Home | History | Annotate | Download | only in mips
      1 // Copyright (c) 1994-2006 Sun Microsystems Inc.
      2 // All Rights Reserved.
      3 //
      4 // Redistribution and use in source and binary forms, with or without
      5 // modification, are permitted provided that the following conditions are
      6 // met:
      7 //
      8 // - Redistributions of source code must retain the above copyright notice,
      9 // this list of conditions and the following disclaimer.
     10 //
     11 // - Redistribution in binary form must reproduce the above copyright
     12 // notice, this list of conditions and the following disclaimer in the
     13 // documentation and/or other materials provided with the distribution.
     14 //
     15 // - Neither the name of Sun Microsystems or the names of contributors may
     16 // be used to endorse or promote products derived from this software without
     17 // specific prior written permission.
     18 //
     19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
     20 // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
     21 // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
     23 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
     24 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     25 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
     26 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
     27 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
     28 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
     29 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     30 
     31 // The original source code covered by the above license above has been
     32 // modified significantly by Google Inc.
     33 // Copyright 2012 the V8 project authors. All rights reserved.
     34 
     35 
     36 #ifndef V8_MIPS_ASSEMBLER_MIPS_H_
     37 #define V8_MIPS_ASSEMBLER_MIPS_H_
     38 
     39 #include <stdio.h>
     40 
     41 #include "src/assembler.h"
     42 #include "src/mips/constants-mips.h"
     43 #include "src/serialize.h"
     44 
     45 namespace v8 {
     46 namespace internal {
     47 
     48 // CPU Registers.
     49 //
     50 // 1) We would prefer to use an enum, but enum values are assignment-
     51 // compatible with int, which has caused code-generation bugs.
     52 //
     53 // 2) We would prefer to use a class instead of a struct but we don't like
     54 // the register initialization to depend on the particular initialization
     55 // order (which appears to be different on OS X, Linux, and Windows for the
     56 // installed versions of C++ we tried). Using a struct permits C-style
     57 // "initialization". Also, the Register objects cannot be const as this
     58 // forces initialization stubs in MSVC, making us dependent on initialization
     59 // order.
     60 //
     61 // 3) By not using an enum, we are possibly preventing the compiler from
     62 // doing certain constant folds, which may significantly reduce the
     63 // code generated for some assembly instructions (because they boil down
     64 // to a few constants). If this is a problem, we could change the code
     65 // such that we use an enum in optimized mode, and the struct in debug
     66 // mode. This way we get the compile-time error checking in debug mode
     67 // and best performance in optimized code.
     68 
     69 
     70 // -----------------------------------------------------------------------------
     71 // Implementation of Register and FPURegister.
     72 
     73 // Core register.
     74 struct Register {
     75   static const int kNumRegisters = v8::internal::kNumRegisters;
     76   static const int kMaxNumAllocatableRegisters = 14;  // v0 through t6 and cp.
     77   static const int kSizeInBytes = 4;
     78   static const int kCpRegister = 23;  // cp (s7) is the 23rd register.
     79 
     80 #if defined(V8_TARGET_LITTLE_ENDIAN)
     81   static const int kMantissaOffset = 0;
     82   static const int kExponentOffset = 4;
     83 #elif defined(V8_TARGET_BIG_ENDIAN)
     84   static const int kMantissaOffset = 4;
     85   static const int kExponentOffset = 0;
     86 #else
     87 #error Unknown endianness
     88 #endif
     89 
     90   inline static int NumAllocatableRegisters();
     91 
     92   static int ToAllocationIndex(Register reg) {
     93     DCHECK((reg.code() - 2) < (kMaxNumAllocatableRegisters - 1) ||
     94            reg.is(from_code(kCpRegister)));
     95     return reg.is(from_code(kCpRegister)) ?
     96            kMaxNumAllocatableRegisters - 1 :  // Return last index for 'cp'.
     97            reg.code() - 2;  // zero_reg and 'at' are skipped.
     98   }
     99 
    100   static Register FromAllocationIndex(int index) {
    101     DCHECK(index >= 0 && index < kMaxNumAllocatableRegisters);
    102     return index == kMaxNumAllocatableRegisters - 1 ?
    103            from_code(kCpRegister) :  // Last index is always the 'cp' register.
    104            from_code(index + 2);  // zero_reg and 'at' are skipped.
    105   }
    106 
    107   static const char* AllocationIndexToString(int index) {
    108     DCHECK(index >= 0 && index < kMaxNumAllocatableRegisters);
    109     const char* const names[] = {
    110       "v0",
    111       "v1",
    112       "a0",
    113       "a1",
    114       "a2",
    115       "a3",
    116       "t0",
    117       "t1",
    118       "t2",
    119       "t3",
    120       "t4",
    121       "t5",
    122       "t6",
    123       "s7",
    124     };
    125     return names[index];
    126   }
    127 
    128   static Register from_code(int code) {
    129     Register r = { code };
    130     return r;
    131   }
    132 
    133   bool is_valid() const { return 0 <= code_ && code_ < kNumRegisters; }
    134   bool is(Register reg) const { return code_ == reg.code_; }
    135   int code() const {
    136     DCHECK(is_valid());
    137     return code_;
    138   }
    139   int bit() const {
    140     DCHECK(is_valid());
    141     return 1 << code_;
    142   }
    143 
    144   // Unfortunately we can't make this private in a struct.
    145   int code_;
    146 };
    147 
    148 #define REGISTER(N, C) \
    149   const int kRegister_ ## N ## _Code = C; \
    150   const Register N = { C }
    151 
    152 REGISTER(no_reg, -1);
    153 // Always zero.
    154 REGISTER(zero_reg, 0);
    155 // at: Reserved for synthetic instructions.
    156 REGISTER(at, 1);
    157 // v0, v1: Used when returning multiple values from subroutines.
    158 REGISTER(v0, 2);
    159 REGISTER(v1, 3);
    160 // a0 - a4: Used to pass non-FP parameters.
    161 REGISTER(a0, 4);
    162 REGISTER(a1, 5);
    163 REGISTER(a2, 6);
    164 REGISTER(a3, 7);
    165 // t0 - t9: Can be used without reservation, act as temporary registers and are
    166 // allowed to be destroyed by subroutines.
    167 REGISTER(t0, 8);
    168 REGISTER(t1, 9);
    169 REGISTER(t2, 10);
    170 REGISTER(t3, 11);
    171 REGISTER(t4, 12);
    172 REGISTER(t5, 13);
    173 REGISTER(t6, 14);
    174 REGISTER(t7, 15);
    175 // s0 - s7: Subroutine register variables. Subroutines that write to these
    176 // registers must restore their values before exiting so that the caller can
    177 // expect the values to be preserved.
    178 REGISTER(s0, 16);
    179 REGISTER(s1, 17);
    180 REGISTER(s2, 18);
    181 REGISTER(s3, 19);
    182 REGISTER(s4, 20);
    183 REGISTER(s5, 21);
    184 REGISTER(s6, 22);
    185 REGISTER(s7, 23);
    186 REGISTER(t8, 24);
    187 REGISTER(t9, 25);
    188 // k0, k1: Reserved for system calls and interrupt handlers.
    189 REGISTER(k0, 26);
    190 REGISTER(k1, 27);
    191 // gp: Reserved.
    192 REGISTER(gp, 28);
    193 // sp: Stack pointer.
    194 REGISTER(sp, 29);
    195 // fp: Frame pointer.
    196 REGISTER(fp, 30);
    197 // ra: Return address pointer.
