1 //===-- FastISel.cpp - Implementation of the FastISel class ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the implementation of the FastISel class. 11 // 12 // "Fast" instruction selection is designed to emit very poor code quickly. 13 // Also, it is not designed to be able to do much lowering, so most illegal 14 // types (e.g. i64 on 32-bit targets) and operations are not supported. It is 15 // also not intended to be able to do much optimization, except in a few cases 16 // where doing optimizations reduces overall compile time. For example, folding 17 // constants into immediate fields is often done, because it's cheap and it 18 // reduces the number of instructions later phases have to examine. 19 // 20 // "Fast" instruction selection is able to fail gracefully and transfer 21 // control to the SelectionDAG selector for operations that it doesn't 22 // support. In many cases, this allows us to avoid duplicating a lot of 23 // the complicated lowering logic that SelectionDAG currently has. 24 // 25 // The intended use for "fast" instruction selection is "-O0" mode 26 // compilation, where the quality of the generated code is irrelevant when 27 // weighed against the speed at which the code can be generated. Also, 28 // at -O0, the LLVM optimizers are not running, and this makes the 29 // compile time of codegen a much higher portion of the overall compile 30 // time. Despite its limitations, "fast" instruction selection is able to 31 // handle enough code on its own to provide noticeable overall speedups 32 // in -O0 compiles. 33 // 34 // Basic operations are supported in a target-independent way, by reading 35 // the same instruction descriptions that the SelectionDAG selector reads, 36 // and identifying simple arithmetic operations that can be directly selected 37 // from simple operators. More complicated operations currently require 38 // target-specific code. 39 // 40 //===----------------------------------------------------------------------===// 41 42 #include "llvm/CodeGen/FastISel.h" 43 #include "llvm/ADT/Optional.h" 44 #include "llvm/ADT/Statistic.h" 45 #include "llvm/Analysis/BranchProbabilityInfo.h" 46 #include "llvm/Analysis/Loads.h" 47 #include "llvm/CodeGen/Analysis.h" 48 #include "llvm/CodeGen/FunctionLoweringInfo.h" 49 #include "llvm/CodeGen/MachineFrameInfo.h" 50 #include "llvm/CodeGen/MachineInstrBuilder.h" 51 #include "llvm/CodeGen/MachineModuleInfo.h" 52 #include "llvm/CodeGen/MachineRegisterInfo.h" 53 #include "llvm/CodeGen/StackMaps.h" 54 #include "llvm/IR/DataLayout.h" 55 #include "llvm/IR/DebugInfo.h" 56 #include "llvm/IR/Function.h" 57 #include "llvm/IR/GlobalVariable.h" 58 #include "llvm/IR/Instructions.h" 59 #include "llvm/IR/IntrinsicInst.h" 60 #include "llvm/IR/Operator.h" 61 #include "llvm/Support/Debug.h" 62 #include "llvm/Support/ErrorHandling.h" 63 #include "llvm/Target/TargetInstrInfo.h" 64 #include "llvm/Target/TargetLibraryInfo.h" 65 #include "llvm/Target/TargetLowering.h" 66 #include "llvm/Target/TargetMachine.h" 67 using namespace llvm; 68 69 #define DEBUG_TYPE "isel" 70 71 STATISTIC(NumFastIselSuccessIndependent, "Number of insts selected by " 72 "target-independent selector"); 73 STATISTIC(NumFastIselSuccessTarget, "Number of insts selected by " 74 "target-specific selector"); 75 STATISTIC(NumFastIselDead, "Number of dead insts removed on failure"); 76 77 /// startNewBlock - Set the current block to which generated machine 78 /// instructions will be appended, and clear the local CSE map. 79 /// 80 void FastISel::startNewBlock() { 81 LocalValueMap.clear(); 82 83 // Instructions are appended to FuncInfo.MBB. If the basic block already 84 // contains labels or copies, use the last instruction as the last local 85 // value. 86 EmitStartPt = nullptr; 87 if (!FuncInfo.MBB->empty()) 88 EmitStartPt = &FuncInfo.MBB->back(); 89 LastLocalValue = EmitStartPt; 90 } 91 92 bool FastISel::LowerArguments() { 93 if (!FuncInfo.CanLowerReturn) 94 // Fallback to SDISel argument lowering code to deal with sret pointer 95 // parameter. 96 return false; 97 98 if (!FastLowerArguments()) 99 return false; 100 101 // Enter arguments into ValueMap for uses in non-entry BBs. 102 for (Function::const_arg_iterator I = FuncInfo.Fn->arg_begin(), 103 E = FuncInfo.Fn->arg_end(); I != E; ++I) { 104 DenseMap<const Value *, unsigned>::iterator VI = LocalValueMap.find(I); 105 assert(VI != LocalValueMap.end() && "Missed an argument?"); 106 FuncInfo.ValueMap[I] = VI->second; 107 } 108 return true; 109 } 110 111 void FastISel::flushLocalValueMap() { 112 LocalValueMap.clear(); 113 LastLocalValue = EmitStartPt; 114 recomputeInsertPt(); 115 } 116 117 bool FastISel::hasTrivialKill(const Value *V) const { 118 // Don't consider constants or arguments to have trivial kills. 119 const Instruction *I = dyn_cast<Instruction>(V); 120 if (!I) 121 return false; 122 123 // No-op casts are trivially coalesced by fast-isel. 124 if (const CastInst *Cast = dyn_cast<CastInst>(I)) 125 if (Cast->isNoopCast(DL.getIntPtrType(Cast->getContext())) && 126 !hasTrivialKill(Cast->getOperand(0))) 127 return false; 128 129 // GEPs with all zero indices are trivially coalesced by fast-isel. 130 if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) 131 if (GEP->hasAllZeroIndices() && !hasTrivialKill(GEP->getOperand(0))) 132 return false; 133 134 // Only instructions with a single use in the same basic block are considered 135 // to have trivial kills. 136 return I->hasOneUse() && 137 !(I->getOpcode() == Instruction::BitCast || 138 I->getOpcode() == Instruction::PtrToInt || 139 I->getOpcode() == Instruction::IntToPtr) && 140 cast<Instruction>(*I->user_begin())->getParent() == I->getParent(); 141 } 142 143 unsigned FastISel::getRegForValue(const Value *V) { 144 EVT RealVT = TLI.getValueType(V->getType(), /*AllowUnknown=*/true); 145 // Don't handle non-simple values in FastISel. 146 if (!RealVT.isSimple()) 147 return 0; 148 149 // Ignore illegal types. We must do this before looking up the value 150 // in ValueMap because Arguments are given virtual registers regardless 151 // of whether FastISel can handle them. 152 MVT VT = RealVT.getSimpleVT(); 153 if (!TLI.isTypeLegal(VT)) { 154 // Handle integer promotions, though, because they're common and easy. 155 if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16) 156 VT = TLI.getTypeToTransformTo(V->getContext(), VT).getSimpleVT(); 157 else 158 return 0; 159 } 160 161 // Look up the value to see if we already have a register for it. 162 unsigned Reg = lookUpRegForValue(V); 163 if (Reg != 0) 164 return Reg; 165 166 // In bottom-up mode, just create the virtual register which will be used 167 // to hold the value. It will be materialized later. 168 if (isa<Instruction>(V) && 169 (!isa<AllocaInst>(V) || 170 !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(V)))) 171 return FuncInfo.InitializeRegForValue(V); 172 173 SavePoint SaveInsertPt = enterLocalValueArea(); 174 175 // Materialize the value in a register. Emit any instructions in the 176 // local value area. 177 Reg = materializeRegForValue(V, VT); 178 179 leaveLocalValueArea(SaveInsertPt); 180 181 return Reg; 182 } 183 184 /// materializeRegForValue - Helper for getRegForValue. This function is 185 /// called when the value isn't already available in a register and must 186 /// be materialized with new instructions. 187 unsigned FastISel::materializeRegForValue(const Value *V, MVT VT) { 188 unsigned Reg = 0; 189 190 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 191 if (CI->getValue().getActiveBits() <= 64) 192 Reg = FastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue()); 193 } else if (isa<AllocaInst>(V)) { 194 Reg = TargetMaterializeAlloca(cast<AllocaInst>(V)); 195 } else if (isa<ConstantPointerNull>(V)) { 196 // Translate this as an integer zero so that it can be 197 // local-CSE'd with actual integer zeros. 198 Reg = 199 getRegForValue(Constant::getNullValue(DL.getIntPtrType(V->getContext()))); 200 } else if (const ConstantFP *CF = dyn_cast<ConstantFP>(V)) { 201 if (CF->isNullValue()) { 202 Reg = TargetMaterializeFloatZero(CF); 203 } else { 204 // Try to emit the constant directly. 