Home | History | Annotate | Download | only in CodeGen
      1 //===- lib/CodeGen/MachineTraceMetrics.cpp ----------------------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 
     10 #include "llvm/CodeGen/MachineTraceMetrics.h"
     11 #include "llvm/ADT/PostOrderIterator.h"
     12 #include "llvm/ADT/SparseSet.h"
     13 #include "llvm/CodeGen/MachineBasicBlock.h"
     14 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
     15 #include "llvm/CodeGen/MachineLoopInfo.h"
     16 #include "llvm/CodeGen/MachineRegisterInfo.h"
     17 #include "llvm/CodeGen/Passes.h"
     18 #include "llvm/MC/MCSubtargetInfo.h"
     19 #include "llvm/Support/Debug.h"
     20 #include "llvm/Support/Format.h"
     21 #include "llvm/Support/raw_ostream.h"
     22 #include "llvm/Target/TargetInstrInfo.h"
     23 #include "llvm/Target/TargetRegisterInfo.h"
     24 #include "llvm/Target/TargetSubtargetInfo.h"
     25 
     26 using namespace llvm;
     27 
     28 #define DEBUG_TYPE "machine-trace-metrics"
     29 
     30 char MachineTraceMetrics::ID = 0;
     31 char &llvm::MachineTraceMetricsID = MachineTraceMetrics::ID;
     32 
     33 INITIALIZE_PASS_BEGIN(MachineTraceMetrics,
     34                   "machine-trace-metrics", "Machine Trace Metrics", false, true)
     35 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
     36 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
     37 INITIALIZE_PASS_END(MachineTraceMetrics,
     38                   "machine-trace-metrics", "Machine Trace Metrics", false, true)
     39 
     40 MachineTraceMetrics::MachineTraceMetrics()
     41   : MachineFunctionPass(ID), MF(nullptr), TII(nullptr), TRI(nullptr),
     42     MRI(nullptr), Loops(nullptr) {
     43   std::fill(std::begin(Ensembles), std::end(Ensembles), nullptr);
     44 }
     45 
     46 void MachineTraceMetrics::getAnalysisUsage(AnalysisUsage &AU) const {
     47   AU.setPreservesAll();
     48   AU.addRequired<MachineBranchProbabilityInfo>();
     49   AU.addRequired<MachineLoopInfo>();
     50   MachineFunctionPass::getAnalysisUsage(AU);
     51 }
     52 
     53 bool MachineTraceMetrics::runOnMachineFunction(MachineFunction &Func) {
     54   MF = &Func;
     55   TII = MF->getTarget().getInstrInfo();
     56   TRI = MF->getTarget().getRegisterInfo();
     57   MRI = &MF->getRegInfo();
     58   Loops = &getAnalysis<MachineLoopInfo>();
     59   const TargetSubtargetInfo &ST =
     60     MF->getTarget().getSubtarget<TargetSubtargetInfo>();
     61   SchedModel.init(*ST.getSchedModel(), &ST, TII);
     62   BlockInfo.resize(MF->getNumBlockIDs());
     63   ProcResourceCycles.resize(MF->getNumBlockIDs() *
     64                             SchedModel.getNumProcResourceKinds());
     65   return false;
     66 }
     67 
     68 void MachineTraceMetrics::releaseMemory() {
     69   MF = nullptr;
     70   BlockInfo.clear();
     71   for (unsigned i = 0; i != TS_NumStrategies; ++i) {
     72     delete Ensembles[i];
     73     Ensembles[i] = nullptr;
     74   }
     75 }
     76 
     77 //===----------------------------------------------------------------------===//
     78 //                          Fixed block information
     79 //===----------------------------------------------------------------------===//
     80 //
     81 // The number of instructions in a basic block and the CPU resources used by
     82 // those instructions don't depend on any given trace strategy.
     83 
     84 /// Compute the resource usage in basic block MBB.
     85 const MachineTraceMetrics::FixedBlockInfo*
     86 MachineTraceMetrics::getResources(const MachineBasicBlock *MBB) {
     87   assert(MBB && "No basic block");
     88   FixedBlockInfo *FBI = &BlockInfo[MBB->getNumber()];
     89   if (FBI->hasResources())
     90     return FBI;
     91 
     92   // Compute resource usage in the block.
     93   FBI->HasCalls = false;
     94   unsigned InstrCount = 0;
     95 
     96   // Add up per-processor resource cycles as well.
     97   unsigned PRKinds = SchedModel.getNumProcResourceKinds();
     98   SmallVector<unsigned, 32> PRCycles(PRKinds);
     99 
    100   for (const auto &MI : *MBB) {
    101     if (MI.isTransient())
    102       continue;
    103     ++InstrCount;
    104     if (MI.isCall())
    105       FBI->HasCalls = true;
    106 
    107     // Count processor resources used.
    108     if (!SchedModel.hasInstrSchedModel())
    109       continue;
    110     const MCSchedClassDesc *SC = SchedModel.resolveSchedClass(&MI);
    111     if (!SC->isValid())
    112       continue;
    113 
    114     for (TargetSchedModel::ProcResIter
    115          PI = SchedModel.getWriteProcResBegin(SC),
    116          PE = SchedModel.getWriteProcResEnd(SC); PI != PE; ++PI) {
    117       assert(PI->ProcResourceIdx < PRKinds && "Bad processor resource kind");
    118       PRCycles[PI->ProcResourceIdx] += PI->Cycles;
    119     }
    120   }
    121   FBI->InstrCount = InstrCount;
    122 
    123   // Scale the resource cycles so they are comparable.
    124   unsigned PROffset = MBB->getNumber() * PRKinds;
    125   for (unsigned K = 0; K != PRKinds; ++K)
    126     ProcResourceCycles[PROffset + K] =
    127       PRCycles[K] * SchedModel.getResourceFactor(K);
    128 
    129   return FBI;
    130 }
    131 
    132 ArrayRef<unsigned>
    133 MachineTraceMetrics::getProcResourceCycles(unsigned MBBNum) const {
    134   assert(BlockInfo[MBBNum].hasResources() &&
    135          "getResources() must be called before getProcResourceCycles()");
    136   unsigned PRKinds = SchedModel.getNumProcResourceKinds();
    137   assert((MBBNum+1) * PRKinds <= ProcResourceCycles.size());
    138   return ArrayRef<unsigned>(ProcResourceCycles.data() + MBBNum * PRKinds,
    139                             PRKinds);
    140 }
    141 
    142 
    143 //===----------------------------------------------------------------------===//
    144 //                         Ensemble utility functions
    145 //===----------------------------------------------------------------------===//
    146 
    147 MachineTraceMetrics::Ensemble::Ensemble(MachineTraceMetrics *ct)
    148   : MTM(*ct) {
    149   BlockInfo.resize(MTM.BlockInfo.size());
    150   unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds();
    151   ProcResourceDepths.resize(MTM.BlockInfo.size() * PRKinds);
    152   ProcResourceHeights.resize(MTM.BlockInfo.size() * PRKinds);
    153 }
    154 
    155 // Virtual destructor serves as an anchor.
    156 MachineTraceMetrics::Ensemble::~Ensemble() {}
    157 
    158 const MachineLoop*
    159 MachineTraceMetrics::Ensemble::getLoopFor(const MachineBasicBlock *MBB) const {
    160   return MTM.Loops->getLoopFor(MBB);
    161 }
    162 
    163 // Update resource-related information in the TraceBlockInfo for MBB.
    164 // Only update resources related to the trace above MBB.
    165 void MachineTraceMetrics::Ensemble::
    166 computeDepthResources(const MachineBasicBlock *MBB) {
    167   TraceBlockInfo *TBI = &BlockInfo[MBB->getNumber()];
    168   unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds();
    169   unsigned PROffset = MBB->getNumber() * PRKinds;
    170 
    171   // Compute resources from trace above. The top block is simple.