    198 REGISTER(ra, 31);
    199 
    200 #undef REGISTER
    201 
    202 
    203 int ToNumber(Register reg);
    204 
    205 Register ToRegister(int num);
    206 
    207 // Coprocessor register.
    208 struct FPURegister {
    209   static const int kMaxNumRegisters = v8::internal::kNumFPURegisters;
    210 
    211   // TODO(plind): Warning, inconsistent numbering here. kNumFPURegisters refers
    212   // to number of 32-bit FPU regs, but kNumAllocatableRegisters refers to
    213   // number of Double regs (64-bit regs, or FPU-reg-pairs).
    214 
    215   // A few double registers are reserved: one as a scratch register and one to
    216   // hold 0.0.
    217   //  f28: 0.0
    218   //  f30: scratch register.
    219   static const int kNumReservedRegisters = 2;
    220   static const int kMaxNumAllocatableRegisters = kMaxNumRegisters / 2 -
    221       kNumReservedRegisters;
    222 
    223   inline static int NumRegisters();
    224   inline static int NumAllocatableRegisters();
    225   inline static int ToAllocationIndex(FPURegister reg);
    226   static const char* AllocationIndexToString(int index);
    227 
    228   static FPURegister FromAllocationIndex(int index) {
    229     DCHECK(index >= 0 && index < kMaxNumAllocatableRegisters);
    230     return from_code(index * 2);
    231   }
    232 
    233   static FPURegister from_code(int code) {
    234     FPURegister r = { code };
    235     return r;
    236   }
    237 
    238   bool is_valid() const { return 0 <= code_ && code_ < kMaxNumRegisters ; }
    239   bool is(FPURegister creg) const { return code_ == creg.code_; }
    240   FPURegister low() const {
    241     // Find low reg of a Double-reg pair, which is the reg itself.
    242     DCHECK(code_ % 2 == 0);  // Specified Double reg must be even.
    243     FPURegister reg;
    244     reg.code_ = code_;
    245     DCHECK(reg.is_valid());
    246     return reg;
    247   }
    248   FPURegister high() const {
    249     // Find high reg of a Doubel-reg pair, which is reg + 1.
    250     DCHECK(code_ % 2 == 0);  // Specified Double reg must be even.
    251     FPURegister reg;
    252     reg.code_ = code_ + 1;
    253     DCHECK(reg.is_valid());
    254     return reg;
    255   }
    256 
    257   int code() const {
    258     DCHECK(is_valid());
    259     return code_;
    260   }
    261   int bit() const {
    262     DCHECK(is_valid());
    263     return 1 << code_;
    264   }
    265   void setcode(int f) {
    266     code_ = f;
    267     DCHECK(is_valid());
    268   }
    269   // Unfortunately we can't make this private in a struct.
    270   int code_;
    271 };
    272 
    273 // V8 now supports the O32 ABI, and the FPU Registers are organized as 32
    274 // 32-bit registers, f0 through f31. When used as 'double' they are used
    275 // in pairs, starting with the even numbered register. So a double operation
    276 // on f0 really uses f0 and f1.
    277 // (Modern mips hardware also supports 32 64-bit registers, via setting
    278 // (priviledged) Status Register FR bit to 1. This is used by the N32 ABI,
    279 // but it is not in common use. Someday we will want to support this in v8.)
    280 
    281 // For O32 ABI, Floats and Doubles refer to same set of 32 32-bit registers.
    282 typedef FPURegister DoubleRegister;
    283 typedef FPURegister FloatRegister;
    284 
    285 const FPURegister no_freg = { -1 };
    286 
    287 const FPURegister f0 = { 0 };  // Return value in hard float mode.
    288 const FPURegister f1 = { 1 };
    289 const FPURegister f2 = { 2 };
    290 const FPURegister f3 = { 3 };
    291 const FPURegister f4 = { 4 };
    292 const FPURegister f5 = { 5 };
    293 const FPURegister f6 = { 6 };
    294 const FPURegister f7 = { 7 };
    295 const FPURegister f8 = { 8 };
    296 const FPURegister f9 = { 9 };
    297 const FPURegister f10 = { 10 };
    298 const FPURegister f11 = { 11 };
    299 const FPURegister f12 = { 12 };  // Arg 0 in hard float mode.
    300 const FPURegister f13 = { 13 };
    301 const FPURegister f14 = { 14 };  // Arg 1 in hard float mode.
    302 const FPURegister f15 = { 15 };
    303 const FPURegister f16 = { 16 };
    304 const FPURegister f17 = { 17 };
    305 const FPURegister f18 = { 18 };
    306 const FPURegister f19 = { 19 };
    307 const FPURegister f20 = { 20 };
    308 const FPURegister f21 = { 21 };
    309 const FPURegister f22 = { 22 };
    310 const FPURegister f23 = { 23 };
    311 const FPURegister f24 = { 24 };
    312 const FPURegister f25 = { 25 };
    313 const FPURegister f26 = { 26 };
    314 const FPURegister f27 = { 27 };
    315 const FPURegister f28 = { 28 };
    316 const FPURegister f29 = { 29 };
    317 const FPURegister f30 = { 30 };
    318 const FPURegister f31 = { 31 };
    319 
    320 // Register aliases.
    321 // cp is assumed to be a callee saved register.
    322 // Defined using #define instead of "static const Register&" because Clang
    323 // complains otherwise when a compilation unit that includes this header
    324 // doesn't use the variables.
    325 #define kRootRegister s6
    326 #define cp s7
    327 #define kLithiumScratchReg s3
    328 #define kLithiumScratchReg2 s4
    329 #define kLithiumScratchDouble f30
    330 #define kDoubleRegZero f28
    331 // Used on mips32r6 for compare operations.
    332 #define kDoubleCompareReg f31
    333 
    334 // FPU (coprocessor 1) control registers.
    335 // Currently only FCSR (#31) is implemented.
    336 struct FPUControlRegister {
    337   bool is_valid() const { return code_ == kFCSRRegister; }
    338   bool is(FPUControlRegister creg) const { return code_ == creg.code_; }
    339   int code() const {
    340     DCHECK(is_valid());
    341     return code_;
    342   }
    343   int bit() const {
    344     DCHECK(is_valid());
    345     return 1 << code_;
    346   }
    347   void setcode(int f) {
    348     code_ = f;
    349     DCHECK(is_valid());
    350   }
    351   // Unfortunately we can't make this private in a struct.
    352   int code_;
    353 };
    354 
    355 const FPUControlRegister no_fpucreg = { kInvalidFPUControlRegister };
    356 const FPUControlRegister FCSR = { kFCSRRegister };
    357 
    358 
    359 // -----------------------------------------------------------------------------
    360 // Machine instruction Operands.
    361 
    362 // Class Operand represents a shifter operand in data processing instructions.
    363 class Operand BASE_EMBEDDED {
    364  public:
    365   // Immediate.
    366   INLINE(explicit Operand(int32_t immediate,
    367          RelocInfo::Mode rmode = RelocInfo::NONE32));
    368   INLINE(explicit Operand(const ExternalReference& f));
    369   INLINE(explicit Operand(const char* s));
    370   INLINE(explicit Operand(Object** opp));
    371   INLINE(explicit Operand(Context** cpp));
    372   explicit Operand(Handle<Object> handle);
    373   INLINE(explicit Operand(Smi* value));
    374 
    375   // Register.
    376   INLINE(explicit Operand(Register rm));
    377 
    378   // Return true if this is a register operand.