205 Reg = FastEmit_f(VT, VT, ISD::ConstantFP, CF); 206 } 207 208 if (!Reg) { 209 // Try to emit the constant by using an integer constant with a cast. 210 const APFloat &Flt = CF->getValueAPF(); 211 EVT IntVT = TLI.getPointerTy(); 212 213 uint64_t x[2]; 214 uint32_t IntBitWidth = IntVT.getSizeInBits(); 215 bool isExact; 216 (void) Flt.convertToInteger(x, IntBitWidth, /*isSigned=*/true, 217 APFloat::rmTowardZero, &isExact); 218 if (isExact) { 219 APInt IntVal(IntBitWidth, x); 220 221 unsigned IntegerReg = 222 getRegForValue(ConstantInt::get(V->getContext(), IntVal)); 223 if (IntegerReg != 0) 224 Reg = FastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP, 225 IntegerReg, /*Kill=*/false); 226 } 227 } 228 } else if (const Operator *Op = dyn_cast<Operator>(V)) { 229 if (!SelectOperator(Op, Op->getOpcode())) 230 if (!isa<Instruction>(Op) || 231 !TargetSelectInstruction(cast<Instruction>(Op))) 232 return 0; 233 Reg = lookUpRegForValue(Op); 234 } else if (isa<UndefValue>(V)) { 235 Reg = createResultReg(TLI.getRegClassFor(VT)); 236 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 237 TII.get(TargetOpcode::IMPLICIT_DEF), Reg); 238 } 239 240 // If target-independent code couldn't handle the value, give target-specific 241 // code a try. 242 if (!Reg && isa<Constant>(V)) 243 Reg = TargetMaterializeConstant(cast<Constant>(V)); 244 245 // Don't cache constant materializations in the general ValueMap. 246 // To do so would require tracking what uses they dominate. 247 if (Reg != 0) { 248 LocalValueMap[V] = Reg; 249 LastLocalValue = MRI.getVRegDef(Reg); 250 } 251 return Reg; 252 } 253 254 unsigned FastISel::lookUpRegForValue(const Value *V) { 255 // Look up the value to see if we already have a register for it. We 256 // cache values defined by Instructions across blocks, and other values 257 // only locally. This is because Instructions already have the SSA 258 // def-dominates-use requirement enforced. 259 DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(V); 260 if (I != FuncInfo.ValueMap.end()) 261 return I->second; 262 return LocalValueMap[V]; 263 } 264 265 /// UpdateValueMap - Update the value map to include the new mapping for this 266 /// instruction, or insert an extra copy to get the result in a previous 267 /// determined register. 268 /// NOTE: This is only necessary because we might select a block that uses 269 /// a value before we select the block that defines the value. It might be 270 /// possible to fix this by selecting blocks in reverse postorder. 271 void FastISel::UpdateValueMap(const Value *I, unsigned Reg, unsigned NumRegs) { 272 if (!isa<Instruction>(I)) { 273 LocalValueMap[I] = Reg; 274 return; 275 } 276 277 unsigned &AssignedReg = FuncInfo.ValueMap[I]; 278 if (AssignedReg == 0) 279 // Use the new register. 280 AssignedReg = Reg; 281 else if (Reg != AssignedReg) { 282 // Arrange for uses of AssignedReg to be replaced by uses of Reg. 283 for (unsigned i = 0; i < NumRegs; i++) 284 FuncInfo.RegFixups[AssignedReg+i] = Reg+i; 285 286 AssignedReg = Reg; 287 } 288 } 289 290 std::pair<unsigned, bool> FastISel::getRegForGEPIndex(const Value *Idx) { 291 unsigned IdxN = getRegForValue(Idx); 292 if (IdxN == 0) 293 // Unhandled operand. Halt "fast" selection and bail. 294 return std::pair<unsigned, bool>(0, false); 295 296 bool IdxNIsKill = hasTrivialKill(Idx); 297 298 // If the index is smaller or larger than intptr_t, truncate or extend it. 299 MVT PtrVT = TLI.getPointerTy(); 300 EVT IdxVT = EVT::getEVT(Idx->getType(), /*HandleUnknown=*/false); 301 if (IdxVT.bitsLT(PtrVT)) { 302 IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::SIGN_EXTEND, 303 IdxN, IdxNIsKill); 304 IdxNIsKill = true; 305 } 306 else if (IdxVT.bitsGT(PtrVT)) { 307 IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT, ISD::TRUNCATE, 308 IdxN, IdxNIsKill); 309 IdxNIsKill = true; 310 } 311 return std::pair<unsigned, bool>(IdxN, IdxNIsKill); 312 } 313 314 void FastISel::recomputeInsertPt() { 315 if (getLastLocalValue()) { 316 FuncInfo.InsertPt = getLastLocalValue(); 317 FuncInfo.MBB = FuncInfo.InsertPt->getParent(); 318 ++FuncInfo.InsertPt; 319 } else 320 FuncInfo.InsertPt = FuncInfo.MBB->getFirstNonPHI(); 321 322 // Now skip past any EH_LABELs, which must remain at the beginning. 323 while (FuncInfo.InsertPt != FuncInfo.MBB->end() && 324 FuncInfo.InsertPt->getOpcode() == TargetOpcode::EH_LABEL) 325 ++FuncInfo.InsertPt; 326 } 327 328 void FastISel::removeDeadCode(MachineBasicBlock::iterator I, 329 MachineBasicBlock::iterator E) { 330 assert (I && E && std::distance(I, E) > 0 && "Invalid iterator!"); 331 while (I != E) { 332 MachineInstr *Dead = &*I; 333 ++I; 334 Dead->eraseFromParent(); 335 ++NumFastIselDead; 336 } 337 recomputeInsertPt(); 338 } 339 340 FastISel::SavePoint FastISel::enterLocalValueArea() { 341 MachineBasicBlock::iterator OldInsertPt = FuncInfo.InsertPt; 342 DebugLoc OldDL = DbgLoc; 343 recomputeInsertPt(); 344 DbgLoc = DebugLoc(); 345 SavePoint SP = { OldInsertPt, OldDL }; 346 return SP; 347 } 348 349 void FastISel::leaveLocalValueArea(SavePoint OldInsertPt) { 350 if (FuncInfo.InsertPt != FuncInfo.MBB->begin()) 351 LastLocalValue = std::prev(FuncInfo.InsertPt); 352 353 // Restore the previous insert position. 354 FuncInfo.InsertPt = OldInsertPt.InsertPt; 355 DbgLoc = OldInsertPt.DL; 356 } 357 358 /// SelectBinaryOp - Select and emit code for a binary operator instruction, 359 /// which has an opcode which directly corresponds to the given ISD opcode. 360 /// 361 bool FastISel::SelectBinaryOp(const User *I, unsigned ISDOpcode) { 362 EVT VT = EVT::getEVT(I->getType(), /*HandleUnknown=*/true); 363 if (VT == MVT::Other || !VT.isSimple()) 364 // Unhandled type. Halt "fast" selection and bail. 365 return false; 366 367 // We only handle legal types. For example, on x86-32 the instruction 368 // selector contains all of the 64-bit instructions from x86-64, 369 // under the assumption that i64 won't be used if the target doesn't 370 // support it. 371 if (!TLI.isTypeLegal(VT)) { 372 // MVT::i1 is special. Allow AND, OR, or XOR because they 373 // don't require additional zeroing, which makes them easy. 374 if (VT == MVT::i1 && 375 (ISDOpcode == ISD::AND || ISDOpcode == ISD::OR || 376 ISDOpcode == ISD::XOR)) 377 VT = TLI.getTypeToTransformTo(I->getContext(), VT); 378 else 379 return false; 380 } 381 382 // Check if the first operand is a constant, and handle it as "ri". At -O0, 383 // we don't have anything that canonicalizes operand order. 384 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(0))) 385 if (isa<Instruction>(I) && cast<Instruction>(I)->isCommutative()) { 386 unsigned Op1 = getRegForValue(I->getOperand(1)); 387 if (Op1 == 0) return false; 388 389 bool Op1IsKill = hasTrivialKill(I->getOperand(1)); 390 391 unsigned ResultReg = FastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op1, 392 Op1IsKill, CI->getZExtValue(), 393 VT.getSimpleVT()); 394 if (ResultReg == 0) return false; 395 396 // We successfully emitted code for the given LLVM Instruction. 397 UpdateValueMap(I, ResultReg); 398 return true; 399 } 400 401 402 unsigned Op0 = getRegForValue(I->getOperand(0)); 403 if (Op0 == 0) // Unhandled operand. Halt "fast" selection and bail. 404 return false; 405 406 bool Op0IsKill = hasTrivialKill(I->getOperand(0)); 407 408 // Check if the second operand is a constant and handle it appropriately. 409 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) { 410 uint64_t Imm = CI->getZExtValue(); 411 412 // Transform "sdiv exact X, 8" -> "sra X, 3". 413 if (ISDOpcode == ISD::SDIV && isa<BinaryOperator>(I) && 414 cast<BinaryOperator>(I)->isExact() && 415 isPowerOf2_64(Imm)) { 416 Imm = Log2_64(Imm); 417 ISDOpcode = ISD::SRA; 418 } 419 420 // Transform "urem x, pow2" -> "and x, pow2-1". 421 if (ISDOpcode == ISD::UREM && isa<BinaryOperator>(I) && 422 isPowerOf2_64(Imm)) { 423 --Imm; 424 ISDOpcode = ISD::AND; 425 } 426 427 unsigned ResultReg = FastEmit_ri_(VT.getSimpleVT(), ISDOpcode, Op0, 428 Op0IsKill, Imm, VT.getSimpleVT()); 429 if (ResultReg == 0) return false; 430 431 // We successfully emitted code for the given LLVM Instruction. 