Home | History | Annotate | Download | only in InstCombine
      1 //===- InstCombineCalls.cpp -----------------------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the visitCall and visitInvoke functions.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "InstCombine.h"
     15 #include "llvm/ADT/Statistic.h"
     16 #include "llvm/Analysis/MemoryBuiltins.h"
     17 #include "llvm/IR/CallSite.h"
     18 #include "llvm/IR/DataLayout.h"
     19 #include "llvm/IR/PatternMatch.h"
     20 #include "llvm/Transforms/Utils/BuildLibCalls.h"
     21 #include "llvm/Transforms/Utils/Local.h"
     22 using namespace llvm;
     23 using namespace PatternMatch;
     24 
     25 #define DEBUG_TYPE "instcombine"
     26 
     27 STATISTIC(NumSimplified, "Number of library calls simplified");
     28 
     29 /// getPromotedType - Return the specified type promoted as it would be to pass
     30 /// though a va_arg area.
     31 static Type *getPromotedType(Type *Ty) {
     32   if (IntegerType* ITy = dyn_cast<IntegerType>(Ty)) {
     33     if (ITy->getBitWidth() < 32)
     34       return Type::getInt32Ty(Ty->getContext());
     35   }
     36   return Ty;
     37 }
     38 
     39 /// reduceToSingleValueType - Given an aggregate type which ultimately holds a
     40 /// single scalar element, like {{{type}}} or [1 x type], return type.
     41 static Type *reduceToSingleValueType(Type *T) {
     42   while (!T->isSingleValueType()) {
     43     if (StructType *STy = dyn_cast<StructType>(T)) {
     44       if (STy->getNumElements() == 1)
     45         T = STy->getElementType(0);
     46       else
     47         break;
     48     } else if (ArrayType *ATy = dyn_cast<ArrayType>(T)) {
     49       if (ATy->getNumElements() == 1)
     50         T = ATy->getElementType();
     51       else
     52         break;
     53     } else
     54       break;
     55   }
     56 
     57   return T;
     58 }
     59 
     60 Instruction *InstCombiner::SimplifyMemTransfer(MemIntrinsic *MI) {
     61   unsigned DstAlign = getKnownAlignment(MI->getArgOperand(0), DL);
     62   unsigned SrcAlign = getKnownAlignment(MI->getArgOperand(1), DL);
     63   unsigned MinAlign = std::min(DstAlign, SrcAlign);
     64   unsigned CopyAlign = MI->getAlignment();
     65 
     66   if (CopyAlign < MinAlign) {
     67     MI->setAlignment(ConstantInt::get(MI->getAlignmentType(),
     68                                              MinAlign, false));
     69     return MI;
     70   }
     71 
     72   // If MemCpyInst length is 1/2/4/8 bytes then replace memcpy with
     73   // load/store.
     74   ConstantInt *MemOpLength = dyn_cast<ConstantInt>(MI->getArgOperand(2));
     75   if (!MemOpLength) return nullptr;
     76 
     77   // Source and destination pointer types are always "i8*" for intrinsic.  See
     78   // if the size is something we can handle with a single primitive load/store.
     79   // A single load+store correctly handles overlapping memory in the memmove
     80   // case.
     81   uint64_t Size = MemOpLength->getLimitedValue();
     82   assert(Size && "0-sized memory transferring should be removed already.");
     83 
     84   if (Size > 8 || (Size&(Size-1)))
     85     return nullptr;  // If not 1/2/4/8 bytes, exit.
     86 
     87   // Use an integer load+store unless we can find something better.
     88   unsigned SrcAddrSp =
     89     cast<PointerType>(MI->getArgOperand(1)->getType())->getAddressSpace();
     90   unsigned DstAddrSp =
     91     cast<PointerType>(MI->getArgOperand(0)->getType())->getAddressSpace();
     92 
     93   IntegerType* IntType = IntegerType::get(MI->getContext(), Size<<3);
     94   Type *NewSrcPtrTy = PointerType::get(IntType, SrcAddrSp);
     95   Type *NewDstPtrTy = PointerType::get(IntType, DstAddrSp);
     96 
     97   // Memcpy forces the use of i8* for the source and destination.  That means
     98   // that if you're using memcpy to move one double around, you'll get a cast
     99   // from double* to i8*.  We'd much rather use a double load+store rather than
    100   // an i64 load+store, here because this improves the odds that the source or
    101   // dest address will be promotable.  See if we can find a better type than the
    102   // integer datatype.
    103   Value *StrippedDest = MI->getArgOperand(0)->stripPointerCasts();
    104   MDNode *CopyMD = nullptr;
    105   if (StrippedDest != MI->getArgOperand(0)) {
    106     Type *SrcETy = cast<PointerType>(StrippedDest->getType())
    107                                     ->getElementType();
    108     if (DL && SrcETy->isSized() && DL->getTypeStoreSize(SrcETy) == Size) {
    109       // The SrcETy might be something like {{{double}}} or [1 x double].  Rip
    110       // down through these levels if so.
    111       SrcETy = reduceToSingleValueType(SrcETy);
    112 
    113       if (SrcETy->isSingleValueType()) {
    114         NewSrcPtrTy = PointerType::get(SrcETy, SrcAddrSp);
    115         NewDstPtrTy = PointerType::get(SrcETy, DstAddrSp);
    116 
    117         // If the memcpy has metadata describing the members, see if we can
    118         // get the TBAA tag describing our copy.
    119         if (MDNode *M = MI->getMetadata(LLVMContext::MD_tbaa_struct)) {
    120           if (M->getNumOperands() == 3 &&
    121               M->getOperand(0) &&
    122               isa<ConstantInt>(M->getOperand(0)) &&
    123               cast<ConstantInt>(M->getOperand(0))->isNullValue() &&
    124               M->getOperand(1) &&
    125               isa<ConstantInt>(M->getOperand(1)) &&
    126               cast<ConstantInt>(M->getOperand(1))->getValue() == Size &&
    127               M->getOperand(2) &&
    128               isa<MDNode>(M->getOperand(2)))
    129             CopyMD = cast<MDNode>(M->getOperand(2));
    130         }
    131       }
    132     }
    133   }
    134 
    135   // If the memcpy/memmove provides better alignment info than we can
    136   // infer, use it.
    137   SrcAlign = std::max(SrcAlign, CopyAlign);
    138   DstAlign = std::max(DstAlign, CopyAlign);
    139 
    140   Value *Src = Builder->CreateBitCast(MI->getArgOperand(1), NewSrcPtrTy);
    141   Value *Dest = Builder->CreateBitCast(MI->getArgOperand(0), NewDstPtrTy);
    142   LoadInst *L = Builder->CreateLoad(Src, MI->isVolatile());
    143   L->setAlignment(SrcAlign);
    144   if (CopyMD)
    145     L->setMetadata(LLVMContext::MD_tbaa, CopyMD);
    146   StoreInst *S = Builder->CreateStore(L, Dest, MI->isVolatile());
    147   S->setAlignment(DstAlign);
    148   if (CopyMD)
    149     S->setMetadata(LLVMContext::MD_tbaa, CopyMD);
    150 
    151   // Set the size of the copy to 0, it will be deleted on the next iteration.
    152   MI->setArgOperand(2, Constant::getNullValue(MemOpLength->getType()));
    153   return MI;
    154 }
    155 
    156 Instruction *InstCombiner::SimplifyMemSet(MemSetInst *MI) {
    157   unsigned Alignment = getKnownAlignment(MI->getDest(), DL);
    158   if (MI->getAlignment() < Alignment) {
    159     MI->setAlignment(ConstantInt::get(MI->getAlignmentType(),
    160                                              Alignment, false));
    161     return MI;
    162   }
    163 
    164   // Extract the length and alignment and fill if they are constant.
    165   ConstantInt *LenC = dyn_cast<ConstantInt>(MI->getLength());
    166   ConstantInt *FillC = dyn_cast<ConstantInt>(MI->getValue());
    167   if (!LenC || !FillC || !FillC->getType()->isIntegerTy(8))
    168     return nullptr;
    169   uint64_t Len = LenC->getLimitedValue();
    170   Alignment = MI->getAlignment();
    171   assert(Len && "0-sized memory setting should be removed already.");
    172 
    173   // memset(s,c,n) -> store s, c (for n=1,2,4,8)
    174   if (Len <= 8 && isPowerOf2_32((uint32_t)Len)) {
    175     Type *ITy = IntegerType::get(MI->getContext(), Len*8);  // n=1 -> i8.
    176 
    177     Value *Dest = MI->getDest();
    178     unsigned DstAddrSp = cast<PointerType>(Dest->getType())->getAddressSpace();
    179     Type *NewDstPtrTy = PointerType::get(ITy, DstAddrSp);
    180     Dest = Builder->CreateBitCast(Dest, NewDstPtrTy);
    181 
    182     // Alignment 0 is identity for alignment 1 for memset, but not store.
    183     if (Alignment == 0) Alignment = 1;
    184 
    185     // Extract the fill value and store.
    186     uint64_t Fill = FillC->getZExtValue()*0x0101010101010101ULL;
    187     StoreInst *S = Builder->CreateStore(ConstantInt::get(ITy, Fill), Dest,
    188                                         MI->isVolatile());
    189     S->setAlignment(Alignment);
    190 
    191     // Set the size of the copy to 0, it will be deleted on the next iteration.
    192     MI->setLength(Constant::getNullValue(LenC->getType()));
    193     return MI;
    194   }
    195 
    196   return nullptr;
    197 }
    198 
    199 /// visitCallInst - CallInst simplification.  This mostly only handles folding
    200 /// of intrinsic instructions.  For normal calls, it allows visitCallSite to do
    201 /// the heavy lifting.
    202 ///
    203 Instruction *InstCombiner::visitCallInst(CallInst &CI) {
    204   if (isFreeCall(&CI, TLI))
    205     return visitFree(CI);
    206 
    207   // If the caller function is nounwind, mark the call as nounwind, even if the
    208   // callee isn't.