    379   INLINE(bool is_reg() const);
    380 
    381   inline int32_t immediate() const {
    382     DCHECK(!is_reg());
    383     return imm32_;
    384   }
    385 
    386   Register rm() const { return rm_; }
    387 
    388  private:
    389   Register rm_;
    390   int32_t imm32_;  // Valid if rm_ == no_reg.
    391   RelocInfo::Mode rmode_;
    392 
    393   friend class Assembler;
    394   friend class MacroAssembler;
    395 };
    396 
    397 
    398 // On MIPS we have only one adressing mode with base_reg + offset.
    399 // Class MemOperand represents a memory operand in load and store instructions.
    400 class MemOperand : public Operand {
    401  public:
    402   // Immediate value attached to offset.
    403   enum OffsetAddend {
    404     offset_minus_one = -1,
    405     offset_zero = 0
    406   };
    407 
    408   explicit MemOperand(Register rn, int32_t offset = 0);
    409   explicit MemOperand(Register rn, int32_t unit, int32_t multiplier,
    410                       OffsetAddend offset_addend = offset_zero);
    411   int32_t offset() const { return offset_; }
    412 
    413   bool OffsetIsInt16Encodable() const {
    414     return is_int16(offset_);
    415   }
    416 
    417  private:
    418   int32_t offset_;
    419 
    420   friend class Assembler;
    421 };
    422 
    423 
    424 class Assembler : public AssemblerBase {
    425  public:
    426   // Create an assembler. Instructions and relocation information are emitted
    427   // into a buffer, with the instructions starting from the beginning and the
    428   // relocation information starting from the end of the buffer. See CodeDesc
    429   // for a detailed comment on the layout (globals.h).
    430   //
    431   // If the provided buffer is NULL, the assembler allocates and grows its own
    432   // buffer, and buffer_size determines the initial buffer size. The buffer is
    433   // owned by the assembler and deallocated upon destruction of the assembler.
    434   //
    435   // If the provided buffer is not NULL, the assembler uses the provided buffer
    436   // for code generation and assumes its size to be buffer_size. If the buffer
    437   // is too small, a fatal error occurs. No deallocation of the buffer is done
    438   // upon destruction of the assembler.
    439   Assembler(Isolate* isolate, void* buffer, int buffer_size);
    440   virtual ~Assembler() { }
    441 
    442   // GetCode emits any pending (non-emitted) code and fills the descriptor
    443   // desc. GetCode() is idempotent; it returns the same result if no other
    444   // Assembler functions are invoked in between GetCode() calls.
    445   void GetCode(CodeDesc* desc);
    446 
    447   // Label operations & relative jumps (PPUM Appendix D).
    448   //
    449   // Takes a branch opcode (cc) and a label (L) and generates
    450   // either a backward branch or a forward branch and links it
    451   // to the label fixup chain. Usage:
    452   //
    453   // Label L;    // unbound label
    454   // j(cc, &L);  // forward branch to unbound label
    455   // bind(&L);   // bind label to the current pc
    456   // j(cc, &L);  // backward branch to bound label
    457   // bind(&L);   // illegal: a label may be bound only once
    458   //
    459   // Note: The same Label can be used for forward and backward branches
    460   // but it may be bound only once.
    461   void bind(Label* L);  // Binds an unbound label L to current code position.
    462   // Determines if Label is bound and near enough so that branch instruction
    463   // can be used to reach it, instead of jump instruction.
    464   bool is_near(Label* L);
    465 
    466   // Returns the branch offset to the given label from the current code
    467   // position. Links the label to the current position if it is still unbound.
    468   // Manages the jump elimination optimization if the second parameter is true.
    469   int32_t branch_offset(Label* L, bool jump_elimination_allowed);
    470   int32_t branch_offset_compact(Label* L, bool jump_elimination_allowed);
    471   int32_t branch_offset21(Label* L, bool jump_elimination_allowed);
    472   int32_t branch_offset21_compact(Label* L, bool jump_elimination_allowed);
    473   int32_t shifted_branch_offset(Label* L, bool jump_elimination_allowed) {
    474     int32_t o = branch_offset(L, jump_elimination_allowed);
    475     DCHECK((o & 3) == 0);   // Assert the offset is aligned.
    476     return o >> 2;
    477   }
    478   int32_t shifted_branch_offset_compact(Label* L,
    479       bool jump_elimination_allowed) {
    480     int32_t o = branch_offset_compact(L, jump_elimination_allowed);
    481     DCHECK((o & 3) == 0);   // Assert the offset is aligned.
    482     return o >> 2;
    483   }
    484   uint32_t jump_address(Label* L);
    485 
    486   // Puts a labels target address at the given position.
    487   // The high 8 bits are set to zero.
    488   void label_at_put(Label* L, int at_offset);
    489 
    490   // Read/Modify the code target address in the branch/call instruction at pc.
    491   static Address target_address_at(Address pc);
    492   static void set_target_address_at(Address pc,
    493                                     Address target,
    494                                     ICacheFlushMode icache_flush_mode =
    495                                         FLUSH_ICACHE_IF_NEEDED);
    496   // On MIPS there is no Constant Pool so we skip that parameter.
    497   INLINE(static Address target_address_at(Address pc,
    498                                           ConstantPoolArray* constant_pool)) {
    499     return target_address_at(pc);
    500   }
    501   INLINE(static void set_target_address_at(Address pc,
    502                                            ConstantPoolArray* constant_pool,
    503                                            Address target,
    504                                            ICacheFlushMode icache_flush_mode =
    505                                                FLUSH_ICACHE_IF_NEEDED)) {
    506     set_target_address_at(pc, target, icache_flush_mode);
    507   }
    508   INLINE(static Address target_address_at(Address pc, Code* code)) {
    509     ConstantPoolArray* constant_pool = code ? code->constant_pool() : NULL;
    510     return target_address_at(pc, constant_pool);
    511   }
    512   INLINE(static void set_target_address_at(Address pc,
    513                                            Code* code,
    514                                            Address target,
    515                                            ICacheFlushMode icache_flush_mode =
    516                                                FLUSH_ICACHE_IF_NEEDED)) {
    517     ConstantPoolArray* constant_pool = code ? code->constant_pool() : NULL;
    518     set_target_address_at(pc, constant_pool, target, icache_flush_mode);
    519   }
    520 
    521   // Return the code target address at a call site from the return address
    522   // of that call in the instruction stream.
    523   inline static Address target_address_from_return_address(Address pc);
    524 
    525   // Return the code target address of the patch debug break slot
    526   inline static Address break_address_from_return_address(Address pc);
    527 
    528   static void JumpLabelToJumpRegister(Address pc);
    529 
    530   static void QuietNaN(HeapObject* nan);
    531 
    532   // This sets the branch destination (which gets loaded at the call address).
    533   // This is for calls and branches within generated code.  The serializer
    534   // has already deserialized the lui/ori instructions etc.
    535   inline static void deserialization_set_special_target_at(
    536       Address instruction_payload, Code* code, Address target) {
    537     set_target_address_at(
    538         instruction_payload - kInstructionsFor32BitConstant * kInstrSize,
    539         code,
    540         target);
    541   }
    542 
    543   // Size of an instruction.
    544   static const int kInstrSize = sizeof(Instr);
    545 
    546   // Difference between address of current opcode and target address offset.
    547   static const int kBranchPCOffset = 4;
    548 
    549   // Here we are patching the address in the LUI/ORI instruction pair.
    550   // These values are used in the serialization process and must be zero for
    551   // MIPS platform, as Code, Embedded Object or External-reference pointers
    552   // are split across two consecutive instructions and don't exist separately
    553   // in the code, so the serializer should not step forwards in memory after
    554   // a target is resolved and written.