432 UpdateValueMap(I, ResultReg); 433 return true; 434 } 435 436 // Check if the second operand is a constant float. 437 if (ConstantFP *CF = dyn_cast<ConstantFP>(I->getOperand(1))) { 438 unsigned ResultReg = FastEmit_rf(VT.getSimpleVT(), VT.getSimpleVT(), 439 ISDOpcode, Op0, Op0IsKill, CF); 440 if (ResultReg != 0) { 441 // We successfully emitted code for the given LLVM Instruction. 442 UpdateValueMap(I, ResultReg); 443 return true; 444 } 445 } 446 447 unsigned Op1 = getRegForValue(I->getOperand(1)); 448 if (Op1 == 0) 449 // Unhandled operand. Halt "fast" selection and bail. 450 return false; 451 452 bool Op1IsKill = hasTrivialKill(I->getOperand(1)); 453 454 // Now we have both operands in registers. Emit the instruction. 455 unsigned ResultReg = FastEmit_rr(VT.getSimpleVT(), VT.getSimpleVT(), 456 ISDOpcode, 457 Op0, Op0IsKill, 458 Op1, Op1IsKill); 459 if (ResultReg == 0) 460 // Target-specific code wasn't able to find a machine opcode for 461 // the given ISD opcode and type. Halt "fast" selection and bail. 462 return false; 463 464 // We successfully emitted code for the given LLVM Instruction. 465 UpdateValueMap(I, ResultReg); 466 return true; 467 } 468 469 bool FastISel::SelectGetElementPtr(const User *I) { 470 unsigned N = getRegForValue(I->getOperand(0)); 471 if (N == 0) 472 // Unhandled operand. Halt "fast" selection and bail. 473 return false; 474 475 bool NIsKill = hasTrivialKill(I->getOperand(0)); 476 477 // Keep a running tab of the total offset to coalesce multiple N = N + Offset 478 // into a single N = N + TotalOffset. 479 uint64_t TotalOffs = 0; 480 // FIXME: What's a good SWAG number for MaxOffs? 481 uint64_t MaxOffs = 2048; 482 Type *Ty = I->getOperand(0)->getType(); 483 MVT VT = TLI.getPointerTy(); 484 for (GetElementPtrInst::const_op_iterator OI = I->op_begin()+1, 485 E = I->op_end(); OI != E; ++OI) { 486 const Value *Idx = *OI; 487 if (StructType *StTy = dyn_cast<StructType>(Ty)) { 488 unsigned Field = cast<ConstantInt>(Idx)->getZExtValue(); 489 if (Field) { 490 // N = N + Offset 491 TotalOffs += DL.getStructLayout(StTy)->getElementOffset(Field); 492 if (TotalOffs >= MaxOffs) { 493 N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT); 494 if (N == 0) 495 // Unhandled operand. Halt "fast" selection and bail. 496 return false; 497 NIsKill = true; 498 TotalOffs = 0; 499 } 500 } 501 Ty = StTy->getElementType(Field); 502 } else { 503 Ty = cast<SequentialType>(Ty)->getElementType(); 504 505 // If this is a constant subscript, handle it quickly. 506 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) { 507 if (CI->isZero()) continue; 508 // N = N + Offset 509 TotalOffs += 510 DL.getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue(); 511 if (TotalOffs >= MaxOffs) { 512 N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT); 513 if (N == 0) 514 // Unhandled operand. Halt "fast" selection and bail. 515 return false; 516 NIsKill = true; 517 TotalOffs = 0; 518 } 519 continue; 520 } 521 if (TotalOffs) { 522 N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT); 523 if (N == 0) 524 // Unhandled operand. Halt "fast" selection and bail. 525 return false; 526 NIsKill = true; 527 TotalOffs = 0; 528 } 529 530 // N = N + Idx * ElementSize; 531 uint64_t ElementSize = DL.getTypeAllocSize(Ty); 532 std::pair<unsigned, bool> Pair = getRegForGEPIndex(Idx); 533 unsigned IdxN = Pair.first; 534 bool IdxNIsKill = Pair.second; 535 if (IdxN == 0) 536 // Unhandled operand. Halt "fast" selection and bail. 537 return false; 538 539 if (ElementSize != 1) { 540 IdxN = FastEmit_ri_(VT, ISD::MUL, IdxN, IdxNIsKill, ElementSize, VT); 541 if (IdxN == 0) 542 // Unhandled operand. Halt "fast" selection and bail. 543 return false; 544 IdxNIsKill = true; 545 } 546 N = FastEmit_rr(VT, VT, ISD::ADD, N, NIsKill, IdxN, IdxNIsKill); 547 if (N == 0) 548 // Unhandled operand. Halt "fast" selection and bail. 549 return false; 550 } 551 } 552 if (TotalOffs) { 553 N = FastEmit_ri_(VT, ISD::ADD, N, NIsKill, TotalOffs, VT); 554 if (N == 0) 555 // Unhandled operand. Halt "fast" selection and bail. 556 return false; 557 } 558 559 // We successfully emitted code for the given LLVM Instruction. 560 UpdateValueMap(I, N); 561 return true; 562 } 563 564 /// \brief Add a stackmap or patchpoint intrinsic call's live variable operands 565 /// to a stackmap or patchpoint machine instruction. 566 bool FastISel::addStackMapLiveVars(SmallVectorImpl<MachineOperand> &Ops, 567 const CallInst *CI, unsigned StartIdx) { 568 for (unsigned i = StartIdx, e = CI->getNumArgOperands(); i != e; ++i) { 569 Value *Val = CI->getArgOperand(i); 570 // Check for constants and encode them with a StackMaps::ConstantOp prefix. 571 if (auto *C = dyn_cast<ConstantInt>(Val)) { 572 Ops.push_back(MachineOperand::CreateImm(StackMaps::ConstantOp)); 573 Ops.push_back(MachineOperand::CreateImm(C->getSExtValue())); 574 } else if (isa<ConstantPointerNull>(Val)) { 575 Ops.push_back(MachineOperand::CreateImm(StackMaps::ConstantOp)); 576 Ops.push_back(MachineOperand::CreateImm(0)); 577 } else if (auto *AI = dyn_cast<AllocaInst>(Val)) { 578 // Values coming from a stack location also require a sepcial encoding, 579 // but that is added later on by the target specific frame index 580 // elimination implementation. 581 auto SI = FuncInfo.StaticAllocaMap.find(AI); 582 if (SI != FuncInfo.StaticAllocaMap.end()) 583 Ops.push_back(MachineOperand::CreateFI(SI->second)); 584 else 585 return false; 586 } else { 587 unsigned Reg = getRegForValue(Val); 588 if (Reg == 0) 589 return false; 590 Ops.push_back(MachineOperand::CreateReg(Reg, /*IsDef=*/false)); 591 } 592 } 593 594 return true; 595 } 596 597 bool FastISel::SelectStackmap(const CallInst *I) { 598 // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>, 599 // [live variables...]) 600 assert(I->getCalledFunction()->getReturnType()->isVoidTy() && 601 "Stackmap cannot return a value."); 602 603 // The stackmap intrinsic only records the live variables (the arguments 604 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 605 // intrinsic, this won't be lowered to a function call. This means we don't 606 // have to worry about calling conventions and target-specific lowering code. 607 // Instead we perform the call lowering right here. 608 // 609 // CALLSEQ_START(0) 610 // STACKMAP(id, nbytes, ...) 611 // CALLSEQ_END(0, 0) 612 // 613 SmallVector<MachineOperand, 32> Ops; 614 615 // Add the <id> and <numBytes> constants. 616 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)) && 617 "Expected a constant integer."); 618 const auto *ID = cast<ConstantInt>(I->getOperand(PatchPointOpers::IDPos)); 619 Ops.push_back(MachineOperand::CreateImm(ID->getZExtValue())); 620 621 assert(isa<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)) && 622 "Expected a constant integer."); 623 const auto *NumBytes = 624 cast<ConstantInt>(I->getOperand(PatchPointOpers::NBytesPos)); 625 Ops.push_back(MachineOperand::CreateImm(NumBytes->getZExtValue())); 626 627 // Push live variables for the stack map (skipping the first two arguments 628 // <id> and <numBytes>). 629 if (!addStackMapLiveVars(Ops, I, 2)) 630 return false; 631 632 // We are not adding any register mask info here, because the stackmap doesn't 633 // clobber anything. 634 635 // Add scratch registers as implicit def and early clobber. 636 CallingConv::ID CC = I->getCallingConv(); 637 const MCPhysReg *ScratchRegs = TLI.getScratchRegisters(CC); 638 for (unsigned i = 0; ScratchRegs[i]; ++i) 639 Ops.push_back(MachineOperand::CreateReg( 640 ScratchRegs[i], /*IsDef=*/true, /*IsImp=*/true, /*IsKill=*/false, 641 /*IsDead=*/false, /*IsUndef=*/false, /*IsEarlyClobber=*/true)); 642 643 // Issue CALLSEQ_START 644 unsigned AdjStackDown = TII.getCallFrameSetupOpcode(); 645 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackDown)) 646 .addImm(0); 647 648 // Issue STACKMAP. 649 MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 650 TII.get(TargetOpcode::STACKMAP)); 651 for (auto const &MO : Ops) 652 MIB.addOperand(MO); 653 654 // Issue CALLSEQ_END 655 unsigned AdjStackUp = TII.getCallFrameDestroyOpcode(); 656 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(AdjStackUp)) 657 .addImm(0).addImm(0); 658 659 // Inform the Frame Information that we have a stackmap in this function. 