Home | History | Annotate | Download | only in quick
      1 /*
      2  * Copyright (C) 2012 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #ifndef ART_COMPILER_DEX_QUICK_MIR_TO_LIR_H_
     18 #define ART_COMPILER_DEX_QUICK_MIR_TO_LIR_H_
     19 
     20 #include "base/arena_allocator.h"
     21 #include "base/arena_containers.h"
     22 #include "base/arena_object.h"
     23 #include "compiled_method.h"
     24 #include "dex/compiler_enums.h"
     25 #include "dex/dex_flags.h"
     26 #include "dex/dex_types.h"
     27 #include "dex/reg_location.h"
     28 #include "dex/reg_storage.h"
     29 #include "dex/quick/resource_mask.h"
     30 #include "entrypoints/quick/quick_entrypoints_enum.h"
     31 #include "invoke_type.h"
     32 #include "lazy_debug_frame_opcode_writer.h"
     33 #include "leb128.h"
     34 #include "primitive.h"
     35 #include "safe_map.h"
     36 #include "utils/array_ref.h"
     37 #include "utils/dex_cache_arrays_layout.h"
     38 #include "utils/stack_checks.h"
     39 
     40 namespace art {
     41 
     42 // Set to 1 to measure cost of suspend check.
     43 #define NO_SUSPEND 0
     44 
     45 #define IS_BINARY_OP         (1ULL << kIsBinaryOp)
     46 #define IS_BRANCH            (1ULL << kIsBranch)
     47 #define IS_IT                (1ULL << kIsIT)
     48 #define IS_MOVE              (1ULL << kIsMoveOp)
     49 #define IS_LOAD              (1ULL << kMemLoad)
     50 #define IS_QUAD_OP           (1ULL << kIsQuadOp)
     51 #define IS_QUIN_OP           (1ULL << kIsQuinOp)
     52 #define IS_SEXTUPLE_OP       (1ULL << kIsSextupleOp)
     53 #define IS_STORE             (1ULL << kMemStore)
     54 #define IS_TERTIARY_OP       (1ULL << kIsTertiaryOp)
     55 #define IS_UNARY_OP          (1ULL << kIsUnaryOp)
     56 #define IS_VOLATILE          (1ULL << kMemVolatile)
     57 #define NEEDS_FIXUP          (1ULL << kPCRelFixup)
     58 #define NO_OPERAND           (1ULL << kNoOperand)
     59 #define REG_DEF0             (1ULL << kRegDef0)
     60 #define REG_DEF1             (1ULL << kRegDef1)
     61 #define REG_DEF2             (1ULL << kRegDef2)
     62 #define REG_DEFA             (1ULL << kRegDefA)
     63 #define REG_DEFD             (1ULL << kRegDefD)
     64 #define REG_DEF_FPCS_LIST0   (1ULL << kRegDefFPCSList0)
     65 #define REG_DEF_FPCS_LIST2   (1ULL << kRegDefFPCSList2)
     66 #define REG_DEF_LIST0        (1ULL << kRegDefList0)
     67 #define REG_DEF_LIST1        (1ULL << kRegDefList1)
     68 #define REG_DEF_LR           (1ULL << kRegDefLR)
     69 #define REG_DEF_SP           (1ULL << kRegDefSP)
     70 #define REG_USE0             (1ULL << kRegUse0)
     71 #define REG_USE1             (1ULL << kRegUse1)
     72 #define REG_USE2             (1ULL << kRegUse2)
     73 #define REG_USE3             (1ULL << kRegUse3)
     74 #define REG_USE4             (1ULL << kRegUse4)
     75 #define REG_USEA             (1ULL << kRegUseA)
     76 #define REG_USEC             (1ULL << kRegUseC)
     77 #define REG_USED             (1ULL << kRegUseD)
     78 #define REG_USEB             (1ULL << kRegUseB)
     79 #define REG_USE_FPCS_LIST0   (1ULL << kRegUseFPCSList0)
     80 #define REG_USE_FPCS_LIST2   (1ULL << kRegUseFPCSList2)
     81 #define REG_USE_LIST0        (1ULL << kRegUseList0)
     82 #define REG_USE_LIST1        (1ULL << kRegUseList1)
     83 #define REG_USE_LR           (1ULL << kRegUseLR)
     84 #define REG_USE_PC           (1ULL << kRegUsePC)
     85 #define REG_USE_SP           (1ULL << kRegUseSP)
     86 #define SETS_CCODES          (1ULL << kSetsCCodes)
     87 #define USES_CCODES          (1ULL << kUsesCCodes)
     88 #define USE_FP_STACK         (1ULL << kUseFpStack)
     89 #define REG_USE_LO           (1ULL << kUseLo)
     90 #define REG_USE_HI           (1ULL << kUseHi)
     91 #define REG_DEF_LO           (1ULL << kDefLo)
     92 #define REG_DEF_HI           (1ULL << kDefHi)
     93 #define SCALED_OFFSET_X0     (1ULL << kMemScaledx0)
     94 #define SCALED_OFFSET_X2     (1ULL << kMemScaledx2)
     95 #define SCALED_OFFSET_X4     (1ULL << kMemScaledx4)
     96 
     97 // Special load/stores
     98 #define IS_LOADX             (IS_LOAD | IS_VOLATILE)
     99 #define IS_LOAD_OFF          (IS_LOAD | SCALED_OFFSET_X0)
    100 #define IS_LOAD_OFF2         (IS_LOAD | SCALED_OFFSET_X2)
    101 #define IS_LOAD_OFF4         (IS_LOAD | SCALED_OFFSET_X4)
    102 
    103 #define IS_STOREX            (IS_STORE | IS_VOLATILE)
    104 #define IS_STORE_OFF         (IS_STORE | SCALED_OFFSET_X0)
    105 #define IS_STORE_OFF2        (IS_STORE | SCALED_OFFSET_X2)
    106 #define IS_STORE_OFF4        (IS_STORE | SCALED_OFFSET_X4)
    107 
    108 // Common combo register usage patterns.
    109 #define REG_DEF01            (REG_DEF0 | REG_DEF1)
    110 #define REG_DEF012           (REG_DEF0 | REG_DEF1 | REG_DEF2)
    111 #define REG_DEF01_USE2       (REG_DEF0 | REG_DEF1 | REG_USE2)
    112 #define REG_DEF0_USE01       (REG_DEF0 | REG_USE01)
    113 #define REG_DEF0_USE0        (REG_DEF0 | REG_USE0)
    114 #define REG_DEF0_USE12       (REG_DEF0 | REG_USE12)
    115 #define REG_DEF0_USE123      (REG_DEF0 | REG_USE123)
    116 #define REG_DEF0_USE1        (REG_DEF0 | REG_USE1)
    117 #define REG_DEF0_USE2        (REG_DEF0 | REG_USE2)
    118 #define REG_DEFAD_USEAD      (REG_DEFAD_USEA | REG_USED)
    119 #define REG_DEFAD_USEA       (REG_DEFA_USEA | REG_DEFD)
    120 #define REG_DEFA_USEA        (REG_DEFA | REG_USEA)
    121 #define REG_USE012           (REG_USE01 | REG_USE2)
    122 #define REG_USE014           (REG_USE01 | REG_USE4)
    123 #define REG_USE01            (REG_USE0 | REG_USE1)
    124 #define REG_USE02            (REG_USE0 | REG_USE2)
    125 #define REG_USE12            (REG_USE1 | REG_USE2)
    126 #define REG_USE23            (REG_USE2 | REG_USE3)
    127 #define REG_USE123           (REG_USE1 | REG_USE2 | REG_USE3)
    128 
    129 /*
    130  * Assembly is an iterative process, and usually terminates within
    131  * two or three passes.  This should be high enough to handle bizarre
    132  * cases, but detect an infinite loop bug.
    133  */
    134 #define MAX_ASSEMBLER_RETRIES 50
    135 
    136 class BasicBlock;
    137 class BitVector;
    138 struct CallInfo;
    139 struct CompilationUnit;
    140 struct CompilerTemp;
    141 struct InlineMethod;
    142 class MIR;
    143 struct LIR;
    144 struct RegisterInfo;
    145 class DexFileMethodInliner;
    146 class MIRGraph;
    147 class MirMethodLoweringInfo;
    148 class MirSFieldLoweringInfo;
    149 
    150 typedef int (*NextCallInsn)(CompilationUnit*, CallInfo*, int,
    151                             const MethodReference& target_method,
    152                             uint32_t method_idx, uintptr_t direct_code,
    153                             uintptr_t direct_method, InvokeType type);
    154 
    155 typedef ArenaVector<uint8_t> CodeBuffer;
    156 typedef uint32_t CodeOffset;           // Native code offset in bytes.
    157 
    158 struct UseDefMasks {
    159   const ResourceMask* use_mask;        // Resource mask for use.
    160   const ResourceMask* def_mask;        // Resource mask for def.
    161 };
    162 
    163 struct AssemblyInfo {
    164   LIR* pcrel_next;           // Chain of LIR nodes needing pc relative fixups.
    165 };
    166 
    167 struct LIR {
    168   CodeOffset offset;             // Offset of this instruction.
    169   NarrowDexOffset dalvik_offset;   // Offset of Dalvik opcode in code units (16-bit words).
    170   int16_t opcode;
    171   LIR* next;
    172   LIR* prev;
    173   LIR* target;
    174   struct {
    175     unsigned int alias_info:17;  // For Dalvik register disambiguation.
    176     bool is_nop:1;               // LIR is optimized away.
    177     unsigned int size:4;         // Note: size of encoded instruction is in bytes.
    178     bool use_def_invalid:1;      // If true, masks should not be used.
    179     unsigned int generation:1;   // Used to track visitation state during fixup pass.
    180     unsigned int fixup:8;        // Fixup kind.
    181   } flags;
    182   union {
    183     UseDefMasks m;               // Use & Def masks used during optimization.
    184     AssemblyInfo a;              // Instruction info used during assembly phase.
    185   } u;
    186   int32_t operands[5];           // [0..4] = [dest, src1, src2, extra, extra2].
    187 };
    188 
    189 // Utility macros to traverse the LIR list.