    172   if (!TBI->Pred) {
    173     TBI->InstrDepth = 0;
    174     TBI->Head = MBB->getNumber();
    175     std::fill(ProcResourceDepths.begin() + PROffset,
    176               ProcResourceDepths.begin() + PROffset + PRKinds, 0);
    177     return;
    178   }
    179 
    180   // Compute from the block above. A post-order traversal ensures the
    181   // predecessor is always computed first.
    182   unsigned PredNum = TBI->Pred->getNumber();
    183   TraceBlockInfo *PredTBI = &BlockInfo[PredNum];
    184   assert(PredTBI->hasValidDepth() && "Trace above has not been computed yet");
    185   const FixedBlockInfo *PredFBI = MTM.getResources(TBI->Pred);
    186   TBI->InstrDepth = PredTBI->InstrDepth + PredFBI->InstrCount;
    187   TBI->Head = PredTBI->Head;
    188 
    189   // Compute per-resource depths.
    190   ArrayRef<unsigned> PredPRDepths = getProcResourceDepths(PredNum);
    191   ArrayRef<unsigned> PredPRCycles = MTM.getProcResourceCycles(PredNum);
    192   for (unsigned K = 0; K != PRKinds; ++K)
    193     ProcResourceDepths[PROffset + K] = PredPRDepths[K] + PredPRCycles[K];
    194 }
    195 
    196 // Update resource-related information in the TraceBlockInfo for MBB.
    197 // Only update resources related to the trace below MBB.
    198 void MachineTraceMetrics::Ensemble::
    199 computeHeightResources(const MachineBasicBlock *MBB) {
    200   TraceBlockInfo *TBI = &BlockInfo[MBB->getNumber()];
    201   unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds();
    202   unsigned PROffset = MBB->getNumber() * PRKinds;
    203 
    204   // Compute resources for the current block.
    205   TBI->InstrHeight = MTM.getResources(MBB)->InstrCount;
    206   ArrayRef<unsigned> PRCycles = MTM.getProcResourceCycles(MBB->getNumber());
    207 
    208   // The trace tail is done.
    209   if (!TBI->Succ) {
    210     TBI->Tail = MBB->getNumber();
    211     std::copy(PRCycles.begin(), PRCycles.end(),
    212               ProcResourceHeights.begin() + PROffset);
    213     return;
    214   }
    215 
    216   // Compute from the block below. A post-order traversal ensures the
    217   // predecessor is always computed first.
    218   unsigned SuccNum = TBI->Succ->getNumber();
    219   TraceBlockInfo *SuccTBI = &BlockInfo[SuccNum];
    220   assert(SuccTBI->hasValidHeight() && "Trace below has not been computed yet");
    221   TBI->InstrHeight += SuccTBI->InstrHeight;
    222   TBI->Tail = SuccTBI->Tail;
    223 
    224   // Compute per-resource heights.
    225   ArrayRef<unsigned> SuccPRHeights = getProcResourceHeights(SuccNum);
    226   for (unsigned K = 0; K != PRKinds; ++K)
    227     ProcResourceHeights[PROffset + K] = SuccPRHeights[K] + PRCycles[K];
    228 }
    229 
    230 // Check if depth resources for MBB are valid and return the TBI.
    231 // Return NULL if the resources have been invalidated.
    232 const MachineTraceMetrics::TraceBlockInfo*
    233 MachineTraceMetrics::Ensemble::
    234 getDepthResources(const MachineBasicBlock *MBB) const {
    235   const TraceBlockInfo *TBI = &BlockInfo[MBB->getNumber()];
    236   return TBI->hasValidDepth() ? TBI : nullptr;
    237 }
    238 
    239 // Check if height resources for MBB are valid and return the TBI.
    240 // Return NULL if the resources have been invalidated.
    241 const MachineTraceMetrics::TraceBlockInfo*
    242 MachineTraceMetrics::Ensemble::
    243 getHeightResources(const MachineBasicBlock *MBB) const {
    244   const TraceBlockInfo *TBI = &BlockInfo[MBB->getNumber()];
    245   return TBI->hasValidHeight() ? TBI : nullptr;
    246 }
    247 
    248 /// Get an array of processor resource depths for MBB. Indexed by processor
    249 /// resource kind, this array contains the scaled processor resources consumed
    250 /// by all blocks preceding MBB in its trace. It does not include instructions
    251 /// in MBB.
    252 ///
    253 /// Compare TraceBlockInfo::InstrDepth.
    254 ArrayRef<unsigned>
    255 MachineTraceMetrics::Ensemble::
    256 getProcResourceDepths(unsigned MBBNum) const {
    257   unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds();
    258   assert((MBBNum+1) * PRKinds <= ProcResourceDepths.size());
    259   return ArrayRef<unsigned>(ProcResourceDepths.data() + MBBNum * PRKinds,
    260                             PRKinds);
    261 }
    262 
    263 /// Get an array of processor resource heights for MBB. Indexed by processor
    264 /// resource kind, this array contains the scaled processor resources consumed
    265 /// by this block and all blocks following it in its trace.
    266 ///
    267 /// Compare TraceBlockInfo::InstrHeight.
    268 ArrayRef<unsigned>
    269 MachineTraceMetrics::Ensemble::
    270 getProcResourceHeights(unsigned MBBNum) const {
    271   unsigned PRKinds = MTM.SchedModel.getNumProcResourceKinds();
    272   assert((MBBNum+1) * PRKinds <= ProcResourceHeights.size());
    273   return ArrayRef<unsigned>(ProcResourceHeights.data() + MBBNum * PRKinds,
    274                             PRKinds);
    275 }
    276 
    277 //===----------------------------------------------------------------------===//
    278 //                         Trace Selection Strategies
    279 //===----------------------------------------------------------------------===//
    280 //
    281 // A trace selection strategy is implemented as a sub-class of Ensemble. The
    282 // trace through a block B is computed by two DFS traversals of the CFG
    283 // starting from B. One upwards, and one downwards. During the upwards DFS,
    284 // pickTracePred() is called on the post-ordered blocks. During the downwards
    285 // DFS, pickTraceSucc() is called in a post-order.
    286 //
    287 
    288 // We never allow traces that leave loops, but we do allow traces to enter
    289 // nested loops. We also never allow traces to contain back-edges.
    290 //
    291 // This means that a loop header can never appear above the center block of a
    292 // trace, except as the trace head. Below the center block, loop exiting edges
    293 // are banned.
    294 //
    295 // Return true if an edge from the From loop to the To loop is leaving a loop.
    296 // Either of To and From can be null.
    297 static bool isExitingLoop(const MachineLoop *From, const MachineLoop *To) {
    298   return From && !From->contains(To);
    299 }
    300 
    301 // MinInstrCountEnsemble - Pick the trace that executes the least number of
    302 // instructions.
    303 namespace {
    304 class MinInstrCountEnsemble : public MachineTraceMetrics::Ensemble {
    305   const char *getName() const override { return "MinInstr"; }
    306   const MachineBasicBlock *pickTracePred(const MachineBasicBlock*) override;
    307   const MachineBasicBlock *pickTraceSucc(const MachineBasicBlock*) override;
    308 
    309 public:
    310   MinInstrCountEnsemble(MachineTraceMetrics *mtm)
    311     : MachineTraceMetrics::Ensemble(mtm) {}
    312 };
    313 }
    314 
    315 // Select the preferred predecessor for MBB.
    316 const MachineBasicBlock*
    317 MinInstrCountEnsemble::pickTracePred(const MachineBasicBlock *MBB) {
    318   if (MBB->pred_empty())
    319     return nullptr;
    320   const MachineLoop *CurLoop = getLoopFor(MBB);
    321   // Don't leave loops, and never follow back-edges.
    322   if (CurLoop && MBB == CurLoop->getHeader())
    323     return nullptr;
    324   unsigned CurCount = MTM.getResources(MBB)->InstrCount;
    325   const MachineBasicBlock *Best = nullptr;
    326   unsigned BestDepth = 0;
    327   for (MachineBasicBlock::const_pred_iterator
    328        I = MBB->pred_begin(), E = MBB->pred_end(); I != E; ++I) {
    329     const MachineBasicBlock *Pred = *I;
    330     const MachineTraceMetrics::TraceBlockInfo *PredTBI =
    331       getDepthResources(Pred);
    332     // Ignore cycles that aren't natural loops.