660 FuncInfo.MF->getFrameInfo()->setHasStackMap(); 661 662 return true; 663 } 664 665 bool FastISel::SelectCall(const User *I) { 666 const CallInst *Call = cast<CallInst>(I); 667 668 // Handle simple inline asms. 669 if (const InlineAsm *IA = dyn_cast<InlineAsm>(Call->getCalledValue())) { 670 // Don't attempt to handle constraints. 671 if (!IA->getConstraintString().empty()) 672 return false; 673 674 unsigned ExtraInfo = 0; 675 if (IA->hasSideEffects()) 676 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 677 if (IA->isAlignStack()) 678 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 679 680 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 681 TII.get(TargetOpcode::INLINEASM)) 682 .addExternalSymbol(IA->getAsmString().c_str()) 683 .addImm(ExtraInfo); 684 return true; 685 } 686 687 MachineModuleInfo &MMI = FuncInfo.MF->getMMI(); 688 ComputeUsesVAFloatArgument(*Call, &MMI); 689 690 const Function *F = Call->getCalledFunction(); 691 if (!F) return false; 692 693 // Handle selected intrinsic function calls. 694 switch (F->getIntrinsicID()) { 695 default: break; 696 // At -O0 we don't care about the lifetime intrinsics. 697 case Intrinsic::lifetime_start: 698 case Intrinsic::lifetime_end: 699 // The donothing intrinsic does, well, nothing. 700 case Intrinsic::donothing: 701 return true; 702 703 case Intrinsic::dbg_declare: { 704 const DbgDeclareInst *DI = cast<DbgDeclareInst>(Call); 705 DIVariable DIVar(DI->getVariable()); 706 assert((!DIVar || DIVar.isVariable()) && 707 "Variable in DbgDeclareInst should be either null or a DIVariable."); 708 if (!DIVar || 709 !FuncInfo.MF->getMMI().hasDebugInfo()) { 710 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 711 return true; 712 } 713 714 const Value *Address = DI->getAddress(); 715 if (!Address || isa<UndefValue>(Address)) { 716 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 717 return true; 718 } 719 720 unsigned Offset = 0; 721 Optional<MachineOperand> Op; 722 if (const Argument *Arg = dyn_cast<Argument>(Address)) 723 // Some arguments' frame index is recorded during argument lowering. 724 Offset = FuncInfo.getArgumentFrameIndex(Arg); 725 if (Offset) 726 Op = MachineOperand::CreateFI(Offset); 727 if (!Op) 728 if (unsigned Reg = lookUpRegForValue(Address)) 729 Op = MachineOperand::CreateReg(Reg, false); 730 731 // If we have a VLA that has a "use" in a metadata node that's then used 732 // here but it has no other uses, then we have a problem. E.g., 733 // 734 // int foo (const int *x) { 735 // char a[*x]; 736 // return 0; 737 // } 738 // 739 // If we assign 'a' a vreg and fast isel later on has to use the selection 740 // DAG isel, it will want to copy the value to the vreg. However, there are 741 // no uses, which goes counter to what selection DAG isel expects. 742 if (!Op && !Address->use_empty() && isa<Instruction>(Address) && 743 (!isa<AllocaInst>(Address) || 744 !FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(Address)))) 745 Op = MachineOperand::CreateReg(FuncInfo.InitializeRegForValue(Address), 746 false); 747 748 if (Op) { 749 if (Op->isReg()) { 750 Op->setIsDebug(true); 751 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 752 TII.get(TargetOpcode::DBG_VALUE), false, Op->getReg(), 0, 753 DI->getVariable()); 754 } else 755 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 756 TII.get(TargetOpcode::DBG_VALUE)) 757 .addOperand(*Op) 758 .addImm(0) 759 .addMetadata(DI->getVariable()); 760 } else { 761 // We can't yet handle anything else here because it would require 762 // generating code, thus altering codegen because of debug info. 763 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 764 } 765 return true; 766 } 767 case Intrinsic::dbg_value: { 768 // This form of DBG_VALUE is target-independent. 769 const DbgValueInst *DI = cast<DbgValueInst>(Call); 770 const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE); 771 const Value *V = DI->getValue(); 772 if (!V) { 773 // Currently the optimizer can produce this; insert an undef to 774 // help debugging. Probably the optimizer should not do this. 775 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 776 .addReg(0U).addImm(DI->getOffset()) 777 .addMetadata(DI->getVariable()); 778 } else if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 779 if (CI->getBitWidth() > 64) 780 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 781 .addCImm(CI).addImm(DI->getOffset()) 782 .addMetadata(DI->getVariable()); 783 else 784 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 785 .addImm(CI->getZExtValue()).addImm(DI->getOffset()) 786 .addMetadata(DI->getVariable()); 787 } else if (const ConstantFP *CF = dyn_cast<ConstantFP>(V)) { 788 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 789 .addFPImm(CF).addImm(DI->getOffset()) 790 .addMetadata(DI->getVariable()); 791 } else if (unsigned Reg = lookUpRegForValue(V)) { 792 // FIXME: This does not handle register-indirect values at offset 0. 793 bool IsIndirect = DI->getOffset() != 0; 794 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, IsIndirect, 795 Reg, DI->getOffset(), DI->getVariable()); 796 } else { 797 // We can't yet handle anything else here because it would require 798 // generating code, thus altering codegen because of debug info. 799 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 800 } 801 return true; 802 } 803 case Intrinsic::objectsize: { 804 ConstantInt *CI = cast<ConstantInt>(Call->getArgOperand(1)); 805 unsigned long long Res = CI->isZero() ? -1ULL : 0; 806 Constant *ResCI = ConstantInt::get(Call->getType(), Res); 807 unsigned ResultReg = getRegForValue(ResCI); 808 if (ResultReg == 0) 809 return false; 810 UpdateValueMap(Call, ResultReg); 811 return true; 812 } 813 case Intrinsic::expect: { 814 unsigned ResultReg = getRegForValue(Call->getArgOperand(0)); 815 if (ResultReg == 0) 816 return false; 817 UpdateValueMap(Call, ResultReg); 818 return true; 819 } 820 case Intrinsic::experimental_stackmap: 821 return SelectStackmap(Call); 822 } 823 824 // Usually, it does not make sense to initialize a value, 825 // make an unrelated function call and use the value, because 826 // it tends to be spilled on the stack. So, we move the pointer 827 // to the last local value to the beginning of the block, so that 828 // all the values which have already been materialized, 829 // appear after the call. It also makes sense to skip intrinsics 830 // since they tend to be inlined. 831 if (!isa<IntrinsicInst>(Call)) 832 flushLocalValueMap(); 833 834 // An arbitrary call. Bail. 835 return false; 836 } 837 838 bool FastISel::SelectCast(const User *I, unsigned Opcode) { 839 EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType()); 840 EVT DstVT = TLI.getValueType(I->getType()); 841 842 if (SrcVT == MVT::Other || !SrcVT.isSimple() || 843 DstVT == MVT::Other || !DstVT.isSimple()) 844 // Unhandled type. Halt "fast" selection and bail. 845 return false; 846 847 // Check if the destination type is legal. 848 if (!TLI.isTypeLegal(DstVT)) 849 return false; 850 851 // Check if the source operand is legal. 852 if (!TLI.isTypeLegal(SrcVT)) 853 return false; 854 855 unsigned InputReg = getRegForValue(I->getOperand(0)); 856 if (!InputReg) 857 // Unhandled operand. Halt "fast" selection and bail. 858 return false; 859 860 bool InputRegIsKill = hasTrivialKill(I->getOperand(0)); 861 862 unsigned ResultReg = FastEmit_r(SrcVT.getSimpleVT(), 863 DstVT.getSimpleVT(), 864 Opcode, 865 InputReg, InputRegIsKill); 866 if (!ResultReg) 867 return false; 868 869 UpdateValueMap(I, ResultReg); 870 return true; 871 } 872 873 bool FastISel::SelectBitCast(const User *I) { 874 // If the bitcast doesn't change the type, just use the operand value. 875 if (I->getType() == I->getOperand(0)->getType()) { 876 unsigned Reg = getRegForValue(I->getOperand(0)); 877 if (Reg == 0) 878 return false; 879 UpdateValueMap(I, Reg); 880 return true; 881 } 882 883 // Bitcasts of other values become reg-reg copies or BITCAST operators. 