    190 #define NEXT_LIR(lir) (lir->next)
    191 #define PREV_LIR(lir) (lir->prev)
    192 
    193 // Defines for alias_info (tracks Dalvik register references).
    194 #define DECODE_ALIAS_INFO_REG(X)        (X & 0xffff)
    195 #define DECODE_ALIAS_INFO_WIDE_FLAG     (0x10000)
    196 #define DECODE_ALIAS_INFO_WIDE(X)       ((X & DECODE_ALIAS_INFO_WIDE_FLAG) ? 1 : 0)
    197 #define ENCODE_ALIAS_INFO(REG, ISWIDE)  (REG | (ISWIDE ? DECODE_ALIAS_INFO_WIDE_FLAG : 0))
    198 
    199 #define ENCODE_REG_PAIR(low_reg, high_reg) ((low_reg & 0xff) | ((high_reg & 0xff) << 8))
    200 #define DECODE_REG_PAIR(both_regs, low_reg, high_reg) \
    201   do { \
    202     low_reg = both_regs & 0xff; \
    203     high_reg = (both_regs >> 8) & 0xff; \
    204   } while (false)
    205 
    206 // Mask to denote sreg as the start of a 64-bit item.  Must not interfere with low 16 bits.
    207 #define STARTING_WIDE_SREG 0x10000
    208 
    209 class Mir2Lir {
    210   public:
    211     static constexpr bool kFailOnSizeError = true && kIsDebugBuild;
    212     static constexpr bool kReportSizeError = true && kIsDebugBuild;
    213 
    214     // TODO: If necessary, this could be made target-dependent.
    215     static constexpr uint16_t kSmallSwitchThreshold = 5;
    216 
    217     /*
    218      * Auxiliary information describing the location of data embedded in the Dalvik
    219      * byte code stream.
    220      */
    221     struct EmbeddedData {
    222       CodeOffset offset;        // Code offset of data block.
    223       const uint16_t* table;      // Original dex data.
    224       DexOffset vaddr;            // Dalvik offset of parent opcode.
    225     };
    226 
    227     struct FillArrayData : EmbeddedData {
    228       int32_t size;
    229     };
    230 
    231     struct SwitchTable : EmbeddedData {
    232       LIR* anchor;                // Reference instruction for relative offsets.
    233       MIR* switch_mir;            // The switch mir.
    234     };
    235 
    236     /* Static register use counts */
    237     struct RefCounts {
    238       int count;
    239       int s_reg;
    240     };
    241 
    242     /*
    243      * Data structure tracking the mapping detween a Dalvik value (32 or 64 bits)
    244      * and native register storage.  The primary purpose is to reuse previuosly
    245      * loaded values, if possible, and otherwise to keep the value in register
    246      * storage as long as possible.
    247      *
    248      * NOTE 1: wide_value refers to the width of the Dalvik value contained in
    249      * this register (or pair).  For example, a 64-bit register containing a 32-bit
    250      * Dalvik value would have wide_value==false even though the storage container itself
    251      * is wide.  Similarly, a 32-bit register containing half of a 64-bit Dalvik value
    252      * would have wide_value==true (and additionally would have its partner field set to the
    253      * other half whose wide_value field would also be true.
    254      *
    255      * NOTE 2: In the case of a register pair, you can determine which of the partners
    256      * is the low half by looking at the s_reg names.  The high s_reg will equal low_sreg + 1.
    257      *
    258      * NOTE 3: In the case of a 64-bit register holding a Dalvik wide value, wide_value
    259      * will be true and partner==self.  s_reg refers to the low-order word of the Dalvik
    260      * value, and the s_reg of the high word is implied (s_reg + 1).
    261      *
    262      * NOTE 4: The reg and is_temp fields should always be correct.  If is_temp is false no
    263      * other fields have meaning. [perhaps not true, wide should work for promoted regs?]
    264      * If is_temp==true and live==false, no other fields have
    265      * meaning.  If is_temp==true and live==true, wide_value, partner, dirty, s_reg, def_start
    266      * and def_end describe the relationship between the temp register/register pair and
    267      * the Dalvik value[s] described by s_reg/s_reg+1.
    268      *
    269      * The fields used_storage, master_storage and storage_mask are used to track allocation
    270      * in light of potential aliasing.  For example, consider Arm's d2, which overlaps s4 & s5.
    271      * d2's storage mask would be 0x00000003, the two low-order bits denoting 64 bits of
    272      * storage use.  For s4, it would be 0x0000001; for s5 0x00000002.  These values should not
    273      * change once initialized.  The "used_storage" field tracks current allocation status.
    274      * Although each record contains this field, only the field from the largest member of
    275      * an aliased group is used.  In our case, it would be d2's.  The master_storage pointer
    276      * of d2, s4 and s5 would all point to d2's used_storage field.  Each bit in a used_storage
    277      * represents 32 bits of storage.  d2's used_storage would be initialized to 0xfffffffc.
    278      * Then, if we wanted to determine whether s4 could be allocated, we would "and"
    279      * s4's storage_mask with s4's *master_storage.  If the result is zero, s4 is free and
    280      * to allocate: *master_storage |= storage_mask.  To free, *master_storage &= ~storage_mask.
    281      *
    282      * For an X86 vector register example, storage_mask would be:
    283      *    0x00000001 for 32-bit view of xmm1
    284      *    0x00000003 for 64-bit view of xmm1
    285      *    0x0000000f for 128-bit view of xmm1
    286      *    0x000000ff for 256-bit view of ymm1   // future expansion, if needed
    287      *    0x0000ffff for 512-bit view of ymm1   // future expansion, if needed
    288      *    0xffffffff for 1024-bit view of ymm1  // future expansion, if needed
    289      *
    290      * The "liveness" of a register is handled in a similar way.  The liveness_ storage is
    291      * held in the widest member of an aliased set.  Note, though, that for a temp register to
    292      * reused as live, it must both be marked live and the associated SReg() must match the
    293      * desired s_reg.  This gets a little complicated when dealing with aliased registers.  All
    294      * members of an aliased set will share the same liveness flags, but each will individually
    295      * maintain s_reg_.  In this way we can know that at least one member of an
    296      * aliased set is live, but will only fully match on the appropriate alias view.  For example,
    297      * if Arm d1 is live as a double and has s_reg_ set to Dalvik v8 (which also implies v9
    298      * because it is wide), its aliases s2 and s3 will show as live, but will have
    299      * s_reg_ == INVALID_SREG.  An attempt to later AllocLiveReg() of v9 with a single-precision
    300      * view will fail because although s3's liveness bit is set, its s_reg_ will not match v9.
    301      * This will cause all members of the aliased set to be clobbered and AllocLiveReg() will
    302      * report that v9 is currently not live as a single (which is what we want).
    303      *
    304      * NOTE: the x86 usage is still somewhat in flux.  There are competing notions of how
    305      * to treat xmm registers:
    306      *     1. Treat them all as 128-bits wide, but denote how much data used via bytes field.
    307      *         o This more closely matches reality, but means you'd need to be able to get
    308      *           to the associated RegisterInfo struct to figure out how it's being used.
    309      *         o This is how 64-bit core registers will be used - always 64 bits, but the
    310      *           "bytes" field will be 4 for 32-bit usage and 8 for 64-bit usage.
    311      *     2. View the xmm registers based on contents.
    312      *         o A single in a xmm2 register would be k32BitVector, while a double in xmm2 would
    313      *           be a k64BitVector.
    314      *         o Note that the two uses above would be considered distinct registers (but with
    315      *           the aliasing mechanism, we could detect interference).
    316      *         o This is how aliased double and single float registers will be handled on
    317      *           Arm and MIPS.
    318      * Working plan is, for all targets, to follow mechanism 1 for 64-bit core registers, and
    319      * mechanism 2 for aliased float registers and x86 vector registers.
    320      */
    321     class RegisterInfo : public ArenaObject<kArenaAllocRegAlloc> {
    322      public:
    323       RegisterInfo(RegStorage r, const ResourceMask& mask = kEncodeAll);
    324       ~RegisterInfo() {}
    325 
    326       static const uint32_t k32SoloStorageMask     = 0x00000001;
    327       static const uint32_t kLowSingleStorageMask  = 0x00000001;
    328       static const uint32_t kHighSingleStorageMask = 0x00000002;
    329       static const uint32_t k64SoloStorageMask     = 0x00000003;
    330       static const uint32_t k128SoloStorageMask    = 0x0000000f;
    331       static const uint32_t k256SoloStorageMask    = 0x000000ff;
    332       static const uint32_t k512SoloStorageMask    = 0x0000ffff;
    333       static const uint32_t k1024SoloStorageMask   = 0xffffffff;
    334 
    335       bool InUse() { return (storage_mask_ & master_->used_storage_) != 0; }
    336       void MarkInUse() { master_->used_storage_ |= storage_mask_; }
    337       void MarkFree() { master_->used_storage_ &= ~storage_mask_; }
    338       // No part of the containing storage is live in this view.
    339       bool IsDead() { return (master_->liveness_ & storage_mask_) == 0; }
    340       // Liveness of this view matches.  Note: not equivalent to !IsDead().
    341       bool IsLive() { return (master_->liveness_ & storage_mask_) == storage_mask_; }
    342       void MarkLive(int s_reg) {
    343         // TODO: Anything useful to assert here?
    344         s_reg_ = s_reg;
    345         master_->liveness_ |= storage_mask_;
    346       }
    347       void MarkDead() {
    348         if (SReg() != INVALID_SREG) {
    349           s_reg_ = INVALID_SREG;
    350           master_->liveness_ &= ~storage_mask_;
    351           ResetDefBody();
    352         }
    353       }
    354       RegStorage GetReg() { return reg_; }
    355       void SetReg(RegStorage reg) { reg_ = reg; }
    356       bool IsTemp() { return is_temp_; }
    357       void SetIsTemp(bool val) { is_temp_ = val; }
    358       bool IsWide() { return wide_value_; }
    359       void SetIsWide(bool val) {
    360         wide_value_ = val;
    361         if (!val) {
    362           // If not wide, reset partner to self.
