Home | History | Annotate | Download | only in CodeGen
      1 //===-- TargetInstrInfo.cpp - Target Instruction Information --------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the TargetInstrInfo class.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "llvm/Target/TargetInstrInfo.h"
     15 #include "llvm/CodeGen/MachineFrameInfo.h"
     16 #include "llvm/CodeGen/MachineInstrBuilder.h"
     17 #include "llvm/CodeGen/MachineMemOperand.h"
     18 #include "llvm/CodeGen/MachineRegisterInfo.h"
     19 #include "llvm/CodeGen/PseudoSourceValue.h"
     20 #include "llvm/CodeGen/ScoreboardHazardRecognizer.h"
     21 #include "llvm/CodeGen/StackMaps.h"
     22 #include "llvm/IR/DataLayout.h"
     23 #include "llvm/MC/MCAsmInfo.h"
     24 #include "llvm/MC/MCInstrItineraries.h"
     25 #include "llvm/Support/CommandLine.h"
     26 #include "llvm/Support/ErrorHandling.h"
     27 #include "llvm/Support/raw_ostream.h"
     28 #include "llvm/Target/TargetLowering.h"
     29 #include "llvm/Target/TargetMachine.h"
     30 #include "llvm/Target/TargetRegisterInfo.h"
     31 #include <cctype>
     32 using namespace llvm;
     33 
     34 static cl::opt<bool> DisableHazardRecognizer(
     35   "disable-sched-hazard", cl::Hidden, cl::init(false),
     36   cl::desc("Disable hazard detection during preRA scheduling"));
     37 
     38 TargetInstrInfo::~TargetInstrInfo() {
     39 }
     40 
     41 const TargetRegisterClass*
     42 TargetInstrInfo::getRegClass(const MCInstrDesc &MCID, unsigned OpNum,
     43                              const TargetRegisterInfo *TRI,
     44                              const MachineFunction &MF) const {
     45   if (OpNum >= MCID.getNumOperands())
     46     return nullptr;
     47 
     48   short RegClass = MCID.OpInfo[OpNum].RegClass;
     49   if (MCID.OpInfo[OpNum].isLookupPtrRegClass())
     50     return TRI->getPointerRegClass(MF, RegClass);
     51 
     52   // Instructions like INSERT_SUBREG do not have fixed register classes.
     53   if (RegClass < 0)
     54     return nullptr;
     55 
     56   // Otherwise just look it up normally.
     57   return TRI->getRegClass(RegClass);
     58 }
     59 
     60 /// insertNoop - Insert a noop into the instruction stream at the specified
     61 /// point.
     62 void TargetInstrInfo::insertNoop(MachineBasicBlock &MBB,
     63                                  MachineBasicBlock::iterator MI) const {
     64   llvm_unreachable("Target didn't implement insertNoop!");
     65 }
     66 
     67 /// Measure the specified inline asm to determine an approximation of its
     68 /// length.
     69 /// Comments (which run till the next SeparatorString or newline) do not
     70 /// count as an instruction.
     71 /// Any other non-whitespace text is considered an instruction, with
     72 /// multiple instructions separated by SeparatorString or newlines.
     73 /// Variable-length instructions are not handled here; this function
     74 /// may be overloaded in the target code to do that.
     75 unsigned TargetInstrInfo::getInlineAsmLength(const char *Str,
     76                                              const MCAsmInfo &MAI) const {
     77 
     78 
     79   // Count the number of instructions in the asm.
     80   bool atInsnStart = true;
     81   unsigned Length = 0;
     82   for (; *Str; ++Str) {
     83     if (*Str == '\n' || strncmp(Str, MAI.getSeparatorString(),
     84                                 strlen(MAI.getSeparatorString())) == 0)
     85       atInsnStart = true;
     86     if (atInsnStart && !std::isspace(static_cast<unsigned char>(*Str))) {
     87       Length += MAI.getMaxInstLength();
     88       atInsnStart = false;
     89     }
     90     if (atInsnStart && strncmp(Str, MAI.getCommentString(),
     91                                strlen(MAI.getCommentString())) == 0)
     92       atInsnStart = false;
     93   }
     94 
     95   return Length;
     96 }
     97 
     98 /// ReplaceTailWithBranchTo - Delete the instruction OldInst and everything
     99 /// after it, replacing it with an unconditional branch to NewDest.
    100 void
    101 TargetInstrInfo::ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail,
    102                                          MachineBasicBlock *NewDest) const {
    103   MachineBasicBlock *MBB = Tail->getParent();
    104 
    105   // Remove all the old successors of MBB from the CFG.
    106   while (!MBB->succ_empty())
    107     MBB->removeSuccessor(MBB->succ_begin());
    108 
    109   // Remove all the dead instructions from the end of MBB.