    209   if (CI.getParent()->getParent()->doesNotThrow() &&
    210       !CI.doesNotThrow()) {
    211     CI.setDoesNotThrow();
    212     return &CI;
    213   }
    214 
    215   IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CI);
    216   if (!II) return visitCallSite(&CI);
    217 
    218   // Intrinsics cannot occur in an invoke, so handle them here instead of in
    219   // visitCallSite.
    220   if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(II)) {
    221     bool Changed = false;
    222 
    223     // memmove/cpy/set of zero bytes is a noop.
    224     if (Constant *NumBytes = dyn_cast<Constant>(MI->getLength())) {
    225       if (NumBytes->isNullValue())
    226         return EraseInstFromFunction(CI);
    227 
    228       if (ConstantInt *CI = dyn_cast<ConstantInt>(NumBytes))
    229         if (CI->getZExtValue() == 1) {
    230           // Replace the instruction with just byte operations.  We would
    231           // transform other cases to loads/stores, but we don't know if
    232           // alignment is sufficient.
    233         }
    234     }
    235 
    236     // No other transformations apply to volatile transfers.
    237     if (MI->isVolatile())
    238       return nullptr;
    239 
    240     // If we have a memmove and the source operation is a constant global,
    241     // then the source and dest pointers can't alias, so we can change this
    242     // into a call to memcpy.
    243     if (MemMoveInst *MMI = dyn_cast<MemMoveInst>(MI)) {
    244       if (GlobalVariable *GVSrc = dyn_cast<GlobalVariable>(MMI->getSource()))
    245         if (GVSrc->isConstant()) {
    246           Module *M = CI.getParent()->getParent()->getParent();
    247           Intrinsic::ID MemCpyID = Intrinsic::memcpy;
    248           Type *Tys[3] = { CI.getArgOperand(0)->getType(),
    249                            CI.getArgOperand(1)->getType(),
    250                            CI.getArgOperand(2)->getType() };
    251           CI.setCalledFunction(Intrinsic::getDeclaration(M, MemCpyID, Tys));
    252           Changed = true;
    253         }
    254     }
    255 
    256     if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) {
    257       // memmove(x,x,size) -> noop.
    258       if (MTI->getSource() == MTI->getDest())
    259         return EraseInstFromFunction(CI);
    260     }
    261 
    262     // If we can determine a pointer alignment that is bigger than currently
    263     // set, update the alignment.
    264     if (isa<MemTransferInst>(MI)) {
    265       if (Instruction *I = SimplifyMemTransfer(MI))
    266         return I;
    267     } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(MI)) {
    268       if (Instruction *I = SimplifyMemSet(MSI))
    269         return I;
    270     }
    271 
    272     if (Changed) return II;
    273   }
    274 
    275   switch (II->getIntrinsicID()) {
    276   default: break;
    277   case Intrinsic::objectsize: {
    278     uint64_t Size;
    279     if (getObjectSize(II->getArgOperand(0), Size, DL, TLI))
    280       return ReplaceInstUsesWith(CI, ConstantInt::get(CI.getType(), Size));
    281     return nullptr;
    282   }
    283   case Intrinsic::bswap: {
    284     Value *IIOperand = II->getArgOperand(0);
    285     Value *X = nullptr;
    286 
    287     // bswap(bswap(x)) -> x
    288     if (match(IIOperand, m_BSwap(m_Value(X))))
    289         return ReplaceInstUsesWith(CI, X);
    290 
    291     // bswap(trunc(bswap(x))) -> trunc(lshr(x, c))
    292     if (match(IIOperand, m_Trunc(m_BSwap(m_Value(X))))) {
    293       unsigned C = X->getType()->getPrimitiveSizeInBits() -
    294         IIOperand->getType()->getPrimitiveSizeInBits();
    295       Value *CV = ConstantInt::get(X->getType(), C);
    296       Value *V = Builder->CreateLShr(X, CV);
    297       return new TruncInst(V, IIOperand->getType());
    298     }
    299     break;
    300   }
    301 
    302   case Intrinsic::powi:
    303     if (ConstantInt *Power = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
    304       // powi(x, 0) -> 1.0
    305       if (Power->isZero())
    306         return ReplaceInstUsesWith(CI, ConstantFP::get(CI.getType(), 1.0));
    307       // powi(x, 1) -> x
    308       if (Power->isOne())
    309         return ReplaceInstUsesWith(CI, II->getArgOperand(0));
    310       // powi(x, -1) -> 1/x
    311       if (Power->isAllOnesValue())
    312         return BinaryOperator::CreateFDiv(ConstantFP::get(CI.getType(), 1.0),
    313                                           II->getArgOperand(0));
    314     }
    315     break;
    316   case Intrinsic::cttz: {
    317     // If all bits below the first known one are known zero,
    318     // this value is constant.
    319     IntegerType *IT = dyn_cast<IntegerType>(II->getArgOperand(0)->getType());
    320     // FIXME: Try to simplify vectors of integers.
    321     if (!IT) break;
    322     uint32_t BitWidth = IT->getBitWidth();
    323     APInt KnownZero(BitWidth, 0);
    324     APInt KnownOne(BitWidth, 0);
    325     computeKnownBits(II->getArgOperand(0), KnownZero, KnownOne);
    326     unsigned TrailingZeros = KnownOne.countTrailingZeros();
    327     APInt Mask(APInt::getLowBitsSet(BitWidth, TrailingZeros));
    328     if ((Mask & KnownZero) == Mask)
    329       return ReplaceInstUsesWith(CI, ConstantInt::get(IT,
    330                                  APInt(BitWidth, TrailingZeros)));
    331 
    332     }
    333     break;
    334   case Intrinsic::ctlz: {
    335     // If all bits above the first known one are known zero,
    336     // this value is constant.
    337     IntegerType *IT = dyn_cast<IntegerType>(II->getArgOperand(0)->getType());
    338     // FIXME: Try to simplify vectors of integers.
    339     if (!IT) break;
    340     uint32_t BitWidth = IT->getBitWidth();
    341     APInt KnownZero(BitWidth, 0);
    342     APInt KnownOne(BitWidth, 0);
    343     computeKnownBits(II->getArgOperand(0), KnownZero, KnownOne);
    344     unsigned LeadingZeros = KnownOne.countLeadingZeros();
    345     APInt Mask(APInt::getHighBitsSet(BitWidth, LeadingZeros));
    346     if ((Mask & KnownZero) == Mask)
    347       return ReplaceInstUsesWith(CI, ConstantInt::get(IT,
    348                                  APInt(BitWidth, LeadingZeros)));
    349 
    350     }
    351     break;
    352   case Intrinsic::uadd_with_overflow: {
    353     Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
    354     IntegerType *IT = cast<IntegerType>(II->getArgOperand(0)->getType());
    355     uint32_t BitWidth = IT->getBitWidth();
    356     APInt LHSKnownZero(BitWidth, 0);
    357     APInt LHSKnownOne(BitWidth, 0);
    358     computeKnownBits(LHS, LHSKnownZero, LHSKnownOne);
    359     bool LHSKnownNegative = LHSKnownOne[BitWidth - 1];
    360     bool LHSKnownPositive = LHSKnownZero[BitWidth - 1];
    361 
    362     if (LHSKnownNegative || LHSKnownPositive) {
    363       APInt RHSKnownZero(BitWidth, 0);
    364       APInt RHSKnownOne(BitWidth, 0);
    365       computeKnownBits(RHS, RHSKnownZero, RHSKnownOne);
    366       bool RHSKnownNegative = RHSKnownOne[BitWidth - 1];
    367       bool RHSKnownPositive = RHSKnownZero[BitWidth - 1];
    368       if (LHSKnownNegative && RHSKnownNegative) {
    369         // The sign bit is set in both cases: this MUST overflow.
    370         // Create a simple add instruction, and insert it into the struct.
    371         Value *Add = Builder->CreateAdd(LHS, RHS);
    372         Add->takeName(&CI);
    373         Constant *V[] = {
    374           UndefValue::get(LHS->getType()),
    375           ConstantInt::getTrue(II->getContext())
    376         };
    377         StructType *ST = cast<StructType>(II->getType());
    378         Constant *Struct = ConstantStruct::get(ST, V);
    379         return InsertValueInst::Create(Struct, Add, 0);
    380       }
    381 
    382       if (LHSKnownPositive && RHSKnownPositive) {
    383         // The sign bit is clear in both cases: this CANNOT overflow.
    384         // Create a simple add instruction, and insert it into the struct.
    385         Value *Add = Builder->CreateNUWAdd(LHS, RHS);
    386         Add->takeName(&CI);
    387         Constant *V[] = {
    388           UndefValue::get(LHS->getType()),
    389           ConstantInt::getFalse(II->getContext())
    390         };
    391         StructType *ST = cast<StructType>(II->getType());
    392         Constant *Struct = ConstantStruct::get(ST, V);
    393         return InsertValueInst::Create(Struct, Add, 0);
    394       }
    395     }
    396   }
    397   // FALL THROUGH uadd into sadd
    398   case Intrinsic::sadd_with_overflow:
    399     // Canonicalize constants into the RHS.
    400     if (isa<Constant>(II->getArgOperand(0)) &&
    401         !isa<Constant>(II->getArgOperand(1))) {
    402       Value *LHS = II->getArgOperand(0);
    403       II->setArgOperand(0, II->getArgOperand(1));
    404       II->setArgOperand(1, LHS);
    405       return II;
    406     }
    407 
    408     // X + undef -> undef
    409     if (isa<UndefValue>(II->getArgOperand(1)))
    410       return ReplaceInstUsesWith(CI, UndefValue::get(II->getType()));
    411 
    412     if (ConstantInt *RHS = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
    413       // X + 0 -> {X, false}
    414       if (RHS->isZero()) {
    415         Constant *V[] = {
    416           UndefValue::get(II->getArgOperand(0)->getType()),
    417           ConstantInt::getFalse(II->getContext())
    418         };
    419         Constant *Struct =
    420           ConstantStruct::get(cast<StructType>(II->getType()), V);
    421         return InsertValueInst::Create(Struct, II->getArgOperand(0), 0);
    422       }
    423     }
    424 
    425     // We can strength reduce reduce this signed add into a regular add if we
    426     // can prove that it will never overflow.