    363           SetPartner(GetReg());
    364         }
    365       }
    366       bool IsDirty() { return dirty_; }
    367       void SetIsDirty(bool val) { dirty_ = val; }
    368       RegStorage Partner() { return partner_; }
    369       void SetPartner(RegStorage partner) { partner_ = partner; }
    370       int SReg() { return (!IsTemp() || IsLive()) ? s_reg_ : INVALID_SREG; }
    371       const ResourceMask& DefUseMask() { return def_use_mask_; }
    372       void SetDefUseMask(const ResourceMask& def_use_mask) { def_use_mask_ = def_use_mask; }
    373       RegisterInfo* Master() { return master_; }
    374       void SetMaster(RegisterInfo* master) {
    375         master_ = master;
    376         if (master != this) {
    377           master_->aliased_ = true;
    378           DCHECK(alias_chain_ == nullptr);
    379           alias_chain_ = master_->alias_chain_;
    380           master_->alias_chain_ = this;
    381         }
    382       }
    383       bool IsAliased() { return aliased_; }
    384       RegisterInfo* GetAliasChain() { return alias_chain_; }
    385       uint32_t StorageMask() { return storage_mask_; }
    386       void SetStorageMask(uint32_t storage_mask) { storage_mask_ = storage_mask; }
    387       LIR* DefStart() { return def_start_; }
    388       void SetDefStart(LIR* def_start) { def_start_ = def_start; }
    389       LIR* DefEnd() { return def_end_; }
    390       void SetDefEnd(LIR* def_end) { def_end_ = def_end; }
    391       void ResetDefBody() { def_start_ = def_end_ = nullptr; }
    392       // Find member of aliased set matching storage_used; return null if none.
    393       RegisterInfo* FindMatchingView(uint32_t storage_used) {
    394         RegisterInfo* res = Master();
    395         for (; res != nullptr; res = res->GetAliasChain()) {
    396           if (res->StorageMask() == storage_used)
    397             break;
    398         }
    399         return res;
    400       }
    401 
    402      private:
    403       RegStorage reg_;
    404       bool is_temp_;               // Can allocate as temp?
    405       bool wide_value_;            // Holds a Dalvik wide value (either itself, or part of a pair).
    406       bool dirty_;                 // If live, is it dirty?
    407       bool aliased_;               // Is this the master for other aliased RegisterInfo's?
    408       RegStorage partner_;         // If wide_value, other reg of pair or self if 64-bit register.
    409       int s_reg_;                  // Name of live value.
    410       ResourceMask def_use_mask_;  // Resources for this element.
    411       uint32_t used_storage_;      // 1 bit per 4 bytes of storage. Unused by aliases.
    412       uint32_t liveness_;          // 1 bit per 4 bytes of storage. Unused by aliases.
    413       RegisterInfo* master_;       // Pointer to controlling storage mask.
    414       uint32_t storage_mask_;      // Track allocation of sub-units.
    415       LIR *def_start_;             // Starting inst in last def sequence.
    416       LIR *def_end_;               // Ending inst in last def sequence.
    417       RegisterInfo* alias_chain_;  // Chain of aliased registers.
    418     };
    419 
    420     class RegisterPool : public DeletableArenaObject<kArenaAllocRegAlloc> {
    421      public:
    422       RegisterPool(Mir2Lir* m2l, ArenaAllocator* arena,
    423                    const ArrayRef<const RegStorage>& core_regs,
    424                    const ArrayRef<const RegStorage>& core64_regs,
    425                    const ArrayRef<const RegStorage>& sp_regs,
    426                    const ArrayRef<const RegStorage>& dp_regs,
    427                    const ArrayRef<const RegStorage>& reserved_regs,
    428                    const ArrayRef<const RegStorage>& reserved64_regs,
    429                    const ArrayRef<const RegStorage>& core_temps,
    430                    const ArrayRef<const RegStorage>& core64_temps,
    431                    const ArrayRef<const RegStorage>& sp_temps,
    432                    const ArrayRef<const RegStorage>& dp_temps);
    433       ~RegisterPool() {}
    434       void ResetNextTemp() {
    435         next_core_reg_ = 0;
    436         next_sp_reg_ = 0;
    437         next_dp_reg_ = 0;
    438       }
    439       ArenaVector<RegisterInfo*> core_regs_;
    440       int next_core_reg_;
    441       ArenaVector<RegisterInfo*> core64_regs_;
    442       int next_core64_reg_;
    443       ArenaVector<RegisterInfo*> sp_regs_;    // Single precision float.
    444       int next_sp_reg_;
    445       ArenaVector<RegisterInfo*> dp_regs_;    // Double precision float.
    446       int next_dp_reg_;
    447       ArenaVector<RegisterInfo*>* ref_regs_;  // Points to core_regs_ or core64_regs_
    448       int* next_ref_reg_;
    449 
    450      private:
    451       Mir2Lir* const m2l_;
    452     };
    453 
    454     struct PromotionMap {
    455       RegLocationType core_location:3;
    456       uint8_t core_reg;
    457       RegLocationType fp_location:3;
    458       uint8_t fp_reg;
    459       bool first_in_pair;
    460     };
    461 
    462     //
    463     // Slow paths.  This object is used generate a sequence of code that is executed in the
    464     // slow path.  For example, resolving a string or class is slow as it will only be executed
    465     // once (after that it is resolved and doesn't need to be done again).  We want slow paths
    466     // to be placed out-of-line, and not require a (mispredicted, probably) conditional forward
    467     // branch over them.
    468     //
    469     // If you want to create a slow path, declare a class derived from LIRSlowPath and provide
    470     // the Compile() function that will be called near the end of the code generated by the
    471     // method.
    472     //
    473     // The basic flow for a slow path is:
    474     //
    475     //     CMP reg, #value
    476     //     BEQ fromfast
    477     //   cont:
    478     //     ...
    479     //     fast path code
    480     //     ...
    481     //     more code
    482     //     ...
    483     //     RETURN
    484     ///
    485     //   fromfast:
    486     //     ...
    487     //     slow path code
    488     //     ...
    489     //     B cont
    490     //
    491     // So you see we need two labels and two branches.  The first branch (called fromfast) is
    492     // the conditional branch to the slow path code.  The second label (called cont) is used
    493     // as an unconditional branch target for getting back to the code after the slow path
    494     // has completed.
    495     //
    496 
    497     class LIRSlowPath : public ArenaObject<kArenaAllocSlowPaths> {
    498      public:
    499       LIRSlowPath(Mir2Lir* m2l, LIR* fromfast, LIR* cont = nullptr)
    500           : m2l_(m2l), cu_(m2l->cu_),
    501             current_dex_pc_(m2l->current_dalvik_offset_), current_mir_(m2l->current_mir_),
    502             fromfast_(fromfast), cont_(cont) {
    503       }
    504       virtual ~LIRSlowPath() {}
    505       virtual void Compile() = 0;
    506 
    507       LIR *GetContinuationLabel() {
    508         return cont_;
    509       }
    510 
    511       LIR *GetFromFast() {
    512         return fromfast_;
    513       }
    514 
    515      protected:
    516       LIR* GenerateTargetLabel(int opcode = kPseudoTargetLabel);
    517 
    518       Mir2Lir* const m2l_;
    519       CompilationUnit* const cu_;
    520       const DexOffset current_dex_pc_;
    521       MIR* current_mir_;
    522       LIR* const fromfast_;
    523       LIR* const cont_;
    524     };
    525 
    526     class SuspendCheckSlowPath;
    527     class SpecialSuspendCheckSlowPath;
    528 
    529     // Helper class for changing mem_ref_type_ until the end of current scope. See mem_ref_type_.
    530     class ScopedMemRefType {
    531      public:
    532       ScopedMemRefType(Mir2Lir* m2l, ResourceMask::ResourceBit new_mem_ref_type)
    533           : m2l_(m2l),
    534             old_mem_ref_type_(m2l->mem_ref_type_) {
    535         m2l_->mem_ref_type_ = new_mem_ref_type;
    536       }
    537 
    538       ~ScopedMemRefType() {
    539         m2l_->mem_ref_type_ = old_mem_ref_type_;
    540       }
    541 
    542      private:
    543       Mir2Lir* const m2l_;
    544       ResourceMask::ResourceBit old_mem_ref_type_;
    545 
    546       DISALLOW_COPY_AND_ASSIGN(ScopedMemRefType);
    547     };
    548 
    549     virtual ~Mir2Lir() {}
    550 
    551     /**
    552      * @brief Decodes the LIR offset.
    553      * @return Returns the scaled offset of LIR.
    554      */
    555     virtual size_t GetInstructionOffset(LIR* lir);
    556 
    557     int32_t s4FromSwitchData(const void* switch_data) {
    558       return *reinterpret_cast<const int32_t*>(switch_data);
    559     }
    560 
    561     /*
    562      * TODO: this is a trace JIT vestige, and its use should be reconsidered.  At the time
    563      * it was introduced, it was intended to be a quick best guess of type without having to
    564      * take the time to do type analysis.  Currently, though, we have a much better idea of
    565      * the types of Dalvik virtual registers.  Instead of using this for a best guess, why not
    566      * just use our knowledge of type to select the most appropriate register class?
    567      */
    568     RegisterClass RegClassBySize(OpSize size) {
    569       if (size == kReference) {
    570         return kRefReg;
    571       } else {
    572         return (size == kUnsignedHalf || size == kSignedHalf || size == kUnsignedByte ||
    573                 size == kSignedByte) ? kCoreReg : kAnyReg;
    574       }
    575     }
    576 
    577     size_t CodeBufferSizeInBytes() {
    578       return code_buffer_.size() / sizeof(code_buffer_[0]);
    579     }
    580 
    581     static bool IsPseudoLirOp(int opcode) {
    582       return (opcode < 0);
    583     }
    584 
    585     /*
    586      * LIR operands are 32-bit integers.  Sometimes, (especially for managing
    587      * instructions which require PC-relative fixups), we need the operands to carry
    588      * pointers.  To do this, we assign these pointers an index in pointer_storage_, and
    589      * hold that index in the operand array.
    590      * TUNING: If use of these utilities becomes more common on 32-bit builds, it
    591      * may be worth conditionally-compiling a set of identity functions here.
