Home | History | Annotate | Download | only in quick
      1 /*
      2  * Copyright (C) 2011 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #include "mir_to_lir-inl.h"
     18 
     19 #include "base/bit_vector-inl.h"
     20 #include "dex/mir_graph.h"
     21 #include "driver/compiler_driver.h"
     22 #include "driver/compiler_options.h"
     23 #include "driver/dex_compilation_unit.h"
     24 #include "dex_file-inl.h"
     25 #include "gc_map.h"
     26 #include "gc_map_builder.h"
     27 #include "mapping_table.h"
     28 #include "dex/quick/dex_file_method_inliner.h"
     29 #include "dex/quick/dex_file_to_method_inliner_map.h"
     30 #include "dex/verification_results.h"
     31 #include "dex/verified_method.h"
     32 #include "utils/dex_cache_arrays_layout-inl.h"
     33 #include "verifier/dex_gc_map.h"
     34 #include "verifier/method_verifier.h"
     35 #include "vmap_table.h"
     36 
     37 namespace art {
     38 
     39 namespace {
     40 
     41 /* Dump a mapping table */
     42 template <typename It>
     43 void DumpMappingTable(const char* table_name, const char* descriptor, const char* name,
     44                       const Signature& signature, uint32_t size, It first) {
     45   if (size != 0) {
     46     std::string line(StringPrintf("\n  %s %s%s_%s_table[%u] = {", table_name,
     47                      descriptor, name, signature.ToString().c_str(), size));
     48     std::replace(line.begin(), line.end(), ';', '_');
     49     LOG(INFO) << line;
     50     for (uint32_t i = 0; i != size; ++i) {
     51       line = StringPrintf("    {0x%05x, 0x%04x},", first.NativePcOffset(), first.DexPc());
     52       ++first;
     53       LOG(INFO) << line;
     54     }
     55     LOG(INFO) <<"  };\n\n";
     56   }
     57 }
     58 
     59 }  // anonymous namespace
     60 
     61 bool Mir2Lir::IsInexpensiveConstant(RegLocation rl_src) {
     62   bool res = false;
     63   if (rl_src.is_const) {
     64     if (rl_src.wide) {
     65       // For wide registers, check whether we're the high partner. In that case we need to switch
     66       // to the lower one for the correct value.
     67       if (rl_src.high_word) {
     68         rl_src.high_word = false;
     69         rl_src.s_reg_low--;
     70         rl_src.orig_sreg--;
     71       }
     72       if (rl_src.fp) {
     73         res = InexpensiveConstantDouble(mir_graph_->ConstantValueWide(rl_src));
     74       } else {
     75         res = InexpensiveConstantLong(mir_graph_->ConstantValueWide(rl_src));
     76       }
     77     } else {
     78       if (rl_src.fp) {
     79         res = InexpensiveConstantFloat(mir_graph_->ConstantValue(rl_src));
     80       } else {
     81         res = InexpensiveConstantInt(mir_graph_->ConstantValue(rl_src));
     82       }
     83     }
     84   }
     85   return res;
     86 }
     87 
     88 void Mir2Lir::MarkSafepointPC(LIR* inst) {
     89   DCHECK(!inst->flags.use_def_invalid);
     90   inst->u.m.def_mask = &kEncodeAll;
     91   LIR* safepoint_pc = NewLIR0(kPseudoSafepointPC);
     92   DCHECK(safepoint_pc->u.m.def_mask->Equals(kEncodeAll));
     93   DCHECK(current_mir_ != nullptr || (current_dalvik_offset_ == 0 && safepoints_.empty()));
     94   safepoints_.emplace_back(safepoint_pc, current_mir_);
     95 }
     96 
     97 void Mir2Lir::MarkSafepointPCAfter(LIR* after) {
     98   DCHECK(!after->flags.use_def_invalid);
     99   after->u.m.def_mask = &kEncodeAll;
    100   // As NewLIR0 uses Append, we need to create the LIR by hand.
    101   LIR* safepoint_pc = RawLIR(current_dalvik_offset_, kPseudoSafepointPC);
    102   if (after->next == nullptr) {
    103     DCHECK_EQ(after, last_lir_insn_);
    104     AppendLIR(safepoint_pc);
    105   } else {
    106     InsertLIRAfter(after, safepoint_pc);
    107   }
    108   DCHECK(safepoint_pc->u.m.def_mask->Equals(kEncodeAll));
    109   DCHECK(current_mir_ != nullptr || (current_dalvik_offset_ == 0 && safepoints_.empty()));
    110   safepoints_.emplace_back(safepoint_pc, current_mir_);
    111 }
    112 
    113 /* Remove a LIR from the list. */
    114 void Mir2Lir::UnlinkLIR(LIR* lir) {
    115   if (UNLIKELY(lir == first_lir_insn_)) {
    116     first_lir_insn_ = lir->next;
    117     if (lir->next != nullptr) {
    118       lir->next->prev = nullptr;
    119     } else {
    120       DCHECK(lir->next == nullptr);
    121       DCHECK(lir == last_lir_insn_);
    122       last_lir_insn_ = nullptr;
    123     }
    124   } else if (lir == last_lir_insn_) {
    125     last_lir_insn_ = lir->prev;
    126     lir->prev->next = nullptr;
    127   } else if ((lir->prev != nullptr) && (lir->next != nullptr)) {
    128     lir->prev->next = lir->next;
    129     lir->next->prev = lir->prev;
    130   }
    131 }
    132 
    133 /* Convert an instruction to a NOP */
    134 void Mir2Lir::NopLIR(LIR* lir) {
    135   lir->flags.is_nop = true;
    136   if (!cu_->verbose) {
    137     UnlinkLIR(lir);
    138   }
    139 }
    140 
    141 void Mir2Lir::SetMemRefType(LIR* lir, bool is_load, int mem_type) {
    142   DCHECK(GetTargetInstFlags(lir->opcode) & (IS_LOAD | IS_STORE));
    143   DCHECK(!lir->flags.use_def_invalid);
    144   // TODO: Avoid the extra Arena allocation!
    145   const ResourceMask** mask_ptr;
    146   ResourceMask mask;
    147   if (is_load) {
    148     mask_ptr = &lir->u.m.use_mask;
    149   } else {
    150     mask_ptr = &lir->u.m.def_mask;
    151   }
    152   mask = **mask_ptr;
    153   /* Clear out the memref flags */
    154   mask.ClearBits(kEncodeMem);
    155   /* ..and then add back the one we need */
    156   switch (mem_type) {
    157     case ResourceMask::kLiteral:
    158       DCHECK(is_load);
    159       mask.SetBit(ResourceMask::kLiteral);
    160       break;
    161     case ResourceMask::kDalvikReg:
    162       mask.SetBit(ResourceMask::kDalvikReg);
    163       break;
    164     case ResourceMask::kHeapRef:
    165       mask.SetBit(ResourceMask::kHeapRef);
    166       break;
    167     case ResourceMask::kMustNotAlias:
    168       /* Currently only loads can be marked as kMustNotAlias */
    169       DCHECK(!(GetTargetInstFlags(lir->opcode) & IS_STORE));
    170       mask.SetBit(ResourceMask::kMustNotAlias);
    171       break;
    172     default:
    173       LOG(FATAL) << "Oat: invalid memref kind - " << mem_type;
    174   }
    175   *mask_ptr = mask_cache_.GetMask(mask);
    176 }
    177 
    178 /*
    179  * Mark load/store instructions that access Dalvik registers through the stack.
    180  */
    181 void Mir2Lir::AnnotateDalvikRegAccess(LIR* lir, int reg_id, bool is_load,
    182                                       bool is64bit) {
    183   DCHECK((is_load ? lir->u.m.use_mask : lir->u.m.def_mask)->Intersection(kEncodeMem).Equals(
    184       kEncodeDalvikReg));
    185 
    186   /*
    187    * Store the Dalvik register id in alias_info. Mark the MSB if it is a 64-bit
    188    * access.
    189    */
    190   lir->flags.alias_info = ENCODE_ALIAS_INFO(reg_id, is64bit);
    191 }
    192 
    193 /*
    194  * Debugging macros
    195  */
    196 #define DUMP_RESOURCE_MASK(X)
    197 
    198 /* Pretty-print a LIR instruction */
    199 void Mir2Lir::DumpLIRInsn(LIR* lir, unsigned char* base_addr) {
    200   int offset = lir->offset;
    201   int dest = lir->operands[0];
    202   const bool dump_nop = (cu_->enable_debug & (1 << kDebugShowNops));
    203 
    204   /* Handle pseudo-ops individually, and all regular insns as a group */
    205   switch (lir->opcode) {
    206     case kPseudoPrologueBegin:
    207       LOG(INFO) << "-------- PrologueBegin";
    208       break;
    209     case kPseudoPrologueEnd:
    210       LOG(INFO) << "-------- PrologueEnd";
    211       break;
    212     case kPseudoEpilogueBegin:
    213       LOG(INFO) << "-------- EpilogueBegin";
    214       break;
    215     case kPseudoEpilogueEnd:
    216       LOG(INFO) << "-------- EpilogueEnd";
    217       break;
    218     case kPseudoBarrier:
    219       LOG(INFO) << "-------- BARRIER";
    220       break;
    221     case kPseudoEntryBlock:
    222       LOG(INFO) << "-------- entry offset: 0x" << std::hex << dest;
    223       break;
    224     case kPseudoDalvikByteCodeBoundary:
    225       if (lir->operands[0] == 0) {
    226          // NOTE: only used for debug listings.