    333     if (!PredTBI)
    334       continue;
    335     // Pick the predecessor that would give this block the smallest InstrDepth.
    336     unsigned Depth = PredTBI->InstrDepth + CurCount;
    337     if (!Best || Depth < BestDepth)
    338       Best = Pred, BestDepth = Depth;
    339   }
    340   return Best;
    341 }
    342 
    343 // Select the preferred successor for MBB.
    344 const MachineBasicBlock*
    345 MinInstrCountEnsemble::pickTraceSucc(const MachineBasicBlock *MBB) {
    346   if (MBB->pred_empty())
    347     return nullptr;
    348   const MachineLoop *CurLoop = getLoopFor(MBB);
    349   const MachineBasicBlock *Best = nullptr;
    350   unsigned BestHeight = 0;
    351   for (MachineBasicBlock::const_succ_iterator
    352        I = MBB->succ_begin(), E = MBB->succ_end(); I != E; ++I) {
    353     const MachineBasicBlock *Succ = *I;
    354     // Don't consider back-edges.
    355     if (CurLoop && Succ == CurLoop->getHeader())
    356       continue;
    357     // Don't consider successors exiting CurLoop.
    358     if (isExitingLoop(CurLoop, getLoopFor(Succ)))
    359       continue;
    360     const MachineTraceMetrics::TraceBlockInfo *SuccTBI =
    361       getHeightResources(Succ);
    362     // Ignore cycles that aren't natural loops.
    363     if (!SuccTBI)
    364       continue;
    365     // Pick the successor that would give this block the smallest InstrHeight.
    366     unsigned Height = SuccTBI->InstrHeight;
    367     if (!Best || Height < BestHeight)
    368       Best = Succ, BestHeight = Height;
    369   }
    370   return Best;
    371 }
    372 
    373 // Get an Ensemble sub-class for the requested trace strategy.
    374 MachineTraceMetrics::Ensemble *
    375 MachineTraceMetrics::getEnsemble(MachineTraceMetrics::Strategy strategy) {
    376   assert(strategy < TS_NumStrategies && "Invalid trace strategy enum");
    377   Ensemble *&E = Ensembles[strategy];
    378   if (E)
    379     return E;
    380 
    381   // Allocate new Ensemble on demand.
    382   switch (strategy) {
    383   case TS_MinInstrCount: return (E = new MinInstrCountEnsemble(this));
    384   default: llvm_unreachable("Invalid trace strategy enum");
    385   }
    386 }
    387 
    388 void MachineTraceMetrics::invalidate(const MachineBasicBlock *MBB) {
    389   DEBUG(dbgs() << "Invalidate traces through BB#" << MBB->getNumber() << '\n');
    390   BlockInfo[MBB->getNumber()].invalidate();
    391   for (unsigned i = 0; i != TS_NumStrategies; ++i)
    392     if (Ensembles[i])
    393       Ensembles[i]->invalidate(MBB);
    394 }
    395 
    396 void MachineTraceMetrics::verifyAnalysis() const {
    397   if (!MF)
    398     return;
    399 #ifndef NDEBUG
    400   assert(BlockInfo.size() == MF->getNumBlockIDs() && "Outdated BlockInfo size");
    401   for (unsigned i = 0; i != TS_NumStrategies; ++i)
    402     if (Ensembles[i])
    403       Ensembles[i]->verify();
    404 #endif
    405 }
    406 
    407 //===----------------------------------------------------------------------===//
    408 //                               Trace building
    409 //===----------------------------------------------------------------------===//
    410 //
    411 // Traces are built by two CFG traversals. To avoid recomputing too much, use a
    412 // set abstraction that confines the search to the current loop, and doesn't
    413 // revisit blocks.
    414 
    415 namespace {
    416 struct LoopBounds {
    417   MutableArrayRef<MachineTraceMetrics::TraceBlockInfo> Blocks;
    418   SmallPtrSet<const MachineBasicBlock*, 8> Visited;
    419   const MachineLoopInfo *Loops;
    420   bool Downward;
    421   LoopBounds(MutableArrayRef<MachineTraceMetrics::TraceBlockInfo> blocks,
    422              const MachineLoopInfo *loops)
    423     : Blocks(blocks), Loops(loops), Downward(false) {}
    424 };
    425 }
    426 
    427 // Specialize po_iterator_storage in order to prune the post-order traversal so
    428 // it is limited to the current loop and doesn't traverse the loop back edges.
    429 namespace llvm {
    430 template<>
    431 class po_iterator_storage<LoopBounds, true> {
    432   LoopBounds &LB;
    433 public:
    434   po_iterator_storage(LoopBounds &lb) : LB(lb) {}
    435   void finishPostorder(const MachineBasicBlock*) {}
    436 
    437   bool insertEdge(const MachineBasicBlock *From, const MachineBasicBlock *To) {
    438     // Skip already visited To blocks.
    439     MachineTraceMetrics::TraceBlockInfo &TBI = LB.Blocks[To->getNumber()];
    440     if (LB.Downward ? TBI.hasValidHeight() : TBI.hasValidDepth())
    441       return false;
    442     // From is null once when To is the trace center block.
    443     if (From) {
    444       if (const MachineLoop *FromLoop = LB.Loops->getLoopFor(From)) {
    445         // Don't follow backedges, don't leave FromLoop when going upwards.
    446         if ((LB.Downward ? To : From) == FromLoop->getHeader())
    447           return false;
    448         // Don't leave FromLoop.
    449         if (isExitingLoop(FromLoop, LB.Loops->getLoopFor(To)))
    450           return false;
    451       }
    452     }
    453     // To is a new block. Mark the block as visited in case the CFG has cycles
    454     // that MachineLoopInfo didn't recognize as a natural loop.
    455     return LB.Visited.insert(To);
    456   }
    457 };
    458 }
    459 
    460 /// Compute the trace through MBB.
    461 void MachineTraceMetrics::Ensemble::computeTrace(const MachineBasicBlock *MBB) {
    462   DEBUG(dbgs() << "Computing " << getName() << " trace through BB#"
    463                << MBB->getNumber() << '\n');
    464   // Set up loop bounds for the backwards post-order traversal.
    465   LoopBounds Bounds(BlockInfo, MTM.Loops);
    466 
    467   // Run an upwards post-order search for the trace start.
    468   Bounds.Downward = false;
    469   Bounds.Visited.clear();
    470   typedef ipo_ext_iterator<const MachineBasicBlock*, LoopBounds> UpwardPO;
    471   for (UpwardPO I = ipo_ext_begin(MBB, Bounds), E = ipo_ext_end(MBB, Bounds);
    472        I != E; ++I) {
    473     DEBUG(dbgs() << "  pred for BB#" << I->getNumber() << ": ");
    474     TraceBlockInfo &TBI = BlockInfo[I->getNumber()];
    475     // All the predecessors have been visited, pick the preferred one.
    476     TBI.Pred = pickTracePred(*I);
    477     DEBUG({
    478       if (TBI.Pred)
    479         dbgs() << "BB#" << TBI.Pred->getNumber() << '\n';
    480       else
    481         dbgs() << "null\n";
    482     });
    483     // The trace leading to I is now known, compute the depth resources.
    484     computeDepthResources(*I);
    485   }
    486 
    487   // Run a downwards post-order search for the trace end.
    488   Bounds.Downward = true;
    489   Bounds.Visited.clear();
    490   typedef po_ext_iterator<const MachineBasicBlock*, LoopBounds> DownwardPO;
    491   for (DownwardPO I = po_ext_begin(MBB, Bounds), E = po_ext_end(MBB, Bounds);
    492        I != E; ++I) {
    493     DEBUG(dbgs() << "  succ for BB#" << I->getNumber() << ": ");
    494     TraceBlockInfo &TBI = BlockInfo[I->getNumber()];
    495     // All the successors have been visited, pick the preferred one.