    110   MBB->erase(Tail, MBB->end());
    111 
    112   // If MBB isn't immediately before MBB, insert a branch to it.
    113   if (++MachineFunction::iterator(MBB) != MachineFunction::iterator(NewDest))
    114     InsertBranch(*MBB, NewDest, nullptr, SmallVector<MachineOperand, 0>(),
    115                  Tail->getDebugLoc());
    116   MBB->addSuccessor(NewDest);
    117 }
    118 
    119 // commuteInstruction - The default implementation of this method just exchanges
    120 // the two operands returned by findCommutedOpIndices.
    121 MachineInstr *TargetInstrInfo::commuteInstruction(MachineInstr *MI,
    122                                                   bool NewMI) const {
    123   const MCInstrDesc &MCID = MI->getDesc();
    124   bool HasDef = MCID.getNumDefs();
    125   if (HasDef && !MI->getOperand(0).isReg())
    126     // No idea how to commute this instruction. Target should implement its own.
    127     return nullptr;
    128   unsigned Idx1, Idx2;
    129   if (!findCommutedOpIndices(MI, Idx1, Idx2)) {
    130     assert(MI->isCommutable() && "Precondition violation: MI must be commutable.");
    131     return nullptr;
    132   }
    133 
    134   assert(MI->getOperand(Idx1).isReg() && MI->getOperand(Idx2).isReg() &&
    135          "This only knows how to commute register operands so far");
    136   unsigned Reg0 = HasDef ? MI->getOperand(0).getReg() : 0;
    137   unsigned Reg1 = MI->getOperand(Idx1).getReg();
    138   unsigned Reg2 = MI->getOperand(Idx2).getReg();
    139   unsigned SubReg0 = HasDef ? MI->getOperand(0).getSubReg() : 0;
    140   unsigned SubReg1 = MI->getOperand(Idx1).getSubReg();
    141   unsigned SubReg2 = MI->getOperand(Idx2).getSubReg();
    142   bool Reg1IsKill = MI->getOperand(Idx1).isKill();
    143   bool Reg2IsKill = MI->getOperand(Idx2).isKill();
    144   // If destination is tied to either of the commuted source register, then
    145   // it must be updated.
    146   if (HasDef && Reg0 == Reg1 &&
    147       MI->getDesc().getOperandConstraint(Idx1, MCOI::TIED_TO) == 0) {
    148     Reg2IsKill = false;
    149     Reg0 = Reg2;
    150     SubReg0 = SubReg2;
    151   } else if (HasDef && Reg0 == Reg2 &&
    152              MI->getDesc().getOperandConstraint(Idx2, MCOI::TIED_TO) == 0) {
    153     Reg1IsKill = false;
    154     Reg0 = Reg1;
    155     SubReg0 = SubReg1;
    156   }
    157 
    158   if (NewMI) {
    159     // Create a new instruction.
    160     MachineFunction &MF = *MI->getParent()->getParent();
    161     MI = MF.CloneMachineInstr(MI);
    162   }
    163 
    164   if (HasDef) {
    165     MI->getOperand(0).setReg(Reg0);
    166     MI->getOperand(0).setSubReg(SubReg0);
    167   }
    168   MI->getOperand(Idx2).setReg(Reg1);
    169   MI->getOperand(Idx1).setReg(Reg2);
    170   MI->getOperand(Idx2).setSubReg(SubReg1);
    171   MI->getOperand(Idx1).setSubReg(SubReg2);
    172   MI->getOperand(Idx2).setIsKill(Reg1IsKill);
    173   MI->getOperand(Idx1).setIsKill(Reg2IsKill);
    174   return MI;
    175 }
    176 
    177 /// findCommutedOpIndices - If specified MI is commutable, return the two
    178 /// operand indices that would swap value. Return true if the instruction
    179 /// is not in a form which this routine understands.
    180 bool TargetInstrInfo::findCommutedOpIndices(MachineInstr *MI,
    181                                             unsigned &SrcOpIdx1,
    182                                             unsigned &SrcOpIdx2) const {
    183   assert(!MI->isBundle() &&
    184          "TargetInstrInfo::findCommutedOpIndices() can't handle bundles");
    185 
    186   const MCInstrDesc &MCID = MI->getDesc();
    187   if (!MCID.isCommutable())
    188     return false;
    189   // This assumes v0 = op v1, v2 and commuting would swap v1 and v2. If this
    190   // is not true, then the target must implement this.
    191   SrcOpIdx1 = MCID.getNumDefs();
    192   SrcOpIdx2 = SrcOpIdx1 + 1;
    193   if (!MI->getOperand(SrcOpIdx1).isReg() ||
    194       !MI->getOperand(SrcOpIdx2).isReg())
    195     // No idea.