    227          lir->operands[0] = WrapPointer(ArenaStrdup("No instruction string"));
    228       }
    229       LOG(INFO) << "-------- dalvik offset: 0x" << std::hex
    230                 << lir->dalvik_offset << " @ "
    231                 << UnwrapPointer<char>(lir->operands[0]);
    232       break;
    233     case kPseudoExitBlock:
    234       LOG(INFO) << "-------- exit offset: 0x" << std::hex << dest;
    235       break;
    236     case kPseudoPseudoAlign4:
    237       LOG(INFO) << reinterpret_cast<uintptr_t>(base_addr) + offset << " (0x" << std::hex
    238                 << offset << "): .align4";
    239       break;
    240     case kPseudoEHBlockLabel:
    241       LOG(INFO) << "Exception_Handling:";
    242       break;
    243     case kPseudoTargetLabel:
    244     case kPseudoNormalBlockLabel:
    245       LOG(INFO) << "L" << reinterpret_cast<void*>(lir) << ":";
    246       break;
    247     case kPseudoThrowTarget:
    248       LOG(INFO) << "LT" << reinterpret_cast<void*>(lir) << ":";
    249       break;
    250     case kPseudoIntrinsicRetry:
    251       LOG(INFO) << "IR" << reinterpret_cast<void*>(lir) << ":";
    252       break;
    253     case kPseudoSuspendTarget:
    254       LOG(INFO) << "LS" << reinterpret_cast<void*>(lir) << ":";
    255       break;
    256     case kPseudoSafepointPC:
    257       LOG(INFO) << "LsafepointPC_0x" << std::hex << lir->offset << "_" << lir->dalvik_offset << ":";
    258       break;
    259     case kPseudoExportedPC:
    260       LOG(INFO) << "LexportedPC_0x" << std::hex << lir->offset << "_" << lir->dalvik_offset << ":";
    261       break;
    262     case kPseudoCaseLabel:
    263       LOG(INFO) << "LC" << reinterpret_cast<void*>(lir) << ": Case target 0x"
    264                 << std::hex << lir->operands[0] << "|" << std::dec <<
    265         lir->operands[0];
    266       break;
    267     default:
    268       if (lir->flags.is_nop && !dump_nop) {
    269         break;
    270       } else {
    271         std::string op_name(BuildInsnString(GetTargetInstName(lir->opcode),
    272                                                lir, base_addr));
    273         std::string op_operands(BuildInsnString(GetTargetInstFmt(lir->opcode),
    274                                                     lir, base_addr));
    275         LOG(INFO) << StringPrintf("%5p|0x%02x: %-9s%s%s",
    276                                   base_addr + offset,
    277                                   lir->dalvik_offset,
    278                                   op_name.c_str(), op_operands.c_str(),
    279                                   lir->flags.is_nop ? "(nop)" : "");
    280       }
    281       break;
    282   }
    283 
    284   if (lir->u.m.use_mask && (!lir->flags.is_nop || dump_nop)) {
    285     DUMP_RESOURCE_MASK(DumpResourceMask(lir, *lir->u.m.use_mask, "use"));
    286   }
    287   if (lir->u.m.def_mask && (!lir->flags.is_nop || dump_nop)) {
    288     DUMP_RESOURCE_MASK(DumpResourceMask(lir, *lir->u.m.def_mask, "def"));
    289   }
    290 }
    291 
    292 void Mir2Lir::DumpPromotionMap() {
    293   uint32_t num_regs = mir_graph_->GetNumOfCodeAndTempVRs();
    294   for (uint32_t i = 0; i < num_regs; i++) {
    295     PromotionMap v_reg_map = promotion_map_[i];
    296     std::string buf;
    297     if (v_reg_map.fp_location == kLocPhysReg) {
    298       StringAppendF(&buf, " : s%d", RegStorage::RegNum(v_reg_map.fp_reg));
    299     }
    300 
    301     std::string buf3;
    302     if (i < mir_graph_->GetNumOfCodeVRs()) {
    303       StringAppendF(&buf3, "%02d", i);
    304     } else if (i == mir_graph_->GetNumOfCodeVRs()) {
    305       buf3 = "Method*";
    306     } else {
    307       uint32_t diff = i - mir_graph_->GetNumOfCodeVRs();
    308       StringAppendF(&buf3, "ct%d", diff);
    309     }
    310 
    311     LOG(INFO) << StringPrintf("V[%s] -> %s%d%s", buf3.c_str(),
    312                               v_reg_map.core_location == kLocPhysReg ?
    313                               "r" : "SP+", v_reg_map.core_location == kLocPhysReg ?
    314                               v_reg_map.core_reg : SRegOffset(i),
    315                               buf.c_str());
    316   }
    317 }
    318 
    319 void Mir2Lir::UpdateLIROffsets() {
    320   // Only used for code listings.
    321   size_t offset = 0;
    322   for (LIR* lir = first_lir_insn_; lir != nullptr; lir = lir->next) {
    323     lir->offset = offset;
    324     if (!lir->flags.is_nop && !IsPseudoLirOp(lir->opcode)) {
    325       offset += GetInsnSize(lir);
    326     } else if (lir->opcode == kPseudoPseudoAlign4) {
    327       offset += (offset & 0x2);
    328     }
    329   }
    330 }
    331 
    332 void Mir2Lir::MarkGCCard(int opt_flags, RegStorage val_reg, RegStorage tgt_addr_reg) {
    333   DCHECK(val_reg.Valid());
    334   DCHECK_EQ(val_reg.Is64Bit(), cu_->target64);
    335   if ((opt_flags & MIR_STORE_NON_NULL_VALUE) != 0) {
    336     UnconditionallyMarkGCCard(tgt_addr_reg);
    337   } else {
    338     LIR* branch_over = OpCmpImmBranch(kCondEq, val_reg, 0, nullptr);
    339     UnconditionallyMarkGCCard(tgt_addr_reg);
    340     LIR* target = NewLIR0(kPseudoTargetLabel);
    341     branch_over->target = target;
    342   }
    343 }
    344 
    345 /* Dump instructions and constant pool contents */
    346 void Mir2Lir::CodegenDump() {
    347   LOG(INFO) << "Dumping LIR insns for "
    348             << PrettyMethod(cu_->method_idx, *cu_->dex_file);
    349   LIR* lir_insn;
    350   int insns_size = mir_graph_->GetNumDalvikInsns();
    351 
    352   LOG(INFO) << "Regs (excluding ins) : " << mir_graph_->GetNumOfLocalCodeVRs();
    353   LOG(INFO) << "Ins          : " << mir_graph_->GetNumOfInVRs();
    354   LOG(INFO) << "Outs         : " << mir_graph_->GetNumOfOutVRs();
    355   LOG(INFO) << "CoreSpills       : " << num_core_spills_;
    356   LOG(INFO) << "FPSpills       : " << num_fp_spills_;
    357   LOG(INFO) << "CompilerTemps    : " << mir_graph_->GetNumUsedCompilerTemps();
    358   LOG(INFO) << "Frame size       : " << frame_size_;
    359   LOG(INFO) << "code size is " << total_size_ <<
    360     " bytes, Dalvik size is " << insns_size * 2;
    361   LOG(INFO) << "expansion factor: "
    362             << static_cast<float>(total_size_) / static_cast<float>(insns_size * 2);
    363   DumpPromotionMap();
    364   UpdateLIROffsets();
    365   for (lir_insn = first_lir_insn_; lir_insn != nullptr; lir_insn = lir_insn->next) {
    366     DumpLIRInsn(lir_insn, 0);
    367   }
    368   for (lir_insn = literal_list_; lir_insn != nullptr; lir_insn = lir_insn->next) {
    369     LOG(INFO) << StringPrintf("%x (%04x): .word (%#x)", lir_insn->offset, lir_insn->offset,
    370                               lir_insn->operands[0]);
    371   }
    372 
    373   const DexFile::MethodId& method_id =
    374       cu_->dex_file->GetMethodId(cu_->method_idx);
    375   const Signature signature = cu_->dex_file->GetMethodSignature(method_id);
    376   const char* name = cu_->dex_file->GetMethodName(method_id);
    377   const char* descriptor(cu_->dex_file->GetMethodDeclaringClassDescriptor(method_id));
    378 
    379   // Dump mapping tables
    380   if (!encoded_mapping_table_.empty()) {
    381     MappingTable table(&encoded_mapping_table_[0]);
    382     DumpMappingTable("PC2Dex_MappingTable", descriptor, name, signature,
    383                      table.PcToDexSize(), table.PcToDexBegin());
    384     DumpMappingTable("Dex2PC_MappingTable", descriptor, name, signature,
    385                      table.DexToPcSize(), table.DexToPcBegin());
    386   }
    387 }
    388 
    389 /*
    390  * Search the existing constants in the literal pool for an exact or close match
    391  * within specified delta (greater or equal to 0).