884 EVT SrcEVT = TLI.getValueType(I->getOperand(0)->getType()); 885 EVT DstEVT = TLI.getValueType(I->getType()); 886 if (SrcEVT == MVT::Other || DstEVT == MVT::Other || 887 !TLI.isTypeLegal(SrcEVT) || !TLI.isTypeLegal(DstEVT)) 888 // Unhandled type. Halt "fast" selection and bail. 889 return false; 890 891 MVT SrcVT = SrcEVT.getSimpleVT(); 892 MVT DstVT = DstEVT.getSimpleVT(); 893 unsigned Op0 = getRegForValue(I->getOperand(0)); 894 if (Op0 == 0) 895 // Unhandled operand. Halt "fast" selection and bail. 896 return false; 897 898 bool Op0IsKill = hasTrivialKill(I->getOperand(0)); 899 900 // First, try to perform the bitcast by inserting a reg-reg copy. 901 unsigned ResultReg = 0; 902 if (SrcVT == DstVT) { 903 const TargetRegisterClass* SrcClass = TLI.getRegClassFor(SrcVT); 904 const TargetRegisterClass* DstClass = TLI.getRegClassFor(DstVT); 905 // Don't attempt a cross-class copy. It will likely fail. 906 if (SrcClass == DstClass) { 907 ResultReg = createResultReg(DstClass); 908 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 909 TII.get(TargetOpcode::COPY), ResultReg).addReg(Op0); 910 } 911 } 912 913 // If the reg-reg copy failed, select a BITCAST opcode. 914 if (!ResultReg) 915 ResultReg = FastEmit_r(SrcVT, DstVT, ISD::BITCAST, Op0, Op0IsKill); 916 917 if (!ResultReg) 918 return false; 919 920 UpdateValueMap(I, ResultReg); 921 return true; 922 } 923 924 bool 925 FastISel::SelectInstruction(const Instruction *I) { 926 // Just before the terminator instruction, insert instructions to 927 // feed PHI nodes in successor blocks. 928 if (isa<TerminatorInst>(I)) 929 if (!HandlePHINodesInSuccessorBlocks(I->getParent())) 930 return false; 931 932 DbgLoc = I->getDebugLoc(); 933 934 MachineBasicBlock::iterator SavedInsertPt = FuncInfo.InsertPt; 935 936 if (const CallInst *Call = dyn_cast<CallInst>(I)) { 937 const Function *F = Call->getCalledFunction(); 938 LibFunc::Func Func; 939 940 // As a special case, don't handle calls to builtin library functions that 941 // may be translated directly to target instructions. 942 if (F && !F->hasLocalLinkage() && F->hasName() && 943 LibInfo->getLibFunc(F->getName(), Func) && 944 LibInfo->hasOptimizedCodeGen(Func)) 945 return false; 946 947 // Don't handle Intrinsic::trap if a trap funciton is specified. 948 if (F && F->getIntrinsicID() == Intrinsic::trap && 949 !TM.Options.getTrapFunctionName().empty()) 950 return false; 951 } 952 953 // First, try doing target-independent selection. 954 if (SelectOperator(I, I->getOpcode())) { 955 ++NumFastIselSuccessIndependent; 956 DbgLoc = DebugLoc(); 957 return true; 958 } 959 // Remove dead code. However, ignore call instructions since we've flushed 960 // the local value map and recomputed the insert point. 961 if (!isa<CallInst>(I)) { 962 recomputeInsertPt(); 963 if (SavedInsertPt != FuncInfo.InsertPt) 964 removeDeadCode(FuncInfo.InsertPt, SavedInsertPt); 965 } 966 967 // Next, try calling the target to attempt to handle the instruction. 968 SavedInsertPt = FuncInfo.InsertPt; 969 if (TargetSelectInstruction(I)) { 970 ++NumFastIselSuccessTarget; 971 DbgLoc = DebugLoc(); 972 return true; 973 } 974 // Check for dead code and remove as necessary. 975 recomputeInsertPt(); 976 if (SavedInsertPt != FuncInfo.InsertPt) 977 removeDeadCode(FuncInfo.InsertPt, SavedInsertPt); 978 979 DbgLoc = DebugLoc(); 980 return false; 981 } 982 983 /// FastEmitBranch - Emit an unconditional branch to the given block, 984 /// unless it is the immediate (fall-through) successor, and update 985 /// the CFG. 986 void 987 FastISel::FastEmitBranch(MachineBasicBlock *MSucc, DebugLoc DbgLoc) { 988 if (FuncInfo.MBB->getBasicBlock()->size() > 1 && 989 FuncInfo.MBB->isLayoutSuccessor(MSucc)) { 990 // For more accurate line information if this is the only instruction 991 // in the block then emit it, otherwise we have the unconditional 992 // fall-through case, which needs no instructions. 993 } else { 994 // The unconditional branch case. 995 TII.InsertBranch(*FuncInfo.MBB, MSucc, nullptr, 996 SmallVector<MachineOperand, 0>(), DbgLoc); 997 } 998 uint32_t BranchWeight = 0; 999 if (FuncInfo.BPI) 1000 BranchWeight = FuncInfo.BPI->getEdgeWeight(FuncInfo.MBB->getBasicBlock(), 1001 MSucc->getBasicBlock()); 1002 FuncInfo.MBB->addSuccessor(MSucc, BranchWeight); 1003 } 1004 1005 /// SelectFNeg - Emit an FNeg operation. 1006 /// 1007 bool 1008 FastISel::SelectFNeg(const User *I) { 1009 unsigned OpReg = getRegForValue(BinaryOperator::getFNegArgument(I)); 1010 if (OpReg == 0) return false; 1011 1012 bool OpRegIsKill = hasTrivialKill(I); 1013 1014 // If the target has ISD::FNEG, use it. 1015 EVT VT = TLI.getValueType(I->getType()); 1016 unsigned ResultReg = FastEmit_r(VT.getSimpleVT(), VT.getSimpleVT(), 1017 ISD::FNEG, OpReg, OpRegIsKill); 1018 if (ResultReg != 0) { 1019 UpdateValueMap(I, ResultReg); 1020 return true; 1021 } 1022 1023 // Bitcast the value to integer, twiddle the sign bit with xor, 1024 // and then bitcast it back to floating-point. 1025 if (VT.getSizeInBits() > 64) return false; 1026 EVT IntVT = EVT::getIntegerVT(I->getContext(), VT.getSizeInBits()); 1027 if (!TLI.isTypeLegal(IntVT)) 1028 return false; 1029 1030 unsigned IntReg = FastEmit_r(VT.getSimpleVT(), IntVT.getSimpleVT(), 1031 ISD::BITCAST, OpReg, OpRegIsKill); 1032 if (IntReg == 0) 1033 return false; 1034 1035 unsigned IntResultReg = FastEmit_ri_(IntVT.getSimpleVT(), ISD::XOR, 1036 IntReg, /*Kill=*/true, 1037 UINT64_C(1) << (VT.getSizeInBits()-1), 1038 IntVT.getSimpleVT()); 1039 if (IntResultReg == 0) 1040 return false; 1041 1042 ResultReg = FastEmit_r(IntVT.getSimpleVT(), VT.getSimpleVT(), 1043 ISD::BITCAST, IntResultReg, /*Kill=*/true); 1044 if (ResultReg == 0) 1045 return false; 1046 1047 UpdateValueMap(I, ResultReg); 1048 return true; 1049 } 1050 1051 bool 1052 FastISel::SelectExtractValue(const User *U) { 1053 const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(U); 1054 if (!EVI) 1055 return false; 1056 1057 // Make sure we only try to handle extracts with a legal result. But also 1058 // allow i1 because it's easy. 1059 EVT RealVT = TLI.getValueType(EVI->getType(), /*AllowUnknown=*/true); 1060 if (!RealVT.isSimple()) 1061 return false; 1062 MVT VT = RealVT.getSimpleVT(); 1063 if (!TLI.isTypeLegal(VT) && VT != MVT::i1) 1064 return false; 1065 1066 const Value *Op0 = EVI->getOperand(0); 1067 Type *AggTy = Op0->getType(); 1068 1069 // Get the base result register. 1070 unsigned ResultReg; 1071 DenseMap<const Value *, unsigned>::iterator I = FuncInfo.ValueMap.find(Op0); 1072 if (I != FuncInfo.ValueMap.end()) 1073 ResultReg = I->second; 1074 else if (isa<Instruction>(Op0)) 1075 ResultReg = FuncInfo.InitializeRegForValue(Op0); 1076 else 1077 return false; // fast-isel can't handle aggregate constants at the moment 1078 1079 // Get the actual result register, which is an offset from the base register. 1080 unsigned VTIndex = ComputeLinearIndex(AggTy, EVI->getIndices()); 1081 1082 SmallVector<EVT, 4> AggValueVTs; 1083 ComputeValueVTs(TLI, AggTy, AggValueVTs); 1084 1085 for (unsigned i = 0; i < VTIndex; i++) 1086 ResultReg += TLI.getNumRegisters(FuncInfo.Fn->getContext(), AggValueVTs[i]); 1087 1088 UpdateValueMap(EVI, ResultReg); 1089 return true; 1090 } 1091 1092 bool 1093 FastISel::SelectOperator(const User *I, unsigned Opcode) { 1094 switch (Opcode) { 1095 case Instruction::Add: 1096 return SelectBinaryOp(I, ISD::ADD); 1097 case Instruction::FAdd: 1098 return SelectBinaryOp(I, ISD::FADD); 1099 case Instruction::Sub: 1100 return SelectBinaryOp(I, ISD::SUB); 1101 case Instruction::FSub: 1102 // FNeg is currently represented in LLVM IR as a special case of FSub. 1103 if (BinaryOperator::isFNeg(I)) 1104 return SelectFNeg(I); 1105 return SelectBinaryOp(I, ISD::FSUB); 1106 case Instruction::Mul: 1107 return SelectBinaryOp(I, ISD::MUL); 1108 case Instruction::FMul: 1109 return SelectBinaryOp(I, ISD::FMUL); 1110 case Instruction::SDiv: 1111 return SelectBinaryOp(I, ISD::SDIV); 1112 case Instruction::UDiv: 1113 return SelectBinaryOp(I, ISD::UDIV); 1114 case Instruction::FDiv: 1115 return SelectBinaryOp(I, ISD::FDIV); 1116 case Instruction::SRem: 1117 return SelectBinaryOp(I, ISD::SREM); 1118 case Instruction::URem: 