    427     if (II->getIntrinsicID() == Intrinsic::sadd_with_overflow) {
    428       Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
    429       if (WillNotOverflowSignedAdd(LHS, RHS)) {
    430         Value *Add = Builder->CreateNSWAdd(LHS, RHS);
    431         Add->takeName(&CI);
    432         Constant *V[] = {UndefValue::get(Add->getType()), Builder->getFalse()};
    433         StructType *ST = cast<StructType>(II->getType());
    434         Constant *Struct = ConstantStruct::get(ST, V);
    435         return InsertValueInst::Create(Struct, Add, 0);
    436       }
    437     }
    438 
    439     break;
    440   case Intrinsic::usub_with_overflow:
    441   case Intrinsic::ssub_with_overflow:
    442     // undef - X -> undef
    443     // X - undef -> undef
    444     if (isa<UndefValue>(II->getArgOperand(0)) ||
    445         isa<UndefValue>(II->getArgOperand(1)))
    446       return ReplaceInstUsesWith(CI, UndefValue::get(II->getType()));
    447 
    448     if (ConstantInt *RHS = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
    449       // X - 0 -> {X, false}
    450       if (RHS->isZero()) {
    451         Constant *V[] = {
    452           UndefValue::get(II->getArgOperand(0)->getType()),
    453           ConstantInt::getFalse(II->getContext())
    454         };
    455         Constant *Struct =
    456           ConstantStruct::get(cast<StructType>(II->getType()), V);
    457         return InsertValueInst::Create(Struct, II->getArgOperand(0), 0);
    458       }
    459     }
    460     break;
    461   case Intrinsic::umul_with_overflow: {
    462     Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
    463     unsigned BitWidth = cast<IntegerType>(LHS->getType())->getBitWidth();
    464 
    465     APInt LHSKnownZero(BitWidth, 0);
    466     APInt LHSKnownOne(BitWidth, 0);
    467     computeKnownBits(LHS, LHSKnownZero, LHSKnownOne);
    468     APInt RHSKnownZero(BitWidth, 0);
    469     APInt RHSKnownOne(BitWidth, 0);
    470     computeKnownBits(RHS, RHSKnownZero, RHSKnownOne);
    471 
    472     // Get the largest possible values for each operand.
    473     APInt LHSMax = ~LHSKnownZero;
    474     APInt RHSMax = ~RHSKnownZero;
    475 
    476     // If multiplying the maximum values does not overflow then we can turn
    477     // this into a plain NUW mul.
    478     bool Overflow;
    479     LHSMax.umul_ov(RHSMax, Overflow);
    480     if (!Overflow) {
    481       Value *Mul = Builder->CreateNUWMul(LHS, RHS, "umul_with_overflow");
    482       Constant *V[] = {
    483         UndefValue::get(LHS->getType()),
    484         Builder->getFalse()
    485       };
    486       Constant *Struct = ConstantStruct::get(cast<StructType>(II->getType()),V);
    487       return InsertValueInst::Create(Struct, Mul, 0);
    488     }
    489   } // FALL THROUGH
    490   case Intrinsic::smul_with_overflow:
    491     // Canonicalize constants into the RHS.
    492     if (isa<Constant>(II->getArgOperand(0)) &&
    493         !isa<Constant>(II->getArgOperand(1))) {
    494       Value *LHS = II->getArgOperand(0);
    495       II->setArgOperand(0, II->getArgOperand(1));
    496       II->setArgOperand(1, LHS);
    497       return II;
    498     }
    499 
    500     // X * undef -> undef
    501     if (isa<UndefValue>(II->getArgOperand(1)))
    502       return ReplaceInstUsesWith(CI, UndefValue::get(II->getType()));
    503 
    504     if (ConstantInt *RHSI = dyn_cast<ConstantInt>(II->getArgOperand(1))) {
    505       // X*0 -> {0, false}
    506       if (RHSI->isZero())
    507         return ReplaceInstUsesWith(CI, Constant::getNullValue(II->getType()));
    508 
    509       // X * 1 -> {X, false}
    510       if (RHSI->equalsInt(1)) {
    511         Constant *V[] = {
    512           UndefValue::get(II->getArgOperand(0)->getType()),
    513           ConstantInt::getFalse(II->getContext())
    514         };
    515         Constant *Struct =
    516           ConstantStruct::get(cast<StructType>(II->getType()), V);
    517         return InsertValueInst::Create(Struct, II->getArgOperand(0), 0);
    518       }
    519     }
    520     break;
    521   case Intrinsic::ppc_altivec_lvx:
    522   case Intrinsic::ppc_altivec_lvxl:
    523     // Turn PPC lvx -> load if the pointer is known aligned.
    524     if (getOrEnforceKnownAlignment(II->getArgOperand(0), 16, DL) >= 16) {
    525       Value *Ptr = Builder->CreateBitCast(II->getArgOperand(0),
    526                                          PointerType::getUnqual(II->getType()));
    527       return new LoadInst(Ptr);
    528     }
    529     break;
    530   case Intrinsic::ppc_altivec_stvx:
    531   case Intrinsic::ppc_altivec_stvxl:
    532     // Turn stvx -> store if the pointer is known aligned.
    533     if (getOrEnforceKnownAlignment(II->getArgOperand(1), 16, DL) >= 16) {
    534       Type *OpPtrTy =
    535         PointerType::getUnqual(II->getArgOperand(0)->getType());
    536       Value *Ptr = Builder->CreateBitCast(II->getArgOperand(1), OpPtrTy);
    537       return new StoreInst(II->getArgOperand(0), Ptr);
    538     }
    539     break;
    540   case Intrinsic::x86_sse_storeu_ps:
    541   case Intrinsic::x86_sse2_storeu_pd:
    542   case Intrinsic::x86_sse2_storeu_dq:
    543     // Turn X86 storeu -> store if the pointer is known aligned.
    544     if (getOrEnforceKnownAlignment(II->getArgOperand(0), 16, DL) >= 16) {
    545       Type *OpPtrTy =
    546         PointerType::getUnqual(II->getArgOperand(1)->getType());
    547       Value *Ptr = Builder->CreateBitCast(II->getArgOperand(0), OpPtrTy);
    548       return new StoreInst(II->getArgOperand(1), Ptr);
    549     }
    550     break;
    551 
    552   case Intrinsic::x86_sse_cvtss2si:
    553   case Intrinsic::x86_sse_cvtss2si64:
    554   case Intrinsic::x86_sse_cvttss2si:
    555   case Intrinsic::x86_sse_cvttss2si64:
    556   case Intrinsic::x86_sse2_cvtsd2si:
    557   case Intrinsic::x86_sse2_cvtsd2si64:
    558   case Intrinsic::x86_sse2_cvttsd2si:
    559   case Intrinsic::x86_sse2_cvttsd2si64: {
    560     // These intrinsics only demand the 0th element of their input vectors. If
    561     // we can simplify the input based on that, do so now.
    562     unsigned VWidth =
    563       cast<VectorType>(II->getArgOperand(0)->getType())->getNumElements();
    564     APInt DemandedElts(VWidth, 1);
    565     APInt UndefElts(VWidth, 0);
    566     if (Value *V = SimplifyDemandedVectorElts(II->getArgOperand(0),
    567                                               DemandedElts, UndefElts)) {
    568       II->setArgOperand(0, V);
    569       return II;
    570     }
    571     break;
    572   }
    573 
    574   // Constant fold <A x Bi> << Ci.
    575   // FIXME: We don't handle _dq because it's a shift of an i128, but is
    576   // represented in the IR as <2 x i64>. A per element shift is wrong.
    577   case Intrinsic::x86_sse2_psll_d:
    578   case Intrinsic::x86_sse2_psll_q:
    579   case Intrinsic::x86_sse2_psll_w:
    580   case Intrinsic::x86_sse2_pslli_d:
    581   case Intrinsic::x86_sse2_pslli_q:
    582   case Intrinsic::x86_sse2_pslli_w:
    583   case Intrinsic::x86_avx2_psll_d:
    584   case Intrinsic::x86_avx2_psll_q:
    585   case Intrinsic::x86_avx2_psll_w:
    586   case Intrinsic::x86_avx2_pslli_d:
    587   case Intrinsic::x86_avx2_pslli_q:
    588   case Intrinsic::x86_avx2_pslli_w:
    589   case Intrinsic::x86_sse2_psrl_d:
    590   case Intrinsic::x86_sse2_psrl_q:
    591   case Intrinsic::x86_sse2_psrl_w:
    592   case Intrinsic::x86_sse2_psrli_d:
    593   case Intrinsic::x86_sse2_psrli_q:
    594   case Intrinsic::x86_sse2_psrli_w:
    595   case Intrinsic::x86_avx2_psrl_d:
    596   case Intrinsic::x86_avx2_psrl_q:
    597   case Intrinsic::x86_avx2_psrl_w:
    598   case Intrinsic::x86_avx2_psrli_d:
    599   case Intrinsic::x86_avx2_psrli_q:
    600   case Intrinsic::x86_avx2_psrli_w: {
    601     // Simplify if count is constant. To 0 if >= BitWidth,
    602     // otherwise to shl/lshr.