    392  */
    393 LIR* Mir2Lir::ScanLiteralPool(LIR* data_target, int value, unsigned int delta) {
    394   while (data_target) {
    395     if ((static_cast<unsigned>(value - data_target->operands[0])) <= delta)
    396       return data_target;
    397     data_target = data_target->next;
    398   }
    399   return nullptr;
    400 }
    401 
    402 /* Search the existing constants in the literal pool for an exact wide match */
    403 LIR* Mir2Lir::ScanLiteralPoolWide(LIR* data_target, int val_lo, int val_hi) {
    404   bool lo_match = false;
    405   LIR* lo_target = nullptr;
    406   while (data_target) {
    407     if (lo_match && (data_target->operands[0] == val_hi)) {
    408       // Record high word in case we need to expand this later.
    409       lo_target->operands[1] = val_hi;
    410       return lo_target;
    411     }
    412     lo_match = false;
    413     if (data_target->operands[0] == val_lo) {
    414       lo_match = true;
    415       lo_target = data_target;
    416     }
    417     data_target = data_target->next;
    418   }
    419   return nullptr;
    420 }
    421 
    422 /* Search the existing constants in the literal pool for an exact method match */
    423 LIR* Mir2Lir::ScanLiteralPoolMethod(LIR* data_target, const MethodReference& method) {
    424   while (data_target) {
    425     if (static_cast<uint32_t>(data_target->operands[0]) == method.dex_method_index &&
    426         UnwrapPointer<DexFile>(data_target->operands[1]) == method.dex_file) {
    427       return data_target;
    428     }
    429     data_target = data_target->next;
    430   }
    431   return nullptr;
    432 }
    433 
    434 /* Search the existing constants in the literal pool for an exact class match */
    435 LIR* Mir2Lir::ScanLiteralPoolClass(LIR* data_target, const DexFile& dex_file, uint32_t type_idx) {
    436   while (data_target) {
    437     if (static_cast<uint32_t>(data_target->operands[0]) == type_idx &&
    438         UnwrapPointer<DexFile>(data_target->operands[1]) == &dex_file) {
    439       return data_target;
    440     }
    441     data_target = data_target->next;
    442   }
    443   return nullptr;
    444 }
    445 
    446 /*
    447  * The following are building blocks to insert constants into the pool or
    448  * instruction streams.
    449  */
    450 
    451 /* Add a 32-bit constant to the constant pool */
    452 LIR* Mir2Lir::AddWordData(LIR* *constant_list_p, int value) {
    453   /* Add the constant to the literal pool */
    454   if (constant_list_p) {
    455     LIR* new_value = static_cast<LIR*>(arena_->Alloc(sizeof(LIR), kArenaAllocData));
    456     new_value->operands[0] = value;
    457     new_value->next = *constant_list_p;
    458     *constant_list_p = new_value;
    459     estimated_native_code_size_ += sizeof(value);
    460     return new_value;
    461   }
    462   return nullptr;
    463 }
    464 
    465 /* Add a 64-bit constant to the constant pool or mixed with code */
    466 LIR* Mir2Lir::AddWideData(LIR* *constant_list_p, int val_lo, int val_hi) {
    467   AddWordData(constant_list_p, val_hi);
    468   return AddWordData(constant_list_p, val_lo);
    469 }
    470 
    471 /**
    472  * @brief Push a compressed reference which needs patching at link/patchoat-time.
    473  * @details This needs to be kept consistent with the code which actually does the patching in
    474  *   oat_writer.cc and in the patchoat tool.
    475  */
    476 static void PushUnpatchedReference(CodeBuffer* buf) {
    477   // Note that we can safely initialize the patches to zero. The code deduplication mechanism takes
    478   // the patches into account when determining whether two pieces of codes are functionally
    479   // equivalent.
    480   Push32(buf, UINT32_C(0));
    481 }
    482 
    483 static void AlignBuffer(CodeBuffer* buf, size_t offset) {
    484   DCHECK_LE(buf->size(), offset);
    485   buf->insert(buf->end(), offset - buf->size(), 0u);
    486 }
    487 
    488 /* Write the literal pool to the output stream */
    489 void Mir2Lir::InstallLiteralPools() {
    490   AlignBuffer(&code_buffer_, data_offset_);
    491   LIR* data_lir = literal_list_;
    492   while (data_lir != nullptr) {
    493     Push32(&code_buffer_, data_lir->operands[0]);
    494     data_lir = NEXT_LIR(data_lir);
    495   }
    496   // TODO: patches_.reserve() as needed.
    497   // Push code and method literals, record offsets for the compiler to patch.
    498   data_lir = code_literal_list_;
    499   while (data_lir != nullptr) {
    500     uint32_t target_method_idx = data_lir->operands[0];
    501     const DexFile* target_dex_file = UnwrapPointer<DexFile>(data_lir->operands[1]);
    502     patches_.push_back(LinkerPatch::CodePatch(code_buffer_.size(),
    503                                               target_dex_file, target_method_idx));
    504     PushUnpatchedReference(&code_buffer_);
    505     data_lir = NEXT_LIR(data_lir);
    506   }
    507   data_lir = method_literal_list_;
    508   while (data_lir != nullptr) {
    509     uint32_t target_method_idx = data_lir->operands[0];
    510     const DexFile* target_dex_file = UnwrapPointer<DexFile>(data_lir->operands[1]);
    511     patches_.push_back(LinkerPatch::MethodPatch(code_buffer_.size(),
    512                                                 target_dex_file, target_method_idx));
    513     PushUnpatchedReference(&code_buffer_);
    514     data_lir = NEXT_LIR(data_lir);
    515   }
    516   // Push class literals.
    517   data_lir = class_literal_list_;
    518   while (data_lir != nullptr) {
    519     uint32_t target_type_idx = data_lir->operands[0];
    520     const DexFile* class_dex_file = UnwrapPointer<DexFile>(data_lir->operands[1]);
    521     patches_.push_back(LinkerPatch::TypePatch(code_buffer_.size(),
    522                                               class_dex_file, target_type_idx));
    523     PushUnpatchedReference(&code_buffer_);
    524     data_lir = NEXT_LIR(data_lir);
    525   }
    526 }
    527 
    528 /* Write the switch tables to the output stream */
    529 void Mir2Lir::InstallSwitchTables() {
    530   for (Mir2Lir::SwitchTable* tab_rec : switch_tables_) {
    531     AlignBuffer(&code_buffer_, tab_rec->offset);
    532     /*
    533      * For Arm, our reference point is the address of the bx
    534      * instruction that does the launch, so we have to subtract
    535      * the auto pc-advance.  For other targets the reference point
    536      * is a label, so we can use the offset as-is.
    537      */
    538     int bx_offset = INVALID_OFFSET;
    539     switch (cu_->instruction_set) {
    540       case kThumb2:
    541         DCHECK(tab_rec->anchor->flags.fixup != kFixupNone);
    542         bx_offset = tab_rec->anchor->offset + 4;
    543         break;
    544       case kX86_64:
    545         // RIP relative to switch table.
    546         bx_offset = tab_rec->offset;
    547         break;
    548       case kX86:
    549       case kArm64:
    550       case kMips:
    551       case kMips64:
    552         bx_offset = tab_rec->anchor->offset;
    553         break;
    554       default: LOG(FATAL) << "Unexpected instruction set: " << cu_->instruction_set;
    555     }
    556     if (cu_->verbose) {
    557       LOG(INFO) << "Switch table for offset 0x" << std::hex << bx_offset;
    558     }
    559     if (tab_rec->table[0] == Instruction::kSparseSwitchSignature) {
    560       DCHECK(tab_rec->switch_mir != nullptr);
    561       BasicBlock* bb = mir_graph_->GetBasicBlock(tab_rec->switch_mir->bb);
    562       DCHECK(bb != nullptr);
    563       int elems = 0;
    564       for (SuccessorBlockInfo* successor_block_info : bb->successor_blocks) {
    565         int key = successor_block_info->key;
    566         int target = successor_block_info->block;
    567         LIR* boundary_lir = InsertCaseLabel(target, key);
    568         DCHECK(boundary_lir != nullptr);
    569         int disp = boundary_lir->offset - bx_offset;
    570         Push32(&code_buffer_, key);
    571         Push32(&code_buffer_, disp);
    572         if (cu_->verbose) {
    573           LOG(INFO) << "  Case[" << elems << "] key: 0x"
    574                     << std::hex << key << ", disp: 0x"
    575                     << std::hex << disp;
    576         }
    577         elems++;
    578       }
    579       DCHECK_EQ(elems, tab_rec->table[1]);
    580     } else {
    581       DCHECK_EQ(static_cast<int>(tab_rec->table[0]),
    582                 static_cast<int>(Instruction::kPackedSwitchSignature));
    583       DCHECK(tab_rec->switch_mir != nullptr);
    584       BasicBlock* bb = mir_graph_->GetBasicBlock(tab_rec->switch_mir->bb);
    585       DCHECK(bb != nullptr);
    586       int elems = 0;
    587       int low_key = s4FromSwitchData(&tab_rec->table[2]);
    588       for (SuccessorBlockInfo* successor_block_info : bb->successor_blocks) {
    589         int key = successor_block_info->key;
    590         DCHECK_EQ(elems + low_key, key);
    591         int target = successor_block_info->block;
    592         LIR* boundary_lir = InsertCaseLabel(target, key);
    593         DCHECK(boundary_lir != nullptr);
    594         int disp = boundary_lir->offset - bx_offset;
    595         Push32(&code_buffer_, disp);
    596         if (cu_->verbose) {
    597           LOG(INFO) << "  Case[" << elems << "] disp: 0x"
    598                     << std::hex << disp;
    599         }
    600         elems++;
    601       }
    602       DCHECK_EQ(elems, tab_rec->table[1]);
    603     }
    604   }
    605 }
    606 
    607 /* Write the fill array dta to the output stream */
    608 void Mir2Lir::InstallFillArrayData() {
    609   for (Mir2Lir::FillArrayData* tab_rec : fill_array_data_) {
    610     AlignBuffer(&code_buffer_, tab_rec->offset);
    611     for (int i = 0; i < (tab_rec->size + 1) / 2; i++) {
    612       code_buffer_.push_back(tab_rec->table[i] & 0xFF);
    613       code_buffer_.push_back((tab_rec->table[i] >> 8) & 0xFF);
    614     }
    615   }
    616 }
    617 
    618 static int AssignLiteralOffsetCommon(LIR* lir, CodeOffset offset) {
    619   for (; lir != nullptr; lir = lir->next) {
    620     lir->offset = offset;
    621     offset += 4;
    622   }
    623   return offset;
    624 }
    625 
    626 static int AssignLiteralPointerOffsetCommon(LIR* lir, CodeOffset offset,
    627                                             unsigned int element_size) {
    628   // Align to natural pointer size.