    196     return false;
    197   return true;
    198 }
    199 
    200 
    201 bool
    202 TargetInstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const {
    203   if (!MI->isTerminator()) return false;
    204 
    205   // Conditional branch is a special case.
    206   if (MI->isBranch() && !MI->isBarrier())
    207     return true;
    208   if (!MI->isPredicable())
    209     return true;
    210   return !isPredicated(MI);
    211 }
    212 
    213 
    214 bool TargetInstrInfo::PredicateInstruction(MachineInstr *MI,
    215                             const SmallVectorImpl<MachineOperand> &Pred) const {
    216   bool MadeChange = false;
    217 
    218   assert(!MI->isBundle() &&
    219          "TargetInstrInfo::PredicateInstruction() can't handle bundles");
    220 
    221   const MCInstrDesc &MCID = MI->getDesc();
    222   if (!MI->isPredicable())
    223     return false;
    224 
    225   for (unsigned j = 0, i = 0, e = MI->getNumOperands(); i != e; ++i) {
    226     if (MCID.OpInfo[i].isPredicate()) {
    227       MachineOperand &MO = MI->getOperand(i);
    228       if (MO.isReg()) {
    229         MO.setReg(Pred[j].getReg());
    230         MadeChange = true;
    231       } else if (MO.isImm()) {
    232         MO.setImm(Pred[j].getImm());
    233         MadeChange = true;
    234       } else if (MO.isMBB()) {
    235         MO.setMBB(Pred[j].getMBB());
    236         MadeChange = true;
    237       }
    238       ++j;
    239     }
    240   }
    241   return MadeChange;
    242 }
    243 
    244 bool TargetInstrInfo::hasLoadFromStackSlot(const MachineInstr *MI,
    245                                            const MachineMemOperand *&MMO,
    246                                            int &FrameIndex) const {
    247   for (MachineInstr::mmo_iterator o = MI->memoperands_begin(),
    248          oe = MI->memoperands_end();
    249        o != oe;
    250        ++o) {
    251     if ((*o)->isLoad()) {
    252       if (const FixedStackPseudoSourceValue *Value =
    253           dyn_cast_or_null<FixedStackPseudoSourceValue>(
    254               (*o)->getPseudoValue())) {
    255         FrameIndex = Value->getFrameIndex();
    256         MMO = *o;
    257         return true;
    258       }
    259     }
    260   }
    261   return false;
    262 }
    263 
    264 bool TargetInstrInfo::hasStoreToStackSlot(const MachineInstr *MI,
    265                                           const MachineMemOperand *&MMO,
    266                                           int &FrameIndex) const {
    267   for (MachineInstr::mmo_iterator o = MI->memoperands_begin(),
    268          oe = MI->memoperands_end();
    269        o != oe;
    270        ++o) {
    271     if ((*o)->isStore()) {
    272       if (const FixedStackPseudoSourceValue *Value =
    273           dyn_cast_or_null<FixedStackPseudoSourceValue>(
    274               (*o)->getPseudoValue())) {
    275         FrameIndex = Value->getFrameIndex();
    276         MMO = *o;
    277         return true;
    278       }
    279     }
    280   }
    281   return false;
    282 }
    283 
    284 bool TargetInstrInfo::getStackSlotRange(const TargetRegisterClass *RC,
    285                                         unsigned SubIdx, unsigned &Size,
    286                                         unsigned &Offset,
    287                                         const TargetMachine *TM) const {
    288   if (!SubIdx) {
    289     Size = RC->getSize();
    290     Offset = 0;
    291     return true;
    292   }
    293   unsigned BitSize = TM->getRegisterInfo()->getSubRegIdxSize(SubIdx);
    294   // Convert bit size to byte size to be consistent with
    295   // MCRegisterClass::getSize().
    296   if (BitSize % 8)
    297     return false;
    298 
    299   int BitOffset = TM->getRegisterInfo()->getSubRegIdxOffset(SubIdx);
    300   if (BitOffset < 0 || BitOffset % 8)
    301     return false;
    302 
    303   Size = BitSize /= 8;
    304   Offset = (unsigned)BitOffset / 8;
    305 
    306   assert(RC->getSize() >= (Offset + Size) && "bad subregister range");
    307 
    308   if (!TM->getDataLayout()->isLittleEndian()) {
    309     Offset = RC->getSize() - (Offset + Size);
    310   }
    311   return true;
    312 }
    313 
    314 void TargetInstrInfo::reMaterialize(MachineBasicBlock &MBB,
    315                                     MachineBasicBlock::iterator I,
    316                                     unsigned DestReg,
    317                                     unsigned SubIdx,
    318                                     const MachineInstr *Orig,
    319                                     const TargetRegisterInfo &TRI) const {
    320   MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig);
    321   MI->substituteRegister(MI->getOperand(0).getReg(), DestReg, SubIdx, TRI);
    322   MBB.insert(I, MI);
    323 }
    324 
    325 bool
    326 TargetInstrInfo::produceSameValue(const MachineInstr *MI0,
    327                                   const MachineInstr *MI1,
    328                                   const MachineRegisterInfo *MRI) const {
    329   return MI0->isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs);
    330 }
    331 
    332 MachineInstr *TargetInstrInfo::duplicate(MachineInstr *Orig,
    333                                          MachineFunction &MF) const {
    334   assert(!Orig->isNotDuplicable() &&
    335          "Instruction cannot be duplicated");
    336   return MF.CloneMachineInstr(Orig);
    337 }
    338 
    339 // If the COPY instruction in MI can be folded to a stack operation, return
    340 // the register class to use.
