Home | History | Annotate | Download | only in ceres
      1 // Ceres Solver - A fast non-linear least squares minimizer
      2 // Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
      3 // http://code.google.com/p/ceres-solver/
      4 //
      5 // Redistribution and use in source and binary forms, with or without
      6 // modification, are permitted provided that the following conditions are met:
      7 //
      8 // * Redistributions of source code must retain the above copyright notice,
      9 //   this list of conditions and the following disclaimer.
     10 // * Redistributions in binary form must reproduce the above copyright notice,
     11 //   this list of conditions and the following disclaimer in the documentation
     12 //   and/or other materials provided with the distribution.
     13 // * Neither the name of Google Inc. nor the names of its contributors may be
     14 //   used to endorse or promote products derived from this software without
     15 //   specific prior written permission.
     16 //
     17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
     18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
     21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     27 // POSSIBILITY OF SUCH DAMAGE.
     28 //
     29 // Author: keir (at) google.com (Keir Mierle)
     30 //
     31 // The ProgramEvaluator runs the cost functions contained in each residual block
     32 // and stores the result into a jacobian. The particular type of jacobian is
     33 // abstracted out using two template parameters:
     34 //
     35 //   - An "EvaluatePreparer" that is responsible for creating the array with
     36 //     pointers to the jacobian blocks where the cost function evaluates to.
     37 //   - A "JacobianWriter" that is responsible for storing the resulting
     38 //     jacobian blocks in the passed sparse matrix.
     39 //
     40 // This abstraction affords an efficient evaluator implementation while still
     41 // supporting writing to multiple sparse matrix formats. For example, when the
     42 // ProgramEvaluator is parameterized for writing to block sparse matrices, the
     43 // residual jacobians are written directly into their final position in the
     44 // block sparse matrix by the user's CostFunction; there is no copying.
     45 //
     46 // The evaluation is threaded with OpenMP.
     47 //
     48 // The EvaluatePreparer and JacobianWriter interfaces are as follows:
     49 //
     50 //   class EvaluatePreparer {
     51 //     // Prepare the jacobians array for use as the destination of a call to
     52 //     // a cost function's evaluate method.
     53 //     void Prepare(const ResidualBlock* residual_block,
     54 //                  int residual_block_index,
     55 //                  SparseMatrix* jacobian,
     56 //                  double** jacobians);
     57 //   }
     58 //
     59 //   class JacobianWriter {
     60 //     // Create a jacobian that this writer can write. Same as
     61 //     // Evaluator::CreateJacobian.
     62 //     SparseMatrix* CreateJacobian() const;
     63 //
     64 //     // Create num_threads evaluate preparers. Caller owns result which must
     65 //     // be freed with delete[]. Resulting preparers are valid while *this is.
     66 //     EvaluatePreparer* CreateEvaluatePreparers(int num_threads);
     67 //
     68 //     // Write the block jacobians from a residual block evaluation to the
     69 //     // larger sparse jacobian.
     70 //     void Write(int residual_id,
     71 //                int residual_offset,
     72 //                double** jacobians,
     73 //                SparseMatrix* jacobian);
     74 //   }
     75 //
     76 // Note: The ProgramEvaluator is not thread safe, since internally it maintains
     77 // some per-thread scratch space.
     78 
     79 #ifndef CERES_INTERNAL_PROGRAM_EVALUATOR_H_
     80 #define CERES_INTERNAL_PROGRAM_EVALUATOR_H_
     81 
     82 // This include must come before any #ifndef check on Ceres compile options.
     83 #include "ceres/internal/port.h"
     84 
     85 #ifdef CERES_USE_OPENMP
     86 #include <omp.h>
     87 #endif
     88 
     89 #include <map>
     90 #include <string>
     91 #include <vector>
     92 #include "ceres/execution_summary.h"
     93 #include "ceres/internal/eigen.h"
     94 #include "ceres/internal/scoped_ptr.h"
     95 #include "ceres/parameter_block.h"
     96 #include "ceres/program.h"
     97 #include "ceres/residual_block.h"
     98 #include "ceres/small_blas.h"
     99 
    100 namespace ceres {
    101 namespace internal {
    102 
    103 struct NullJacobianFinalizer {
    104   void operator()(SparseMatrix* jacobian, int num_parameters) {}
    105 };
    106 
    107 template<typename EvaluatePreparer,
    108          typename JacobianWriter,
    109          typename JacobianFinalizer = NullJacobianFinalizer>
    110 class ProgramEvaluator : public Evaluator {
    111  public:
    112   ProgramEvaluator(const Evaluator::Options &options, Program* program)
    113       : options_(options),
    114         program_(program),
    115         jacobian_writer_(options, program),
    116         evaluate_preparers_(
    117             jacobian_writer_.CreateEvaluatePreparers(options.num_threads)) {
    118 #ifndef CERES_USE_OPENMP
    119     CHECK_EQ(1, options_.num_threads)
    120         << "OpenMP support is not compiled into this binary; "
    121         << "only options.num_threads=1 is supported.";
    122 #endif
    123 
    124     BuildResidualLayout(*program, &residual_layout_);
    125     evaluate_scratch_.reset(CreateEvaluatorScratch(*program,
    126                                                    options.num_threads));
    127   }
    128 
    129   // Implementation of Evaluator interface.