    629   offset = RoundUp(offset, element_size);
    630   for (; lir != nullptr; lir = lir->next) {
    631     lir->offset = offset;
    632     offset += element_size;
    633   }
    634   return offset;
    635 }
    636 
    637 // Make sure we have a code address for every declared catch entry
    638 bool Mir2Lir::VerifyCatchEntries() {
    639   MappingTable table(&encoded_mapping_table_[0]);
    640   std::vector<uint32_t> dex_pcs;
    641   dex_pcs.reserve(table.DexToPcSize());
    642   for (auto it = table.DexToPcBegin(), end = table.DexToPcEnd(); it != end; ++it) {
    643     dex_pcs.push_back(it.DexPc());
    644   }
    645   // Sort dex_pcs, so that we can quickly check it against the ordered mir_graph_->catches_.
    646   std::sort(dex_pcs.begin(), dex_pcs.end());
    647 
    648   bool success = true;
    649   auto it = dex_pcs.begin(), end = dex_pcs.end();
    650   for (uint32_t dex_pc : mir_graph_->catches_) {
    651     while (it != end && *it < dex_pc) {
    652       LOG(INFO) << "Unexpected catch entry @ dex pc 0x" << std::hex << *it;
    653       ++it;
    654       success = false;
    655     }
    656     if (it == end || *it > dex_pc) {
    657       LOG(INFO) << "Missing native PC for catch entry @ 0x" << std::hex << dex_pc;
    658       success = false;
    659     } else {
    660       ++it;
    661     }
    662   }
    663   if (!success) {
    664     LOG(INFO) << "Bad dex2pcMapping table in " << PrettyMethod(cu_->method_idx, *cu_->dex_file);
    665     LOG(INFO) << "Entries @ decode: " << mir_graph_->catches_.size() << ", Entries in table: "
    666               << table.DexToPcSize();
    667   }
    668   return success;
    669 }
    670 
    671 
    672 void Mir2Lir::CreateMappingTables() {
    673   bool generate_src_map = cu_->compiler_driver->GetCompilerOptions().GetGenerateDebugInfo();
    674 
    675   uint32_t pc2dex_data_size = 0u;
    676   uint32_t pc2dex_entries = 0u;
    677   uint32_t pc2dex_offset = 0u;
    678   uint32_t pc2dex_dalvik_offset = 0u;
    679   uint32_t pc2dex_src_entries = 0u;
    680   uint32_t dex2pc_data_size = 0u;
    681   uint32_t dex2pc_entries = 0u;
    682   uint32_t dex2pc_offset = 0u;
    683   uint32_t dex2pc_dalvik_offset = 0u;
    684   for (LIR* tgt_lir = first_lir_insn_; tgt_lir != nullptr; tgt_lir = NEXT_LIR(tgt_lir)) {
    685     pc2dex_src_entries++;
    686     if (!tgt_lir->flags.is_nop && (tgt_lir->opcode == kPseudoSafepointPC)) {
    687       pc2dex_entries += 1;
    688       DCHECK(pc2dex_offset <= tgt_lir->offset);
    689       pc2dex_data_size += UnsignedLeb128Size(tgt_lir->offset - pc2dex_offset);
    690       pc2dex_data_size += SignedLeb128Size(static_cast<int32_t>(tgt_lir->dalvik_offset) -
    691                                            static_cast<int32_t>(pc2dex_dalvik_offset));
    692       pc2dex_offset = tgt_lir->offset;
    693       pc2dex_dalvik_offset = tgt_lir->dalvik_offset;
    694     }
    695     if (!tgt_lir->flags.is_nop && (tgt_lir->opcode == kPseudoExportedPC)) {
    696       dex2pc_entries += 1;
    697       DCHECK(dex2pc_offset <= tgt_lir->offset);
    698       dex2pc_data_size += UnsignedLeb128Size(tgt_lir->offset - dex2pc_offset);
    699       dex2pc_data_size += SignedLeb128Size(static_cast<int32_t>(tgt_lir->dalvik_offset) -
    700                                            static_cast<int32_t>(dex2pc_dalvik_offset));
    701       dex2pc_offset = tgt_lir->offset;
    702       dex2pc_dalvik_offset = tgt_lir->dalvik_offset;
    703     }
    704   }
    705 
    706   if (generate_src_map) {
    707     src_mapping_table_.reserve(pc2dex_src_entries);
    708   }
    709 
    710   uint32_t total_entries = pc2dex_entries + dex2pc_entries;
    711   uint32_t hdr_data_size = UnsignedLeb128Size(total_entries) + UnsignedLeb128Size(pc2dex_entries);
    712   uint32_t data_size = hdr_data_size + pc2dex_data_size + dex2pc_data_size;
    713   encoded_mapping_table_.resize(data_size);
    714   uint8_t* write_pos = &encoded_mapping_table_[0];
    715   write_pos = EncodeUnsignedLeb128(write_pos, total_entries);
    716   write_pos = EncodeUnsignedLeb128(write_pos, pc2dex_entries);
    717   DCHECK_EQ(static_cast<size_t>(write_pos - &encoded_mapping_table_[0]), hdr_data_size);
    718   uint8_t* write_pos2 = write_pos + pc2dex_data_size;
    719 
    720   bool is_in_prologue_or_epilogue = false;
    721   pc2dex_offset = 0u;
    722   pc2dex_dalvik_offset = 0u;
    723   dex2pc_offset = 0u;
    724   dex2pc_dalvik_offset = 0u;
    725   for (LIR* tgt_lir = first_lir_insn_; tgt_lir != nullptr; tgt_lir = NEXT_LIR(tgt_lir)) {
    726     if (generate_src_map && !tgt_lir->flags.is_nop && tgt_lir->opcode >= 0) {
    727       if (!is_in_prologue_or_epilogue) {
    728         src_mapping_table_.push_back(SrcMapElem({tgt_lir->offset,
    729                 static_cast<int32_t>(tgt_lir->dalvik_offset)}));
    730       }
    731     }
    732     if (!tgt_lir->flags.is_nop && (tgt_lir->opcode == kPseudoSafepointPC)) {
    733       DCHECK(pc2dex_offset <= tgt_lir->offset);
    734       write_pos = EncodeUnsignedLeb128(write_pos, tgt_lir->offset - pc2dex_offset);
    735       write_pos = EncodeSignedLeb128(write_pos, static_cast<int32_t>(tgt_lir->dalvik_offset) -
    736                                      static_cast<int32_t>(pc2dex_dalvik_offset));
    737       pc2dex_offset = tgt_lir->offset;
    738       pc2dex_dalvik_offset = tgt_lir->dalvik_offset;
    739     }
    740     if (!tgt_lir->flags.is_nop && (tgt_lir->opcode == kPseudoExportedPC)) {
    741       DCHECK(dex2pc_offset <= tgt_lir->offset);
    742       write_pos2 = EncodeUnsignedLeb128(write_pos2, tgt_lir->offset - dex2pc_offset);
    743       write_pos2 = EncodeSignedLeb128(write_pos2, static_cast<int32_t>(tgt_lir->dalvik_offset) -
    744                                       static_cast<int32_t>(dex2pc_dalvik_offset));
    745       dex2pc_offset = tgt_lir->offset;
    746       dex2pc_dalvik_offset = tgt_lir->dalvik_offset;
    747     }
    748     if (tgt_lir->opcode == kPseudoPrologueBegin || tgt_lir->opcode == kPseudoEpilogueBegin) {
    749       is_in_prologue_or_epilogue = true;
    750     }
    751     if (tgt_lir->opcode == kPseudoPrologueEnd || tgt_lir->opcode == kPseudoEpilogueEnd) {
    752       is_in_prologue_or_epilogue = false;
    753     }
    754   }
    755   DCHECK_EQ(static_cast<size_t>(write_pos - &encoded_mapping_table_[0]),
    756             hdr_data_size + pc2dex_data_size);
    757   DCHECK_EQ(static_cast<size_t>(write_pos2 - &encoded_mapping_table_[0]), data_size);
    758 
    759   if (kIsDebugBuild) {
    760     CHECK(VerifyCatchEntries());
    761 
    762     // Verify the encoded table holds the expected data.