    592      */
    593     template <typename T>
    594     uint32_t WrapPointer(const T* pointer) {
    595       uint32_t res = pointer_storage_.size();
    596       pointer_storage_.push_back(pointer);
    597       return res;
    598     }
    599 
    600     template <typename T>
    601     const T* UnwrapPointer(size_t index) {
    602       return reinterpret_cast<const T*>(pointer_storage_[index]);
    603     }
    604 
    605     // strdup(), but allocates from the arena.
    606     char* ArenaStrdup(const char* str) {
    607       size_t len = strlen(str) + 1;
    608       char* res = arena_->AllocArray<char>(len, kArenaAllocMisc);
    609       if (res != nullptr) {
    610         strncpy(res, str, len);
    611       }
    612       return res;
    613     }
    614 
    615     // Shared by all targets - implemented in codegen_util.cc
    616     void AppendLIR(LIR* lir);
    617     void InsertLIRBefore(LIR* current_lir, LIR* new_lir);
    618     void InsertLIRAfter(LIR* current_lir, LIR* new_lir);
    619 
    620     /**
    621      * @brief Provides the maximum number of compiler temporaries that the backend can/wants
    622      * to place in a frame.
    623      * @return Returns the maximum number of compiler temporaries.
    624      */
    625     size_t GetMaxPossibleCompilerTemps() const;
    626 
    627     /**
    628      * @brief Provides the number of bytes needed in frame for spilling of compiler temporaries.
    629      * @return Returns the size in bytes for space needed for compiler temporary spill region.
    630      */
    631     size_t GetNumBytesForCompilerTempSpillRegion();
    632 
    633     DexOffset GetCurrentDexPc() const {
    634       return current_dalvik_offset_;
    635     }
    636 
    637     RegisterClass ShortyToRegClass(char shorty_type);
    638     int ComputeFrameSize();
    639     void Materialize();
    640     virtual CompiledMethod* GetCompiledMethod();
    641     void MarkSafepointPC(LIR* inst);
    642     void MarkSafepointPCAfter(LIR* after);
    643     void SetupResourceMasks(LIR* lir);
    644     void SetMemRefType(LIR* lir, bool is_load, int mem_type);
    645     void AnnotateDalvikRegAccess(LIR* lir, int reg_id, bool is_load, bool is64bit);
    646     void SetupRegMask(ResourceMask* mask, int reg);
    647     void ClearRegMask(ResourceMask* mask, int reg);
    648     void DumpLIRInsn(LIR* arg, unsigned char* base_addr);
    649     void EliminateLoad(LIR* lir, int reg_id);
    650     void DumpDependentInsnPair(LIR* check_lir, LIR* this_lir, const char* type);
    651     void DumpPromotionMap();
    652     void CodegenDump();
    653     LIR* RawLIR(DexOffset dalvik_offset, int opcode, int op0 = 0, int op1 = 0,
    654                 int op2 = 0, int op3 = 0, int op4 = 0, LIR* target = nullptr);
    655     LIR* NewLIR0(int opcode);
    656     LIR* NewLIR1(int opcode, int dest);
    657     LIR* NewLIR2(int opcode, int dest, int src1);
    658     LIR* NewLIR2NoDest(int opcode, int src, int info);
    659     LIR* NewLIR3(int opcode, int dest, int src1, int src2);
    660     LIR* NewLIR4(int opcode, int dest, int src1, int src2, int info);
    661     LIR* NewLIR5(int opcode, int dest, int src1, int src2, int info1, int info2);
    662     LIR* ScanLiteralPool(LIR* data_target, int value, unsigned int delta);
    663     LIR* ScanLiteralPoolWide(LIR* data_target, int val_lo, int val_hi);
    664     LIR* ScanLiteralPoolMethod(LIR* data_target, const MethodReference& method);
    665     LIR* ScanLiteralPoolClass(LIR* data_target, const DexFile& dex_file, uint32_t type_idx);
    666     LIR* AddWordData(LIR* *constant_list_p, int value);
    667     LIR* AddWideData(LIR* *constant_list_p, int val_lo, int val_hi);
    668     void DumpSparseSwitchTable(const uint16_t* table);
    669     void DumpPackedSwitchTable(const uint16_t* table);
    670     void MarkBoundary(DexOffset offset, const char* inst_str);
    671     void NopLIR(LIR* lir);
    672     void UnlinkLIR(LIR* lir);
    673     bool IsInexpensiveConstant(RegLocation rl_src);
    674     ConditionCode FlipComparisonOrder(ConditionCode before);
    675     ConditionCode NegateComparison(ConditionCode before);
    676     virtual void InstallLiteralPools();
    677     void InstallSwitchTables();
    678     void InstallFillArrayData();
    679     bool VerifyCatchEntries();
    680     void CreateMappingTables();
    681     void CreateNativeGcMap();
    682     void CreateNativeGcMapWithoutRegisterPromotion();
    683     int AssignLiteralOffset(CodeOffset offset);
    684     int AssignSwitchTablesOffset(CodeOffset offset);
    685     int AssignFillArrayDataOffset(CodeOffset offset);
    686     LIR* InsertCaseLabel(uint32_t bbid, int keyVal);
    687 
    688     // Handle bookkeeping to convert a wide RegLocation to a narrow RegLocation.  No code generated.
    689     virtual RegLocation NarrowRegLoc(RegLocation loc);
    690 
    691     // Shared by all targets - implemented in local_optimizations.cc
    692     void ConvertMemOpIntoMove(LIR* orig_lir, RegStorage dest, RegStorage src);
    693     void ApplyLoadStoreElimination(LIR* head_lir, LIR* tail_lir);
    694     void ApplyLoadHoisting(LIR* head_lir, LIR* tail_lir);
    695     virtual void ApplyLocalOptimizations(LIR* head_lir, LIR* tail_lir);
    696 
    697     // Shared by all targets - implemented in ralloc_util.cc
    698     int GetSRegHi(int lowSreg);
    699     bool LiveOut(int s_reg);
    700     void SimpleRegAlloc();
    701     void ResetRegPool();
    702     void CompilerInitPool(RegisterInfo* info, RegStorage* regs, int num);
    703     void DumpRegPool(ArenaVector<RegisterInfo*>* regs);
    704     void DumpCoreRegPool();
    705     void DumpFpRegPool();
    706     void DumpRegPools();
    707     /* Mark a temp register as dead.  Does not affect allocation state. */
    708     void Clobber(RegStorage reg);
    709     void ClobberSReg(int s_reg);
    710     void ClobberAliases(RegisterInfo* info, uint32_t clobber_mask);
    711     int SRegToPMap(int s_reg);
    712     void RecordCorePromotion(RegStorage reg, int s_reg);
    713     RegStorage AllocPreservedCoreReg(int s_reg);
    714     void RecordFpPromotion(RegStorage reg, int s_reg);
    715     RegStorage AllocPreservedFpReg(int s_reg);
    716     virtual RegStorage AllocPreservedSingle(int s_reg);
    717     virtual RegStorage AllocPreservedDouble(int s_reg);
    718     RegStorage AllocTempBody(ArenaVector<RegisterInfo*>& regs, int* next_temp, bool required);
    719     virtual RegStorage AllocTemp(bool required = true);
    720     virtual RegStorage AllocTempWide(bool required = true);
    721     virtual RegStorage AllocTempRef(bool required = true);
    722     virtual RegStorage AllocTempSingle(bool required = true);
    723     virtual RegStorage AllocTempDouble(bool required = true);
    724     virtual RegStorage AllocTypedTemp(bool fp_hint, int reg_class, bool required = true);
    725     virtual RegStorage AllocTypedTempWide(bool fp_hint, int reg_class, bool required = true);
    726     void FlushReg(RegStorage reg);
    727     void FlushRegWide(RegStorage reg);
    728     RegStorage AllocLiveReg(int s_reg, int reg_class, bool wide);
    729     RegStorage FindLiveReg(ArenaVector<RegisterInfo*>& regs, int s_reg);
    730     virtual void FreeTemp(RegStorage reg);
    731     virtual void FreeRegLocTemps(RegLocation rl_keep, RegLocation rl_free);
    732     virtual bool IsLive(RegStorage reg);
    733     virtual bool IsTemp(RegStorage reg);
    734     bool IsPromoted(RegStorage reg);
    735     bool IsDirty(RegStorage reg);
    736     virtual void LockTemp(RegStorage reg);
    737     void ResetDef(RegStorage reg);
    738     void NullifyRange(RegStorage reg, int s_reg);
    739     void MarkDef(RegLocation rl, LIR *start, LIR *finish);
    740     void MarkDefWide(RegLocation rl, LIR *start, LIR *finish);
    741     void ResetDefLoc(RegLocation rl);
    742     void ResetDefLocWide(RegLocation rl);
    743     void ResetDefTracking();
    744     void ClobberAllTemps();
    745     void FlushSpecificReg(RegisterInfo* info);
    746     void FlushAllRegs();
    747     bool RegClassMatches(int reg_class, RegStorage reg);
    748     void MarkLive(RegLocation loc);
    749     void MarkTemp(RegStorage reg);
    750     void UnmarkTemp(RegStorage reg);
    751     void MarkWide(RegStorage reg);
    752     void MarkNarrow(RegStorage reg);
    753     void MarkClean(RegLocation loc);
    754     void MarkDirty(RegLocation loc);
    755     void MarkInUse(RegStorage reg);
    756     bool CheckCorePoolSanity();
    757     virtual RegLocation UpdateLoc(RegLocation loc);
    758     virtual RegLocation UpdateLocWide(RegLocation loc);
    759     RegLocation UpdateRawLoc(RegLocation loc);
    760 
    761     /**
    762      * @brief Used to prepare a register location to receive a wide value.
    763      * @see EvalLoc
    764      * @param loc the location where the value will be stored.
    765      * @param reg_class Type of register needed.
    766      * @param update Whether the liveness information should be updated.
    767      * @return Returns the properly typed temporary in physical register pairs.
    768      */
    769     virtual RegLocation EvalLocWide(RegLocation loc, int reg_class, bool update);
    770 
    771     /**
    772      * @brief Used to prepare a register location to receive a value.
    773      * @param loc the location where the value will be stored.
    774      * @param reg_class Type of register needed.
    775      * @param update Whether the liveness information should be updated.