    555   static const int kSpecialTargetSize = 0;
    556 
    557   // Number of consecutive instructions used to store 32bit constant.
    558   // Before jump-optimizations, this constant was used in
    559   // RelocInfo::target_address_address() function to tell serializer address of
    560   // the instruction that follows LUI/ORI instruction pair. Now, with new jump
    561   // optimization, where jump-through-register instruction that usually
    562   // follows LUI/ORI pair is substituted with J/JAL, this constant equals
    563   // to 3 instructions (LUI+ORI+J/JAL/JR/JALR).
    564   static const int kInstructionsFor32BitConstant = 3;
    565 
    566   // Distance between the instruction referring to the address of the call
    567   // target and the return address.
    568   static const int kCallTargetAddressOffset = 4 * kInstrSize;
    569 
    570   // Distance between start of patched return sequence and the emitted address
    571   // to jump to.
    572   static const int kPatchReturnSequenceAddressOffset = 0;
    573 
    574   // Distance between start of patched debug break slot and the emitted address
    575   // to jump to.
    576   static const int kPatchDebugBreakSlotAddressOffset =  0 * kInstrSize;
    577 
    578   // Difference between address of current opcode and value read from pc
    579   // register.
    580   static const int kPcLoadDelta = 4;
    581 
    582   static const int kPatchDebugBreakSlotReturnOffset = 4 * kInstrSize;
    583 
    584   // Number of instructions used for the JS return sequence. The constant is
    585   // used by the debugger to patch the JS return sequence.
    586   static const int kJSReturnSequenceInstructions = 7;
    587   static const int kDebugBreakSlotInstructions = 4;
    588   static const int kDebugBreakSlotLength =
    589       kDebugBreakSlotInstructions * kInstrSize;
    590 
    591 
    592   // ---------------------------------------------------------------------------
    593   // Code generation.
    594 
    595   // Insert the smallest number of nop instructions
    596   // possible to align the pc offset to a multiple
    597   // of m. m must be a power of 2 (>= 4).
    598   void Align(int m);
    599   // Aligns code to something that's optimal for a jump target for the platform.
    600   void CodeTargetAlign();
    601 
    602   // Different nop operations are used by the code generator to detect certain
    603   // states of the generated code.
    604   enum NopMarkerTypes {
    605     NON_MARKING_NOP = 0,
    606     DEBUG_BREAK_NOP,
    607     // IC markers.
    608     PROPERTY_ACCESS_INLINED,
    609     PROPERTY_ACCESS_INLINED_CONTEXT,
    610     PROPERTY_ACCESS_INLINED_CONTEXT_DONT_DELETE,
    611     // Helper values.
    612     LAST_CODE_MARKER,
    613     FIRST_IC_MARKER = PROPERTY_ACCESS_INLINED,
    614     // Code aging
    615     CODE_AGE_MARKER_NOP = 6,
    616     CODE_AGE_SEQUENCE_NOP
    617   };
    618 
    619   // Type == 0 is the default non-marking nop. For mips this is a
    620   // sll(zero_reg, zero_reg, 0). We use rt_reg == at for non-zero
    621   // marking, to avoid conflict with ssnop and ehb instructions.
    622   void nop(unsigned int type = 0) {
    623     DCHECK(type < 32);
    624     Register nop_rt_reg = (type == 0) ? zero_reg : at;
    625     sll(zero_reg, nop_rt_reg, type, true);
    626   }
    627 
    628 
    629   // --------Branch-and-jump-instructions----------
    630   // We don't use likely variant of instructions.
    631   void b(int16_t offset);
    632   void b(Label* L) { b(branch_offset(L, false)>>2); }
    633   void bal(int16_t offset);
    634   void bal(Label* L) { bal(branch_offset(L, false)>>2); }
    635 
    636   void beq(Register rs, Register rt, int16_t offset);
    637   void beq(Register rs, Register rt, Label* L) {
    638     beq(rs, rt, branch_offset(L, false) >> 2);
    639   }
    640   void bgez(Register rs, int16_t offset);
    641   void bgezc(Register rt, int16_t offset);
    642   void bgezc(Register rt, Label* L) {
    643     bgezc(rt, branch_offset_compact(L, false)>>2);
    644   }
    645   void bgeuc(Register rs, Register rt, int16_t offset);
    646   void bgeuc(Register rs, Register rt, Label* L) {
    647     bgeuc(rs, rt, branch_offset_compact(L, false)>>2);
    648   }
    649   void bgec(Register rs, Register rt, int16_t offset);
    650   void bgec(Register rs, Register rt, Label* L) {
    651     bgec(rs, rt, branch_offset_compact(L, false)>>2);
    652   }
    653   void bgezal(Register rs, int16_t offset);
    654   void bgezalc(Register rt, int16_t offset);
    655   void bgezalc(Register rt, Label* L) {
    656     bgezalc(rt, branch_offset_compact(L, false)>>2);
    657   }
    658   void bgezall(Register rs, int16_t offset);
    659   void bgezall(Register rs, Label* L) {
    660     bgezall(rs, branch_offset(L, false)>>2);
    661   }
    662   void bgtz(Register rs, int16_t offset);
    663   void bgtzc(Register rt, int16_t offset);
    664   void bgtzc(Register rt, Label* L) {
    665     bgtzc(rt, branch_offset_compact(L, false)>>2);
    666   }
    667   void blez(Register rs, int16_t offset);
    668   void blezc(Register rt, int16_t offset);
    669   void blezc(Register rt, Label* L) {
    670     blezc(rt, branch_offset_compact(L, false)>>2);
    671   }
    672   void bltz(Register rs, int16_t offset);
    673   void bltzc(Register rt, int16_t offset);
    674   void bltzc(Register rt, Label* L) {
    675     bltzc(rt, branch_offset_compact(L, false)>>2);
    676   }
    677   void bltuc(Register rs, Register rt, int16_t offset);
    678   void bltuc(Register rs, Register rt, Label* L) {
    679     bltuc(rs, rt, branch_offset_compact(L, false)>>2);
    680   }
    681   void bltc(Register rs, Register rt, int16_t offset);
    682   void bltc(Register rs, Register rt, Label* L) {
    683     bltc(rs, rt, branch_offset_compact(L, false)>>2);
    684   }
    685   void bltzal(Register rs, int16_t offset);
    686   void blezalc(Register rt, int16_t offset);
    687   void blezalc(Register rt, Label* L) {
    688     blezalc(rt, branch_offset_compact(L, false)>>2);
    689   }
    690   void bltzalc(Register rt, int16_t offset);
    691   void bltzalc(Register rt, Label* L) {
    692     bltzalc(rt, branch_offset_compact(L, false)>>2);
    693   }
    694   void bgtzalc(Register rt, int16_t offset);
    695   void bgtzalc(Register rt, Label* L) {
    696     bgtzalc(rt, branch_offset_compact(L, false)>>2);
    697   }
    698   void beqzalc(Register rt, int16_t offset);
    699   void beqzalc(Register rt, Label* L) {
    700     beqzalc(rt, branch_offset_compact(L, false)>>2);
    701   }
    702   void beqc(Register rs, Register rt, int16_t offset);
    703   void beqc(Register rs, Register rt, Label* L) {
    704     beqc(rs, rt, branch_offset_compact(L, false)>>2);
    705   }
    706   void beqzc(Register rs, int32_t offset);
    707   void beqzc(Register rs, Label* L) {
    708     beqzc(rs, branch_offset21_compact(L, false)>>2);
    709   }
    710   void bnezalc(Register rt, int16_t offset);
    711   void bnezalc(Register rt, Label* L) {
    712     bnezalc(rt, branch_offset_compact(L, false)>>2);
    713   }
    714   void bnec(Register rs, Register rt, int16_t offset);
    715   void bnec(Register rs, Register rt, Label* L) {
    716     bnec(rs, rt, branch_offset_compact(L, false)>>2);
    717   }
    718   void bnezc(Register rt, int32_t offset);
    719   void bnezc(Register rt, Label* L) {
    720     bnezc(rt, branch_offset21_compact(L, false)>>2);
    721   }
    722   void bne(Register rs, Register rt, int16_t offset);
    723   void bne(Register rs, Register rt, Label* L) {
    724     bne(rs, rt, branch_offset(L, false)>>2);
    725   }
    726   void bovc(Register rs, Register rt, int16_t offset);
    727   void bovc(Register rs, Register rt, Label* L) {
    728     bovc(rs, rt, branch_offset_compact(L, false)>>2);
    729   }
    730   void bnvc(Register rs, Register rt, int16_t offset);
    731   void bnvc(Register rs, Register rt, Label* L) {
    732     bnvc(rs, rt, branch_offset_compact(L, false)>>2);
    733   }
    734 
    735   // Never use the int16_t b(l)cond version with a branch offset
    736   // instead of using the Label* version.