1119 return SelectBinaryOp(I, ISD::UREM); 1120 case Instruction::FRem: 1121 return SelectBinaryOp(I, ISD::FREM); 1122 case Instruction::Shl: 1123 return SelectBinaryOp(I, ISD::SHL); 1124 case Instruction::LShr: 1125 return SelectBinaryOp(I, ISD::SRL); 1126 case Instruction::AShr: 1127 return SelectBinaryOp(I, ISD::SRA); 1128 case Instruction::And: 1129 return SelectBinaryOp(I, ISD::AND); 1130 case Instruction::Or: 1131 return SelectBinaryOp(I, ISD::OR); 1132 case Instruction::Xor: 1133 return SelectBinaryOp(I, ISD::XOR); 1134 1135 case Instruction::GetElementPtr: 1136 return SelectGetElementPtr(I); 1137 1138 case Instruction::Br: { 1139 const BranchInst *BI = cast<BranchInst>(I); 1140 1141 if (BI->isUnconditional()) { 1142 const BasicBlock *LLVMSucc = BI->getSuccessor(0); 1143 MachineBasicBlock *MSucc = FuncInfo.MBBMap[LLVMSucc]; 1144 FastEmitBranch(MSucc, BI->getDebugLoc()); 1145 return true; 1146 } 1147 1148 // Conditional branches are not handed yet. 1149 // Halt "fast" selection and bail. 1150 return false; 1151 } 1152 1153 case Instruction::Unreachable: 1154 if (TM.Options.TrapUnreachable) 1155 return FastEmit_(MVT::Other, MVT::Other, ISD::TRAP) != 0; 1156 else 1157 return true; 1158 1159 case Instruction::Alloca: 1160 // FunctionLowering has the static-sized case covered. 1161 if (FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(I))) 1162 return true; 1163 1164 // Dynamic-sized alloca is not handled yet. 1165 return false; 1166 1167 case Instruction::Call: 1168 return SelectCall(I); 1169 1170 case Instruction::BitCast: 1171 return SelectBitCast(I); 1172 1173 case Instruction::FPToSI: 1174 return SelectCast(I, ISD::FP_TO_SINT); 1175 case Instruction::ZExt: 1176 return SelectCast(I, ISD::ZERO_EXTEND); 1177 case Instruction::SExt: 1178 return SelectCast(I, ISD::SIGN_EXTEND); 1179 case Instruction::Trunc: 1180 return SelectCast(I, ISD::TRUNCATE); 1181 case Instruction::SIToFP: 1182 return SelectCast(I, ISD::SINT_TO_FP); 1183 1184 case Instruction::IntToPtr: // Deliberate fall-through. 1185 case Instruction::PtrToInt: { 1186 EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType()); 1187 EVT DstVT = TLI.getValueType(I->getType()); 1188 if (DstVT.bitsGT(SrcVT)) 1189 return SelectCast(I, ISD::ZERO_EXTEND); 1190 if (DstVT.bitsLT(SrcVT)) 1191 return SelectCast(I, ISD::TRUNCATE); 1192 unsigned Reg = getRegForValue(I->getOperand(0)); 1193 if (Reg == 0) return false; 1194 UpdateValueMap(I, Reg); 1195 return true; 1196 } 1197 1198 case Instruction::ExtractValue: 1199 return SelectExtractValue(I); 1200 1201 case Instruction::PHI: 1202 llvm_unreachable("FastISel shouldn't visit PHI nodes!"); 1203 1204 default: 1205 // Unhandled instruction. Halt "fast" selection and bail. 1206 return false; 1207 } 1208 } 1209 1210 FastISel::FastISel(FunctionLoweringInfo &funcInfo, 1211 const TargetLibraryInfo *libInfo) 1212 : FuncInfo(funcInfo), 1213 MF(funcInfo.MF), 1214 MRI(FuncInfo.MF->getRegInfo()), 1215 MFI(*FuncInfo.MF->getFrameInfo()), 1216 MCP(*FuncInfo.MF->getConstantPool()), 1217 TM(FuncInfo.MF->getTarget()), 1218 DL(*TM.getDataLayout()), 1219 TII(*TM.getInstrInfo()), 1220 TLI(*TM.getTargetLowering()), 1221 TRI(*TM.getRegisterInfo()), 1222 LibInfo(libInfo) { 1223 } 1224 1225 FastISel::~FastISel() {} 1226 1227 bool FastISel::FastLowerArguments() { 1228 return false; 1229 } 1230 1231 unsigned FastISel::FastEmit_(MVT, MVT, 1232 unsigned) { 1233 return 0; 1234 } 1235 1236 unsigned FastISel::FastEmit_r(MVT, MVT, 1237 unsigned, 1238 unsigned /*Op0*/, bool /*Op0IsKill*/) { 1239 return 0; 1240 } 1241 1242 unsigned FastISel::FastEmit_rr(MVT, MVT, 1243 unsigned, 1244 unsigned /*Op0*/, bool /*Op0IsKill*/, 1245 unsigned /*Op1*/, bool /*Op1IsKill*/) { 1246 return 0; 1247 } 1248 1249 unsigned FastISel::FastEmit_i(MVT, MVT, unsigned, uint64_t /*Imm*/) { 1250 return 0; 1251 } 1252 1253 unsigned FastISel::FastEmit_f(MVT, MVT, 1254 unsigned, const ConstantFP * /*FPImm*/) { 1255 return 0; 1256 } 1257 1258 unsigned FastISel::FastEmit_ri(MVT, MVT, 1259 unsigned, 1260 unsigned /*Op0*/, bool /*Op0IsKill*/, 1261 uint64_t /*Imm*/) { 1262 return 0; 1263 } 1264 1265 unsigned FastISel::FastEmit_rf(MVT, MVT, 1266 unsigned, 1267 unsigned /*Op0*/, bool /*Op0IsKill*/, 1268 const ConstantFP * /*FPImm*/) { 1269 return 0; 1270 } 1271 1272 unsigned FastISel::FastEmit_rri(MVT, MVT, 1273 unsigned, 1274 unsigned /*Op0*/, bool /*Op0IsKill*/, 1275 unsigned /*Op1*/, bool /*Op1IsKill*/, 1276 uint64_t /*Imm*/) { 1277 return 0; 1278 } 1279 1280 /// FastEmit_ri_ - This method is a wrapper of FastEmit_ri. It first tries 1281 /// to emit an instruction with an immediate operand using FastEmit_ri. 1282 /// If that fails, it materializes the immediate into a register and try 1283 /// FastEmit_rr instead. 1284 unsigned FastISel::FastEmit_ri_(MVT VT, unsigned Opcode, 1285 unsigned Op0, bool Op0IsKill, 1286 uint64_t Imm, MVT ImmType) { 1287 // If this is a multiply by a power of two, emit this as a shift left. 1288 if (Opcode == ISD::MUL && isPowerOf2_64(Imm)) { 1289 Opcode = ISD::SHL; 1290 Imm = Log2_64(Imm); 1291 } else if (Opcode == ISD::UDIV && isPowerOf2_64(Imm)) { 1292 // div x, 8 -> srl x, 3 1293 Opcode = ISD::SRL; 1294 Imm = Log2_64(Imm); 1295 } 1296 1297 // Horrible hack (to be removed), check to make sure shift amounts are 1298 // in-range. 1299 if ((Opcode == ISD::SHL || Opcode == ISD::SRA || Opcode == ISD::SRL) && 1300 Imm >= VT.getSizeInBits()) 1301 return 0; 1302 1303 // First check if immediate type is legal. If not, we can't use the ri form. 1304 unsigned ResultReg = FastEmit_ri(VT, VT, Opcode, Op0, Op0IsKill, Imm); 1305 if (ResultReg != 0) 1306 return ResultReg; 1307 unsigned MaterialReg = FastEmit_i(ImmType, ImmType, ISD::Constant, Imm); 1308 if (MaterialReg == 0) { 1309 // This is a bit ugly/slow, but failing here means falling out of 1310 // fast-isel, which would be very slow. 1311 IntegerType *ITy = IntegerType::get(FuncInfo.Fn->getContext(), 1312 VT.getSizeInBits()); 1313 MaterialReg = getRegForValue(ConstantInt::get(ITy, Imm)); 1314 assert (MaterialReg != 0 && "Unable to materialize imm."); 1315 if (MaterialReg == 0) return 0; 1316 } 1317 return FastEmit_rr(VT, VT, Opcode, 1318 Op0, Op0IsKill, 1319 MaterialReg, /*Kill=*/true); 1320 } 1321 1322 unsigned FastISel::createResultReg(const TargetRegisterClass* RC) { 1323 return MRI.createVirtualRegister(RC); 1324 } 1325 1326 unsigned FastISel::constrainOperandRegClass(const MCInstrDesc &II, 1327 unsigned Op, unsigned OpNum) { 1328 if (TargetRegisterInfo::isVirtualRegister(Op)) { 1329 const TargetRegisterClass *RegClass = 1330 TII.getRegClass(II, OpNum, &TRI, *FuncInfo.MF); 1331 if (!MRI.constrainRegClass(Op, RegClass)) { 1332 // If it's not legal to COPY between the register classes, something 1333 // has gone very wrong before we got here. 1334 unsigned NewOp = createResultReg(RegClass); 1335 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1336 TII.get(TargetOpcode::COPY), NewOp).addReg(Op); 1337 return NewOp; 1338 } 1339 } 1340 return Op; 1341 } 1342 1343 unsigned FastISel::FastEmitInst_(unsigned MachineInstOpcode, 1344 const TargetRegisterClass* RC) { 1345 unsigned ResultReg = createResultReg(RC); 1346 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1347 1348 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg); 1349 return ResultReg; 1350 } 1351 1352 unsigned FastISel::FastEmitInst_r(unsigned MachineInstOpcode, 1353 const TargetRegisterClass *RC, 1354 unsigned Op0, bool Op0IsKill) { 1355 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1356 1357 unsigned ResultReg = createResultReg(RC); 1358 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 1359 1360 if (II.getNumDefs() >= 1) 1361 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1362 .addReg(Op0, Op0IsKill * RegState::Kill); 1363 else { 1364 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1365 .addReg(Op0, Op0IsKill * RegState::Kill); 1366 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1367 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1368 } 1369 1370 return ResultReg; 1371 } 1372 1373 unsigned FastISel::FastEmitInst_rr(unsigned MachineInstOpcode, 1374 