    776      * @return Returns the properly typed temporary in physical register.
    777      */
    778     virtual RegLocation EvalLoc(RegLocation loc, int reg_class, bool update);
    779 
    780     virtual void AnalyzeMIR(RefCounts* core_counts, MIR* mir, uint32_t weight);
    781     virtual void CountRefs(RefCounts* core_counts, RefCounts* fp_counts, size_t num_regs);
    782     void DumpCounts(const RefCounts* arr, int size, const char* msg);
    783     virtual void DoPromotion();
    784     int VRegOffset(int v_reg);
    785     int SRegOffset(int s_reg);
    786     RegLocation GetReturnWide(RegisterClass reg_class);
    787     RegLocation GetReturn(RegisterClass reg_class);
    788     RegisterInfo* GetRegInfo(RegStorage reg);
    789 
    790     // Shared by all targets - implemented in gen_common.cc.
    791     void AddIntrinsicSlowPath(CallInfo* info, LIR* branch, LIR* resume = nullptr);
    792     virtual bool HandleEasyDivRem(Instruction::Code dalvik_opcode, bool is_div,
    793                                   RegLocation rl_src, RegLocation rl_dest, int lit);
    794     bool HandleEasyMultiply(RegLocation rl_src, RegLocation rl_dest, int lit);
    795     bool HandleEasyFloatingPointDiv(RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2);
    796     virtual void HandleSlowPaths();
    797     void GenBarrier();
    798     void GenDivZeroException();
    799     // c_code holds condition code that's generated from testing divisor against 0.
    800     void GenDivZeroCheck(ConditionCode c_code);
    801     // reg holds divisor.
    802     void GenDivZeroCheck(RegStorage reg);
    803     void GenArrayBoundsCheck(RegStorage index, RegStorage length);
    804     void GenArrayBoundsCheck(int32_t index, RegStorage length);
    805     LIR* GenNullCheck(RegStorage reg);
    806     void MarkPossibleNullPointerException(int opt_flags);
    807     void MarkPossibleNullPointerExceptionAfter(int opt_flags, LIR* after);
    808     void MarkPossibleStackOverflowException();
    809     void ForceImplicitNullCheck(RegStorage reg, int opt_flags);
    810     LIR* GenNullCheck(RegStorage m_reg, int opt_flags);
    811     LIR* GenExplicitNullCheck(RegStorage m_reg, int opt_flags);
    812     virtual void GenImplicitNullCheck(RegStorage reg, int opt_flags);
    813     void GenCompareAndBranch(Instruction::Code opcode, RegLocation rl_src1, RegLocation rl_src2,
    814                              LIR* taken);
    815     void GenCompareZeroAndBranch(Instruction::Code opcode, RegLocation rl_src, LIR* taken);
    816     virtual void GenIntToLong(RegLocation rl_dest, RegLocation rl_src);
    817     virtual void GenLongToInt(RegLocation rl_dest, RegLocation rl_src);
    818     void GenIntNarrowing(Instruction::Code opcode, RegLocation rl_dest,
    819                          RegLocation rl_src);
    820     void GenNewArray(uint32_t type_idx, RegLocation rl_dest,
    821                      RegLocation rl_src);
    822     void GenFilledNewArray(CallInfo* info);
    823     void GenFillArrayData(MIR* mir, DexOffset table_offset, RegLocation rl_src);
    824     void GenSput(MIR* mir, RegLocation rl_src, OpSize size);
    825     // Get entrypoints are specific for types, size alone is not sufficient to safely infer
    826     // entrypoint.
    827     void GenSget(MIR* mir, RegLocation rl_dest, OpSize size, Primitive::Type type);
    828     void GenIGet(MIR* mir, int opt_flags, OpSize size, Primitive::Type type,
    829                  RegLocation rl_dest, RegLocation rl_obj);
    830     void GenIPut(MIR* mir, int opt_flags, OpSize size,
    831                  RegLocation rl_src, RegLocation rl_obj);
    832     void GenArrayObjPut(int opt_flags, RegLocation rl_array, RegLocation rl_index,
    833                         RegLocation rl_src);
    834 
    835     void GenConstClass(uint32_t type_idx, RegLocation rl_dest);
    836     void GenConstString(uint32_t string_idx, RegLocation rl_dest);
    837     void GenNewInstance(uint32_t type_idx, RegLocation rl_dest);
    838     void GenThrow(RegLocation rl_src);
    839     void GenInstanceof(uint32_t type_idx, RegLocation rl_dest, RegLocation rl_src);
    840     void GenCheckCast(int opt_flags, uint32_t insn_idx, uint32_t type_idx, RegLocation rl_src);
    841     void GenLong3Addr(OpKind first_op, OpKind second_op, RegLocation rl_dest,
    842                       RegLocation rl_src1, RegLocation rl_src2);
    843     virtual void GenShiftOpLong(Instruction::Code opcode, RegLocation rl_dest,
    844                         RegLocation rl_src1, RegLocation rl_shift);
    845     void GenArithOpIntLit(Instruction::Code opcode, RegLocation rl_dest,
    846                           RegLocation rl_src, int lit);
    847     virtual void GenArithOpLong(Instruction::Code opcode, RegLocation rl_dest,
    848                                 RegLocation rl_src1, RegLocation rl_src2, int flags);
    849     void GenConversionCall(QuickEntrypointEnum trampoline, RegLocation rl_dest, RegLocation rl_src,
    850                            RegisterClass return_reg_class);
    851     void GenSuspendTest(int opt_flags);
    852     void GenSuspendTestAndBranch(int opt_flags, LIR* target);
    853 
    854     // This will be overridden by x86 implementation.
    855     virtual void GenConstWide(RegLocation rl_dest, int64_t value);
    856     virtual void GenArithOpInt(Instruction::Code opcode, RegLocation rl_dest,
    857                        RegLocation rl_src1, RegLocation rl_src2, int flags);
    858 
    859     // Shared by all targets - implemented in gen_invoke.cc.
    860     LIR* CallHelper(RegStorage r_tgt, QuickEntrypointEnum trampoline, bool safepoint_pc,
    861                     bool use_link = true);
    862     RegStorage CallHelperSetup(QuickEntrypointEnum trampoline);
    863 
    864     void CallRuntimeHelper(QuickEntrypointEnum trampoline, bool safepoint_pc);
    865     void CallRuntimeHelperImm(QuickEntrypointEnum trampoline, int arg0, bool safepoint_pc);
    866     void CallRuntimeHelperReg(QuickEntrypointEnum trampoline, RegStorage arg0, bool safepoint_pc);
    867     void CallRuntimeHelperRegLocation(QuickEntrypointEnum trampoline, RegLocation arg0,
    868                                       bool safepoint_pc);
    869     void CallRuntimeHelperImmImm(QuickEntrypointEnum trampoline, int arg0, int arg1,
    870                                  bool safepoint_pc);
    871     void CallRuntimeHelperImmRegLocation(QuickEntrypointEnum trampoline, int arg0, RegLocation arg1,
    872                                          bool safepoint_pc);
    873     void CallRuntimeHelperRegLocationImm(QuickEntrypointEnum trampoline, RegLocation arg0, int arg1,
    874                                          bool safepoint_pc);
    875     void CallRuntimeHelperImmReg(QuickEntrypointEnum trampoline, int arg0, RegStorage arg1,
    876                                  bool safepoint_pc);
    877     void CallRuntimeHelperRegImm(QuickEntrypointEnum trampoline, RegStorage arg0, int arg1,
    878                                  bool safepoint_pc);
    879     void CallRuntimeHelperImmMethod(QuickEntrypointEnum trampoline, int arg0, bool safepoint_pc);
    880     void CallRuntimeHelperRegMethod(QuickEntrypointEnum trampoline, RegStorage arg0,
    881                                     bool safepoint_pc);
    882     void CallRuntimeHelperRegRegLocationMethod(QuickEntrypointEnum trampoline, RegStorage arg0,
    883                                                RegLocation arg1, bool safepoint_pc);
    884     void CallRuntimeHelperRegLocationRegLocation(QuickEntrypointEnum trampoline, RegLocation arg0,
    885                                                  RegLocation arg1, bool safepoint_pc);
    886     void CallRuntimeHelperRegReg(QuickEntrypointEnum trampoline, RegStorage arg0, RegStorage arg1,
    887                                  bool safepoint_pc);
    888     void CallRuntimeHelperRegRegImm(QuickEntrypointEnum trampoline, RegStorage arg0,
    889                                     RegStorage arg1, int arg2, bool safepoint_pc);
    890     void CallRuntimeHelperImmRegLocationMethod(QuickEntrypointEnum trampoline, int arg0,
    891                                                RegLocation arg1, bool safepoint_pc);
    892     void CallRuntimeHelperImmImmMethod(QuickEntrypointEnum trampoline, int arg0, int arg1,
    893                                        bool safepoint_pc);
    894     void CallRuntimeHelperImmRegLocationRegLocation(QuickEntrypointEnum trampoline, int arg0,
    895                                                     RegLocation arg1, RegLocation arg2,
    896                                                     bool safepoint_pc);
    897     void CallRuntimeHelperRegLocationRegLocationRegLocation(QuickEntrypointEnum trampoline,
    898                                                             RegLocation arg0, RegLocation arg1,
    899                                                             RegLocation arg2,
    900                                                             bool safepoint_pc);
    901     void CallRuntimeHelperRegLocationRegLocationRegLocationRegLocation(
    902         QuickEntrypointEnum trampoline, RegLocation arg0, RegLocation arg1,
    903         RegLocation arg2, RegLocation arg3, bool safepoint_pc);
    904 
    905     void GenInvoke(CallInfo* info);
    906     void GenInvokeNoInline(CallInfo* info);
    907     virtual NextCallInsn GetNextSDCallInsn() = 0;
    908 
    909     /*
    910      * @brief Generate the actual call insn based on the method info.
    911      * @param method_info the lowering info for the method call.