    737 
    738   // Jump targets must be in the current 256 MB-aligned region. i.e. 28 bits.
    739   void j(int32_t target);
    740   void jal(int32_t target);
    741   void jalr(Register rs, Register rd = ra);
    742   void jr(Register target);
    743   void j_or_jr(int32_t target, Register rs);
    744   void jal_or_jalr(int32_t target, Register rs);
    745 
    746 
    747   // -------Data-processing-instructions---------
    748 
    749   // Arithmetic.
    750   void addu(Register rd, Register rs, Register rt);
    751   void subu(Register rd, Register rs, Register rt);
    752   void mult(Register rs, Register rt);
    753   void multu(Register rs, Register rt);
    754   void div(Register rs, Register rt);
    755   void divu(Register rs, Register rt);
    756   void div(Register rd, Register rs, Register rt);
    757   void divu(Register rd, Register rs, Register rt);
    758   void mod(Register rd, Register rs, Register rt);
    759   void modu(Register rd, Register rs, Register rt);
    760   void mul(Register rd, Register rs, Register rt);
    761   void muh(Register rd, Register rs, Register rt);
    762   void mulu(Register rd, Register rs, Register rt);
    763   void muhu(Register rd, Register rs, Register rt);
    764 
    765   void addiu(Register rd, Register rs, int32_t j);
    766 
    767   // Logical.
    768   void and_(Register rd, Register rs, Register rt);
    769   void or_(Register rd, Register rs, Register rt);
    770   void xor_(Register rd, Register rs, Register rt);
    771   void nor(Register rd, Register rs, Register rt);
    772 
    773   void andi(Register rd, Register rs, int32_t j);
    774   void ori(Register rd, Register rs, int32_t j);
    775   void xori(Register rd, Register rs, int32_t j);
    776   void lui(Register rd, int32_t j);
    777   void aui(Register rs, Register rt, int32_t j);
    778 
    779   // Shifts.
    780   // Please note: sll(zero_reg, zero_reg, x) instructions are reserved as nop
    781   // and may cause problems in normal code. coming_from_nop makes sure this
    782   // doesn't happen.
    783   void sll(Register rd, Register rt, uint16_t sa, bool coming_from_nop = false);
    784   void sllv(Register rd, Register rt, Register rs);
    785   void srl(Register rd, Register rt, uint16_t sa);
    786   void srlv(Register rd, Register rt, Register rs);
    787   void sra(Register rt, Register rd, uint16_t sa);
    788   void srav(Register rt, Register rd, Register rs);
    789   void rotr(Register rd, Register rt, uint16_t sa);
    790   void rotrv(Register rd, Register rt, Register rs);
    791 
    792 
    793   // ------------Memory-instructions-------------
    794 
    795   void lb(Register rd, const MemOperand& rs);
    796   void lbu(Register rd, const MemOperand& rs);
    797   void lh(Register rd, const MemOperand& rs);
    798   void lhu(Register rd, const MemOperand& rs);
    799   void lw(Register rd, const MemOperand& rs);
    800   void lwl(Register rd, const MemOperand& rs);
    801   void lwr(Register rd, const MemOperand& rs);
    802   void sb(Register rd, const MemOperand& rs);
    803   void sh(Register rd, const MemOperand& rs);
    804   void sw(Register rd, const MemOperand& rs);
    805   void swl(Register rd, const MemOperand& rs);
    806   void swr(Register rd, const MemOperand& rs);
    807 
    808 
    809   // ----------------Prefetch--------------------
    810 
    811   void pref(int32_t hint, const MemOperand& rs);
    812 
    813 
    814   // -------------Misc-instructions--------------
    815 
    816   // Break / Trap instructions.
    817   void break_(uint32_t code, bool break_as_stop = false);
    818   void stop(const char* msg, uint32_t code = kMaxStopCode);
    819   void tge(Register rs, Register rt, uint16_t code);
    820   void tgeu(Register rs, Register rt, uint16_t code);
    821   void tlt(Register rs, Register rt, uint16_t code);
    822   void tltu(Register rs, Register rt, uint16_t code);
    823   void teq(Register rs, Register rt, uint16_t code);
    824   void tne(Register rs, Register rt, uint16_t code);
    825 
    826   // Move from HI/LO register.
    827   void mfhi(Register rd);
    828   void mflo(Register rd);
    829 
    830   // Set on less than.
    831   void slt(Register rd, Register rs, Register rt);
    832   void sltu(Register rd, Register rs, Register rt);
    833   void slti(Register rd, Register rs, int32_t j);
    834   void sltiu(Register rd, Register rs, int32_t j);
    835 
    836   // Conditional move.
    837   void movz(Register rd, Register rs, Register rt);
    838   void movn(Register rd, Register rs, Register rt);
    839   void movt(Register rd, Register rs, uint16_t cc = 0);
    840   void movf(Register rd, Register rs, uint16_t cc = 0);
    841 
    842   void sel(SecondaryField fmt, FPURegister fd, FPURegister ft,
    843       FPURegister fs, uint8_t sel);
    844   void seleqz(Register rs, Register rt, Register rd);
    845   void seleqz(SecondaryField fmt, FPURegister fd, FPURegister ft,
    846       FPURegister fs);
    847   void selnez(Register rs, Register rt, Register rd);
    848   void selnez(SecondaryField fmt, FPURegister fd, FPURegister ft,
    849       FPURegister fs);
    850 
    851   // Bit twiddling.
    852   void clz(Register rd, Register rs);
    853   void ins_(Register rt, Register rs, uint16_t pos, uint16_t size);
    854   void ext_(Register rt, Register rs, uint16_t pos, uint16_t size);
    855 
    856   // --------Coprocessor-instructions----------------
    857 
    858   // Load, store, and move.
    859   void lwc1(FPURegister fd, const MemOperand& src);
    860   void ldc1(FPURegister fd, const MemOperand& src);
    861 
    862   void swc1(FPURegister fs, const MemOperand& dst);
    863   void sdc1(FPURegister fs, const MemOperand& dst);
    864 
    865   void mtc1(Register rt, FPURegister fs);
    866   void mthc1(Register rt, FPURegister fs);
    867 
    868   void mfc1(Register rt, FPURegister fs);
    869   void mfhc1(Register rt, FPURegister fs);
    870 
    871   void ctc1(Register rt, FPUControlRegister fs);
    872   void cfc1(Register rt, FPUControlRegister fs);
    873 
    874   // Arithmetic.