    763     MappingTable table(&encoded_mapping_table_[0]);
    764     CHECK_EQ(table.TotalSize(), total_entries);
    765     CHECK_EQ(table.PcToDexSize(), pc2dex_entries);
    766     auto it = table.PcToDexBegin();
    767     auto it2 = table.DexToPcBegin();
    768     for (LIR* tgt_lir = first_lir_insn_; tgt_lir != nullptr; tgt_lir = NEXT_LIR(tgt_lir)) {
    769       if (!tgt_lir->flags.is_nop && (tgt_lir->opcode == kPseudoSafepointPC)) {
    770         CHECK_EQ(tgt_lir->offset, it.NativePcOffset());
    771         CHECK_EQ(tgt_lir->dalvik_offset, it.DexPc());
    772         ++it;
    773       }
    774       if (!tgt_lir->flags.is_nop && (tgt_lir->opcode == kPseudoExportedPC)) {
    775         CHECK_EQ(tgt_lir->offset, it2.NativePcOffset());
    776         CHECK_EQ(tgt_lir->dalvik_offset, it2.DexPc());
    777         ++it2;
    778       }
    779     }
    780     CHECK(it == table.PcToDexEnd());
    781     CHECK(it2 == table.DexToPcEnd());
    782   }
    783 }
    784 
    785 void Mir2Lir::CreateNativeGcMap() {
    786   if (UNLIKELY((cu_->disable_opt & (1u << kPromoteRegs)) != 0u)) {
    787     // If we're not promoting to physical registers, it's safe to use the verifier's notion of
    788     // references. (We disable register promotion when type inference finds a type conflict and
    789     // in that the case we defer to the verifier to avoid using the compiler's conflicting info.)
    790     CreateNativeGcMapWithoutRegisterPromotion();
    791     return;
    792   }
    793 
    794   ArenaBitVector* references = new (arena_) ArenaBitVector(arena_, mir_graph_->GetNumSSARegs(),
    795                                                            false);
    796 
    797   // Calculate max native offset and max reference vreg.
    798   MIR* prev_mir = nullptr;
    799   int max_ref_vreg = -1;
    800   CodeOffset max_native_offset = 0u;
    801   for (const auto& entry : safepoints_) {
    802     uint32_t native_offset = entry.first->offset;
    803     max_native_offset = std::max(max_native_offset, native_offset);
    804     MIR* mir = entry.second;
    805     UpdateReferenceVRegs(mir, prev_mir, references);
    806     max_ref_vreg = std::max(max_ref_vreg, references->GetHighestBitSet());
    807     prev_mir = mir;
    808   }
    809 
    810 #if defined(BYTE_ORDER) && (BYTE_ORDER == LITTLE_ENDIAN)
    811   static constexpr bool kLittleEndian = true;
    812 #else
    813   static constexpr bool kLittleEndian = false;
    814 #endif
    815 
    816   // Build the GC map.
    817   uint32_t reg_width = static_cast<uint32_t>((max_ref_vreg + 8) / 8);
    818   GcMapBuilder native_gc_map_builder(&native_gc_map_,
    819                                      safepoints_.size(),
    820                                      max_native_offset, reg_width);
    821   if (kLittleEndian) {
    822     for (const auto& entry : safepoints_) {
    823       uint32_t native_offset = entry.first->offset;
    824       MIR* mir = entry.second;
    825       UpdateReferenceVRegs(mir, prev_mir, references);
    826       // For little-endian, the bytes comprising the bit vector's raw storage are what we need.
    827       native_gc_map_builder.AddEntry(native_offset,
    828                                      reinterpret_cast<const uint8_t*>(references->GetRawStorage()));
    829       prev_mir = mir;
    830     }
    831   } else {
    832     ArenaVector<uint8_t> references_buffer(arena_->Adapter());
    833     references_buffer.resize(reg_width);
    834     for (const auto& entry : safepoints_) {
    835       uint32_t native_offset = entry.first->offset;
    836       MIR* mir = entry.second;
    837       UpdateReferenceVRegs(mir, prev_mir, references);
    838       // Big-endian or unknown endianness, manually translate the bit vector data.
    839       const auto* raw_storage = references->GetRawStorage();
    840       for (size_t i = 0; i != reg_width; ++i) {
    841         references_buffer[i] = static_cast<uint8_t>(
    842             raw_storage[i / sizeof(raw_storage[0])] >> (8u * (i % sizeof(raw_storage[0]))));
    843       }
    844       native_gc_map_builder.AddEntry(native_offset, &references_buffer[0]);
    845       prev_mir = mir;
    846     }
    847   }
    848 }
    849 
    850 void Mir2Lir::CreateNativeGcMapWithoutRegisterPromotion() {
    851   DCHECK(!encoded_mapping_table_.empty());
    852   MappingTable mapping_table(&encoded_mapping_table_[0]);
    853   uint32_t max_native_offset = 0;
    854   for (auto it = mapping_table.PcToDexBegin(), end = mapping_table.PcToDexEnd(); it != end; ++it) {
    855     uint32_t native_offset = it.NativePcOffset();
    856     if (native_offset > max_native_offset) {
    857       max_native_offset = native_offset;
    858     }
    859   }
    860   MethodReference method_ref(cu_->dex_file, cu_->method_idx);
    861   const std::vector<uint8_t>& gc_map_raw =
    862       mir_graph_->GetCurrentDexCompilationUnit()->GetVerifiedMethod()->GetDexGcMap();
    863   verifier::DexPcToReferenceMap dex_gc_map(&(gc_map_raw)[0]);
    864   DCHECK_EQ(gc_map_raw.size(), dex_gc_map.RawSize());
    865   // Compute native offset to references size.
    866   GcMapBuilder native_gc_map_builder(&native_gc_map_,
    867                                      mapping_table.PcToDexSize(),
    868                                      max_native_offset, dex_gc_map.RegWidth());
    869 
    870   for (auto it = mapping_table.PcToDexBegin(), end = mapping_table.PcToDexEnd(); it != end; ++it) {
    871     uint32_t native_offset = it.NativePcOffset();
    872     uint32_t dex_pc = it.DexPc();
    873     const uint8_t* references = dex_gc_map.FindBitMap(dex_pc, false);
    874     CHECK(references != nullptr) << "Missing ref for dex pc 0x" << std::hex << dex_pc <<
    875         ": " << PrettyMethod(cu_->method_idx, *cu_->dex_file);
    876     native_gc_map_builder.AddEntry(native_offset, references);
    877   }
    878 
    879   // Maybe not necessary, but this could help prevent errors where we access the verified method
    880   // after it has been deleted.
    881   mir_graph_->GetCurrentDexCompilationUnit()->ClearVerifiedMethod();
    882 }
    883 
    884 /* Determine the offset of each literal field */
    885 int Mir2Lir::AssignLiteralOffset(CodeOffset offset) {
    886   offset = AssignLiteralOffsetCommon(literal_list_, offset);
    887   constexpr unsigned int ptr_size = sizeof(uint32_t);
    888   static_assert(ptr_size >= sizeof(mirror::HeapReference<mirror::Object>),
    889                 "Pointer size cannot hold a heap reference");
    890   offset = AssignLiteralPointerOffsetCommon(code_literal_list_, offset, ptr_size);
    891   offset = AssignLiteralPointerOffsetCommon(method_literal_list_, offset, ptr_size);
    892   offset = AssignLiteralPointerOffsetCommon(class_literal_list_, offset, ptr_size);
    893   return offset;
    894 }
    895 
    896 int Mir2Lir::AssignSwitchTablesOffset(CodeOffset offset) {
    897   for (Mir2Lir::SwitchTable* tab_rec : switch_tables_) {
    898     tab_rec->offset = offset;
    899     if (tab_rec->table[0] == Instruction::kSparseSwitchSignature) {
    900       offset += tab_rec->table[1] * (sizeof(int) * 2);
    901     } else {
    902       DCHECK_EQ(static_cast<int>(tab_rec->table[0]),
    903                 static_cast<int>(Instruction::kPackedSwitchSignature));
    904       offset += tab_rec->table[1] * sizeof(int);
    905     }
    906   }
    907   return offset;
    908 }
    909 
    910 int Mir2Lir::AssignFillArrayDataOffset(CodeOffset offset) {
    911   for (Mir2Lir::FillArrayData* tab_rec : fill_array_data_) {
    912     tab_rec->offset = offset;
    913     offset += tab_rec->size;
    914     // word align
    915     offset = RoundUp(offset, 4);
    916   }
    917   return offset;
    918 }
    919 
    920 /*
    921  * Insert a kPseudoCaseLabel at the beginning of the Dalvik
    922  * offset vaddr if pretty-printing, otherise use the standard block
    923  * label.  The selected label will be used to fix up the case
    924  * branch table during the assembly phase.  All resource flags
    925  * are set to prevent code motion.  KeyVal is just there for debugging.
    926  */
    927 LIR* Mir2Lir::InsertCaseLabel(uint32_t bbid, int keyVal) {
    928   LIR* boundary_lir = &block_label_list_[bbid];
    929   LIR* res = boundary_lir;
    930   if (cu_->verbose) {
    931     // Only pay the expense if we're pretty-printing.