    130   SparseMatrix* CreateJacobian() const {
    131     return jacobian_writer_.CreateJacobian();
    132   }
    133 
    134   bool Evaluate(const Evaluator::EvaluateOptions& evaluate_options,
    135                 const double* state,
    136                 double* cost,
    137                 double* residuals,
    138                 double* gradient,
    139                 SparseMatrix* jacobian) {
    140     ScopedExecutionTimer total_timer("Evaluator::Total", &execution_summary_);
    141     ScopedExecutionTimer call_type_timer(gradient == NULL && jacobian == NULL
    142                                          ? "Evaluator::Residual"
    143                                          : "Evaluator::Jacobian",
    144                                          &execution_summary_);
    145 
    146     // The parameters are stateful, so set the state before evaluating.
    147     if (!program_->StateVectorToParameterBlocks(state)) {
    148       return false;
    149     }
    150 
    151     if (residuals != NULL) {
    152       VectorRef(residuals, program_->NumResiduals()).setZero();
    153     }
    154 
    155     if (jacobian != NULL) {
    156       jacobian->SetZero();
    157     }
    158 
    159     // Each thread gets it's own cost and evaluate scratch space.
    160     for (int i = 0; i < options_.num_threads; ++i) {
    161       evaluate_scratch_[i].cost = 0.0;
    162       if (gradient != NULL) {
    163         VectorRef(evaluate_scratch_[i].gradient.get(),
    164                   program_->NumEffectiveParameters()).setZero();
    165       }
    166     }
    167 
    168     // This bool is used to disable the loop if an error is encountered
    169     // without breaking out of it. The remaining loop iterations are still run,
    170     // but with an empty body, and so will finish quickly.
    171     bool abort = false;
    172     int num_residual_blocks = program_->NumResidualBlocks();
    173 #pragma omp parallel for num_threads(options_.num_threads)
    174     for (int i = 0; i < num_residual_blocks; ++i) {
    175 // Disable the loop instead of breaking, as required by OpenMP.
    176 #pragma omp flush(abort)
    177       if (abort) {
    178         continue;
    179       }
    180 
    181 #ifdef CERES_USE_OPENMP
    182       int thread_id = omp_get_thread_num();
    183 #else
    184       int thread_id = 0;
    185 #endif
    186       EvaluatePreparer* preparer = &evaluate_preparers_[thread_id];
    187       EvaluateScratch* scratch = &evaluate_scratch_[thread_id];
    188 
    189       // Prepare block residuals if requested.
    190       const ResidualBlock* residual_block = program_->residual_blocks()[i];
    191       double* block_residuals = NULL;
    192       if (residuals != NULL) {
    193         block_residuals = residuals + residual_layout_[i];
    194       } else if (gradient != NULL) {
    195         block_residuals = scratch->residual_block_residuals.get();
    196       }
    197 
    198       // Prepare block jacobians if requested.
    199       double** block_jacobians = NULL;
    200       if (jacobian != NULL || gradient != NULL) {
    201         preparer->Prepare(residual_block,
    202                           i,
    203                           jacobian,
    204                           scratch->jacobian_block_ptrs.get());
    205         block_jacobians = scratch->jacobian_block_ptrs.get();
    206       }
    207 
    208       // Evaluate the cost, residuals, and jacobians.
    209       double block_cost;
    210       if (!residual_block->Evaluate(
    211               evaluate_options.apply_loss_function,
    212               &block_cost,
    213               block_residuals,
    214               block_jacobians,
    215               scratch->residual_block_evaluate_scratch.get())) {
    216         abort = true;
    217 // This ensures that the OpenMP threads have a consistent view of 'abort'. Do
    218 // the flush inside the failure case so that there is usually only one
    219 // synchronization point per loop iteration instead of two.
    220 #pragma omp flush(abort)
    221         continue;
    222       }
    223 
    224       scratch->cost += block_cost;
    225 
    226       // Store the jacobians, if they were requested.
    227       if (jacobian != NULL) {
    228         jacobian_writer_.Write(i,
    229                                residual_layout_[i],
    230                                block_jacobians,
    231                                jacobian);
    232       }
    233 
    234       // Compute and store the gradient, if it was requested.
    235       if (gradient != NULL) {
    236         int num_residuals = residual_block->NumResiduals();
    237         int num_parameter_blocks = residual_block->NumParameterBlocks();
    238         for (int j = 0; j < num_parameter_blocks; ++j) {
    239           const ParameterBlock* parameter_block =
    240               residual_block->parameter_blocks()[j];
    241           if (parameter_block->IsConstant()) {
    242             continue;
    243           }
    244 
    245           MatrixTransposeVectorMultiply<Eigen::Dynamic, Eigen::Dynamic, 1>(
    246               block_jacobians[j],
    247               num_residuals,
    248               parameter_block->LocalSize(),
    249               block_residuals,
    250               scratch->gradient.get() + parameter_block->delta_offset());
    251         }
    252       }
    253     }
    254 
    255     if (!abort) {
    256       const int num_parameters = program_->NumEffectiveParameters();
    257 
    258       // Sum the cost and gradient (if requested) from each thread.