    496     TBI.Succ = pickTraceSucc(*I);
    497     DEBUG({
    498       if (TBI.Succ)
    499         dbgs() << "BB#" << TBI.Succ->getNumber() << '\n';
    500       else
    501         dbgs() << "null\n";
    502     });
    503     // The trace leaving I is now known, compute the height resources.
    504     computeHeightResources(*I);
    505   }
    506 }
    507 
    508 /// Invalidate traces through BadMBB.
    509 void
    510 MachineTraceMetrics::Ensemble::invalidate(const MachineBasicBlock *BadMBB) {
    511   SmallVector<const MachineBasicBlock*, 16> WorkList;
    512   TraceBlockInfo &BadTBI = BlockInfo[BadMBB->getNumber()];
    513 
    514   // Invalidate height resources of blocks above MBB.
    515   if (BadTBI.hasValidHeight()) {
    516     BadTBI.invalidateHeight();
    517     WorkList.push_back(BadMBB);
    518     do {
    519       const MachineBasicBlock *MBB = WorkList.pop_back_val();
    520       DEBUG(dbgs() << "Invalidate BB#" << MBB->getNumber() << ' ' << getName()
    521             << " height.\n");
    522       // Find any MBB predecessors that have MBB as their preferred successor.
    523       // They are the only ones that need to be invalidated.
    524       for (MachineBasicBlock::const_pred_iterator
    525            I = MBB->pred_begin(), E = MBB->pred_end(); I != E; ++I) {
    526         TraceBlockInfo &TBI = BlockInfo[(*I)->getNumber()];
    527         if (!TBI.hasValidHeight())
    528           continue;
    529         if (TBI.Succ == MBB) {
    530           TBI.invalidateHeight();
    531           WorkList.push_back(*I);
    532           continue;
    533         }
    534         // Verify that TBI.Succ is actually a *I successor.
    535         assert((!TBI.Succ || (*I)->isSuccessor(TBI.Succ)) && "CFG changed");
    536       }
    537     } while (!WorkList.empty());
    538   }
    539 
    540   // Invalidate depth resources of blocks below MBB.
    541   if (BadTBI.hasValidDepth()) {
    542     BadTBI.invalidateDepth();
    543     WorkList.push_back(BadMBB);
    544     do {
    545       const MachineBasicBlock *MBB = WorkList.pop_back_val();
    546       DEBUG(dbgs() << "Invalidate BB#" << MBB->getNumber() << ' ' << getName()
    547             << " depth.\n");
    548       // Find any MBB successors that have MBB as their preferred predecessor.
    549       // They are the only ones that need to be invalidated.
    550       for (MachineBasicBlock::const_succ_iterator
    551            I = MBB->succ_begin(), E = MBB->succ_end(); I != E; ++I) {
    552         TraceBlockInfo &TBI = BlockInfo[(*I)->getNumber()];
    553         if (!TBI.hasValidDepth())
    554           continue;
    555         if (TBI.Pred == MBB) {
    556           TBI.invalidateDepth();
    557           WorkList.push_back(*I);
    558           continue;
    559         }
    560         // Verify that TBI.Pred is actually a *I predecessor.
    561         assert((!TBI.Pred || (*I)->isPredecessor(TBI.Pred)) && "CFG changed");
    562       }
    563     } while (!WorkList.empty());
    564   }
    565 
    566   // Clear any per-instruction data. We only have to do this for BadMBB itself
    567   // because the instructions in that block may change. Other blocks may be
    568   // invalidated, but their instructions will stay the same, so there is no
    569   // need to erase the Cycle entries. They will be overwritten when we
    570   // recompute.
    571   for (const auto &I : *BadMBB)
    572     Cycles.erase(&I);
    573 }
    574 
    575 void MachineTraceMetrics::Ensemble::verify() const {
    576 #ifndef NDEBUG
    577   assert(BlockInfo.size() == MTM.MF->getNumBlockIDs() &&
    578          "Outdated BlockInfo size");
    579   for (unsigned Num = 0, e = BlockInfo.size(); Num != e; ++Num) {
    580     const TraceBlockInfo &TBI = BlockInfo[Num];
    581     if (TBI.hasValidDepth() && TBI.Pred) {
    582       const MachineBasicBlock *MBB = MTM.MF->getBlockNumbered(Num);
    583       assert(MBB->isPredecessor(TBI.Pred) && "CFG doesn't match trace");
    584       assert(BlockInfo[TBI.Pred->getNumber()].hasValidDepth() &&
    585              "Trace is broken, depth should have been invalidated.");
    586       const MachineLoop *Loop = getLoopFor(MBB);
    587       assert(!(Loop && MBB == Loop->getHeader()) && "Trace contains backedge");
    588     }
    589     if (TBI.hasValidHeight() && TBI.Succ) {
    590       const MachineBasicBlock *MBB = MTM.MF->getBlockNumbered(Num);
    591       assert(MBB->isSuccessor(TBI.Succ) && "CFG doesn't match trace");
    592       assert(BlockInfo[TBI.Succ->getNumber()].hasValidHeight() &&
    593              "Trace is broken, height should have been invalidated.");
    594       const MachineLoop *Loop = getLoopFor(MBB);
    595       const MachineLoop *SuccLoop = getLoopFor(TBI.Succ);
    596       assert(!(Loop && Loop == SuccLoop && TBI.Succ == Loop->getHeader()) &&
    597              "Trace contains backedge");
    598     }
    599   }
    600 #endif
    601 }
    602 
    603 //===----------------------------------------------------------------------===//
    604 //                             Data Dependencies
    605 //===----------------------------------------------------------------------===//
    606 //
    607 // Compute the depth and height of each instruction based on data dependencies
    608 // and instruction latencies. These cycle numbers assume that the CPU can issue
    609 // an infinite number of instructions per cycle as long as their dependencies
    610 // are ready.
    611 
    612 // A data dependency is represented as a defining MI and operand numbers on the
    613 // defining and using MI.
    614 namespace {
    615 struct DataDep {
    616   const MachineInstr *DefMI;
    617   unsigned DefOp;
    618   unsigned UseOp;
    619 
    620   DataDep(const MachineInstr *DefMI, unsigned DefOp, unsigned UseOp)
    621     : DefMI(DefMI), DefOp(DefOp), UseOp(UseOp) {}
    622 
    623   /// Create a DataDep from an SSA form virtual register.
    624   DataDep(const MachineRegisterInfo *MRI, unsigned VirtReg, unsigned UseOp)
    625     : UseOp(UseOp) {
    626     assert(TargetRegisterInfo::isVirtualRegister(VirtReg));
    627     MachineRegisterInfo::def_iterator DefI = MRI->def_begin(VirtReg);
    628     assert(!DefI.atEnd() && "Register has no defs");
    629     DefMI = DefI->getParent();
    630     DefOp = DefI.getOperandNo();
    631     assert((++DefI).atEnd() && "Register has multiple defs");
    632   }
    633 };
    634 }
    635 
    636 // Get the input data dependencies that must be ready before UseMI can issue.
    637 // Return true if UseMI has any physreg operands.
    638 static bool getDataDeps(const MachineInstr *UseMI,
    639                         SmallVectorImpl<DataDep> &Deps,
    640                         const MachineRegisterInfo *MRI) {
    641   bool HasPhysRegs = false;
    642   for (ConstMIOperands MO(UseMI); MO.isValid(); ++MO) {
    643     if (!MO->isReg())
    644       continue;
    645     unsigned Reg = MO->getReg();
    646     if (!Reg)
    647       continue;
    648     if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
    649       HasPhysRegs = true;
    650       continue;
    651     }
    652     // Collect virtual register reads.
    653     if (MO->readsReg())
    654       Deps.push_back(DataDep(MRI, Reg, MO.getOperandNo()));
    655   }
    656   return HasPhysRegs;
    657 }
    658 
    659 // Get the input data dependencies of a PHI instruction, using Pred as the
    660 // preferred predecessor.
    661 // This will add at most one dependency to Deps.