    875   void add_d(FPURegister fd, FPURegister fs, FPURegister ft);
    876   void sub_d(FPURegister fd, FPURegister fs, FPURegister ft);
    877   void mul_d(FPURegister fd, FPURegister fs, FPURegister ft);
    878   void madd_d(FPURegister fd, FPURegister fr, FPURegister fs, FPURegister ft);
    879   void div_d(FPURegister fd, FPURegister fs, FPURegister ft);
    880   void abs_d(FPURegister fd, FPURegister fs);
    881   void mov_d(FPURegister fd, FPURegister fs);
    882   void neg_d(FPURegister fd, FPURegister fs);
    883   void sqrt_d(FPURegister fd, FPURegister fs);
    884 
    885   // Conversion.
    886   void cvt_w_s(FPURegister fd, FPURegister fs);
    887   void cvt_w_d(FPURegister fd, FPURegister fs);
    888   void trunc_w_s(FPURegister fd, FPURegister fs);
    889   void trunc_w_d(FPURegister fd, FPURegister fs);
    890   void round_w_s(FPURegister fd, FPURegister fs);
    891   void round_w_d(FPURegister fd, FPURegister fs);
    892   void floor_w_s(FPURegister fd, FPURegister fs);
    893   void floor_w_d(FPURegister fd, FPURegister fs);
    894   void ceil_w_s(FPURegister fd, FPURegister fs);
    895   void ceil_w_d(FPURegister fd, FPURegister fs);
    896 
    897   void cvt_l_s(FPURegister fd, FPURegister fs);
    898   void cvt_l_d(FPURegister fd, FPURegister fs);
    899   void trunc_l_s(FPURegister fd, FPURegister fs);
    900   void trunc_l_d(FPURegister fd, FPURegister fs);
    901   void round_l_s(FPURegister fd, FPURegister fs);
    902   void round_l_d(FPURegister fd, FPURegister fs);
    903   void floor_l_s(FPURegister fd, FPURegister fs);
    904   void floor_l_d(FPURegister fd, FPURegister fs);
    905   void ceil_l_s(FPURegister fd, FPURegister fs);
    906   void ceil_l_d(FPURegister fd, FPURegister fs);
    907 
    908   void min(SecondaryField fmt, FPURegister fd, FPURegister ft, FPURegister fs);
    909   void mina(SecondaryField fmt, FPURegister fd, FPURegister ft, FPURegister fs);
    910   void max(SecondaryField fmt, FPURegister fd, FPURegister ft, FPURegister fs);
    911   void maxa(SecondaryField fmt, FPURegister fd, FPURegister ft, FPURegister fs);
    912 
    913   void cvt_s_w(FPURegister fd, FPURegister fs);
    914   void cvt_s_l(FPURegister fd, FPURegister fs);
    915   void cvt_s_d(FPURegister fd, FPURegister fs);
    916 
    917   void cvt_d_w(FPURegister fd, FPURegister fs);
    918   void cvt_d_l(FPURegister fd, FPURegister fs);
    919   void cvt_d_s(FPURegister fd, FPURegister fs);
    920 
    921   // Conditions and branches for MIPSr6.
    922   void cmp(FPUCondition cond, SecondaryField fmt,
    923          FPURegister fd, FPURegister ft, FPURegister fs);
    924 
    925   void bc1eqz(int16_t offset, FPURegister ft);
    926   void bc1eqz(Label* L, FPURegister ft) {
    927     bc1eqz(branch_offset(L, false)>>2, ft);
    928   }
    929   void bc1nez(int16_t offset, FPURegister ft);
    930   void bc1nez(Label* L, FPURegister ft) {
    931     bc1nez(branch_offset(L, false)>>2, ft);
    932   }
    933 
    934   // Conditions and branches for non MIPSr6.
    935   void c(FPUCondition cond, SecondaryField fmt,
    936          FPURegister ft, FPURegister fs, uint16_t cc = 0);
    937 
    938   void bc1f(int16_t offset, uint16_t cc = 0);
    939   void bc1f(Label* L, uint16_t cc = 0) { bc1f(branch_offset(L, false)>>2, cc); }
    940   void bc1t(int16_t offset, uint16_t cc = 0);
    941   void bc1t(Label* L, uint16_t cc = 0) { bc1t(branch_offset(L, false)>>2, cc); }
    942   void fcmp(FPURegister src1, const double src2, FPUCondition cond);
    943 
    944   // Check the code size generated from label to here.
    945   int SizeOfCodeGeneratedSince(Label* label) {
    946     return pc_offset() - label->pos();
    947   }
    948 
    949   // Check the number of instructions generated from label to here.
    950   int InstructionsGeneratedSince(Label* label) {
    951     return SizeOfCodeGeneratedSince(label) / kInstrSize;
    952   }
    953 
    954   // Class for scoping postponing the trampoline pool generation.
    955   class BlockTrampolinePoolScope {
    956    public:
    957     explicit BlockTrampolinePoolScope(Assembler* assem) : assem_(assem) {
    958       assem_->StartBlockTrampolinePool();
    959     }
    960     ~BlockTrampolinePoolScope() {
    961       assem_->EndBlockTrampolinePool();
    962     }
    963 
    964    private:
    965     Assembler* assem_;
    966 
    967     DISALLOW_IMPLICIT_CONSTRUCTORS(BlockTrampolinePoolScope);
    968   };
    969 
    970   // Class for postponing the assembly buffer growth. Typically used for
    971   // sequences of instructions that must be emitted as a unit, before
    972   // buffer growth (and relocation) can occur.
    973   // This blocking scope is not nestable.
    974   class BlockGrowBufferScope {
    975    public:
    976     explicit BlockGrowBufferScope(Assembler* assem) : assem_(assem) {
    977       assem_->StartBlockGrowBuffer();
    978     }
    979     ~BlockGrowBufferScope() {
    980       assem_->EndBlockGrowBuffer();
    981     }
    982 
    983    private:
    984     Assembler* assem_;
    985 
    986     DISALLOW_IMPLICIT_CONSTRUCTORS(BlockGrowBufferScope);
    987   };
    988 
    989   // Debugging.
    990 
    991   // Mark address of the ExitJSFrame code.
    992   void RecordJSReturn();
    993 
    994   // Mark address of a debug break slot.
    995   void RecordDebugBreakSlot();
    996 
    997   // Record the AST id of the CallIC being compiled, so that it can be placed
    998   // in the relocation information.
    999   void SetRecordedAstId(TypeFeedbackId ast_id) {
   1000     DCHECK(recorded_ast_id_.IsNone());
   1001     recorded_ast_id_ = ast_id;
   1002   }
   1003 
   1004   TypeFeedbackId RecordedAstId() {
   1005     DCHECK(!recorded_ast_id_.IsNone());
   1006     return recorded_ast_id_;
   1007   }
   1008 
   1009   void ClearRecordedAstId() { recorded_ast_id_ = TypeFeedbackId::None(); }
   1010 
   1011   // Record a comment relocation entry that can be used by a disassembler.
   1012   // Use --code-comments to enable.
   1013   void RecordComment(const char* msg);
   1014 
   1015   static int RelocateInternalReference(byte* pc, intptr_t pc_delta);
   1016 
   1017   // Writes a single byte or word of data in the code stream.  Used for
   1018   // inline tables, e.g., jump-tables.