const TargetRegisterClass *RC, 1375 unsigned Op0, bool Op0IsKill, 1376 unsigned Op1, bool Op1IsKill) { 1377 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1378 1379 unsigned ResultReg = createResultReg(RC); 1380 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 1381 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1); 1382 1383 if (II.getNumDefs() >= 1) 1384 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1385 .addReg(Op0, Op0IsKill * RegState::Kill) 1386 .addReg(Op1, Op1IsKill * RegState::Kill); 1387 else { 1388 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1389 .addReg(Op0, Op0IsKill * RegState::Kill) 1390 .addReg(Op1, Op1IsKill * RegState::Kill); 1391 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1392 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1393 } 1394 return ResultReg; 1395 } 1396 1397 unsigned FastISel::FastEmitInst_rrr(unsigned MachineInstOpcode, 1398 const TargetRegisterClass *RC, 1399 unsigned Op0, bool Op0IsKill, 1400 unsigned Op1, bool Op1IsKill, 1401 unsigned Op2, bool Op2IsKill) { 1402 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1403 1404 unsigned ResultReg = createResultReg(RC); 1405 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 1406 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1); 1407 Op2 = constrainOperandRegClass(II, Op2, II.getNumDefs() + 2); 1408 1409 if (II.getNumDefs() >= 1) 1410 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1411 .addReg(Op0, Op0IsKill * RegState::Kill) 1412 .addReg(Op1, Op1IsKill * RegState::Kill) 1413 .addReg(Op2, Op2IsKill * RegState::Kill); 1414 else { 1415 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1416 .addReg(Op0, Op0IsKill * RegState::Kill) 1417 .addReg(Op1, Op1IsKill * RegState::Kill) 1418 .addReg(Op2, Op2IsKill * RegState::Kill); 1419 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1420 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1421 } 1422 return ResultReg; 1423 } 1424 1425 unsigned FastISel::FastEmitInst_ri(unsigned MachineInstOpcode, 1426 const TargetRegisterClass *RC, 1427 unsigned Op0, bool Op0IsKill, 1428 uint64_t Imm) { 1429 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1430 1431 unsigned ResultReg = createResultReg(RC); 1432 RC = TII.getRegClass(II, II.getNumDefs(), &TRI, *FuncInfo.MF); 1433 MRI.constrainRegClass(Op0, RC); 1434 1435 if (II.getNumDefs() >= 1) 1436 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1437 .addReg(Op0, Op0IsKill * RegState::Kill) 1438 .addImm(Imm); 1439 else { 1440 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1441 .addReg(Op0, Op0IsKill * RegState::Kill) 1442 .addImm(Imm); 1443 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1444 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1445 } 1446 return ResultReg; 1447 } 1448 1449 unsigned FastISel::FastEmitInst_rii(unsigned MachineInstOpcode, 1450 const TargetRegisterClass *RC, 1451 unsigned Op0, bool Op0IsKill, 1452 uint64_t Imm1, uint64_t Imm2) { 1453 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1454 1455 unsigned ResultReg = createResultReg(RC); 1456 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 1457 1458 if (II.getNumDefs() >= 1) 1459 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1460 .addReg(Op0, Op0IsKill * RegState::Kill) 1461 .addImm(Imm1) 1462 .addImm(Imm2); 1463 else { 1464 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1465 .addReg(Op0, Op0IsKill * RegState::Kill) 1466 .addImm(Imm1) 1467 .addImm(Imm2); 1468 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1469 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1470 } 1471 return ResultReg; 1472 } 1473 1474 unsigned FastISel::FastEmitInst_rf(unsigned MachineInstOpcode, 1475 const TargetRegisterClass *RC, 1476 unsigned Op0, bool Op0IsKill, 1477 const ConstantFP *FPImm) { 1478 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1479 1480 unsigned ResultReg = createResultReg(RC); 1481 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 1482 1483 if (II.getNumDefs() >= 1) 1484 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1485 .addReg(Op0, Op0IsKill * RegState::Kill) 1486 .addFPImm(FPImm); 1487 else { 1488 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1489 .addReg(Op0, Op0IsKill * RegState::Kill) 1490 .addFPImm(FPImm); 1491 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1492 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1493 } 1494 return ResultReg; 1495 } 1496 1497 unsigned FastISel::FastEmitInst_rri(unsigned MachineInstOpcode, 1498 const TargetRegisterClass *RC, 1499 unsigned Op0, bool Op0IsKill, 1500 unsigned Op1, bool Op1IsKill, 1501 uint64_t Imm) { 1502 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1503 1504 unsigned ResultReg = createResultReg(RC); 1505 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 1506 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1); 1507 1508 if (II.getNumDefs() >= 1) 1509 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1510 .addReg(Op0, Op0IsKill * RegState::Kill) 1511 .addReg(Op1, Op1IsKill * RegState::Kill) 1512 .addImm(Imm); 1513 else { 1514 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1515 .addReg(Op0, Op0IsKill * RegState::Kill) 1516 .addReg(Op1, Op1IsKill * RegState::Kill) 1517 .addImm(Imm); 1518 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1519 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1520 } 1521 return ResultReg; 1522 } 1523 1524 unsigned FastISel::FastEmitInst_rrii(unsigned MachineInstOpcode, 1525 const TargetRegisterClass *RC, 1526 unsigned Op0, bool Op0IsKill, 1527 unsigned Op1, bool Op1IsKill, 1528 uint64_t Imm1, uint64_t Imm2) { 1529 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1530 1531 unsigned ResultReg = createResultReg(RC); 1532 Op0 = constrainOperandRegClass(II, Op0, II.getNumDefs()); 1533 Op1 = constrainOperandRegClass(II, Op1, II.getNumDefs() + 1); 1534 1535 if (II.getNumDefs() >= 1) 1536 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1537 .addReg(Op0, Op0IsKill * RegState::Kill) 1538 .addReg(Op1, Op1IsKill * RegState::Kill) 1539 .addImm(Imm1).addImm(Imm2); 1540 else { 1541 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) 1542 .addReg(Op0, Op0IsKill * RegState::Kill) 1543 .addReg(Op1, Op1IsKill * RegState::Kill) 1544 .addImm(Imm1).addImm(Imm2); 1545 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1546 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1547 } 1548 return ResultReg; 1549 } 1550 1551 unsigned FastISel::FastEmitInst_i(unsigned MachineInstOpcode, 1552 const TargetRegisterClass *RC, 1553 uint64_t Imm) { 1554 unsigned ResultReg = createResultReg(RC); 1555 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1556 1557 if (II.getNumDefs() >= 1) 1558 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg).addImm(Imm); 1559 else { 1560 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II).addImm(Imm); 1561 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1562 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1563 } 1564 return ResultReg; 1565 } 1566 1567 unsigned FastISel::FastEmitInst_ii(unsigned MachineInstOpcode, 1568 const TargetRegisterClass *RC, 1569 uint64_t Imm1, uint64_t Imm2) { 1570 unsigned ResultReg = createResultReg(RC); 1571 const MCInstrDesc &II = TII.get(MachineInstOpcode); 1572 1573 if (II.getNumDefs() >= 1) 1574 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) 1575 .addImm(Imm1).addImm(Imm2); 1576 else { 1577 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II).addImm(Imm1).addImm(Imm2); 1578 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, 1579 TII.get(TargetOpcode::COPY), ResultReg).addReg(II.ImplicitDefs[0]); 1580 } 1581 return ResultReg; 1582 } 1583 1584 unsigned FastISel::FastEmitInst_extractsubreg(MVT RetVT, 1585 unsigned Op0, bool Op0IsKill, 1586 uint32_t Idx) { 1587 unsigned ResultReg = createResultReg(TLI.getRegClassFor(RetVT)); 1588 assert(TargetRegisterInfo::isVirtualRegister(Op0) && 1589 "Cannot yet extract from physregs"); 1590 const TargetRegisterClass *RC = MRI.getRegClass(Op0); 1591 MRI.constrainRegClass(Op0, TRI.getSubClassWithSubReg(RC, Idx)); 1592 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, 1593 DbgLoc, TII.get(TargetOpcode::COPY), ResultReg) 1594 .addReg(Op0, getKillRegState(Op0IsKill), Idx); 1595 return ResultReg; 1596 } 1597 1598 /// FastEmitZExtFromI1 - Emit MachineInstrs to compute the value of Op 1599 /// with all but the least significant bit set to zero. 1600 unsigned FastISel::FastEmitZExtFromI1(MVT VT, unsigned Op0, bool Op0IsKill) { 1601 return FastEmit_ri(VT, VT, ISD::AND, Op0, Op0IsKill, 1); 1602 } 1603 1604 /// HandlePHINodesInSuccessorBlocks - Handle PHI nodes in successor blocks. 