    912      * @returns Call instruction
    913      */
    914     virtual LIR* GenCallInsn(const MirMethodLoweringInfo& method_info) = 0;
    915 
    916     virtual void FlushIns(RegLocation* ArgLocs, RegLocation rl_method);
    917     virtual int GenDalvikArgs(CallInfo* info, int call_state, LIR** pcrLabel,
    918                       NextCallInsn next_call_insn,
    919                       const MethodReference& target_method,
    920                       uint32_t vtable_idx,
    921                       uintptr_t direct_code, uintptr_t direct_method, InvokeType type,
    922                       bool skip_this);
    923     virtual int GenDalvikArgsBulkCopy(CallInfo* info, int first, int count);
    924     virtual void GenDalvikArgsFlushPromoted(CallInfo* info, int start);
    925     /**
    926      * @brief Used to determine the register location of destination.
    927      * @details This is needed during generation of inline intrinsics because it finds destination
    928      *  of return,
    929      * either the physical register or the target of move-result.
    930      * @param info Information about the invoke.
    931      * @return Returns the destination location.
    932      */
    933     RegLocation InlineTarget(CallInfo* info);
    934 
    935     /**
    936      * @brief Used to determine the wide register location of destination.
    937      * @see InlineTarget
    938      * @param info Information about the invoke.
    939      * @return Returns the destination location.
    940      */
    941     RegLocation InlineTargetWide(CallInfo* info);
    942 
    943     bool GenInlinedReferenceGetReferent(CallInfo* info);
    944     virtual bool GenInlinedCharAt(CallInfo* info);
    945     bool GenInlinedStringGetCharsNoCheck(CallInfo* info);
    946     bool GenInlinedStringIsEmptyOrLength(CallInfo* info, bool is_empty);
    947     bool GenInlinedStringFactoryNewStringFromBytes(CallInfo* info);
    948     bool GenInlinedStringFactoryNewStringFromChars(CallInfo* info);
    949     bool GenInlinedStringFactoryNewStringFromString(CallInfo* info);
    950     virtual bool GenInlinedReverseBits(CallInfo* info, OpSize size);
    951     bool GenInlinedReverseBytes(CallInfo* info, OpSize size);
    952     virtual bool GenInlinedAbsInt(CallInfo* info);
    953     virtual bool GenInlinedAbsLong(CallInfo* info);
    954     virtual bool GenInlinedAbsFloat(CallInfo* info) = 0;
    955     virtual bool GenInlinedAbsDouble(CallInfo* info) = 0;
    956     bool GenInlinedFloatCvt(CallInfo* info);
    957     bool GenInlinedDoubleCvt(CallInfo* info);
    958     virtual bool GenInlinedCeil(CallInfo* info);
    959     virtual bool GenInlinedFloor(CallInfo* info);
    960     virtual bool GenInlinedRint(CallInfo* info);
    961     virtual bool GenInlinedRound(CallInfo* info, bool is_double);
    962     virtual bool GenInlinedArrayCopyCharArray(CallInfo* info);
    963     virtual bool GenInlinedIndexOf(CallInfo* info, bool zero_based);
    964     bool GenInlinedStringCompareTo(CallInfo* info);
    965     virtual bool GenInlinedCurrentThread(CallInfo* info);
    966     bool GenInlinedUnsafeGet(CallInfo* info, bool is_long, bool is_object, bool is_volatile);
    967     bool GenInlinedUnsafePut(CallInfo* info, bool is_long, bool is_object,
    968                              bool is_volatile, bool is_ordered);
    969 
    970     // Shared by all targets - implemented in gen_loadstore.cc.
    971     RegLocation LoadCurrMethod();
    972     void LoadCurrMethodDirect(RegStorage r_tgt);
    973     RegStorage LoadCurrMethodWithHint(RegStorage r_hint);
    974     virtual LIR* LoadConstant(RegStorage r_dest, int value);
    975     // Natural word size.
    976     LIR* LoadWordDisp(RegStorage r_base, int displacement, RegStorage r_dest) {
    977       return LoadBaseDisp(r_base, displacement, r_dest, kWord, kNotVolatile);
    978     }
    979     // Load 32 bits, regardless of target.
    980     LIR* Load32Disp(RegStorage r_base, int displacement, RegStorage r_dest)  {
    981       return LoadBaseDisp(r_base, displacement, r_dest, k32, kNotVolatile);
    982     }
    983     // Load a reference at base + displacement and decompress into register.
    984     LIR* LoadRefDisp(RegStorage r_base, int displacement, RegStorage r_dest,
    985                      VolatileKind is_volatile) {
    986       return LoadBaseDisp(r_base, displacement, r_dest, kReference, is_volatile);
    987     }
    988     // Load a reference at base + index and decompress into register.
    989     LIR* LoadRefIndexed(RegStorage r_base, RegStorage r_index, RegStorage r_dest, int scale) {
    990       return LoadBaseIndexed(r_base, r_index, r_dest, scale, kReference);
    991     }
    992     // Load Dalvik value with 32-bit memory storage.  If compressed object reference, decompress.
    993     virtual RegLocation LoadValue(RegLocation rl_src, RegisterClass op_kind);
    994     // Load Dalvik value with 64-bit memory storage.
    995     virtual RegLocation LoadValueWide(RegLocation rl_src, RegisterClass op_kind);
    996     // Load Dalvik value with 32-bit memory storage.  If compressed object reference, decompress.
    997     virtual void LoadValueDirect(RegLocation rl_src, RegStorage r_dest);
    998     // Load Dalvik value with 32-bit memory storage.  If compressed object reference, decompress.
    999     virtual void LoadValueDirectFixed(RegLocation rl_src, RegStorage r_dest);
   1000     // Load Dalvik value with 64-bit memory storage.
   1001     virtual void LoadValueDirectWide(RegLocation rl_src, RegStorage r_dest);
   1002     // Load Dalvik value with 64-bit memory storage.
   1003     virtual void LoadValueDirectWideFixed(RegLocation rl_src, RegStorage r_dest);
   1004     // Store an item of natural word size.
   1005     LIR* StoreWordDisp(RegStorage r_base, int displacement, RegStorage r_src) {
   1006       return StoreBaseDisp(r_base, displacement, r_src, kWord, kNotVolatile);
   1007     }
   1008     // Store an uncompressed reference into a compressed 32-bit container.
   1009     LIR* StoreRefDisp(RegStorage r_base, int displacement, RegStorage r_src,
   1010                       VolatileKind is_volatile) {
   1011       return StoreBaseDisp(r_base, displacement, r_src, kReference, is_volatile);
   1012     }
   1013     // Store an uncompressed reference into a compressed 32-bit container by index.
   1014     LIR* StoreRefIndexed(RegStorage r_base, RegStorage r_index, RegStorage r_src, int scale) {
   1015       return StoreBaseIndexed(r_base, r_index, r_src, scale, kReference);
   1016     }
   1017     // Store 32 bits, regardless of target.
   1018     LIR* Store32Disp(RegStorage r_base, int displacement, RegStorage r_src) {
   1019       return StoreBaseDisp(r_base, displacement, r_src, k32, kNotVolatile);
   1020     }
   1021 
   1022     /**
   1023      * @brief Used to do the final store in the destination as per bytecode semantics.
   1024      * @param rl_dest The destination dalvik register location.
   1025      * @param rl_src The source register location. Can be either physical register or dalvik register.
   1026      */
   1027     virtual void StoreValue(RegLocation rl_dest, RegLocation rl_src);
   1028 
   1029     /**
   1030      * @brief Used to do the final store in a wide destination as per bytecode semantics.
   1031      * @see StoreValue
   1032      * @param rl_dest The destination dalvik register location.
   1033      * @param rl_src The source register location. Can be either physical register or dalvik
   1034      *  register.
   1035      */
   1036     virtual void StoreValueWide(RegLocation rl_dest, RegLocation rl_src);
   1037 
   1038     /**
   1039      * @brief Used to do the final store to a destination as per bytecode semantics.
   1040      * @see StoreValue
   1041      * @param rl_dest The destination dalvik register location.
   1042      * @param rl_src The source register location. It must be kLocPhysReg
   1043      *
   1044      * This is used for x86 two operand computations, where we have computed the correct
   1045      * register value that now needs to be properly registered.  This is used to avoid an
   1046      * extra register copy that would result if StoreValue was called.
   1047      */
   1048     virtual void StoreFinalValue(RegLocation rl_dest, RegLocation rl_src);
   1049 
   1050     /**
   1051      * @brief Used to do the final store in a wide destination as per bytecode semantics.
   1052      * @see StoreValueWide
   1053      * @param rl_dest The destination dalvik register location.
   1054      * @param rl_src The source register location. It must be kLocPhysReg
   1055      *
   1056      * This is used for x86 two operand computations, where we have computed the correct
   1057      * register values that now need to be properly registered.  This is used to avoid an
   1058      * extra pair of register copies that would result if StoreValueWide was called.
   1059      */
   1060     virtual void StoreFinalValueWide(RegLocation rl_dest, RegLocation rl_src);
   1061 
   1062     // Shared by all targets - implemented in mir_to_lir.cc.
   1063     void CompileDalvikInstruction(MIR* mir, BasicBlock* bb, LIR* label_list);
   1064     virtual void HandleExtendedMethodMIR(BasicBlock* bb, MIR* mir);
   1065     bool MethodBlockCodeGen(BasicBlock* bb);
   1066     bool SpecialMIR2LIR(const InlineMethod& special);
   1067     virtual void MethodMIR2LIR();
   1068     // Update LIR for verbose listings.
   1069     void UpdateLIROffsets();
   1070 
   1071     /**
   1072      * @brief Mark a garbage collection card. Skip if the stored value is null.
   1073      * @param val_reg the register holding the stored value to check against null.
   1074      * @param tgt_addr_reg the address of the object or array where the value was stored.
   1075      * @param opt_flags the optimization flags which may indicate that the value is non-null.
   1076      */
   1077     void MarkGCCard(int opt_flags, RegStorage val_reg, RegStorage tgt_addr_reg);
   1078 
   1079     /*
   1080      * @brief Load the address of the dex method into the register.
   1081      * @param target_method The MethodReference of the method to be invoked.
   1082      * @param type How the method will be invoked.
   1083      * @param register that will contain the code address.
   1084      * @note register will be passed to TargetReg to get physical register.