   1019   void db(uint8_t data);
   1020   void dd(uint32_t data);
   1021 
   1022   // Emits the address of the code stub's first instruction.
   1023   void emit_code_stub_address(Code* stub);
   1024 
   1025   PositionsRecorder* positions_recorder() { return &positions_recorder_; }
   1026 
   1027   // Postpone the generation of the trampoline pool for the specified number of
   1028   // instructions.
   1029   void BlockTrampolinePoolFor(int instructions);
   1030 
   1031   // Check if there is less than kGap bytes available in the buffer.
   1032   // If this is the case, we need to grow the buffer before emitting
   1033   // an instruction or relocation information.
   1034   inline bool overflow() const { return pc_ >= reloc_info_writer.pos() - kGap; }
   1035 
   1036   // Get the number of bytes available in the buffer.
   1037   inline int available_space() const { return reloc_info_writer.pos() - pc_; }
   1038 
   1039   // Read/patch instructions.
   1040   static Instr instr_at(byte* pc) { return *reinterpret_cast<Instr*>(pc); }
   1041   static void instr_at_put(byte* pc, Instr instr) {
   1042     *reinterpret_cast<Instr*>(pc) = instr;
   1043   }
   1044   Instr instr_at(int pos) { return *reinterpret_cast<Instr*>(buffer_ + pos); }
   1045   void instr_at_put(int pos, Instr instr) {
   1046     *reinterpret_cast<Instr*>(buffer_ + pos) = instr;
   1047   }
   1048 
   1049   // Check if an instruction is a branch of some kind.
   1050   static bool IsBranch(Instr instr);
   1051   static bool IsBeq(Instr instr);
   1052   static bool IsBne(Instr instr);
   1053 
   1054   static bool IsJump(Instr instr);
   1055   static bool IsJ(Instr instr);
   1056   static bool IsLui(Instr instr);
   1057   static bool IsOri(Instr instr);
   1058 
   1059   static bool IsJal(Instr instr);
   1060   static bool IsJr(Instr instr);
   1061   static bool IsJalr(Instr instr);
   1062 
   1063   static bool IsNop(Instr instr, unsigned int type);
   1064   static bool IsPop(Instr instr);
   1065   static bool IsPush(Instr instr);
   1066   static bool IsLwRegFpOffset(Instr instr);
   1067   static bool IsSwRegFpOffset(Instr instr);
   1068   static bool IsLwRegFpNegOffset(Instr instr);
   1069   static bool IsSwRegFpNegOffset(Instr instr);
   1070 
   1071   static Register GetRtReg(Instr instr);
   1072   static Register GetRsReg(Instr instr);
   1073   static Register GetRdReg(Instr instr);
   1074 
   1075   static uint32_t GetRt(Instr instr);
   1076   static uint32_t GetRtField(Instr instr);
   1077   static uint32_t GetRs(Instr instr);
   1078   static uint32_t GetRsField(Instr instr);
   1079   static uint32_t GetRd(Instr instr);
   1080   static uint32_t GetRdField(Instr instr);
   1081   static uint32_t GetSa(Instr instr);
   1082   static uint32_t GetSaField(Instr instr);
   1083   static uint32_t GetOpcodeField(Instr instr);
   1084   static uint32_t GetFunction(Instr instr);
   1085   static uint32_t GetFunctionField(Instr instr);
   1086   static uint32_t GetImmediate16(Instr instr);
   1087   static uint32_t GetLabelConst(Instr instr);
   1088 
   1089   static int32_t GetBranchOffset(Instr instr);
   1090   static bool IsLw(Instr instr);
   1091   static int16_t GetLwOffset(Instr instr);
   1092   static Instr SetLwOffset(Instr instr, int16_t offset);
   1093 
   1094   static bool IsSw(Instr instr);
   1095   static Instr SetSwOffset(Instr instr, int16_t offset);
   1096   static bool IsAddImmediate(Instr instr);
   1097   static Instr SetAddImmediateOffset(Instr instr, int16_t offset);
   1098 
   1099   static bool IsAndImmediate(Instr instr);
   1100   static bool IsEmittedConstant(Instr instr);
   1101 
   1102   void CheckTrampolinePool();
   1103 
   1104   // Allocate a constant pool of the correct size for the generated code.
   1105   Handle<ConstantPoolArray> NewConstantPool(Isolate* isolate);
   1106 
   1107   // Generate the constant pool for the generated code.
   1108   void PopulateConstantPool(ConstantPoolArray* constant_pool);
   1109 
   1110  protected:
   1111   // Relocation for a type-recording IC has the AST id added to it.  This
   1112   // member variable is a way to pass the information from the call site to
   1113   // the relocation info.
   1114   TypeFeedbackId recorded_ast_id_;
   1115 
   1116   int32_t buffer_space() const { return reloc_info_writer.pos() - pc_; }
   1117 
   1118   // Decode branch instruction at pos and return branch target pos.
   1119   int target_at(int32_t pos);
   1120 
   1121   // Patch branch instruction at pos to branch to given branch target pos.
   1122   void target_at_put(int32_t pos, int32_t target_pos);
   1123 
   1124   // Say if we need to relocate with this mode.
   1125   bool MustUseReg(RelocInfo::Mode rmode);
   1126 
   1127   // Record reloc info for current pc_.
   1128   void RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data = 0);
   1129 
   1130   // Block the emission of the trampoline pool before pc_offset.
   1131   void BlockTrampolinePoolBefore(int pc_offset) {
   1132     if (no_trampoline_pool_before_ < pc_offset)
   1133       no_trampoline_pool_before_ = pc_offset;
   1134   }
   1135 
   1136   void StartBlockTrampolinePool() {
   1137     trampoline_pool_blocked_nesting_++;
   1138   }
   1139 
   1140   void EndBlockTrampolinePool() {
   1141     trampoline_pool_blocked_nesting_--;
   1142   }
   1143 
   1144   bool is_trampoline_pool_blocked() const {
   1145     return trampoline_pool_blocked_nesting_ > 0;
   1146   }
   1147 
   1148   bool has_exception() const {
   1149     return internal_trampoline_exception_;
   1150   }
   1151 
   1152   void DoubleAsTwoUInt32(double d, uint32_t* lo, uint32_t* hi);
   1153 
   1154   bool is_trampoline_emitted() const {
   1155     return trampoline_emitted_;
   1156   }
   1157 
   1158   // Temporarily block automatic assembly buffer growth.
   1159   void StartBlockGrowBuffer() {
   1160     DCHECK(!block_buffer_growth_);
   1161     block_buffer_growth_ = true;
   1162   }
   1163 
   1164   void EndBlockGrowBuffer() {
   1165     DCHECK(block_buffer_growth_);
   1166     block_buffer_growth_ = false;
   1167   }
   1168 
   1169   bool is_buffer_growth_blocked() const {
   1170     return block_buffer_growth_;
   1171   }
   1172 
   1173  private:
   1174   // Buffer size and constant pool distance are checked together at regular
   1175   // intervals of kBufferCheckInterval emitted bytes.
   1176   static const int kBufferCheckInterval = 1*KB/2;
   1177 
   1178   // Code generation.
   1179   // The relocation writer's position is at least kGap bytes below the end of
   1180   // the generated instructions. This is so that multi-instruction sequences do
   1181   // not have to check for overflow. The same is true for writes of large
   1182   // relocation info entries.
