFloatBitCast(CI, *this)) 1831 return I; 1832 1833 if (VectorType *DestVTy = dyn_cast<VectorType>(DestTy)) { 1834 if (DestVTy->getNumElements() == 1 && !SrcTy->isVectorTy()) { 1835 Value *Elem = Builder->CreateBitCast(Src, DestVTy->getElementType()); 1836 return InsertElementInst::Create(UndefValue::get(DestTy), Elem, 1837 Constant::getNullValue(Type::getInt32Ty(CI.getContext()))); 1838 // FIXME: Canonicalize bitcast(insertelement) -> insertelement(bitcast) 1839 } 1840 1841 if (isa<IntegerType>(SrcTy)) { 1842 // If this is a cast from an integer to vector, check to see if the input 1843 // is a trunc or zext of a bitcast from vector. If so, we can replace all 1844 // the casts with a shuffle and (potentially) a bitcast. 1845 if (isa<TruncInst>(Src) || isa<ZExtInst>(Src)) { 1846 CastInst *SrcCast = cast<CastInst>(Src); 1847 if (BitCastInst *BCIn = dyn_cast<BitCastInst>(SrcCast->getOperand(0))) 1848 if (isa<VectorType>(BCIn->getOperand(0)->getType())) 1849 if (Instruction *I = OptimizeVectorResize(BCIn->getOperand(0), 1850 cast<VectorType>(DestTy), *this)) 1851 return I; 1852 } 1853 1854 // If the input is an 'or' instruction, we may be doing shifts and ors to 1855 // assemble the elements of the vector manually. Try to rip the code out 1856 // and replace it with insertelements. 1857 if (Value *V = OptimizeIntegerToVectorInsertions(CI, *this)) 1858 return ReplaceInstUsesWith(CI, V); 1859 } 1860 } 1861 1862 if (VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy)) { 1863 if (SrcVTy->getNumElements() == 1) { 1864 // If our destination is not a vector, then make this a straight 1865 // scalar-scalar cast. 1866 if (!DestTy->isVectorTy()) { 1867 Value *Elem = 1868 Builder->CreateExtractElement(Src, 1869 Constant::getNullValue(Type::getInt32Ty(CI.getContext()))); 1870 return CastInst::Create(Instruction::BitCast, Elem, DestTy); 1871 } 1872 1873 // Otherwise, see if our source is an insert. If so, then use the scalar 1874 // component directly. 1875 if (InsertElementInst *IEI = 1876 dyn_cast<InsertElementInst>(CI.getOperand(0))) 1877 return CastInst::Create(Instruction::BitCast, IEI->getOperand(1), 1878 DestTy); 1879 } 1880 } 1881 1882 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(Src)) { 1883 // Okay, we have (bitcast (shuffle ..)). Check to see if this is 1884 // a bitcast to a vector with the same # elts. 1885 if (SVI->hasOneUse() && DestTy->isVectorTy() && 1886 DestTy->getVectorNumElements() == SVI->getType()->getNumElements() && 1887 SVI->getType()->getNumElements() == 1888 SVI->getOperand(0)->getType()->getVectorNumElements()) { 1889 BitCastInst *Tmp; 1890 // If either of the operands is a cast from CI.getType(), then 1891 // evaluating the shuffle in the casted destination's type will allow 1892 // us to eliminate at least one cast. 1893 if (((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(0))) && 1894 Tmp->getOperand(0)->getType() == DestTy) || 1895 ((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(1))) && 1896 Tmp->getOperand(0)->getType() == DestTy)) { 1897 Value *LHS = Builder->CreateBitCast(SVI->getOperand(0), DestTy); 1898 Value *RHS = Builder->CreateBitCast(SVI->getOperand(1), DestTy); 1899 // Return a new shuffle vector. Use the same element ID's, as we 1900 // know the vector types match #elts. 1901 return new ShuffleVectorInst(LHS, RHS, SVI->getOperand(2)); 1902 } 1903 } 1904 } 1905 1906 if (SrcTy->isPointerTy()) 1907 return commonPointerCastTransforms(CI); 1908 return commonCastTransforms(CI); 1909 } 1910 1911 Instruction *InstCombiner::visitAddrSpaceCast(AddrSpaceCastInst &CI) { 1912 // If the destination pointer element type is not the the same as the source's 1913 // do the addrspacecast to the same type, and then the bitcast in the new 1914 // address space. This allows the cast to be exposed to other transforms. 1915 Value *Src = CI.getOperand(0); 1916 PointerType *SrcTy = cast<PointerType>(Src->getType()->getScalarType()); 1917 PointerType *DestTy = cast<PointerType>(CI.getType()->getScalarType()); 1918 1919 Type *DestElemTy = DestTy->getElementType(); 1920 if (SrcTy->getElementType() != DestElemTy) { 1921 Type *MidTy = PointerType::get(DestElemTy, SrcTy->getAddressSpace()); 1922 if (VectorType *VT = dyn_cast<VectorType>(CI.getType())) { 1923 // Handle vectors of pointers. 1924 MidTy = VectorType::get(MidTy, VT->getNumElements()); 1925 } 1926 1927 Value *NewBitCast = Builder->CreateBitCast(Src, MidTy); 1928 return new AddrSpaceCastInst(NewBitCast, CI.getType()); 1929 } 1930 1931 return commonPointerCastTransforms(CI); 1932 } 1933