    932     LIR* new_label = static_cast<LIR*>(arena_->Alloc(sizeof(LIR), kArenaAllocLIR));
    933     BasicBlock* bb = mir_graph_->GetBasicBlock(bbid);
    934     DCHECK(bb != nullptr);
    935     new_label->dalvik_offset = bb->start_offset;
    936     new_label->opcode = kPseudoCaseLabel;
    937     new_label->operands[0] = keyVal;
    938     new_label->flags.fixup = kFixupLabel;
    939     DCHECK(!new_label->flags.use_def_invalid);
    940     new_label->u.m.def_mask = &kEncodeAll;
    941     InsertLIRAfter(boundary_lir, new_label);
    942   }
    943   return res;
    944 }
    945 
    946 void Mir2Lir::DumpSparseSwitchTable(const uint16_t* table) {
    947   /*
    948    * Sparse switch data format:
    949    *  ushort ident = 0x0200   magic value
    950    *  ushort size       number of entries in the table; > 0
    951    *  int keys[size]      keys, sorted low-to-high; 32-bit aligned
    952    *  int targets[size]     branch targets, relative to switch opcode
    953    *
    954    * Total size is (2+size*4) 16-bit code units.
    955    */
    956   uint16_t ident = table[0];
    957   int entries = table[1];
    958   const int32_t* keys = reinterpret_cast<const int32_t*>(&table[2]);
    959   const int32_t* targets = &keys[entries];
    960   LOG(INFO) <<  "Sparse switch table - ident:0x" << std::hex << ident
    961             << ", entries: " << std::dec << entries;
    962   for (int i = 0; i < entries; i++) {
    963     LOG(INFO) << "  Key[" << keys[i] << "] -> 0x" << std::hex << targets[i];
    964   }
    965 }
    966 
    967 void Mir2Lir::DumpPackedSwitchTable(const uint16_t* table) {
    968   /*
    969    * Packed switch data format:
    970    *  ushort ident = 0x0100   magic value
    971    *  ushort size       number of entries in the table
    972    *  int first_key       first (and lowest) switch case value
    973    *  int targets[size]     branch targets, relative to switch opcode
    974    *
    975    * Total size is (4+size*2) 16-bit code units.
    976    */
    977   uint16_t ident = table[0];
    978   const int32_t* targets = reinterpret_cast<const int32_t*>(&table[4]);
    979   int entries = table[1];
    980   int low_key = s4FromSwitchData(&table[2]);
    981   LOG(INFO) << "Packed switch table - ident:0x" << std::hex << ident
    982             << ", entries: " << std::dec << entries << ", low_key: " << low_key;
    983   for (int i = 0; i < entries; i++) {
    984     LOG(INFO) << "  Key[" << (i + low_key) << "] -> 0x" << std::hex
    985               << targets[i];
    986   }
    987 }
    988 
    989 /* Set up special LIR to mark a Dalvik byte-code instruction start for pretty printing */
    990 void Mir2Lir::MarkBoundary(DexOffset offset, const char* inst_str) {
    991   UNUSED(offset);
    992   // NOTE: only used for debug listings.
    993   NewLIR1(kPseudoDalvikByteCodeBoundary, WrapPointer(ArenaStrdup(inst_str)));
    994 }
    995 
    996 // Convert relation of src1/src2 to src2/src1
    997 ConditionCode Mir2Lir::FlipComparisonOrder(ConditionCode before) {
    998   ConditionCode res;
    999   switch (before) {
   1000     case kCondEq: res = kCondEq; break;
   1001     case kCondNe: res = kCondNe; break;
   1002     case kCondLt: res = kCondGt; break;
   1003     case kCondGt: res = kCondLt; break;
   1004     case kCondLe: res = kCondGe; break;
   1005     case kCondGe: res = kCondLe; break;
   1006     default:
   1007       LOG(FATAL) << "Unexpected ccode " << before;
   1008       UNREACHABLE();
   1009   }
   1010   return res;
   1011 }
   1012 
   1013 ConditionCode Mir2Lir::NegateComparison(ConditionCode before) {
   1014   ConditionCode res;
   1015   switch (before) {
   1016     case kCondEq: res = kCondNe; break;
   1017     case kCondNe: res = kCondEq; break;
   1018     case kCondLt: res = kCondGe; break;
   1019     case kCondGt: res = kCondLe; break;
   1020     case kCondLe: res = kCondGt; break;
   1021     case kCondGe: res = kCondLt; break;
   1022     default:
   1023       LOG(FATAL) << "Unexpected ccode " << before;
   1024       UNREACHABLE();
   1025   }
   1026   return res;
   1027 }
   1028 
   1029 // TODO: move to mir_to_lir.cc
   1030 Mir2Lir::Mir2Lir(CompilationUnit* cu, MIRGraph* mir_graph, ArenaAllocator* arena)
   1031     : literal_list_(nullptr),
   1032       method_literal_list_(nullptr),
   1033       class_literal_list_(nullptr),
   1034       code_literal_list_(nullptr),
   1035       first_fixup_(nullptr),
   1036       arena_(arena),
   1037       cu_(cu),
   1038       mir_graph_(mir_graph),
   1039       switch_tables_(arena->Adapter(kArenaAllocSwitchTable)),
   1040       fill_array_data_(arena->Adapter(kArenaAllocFillArrayData)),
   1041       tempreg_info_(arena->Adapter()),
   1042       reginfo_map_(arena->Adapter()),
   1043       pointer_storage_(arena->Adapter()),
   1044       data_offset_(0),
   1045       total_size_(0),
   1046       block_label_list_(nullptr),
   1047       promotion_map_(nullptr),
   1048       current_dalvik_offset_(0),
   1049       current_mir_(nullptr),
   1050       estimated_native_code_size_(0),
   1051       reg_pool_(nullptr),
   1052       live_sreg_(0),
   1053       code_buffer_(mir_graph->GetArena()->Adapter()),
   1054       encoded_mapping_table_(mir_graph->GetArena()->Adapter()),
   1055       core_vmap_table_(mir_graph->GetArena()->Adapter()),
   1056       fp_vmap_table_(mir_graph->GetArena()->Adapter()),
   1057       native_gc_map_(mir_graph->GetArena()->Adapter()),
   1058       patches_(mir_graph->GetArena()->Adapter()),
   1059       num_core_spills_(0),
   1060       num_fp_spills_(0),
   1061       frame_size_(0),
   1062       core_spill_mask_(0),
   1063       fp_spill_mask_(0),
   1064       first_lir_insn_(nullptr),
   1065       last_lir_insn_(nullptr),
   1066       slow_paths_(arena->Adapter(kArenaAllocSlowPaths)),
   1067       mem_ref_type_(ResourceMask::kHeapRef),
   1068       mask_cache_(arena),
   1069       safepoints_(arena->Adapter()),
   1070       dex_cache_arrays_layout_(cu->compiler_driver->GetDexCacheArraysLayout(cu->dex_file)),
   1071       pc_rel_temp_(nullptr),
   1072       dex_cache_arrays_min_offset_(std::numeric_limits<uint32_t>::max()),
   1073       cfi_(&last_lir_insn_,
   1074            cu->compiler_driver->GetCompilerOptions().GetGenerateDebugInfo(),
   1075            arena),
   1076       in_to_reg_storage_mapping_(arena) {
   1077   switch_tables_.reserve(4);
   1078   fill_array_data_.reserve(4);
   1079   tempreg_info_.reserve(20);
   1080   reginfo_map_.reserve(RegStorage::kMaxRegs);
   1081   pointer_storage_.reserve(128);
   1082   slow_paths_.reserve(32);
   1083   // Reserve pointer id 0 for null.
   1084   size_t null_idx = WrapPointer<void>(nullptr);
   1085   DCHECK_EQ(null_idx, 0U);
   1086 }
   1087 
   1088 void Mir2Lir::Materialize() {
   1089   cu_->NewTimingSplit("RegisterAllocation");
   1090   CompilerInitializeRegAlloc();  // Needs to happen after SSA naming
   1091 
   1092   /* Allocate Registers using simple local allocation scheme */
   1093   SimpleRegAlloc();
   1094 
   1095   /* First try the custom light codegen for special cases. */
   1096   DCHECK(cu_->compiler_driver->GetMethodInlinerMap() != nullptr);
   1097   bool special_worked = cu_->compiler_driver->GetMethodInlinerMap()->GetMethodInliner(cu_->dex_file)
   1098       ->GenSpecial(this, cu_->method_idx);
   1099 
   1100   /* Take normal path for converting MIR to LIR only if the special codegen did not succeed. */
   1101   if (special_worked == false) {
   1102     MethodMIR2LIR();
   1103   }
   1104 
   1105   /* Method is not empty */
   1106   if (first_lir_insn_) {
   1107     /* Convert LIR into machine code. */
   1108     AssembleLIR();
   1109 
   1110     if ((cu_->enable_debug & (1 << kDebugCodegenDump)) != 0) {
   1111       CodegenDump();
   1112     }
   1113   }
   1114 }
   1115 
   1116 CompiledMethod* Mir2Lir::GetCompiledMethod() {
   1117   // Combine vmap tables - core regs, then fp regs - into vmap_table.
   1118   Leb128EncodingVector vmap_encoder;
   1119   if (frame_size_ > 0) {
   1120     // Prefix the encoded data with its size.
   1121     size_t size = core_vmap_table_.size() + 1 /* marker */ + fp_vmap_table_.size();
   1122     vmap_encoder.Reserve(size + 1u);  // All values are likely to be one byte in ULEB128 (<128).