   1183   static const int kGap = 32;
   1184 
   1185 
   1186   // Repeated checking whether the trampoline pool should be emitted is rather
   1187   // expensive. By default we only check again once a number of instructions
   1188   // has been generated.
   1189   static const int kCheckConstIntervalInst = 32;
   1190   static const int kCheckConstInterval = kCheckConstIntervalInst * kInstrSize;
   1191 
   1192   int next_buffer_check_;  // pc offset of next buffer check.
   1193 
   1194   // Emission of the trampoline pool may be blocked in some code sequences.
   1195   int trampoline_pool_blocked_nesting_;  // Block emission if this is not zero.
   1196   int no_trampoline_pool_before_;  // Block emission before this pc offset.
   1197 
   1198   // Keep track of the last emitted pool to guarantee a maximal distance.
   1199   int last_trampoline_pool_end_;  // pc offset of the end of the last pool.
   1200 
   1201   // Automatic growth of the assembly buffer may be blocked for some sequences.
   1202   bool block_buffer_growth_;  // Block growth when true.
   1203 
   1204   // Relocation information generation.
   1205   // Each relocation is encoded as a variable size value.
   1206   static const int kMaxRelocSize = RelocInfoWriter::kMaxSize;
   1207   RelocInfoWriter reloc_info_writer;
   1208 
   1209   // The bound position, before this we cannot do instruction elimination.
   1210   int last_bound_pos_;
   1211 
   1212   // Code emission.
   1213   inline void CheckBuffer();
   1214   void GrowBuffer();
   1215   inline void emit(Instr x);
   1216   inline void CheckTrampolinePoolQuick();
   1217 
   1218   // Instruction generation.
   1219   // We have 3 different kind of encoding layout on MIPS.
   1220   // However due to many different types of objects encoded in the same fields
   1221   // we have quite a few aliases for each mode.
   1222   // Using the same structure to refer to Register and FPURegister would spare a
   1223   // few aliases, but mixing both does not look clean to me.
   1224   // Anyway we could surely implement this differently.
   1225 
   1226   void GenInstrRegister(Opcode opcode,
   1227                         Register rs,
   1228                         Register rt,
   1229                         Register rd,
   1230                         uint16_t sa = 0,
   1231                         SecondaryField func = NULLSF);
   1232 
   1233   void GenInstrRegister(Opcode opcode,
   1234                         Register rs,
   1235                         Register rt,
   1236                         uint16_t msb,
   1237                         uint16_t lsb,
   1238                         SecondaryField func);
   1239 
   1240   void GenInstrRegister(Opcode opcode,
   1241                         SecondaryField fmt,
   1242                         FPURegister ft,
   1243                         FPURegister fs,
   1244                         FPURegister fd,
   1245                         SecondaryField func = NULLSF);
   1246 
   1247   void GenInstrRegister(Opcode opcode,
   1248                         FPURegister fr,
   1249                         FPURegister ft,
   1250                         FPURegister fs,
   1251                         FPURegister fd,
   1252                         SecondaryField func = NULLSF);
   1253 
   1254   void GenInstrRegister(Opcode opcode,
   1255                         SecondaryField fmt,
   1256                         Register rt,
   1257                         FPURegister fs,
   1258                         FPURegister fd,
   1259                         SecondaryField func = NULLSF);
   1260 
   1261   void GenInstrRegister(Opcode opcode,
   1262                         SecondaryField fmt,
   1263                         Register rt,
   1264                         FPUControlRegister fs,
   1265                         SecondaryField func = NULLSF);
   1266 
   1267 
   1268   void GenInstrImmediate(Opcode opcode,
   1269                          Register rs,
   1270                          Register rt,
   1271                          int32_t  j);
   1272   void GenInstrImmediate(Opcode opcode,
   1273                          Register rs,
   1274                          SecondaryField SF,
   1275                          int32_t  j);
   1276   void GenInstrImmediate(Opcode opcode,
   1277                          Register r1,
   1278                          FPURegister r2,
   1279                          int32_t  j);
   1280 
   1281 
   1282   void GenInstrJump(Opcode opcode,
   1283                      uint32_t address);
   1284 
   1285   // Helpers.
   1286   void LoadRegPlusOffsetToAt(const MemOperand& src);
   1287 
   1288   // Labels.
   1289   void print(Label* L);
   1290   void bind_to(Label* L, int pos);
   1291   void next(Label* L);
   1292 
   1293   // One trampoline consists of:
   1294   // - space for trampoline slots,
   1295   // - space for labels.
   1296   //
   1297   // Space for trampoline slots is equal to slot_count * 2 * kInstrSize.
   1298   // Space for trampoline slots preceeds space for labels. Each label is of one
   1299   // instruction size, so total amount for labels is equal to
   1300   // label_count *  kInstrSize.
   1301   class Trampoline {
   1302    public:
   1303     Trampoline() {
   1304       start_ = 0;
   1305       next_slot_ = 0;
   1306       free_slot_count_ = 0;
   1307       end_ = 0;
   1308     }
   1309     Trampoline(int start, int slot_count) {
   1310       start_ = start;
   1311       next_slot_ = start;
   1312       free_slot_count_ = slot_count;
   1313       end_ = start + slot_count * kTrampolineSlotsSize;
   1314     }
   1315     int start() {
   1316       return start_;
   1317     }
   1318     int end() {
   1319       return end_;
   1320     }
   1321     int take_slot() {
   1322       int trampoline_slot = kInvalidSlotPos;
   1323       if (free_slot_count_ <= 0) {
   1324         // We have run out of space on trampolines.
   1325         // Make sure we fail in debug mode, so we become aware of each case
   1326         // when this happens.
   1327         DCHECK(0);
   1328         // Internal exception will be caught.
   1329       } else {
   1330         trampoline_slot = next_slot_;
   1331         free_slot_count_--;
   1332         next_slot_ += kTrampolineSlotsSize;
   1333       }
   1334       return trampoline_slot;
   1335     }
   1336 
   1337    private:
   1338     int start_;
   1339     int end_;
   1340     int next_slot_;
   1341     int free_slot_count_;
   1342   };
   1343 
   1344   int32_t get_trampoline_entry(int32_t pos);
   1345   int unbound_labels_count_;
   1346   // If trampoline is emitted, generated code is becoming large. As this is
   1347   // already a slow case which can possibly break our code generation for the
   1348   // extreme case, we use this information to trigger different mode of
   1349   // branch instruction generation, where we use jump instructions rather
   1350   // than regular branch instructions.
   1351   bool trampoline_emitted_;
   1352   static const int kTrampolineSlotsSize = 4 * kInstrSize;
   1353   static const int kMaxBranchOffset = (1 << (18 - 1)) - 1;
   1354   static const int kInvalidSlotPos = -1;
   1355 
   1356   Trampoline trampoline_;
   1357   bool internal_trampoline_exception_;
   1358 
   1359   friend class RegExpMacroAssemblerMIPS;
   1360   friend class RelocInfo;
   1361   friend class CodePatcher;
   1362   friend class BlockTrampolinePoolScope;
   1363 
   1364   PositionsRecorder positions_recorder_;
   1365   friend class PositionsRecorder;
   1366   friend class EnsureSpace;
   1367 };
   1368 
   1369 
   1370 class EnsureSpace BASE_EMBEDDED {
   1371  public:
   1372   explicit EnsureSpace(Assembler* assembler) {
   1373     assembler->CheckBuffer();
   1374   }
   1375 };
   1376 
   1377 } }  // namespace v8::internal
   1378 
   1379 #endif  // V8_ARM_ASSEMBLER_MIPS_H_
   1380