   1085      */
   1086     void LoadCodeAddress(const MethodReference& target_method, InvokeType type,
   1087                          SpecialTargetRegister symbolic_reg);
   1088 
   1089     /*
   1090      * @brief Load the Method* of a dex method into the register.
   1091      * @param target_method The MethodReference of the method to be invoked.
   1092      * @param type How the method will be invoked.
   1093      * @param register that will contain the code address.
   1094      * @note register will be passed to TargetReg to get physical register.
   1095      */
   1096     virtual void LoadMethodAddress(const MethodReference& target_method, InvokeType type,
   1097                                    SpecialTargetRegister symbolic_reg);
   1098 
   1099     /*
   1100      * @brief Load the Class* of a Dex Class type into the register.
   1101      * @param dex DexFile that contains the class type.
   1102      * @param type How the method will be invoked.
   1103      * @param register that will contain the code address.
   1104      * @note register will be passed to TargetReg to get physical register.
   1105      */
   1106     virtual void LoadClassType(const DexFile& dex_file, uint32_t type_idx,
   1107                                SpecialTargetRegister symbolic_reg);
   1108 
   1109     // TODO: Support PC-relative dex cache array loads on all platforms and
   1110     // replace CanUseOpPcRelDexCacheArrayLoad() with dex_cache_arrays_layout_.Valid().
   1111     virtual bool CanUseOpPcRelDexCacheArrayLoad() const;
   1112 
   1113     /*
   1114      * @brief Load an element of one of the dex cache arrays.
   1115      * @param dex_file the dex file associated with the target dex cache.
   1116      * @param offset the offset of the element in the fixed dex cache arrays' layout.
   1117      * @param r_dest the register where to load the element.
   1118      * @param wide, load 64 bits if true, otherwise 32 bits.
   1119      */
   1120     virtual void OpPcRelDexCacheArrayLoad(const DexFile* dex_file, int offset, RegStorage r_dest,
   1121                                           bool wide);
   1122 
   1123     // Routines that work for the generic case, but may be overriden by target.
   1124     /*
   1125      * @brief Compare memory to immediate, and branch if condition true.
   1126      * @param cond The condition code that when true will branch to the target.
   1127      * @param temp_reg A temporary register that can be used if compare to memory is not
   1128      * supported by the architecture.
   1129      * @param base_reg The register holding the base address.
   1130      * @param offset The offset from the base.
   1131      * @param check_value The immediate to compare to.
   1132      * @param target branch target (or null)
   1133      * @param compare output for getting LIR for comparison (or null)
   1134      * @returns The branch instruction that was generated.
   1135      */
   1136     virtual LIR* OpCmpMemImmBranch(ConditionCode cond, RegStorage temp_reg, RegStorage base_reg,
   1137                                    int offset, int check_value, LIR* target, LIR** compare);
   1138 
   1139     // Required for target - codegen helpers.
   1140     virtual bool SmallLiteralDivRem(Instruction::Code dalvik_opcode, bool is_div,
   1141                                     RegLocation rl_src, RegLocation rl_dest, int lit) = 0;
   1142     virtual bool EasyMultiply(RegLocation rl_src, RegLocation rl_dest, int lit) = 0;
   1143     virtual void GenMultiplyByConstantFloat(RegLocation rl_dest, RegLocation rl_src1,
   1144                                             int32_t constant) = 0;
   1145     virtual void GenMultiplyByConstantDouble(RegLocation rl_dest, RegLocation rl_src1,
   1146                                              int64_t constant) = 0;
   1147     virtual LIR* CheckSuspendUsingLoad() = 0;
   1148 
   1149     virtual RegStorage LoadHelper(QuickEntrypointEnum trampoline) = 0;
   1150 
   1151     virtual LIR* LoadBaseDisp(RegStorage r_base, int displacement, RegStorage r_dest,
   1152                               OpSize size, VolatileKind is_volatile) = 0;
   1153     virtual LIR* LoadBaseIndexed(RegStorage r_base, RegStorage r_index, RegStorage r_dest,
   1154                                  int scale, OpSize size) = 0;
   1155     virtual LIR* LoadConstantNoClobber(RegStorage r_dest, int value) = 0;
   1156     virtual LIR* LoadConstantWide(RegStorage r_dest, int64_t value) = 0;
   1157     virtual LIR* StoreBaseDisp(RegStorage r_base, int displacement, RegStorage r_src,
   1158                                OpSize size, VolatileKind is_volatile) = 0;
   1159     virtual LIR* StoreBaseIndexed(RegStorage r_base, RegStorage r_index, RegStorage r_src,
   1160                                   int scale, OpSize size) = 0;
   1161 
   1162     /**
   1163      * @brief Unconditionally mark a garbage collection card.
   1164      * @param tgt_addr_reg the address of the object or array where the value was stored.
   1165      */
   1166     virtual void UnconditionallyMarkGCCard(RegStorage tgt_addr_reg) = 0;
   1167 
   1168     // Required for target - register utilities.
   1169 
   1170     bool IsSameReg(RegStorage reg1, RegStorage reg2) {
   1171       RegisterInfo* info1 = GetRegInfo(reg1);
   1172       RegisterInfo* info2 = GetRegInfo(reg2);
   1173       return (info1->Master() == info2->Master() &&
   1174              (info1->StorageMask() & info2->StorageMask()) != 0);
   1175     }
   1176 
   1177     static constexpr bool IsWide(OpSize size) {
   1178       return size == k64 || size == kDouble;
   1179     }
   1180 
   1181     static constexpr bool IsRef(OpSize size) {
   1182       return size == kReference;
   1183     }
   1184 
   1185     /**
   1186      * @brief Portable way of getting special registers from the backend.
   1187      * @param reg Enumeration describing the purpose of the register.
   1188      * @return Return the #RegStorage corresponding to the given purpose @p reg.
   1189      * @note This function is currently allowed to return any suitable view of the registers
   1190      *   (e.g. this could be 64-bit solo or 32-bit solo for 64-bit backends).
   1191      */
   1192     virtual RegStorage TargetReg(SpecialTargetRegister reg) = 0;
   1193 
   1194     /**
   1195      * @brief Portable way of getting special registers from the backend.
   1196      * @param reg Enumeration describing the purpose of the register.
   1197      * @param wide_kind What kind of view of the special register is required.
   1198      * @return Return the #RegStorage corresponding to the given purpose @p reg.
   1199      *
   1200      * @note For 32b system, wide (kWide) views only make sense for the argument registers and the
   1201      *       return. In that case, this function should return a pair where the first component of
   1202      *       the result will be the indicated special register.
   1203      */
   1204     virtual RegStorage TargetReg(SpecialTargetRegister reg, WideKind wide_kind) {
   1205       if (wide_kind == kWide) {
   1206         DCHECK((kArg0 <= reg && reg < kArg7) || (kFArg0 <= reg && reg < kFArg15) || (kRet0 == reg));
   1207         static_assert((kArg1 == kArg0 + 1) && (kArg2 == kArg1 + 1) && (kArg3 == kArg2 + 1) &&
   1208                       (kArg4 == kArg3 + 1) && (kArg5 == kArg4 + 1) && (kArg6 == kArg5 + 1) &&
   1209                       (kArg7 == kArg6 + 1), "kargs range unexpected");
   1210         static_assert((kFArg1 == kFArg0 + 1) && (kFArg2 == kFArg1 + 1) && (kFArg3 == kFArg2 + 1) &&
   1211                       (kFArg4 == kFArg3 + 1) && (kFArg5 == kFArg4 + 1) && (kFArg6 == kFArg5 + 1) &&
   1212                       (kFArg7 == kFArg6 + 1) && (kFArg8 == kFArg7 + 1) && (kFArg9 == kFArg8 + 1) &&
   1213                       (kFArg10 == kFArg9 + 1) && (kFArg11 == kFArg10 + 1) &&
   1214                       (kFArg12 == kFArg11 + 1) && (kFArg13 == kFArg12 + 1) &&
   1215                       (kFArg14 == kFArg13 + 1) && (kFArg15 == kFArg14 + 1),
   1216                       "kfargs range unexpected");
   1217         static_assert(kRet1 == kRet0 + 1, "kret range unexpected");
   1218         return RegStorage::MakeRegPair(TargetReg(reg),
   1219                                        TargetReg(static_cast<SpecialTargetRegister>(reg + 1)));
   1220       } else {
   1221         return TargetReg(reg);
   1222       }
   1223     }
   1224 
   1225     /**
   1226      * @brief Portable way of getting a special register for storing a pointer.
   1227      * @see TargetReg()
   1228      */
   1229     virtual RegStorage TargetPtrReg(SpecialTargetRegister reg) {
   1230       return TargetReg(reg);
   1231     }
   1232 
   1233     // Get a reg storage corresponding to the wide & ref flags of the reg location.
   1234     virtual RegStorage TargetReg(SpecialTargetRegister reg, RegLocation loc) {
   1235       if (loc.ref) {
   1236         return TargetReg(reg, kRef);
   1237       } else {
   1238         return TargetReg(reg, loc.wide ? kWide : kNotWide);
   1239       }
   1240     }
   1241 
   1242     void EnsureInitializedArgMappingToPhysicalReg();
   1243     virtual RegLocation GetReturnAlt() = 0;
   1244     virtual RegLocation GetReturnWideAlt() = 0;
   1245     virtual RegLocation LocCReturn() = 0;
   1246     virtual RegLocation LocCReturnRef() = 0;
   1247     virtual RegLocation LocCReturnDouble() = 0;
   1248     virtual RegLocation LocCReturnFloat() = 0;
   1249     virtual RegLocation LocCReturnWide() = 0;
   1250     virtual ResourceMask GetRegMaskCommon(const RegStorage& reg) const = 0;
   1251     virtual void AdjustSpillMask() = 0;
   1252     virtual void ClobberCallerSave() = 0;
   1253     virtual void FreeCallTemps() = 0;
   1254     virtual void LockCallTemps() = 0;
   1255     virtual void CompilerInitializeRegAlloc() = 0;
   1256 
   1257     // Required for target - miscellaneous.