    662 static void getPHIDeps(const MachineInstr *UseMI,
    663                        SmallVectorImpl<DataDep> &Deps,
    664                        const MachineBasicBlock *Pred,
    665                        const MachineRegisterInfo *MRI) {
    666   // No predecessor at the beginning of a trace. Ignore dependencies.
    667   if (!Pred)
    668     return;
    669   assert(UseMI->isPHI() && UseMI->getNumOperands() % 2 && "Bad PHI");
    670   for (unsigned i = 1; i != UseMI->getNumOperands(); i += 2) {
    671     if (UseMI->getOperand(i + 1).getMBB() == Pred) {
    672       unsigned Reg = UseMI->getOperand(i).getReg();
    673       Deps.push_back(DataDep(MRI, Reg, i));
    674       return;
    675     }
    676   }
    677 }
    678 
    679 // Keep track of physreg data dependencies by recording each live register unit.
    680 // Associate each regunit with an instruction operand. Depending on the
    681 // direction instructions are scanned, it could be the operand that defined the
    682 // regunit, or the highest operand to read the regunit.
    683 namespace {
    684 struct LiveRegUnit {
    685   unsigned RegUnit;
    686   unsigned Cycle;
    687   const MachineInstr *MI;
    688   unsigned Op;
    689 
    690   unsigned getSparseSetIndex() const { return RegUnit; }
    691 
    692   LiveRegUnit(unsigned RU) : RegUnit(RU), Cycle(0), MI(nullptr), Op(0) {}
    693 };
    694 }
    695 
    696 // Identify physreg dependencies for UseMI, and update the live regunit
    697 // tracking set when scanning instructions downwards.
    698 static void updatePhysDepsDownwards(const MachineInstr *UseMI,
    699                                     SmallVectorImpl<DataDep> &Deps,
    700                                     SparseSet<LiveRegUnit> &RegUnits,
    701                                     const TargetRegisterInfo *TRI) {
    702   SmallVector<unsigned, 8> Kills;
    703   SmallVector<unsigned, 8> LiveDefOps;
    704 
    705   for (ConstMIOperands MO(UseMI); MO.isValid(); ++MO) {
    706     if (!MO->isReg())
    707       continue;
    708     unsigned Reg = MO->getReg();
    709     if (!TargetRegisterInfo::isPhysicalRegister(Reg))
    710       continue;
    711     // Track live defs and kills for updating RegUnits.
    712     if (MO->isDef()) {
    713       if (MO->isDead())
    714         Kills.push_back(Reg);
    715       else
    716         LiveDefOps.push_back(MO.getOperandNo());
    717     } else if (MO->isKill())
    718       Kills.push_back(Reg);
    719     // Identify dependencies.
    720     if (!MO->readsReg())
    721       continue;
    722     for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) {
    723       SparseSet<LiveRegUnit>::iterator I = RegUnits.find(*Units);
    724       if (I == RegUnits.end())
    725         continue;
    726       Deps.push_back(DataDep(I->MI, I->Op, MO.getOperandNo()));
    727       break;
    728     }
    729   }
    730 
    731   // Update RegUnits to reflect live registers after UseMI.
    732   // First kills.
    733   for (unsigned i = 0, e = Kills.size(); i != e; ++i)
    734     for (MCRegUnitIterator Units(Kills[i], TRI); Units.isValid(); ++Units)
    735       RegUnits.erase(*Units);
    736 
    737   // Second, live defs.
    738   for (unsigned i = 0, e = LiveDefOps.size(); i != e; ++i) {
    739     unsigned DefOp = LiveDefOps[i];
    740     for (MCRegUnitIterator Units(UseMI->getOperand(DefOp).getReg(), TRI);
    741          Units.isValid(); ++Units) {
    742       LiveRegUnit &LRU = RegUnits[*Units];
    743       LRU.MI = UseMI;
    744       LRU.Op = DefOp;
    745     }
    746   }
    747 }
    748 
    749 /// The length of the critical path through a trace is the maximum of two path
    750 /// lengths:
    751 ///
    752 /// 1. The maximum height+depth over all instructions in the trace center block.
    753 ///
    754 /// 2. The longest cross-block dependency chain. For small blocks, it is
    755 ///    possible that the critical path through the trace doesn't include any
    756 ///    instructions in the block.
    757 ///
    758 /// This function computes the second number from the live-in list of the
    759 /// center block.
    760 unsigned MachineTraceMetrics::Ensemble::
    761 computeCrossBlockCriticalPath(const TraceBlockInfo &TBI) {
    762   assert(TBI.HasValidInstrDepths && "Missing depth info");
    763   assert(TBI.HasValidInstrHeights && "Missing height info");
    764   unsigned MaxLen = 0;
    765   for (unsigned i = 0, e = TBI.LiveIns.size(); i != e; ++i) {
    766     const LiveInReg &LIR = TBI.LiveIns[i];
    767     if (!TargetRegisterInfo::isVirtualRegister(LIR.Reg))
    768       continue;
    769     const MachineInstr *DefMI = MTM.MRI->getVRegDef(LIR.Reg);
    770     // Ignore dependencies outside the current trace.
    771     const TraceBlockInfo &DefTBI = BlockInfo[DefMI->getParent()->getNumber()];
    772     if (!DefTBI.isUsefulDominator(TBI))
    773       continue;
    774     unsigned Len = LIR.Height + Cycles[DefMI].Depth;
    775     MaxLen = std::max(MaxLen, Len);
    776   }
    777   return MaxLen;
    778 }
    779 
    780 /// Compute instruction depths for all instructions above or in MBB in its
    781 /// trace. This assumes that the trace through MBB has already been computed.
    782 void MachineTraceMetrics::Ensemble::
    783 computeInstrDepths(const MachineBasicBlock *MBB) {
    784   // The top of the trace may already be computed, and HasValidInstrDepths
    785   // implies Head->HasValidInstrDepths, so we only need to start from the first
    786   // block in the trace that needs to be recomputed.
    787   SmallVector<const MachineBasicBlock*, 8> Stack;
    788   do {
    789     TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()];
    790     assert(TBI.hasValidDepth() && "Incomplete trace");
    791     if (TBI.HasValidInstrDepths)
    792       break;
    793     Stack.push_back(MBB);
    794     MBB = TBI.Pred;
    795   } while (MBB);
    796 
    797   // FIXME: If MBB is non-null at this point, it is the last pre-computed block
    798   // in the trace. We should track any live-out physregs that were defined in
    799   // the trace. This is quite rare in SSA form, typically created by CSE
    800   // hoisting a compare.
    801   SparseSet<LiveRegUnit> RegUnits;
    802   RegUnits.setUniverse(MTM.TRI->getNumRegUnits());
    803 
    804   // Go through trace blocks in top-down order, stopping after the center block.
    805   SmallVector<DataDep, 8> Deps;
    806   while (!Stack.empty()) {
    807     MBB = Stack.pop_back_val();
    808     DEBUG(dbgs() << "\nDepths for BB#" << MBB->getNumber() << ":\n");
    809     TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()];
    810     TBI.HasValidInstrDepths = true;
    811     TBI.CriticalPath = 0;
    812 
    813     // Print out resource depths here as well.
    814     DEBUG({
    815       dbgs() << format("%7u Instructions\n", TBI.InstrDepth);
    816       ArrayRef<unsigned> PRDepths = getProcResourceDepths(MBB->getNumber());
    817       for (unsigned K = 0; K != PRDepths.size(); ++K)
    818         if (PRDepths[K]) {
    819           unsigned Factor = MTM.SchedModel.getResourceFactor(K);
    820           dbgs() << format("%6uc @ ", MTM.getCycles(PRDepths[K]))
    821                  << MTM.SchedModel.getProcResource(K)->Name << " ("
    822                  << PRDepths[K]/Factor << " ops x" << Factor << ")\n";
    823         }
    824     });
    825 
    826     // Also compute the critical path length through MBB when possible.
    827     if (TBI.HasValidInstrHeights)
    828       TBI.CriticalPath = computeCrossBlockCriticalPath(TBI);
    829 
    830     for (const auto &UseMI : *MBB) {
    831       // Collect all data dependencies.