    603     auto CDV = dyn_cast<ConstantDataVector>(II->getArgOperand(1));
    604     auto CInt = dyn_cast<ConstantInt>(II->getArgOperand(1));
    605     if (!CDV && !CInt)
    606       break;
    607     ConstantInt *Count;
    608     if (CDV)
    609       Count = cast<ConstantInt>(CDV->getElementAsConstant(0));
    610     else
    611       Count = CInt;
    612 
    613     auto Vec = II->getArgOperand(0);
    614     auto VT = cast<VectorType>(Vec->getType());
    615     if (Count->getZExtValue() >
    616         VT->getElementType()->getPrimitiveSizeInBits() - 1)
    617       return ReplaceInstUsesWith(
    618           CI, ConstantAggregateZero::get(Vec->getType()));
    619 
    620     bool isPackedShiftLeft = true;
    621     switch (II->getIntrinsicID()) {
    622     default : break;
    623     case Intrinsic::x86_sse2_psrl_d:
    624     case Intrinsic::x86_sse2_psrl_q:
    625     case Intrinsic::x86_sse2_psrl_w:
    626     case Intrinsic::x86_sse2_psrli_d:
    627     case Intrinsic::x86_sse2_psrli_q:
    628     case Intrinsic::x86_sse2_psrli_w:
    629     case Intrinsic::x86_avx2_psrl_d:
    630     case Intrinsic::x86_avx2_psrl_q:
    631     case Intrinsic::x86_avx2_psrl_w:
    632     case Intrinsic::x86_avx2_psrli_d:
    633     case Intrinsic::x86_avx2_psrli_q:
    634     case Intrinsic::x86_avx2_psrli_w: isPackedShiftLeft = false; break;
    635     }
    636 
    637     unsigned VWidth = VT->getNumElements();
    638     // Get a constant vector of the same type as the first operand.
    639     auto VTCI = ConstantInt::get(VT->getElementType(), Count->getZExtValue());
    640     if (isPackedShiftLeft)
    641       return BinaryOperator::CreateShl(Vec,
    642           Builder->CreateVectorSplat(VWidth, VTCI));
    643 
    644     return BinaryOperator::CreateLShr(Vec,
    645         Builder->CreateVectorSplat(VWidth, VTCI));
    646   }
    647 
    648   case Intrinsic::x86_sse41_pmovsxbw:
    649   case Intrinsic::x86_sse41_pmovsxwd:
    650   case Intrinsic::x86_sse41_pmovsxdq:
    651   case Intrinsic::x86_sse41_pmovzxbw:
    652   case Intrinsic::x86_sse41_pmovzxwd:
    653   case Intrinsic::x86_sse41_pmovzxdq: {
    654     // pmov{s|z}x ignores the upper half of their input vectors.
    655     unsigned VWidth =
    656       cast<VectorType>(II->getArgOperand(0)->getType())->getNumElements();
    657     unsigned LowHalfElts = VWidth / 2;
    658     APInt InputDemandedElts(APInt::getBitsSet(VWidth, 0, LowHalfElts));
    659     APInt UndefElts(VWidth, 0);
    660     if (Value *TmpV = SimplifyDemandedVectorElts(II->getArgOperand(0),
    661                                                  InputDemandedElts,
    662                                                  UndefElts)) {
    663       II->setArgOperand(0, TmpV);
    664       return II;
    665     }
    666     break;
    667   }
    668 
    669   case Intrinsic::x86_sse4a_insertqi: {
    670     // insertqi x, y, 64, 0 can just copy y's lower bits and leave the top
    671     // ones undef
    672     // TODO: eventually we should lower this intrinsic to IR
    673     if (auto CIWidth = dyn_cast<ConstantInt>(II->getArgOperand(2))) {
    674       if (auto CIStart = dyn_cast<ConstantInt>(II->getArgOperand(3))) {
    675         if (CIWidth->equalsInt(64) && CIStart->isZero()) {
    676           Value *Vec = II->getArgOperand(1);
    677           Value *Undef = UndefValue::get(Vec->getType());
    678           const uint32_t Mask[] = { 0, 2 };
    679           return ReplaceInstUsesWith(
    680               CI,
    681               Builder->CreateShuffleVector(
    682                   Vec, Undef, ConstantDataVector::get(
    683                                   II->getContext(), ArrayRef<uint32_t>(Mask))));
    684 
    685         } else if (auto Source =
    686                        dyn_cast<IntrinsicInst>(II->getArgOperand(0))) {
    687           if (Source->hasOneUse() &&
    688               Source->getArgOperand(1) == II->getArgOperand(1)) {
    689             // If the source of the insert has only one use and it's another
    690             // insert (and they're both inserting from the same vector), try to
    691             // bundle both together.
    692             auto CISourceWidth =
    693                 dyn_cast<ConstantInt>(Source->getArgOperand(2));
    694             auto CISourceStart =
    695                 dyn_cast<ConstantInt>(Source->getArgOperand(3));
    696             if (CISourceStart && CISourceWidth) {
    697               unsigned Start = CIStart->getZExtValue();
    698               unsigned Width = CIWidth->getZExtValue();
    699               unsigned End = Start + Width;
    700               unsigned SourceStart = CISourceStart->getZExtValue();
    701               unsigned SourceWidth = CISourceWidth->getZExtValue();
    702               unsigned SourceEnd = SourceStart + SourceWidth;
    703               unsigned NewStart, NewWidth;
    704               bool ShouldReplace = false;
    705               if (Start <= SourceStart && SourceStart <= End) {
    706                 NewStart = Start;
    707                 NewWidth = std::max(End, SourceEnd) - NewStart;
    708                 ShouldReplace = true;
    709               } else if (SourceStart <= Start && Start <= SourceEnd) {
    710                 NewStart = SourceStart;
    711                 NewWidth = std::max(SourceEnd, End) - NewStart;
    712                 ShouldReplace = true;
    713               }
    714 
    715               if (ShouldReplace) {
    716                 Constant *ConstantWidth = ConstantInt::get(
    717                     II->getArgOperand(2)->getType(), NewWidth, false);
    718                 Constant *ConstantStart = ConstantInt::get(
    719                     II->getArgOperand(3)->getType(), NewStart, false);
    720                 Value *Args[4] = { Source->getArgOperand(0),
    721                                    II->getArgOperand(1), ConstantWidth,
    722                                    ConstantStart };
    723                 Module *M = CI.getParent()->getParent()->getParent();
    724                 Value *F =
    725                     Intrinsic::getDeclaration(M, Intrinsic::x86_sse4a_insertqi);
    726                 return ReplaceInstUsesWith(CI, Builder->CreateCall(F, Args));
    727               }
    728             }
    729           }
    730         }
    731       }
    732     }
    733     break;
    734   }
    735 
    736   case Intrinsic::x86_sse41_pblendvb:
    737   case Intrinsic::x86_sse41_blendvps:
    738   case Intrinsic::x86_sse41_blendvpd:
    739   case Intrinsic::x86_avx_blendv_ps_256:
    740   case Intrinsic::x86_avx_blendv_pd_256:
    741   case Intrinsic::x86_avx2_pblendvb: {
    742     // Convert blendv* to vector selects if the mask is constant.
    743     // This optimization is convoluted because the intrinsic is defined as
    744     // getting a vector of floats or doubles for the ps and pd versions.
    745     // FIXME: That should be changed.
    746     Value *Mask = II->getArgOperand(2);
    747     if (auto C = dyn_cast<ConstantDataVector>(Mask)) {
    748       auto Tyi1 = Builder->getInt1Ty();
    749       auto SelectorType = cast<VectorType>(Mask->getType());
    750       auto EltTy = SelectorType->getElementType();
    751       unsigned Size = SelectorType->getNumElements();
    752       unsigned BitWidth =
    753           EltTy->isFloatTy()
    754               ? 32
    755               : (EltTy->isDoubleTy() ? 64 : EltTy->getIntegerBitWidth());
    756       assert((BitWidth == 64 || BitWidth == 32 || BitWidth == 8) &&
    757              "Wrong arguments for variable blend intrinsic");
    758       SmallVector<Constant *, 32> Selectors;
    759       for (unsigned I = 0; I < Size; ++I) {
    760         // The intrinsics only read the top bit
    761         uint64_t Selector;
    762         if (BitWidth == 8)
    763           Selector = C->getElementAsInteger(I);
    764         else
    765           Selector = C->getElementAsAPFloat(I).bitcastToAPInt().getZExtValue();
    766         Selectors.push_back(ConstantInt::get(Tyi1, Selector >> (BitWidth - 1)));
    767       }
    768       auto NewSelector = ConstantVector::get(Selectors);
    769       return SelectInst::Create(NewSelector, II->getArgOperand(1),
    770                                 II->getArgOperand(0), "blendv");
    771     } else {
    772       break;
    773     }
    774   }
    775 
    776   case Intrinsic::x86_avx_vpermilvar_ps:
    777   case Intrinsic::x86_avx_vpermilvar_ps_256:
    778   case Intrinsic::x86_avx_vpermilvar_pd:
    779   case Intrinsic::x86_avx_vpermilvar_pd_256: {
    780     // Convert vpermil* to shufflevector if the mask is constant.
    781     Value *V = II->getArgOperand(1);
    782     unsigned Size = cast<VectorType>(V->getType())->getNumElements();
    783     assert(Size == 8 || Size == 4 || Size == 2);
    784     uint32_t Indexes[8];
    785     if (auto C = dyn_cast<ConstantDataVector>(V)) {
    786       // The intrinsics only read one or two bits, clear the rest.
    787       for (unsigned I = 0; I < Size; ++I) {
    788         uint32_t Index = C->getElementAsInteger(I) & 0x3;
    789         if (II->getIntrinsicID() == Intrinsic::x86_avx_vpermilvar_pd ||
    790             II->getIntrinsicID() == Intrinsic::x86_avx_vpermilvar_pd_256)
    791           Index >>= 1;
    792         Indexes[I] = Index;
    793       }
    794     } else if (isa<ConstantAggregateZero>(V)) {
    795       for (unsigned I = 0; I < Size; ++I)
    796         Indexes[I] = 0;
    797     } else {
    798       break;
    799     }
    800     // The _256 variants are a bit trickier since the mask bits always index
    801     // into the corresponding 128 half. In order to convert to a generic
    802     // shuffle, we have to make that explicit.