    341 static const TargetRegisterClass *canFoldCopy(const MachineInstr *MI,
    342                                               unsigned FoldIdx) {
    343   assert(MI->isCopy() && "MI must be a COPY instruction");
    344   if (MI->getNumOperands() != 2)
    345     return nullptr;
    346   assert(FoldIdx<2 && "FoldIdx refers no nonexistent operand");
    347 
    348   const MachineOperand &FoldOp = MI->getOperand(FoldIdx);
    349   const MachineOperand &LiveOp = MI->getOperand(1-FoldIdx);
    350 
    351   if (FoldOp.getSubReg() || LiveOp.getSubReg())
    352     return nullptr;
    353 
    354   unsigned FoldReg = FoldOp.getReg();
    355   unsigned LiveReg = LiveOp.getReg();
    356 
    357   assert(TargetRegisterInfo::isVirtualRegister(FoldReg) &&
    358          "Cannot fold physregs");
    359 
    360   const MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
    361   const TargetRegisterClass *RC = MRI.getRegClass(FoldReg);
    362 
    363   if (TargetRegisterInfo::isPhysicalRegister(LiveOp.getReg()))
    364     return RC->contains(LiveOp.getReg()) ? RC : nullptr;
    365 
    366   if (RC->hasSubClassEq(MRI.getRegClass(LiveReg)))
    367     return RC;
    368 
    369   // FIXME: Allow folding when register classes are memory compatible.
    370   return nullptr;
    371 }
    372 
    373 bool TargetInstrInfo::
    374 canFoldMemoryOperand(const MachineInstr *MI,
    375                      const SmallVectorImpl<unsigned> &Ops) const {
    376   return MI->isCopy() && Ops.size() == 1 && canFoldCopy(MI, Ops[0]);
    377 }
    378 
    379 static MachineInstr* foldPatchpoint(MachineFunction &MF,
    380                                     MachineInstr *MI,
    381                                     const SmallVectorImpl<unsigned> &Ops,
    382                                     int FrameIndex,
    383                                     const TargetInstrInfo &TII) {
    384   unsigned StartIdx = 0;
    385   switch (MI->getOpcode()) {
    386   case TargetOpcode::STACKMAP:
    387     StartIdx = 2; // Skip ID, nShadowBytes.
    388     break;
    389   case TargetOpcode::PATCHPOINT: {
    390     // For PatchPoint, the call args are not foldable.
    391     PatchPointOpers opers(MI);
    392     StartIdx = opers.getVarIdx();
    393     break;
    394   }
    395   default:
    396     llvm_unreachable("unexpected stackmap opcode");
    397   }
    398 
    399   // Return false if any operands requested for folding are not foldable (not
    400   // part of the stackmap's live values).
    401   for (SmallVectorImpl<unsigned>::const_iterator I = Ops.begin(), E = Ops.end();
    402        I != E; ++I) {
    403     if (*I < StartIdx)
    404       return nullptr;
    405   }
    406 
    407   MachineInstr *NewMI =
    408     MF.CreateMachineInstr(TII.get(MI->getOpcode()), MI->getDebugLoc(), true);
    409   MachineInstrBuilder MIB(MF, NewMI);
    410 
    411   // No need to fold return, the meta data, and function arguments
    412   for (unsigned i = 0; i < StartIdx; ++i)
    413     MIB.addOperand(MI->getOperand(i));
    414 
    415   for (unsigned i = StartIdx; i < MI->getNumOperands(); ++i) {
    416     MachineOperand &MO = MI->getOperand(i);
    417     if (std::find(Ops.begin(), Ops.end(), i) != Ops.end()) {
    418       unsigned SpillSize;
    419       unsigned SpillOffset;
    420       // Compute the spill slot size and offset.