    832       Deps.clear();
    833       if (UseMI.isPHI())
    834         getPHIDeps(&UseMI, Deps, TBI.Pred, MTM.MRI);
    835       else if (getDataDeps(&UseMI, Deps, MTM.MRI))
    836         updatePhysDepsDownwards(&UseMI, Deps, RegUnits, MTM.TRI);
    837 
    838       // Filter and process dependencies, computing the earliest issue cycle.
    839       unsigned Cycle = 0;
    840       for (unsigned i = 0, e = Deps.size(); i != e; ++i) {
    841         const DataDep &Dep = Deps[i];
    842         const TraceBlockInfo&DepTBI =
    843           BlockInfo[Dep.DefMI->getParent()->getNumber()];
    844         // Ignore dependencies from outside the current trace.
    845         if (!DepTBI.isUsefulDominator(TBI))
    846           continue;
    847         assert(DepTBI.HasValidInstrDepths && "Inconsistent dependency");
    848         unsigned DepCycle = Cycles.lookup(Dep.DefMI).Depth;
    849         // Add latency if DefMI is a real instruction. Transients get latency 0.
    850         if (!Dep.DefMI->isTransient())
    851           DepCycle += MTM.SchedModel
    852             .computeOperandLatency(Dep.DefMI, Dep.DefOp, &UseMI, Dep.UseOp);
    853         Cycle = std::max(Cycle, DepCycle);
    854       }
    855       // Remember the instruction depth.
    856       InstrCycles &MICycles = Cycles[&UseMI];
    857       MICycles.Depth = Cycle;
    858 
    859       if (!TBI.HasValidInstrHeights) {
    860         DEBUG(dbgs() << Cycle << '\t' << UseMI);
    861         continue;
    862       }
    863       // Update critical path length.
    864       TBI.CriticalPath = std::max(TBI.CriticalPath, Cycle + MICycles.Height);
    865       DEBUG(dbgs() << TBI.CriticalPath << '\t' << Cycle << '\t' << UseMI);
    866     }
    867   }
    868 }
    869 
    870 // Identify physreg dependencies for MI when scanning instructions upwards.
    871 // Return the issue height of MI after considering any live regunits.
    872 // Height is the issue height computed from virtual register dependencies alone.
    873 static unsigned updatePhysDepsUpwards(const MachineInstr *MI, unsigned Height,
    874                                       SparseSet<LiveRegUnit> &RegUnits,
    875                                       const TargetSchedModel &SchedModel,
    876                                       const TargetInstrInfo *TII,
    877                                       const TargetRegisterInfo *TRI) {
    878   SmallVector<unsigned, 8> ReadOps;
    879   for (ConstMIOperands MO(MI); MO.isValid(); ++MO) {
    880     if (!MO->isReg())
    881       continue;
    882     unsigned Reg = MO->getReg();
    883     if (!TargetRegisterInfo::isPhysicalRegister(Reg))
    884       continue;
    885     if (MO->readsReg())
    886       ReadOps.push_back(MO.getOperandNo());
    887     if (!MO->isDef())
    888       continue;
    889     // This is a def of Reg. Remove corresponding entries from RegUnits, and
    890     // update MI Height to consider the physreg dependencies.
    891     for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) {
    892       SparseSet<LiveRegUnit>::iterator I = RegUnits.find(*Units);
    893       if (I == RegUnits.end())
    894         continue;
    895       unsigned DepHeight = I->Cycle;
    896       if (!MI->isTransient()) {
    897         // We may not know the UseMI of this dependency, if it came from the
    898         // live-in list. SchedModel can handle a NULL UseMI.
    899         DepHeight += SchedModel
    900           .computeOperandLatency(MI, MO.getOperandNo(), I->MI, I->Op);
    901       }
    902       Height = std::max(Height, DepHeight);
    903       // This regunit is dead above MI.
    904       RegUnits.erase(I);
    905     }
    906   }
    907 
    908   // Now we know the height of MI. Update any regunits read.
    909   for (unsigned i = 0, e = ReadOps.size(); i != e; ++i) {
    910     unsigned Reg = MI->getOperand(ReadOps[i]).getReg();
    911     for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) {
    912       LiveRegUnit &LRU = RegUnits[*Units];
    913       // Set the height to the highest reader of the unit.
    914       if (LRU.Cycle <= Height && LRU.MI != MI) {
    915         LRU.Cycle = Height;
    916         LRU.MI = MI;
    917         LRU.Op = ReadOps[i];
    918       }
    919     }
    920   }
    921 
    922   return Height;
    923 }
    924 
    925 
    926 typedef DenseMap<const MachineInstr *, unsigned> MIHeightMap;
    927 
    928 // Push the height of DefMI upwards if required to match UseMI.
    929 // Return true if this is the first time DefMI was seen.
    930 static bool pushDepHeight(const DataDep &Dep,
    931                           const MachineInstr *UseMI, unsigned UseHeight,
    932                           MIHeightMap &Heights,
    933                           const TargetSchedModel &SchedModel,
    934                           const TargetInstrInfo *TII) {
    935   // Adjust height by Dep.DefMI latency.
    936   if (!Dep.DefMI->isTransient())
    937     UseHeight += SchedModel.computeOperandLatency(Dep.DefMI, Dep.DefOp,
    938                                                   UseMI, Dep.UseOp);
    939 
    940   // Update Heights[DefMI] to be the maximum height seen.
    941   MIHeightMap::iterator I;
    942   bool New;
    943   std::tie(I, New) = Heights.insert(std::make_pair(Dep.DefMI, UseHeight));
    944   if (New)
    945     return true;
    946 
    947   // DefMI has been pushed before. Give it the max height.
    948   if (I->second < UseHeight)
    949     I->second = UseHeight;
    950   return false;
    951 }
    952 
    953 /// Assuming that the virtual register defined by DefMI:DefOp was used by
    954 /// Trace.back(), add it to the live-in lists of all the blocks in Trace. Stop
    955 /// when reaching the block that contains DefMI.
    956 void MachineTraceMetrics::Ensemble::
    957 addLiveIns(const MachineInstr *DefMI, unsigned DefOp,
    958            ArrayRef<const MachineBasicBlock*> Trace) {
    959   assert(!Trace.empty() && "Trace should contain at least one block");
    960   unsigned Reg = DefMI->getOperand(DefOp).getReg();
    961   assert(TargetRegisterInfo::isVirtualRegister(Reg));
    962   const MachineBasicBlock *DefMBB = DefMI->getParent();
    963 
    964   // Reg is live-in to all blocks in Trace that follow DefMBB.
    965   for (unsigned i = Trace.size(); i; --i) {
    966     const MachineBasicBlock *MBB = Trace[i-1];
    967     if (MBB == DefMBB)
    968       return;
    969     TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()];
    970     // Just add the register. The height will be updated later.
    971     TBI.LiveIns.push_back(Reg);
    972   }
    973 }
    974 
    975 /// Compute instruction heights in the trace through MBB. This updates MBB and
    976 /// the blocks below it in the trace. It is assumed that the trace has already
    977 /// been computed.
    978 void MachineTraceMetrics::Ensemble::
    979 computeInstrHeights(const MachineBasicBlock *MBB) {
    980   // The bottom of the trace may already be computed.
    981   // Find the blocks that need updating.
    982   SmallVector<const MachineBasicBlock*, 8> Stack;
    983   do {
    984     TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()];
    985     assert(TBI.hasValidHeight() && "Incomplete trace");
    986     if (TBI.HasValidInstrHeights)
    987       break;
    988     Stack.push_back(MBB);
    989     TBI.LiveIns.clear();
    990     MBB = TBI.Succ;
    991   } while (MBB);
    992 
    993   // As we move upwards in the trace, keep track of instructions that are
    994   // required by deeper trace instructions. Map MI -> height required so far.
    995   MIHeightMap Heights;
    996 
    997   // For physregs, the def isn't known when we see the use.
    998   // Instead, keep track of the highest use of each regunit.