    259       (*cost) = 0.0;
    260       if (gradient != NULL) {
    261         VectorRef(gradient, num_parameters).setZero();
    262       }
    263       for (int i = 0; i < options_.num_threads; ++i) {
    264         (*cost) += evaluate_scratch_[i].cost;
    265         if (gradient != NULL) {
    266           VectorRef(gradient, num_parameters) +=
    267               VectorRef(evaluate_scratch_[i].gradient.get(), num_parameters);
    268         }
    269       }
    270 
    271       // Finalize the Jacobian if it is available.
    272       // `num_parameters` is passed to the finalizer so that additional
    273       // storage can be reserved for additional diagonal elements if
    274       // necessary.
    275       if (jacobian != NULL) {
    276         JacobianFinalizer f;
    277         f(jacobian, num_parameters);
    278       }
    279     }
    280     return !abort;
    281   }
    282 
    283   bool Plus(const double* state,
    284             const double* delta,
    285             double* state_plus_delta) const {
    286     return program_->Plus(state, delta, state_plus_delta);
    287   }
    288 
    289   int NumParameters() const {
    290     return program_->NumParameters();
    291   }
    292   int NumEffectiveParameters() const {
    293     return program_->NumEffectiveParameters();
    294   }
    295 
    296   int NumResiduals() const {
    297     return program_->NumResiduals();
    298   }
    299 
    300   virtual map<string, int> CallStatistics() const {
    301     return execution_summary_.calls();
    302   }
    303 
    304   virtual map<string, double> TimeStatistics() const {
    305     return execution_summary_.times();
    306   }
    307 
    308  private:
    309   // Per-thread scratch space needed to evaluate and store each residual block.
    310   struct EvaluateScratch {
    311     void Init(int max_parameters_per_residual_block,
    312               int max_scratch_doubles_needed_for_evaluate,
    313               int max_residuals_per_residual_block,
    314               int num_parameters) {
    315       residual_block_evaluate_scratch.reset(
    316           new double[max_scratch_doubles_needed_for_evaluate]);
    317       gradient.reset(new double[num_parameters]);
    318       VectorRef(gradient.get(), num_parameters).setZero();
    319       residual_block_residuals.reset(
    320           new double[max_residuals_per_residual_block]);
    321       jacobian_block_ptrs.reset(
    322           new double*[max_parameters_per_residual_block]);
    323     }
    324 
    325     double cost;
    326     scoped_array<double> residual_block_evaluate_scratch;
    327     // The gradient in the local parameterization.
    328     scoped_array<double> gradient;
    329     // Enough space to store the residual for the largest residual block.
    330     scoped_array<double> residual_block_residuals;
    331     scoped_array<double*> jacobian_block_ptrs;
    332   };
    333 
    334   static void BuildResidualLayout(const Program& program,
    335                                   vector<int>* residual_layout) {
    336     const vector<ResidualBlock*>& residual_blocks = program.residual_blocks();
    337     residual_layout->resize(program.NumResidualBlocks());
    338     int residual_pos = 0;
    339     for (int i = 0; i < residual_blocks.size(); ++i) {
    340       const int num_residuals = residual_blocks[i]->NumResiduals();
    341       (*residual_layout)[i] = residual_pos;
    342       residual_pos += num_residuals;
    343     }
    344   }
    345 
    346   // Create scratch space for each thread evaluating the program.
    347   static EvaluateScratch* CreateEvaluatorScratch(const Program& program,
    348                                                  int num_threads) {
    349     int max_parameters_per_residual_block =
    350         program.MaxParametersPerResidualBlock();
    351     int max_scratch_doubles_needed_for_evaluate =
    352         program.MaxScratchDoublesNeededForEvaluate();
    353     int max_residuals_per_residual_block =
    354         program.MaxResidualsPerResidualBlock();
    355     int num_parameters = program.NumEffectiveParameters();
    356 
    357     EvaluateScratch* evaluate_scratch = new EvaluateScratch[num_threads];
    358     for (int i = 0; i < num_threads; i++) {
    359       evaluate_scratch[i].Init(max_parameters_per_residual_block,
    360                                max_scratch_doubles_needed_for_evaluate,
    361                                max_residuals_per_residual_block,
    362                                num_parameters);
    363     }
    364     return evaluate_scratch;
    365   }
    366 
    367   Evaluator::Options options_;
    368   Program* program_;
    369   JacobianWriter jacobian_writer_;
    370   scoped_array<EvaluatePreparer> evaluate_preparers_;
    371   scoped_array<EvaluateScratch> evaluate_scratch_;
    372   vector<int> residual_layout_;
    373   ::ceres::internal::ExecutionSummary execution_summary_;
    374 };
    375 
    376 }  // namespace internal
    377 }  // namespace ceres
    378 
    379 #endif  // CERES_INTERNAL_PROGRAM_EVALUATOR_H_
    380