    421       const TargetRegisterClass *RC =
    422         MF.getRegInfo().getRegClass(MO.getReg());
    423       bool Valid = TII.getStackSlotRange(RC, MO.getSubReg(), SpillSize,
    424                                          SpillOffset, &MF.getTarget());
    425       if (!Valid)
    426         report_fatal_error("cannot spill patchpoint subregister operand");
    427       MIB.addImm(StackMaps::IndirectMemRefOp);
    428       MIB.addImm(SpillSize);
    429       MIB.addFrameIndex(FrameIndex);
    430       MIB.addImm(SpillOffset);
    431     }
    432     else
    433       MIB.addOperand(MO);
    434   }
    435   return NewMI;
    436 }
    437 
    438 /// foldMemoryOperand - Attempt to fold a load or store of the specified stack
    439 /// slot into the specified machine instruction for the specified operand(s).
    440 /// If this is possible, a new instruction is returned with the specified
    441 /// operand folded, otherwise NULL is returned. The client is responsible for
    442 /// removing the old instruction and adding the new one in the instruction
    443 /// stream.
    444 MachineInstr*
    445 TargetInstrInfo::foldMemoryOperand(MachineBasicBlock::iterator MI,
    446                                    const SmallVectorImpl<unsigned> &Ops,
    447                                    int FI) const {
    448   unsigned Flags = 0;
    449   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
    450     if (MI->getOperand(Ops[i]).isDef())
    451       Flags |= MachineMemOperand::MOStore;
    452     else
    453       Flags |= MachineMemOperand::MOLoad;
    454 
    455   MachineBasicBlock *MBB = MI->getParent();
    456   assert(MBB && "foldMemoryOperand needs an inserted instruction");
    457   MachineFunction &MF = *MBB->getParent();
    458 
    459   MachineInstr *NewMI = nullptr;
    460 
    461   if (MI->getOpcode() == TargetOpcode::STACKMAP ||
    462       MI->getOpcode() == TargetOpcode::PATCHPOINT) {
    463     // Fold stackmap/patchpoint.
    464     NewMI = foldPatchpoint(MF, MI, Ops, FI, *this);
    465   } else {
    466     // Ask the target to do the actual folding.
    467     NewMI =foldMemoryOperandImpl(MF, MI, Ops, FI);
    468   }
    469 
    470   if (NewMI) {
    471     NewMI->setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
    472     // Add a memory operand, foldMemoryOperandImpl doesn't do that.
    473     assert((!(Flags & MachineMemOperand::MOStore) ||
    474             NewMI->mayStore()) &&
    475            "Folded a def to a non-store!");
    476     assert((!(Flags & MachineMemOperand::MOLoad) ||
    477             NewMI->mayLoad()) &&
    478            "Folded a use to a non-load!");
    479     const MachineFrameInfo &MFI = *MF.getFrameInfo();
    480     assert(MFI.getObjectOffset(FI) != -1);
    481     MachineMemOperand *MMO =
    482       MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FI),
    483                               Flags, MFI.getObjectSize(FI),
    484                               MFI.getObjectAlignment(FI));
    485     NewMI->addMemOperand(MF, MMO);
    486 
    487     // FIXME: change foldMemoryOperandImpl semantics to also insert NewMI.
    488     return MBB->insert(MI, NewMI);
    489   }
    490 
    491   // Straight COPY may fold as load/store.
    492   if (!MI->isCopy() || Ops.size() != 1)
    493     return nullptr;
    494 
    495   const TargetRegisterClass *RC = canFoldCopy(MI, Ops[0]);
    496   if (!RC)
    497     return nullptr;
    498 
    499   const MachineOperand &MO = MI->getOperand(1-Ops[0]);
    500   MachineBasicBlock::iterator Pos = MI;
    501   const TargetRegisterInfo *TRI = MF.getTarget().getRegisterInfo();
    502 
    503   if (Flags == MachineMemOperand::MOStore)
    504     storeRegToStackSlot(*MBB, Pos, MO.getReg(), MO.isKill(), FI, RC, TRI);
    505   else
    506     loadRegFromStackSlot(*MBB, Pos, MO.getReg(), FI, RC, TRI);
    507   return --Pos;
    508 }
    509 
    510 /// foldMemoryOperand - Same as the previous version except it allows folding
    511 /// of any load and store from / to any address, not just from a specific
    512 /// stack slot.
    513 MachineInstr*
    514 TargetInstrInfo::foldMemoryOperand(MachineBasicBlock::iterator MI,
    515                                    const SmallVectorImpl<unsigned> &Ops,
    516                                    MachineInstr* LoadMI) const {
    517   assert(LoadMI->canFoldAsLoad() && "LoadMI isn't foldable!");
    518 #ifndef NDEBUG
    519   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
    520     assert(MI->getOperand(Ops[i]).isUse() && "Folding load into def!");
    521 #endif
    522   MachineBasicBlock &MBB = *MI->getParent();
    523   MachineFunction &MF = *MBB.getParent();
    524 
    525   // Ask the target to do the actual folding.