    999   SparseSet<LiveRegUnit> RegUnits;
   1000   RegUnits.setUniverse(MTM.TRI->getNumRegUnits());
   1001 
   1002   // If the bottom of the trace was already precomputed, initialize heights
   1003   // from its live-in list.
   1004   // MBB is the highest precomputed block in the trace.
   1005   if (MBB) {
   1006     TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()];
   1007     for (unsigned i = 0, e = TBI.LiveIns.size(); i != e; ++i) {
   1008       LiveInReg LI = TBI.LiveIns[i];
   1009       if (TargetRegisterInfo::isVirtualRegister(LI.Reg)) {
   1010         // For virtual registers, the def latency is included.
   1011         unsigned &Height = Heights[MTM.MRI->getVRegDef(LI.Reg)];
   1012         if (Height < LI.Height)
   1013           Height = LI.Height;
   1014       } else {
   1015         // For register units, the def latency is not included because we don't
   1016         // know the def yet.
   1017         RegUnits[LI.Reg].Cycle = LI.Height;
   1018       }
   1019     }
   1020   }
   1021 
   1022   // Go through the trace blocks in bottom-up order.
   1023   SmallVector<DataDep, 8> Deps;
   1024   for (;!Stack.empty(); Stack.pop_back()) {
   1025     MBB = Stack.back();
   1026     DEBUG(dbgs() << "Heights for BB#" << MBB->getNumber() << ":\n");
   1027     TraceBlockInfo &TBI = BlockInfo[MBB->getNumber()];
   1028     TBI.HasValidInstrHeights = true;
   1029     TBI.CriticalPath = 0;
   1030 
   1031     DEBUG({
   1032       dbgs() << format("%7u Instructions\n", TBI.InstrHeight);
   1033       ArrayRef<unsigned> PRHeights = getProcResourceHeights(MBB->getNumber());
   1034       for (unsigned K = 0; K != PRHeights.size(); ++K)
   1035         if (PRHeights[K]) {
   1036           unsigned Factor = MTM.SchedModel.getResourceFactor(K);
   1037           dbgs() << format("%6uc @ ", MTM.getCycles(PRHeights[K]))
   1038                  << MTM.SchedModel.getProcResource(K)->Name << " ("
   1039                  << PRHeights[K]/Factor << " ops x" << Factor << ")\n";
   1040         }
   1041     });
   1042 
   1043     // Get dependencies from PHIs in the trace successor.
   1044     const MachineBasicBlock *Succ = TBI.Succ;
   1045     // If MBB is the last block in the trace, and it has a back-edge to the
   1046     // loop header, get loop-carried dependencies from PHIs in the header. For
   1047     // that purpose, pretend that all the loop header PHIs have height 0.
   1048     if (!Succ)
   1049       if (const MachineLoop *Loop = getLoopFor(MBB))
   1050         if (MBB->isSuccessor(Loop->getHeader()))
   1051           Succ = Loop->getHeader();
   1052 
   1053     if (Succ) {
   1054       for (const auto &PHI : *Succ) {
   1055         if (!PHI.isPHI())
   1056           break;
   1057         Deps.clear();
   1058         getPHIDeps(&PHI, Deps, MBB, MTM.MRI);
   1059         if (!Deps.empty()) {
   1060           // Loop header PHI heights are all 0.
   1061           unsigned Height = TBI.Succ ? Cycles.lookup(&PHI).Height : 0;
   1062           DEBUG(dbgs() << "pred\t" << Height << '\t' << PHI);
   1063           if (pushDepHeight(Deps.front(), &PHI, Height,
   1064                             Heights, MTM.SchedModel, MTM.TII))
   1065             addLiveIns(Deps.front().DefMI, Deps.front().DefOp, Stack);
   1066         }
   1067       }
   1068     }
   1069 
   1070     // Go through the block backwards.
   1071     for (MachineBasicBlock::const_iterator BI = MBB->end(), BB = MBB->begin();
   1072          BI != BB;) {
   1073       const MachineInstr *MI = --BI;
   1074 
   1075       // Find the MI height as determined by virtual register uses in the
   1076       // trace below.
   1077       unsigned Cycle = 0;
   1078       MIHeightMap::iterator HeightI = Heights.find(MI);
   1079       if (HeightI != Heights.end()) {
   1080         Cycle = HeightI->second;
   1081         // We won't be seeing any more MI uses.
   1082         Heights.erase(HeightI);
   1083       }
   1084 
   1085       // Don't process PHI deps. They depend on the specific predecessor, and
   1086       // we'll get them when visiting the predecessor.
   1087       Deps.clear();
   1088       bool HasPhysRegs = !MI->isPHI() && getDataDeps(MI, Deps, MTM.MRI);
   1089 
   1090       // There may also be regunit dependencies to include in the height.
   1091       if (HasPhysRegs)
   1092         Cycle = updatePhysDepsUpwards(MI, Cycle, RegUnits,
   1093                                       MTM.SchedModel, MTM.TII, MTM.TRI);
   1094 
   1095       // Update the required height of any virtual registers read by MI.
   1096       for (unsigned i = 0, e = Deps.size(); i != e; ++i)
   1097         if (pushDepHeight(Deps[i], MI, Cycle, Heights, MTM.SchedModel, MTM.TII))
   1098           addLiveIns(Deps[i].DefMI, Deps[i].DefOp, Stack);
   1099 
   1100       InstrCycles &MICycles = Cycles[MI];
   1101       MICycles.Height = Cycle;
   1102       if (!TBI.HasValidInstrDepths) {
   1103         DEBUG(dbgs() << Cycle << '\t' << *MI);
   1104         continue;
   1105       }
   1106       // Update critical path length.
   1107       TBI.CriticalPath = std::max(TBI.CriticalPath, Cycle + MICycles.Depth);
   1108       DEBUG(dbgs() << TBI.CriticalPath << '\t' << Cycle << '\t' << *MI);
   1109     }
   1110 
   1111     // Update virtual live-in heights. They were added by addLiveIns() with a 0
   1112     // height because the final height isn't known until now.
   1113     DEBUG(dbgs() << "BB#" << MBB->getNumber() <<  " Live-ins:");
   1114     for (unsigned i = 0, e = TBI.LiveIns.size(); i != e; ++i) {
   1115       LiveInReg &LIR = TBI.LiveIns[i];
   1116       const MachineInstr *DefMI = MTM.MRI->getVRegDef(LIR.Reg);
   1117       LIR.Height = Heights.lookup(DefMI);
   1118       DEBUG(dbgs() << ' ' << PrintReg(LIR.Reg) << '@' << LIR.Height);
   1119     }
   1120 
   1121     // Transfer the live regunits to the live-in list.
   1122     for (SparseSet<LiveRegUnit>::const_iterator
   1123          RI = RegUnits.begin(), RE = RegUnits.end(); RI != RE; ++RI) {
   1124       TBI.LiveIns.push_back(LiveInReg(RI->RegUnit, RI->Cycle));
   1125       DEBUG(dbgs() << ' ' << PrintRegUnit(RI->RegUnit, MTM.TRI)
   1126                    << '@' << RI->Cycle);
   1127     }
   1128     DEBUG(dbgs() << '\n');
   1129 
   1130     if (!TBI.HasValidInstrDepths)
   1131       continue;
   1132     // Add live-ins to the critical path length.
   1133     TBI.CriticalPath = std::max(TBI.CriticalPath,
   1134                                 computeCrossBlockCriticalPath(TBI));
   1135     DEBUG(dbgs() << "Critical path: " << TBI.CriticalPath << '\n');
   1136   }
   1137 }
   1138 
   1139 MachineTraceMetrics::Trace
   1140 MachineTraceMetrics::Ensemble::getTrace(const MachineBasicBlock *MBB) {
   1141   // FIXME: Check cache tags, recompute as needed.