    803     if (II->getIntrinsicID() == Intrinsic::x86_avx_vpermilvar_ps_256 ||
    804         II->getIntrinsicID() == Intrinsic::x86_avx_vpermilvar_pd_256) {
    805       for (unsigned I = Size / 2; I < Size; ++I)
    806         Indexes[I] += Size / 2;
    807     }
    808     auto NewC =
    809         ConstantDataVector::get(V->getContext(), makeArrayRef(Indexes, Size));
    810     auto V1 = II->getArgOperand(0);
    811     auto V2 = UndefValue::get(V1->getType());
    812     auto Shuffle = Builder->CreateShuffleVector(V1, V2, NewC);
    813     return ReplaceInstUsesWith(CI, Shuffle);
    814   }
    815 
    816   case Intrinsic::ppc_altivec_vperm:
    817     // Turn vperm(V1,V2,mask) -> shuffle(V1,V2,mask) if mask is a constant.
    818     // Note that ppc_altivec_vperm has a big-endian bias, so when creating
    819     // a vectorshuffle for little endian, we must undo the transformation
    820     // performed on vec_perm in altivec.h.  That is, we must complement
    821     // the permutation mask with respect to 31 and reverse the order of
    822     // V1 and V2.
    823     if (Constant *Mask = dyn_cast<Constant>(II->getArgOperand(2))) {
    824       assert(Mask->getType()->getVectorNumElements() == 16 &&
    825              "Bad type for intrinsic!");
    826 
    827       // Check that all of the elements are integer constants or undefs.
    828       bool AllEltsOk = true;
    829       for (unsigned i = 0; i != 16; ++i) {
    830         Constant *Elt = Mask->getAggregateElement(i);
    831         if (!Elt || !(isa<ConstantInt>(Elt) || isa<UndefValue>(Elt))) {
    832           AllEltsOk = false;
    833           break;
    834         }
    835       }
    836 
    837       if (AllEltsOk) {
    838         // Cast the input vectors to byte vectors.
    839         Value *Op0 = Builder->CreateBitCast(II->getArgOperand(0),
    840                                             Mask->getType());
    841         Value *Op1 = Builder->CreateBitCast(II->getArgOperand(1),
    842                                             Mask->getType());
    843         Value *Result = UndefValue::get(Op0->getType());
    844 
    845         // Only extract each element once.
    846         Value *ExtractedElts[32];
    847         memset(ExtractedElts, 0, sizeof(ExtractedElts));
    848 
    849         for (unsigned i = 0; i != 16; ++i) {
    850           if (isa<UndefValue>(Mask->getAggregateElement(i)))
    851             continue;
    852           unsigned Idx =
    853             cast<ConstantInt>(Mask->getAggregateElement(i))->getZExtValue();
    854           Idx &= 31;  // Match the hardware behavior.
    855           if (DL && DL->isLittleEndian())
    856             Idx = 31 - Idx;
    857 
    858           if (!ExtractedElts[Idx]) {
    859             Value *Op0ToUse = (DL && DL->isLittleEndian()) ? Op1 : Op0;
    860             Value *Op1ToUse = (DL && DL->isLittleEndian()) ? Op0 : Op1;
    861             ExtractedElts[Idx] =
    862               Builder->CreateExtractElement(Idx < 16 ? Op0ToUse : Op1ToUse,
    863                                             Builder->getInt32(Idx&15));
    864           }
    865 
    866           // Insert this value into the result vector.
    867           Result = Builder->CreateInsertElement(Result, ExtractedElts[Idx],
    868                                                 Builder->getInt32(i));
    869         }
    870         return CastInst::Create(Instruction::BitCast, Result, CI.getType());
    871       }
    872     }
    873     break;
    874 
    875   case Intrinsic::arm_neon_vld1:
    876   case Intrinsic::arm_neon_vld2:
    877   case Intrinsic::arm_neon_vld3:
    878   case Intrinsic::arm_neon_vld4:
    879   case Intrinsic::arm_neon_vld2lane:
    880   case Intrinsic::arm_neon_vld3lane:
    881   case Intrinsic::arm_neon_vld4lane:
    882   case Intrinsic::arm_neon_vst1:
    883   case Intrinsic::arm_neon_vst2:
    884   case Intrinsic::arm_neon_vst3:
    885   case Intrinsic::arm_neon_vst4:
    886   case Intrinsic::arm_neon_vst2lane:
    887   case Intrinsic::arm_neon_vst3lane:
    888   case Intrinsic::arm_neon_vst4lane: {
    889     unsigned MemAlign = getKnownAlignment(II->getArgOperand(0), DL);
    890     unsigned AlignArg = II->getNumArgOperands() - 1;
    891     ConstantInt *IntrAlign = dyn_cast<ConstantInt>(II->getArgOperand(AlignArg));
    892     if (IntrAlign && IntrAlign->getZExtValue() < MemAlign) {
    893       II->setArgOperand(AlignArg,
    894                         ConstantInt::get(Type::getInt32Ty(II->getContext()),
    895                                          MemAlign, false));
    896       return II;
    897     }
    898     break;
    899   }
    900 
    901   case Intrinsic::arm_neon_vmulls:
    902   case Intrinsic::arm_neon_vmullu:
    903   case Intrinsic::aarch64_neon_smull:
    904   case Intrinsic::aarch64_neon_umull: {
    905     Value *Arg0 = II->getArgOperand(0);
    906     Value *Arg1 = II->getArgOperand(1);
    907 
    908     // Handle mul by zero first:
    909     if (isa<ConstantAggregateZero>(Arg0) || isa<ConstantAggregateZero>(Arg1)) {
    910       return ReplaceInstUsesWith(CI, ConstantAggregateZero::get(II->getType()));
    911     }
    912 
    913     // Check for constant LHS & RHS - in this case we just simplify.
    914     bool Zext = (II->getIntrinsicID() == Intrinsic::arm_neon_vmullu ||
    915                  II->getIntrinsicID() == Intrinsic::aarch64_neon_umull);
    916     VectorType *NewVT = cast<VectorType>(II->getType());
    917     if (Constant *CV0 = dyn_cast<Constant>(Arg0)) {
    918       if (Constant *CV1 = dyn_cast<Constant>(Arg1)) {
    919         CV0 = ConstantExpr::getIntegerCast(CV0, NewVT, /*isSigned=*/!Zext);
    920         CV1 = ConstantExpr::getIntegerCast(CV1, NewVT, /*isSigned=*/!Zext);
    921 
    922         return ReplaceInstUsesWith(CI, ConstantExpr::getMul(CV0, CV1));
    923       }
    924 
    925       // Couldn't simplify - canonicalize constant to the RHS.
    926       std::swap(Arg0, Arg1);
    927     }
    928 
    929     // Handle mul by one:
    930     if (Constant *CV1 = dyn_cast<Constant>(Arg1))
    931       if (ConstantInt *Splat =
    932               dyn_cast_or_null<ConstantInt>(CV1->getSplatValue()))
    933         if (Splat->isOne())
    934           return CastInst::CreateIntegerCast(Arg0, II->getType(),
    935                                              /*isSigned=*/!Zext);
    936 
    937     break;
    938   }
    939 
    940   case Intrinsic::AMDGPU_rcp: {
    941     if (const ConstantFP *C = dyn_cast<ConstantFP>(II->getArgOperand(0))) {
    942       const APFloat &ArgVal = C->getValueAPF();
    943       APFloat Val(ArgVal.getSemantics(), 1.0);
    944       APFloat::opStatus Status = Val.divide(ArgVal,
    945                                             APFloat::rmNearestTiesToEven);
    946       // Only do this if it was exact and therefore not dependent on the
    947       // rounding mode.
    948       if (Status == APFloat::opOK)
    949         return ReplaceInstUsesWith(CI, ConstantFP::get(II->getContext(), Val));
    950     }
    951 
    952     break;
    953   }
    954   case Intrinsic::stackrestore: {
    955     // If the save is right next to the restore, remove the restore.  This can
    956     // happen when variable allocas are DCE'd.
    957     if (IntrinsicInst *SS = dyn_cast<IntrinsicInst>(II->getArgOperand(0))) {
    958       if (SS->getIntrinsicID() == Intrinsic::stacksave) {
    959         BasicBlock::iterator BI = SS;
    960         if (&*++BI == II)
    961           return EraseInstFromFunction(CI);
    962       }
    963     }
    964 
    965     // Scan down this block to see if there is another stack restore in the
    966     // same block without an intervening call/alloca.
    967     BasicBlock::iterator BI = II;
    968     TerminatorInst *TI = II->getParent()->getTerminator();
    969     bool CannotRemove = false;
    970     for (++BI; &*BI != TI; ++BI) {
    971       if (isa<AllocaInst>(BI)) {
    972         CannotRemove = true;
    973         break;
    974       }
    975       if (CallInst *BCI = dyn_cast<CallInst>(BI)) {
    976         if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(BCI)) {
    977           // If there is a stackrestore below this one, remove this one.
    978           if (II->getIntrinsicID() == Intrinsic::stackrestore)
    979             return EraseInstFromFunction(CI);
    980           // Otherwise, ignore the intrinsic.
    981         } else {
    982           // If we found a non-intrinsic call, we can't remove the stack
    983           // restore.
    984           CannotRemove = true;
    985           break;
    986         }
    987       }
    988     }
    989 
    990     // If the stack restore is in a return, resume, or unwind block and if there
    991     // are no allocas or calls between the restore and the return, nuke the
    992     // restore.
    993     if (!CannotRemove && (isa<ReturnInst>(TI) || isa<ResumeInst>(TI)))
    994       return EraseInstFromFunction(CI);
    995     break;
    996   }
    997   }
    998 
    999   return visitCallSite(II);
   1000 }
   1001 
   1002 // InvokeInst simplification
   1003 //
   1004 Instruction *InstCombiner::visitInvokeInst(InvokeInst &II) {
   1005   return visitCallSite(&II);
   1006 }
   1007 
   1008 /// isSafeToEliminateVarargsCast - If this cast does not affect the value
   1009 /// passed through the varargs area, we can eliminate the use of the cast.