    526   MachineInstr *NewMI = nullptr;
    527   int FrameIndex = 0;
    528 
    529   if ((MI->getOpcode() == TargetOpcode::STACKMAP ||
    530        MI->getOpcode() == TargetOpcode::PATCHPOINT) &&
    531       isLoadFromStackSlot(LoadMI, FrameIndex)) {
    532     // Fold stackmap/patchpoint.
    533     NewMI = foldPatchpoint(MF, MI, Ops, FrameIndex, *this);
    534   } else {
    535     // Ask the target to do the actual folding.
    536     NewMI = foldMemoryOperandImpl(MF, MI, Ops, LoadMI);
    537   }
    538 
    539   if (!NewMI) return nullptr;
    540 
    541   NewMI = MBB.insert(MI, NewMI);
    542 
    543   // Copy the memoperands from the load to the folded instruction.
    544   if (MI->memoperands_empty()) {
    545     NewMI->setMemRefs(LoadMI->memoperands_begin(),
    546                       LoadMI->memoperands_end());
    547   }
    548   else {
    549     // Handle the rare case of folding multiple loads.
    550     NewMI->setMemRefs(MI->memoperands_begin(),
    551                       MI->memoperands_end());
    552     for (MachineInstr::mmo_iterator I = LoadMI->memoperands_begin(),
    553            E = LoadMI->memoperands_end(); I != E; ++I) {
    554       NewMI->addMemOperand(MF, *I);
    555     }
    556   }
    557   return NewMI;
    558 }
    559 
    560 bool TargetInstrInfo::
    561 isReallyTriviallyReMaterializableGeneric(const MachineInstr *MI,
    562                                          AliasAnalysis *AA) const {
    563   const MachineFunction &MF = *MI->getParent()->getParent();
    564   const MachineRegisterInfo &MRI = MF.getRegInfo();
    565   const TargetMachine &TM = MF.getTarget();
    566   const TargetInstrInfo &TII = *TM.getInstrInfo();
    567 
    568   // Remat clients assume operand 0 is the defined register.
    569   if (!MI->getNumOperands() || !MI->getOperand(0).isReg())
    570     return false;
    571   unsigned DefReg = MI->getOperand(0).getReg();
    572 
    573   // A sub-register definition can only be rematerialized if the instruction
    574   // doesn't read the other parts of the register.  Otherwise it is really a
    575   // read-modify-write operation on the full virtual register which cannot be
    576   // moved safely.
    577   if (TargetRegisterInfo::isVirtualRegister(DefReg) &&
    578       MI->getOperand(0).getSubReg() && MI->readsVirtualRegister(DefReg))
    579     return false;
    580 
    581   // A load from a fixed stack slot can be rematerialized. This may be
    582   // redundant with subsequent checks, but it's target-independent,
    583   // simple, and a common case.
    584   int FrameIdx = 0;
    585   if (TII.isLoadFromStackSlot(MI, FrameIdx) &&
    586       MF.getFrameInfo()->isImmutableObjectIndex(FrameIdx))
    587     return true;
    588 
    589   // Avoid instructions obviously unsafe for remat.
    590   if (MI->isNotDuplicable() || MI->mayStore() ||
    591       MI->hasUnmodeledSideEffects())
    592     return false;
    593 
    594   // Don't remat inline asm. We have no idea how expensive it is
    595   // even if it's side effect free.
    596   if (MI->isInlineAsm())
    597     return false;
    598 
    599   // Avoid instructions which load from potentially varying memory.
    600   if (MI->mayLoad() && !MI->isInvariantLoad(AA))
    601     return false;
    602 
    603   // If any of the registers accessed are non-constant, conservatively assume
    604   // the instruction is not rematerializable.
    605   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    606     const MachineOperand &MO = MI->getOperand(i);
    607     if (!MO.isReg()) continue;
    608     unsigned Reg = MO.getReg();
    609     if (Reg == 0)
    610       continue;
    611 
    612     // Check for a well-behaved physical register.
    613     if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
    614       if (MO.isUse()) {
    615         // If the physreg has no defs anywhere, it's just an ambient register
    616         // and we can freely move its uses. Alternatively, if it's allocatable,
    617         // it could get allocated to something with a def during allocation.
    618         if (!MRI.isConstantPhysReg(Reg, MF))
    619           return false;
    620       } else {
    621         // A physreg def. We can't remat it.
    622         return false;
    623       }
    624       continue;
    625     }
    626 
    627     // Only allow one virtual-register def.  There may be multiple defs of the
    628     // same virtual register, though.
    629     if (MO.isDef() && Reg != DefReg)
    630       return false;
    631 
    632     // Don't allow any virtual-register uses. Rematting an instruction with
    633     // virtual register uses would length the live ranges of the uses, which
    634     // is not necessarily a good idea, certainly not "trivial".