   1123     vmap_encoder.PushBackUnsigned(size);
   1124     // Core regs may have been inserted out of order - sort first.
   1125     std::sort(core_vmap_table_.begin(), core_vmap_table_.end());
   1126     for (size_t i = 0 ; i < core_vmap_table_.size(); ++i) {
   1127       // Copy, stripping out the phys register sort key.
   1128       vmap_encoder.PushBackUnsigned(
   1129           ~(-1 << VREG_NUM_WIDTH) & (core_vmap_table_[i] + VmapTable::kEntryAdjustment));
   1130     }
   1131     // Push a marker to take place of lr.
   1132     vmap_encoder.PushBackUnsigned(VmapTable::kAdjustedFpMarker);
   1133     if (cu_->instruction_set == kThumb2) {
   1134       // fp regs already sorted.
   1135       for (uint32_t i = 0; i < fp_vmap_table_.size(); i++) {
   1136         vmap_encoder.PushBackUnsigned(fp_vmap_table_[i] + VmapTable::kEntryAdjustment);
   1137       }
   1138     } else {
   1139       // For other platforms regs may have been inserted out of order - sort first.
   1140       std::sort(fp_vmap_table_.begin(), fp_vmap_table_.end());
   1141       for (size_t i = 0 ; i < fp_vmap_table_.size(); ++i) {
   1142         // Copy, stripping out the phys register sort key.
   1143         vmap_encoder.PushBackUnsigned(
   1144             ~(-1 << VREG_NUM_WIDTH) & (fp_vmap_table_[i] + VmapTable::kEntryAdjustment));
   1145       }
   1146     }
   1147   } else {
   1148     DCHECK_EQ(POPCOUNT(core_spill_mask_), 0);
   1149     DCHECK_EQ(POPCOUNT(fp_spill_mask_), 0);
   1150     DCHECK_EQ(core_vmap_table_.size(), 0u);
   1151     DCHECK_EQ(fp_vmap_table_.size(), 0u);
   1152     vmap_encoder.PushBackUnsigned(0u);  // Size is 0.
   1153   }
   1154 
   1155   // Sort patches by literal offset for better deduplication.
   1156   std::sort(patches_.begin(), patches_.end(), [](const LinkerPatch& lhs, const LinkerPatch& rhs) {
   1157     return lhs.LiteralOffset() < rhs.LiteralOffset();
   1158   });
   1159 
   1160   return CompiledMethod::SwapAllocCompiledMethod(
   1161       cu_->compiler_driver, cu_->instruction_set,
   1162       ArrayRef<const uint8_t>(code_buffer_),
   1163       frame_size_, core_spill_mask_, fp_spill_mask_,
   1164       &src_mapping_table_,
   1165       ArrayRef<const uint8_t>(encoded_mapping_table_),
   1166       ArrayRef<const uint8_t>(vmap_encoder.GetData()),
   1167       ArrayRef<const uint8_t>(native_gc_map_),
   1168       ArrayRef<const uint8_t>(*cfi_.Patch(code_buffer_.size())),
   1169       ArrayRef<const LinkerPatch>(patches_));
   1170 }
   1171 
   1172 size_t Mir2Lir::GetMaxPossibleCompilerTemps() const {
   1173   // Chose a reasonably small value in order to contain stack growth.
   1174   // Backends that are smarter about spill region can return larger values.
   1175   const size_t max_compiler_temps = 10;
   1176   return max_compiler_temps;
   1177 }
   1178 
   1179 size_t Mir2Lir::GetNumBytesForCompilerTempSpillRegion() {
   1180   // By default assume that the Mir2Lir will need one slot for each temporary.
   1181   // If the backend can better determine temps that have non-overlapping ranges and
   1182   // temps that do not need spilled, it can actually provide a small region.
   1183   mir_graph_->CommitCompilerTemps();
   1184   return mir_graph_->GetNumBytesForSpecialTemps() + mir_graph_->GetMaximumBytesForNonSpecialTemps();
   1185 }
   1186 
   1187 int Mir2Lir::ComputeFrameSize() {
   1188   /* Figure out the frame size */
   1189   uint32_t size = num_core_spills_ * GetBytesPerGprSpillLocation(cu_->instruction_set)
   1190                   + num_fp_spills_ * GetBytesPerFprSpillLocation(cu_->instruction_set)
   1191                   + sizeof(uint32_t)  // Filler.
   1192                   + mir_graph_->GetNumOfLocalCodeVRs()  * sizeof(uint32_t)
   1193                   + mir_graph_->GetNumOfOutVRs() * sizeof(uint32_t)
   1194                   + GetNumBytesForCompilerTempSpillRegion();
   1195   /* Align and set */
   1196   return RoundUp(size, kStackAlignment);
   1197 }
   1198 
   1199 /*
   1200  * Append an LIR instruction to the LIR list maintained by a compilation
   1201  * unit
   1202  */
   1203 void Mir2Lir::AppendLIR(LIR* lir) {
   1204   if (first_lir_insn_ == nullptr) {
   1205     DCHECK(last_lir_insn_ == nullptr);
   1206     last_lir_insn_ = first_lir_insn_ = lir;
   1207     lir->prev = lir->next = nullptr;
   1208   } else {
   1209     last_lir_insn_->next = lir;
   1210     lir->prev = last_lir_insn_;
   1211     lir->next = nullptr;
   1212     last_lir_insn_ = lir;
   1213   }
   1214 }
   1215 
   1216 /*
   1217  * Insert an LIR instruction before the current instruction, which cannot be the
   1218  * first instruction.
   1219  *
   1220  * prev_lir <-> new_lir <-> current_lir
   1221  */
   1222 void Mir2Lir::InsertLIRBefore(LIR* current_lir, LIR* new_lir) {
   1223   DCHECK(current_lir->prev != nullptr);
   1224   LIR *prev_lir = current_lir->prev;
   1225 
   1226   prev_lir->next = new_lir;
   1227   new_lir->prev = prev_lir;
   1228   new_lir->next = current_lir;
   1229   current_lir->prev = new_lir;
   1230 }
   1231 
   1232 /*
   1233  * Insert an LIR instruction after the current instruction, which cannot be the
   1234  * last instruction.
   1235  *
   1236  * current_lir -> new_lir -> old_next
   1237  */
   1238 void Mir2Lir::InsertLIRAfter(LIR* current_lir, LIR* new_lir) {
   1239   new_lir->prev = current_lir;
   1240   new_lir->next = current_lir->next;
   1241   current_lir->next = new_lir;
   1242   new_lir->next->prev = new_lir;
   1243 }
   1244 
   1245 bool Mir2Lir::PartiallyIntersects(RegLocation rl_src, RegLocation rl_dest) {
   1246   DCHECK(rl_src.wide);
   1247   DCHECK(rl_dest.wide);
   1248   return (abs(mir_graph_->SRegToVReg(rl_src.s_reg_low) - mir_graph_->SRegToVReg(rl_dest.s_reg_low)) == 1);
   1249 }
   1250 
   1251 bool Mir2Lir::Intersects(RegLocation rl_src, RegLocation rl_dest) {
   1252   DCHECK(rl_src.wide);
   1253   DCHECK(rl_dest.wide);
   1254   return (abs(mir_graph_->SRegToVReg(rl_src.s_reg_low) - mir_graph_->SRegToVReg(rl_dest.s_reg_low)) <= 1);
   1255 }
   1256 
   1257 LIR *Mir2Lir::OpCmpMemImmBranch(ConditionCode cond, RegStorage temp_reg, RegStorage base_reg,
   1258                                 int offset, int check_value, LIR* target, LIR** compare) {
   1259   // Handle this for architectures that can't compare to memory.
   1260   LIR* inst = Load32Disp(base_reg, offset, temp_reg);
   1261   if (compare != nullptr) {
   1262     *compare = inst;
   1263   }
   1264   LIR* branch = OpCmpImmBranch(cond, temp_reg, check_value, target);
   1265   return branch;
   1266 }
   1267 
   1268 void Mir2Lir::AddSlowPath(LIRSlowPath* slowpath) {
   1269   slow_paths_.push_back(slowpath);
   1270   ResetDefTracking();
   1271 }
   1272 
   1273 void Mir2Lir::LoadCodeAddress(const MethodReference& target_method, InvokeType type,
   1274                               SpecialTargetRegister symbolic_reg) {
   1275   LIR* data_target = ScanLiteralPoolMethod(code_literal_list_, target_method);
   1276   if (data_target == nullptr) {
   1277     data_target = AddWordData(&code_literal_list_, target_method.dex_method_index);
   1278     data_target->operands[1] = WrapPointer(const_cast<DexFile*>(target_method.dex_file));
   1279     // NOTE: The invoke type doesn't contribute to the literal identity. In fact, we can have
   1280     // the same method invoked with kVirtual, kSuper and kInterface but the class linker will
   1281     // resolve these invokes to the same method, so we don't care which one we record here.
   1282     data_target->operands[2] = type;
   1283   }
   1284   // Loads a code pointer. Code from oat file can be mapped anywhere.