   1010 static bool isSafeToEliminateVarargsCast(const CallSite CS,
   1011                                          const CastInst * const CI,
   1012                                          const DataLayout * const DL,
   1013                                          const int ix) {
   1014   if (!CI->isLosslessCast())
   1015     return false;
   1016 
   1017   // The size of ByVal or InAlloca arguments is derived from the type, so we
   1018   // can't change to a type with a different size.  If the size were
   1019   // passed explicitly we could avoid this check.
   1020   if (!CS.isByValOrInAllocaArgument(ix))
   1021     return true;
   1022 
   1023   Type* SrcTy =
   1024             cast<PointerType>(CI->getOperand(0)->getType())->getElementType();
   1025   Type* DstTy = cast<PointerType>(CI->getType())->getElementType();
   1026   if (!SrcTy->isSized() || !DstTy->isSized())
   1027     return false;
   1028   if (!DL || DL->getTypeAllocSize(SrcTy) != DL->getTypeAllocSize(DstTy))
   1029     return false;
   1030   return true;
   1031 }
   1032 
   1033 // Try to fold some different type of calls here.
   1034 // Currently we're only working with the checking functions, memcpy_chk,
   1035 // mempcpy_chk, memmove_chk, memset_chk, strcpy_chk, stpcpy_chk, strncpy_chk,
   1036 // strcat_chk and strncat_chk.
   1037 Instruction *InstCombiner::tryOptimizeCall(CallInst *CI, const DataLayout *DL) {
   1038   if (!CI->getCalledFunction()) return nullptr;
   1039 
   1040   if (Value *With = Simplifier->optimizeCall(CI)) {
   1041     ++NumSimplified;
   1042     return CI->use_empty() ? CI : ReplaceInstUsesWith(*CI, With);
   1043   }
   1044 
   1045   return nullptr;
   1046 }
   1047 
   1048 static IntrinsicInst *FindInitTrampolineFromAlloca(Value *TrampMem) {
   1049   // Strip off at most one level of pointer casts, looking for an alloca.  This
   1050   // is good enough in practice and simpler than handling any number of casts.
   1051   Value *Underlying = TrampMem->stripPointerCasts();
   1052   if (Underlying != TrampMem &&
   1053       (!Underlying->hasOneUse() || Underlying->user_back() != TrampMem))
   1054     return nullptr;
   1055   if (!isa<AllocaInst>(Underlying))
   1056     return nullptr;
   1057 
   1058   IntrinsicInst *InitTrampoline = nullptr;
   1059   for (User *U : TrampMem->users()) {
   1060     IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
   1061     if (!II)
   1062       return nullptr;
   1063     if (II->getIntrinsicID() == Intrinsic::init_trampoline) {
   1064       if (InitTrampoline)
   1065         // More than one init_trampoline writes to this value.  Give up.
   1066         return nullptr;
   1067       InitTrampoline = II;
   1068       continue;
   1069     }
   1070     if (II->getIntrinsicID() == Intrinsic::adjust_trampoline)
   1071       // Allow any number of calls to adjust.trampoline.
   1072       continue;
   1073     return nullptr;
   1074   }
   1075 
   1076   // No call to init.trampoline found.
   1077   if (!InitTrampoline)
   1078     return nullptr;
   1079 
   1080   // Check that the alloca is being used in the expected way.
   1081   if (InitTrampoline->getOperand(0) != TrampMem)
   1082     return nullptr;
   1083 
   1084   return InitTrampoline;
   1085 }
   1086 
   1087 static IntrinsicInst *FindInitTrampolineFromBB(IntrinsicInst *AdjustTramp,
   1088                                                Value *TrampMem) {
   1089   // Visit all the previous instructions in the basic block, and try to find a
   1090   // init.trampoline which has a direct path to the adjust.trampoline.
   1091   for (BasicBlock::iterator I = AdjustTramp,
   1092        E = AdjustTramp->getParent()->begin(); I != E; ) {
   1093     Instruction *Inst = --I;
   1094     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
   1095       if (II->getIntrinsicID() == Intrinsic::init_trampoline &&
   1096           II->getOperand(0) == TrampMem)
   1097         return II;
   1098     if (Inst->mayWriteToMemory())
   1099       return nullptr;
   1100   }
   1101   return nullptr;
   1102 }
   1103 
   1104 // Given a call to llvm.adjust.trampoline, find and return the corresponding
   1105 // call to llvm.init.trampoline if the call to the trampoline can be optimized
   1106 // to a direct call to a function.  Otherwise return NULL.
   1107 //
   1108 static IntrinsicInst *FindInitTrampoline(Value *Callee) {
   1109   Callee = Callee->stripPointerCasts();
   1110   IntrinsicInst *AdjustTramp = dyn_cast<IntrinsicInst>(Callee);
   1111   if (!AdjustTramp ||
   1112       AdjustTramp->getIntrinsicID() != Intrinsic::adjust_trampoline)
   1113     return nullptr;
   1114 
   1115   Value *TrampMem = AdjustTramp->getOperand(0);
   1116 
   1117   if (IntrinsicInst *IT = FindInitTrampolineFromAlloca(TrampMem))
   1118     return IT;
   1119   if (IntrinsicInst *IT = FindInitTrampolineFromBB(AdjustTramp, TrampMem))
   1120     return IT;
   1121   return nullptr;
   1122 }
   1123 
   1124 // visitCallSite - Improvements for call and invoke instructions.
   1125 //
   1126 Instruction *InstCombiner::visitCallSite(CallSite CS) {
   1127   if (isAllocLikeFn(CS.getInstruction(), TLI))
   1128     return visitAllocSite(*CS.getInstruction());
   1129 
   1130   bool Changed = false;
   1131 
   1132   // If the callee is a pointer to a function, attempt to move any casts to the
   1133   // arguments of the call/invoke.
   1134   Value *Callee = CS.getCalledValue();
   1135   if (!isa<Function>(Callee) && transformConstExprCastCall(CS))
   1136     return nullptr;
   1137 
   1138   if (Function *CalleeF = dyn_cast<Function>(Callee))
   1139     // If the call and callee calling conventions don't match, this call must
   1140     // be unreachable, as the call is undefined.
   1141     if (CalleeF->getCallingConv() != CS.getCallingConv() &&
   1142         // Only do this for calls to a function with a body.  A prototype may
   1143         // not actually end up matching the implementation's calling conv for a
   1144         // variety of reasons (e.g. it may be written in assembly).
   1145         !CalleeF->isDeclaration()) {
   1146       Instruction *OldCall = CS.getInstruction();
   1147       new StoreInst(ConstantInt::getTrue(Callee->getContext()),
   1148                 UndefValue::get(Type::getInt1PtrTy(Callee->getContext())),
   1149                                   OldCall);
   1150       // If OldCall does not return void then replaceAllUsesWith undef.
   1151       // This allows ValueHandlers and custom metadata to adjust itself.
   1152       if (!OldCall->getType()->isVoidTy())
   1153         ReplaceInstUsesWith(*OldCall, UndefValue::get(OldCall->getType()));
   1154       if (isa<CallInst>(OldCall))
   1155         return EraseInstFromFunction(*OldCall);
   1156 
   1157       // We cannot remove an invoke, because it would change the CFG, just
   1158       // change the callee to a null pointer.
   1159       cast<InvokeInst>(OldCall)->setCalledFunction(
   1160                                     Constant::getNullValue(CalleeF->getType()));
   1161       return nullptr;
   1162     }
   1163 
   1164   if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
   1165     // If CS does not return void then replaceAllUsesWith undef.
   1166     // This allows ValueHandlers and custom metadata to adjust itself.
   1167     if (!CS.getInstruction()->getType()->isVoidTy())
   1168       ReplaceInstUsesWith(*CS.getInstruction(),
   1169                           UndefValue::get(CS.getInstruction()->getType()));
   1170 
   1171     if (isa<InvokeInst>(CS.getInstruction())) {
   1172       // Can't remove an invoke because we cannot change the CFG.
   1173       return nullptr;
   1174     }
   1175 
   1176     // This instruction is not reachable, just remove it.  We insert a store to
   1177     // undef so that we know that this code is not reachable, despite the fact
   1178     // that we can't modify the CFG here.
   1179     new StoreInst(ConstantInt::getTrue(Callee->getContext()),
   1180                   UndefValue::get(Type::getInt1PtrTy(Callee->getContext())),
   1181                   CS.getInstruction());
   1182 
   1183     return EraseInstFromFunction(*CS.getInstruction());
   1184   }
   1185 
   1186   if (IntrinsicInst *II = FindInitTrampoline(Callee))
   1187     return transformCallThroughTrampoline(CS, II);
   1188 
   1189   PointerType *PTy = cast<PointerType>(Callee->getType());
   1190   FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
   1191   if (FTy->isVarArg()) {
   1192     int ix = FTy->getNumParams();
   1193     // See if we can optimize any arguments passed through the varargs area of
   1194     // the call.
   1195     for (CallSite::arg_iterator I = CS.arg_begin() + FTy->getNumParams(),
   1196            E = CS.arg_end(); I != E; ++I, ++ix) {
   1197       CastInst *CI = dyn_cast<CastInst>(*I);
   1198       if (CI && isSafeToEliminateVarargsCast(CS, CI, DL, ix)) {
   1199         *I = CI->getOperand(0);
   1200         Changed = true;
   1201       }
   1202     }
   1203   }
   1204 
   1205   if (isa<InlineAsm>(Callee) && !CS.doesNotThrow()) {
   1206     // Inline asm calls cannot throw - mark them 'nounwind'.
   1207     CS.setDoesNotThrow();
   1208     Changed = true;
   1209   }
   1210 
   1211   // Try to optimize the call if possible, we require DataLayout for most of
   1212   // this.  None of these calls are seen as possibly dead so go ahead and
   1213   // delete the instruction now.
   1214   if (CallInst *CI = dyn_cast<CallInst>(CS.getInstruction())) {
   1215     Instruction *I = tryOptimizeCall(CI, DL);
   1216     // If we changed something return the result, etc. Otherwise let
   1217     // the fallthrough check.