    635     if (MO.isUse())
    636       return false;
    637   }
    638 
    639   // Everything checked out.
    640   return true;
    641 }
    642 
    643 /// isSchedulingBoundary - Test if the given instruction should be
    644 /// considered a scheduling boundary. This primarily includes labels
    645 /// and terminators.
    646 bool TargetInstrInfo::isSchedulingBoundary(const MachineInstr *MI,
    647                                            const MachineBasicBlock *MBB,
    648                                            const MachineFunction &MF) const {
    649   // Terminators and labels can't be scheduled around.
    650   if (MI->isTerminator() || MI->isPosition())
    651     return true;
    652 
    653   // Don't attempt to schedule around any instruction that defines
    654   // a stack-oriented pointer, as it's unlikely to be profitable. This
    655   // saves compile time, because it doesn't require every single
    656   // stack slot reference to depend on the instruction that does the
    657   // modification.
    658   const TargetLowering &TLI = *MF.getTarget().getTargetLowering();
    659   const TargetRegisterInfo *TRI = MF.getTarget().getRegisterInfo();
    660   if (MI->modifiesRegister(TLI.getStackPointerRegisterToSaveRestore(), TRI))
    661     return true;
    662 
    663   return false;
    664 }
    665 
    666 // Provide a global flag for disabling the PreRA hazard recognizer that targets
    667 // may choose to honor.
    668 bool TargetInstrInfo::usePreRAHazardRecognizer() const {
    669   return !DisableHazardRecognizer;
    670 }
    671 
    672 // Default implementation of CreateTargetRAHazardRecognizer.
    673 ScheduleHazardRecognizer *TargetInstrInfo::
    674 CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
    675                              const ScheduleDAG *DAG) const {
    676   // Dummy hazard recognizer allows all instructions to issue.
    677   return new ScheduleHazardRecognizer();
    678 }
    679 
    680 // Default implementation of CreateTargetMIHazardRecognizer.
    681 ScheduleHazardRecognizer *TargetInstrInfo::
    682 CreateTargetMIHazardRecognizer(const InstrItineraryData *II,
    683                                const ScheduleDAG *DAG) const {
    684   return (ScheduleHazardRecognizer *)
    685     new ScoreboardHazardRecognizer(II, DAG, "misched");
    686 }
    687 
    688 // Default implementation of CreateTargetPostRAHazardRecognizer.
    689 ScheduleHazardRecognizer *TargetInstrInfo::
    690 CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
    691                                    const ScheduleDAG *DAG) const {
    692   return (ScheduleHazardRecognizer *)
    693     new ScoreboardHazardRecognizer(II, DAG, "post-RA-sched");
    694 }
    695 
    696 //===----------------------------------------------------------------------===//
    697 //  SelectionDAG latency interface.
    698 //===----------------------------------------------------------------------===//
    699 
    700 int
    701 TargetInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
    702                                    SDNode *DefNode, unsigned DefIdx,
    703                                    SDNode *UseNode, unsigned UseIdx) const {
    704   if (!ItinData || ItinData->isEmpty())
    705     return -1;
    706 
    707   if (!DefNode->isMachineOpcode())
    708     return -1;
    709 
    710   unsigned DefClass = get(DefNode->getMachineOpcode()).getSchedClass();
    711   if (!UseNode->isMachineOpcode())
    712     return ItinData->getOperandCycle(DefClass, DefIdx);
    713   unsigned UseClass = get(UseNode->getMachineOpcode()).getSchedClass();
    714   return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
    715 }
    716 
    717 int TargetInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
    718                                      SDNode *N) const {
    719   if (!ItinData || ItinData->isEmpty())
    720     return 1;
    721 
    722   if (!N->isMachineOpcode())
    723     return 1;
    724 
    725   return ItinData->getStageLatency(get(N->getMachineOpcode()).getSchedClass());
    726 }
    727 
    728 //===----------------------------------------------------------------------===//
    729 //  MachineInstr latency interface.
    730 //===----------------------------------------------------------------------===//
    731 
    732 unsigned
    733 TargetInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData,
    734                                 const MachineInstr *MI) const {
    735   if (!ItinData || ItinData->isEmpty())
    736     return 1;
    737 
    738   unsigned Class = MI->getDesc().getSchedClass();
    739   int UOps = ItinData->Itineraries[Class].NumMicroOps;
    740   if (UOps >= 0)
    741     return UOps;
    742 
    743   // The # of u-ops is dynamically determined. The specific target should
    744   // override this function to return the right number.
    745   return 1;
    746 }
    747 
    748 /// Return the default expected latency for a def based on it's opcode.