   1142   computeTrace(MBB);
   1143   computeInstrDepths(MBB);
   1144   computeInstrHeights(MBB);
   1145   return Trace(*this, BlockInfo[MBB->getNumber()]);
   1146 }
   1147 
   1148 unsigned
   1149 MachineTraceMetrics::Trace::getInstrSlack(const MachineInstr *MI) const {
   1150   assert(MI && "Not an instruction.");
   1151   assert(getBlockNum() == unsigned(MI->getParent()->getNumber()) &&
   1152          "MI must be in the trace center block");
   1153   InstrCycles Cyc = getInstrCycles(MI);
   1154   return getCriticalPath() - (Cyc.Depth + Cyc.Height);
   1155 }
   1156 
   1157 unsigned
   1158 MachineTraceMetrics::Trace::getPHIDepth(const MachineInstr *PHI) const {
   1159   const MachineBasicBlock *MBB = TE.MTM.MF->getBlockNumbered(getBlockNum());
   1160   SmallVector<DataDep, 1> Deps;
   1161   getPHIDeps(PHI, Deps, MBB, TE.MTM.MRI);
   1162   assert(Deps.size() == 1 && "PHI doesn't have MBB as a predecessor");
   1163   DataDep &Dep = Deps.front();
   1164   unsigned DepCycle = getInstrCycles(Dep.DefMI).Depth;
   1165   // Add latency if DefMI is a real instruction. Transients get latency 0.
   1166   if (!Dep.DefMI->isTransient())
   1167     DepCycle += TE.MTM.SchedModel
   1168       .computeOperandLatency(Dep.DefMI, Dep.DefOp, PHI, Dep.UseOp);
   1169   return DepCycle;
   1170 }
   1171 
   1172 unsigned MachineTraceMetrics::Trace::getResourceDepth(bool Bottom) const {
   1173   // Find the limiting processor resource.
   1174   // Numbers have been pre-scaled to be comparable.
   1175   unsigned PRMax = 0;
   1176   ArrayRef<unsigned> PRDepths = TE.getProcResourceDepths(getBlockNum());
   1177   if (Bottom) {
   1178     ArrayRef<unsigned> PRCycles = TE.MTM.getProcResourceCycles(getBlockNum());
   1179     for (unsigned K = 0; K != PRDepths.size(); ++K)
   1180       PRMax = std::max(PRMax, PRDepths[K] + PRCycles[K]);
   1181   } else {
   1182     for (unsigned K = 0; K != PRDepths.size(); ++K)
   1183       PRMax = std::max(PRMax, PRDepths[K]);
   1184   }
   1185   // Convert to cycle count.
   1186   PRMax = TE.MTM.getCycles(PRMax);
   1187 
   1188   unsigned Instrs = TBI.InstrDepth;
   1189   if (Bottom)
   1190     Instrs += TE.MTM.BlockInfo[getBlockNum()].InstrCount;
   1191   if (unsigned IW = TE.MTM.SchedModel.getIssueWidth())
   1192     Instrs /= IW;
   1193   // Assume issue width 1 without a schedule model.
   1194   return std::max(Instrs, PRMax);
   1195 }
   1196 
   1197 
   1198 unsigned MachineTraceMetrics::Trace::
   1199 getResourceLength(ArrayRef<const MachineBasicBlock*> Extrablocks,
   1200                   ArrayRef<const MCSchedClassDesc*> ExtraInstrs) const {
   1201   // Add up resources above and below the center block.
   1202   ArrayRef<unsigned> PRDepths = TE.getProcResourceDepths(getBlockNum());
   1203   ArrayRef<unsigned> PRHeights = TE.getProcResourceHeights(getBlockNum());
   1204   unsigned PRMax = 0;
   1205   for (unsigned K = 0; K != PRDepths.size(); ++K) {
   1206     unsigned PRCycles = PRDepths[K] + PRHeights[K];
   1207     for (unsigned I = 0; I != Extrablocks.size(); ++I)
   1208       PRCycles += TE.MTM.getProcResourceCycles(Extrablocks[I]->getNumber())[K];
   1209     for (unsigned I = 0; I != ExtraInstrs.size(); ++I) {
   1210       const MCSchedClassDesc* SC = ExtraInstrs[I];
   1211       if (!SC->isValid())
   1212         continue;
   1213       for (TargetSchedModel::ProcResIter
   1214              PI = TE.MTM.SchedModel.getWriteProcResBegin(SC),
   1215              PE = TE.MTM.SchedModel.getWriteProcResEnd(SC); PI != PE; ++PI) {
   1216         if (PI->ProcResourceIdx != K)
   1217           continue;
   1218         PRCycles += (PI->Cycles * TE.MTM.SchedModel.getResourceFactor(K));
   1219       }
   1220     }
   1221     PRMax = std::max(PRMax, PRCycles);
   1222   }
   1223   // Convert to cycle count.
   1224   PRMax = TE.MTM.getCycles(PRMax);
   1225 
   1226   unsigned Instrs = TBI.InstrDepth + TBI.InstrHeight;
   1227   for (unsigned i = 0, e = Extrablocks.size(); i != e; ++i)
   1228     Instrs += TE.MTM.getResources(Extrablocks[i])->InstrCount;
   1229   if (unsigned IW = TE.MTM.SchedModel.getIssueWidth())
   1230     Instrs /= IW;
   1231   // Assume issue width 1 without a schedule model.
   1232   return std::max(Instrs, PRMax);
   1233 }
   1234 
   1235 void MachineTraceMetrics::Ensemble::print(raw_ostream &OS) const {
   1236   OS << getName() << " ensemble:\n";
   1237   for (unsigned i = 0, e = BlockInfo.size(); i != e; ++i) {
   1238     OS << "  BB#" << i << '\t';
   1239     BlockInfo[i].print(OS);
   1240     OS << '\n';
   1241   }
   1242 }
   1243 
   1244 void MachineTraceMetrics::TraceBlockInfo::print(raw_ostream &OS) const {
   1245   if (hasValidDepth()) {
   1246     OS << "depth=" << InstrDepth;
   1247     if (Pred)
   1248       OS << " pred=BB#" << Pred->getNumber();
   1249     else
   1250       OS << " pred=null";
   1251     OS << " head=BB#" << Head;
   1252     if (HasValidInstrDepths)
   1253       OS << " +instrs";
   1254   } else
   1255     OS << "depth invalid";
   1256   OS << ", ";
   1257   if (hasValidHeight()) {
   1258     OS << "height=" << InstrHeight;
   1259     if (Succ)
   1260       OS << " succ=BB#" << Succ->getNumber();
   1261     else
   1262       OS << " succ=null";
   1263     OS << " tail=BB#" << Tail;
   1264     if (HasValidInstrHeights)
   1265       OS << " +instrs";
   1266   } else
   1267     OS << "height invalid";
   1268   if (HasValidInstrDepths && HasValidInstrHeights)
   1269     OS << ", crit=" << CriticalPath;
   1270 }
   1271 
   1272 void MachineTraceMetrics::Trace::print(raw_ostream &OS) const {
   1273   unsigned MBBNum = &TBI - &TE.BlockInfo[0];
   1274 
   1275   OS << TE.getName() << " trace BB#" << TBI.Head << " --> BB#" << MBBNum
   1276      << " --> BB#" << TBI.Tail << ':';
   1277   if (TBI.hasValidHeight() && TBI.hasValidDepth())
   1278     OS << ' ' << getInstrCount() << " instrs.";
   1279   if (TBI.HasValidInstrDepths && TBI.HasValidInstrHeights)
   1280     OS << ' ' << TBI.CriticalPath << " cycles.";
   1281 
   1282   const MachineTraceMetrics::TraceBlockInfo *Block = &TBI;
   1283   OS << "\nBB#" << MBBNum;
   1284   while (Block->hasValidDepth() && Block->Pred) {
   1285     unsigned Num = Block->Pred->getNumber();
   1286     OS << " <- BB#" << Num;
   1287     Block = &TE.BlockInfo[Num];
   1288   }
   1289 
   1290   Block = &TBI;
   1291   OS << "\n    ";
   1292   while (Block->hasValidHeight() && Block->Succ) {
   1293     unsigned Num = Block->Succ->getNumber();
   1294     OS << " -> BB#" << Num;
   1295     Block = &TE.BlockInfo[Num];
   1296   }
   1297   OS << '\n';
   1298 }
   1299