   1218     if (I) return EraseInstFromFunction(*I);
   1219   }
   1220 
   1221   return Changed ? CS.getInstruction() : nullptr;
   1222 }
   1223 
   1224 // transformConstExprCastCall - If the callee is a constexpr cast of a function,
   1225 // attempt to move the cast to the arguments of the call/invoke.
   1226 //
   1227 bool InstCombiner::transformConstExprCastCall(CallSite CS) {
   1228   Function *Callee =
   1229     dyn_cast<Function>(CS.getCalledValue()->stripPointerCasts());
   1230   if (!Callee)
   1231     return false;
   1232   Instruction *Caller = CS.getInstruction();
   1233   const AttributeSet &CallerPAL = CS.getAttributes();
   1234 
   1235   // Okay, this is a cast from a function to a different type.  Unless doing so
   1236   // would cause a type conversion of one of our arguments, change this call to
   1237   // be a direct call with arguments casted to the appropriate types.
   1238   //
   1239   FunctionType *FT = Callee->getFunctionType();
   1240   Type *OldRetTy = Caller->getType();
   1241   Type *NewRetTy = FT->getReturnType();
   1242 
   1243   // Check to see if we are changing the return type...
   1244   if (OldRetTy != NewRetTy) {
   1245 
   1246     if (NewRetTy->isStructTy())
   1247       return false; // TODO: Handle multiple return values.
   1248 
   1249     if (!CastInst::isBitCastable(NewRetTy, OldRetTy)) {
   1250       if (Callee->isDeclaration())
   1251         return false;   // Cannot transform this return value.
   1252 
   1253       if (!Caller->use_empty() &&
   1254           // void -> non-void is handled specially
   1255           !NewRetTy->isVoidTy())
   1256       return false;   // Cannot transform this return value.
   1257     }
   1258 
   1259     if (!CallerPAL.isEmpty() && !Caller->use_empty()) {
   1260       AttrBuilder RAttrs(CallerPAL, AttributeSet::ReturnIndex);
   1261       if (RAttrs.
   1262           hasAttributes(AttributeFuncs::
   1263                         typeIncompatible(NewRetTy, AttributeSet::ReturnIndex),
   1264                         AttributeSet::ReturnIndex))
   1265         return false;   // Attribute not compatible with transformed value.
   1266     }
   1267 
   1268     // If the callsite is an invoke instruction, and the return value is used by
   1269     // a PHI node in a successor, we cannot change the return type of the call
   1270     // because there is no place to put the cast instruction (without breaking
   1271     // the critical edge).  Bail out in this case.
   1272     if (!Caller->use_empty())
   1273       if (InvokeInst *II = dyn_cast<InvokeInst>(Caller))
   1274         for (User *U : II->users())
   1275           if (PHINode *PN = dyn_cast<PHINode>(U))
   1276             if (PN->getParent() == II->getNormalDest() ||
   1277                 PN->getParent() == II->getUnwindDest())
   1278               return false;
   1279   }
   1280 
   1281   unsigned NumActualArgs = CS.arg_size();
   1282   unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs);
   1283 
   1284   CallSite::arg_iterator AI = CS.arg_begin();
   1285   for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) {
   1286     Type *ParamTy = FT->getParamType(i);
   1287     Type *ActTy = (*AI)->getType();
   1288 
   1289     if (!CastInst::isBitCastable(ActTy, ParamTy))
   1290       return false;   // Cannot transform this parameter value.
   1291 
   1292     if (AttrBuilder(CallerPAL.getParamAttributes(i + 1), i + 1).
   1293           hasAttributes(AttributeFuncs::
   1294                         typeIncompatible(ParamTy, i + 1), i + 1))
   1295       return false;   // Attribute not compatible with transformed value.
   1296 
   1297     if (CS.isInAllocaArgument(i))
   1298       return false;   // Cannot transform to and from inalloca.
   1299 
   1300     // If the parameter is passed as a byval argument, then we have to have a
   1301     // sized type and the sized type has to have the same size as the old type.
   1302     if (ParamTy != ActTy &&
   1303         CallerPAL.getParamAttributes(i + 1).hasAttribute(i + 1,
   1304                                                          Attribute::ByVal)) {
   1305       PointerType *ParamPTy = dyn_cast<PointerType>(ParamTy);
   1306       if (!ParamPTy || !ParamPTy->getElementType()->isSized() || !DL)
   1307         return false;
   1308 
   1309       Type *CurElTy = ActTy->getPointerElementType();
   1310       if (DL->getTypeAllocSize(CurElTy) !=
   1311           DL->getTypeAllocSize(ParamPTy->getElementType()))
   1312         return false;
   1313     }
   1314   }
   1315 
   1316   if (Callee->isDeclaration()) {
   1317     // Do not delete arguments unless we have a function body.
   1318     if (FT->getNumParams() < NumActualArgs && !FT->isVarArg())
   1319       return false;
   1320 
   1321     // If the callee is just a declaration, don't change the varargsness of the
   1322     // call.  We don't want to introduce a varargs call where one doesn't
   1323     // already exist.
   1324     PointerType *APTy = cast<PointerType>(CS.getCalledValue()->getType());
   1325     if (FT->isVarArg()!=cast<FunctionType>(APTy->getElementType())->isVarArg())
   1326       return false;
   1327 
   1328     // If both the callee and the cast type are varargs, we still have to make
   1329     // sure the number of fixed parameters are the same or we have the same
   1330     // ABI issues as if we introduce a varargs call.
   1331     if (FT->isVarArg() &&
   1332         cast<FunctionType>(APTy->getElementType())->isVarArg() &&
   1333         FT->getNumParams() !=
   1334         cast<FunctionType>(APTy->getElementType())->getNumParams())
   1335       return false;
   1336   }
   1337 
   1338   if (FT->getNumParams() < NumActualArgs && FT->isVarArg() &&
   1339       !CallerPAL.isEmpty())
   1340     // In this case we have more arguments than the new function type, but we
   1341     // won't be dropping them.  Check that these extra arguments have attributes
   1342     // that are compatible with being a vararg call argument.
   1343     for (unsigned i = CallerPAL.getNumSlots(); i; --i) {
   1344       unsigned Index = CallerPAL.getSlotIndex(i - 1);
   1345       if (Index <= FT->getNumParams())
   1346         break;
   1347 
   1348       // Check if it has an attribute that's incompatible with varargs.
   1349       AttributeSet PAttrs = CallerPAL.getSlotAttributes(i - 1);
   1350       if (PAttrs.hasAttribute(Index, Attribute::StructRet))
   1351         return false;
   1352     }
   1353 
   1354 
   1355   // Okay, we decided that this is a safe thing to do: go ahead and start
   1356   // inserting cast instructions as necessary.
   1357   std::vector<Value*> Args;
   1358   Args.reserve(NumActualArgs);
   1359   SmallVector<AttributeSet, 8> attrVec;
   1360   attrVec.reserve(NumCommonArgs);
   1361 
   1362   // Get any return attributes.
   1363   AttrBuilder RAttrs(CallerPAL, AttributeSet::ReturnIndex);
   1364 
   1365   // If the return value is not being used, the type may not be compatible
   1366   // with the existing attributes.  Wipe out any problematic attributes.
   1367   RAttrs.
   1368     removeAttributes(AttributeFuncs::
   1369                      typeIncompatible(NewRetTy, AttributeSet::ReturnIndex),
   1370                      AttributeSet::ReturnIndex);
   1371 
   1372   // Add the new return attributes.
   1373   if (RAttrs.hasAttributes())
   1374     attrVec.push_back(AttributeSet::get(Caller->getContext(),
   1375                                         AttributeSet::ReturnIndex, RAttrs));
   1376 
   1377   AI = CS.arg_begin();
   1378   for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) {
   1379     Type *ParamTy = FT->getParamType(i);
   1380 
   1381     if ((*AI)->getType() == ParamTy) {
   1382       Args.push_back(*AI);
   1383     } else {
   1384       Args.push_back(Builder->CreateBitCast(*AI, ParamTy));
   1385     }
   1386 
   1387     // Add any parameter attributes.
   1388     AttrBuilder PAttrs(CallerPAL.getParamAttributes(i + 1), i + 1);
   1389     if (PAttrs.hasAttributes())
   1390       attrVec.push_back(AttributeSet::get(Caller->getContext(), i + 1,
   1391                                           PAttrs));
   1392   }
   1393 
   1394   // If the function takes more arguments than the call was taking, add them
   1395   // now.
   1396   for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i)
   1397     Args.push_back(Constant::getNullValue(FT->getParamType(i)));
   1398 
   1399   // If we are removing arguments to the function, emit an obnoxious warning.
   1400   if (FT->getNumParams() < NumActualArgs) {
   1401     // TODO: if (!FT->isVarArg()) this call may be unreachable. PR14722
   1402     if (FT->isVarArg()) {
   1403       // Add all of the arguments in their promoted form to the arg list.
   1404       for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) {
   1405         Type *PTy = getPromotedType((*AI)->getType());
   1406         if (PTy != (*AI)->getType()) {
   1407           // Must promote to pass through va_arg area!
   1408           Instruction::CastOps opcode =
   1409             CastInst::getCastOpcode(*AI, false, PTy, false);
   1410           Args.push_back(Builder->CreateCast(opcode, *AI, PTy));
   1411         } else {
   1412           Args.push_back(*AI);
   1413         }
   1414 
   1415         // Add any parameter attributes.