   1285   OpPcRelLoad(TargetPtrReg(symbolic_reg), data_target);
   1286   DCHECK_NE(cu_->instruction_set, kMips) << reinterpret_cast<void*>(data_target);
   1287   DCHECK_NE(cu_->instruction_set, kMips64) << reinterpret_cast<void*>(data_target);
   1288 }
   1289 
   1290 void Mir2Lir::LoadMethodAddress(const MethodReference& target_method, InvokeType type,
   1291                                 SpecialTargetRegister symbolic_reg) {
   1292   LIR* data_target = ScanLiteralPoolMethod(method_literal_list_, target_method);
   1293   if (data_target == nullptr) {
   1294     data_target = AddWordData(&method_literal_list_, target_method.dex_method_index);
   1295     data_target->operands[1] = WrapPointer(const_cast<DexFile*>(target_method.dex_file));
   1296     // NOTE: The invoke type doesn't contribute to the literal identity. In fact, we can have
   1297     // the same method invoked with kVirtual, kSuper and kInterface but the class linker will
   1298     // resolve these invokes to the same method, so we don't care which one we record here.
   1299     data_target->operands[2] = type;
   1300   }
   1301   // Loads an ArtMethod pointer, which is not a reference.
   1302   OpPcRelLoad(TargetPtrReg(symbolic_reg), data_target);
   1303   DCHECK_NE(cu_->instruction_set, kMips) << reinterpret_cast<void*>(data_target);
   1304   DCHECK_NE(cu_->instruction_set, kMips64) << reinterpret_cast<void*>(data_target);
   1305 }
   1306 
   1307 void Mir2Lir::LoadClassType(const DexFile& dex_file, uint32_t type_idx,
   1308                             SpecialTargetRegister symbolic_reg) {
   1309   // Use the literal pool and a PC-relative load from a data word.
   1310   LIR* data_target = ScanLiteralPoolClass(class_literal_list_, dex_file, type_idx);
   1311   if (data_target == nullptr) {
   1312     data_target = AddWordData(&class_literal_list_, type_idx);
   1313     data_target->operands[1] = WrapPointer(const_cast<DexFile*>(&dex_file));
   1314   }
   1315   // Loads a Class pointer, which is a reference as it lives in the heap.
   1316   OpPcRelLoad(TargetReg(symbolic_reg, kRef), data_target);
   1317 }
   1318 
   1319 bool Mir2Lir::CanUseOpPcRelDexCacheArrayLoad() const {
   1320   return false;
   1321 }
   1322 
   1323 void Mir2Lir::OpPcRelDexCacheArrayLoad(const DexFile* dex_file ATTRIBUTE_UNUSED,
   1324                                        int offset ATTRIBUTE_UNUSED,
   1325                                        RegStorage r_dest ATTRIBUTE_UNUSED,
   1326                                        bool wide ATTRIBUTE_UNUSED) {
   1327   LOG(FATAL) << "No generic implementation.";
   1328   UNREACHABLE();
   1329 }
   1330 
   1331 RegLocation Mir2Lir::NarrowRegLoc(RegLocation loc) {
   1332   if (loc.location == kLocPhysReg) {
   1333     DCHECK(!loc.reg.Is32Bit());
   1334     if (loc.reg.IsPair()) {
   1335       RegisterInfo* info_lo = GetRegInfo(loc.reg.GetLow());
   1336       RegisterInfo* info_hi = GetRegInfo(loc.reg.GetHigh());
   1337       info_lo->SetIsWide(false);
   1338       info_hi->SetIsWide(false);
   1339       loc.reg = info_lo->GetReg();
   1340     } else {
   1341       RegisterInfo* info = GetRegInfo(loc.reg);
   1342       RegisterInfo* info_new = info->FindMatchingView(RegisterInfo::k32SoloStorageMask);
   1343       DCHECK(info_new != nullptr);
   1344       if (info->IsLive() && (info->SReg() == loc.s_reg_low)) {
   1345         info->MarkDead();
   1346         info_new->MarkLive(loc.s_reg_low);
   1347       }
   1348       loc.reg = info_new->GetReg();
   1349     }
   1350     DCHECK(loc.reg.Valid());
   1351   }
   1352   loc.wide = false;
   1353   return loc;
   1354 }
   1355 
   1356 void Mir2Lir::GenMachineSpecificExtendedMethodMIR(BasicBlock* bb, MIR* mir) {
   1357   UNUSED(bb, mir);
   1358   LOG(FATAL) << "Unknown MIR opcode not supported on this architecture";
   1359   UNREACHABLE();
   1360 }
   1361 
   1362 void Mir2Lir::InitReferenceVRegs(BasicBlock* bb, BitVector* references) {
   1363   // Mark the references coming from the first predecessor.
   1364   DCHECK(bb != nullptr);
   1365   DCHECK(bb->block_type == kEntryBlock || !bb->predecessors.empty());
   1366   BasicBlock* first_bb =
   1367       (bb->block_type == kEntryBlock) ? bb : mir_graph_->GetBasicBlock(bb->predecessors[0]);
   1368   DCHECK(first_bb != nullptr);
   1369   DCHECK(first_bb->data_flow_info != nullptr);
   1370   DCHECK(first_bb->data_flow_info->vreg_to_ssa_map_exit != nullptr);
   1371   const int32_t* first_vreg_to_ssa_map = first_bb->data_flow_info->vreg_to_ssa_map_exit;
   1372   references->ClearAllBits();
   1373   for (uint32_t vreg = 0, num_vregs = mir_graph_->GetNumOfCodeVRs(); vreg != num_vregs; ++vreg) {
   1374     int32_t sreg = first_vreg_to_ssa_map[vreg];
   1375     if (sreg != INVALID_SREG && mir_graph_->reg_location_[sreg].ref &&
   1376         !mir_graph_->IsConstantNullRef(mir_graph_->reg_location_[sreg])) {
   1377       references->SetBit(vreg);
   1378     }
   1379   }
   1380   // Unmark the references that are merging with a different value.
   1381   for (size_t i = 1u, num_pred = bb->predecessors.size(); i < num_pred; ++i) {
   1382     BasicBlock* pred_bb = mir_graph_->GetBasicBlock(bb->predecessors[i]);
   1383     DCHECK(pred_bb != nullptr);
   1384     DCHECK(pred_bb->data_flow_info != nullptr);
   1385     DCHECK(pred_bb->data_flow_info->vreg_to_ssa_map_exit != nullptr);
   1386     const int32_t* pred_vreg_to_ssa_map = pred_bb->data_flow_info->vreg_to_ssa_map_exit;
   1387     for (uint32_t vreg : references->Indexes()) {
   1388       if (first_vreg_to_ssa_map[vreg] != pred_vreg_to_ssa_map[vreg]) {
   1389         // NOTE: The BitVectorSet::IndexIterator will not check the pointed-to bit again,
   1390         // so clearing the bit has no effect on the iterator.
   1391         references->ClearBit(vreg);
   1392       }
   1393     }
   1394   }
   1395 }
   1396 
   1397 bool Mir2Lir::UpdateReferenceVRegsLocal(MIR* mir, MIR* prev_mir, BitVector* references) {
   1398   DCHECK(mir == nullptr || mir->bb == prev_mir->bb);
   1399   DCHECK(prev_mir != nullptr);
   1400   while (prev_mir != nullptr) {
   1401     if (prev_mir == mir) {
   1402       return true;
   1403     }
   1404     const size_t num_defs = prev_mir->ssa_rep->num_defs;
   1405     const int32_t* defs = prev_mir->ssa_rep->defs;
   1406     if (num_defs == 1u && mir_graph_->reg_location_[defs[0]].ref &&
   1407         !mir_graph_->IsConstantNullRef(mir_graph_->reg_location_[defs[0]])) {
   1408       references->SetBit(mir_graph_->SRegToVReg(defs[0]));
   1409     } else {
   1410       for (size_t i = 0u; i != num_defs; ++i) {
   1411         references->ClearBit(mir_graph_->SRegToVReg(defs[i]));
   1412       }
   1413     }
   1414     prev_mir = prev_mir->next;
   1415   }
   1416   return false;
   1417 }
   1418 
   1419 void Mir2Lir::UpdateReferenceVRegs(MIR* mir, MIR* prev_mir, BitVector* references) {
   1420   if (mir == nullptr) {
   1421     // Safepoint in entry sequence.
   1422     InitReferenceVRegs(mir_graph_->GetEntryBlock(), references);
   1423     return;
   1424   }
   1425   if (IsInstructionReturn(mir->dalvikInsn.opcode) ||
   1426       mir->dalvikInsn.opcode == Instruction::RETURN_VOID_NO_BARRIER) {
   1427     references->ClearAllBits();
   1428     if (mir->dalvikInsn.opcode == Instruction::RETURN_OBJECT) {
   1429       references->SetBit(mir_graph_->SRegToVReg(mir->ssa_rep->uses[0]));
   1430     }
   1431     return;
   1432   }
   1433   if (prev_mir != nullptr && mir->bb == prev_mir->bb &&
   1434       UpdateReferenceVRegsLocal(mir, prev_mir, references)) {
   1435     return;
   1436   }
   1437   BasicBlock* bb = mir_graph_->GetBasicBlock(mir->bb);
   1438   DCHECK(bb != nullptr);
   1439   InitReferenceVRegs(bb, references);
   1440   bool success = UpdateReferenceVRegsLocal(mir, bb->first_mir_insn, references);
   1441   DCHECK(success) << "MIR @0x" << std::hex << mir->offset << " not in BB#" << std::dec << mir->bb;
   1442 }
   1443 
   1444 }  // namespace art
   1445