    749 unsigned TargetInstrInfo::defaultDefLatency(const MCSchedModel *SchedModel,
    750                                             const MachineInstr *DefMI) const {
    751   if (DefMI->isTransient())
    752     return 0;
    753   if (DefMI->mayLoad())
    754     return SchedModel->LoadLatency;
    755   if (isHighLatencyDef(DefMI->getOpcode()))
    756     return SchedModel->HighLatency;
    757   return 1;
    758 }
    759 
    760 unsigned TargetInstrInfo::getPredicationCost(const MachineInstr *) const {
    761   return 0;
    762 }
    763 
    764 unsigned TargetInstrInfo::
    765 getInstrLatency(const InstrItineraryData *ItinData,
    766                 const MachineInstr *MI,
    767                 unsigned *PredCost) const {
    768   // Default to one cycle for no itinerary. However, an "empty" itinerary may
    769   // still have a MinLatency property, which getStageLatency checks.
    770   if (!ItinData)
    771     return MI->mayLoad() ? 2 : 1;
    772 
    773   return ItinData->getStageLatency(MI->getDesc().getSchedClass());
    774 }
    775 
    776 bool TargetInstrInfo::hasLowDefLatency(const InstrItineraryData *ItinData,
    777                                        const MachineInstr *DefMI,
    778                                        unsigned DefIdx) const {
    779   if (!ItinData || ItinData->isEmpty())
    780     return false;
    781 
    782   unsigned DefClass = DefMI->getDesc().getSchedClass();
    783   int DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
    784   return (DefCycle != -1 && DefCycle <= 1);
    785 }
    786 
    787 /// Both DefMI and UseMI must be valid.  By default, call directly to the
    788 /// itinerary. This may be overriden by the target.
    789 int TargetInstrInfo::
    790 getOperandLatency(const InstrItineraryData *ItinData,
    791                   const MachineInstr *DefMI, unsigned DefIdx,
    792                   const MachineInstr *UseMI, unsigned UseIdx) const {
    793   unsigned DefClass = DefMI->getDesc().getSchedClass();
    794   unsigned UseClass = UseMI->getDesc().getSchedClass();
    795   return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
    796 }
    797 
    798 /// If we can determine the operand latency from the def only, without itinerary
    799 /// lookup, do so. Otherwise return -1.
    800 int TargetInstrInfo::computeDefOperandLatency(
    801   const InstrItineraryData *ItinData,
    802   const MachineInstr *DefMI) const {
    803 
    804   // Let the target hook getInstrLatency handle missing itineraries.
    805   if (!ItinData)
    806     return getInstrLatency(ItinData, DefMI);
    807 
    808   if(ItinData->isEmpty())
    809     return defaultDefLatency(ItinData->SchedModel, DefMI);
    810 
    811   // ...operand lookup required
    812   return -1;
    813 }
    814 
    815 /// computeOperandLatency - Compute and return the latency of the given data
    816 /// dependent def and use when the operand indices are already known. UseMI may
    817 /// be NULL for an unknown use.
    818 ///
    819 /// FindMin may be set to get the minimum vs. expected latency. Minimum
    820 /// latency is used for scheduling groups, while expected latency is for
    821 /// instruction cost and critical path.
    822 ///
    823 /// Depending on the subtarget's itinerary properties, this may or may not need
    824 /// to call getOperandLatency(). For most subtargets, we don't need DefIdx or
    825 /// UseIdx to compute min latency.
    826 unsigned TargetInstrInfo::
    827 computeOperandLatency(const InstrItineraryData *ItinData,
    828                       const MachineInstr *DefMI, unsigned DefIdx,
    829                       const MachineInstr *UseMI, unsigned UseIdx) const {
    830 
    831   int DefLatency = computeDefOperandLatency(ItinData, DefMI);
    832   if (DefLatency >= 0)
    833     return DefLatency;
    834 
    835   assert(ItinData && !ItinData->isEmpty() && "computeDefOperandLatency fail");
    836 
    837   int OperLatency = 0;
    838   if (UseMI)
    839     OperLatency = getOperandLatency(ItinData, DefMI, DefIdx, UseMI, UseIdx);
    840   else {
    841     unsigned DefClass = DefMI->getDesc().getSchedClass();
    842     OperLatency = ItinData->getOperandCycle(DefClass, DefIdx);
    843   }
    844   if (OperLatency >= 0)
    845     return OperLatency;
    846 
    847   // No operand latency was found.
    848   unsigned InstrLatency = getInstrLatency(ItinData, DefMI);
    849 
    850   // Expected latency is the max of the stage latency and itinerary props.
    851   InstrLatency = std::max(InstrLatency,
    852                           defaultDefLatency(ItinData->SchedModel, DefMI));
    853   return InstrLatency;
    854 }
    855