   1416         AttrBuilder PAttrs(CallerPAL.getParamAttributes(i + 1), i + 1);
   1417         if (PAttrs.hasAttributes())
   1418           attrVec.push_back(AttributeSet::get(FT->getContext(), i + 1,
   1419                                               PAttrs));
   1420       }
   1421     }
   1422   }
   1423 
   1424   AttributeSet FnAttrs = CallerPAL.getFnAttributes();
   1425   if (CallerPAL.hasAttributes(AttributeSet::FunctionIndex))
   1426     attrVec.push_back(AttributeSet::get(Callee->getContext(), FnAttrs));
   1427 
   1428   if (NewRetTy->isVoidTy())
   1429     Caller->setName("");   // Void type should not have a name.
   1430 
   1431   const AttributeSet &NewCallerPAL = AttributeSet::get(Callee->getContext(),
   1432                                                        attrVec);
   1433 
   1434   Instruction *NC;
   1435   if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
   1436     NC = Builder->CreateInvoke(Callee, II->getNormalDest(),
   1437                                II->getUnwindDest(), Args);
   1438     NC->takeName(II);
   1439     cast<InvokeInst>(NC)->setCallingConv(II->getCallingConv());
   1440     cast<InvokeInst>(NC)->setAttributes(NewCallerPAL);
   1441   } else {
   1442     CallInst *CI = cast<CallInst>(Caller);
   1443     NC = Builder->CreateCall(Callee, Args);
   1444     NC->takeName(CI);
   1445     if (CI->isTailCall())
   1446       cast<CallInst>(NC)->setTailCall();
   1447     cast<CallInst>(NC)->setCallingConv(CI->getCallingConv());
   1448     cast<CallInst>(NC)->setAttributes(NewCallerPAL);
   1449   }
   1450 
   1451   // Insert a cast of the return type as necessary.
   1452   Value *NV = NC;
   1453   if (OldRetTy != NV->getType() && !Caller->use_empty()) {
   1454     if (!NV->getType()->isVoidTy()) {
   1455       NV = NC = CastInst::Create(CastInst::BitCast, NC, OldRetTy);
   1456       NC->setDebugLoc(Caller->getDebugLoc());
   1457 
   1458       // If this is an invoke instruction, we should insert it after the first
   1459       // non-phi, instruction in the normal successor block.
   1460       if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
   1461         BasicBlock::iterator I = II->getNormalDest()->getFirstInsertionPt();
   1462         InsertNewInstBefore(NC, *I);
   1463       } else {
   1464         // Otherwise, it's a call, just insert cast right after the call.
   1465         InsertNewInstBefore(NC, *Caller);
   1466       }
   1467       Worklist.AddUsersToWorkList(*Caller);
   1468     } else {
   1469       NV = UndefValue::get(Caller->getType());
   1470     }
   1471   }
   1472 
   1473   if (!Caller->use_empty())
   1474     ReplaceInstUsesWith(*Caller, NV);
   1475   else if (Caller->hasValueHandle())
   1476     ValueHandleBase::ValueIsRAUWd(Caller, NV);
   1477 
   1478   EraseInstFromFunction(*Caller);
   1479   return true;
   1480 }
   1481 
   1482 // transformCallThroughTrampoline - Turn a call to a function created by
   1483 // init_trampoline / adjust_trampoline intrinsic pair into a direct call to the
   1484 // underlying function.
   1485 //
   1486 Instruction *
   1487 InstCombiner::transformCallThroughTrampoline(CallSite CS,
   1488                                              IntrinsicInst *Tramp) {
   1489   Value *Callee = CS.getCalledValue();
   1490   PointerType *PTy = cast<PointerType>(Callee->getType());
   1491   FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
   1492   const AttributeSet &Attrs = CS.getAttributes();
   1493 
   1494   // If the call already has the 'nest' attribute somewhere then give up -
   1495   // otherwise 'nest' would occur twice after splicing in the chain.
   1496   if (Attrs.hasAttrSomewhere(Attribute::Nest))
   1497     return nullptr;
   1498 
   1499   assert(Tramp &&
   1500          "transformCallThroughTrampoline called with incorrect CallSite.");
   1501 
   1502   Function *NestF =cast<Function>(Tramp->getArgOperand(1)->stripPointerCasts());
   1503   PointerType *NestFPTy = cast<PointerType>(NestF->getType());
   1504   FunctionType *NestFTy = cast<FunctionType>(NestFPTy->getElementType());
   1505 
   1506   const AttributeSet &NestAttrs = NestF->getAttributes();
   1507   if (!NestAttrs.isEmpty()) {
   1508     unsigned NestIdx = 1;
   1509     Type *NestTy = nullptr;
   1510     AttributeSet NestAttr;
   1511 
   1512     // Look for a parameter marked with the 'nest' attribute.
   1513     for (FunctionType::param_iterator I = NestFTy->param_begin(),
   1514          E = NestFTy->param_end(); I != E; ++NestIdx, ++I)
   1515       if (NestAttrs.hasAttribute(NestIdx, Attribute::Nest)) {
   1516         // Record the parameter type and any other attributes.
   1517         NestTy = *I;
   1518         NestAttr = NestAttrs.getParamAttributes(NestIdx);
   1519         break;
   1520       }
   1521 
   1522     if (NestTy) {
   1523       Instruction *Caller = CS.getInstruction();
   1524       std::vector<Value*> NewArgs;
   1525       NewArgs.reserve(CS.arg_size() + 1);
   1526 
   1527       SmallVector<AttributeSet, 8> NewAttrs;
   1528       NewAttrs.reserve(Attrs.getNumSlots() + 1);
   1529 
   1530       // Insert the nest argument into the call argument list, which may
   1531       // mean appending it.  Likewise for attributes.
   1532 
   1533       // Add any result attributes.
   1534       if (Attrs.hasAttributes(AttributeSet::ReturnIndex))
   1535         NewAttrs.push_back(AttributeSet::get(Caller->getContext(),
   1536                                              Attrs.getRetAttributes()));
   1537 
   1538       {
   1539         unsigned Idx = 1;
   1540         CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
   1541         do {
   1542           if (Idx == NestIdx) {
   1543             // Add the chain argument and attributes.
   1544             Value *NestVal = Tramp->getArgOperand(2);
   1545             if (NestVal->getType() != NestTy)
   1546               NestVal = Builder->CreateBitCast(NestVal, NestTy, "nest");
   1547             NewArgs.push_back(NestVal);
   1548             NewAttrs.push_back(AttributeSet::get(Caller->getContext(),
   1549                                                  NestAttr));
   1550           }
   1551 
   1552           if (I == E)
   1553             break;
   1554 
   1555           // Add the original argument and attributes.
   1556           NewArgs.push_back(*I);
   1557           AttributeSet Attr = Attrs.getParamAttributes(Idx);
   1558           if (Attr.hasAttributes(Idx)) {
   1559             AttrBuilder B(Attr, Idx);
   1560             NewAttrs.push_back(AttributeSet::get(Caller->getContext(),
   1561                                                  Idx + (Idx >= NestIdx), B));
   1562           }
   1563 
   1564           ++Idx, ++I;
   1565         } while (1);
   1566       }
   1567 
   1568       // Add any function attributes.
   1569       if (Attrs.hasAttributes(AttributeSet::FunctionIndex))
   1570         NewAttrs.push_back(AttributeSet::get(FTy->getContext(),
   1571                                              Attrs.getFnAttributes()));
   1572 
   1573       // The trampoline may have been bitcast to a bogus type (FTy).
   1574       // Handle this by synthesizing a new function type, equal to FTy
   1575       // with the chain parameter inserted.
   1576 
   1577       std::vector<Type*> NewTypes;
   1578       NewTypes.reserve(FTy->getNumParams()+1);
   1579 
   1580       // Insert the chain's type into the list of parameter types, which may
   1581       // mean appending it.
   1582       {
   1583         unsigned Idx = 1;
   1584         FunctionType::param_iterator I = FTy->param_begin(),
   1585           E = FTy->param_end();
   1586 
   1587         do {
   1588           if (Idx == NestIdx)
   1589             // Add the chain's type.
   1590             NewTypes.push_back(NestTy);
   1591 
   1592           if (I == E)
   1593             break;
   1594 
   1595           // Add the original type.
   1596           NewTypes.push_back(*I);
   1597 
   1598           ++Idx, ++I;
   1599         } while (1);
   1600       }
   1601 
   1602       // Replace the trampoline call with a direct call.  Let the generic
   1603       // code sort out any function type mismatches.
   1604       FunctionType *NewFTy = FunctionType::get(FTy->getReturnType(), NewTypes,
   1605                                                 FTy->isVarArg());
   1606       Constant *NewCallee =
   1607         NestF->getType() == PointerType::getUnqual(NewFTy) ?
   1608         NestF : ConstantExpr::getBitCast(NestF,
   1609                                          PointerType::getUnqual(NewFTy));
   1610       const AttributeSet &NewPAL =
   1611           AttributeSet::get(FTy->getContext(), NewAttrs);
   1612 
   1613       Instruction *NewCaller;
   1614       if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
   1615         NewCaller = InvokeInst::Create(NewCallee,
   1616                                        II->getNormalDest(), II->getUnwindDest(),
   1617                                        NewArgs);
   1618         cast<InvokeInst>(NewCaller)->setCallingConv(II->getCallingConv());
   1619         cast<InvokeInst>(NewCaller)->setAttributes(NewPAL);
   1620       } else {
   1621         NewCaller = CallInst::Create(NewCallee, NewArgs);
   1622         if (cast<CallInst>(Caller)->isTailCall())
   1623           cast<CallInst>(NewCaller)->setTailCall();
   1624         cast<CallInst>(NewCaller)->
   1625           setCallingConv(cast<CallInst>(Caller)->getCallingConv());
   1626         cast<CallInst>(NewCaller)->setAttributes(NewPAL);
   1627       }
   1628 
   1629       return NewCaller;
   1630     }
   1631   }
   1632 
   1633   // Replace the trampoline call with a direct call.  Since there is no 'nest'
   1634   // parameter, there is no need to adjust the argument list.  Let the generic
   1635   // code sort out any function type mismatches.
   1636   Constant *NewCallee =
   1637     NestF->getType() == PTy ? NestF :
   1638                               ConstantExpr::getBitCast(NestF, PTy);
   1639   CS.setCalledFunction(NewCallee);
   1640   return CS.getInstruction();
   1641 }
   1642