1605 /// Emit code to ensure constants are copied into registers when needed. 1606 /// Remember the virtual registers that need to be added to the Machine PHI 1607 /// nodes as input. We cannot just directly add them, because expansion 1608 /// might result in multiple MBB's for one BB. As such, the start of the 1609 /// BB might correspond to a different MBB than the end. 1610 bool FastISel::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 1611 const TerminatorInst *TI = LLVMBB->getTerminator(); 1612 1613 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 1614 unsigned OrigNumPHINodesToUpdate = FuncInfo.PHINodesToUpdate.size(); 1615 1616 // Check successor nodes' PHI nodes that expect a constant to be available 1617 // from this block. 1618 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 1619 const BasicBlock *SuccBB = TI->getSuccessor(succ); 1620 if (!isa<PHINode>(SuccBB->begin())) continue; 1621 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 1622 1623 // If this terminator has multiple identical successors (common for 1624 // switches), only handle each succ once. 1625 if (!SuccsHandled.insert(SuccMBB)) continue; 1626 1627 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 1628 1629 // At this point we know that there is a 1-1 correspondence between LLVM PHI 1630 // nodes and Machine PHI nodes, but the incoming operands have not been 1631 // emitted yet. 1632 for (BasicBlock::const_iterator I = SuccBB->begin(); 1633 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 1634 1635 // Ignore dead phi's. 1636 if (PN->use_empty()) continue; 1637 1638 // Only handle legal types. Two interesting things to note here. First, 1639 // by bailing out early, we may leave behind some dead instructions, 1640 // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its 1641 // own moves. Second, this check is necessary because FastISel doesn't 1642 // use CreateRegs to create registers, so it always creates 1643 // exactly one register for each non-void instruction. 1644 EVT VT = TLI.getValueType(PN->getType(), /*AllowUnknown=*/true); 1645 if (VT == MVT::Other || !TLI.isTypeLegal(VT)) { 1646 // Handle integer promotions, though, because they're common and easy. 1647 if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16) 1648 VT = TLI.getTypeToTransformTo(LLVMBB->getContext(), VT); 1649 else { 1650 FuncInfo.PHINodesToUpdate.resize(OrigNumPHINodesToUpdate); 1651 return false; 1652 } 1653 } 1654 1655 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 1656 1657 // Set the DebugLoc for the copy. Prefer the location of the operand 1658 // if there is one; use the location of the PHI otherwise. 1659 DbgLoc = PN->getDebugLoc(); 1660 if (const Instruction *Inst = dyn_cast<Instruction>(PHIOp)) 1661 DbgLoc = Inst->getDebugLoc(); 1662 1663 unsigned Reg = getRegForValue(PHIOp); 1664 if (Reg == 0) { 1665 FuncInfo.PHINodesToUpdate.resize(OrigNumPHINodesToUpdate); 1666 return false; 1667 } 1668 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg)); 1669 DbgLoc = DebugLoc(); 1670 } 1671 } 1672 1673 return true; 1674 } 1675 1676 bool FastISel::tryToFoldLoad(const LoadInst *LI, const Instruction *FoldInst) { 1677 assert(LI->hasOneUse() && 1678 "tryToFoldLoad expected a LoadInst with a single use"); 1679 // We know that the load has a single use, but don't know what it is. If it 1680 // isn't one of the folded instructions, then we can't succeed here. Handle 1681 // this by scanning the single-use users of the load until we get to FoldInst. 1682 unsigned MaxUsers = 6; // Don't scan down huge single-use chains of instrs. 1683 1684 const Instruction *TheUser = LI->user_back(); 1685 while (TheUser != FoldInst && // Scan up until we find FoldInst. 1686 // Stay in the right block. 1687 TheUser->getParent() == FoldInst->getParent() && 1688 --MaxUsers) { // Don't scan too far. 1689 // If there are multiple or no uses of this instruction, then bail out. 1690 if (!TheUser->hasOneUse()) 1691 return false; 1692 1693 TheUser = TheUser->user_back(); 1694 } 1695 1696 // If we didn't find the fold instruction, then we failed to collapse the 1697 // sequence. 1698 if (TheUser != FoldInst) 1699 return false; 1700 1701 // Don't try to fold volatile loads. Target has to deal with alignment 1702 // constraints. 1703 if (LI->isVolatile()) 1704 return false; 1705 1706 // Figure out which vreg this is going into. If there is no assigned vreg yet 1707 // then there actually was no reference to it. Perhaps the load is referenced 1708 // by a dead instruction. 1709 unsigned LoadReg = getRegForValue(LI); 1710 if (LoadReg == 0) 1711 return false; 1712 1713 // We can't fold if this vreg has no uses or more than one use. Multiple uses 1714 // may mean that the instruction got lowered to multiple MIs, or the use of 1715 // the loaded value ended up being multiple operands of the result. 1716 if (!MRI.hasOneUse(LoadReg)) 1717 return false; 1718 1719 MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(LoadReg); 1720 MachineInstr *User = RI->getParent(); 1721 1722 // Set the insertion point properly. Folding the load can cause generation of 1723 // other random instructions (like sign extends) for addressing modes; make 1724 // sure they get inserted in a logical place before the new instruction. 1725 FuncInfo.InsertPt = User; 1726 FuncInfo.MBB = User->getParent(); 1727 1728 // Ask the target to try folding the load. 1729 return tryToFoldLoadIntoMI(User, RI.getOperandNo(), LI); 1730 } 1731 1732 bool FastISel::canFoldAddIntoGEP(const User *GEP, const Value *Add) { 1733 // Must be an add. 1734 if (!isa<AddOperator>(Add)) 1735 return false; 1736 // Type size needs to match. 1737 if (DL.getTypeSizeInBits(GEP->getType()) != 1738 DL.getTypeSizeInBits(Add->getType())) 1739 return false; 1740 // Must be in the same basic block. 1741 if (isa<Instruction>(Add) && 1742 FuncInfo.MBBMap[cast<Instruction>(Add)->getParent()] != FuncInfo.MBB) 1743 return false; 1744 // Must have a constant operand. 1745 return isa<ConstantInt>(cast<AddOperator>(Add)->getOperand(1)); 1746 } 1747 1748 MachineMemOperand * 1749 FastISel::createMachineMemOperandFor(const Instruction *I) const { 1750 const Value *Ptr; 1751 Type *ValTy; 1752 unsigned Alignment; 1753 unsigned Flags; 1754 bool IsVolatile; 1755 1756 if (const auto *LI = dyn_cast<LoadInst>(I)) { 1757 Alignment = LI->getAlignment(); 1758 IsVolatile = LI->isVolatile(); 1759 Flags = MachineMemOperand::MOLoad; 1760 Ptr = LI->getPointerOperand(); 1761 ValTy = LI->getType(); 1762 } else if (const auto *SI = dyn_cast<StoreInst>(I)) { 1763 Alignment = SI->getAlignment(); 1764 IsVolatile = SI->isVolatile(); 1765 Flags = MachineMemOperand::MOStore; 1766 Ptr = SI->getPointerOperand(); 1767 ValTy = SI->getValueOperand()->getType(); 1768 } else { 1769 return nullptr; 1770 } 1771 1772 bool IsNonTemporal = I->getMetadata("nontemporal") != nullptr; 1773 bool IsInvariant = I->getMetadata("invariant.load") != nullptr; 1774 const MDNode *TBAAInfo = I->getMetadata(LLVMContext::MD_tbaa); 1775 const MDNode *Ranges = I->getMetadata(LLVMContext::MD_range); 1776 1777 if (Alignment == 0) // Ensure that codegen never sees alignment 0. 1778 Alignment = DL.getABITypeAlignment(ValTy); 1779 1780 unsigned Size = TM.getDataLayout()->getTypeStoreSize(ValTy); 1781 1782 if (IsVolatile) 1783 Flags |= MachineMemOperand::MOVolatile; 1784 if (IsNonTemporal) 1785 Flags |= MachineMemOperand::MONonTemporal; 1786 if (IsInvariant) 1787 Flags |= MachineMemOperand::MOInvariant; 1788 1789 return FuncInfo.MF->getMachineMemOperand(MachinePointerInfo(Ptr), Flags, Size, 1790 Alignment, TBAAInfo, Ranges); 1791 } 1792