   1258     virtual void AssembleLIR() = 0;
   1259     virtual void DumpResourceMask(LIR* lir, const ResourceMask& mask, const char* prefix) = 0;
   1260     virtual void SetupTargetResourceMasks(LIR* lir, uint64_t flags,
   1261                                           ResourceMask* use_mask, ResourceMask* def_mask) = 0;
   1262     virtual const char* GetTargetInstFmt(int opcode) = 0;
   1263     virtual const char* GetTargetInstName(int opcode) = 0;
   1264     virtual std::string BuildInsnString(const char* fmt, LIR* lir, unsigned char* base_addr) = 0;
   1265 
   1266     // Note: This may return kEncodeNone on architectures that do not expose a PC. The caller must
   1267     //       take care of this.
   1268     virtual ResourceMask GetPCUseDefEncoding() const = 0;
   1269     virtual uint64_t GetTargetInstFlags(int opcode) = 0;
   1270     virtual size_t GetInsnSize(LIR* lir) = 0;
   1271     virtual bool IsUnconditionalBranch(LIR* lir) = 0;
   1272 
   1273     // Get the register class for load/store of a field.
   1274     virtual RegisterClass RegClassForFieldLoadStore(OpSize size, bool is_volatile) = 0;
   1275 
   1276     // Required for target - Dalvik-level generators.
   1277     virtual void GenArithImmOpLong(Instruction::Code opcode, RegLocation rl_dest,
   1278                                    RegLocation rl_src1, RegLocation rl_src2, int flags) = 0;
   1279     virtual void GenArithOpDouble(Instruction::Code opcode,
   1280                                   RegLocation rl_dest, RegLocation rl_src1,
   1281                                   RegLocation rl_src2) = 0;
   1282     virtual void GenArithOpFloat(Instruction::Code opcode, RegLocation rl_dest,
   1283                                  RegLocation rl_src1, RegLocation rl_src2) = 0;
   1284     virtual void GenCmpFP(Instruction::Code opcode, RegLocation rl_dest,
   1285                           RegLocation rl_src1, RegLocation rl_src2) = 0;
   1286     virtual void GenConversion(Instruction::Code opcode, RegLocation rl_dest,
   1287                                RegLocation rl_src) = 0;
   1288     virtual bool GenInlinedCas(CallInfo* info, bool is_long, bool is_object) = 0;
   1289 
   1290     /**
   1291      * @brief Used to generate code for intrinsic java\.lang\.Math methods min and max.
   1292      * @details This is also applicable for java\.lang\.StrictMath since it is a simple algorithm
   1293      * that applies on integers. The generated code will write the smallest or largest value
   1294      * directly into the destination register as specified by the invoke information.
   1295      * @param info Information about the invoke.
   1296      * @param is_min If true generates code that computes minimum. Otherwise computes maximum.
   1297      * @param is_long If true the value value is Long. Otherwise the value is Int.
   1298      * @return Returns true if successfully generated
   1299      */
   1300     virtual bool GenInlinedMinMax(CallInfo* info, bool is_min, bool is_long) = 0;
   1301     virtual bool GenInlinedMinMaxFP(CallInfo* info, bool is_min, bool is_double);
   1302 
   1303     virtual bool GenInlinedSqrt(CallInfo* info) = 0;
   1304     virtual bool GenInlinedPeek(CallInfo* info, OpSize size) = 0;
   1305     virtual bool GenInlinedPoke(CallInfo* info, OpSize size) = 0;
   1306     virtual RegLocation GenDivRem(RegLocation rl_dest, RegStorage reg_lo, RegStorage reg_hi,
   1307                                   bool is_div) = 0;
   1308     virtual RegLocation GenDivRemLit(RegLocation rl_dest, RegStorage reg_lo, int lit,
   1309                                      bool is_div) = 0;
   1310     /*
   1311      * @brief Generate an integer div or rem operation by a literal.
   1312      * @param rl_dest Destination Location.
   1313      * @param rl_src1 Numerator Location.
   1314      * @param rl_src2 Divisor Location.
   1315      * @param is_div 'true' if this is a division, 'false' for a remainder.
   1316      * @param flags The instruction optimization flags. It can include information
   1317      * if exception check can be elided.
   1318      */
   1319     virtual RegLocation GenDivRem(RegLocation rl_dest, RegLocation rl_src1,
   1320                                   RegLocation rl_src2, bool is_div, int flags) = 0;
   1321     /*
   1322      * @brief Generate an integer div or rem operation by a literal.
   1323      * @param rl_dest Destination Location.
   1324      * @param rl_src Numerator Location.
   1325      * @param lit Divisor.
   1326      * @param is_div 'true' if this is a division, 'false' for a remainder.
   1327      */
   1328     virtual RegLocation GenDivRemLit(RegLocation rl_dest, RegLocation rl_src1, int lit,
   1329                                      bool is_div) = 0;
   1330     virtual void GenCmpLong(RegLocation rl_dest, RegLocation rl_src1, RegLocation rl_src2) = 0;
   1331 
   1332     /**
   1333      * @brief Used for generating code that throws ArithmeticException if both registers are zero.
   1334      * @details This is used for generating DivideByZero checks when divisor is held in two
   1335      *  separate registers.
   1336      * @param reg The register holding the pair of 32-bit values.
   1337      */
   1338     virtual void GenDivZeroCheckWide(RegStorage reg) = 0;
   1339 
   1340     virtual void GenEntrySequence(RegLocation* ArgLocs, RegLocation rl_method) = 0;
   1341     virtual void GenExitSequence() = 0;
   1342     virtual void GenFusedFPCmpBranch(BasicBlock* bb, MIR* mir, bool gt_bias, bool is_double) = 0;
   1343     virtual void GenFusedLongCmpBranch(BasicBlock* bb, MIR* mir) = 0;
   1344 
   1345     /*
   1346      * @brief Handle Machine Specific MIR Extended opcodes.
   1347      * @param bb The basic block in which the MIR is from.
   1348      * @param mir The MIR whose opcode is not standard extended MIR.
   1349      * @note Base class implementation will abort for unknown opcodes.
   1350      */
   1351     virtual void GenMachineSpecificExtendedMethodMIR(BasicBlock* bb, MIR* mir);
   1352 
   1353     /**
   1354      * @brief Lowers the kMirOpSelect MIR into LIR.
   1355      * @param bb The basic block in which the MIR is from.
   1356      * @param mir The MIR whose opcode is kMirOpSelect.
   1357      */
   1358     virtual void GenSelect(BasicBlock* bb, MIR* mir) = 0;
   1359 
   1360     /**
   1361      * @brief Generates code to select one of the given constants depending on the given opcode.
   1362      */
   1363     virtual void GenSelectConst32(RegStorage left_op, RegStorage right_op, ConditionCode code,
   1364                                   int32_t true_val, int32_t false_val, RegStorage rs_dest,
   1365                                   RegisterClass dest_reg_class) = 0;
   1366 
   1367     /**
   1368      * @brief Used to generate a memory barrier in an architecture specific way.
   1369      * @details The last generated LIR will be considered for use as barrier. Namely,
   1370      * if the last LIR can be updated in a way where it will serve the semantics of
   1371      * barrier, then it will be used as such. Otherwise, a new LIR will be generated
   1372      * that can keep the semantics.
   1373      * @param barrier_kind The kind of memory barrier to generate.
   1374      * @return whether a new instruction was generated.
   1375      */
   1376     virtual bool GenMemBarrier(MemBarrierKind barrier_kind) = 0;
   1377 
   1378     virtual void GenMoveException(RegLocation rl_dest) = 0;
   1379     virtual void GenMultiplyByTwoBitMultiplier(RegLocation rl_src, RegLocation rl_result, int lit,
   1380                                                int first_bit, int second_bit) = 0;
   1381     virtual void GenNegDouble(RegLocation rl_dest, RegLocation rl_src) = 0;
   1382     virtual void GenNegFloat(RegLocation rl_dest, RegLocation rl_src) = 0;
   1383 
   1384     // Create code for switch statements. Will decide between short and long versions below.
   1385     void GenPackedSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src);
   1386     void GenSparseSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src);
   1387 
   1388     // Potentially backend-specific versions of switch instructions for shorter switch statements.
   1389     // The default implementation will create a chained compare-and-branch.
   1390     virtual void GenSmallPackedSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src);
   1391     virtual void GenSmallSparseSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src);
   1392     // Backend-specific versions of switch instructions for longer switch statements.
   1393     virtual void GenLargePackedSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src) = 0;
   1394     virtual void GenLargeSparseSwitch(MIR* mir, DexOffset table_offset, RegLocation rl_src) = 0;
   1395 
   1396     virtual void GenArrayGet(int opt_flags, OpSize size, RegLocation rl_array,
   1397                              RegLocation rl_index, RegLocation rl_dest, int scale) = 0;
   1398     virtual void GenArrayPut(int opt_flags, OpSize size, RegLocation rl_array,
   1399                              RegLocation rl_index, RegLocation rl_src, int scale,
   1400                              bool card_mark) = 0;
   1401     virtual void GenShiftImmOpLong(Instruction::Code opcode, RegLocation rl_dest,
   1402                                    RegLocation rl_src1, RegLocation rl_shift, int flags) = 0;
   1403 
   1404     // Required for target - single operation generators.
   1405     virtual LIR* OpUnconditionalBranch(LIR* target) = 0;
   1406     virtual LIR* OpCmpBranch(ConditionCode cond, RegStorage src1, RegStorage src2, LIR* target) = 0;
   1407     virtual LIR* OpCmpImmBranch(ConditionCode cond, RegStorage reg, int check_value,
   1408                                 LIR* target) = 0;
   1409     virtual LIR* OpCondBranch(ConditionCode cc, LIR* target) = 0;
   1410     virtual LIR* OpDecAndBranch(ConditionCode c_code, RegStorage reg, LIR* target) = 0;
   1411     virtual LIR* OpFpRegCopy(RegStorage r_dest, RegStorage r_src) = 0;
   1412     virtual LIR* OpIT(ConditionCode cond, const char* guide) = 0;
   1413     virtual void OpEndIT(LIR* it) = 0;
   1414     virtual LIR* OpMem(OpKind op, RegStorage r_base, int disp) = 0;
   1415     virtual void OpPcRelLoad(RegStorage reg, LIR* target) = 0;
   1416     virtual LIR* OpReg(OpKind op, RegStorage r_dest_src) = 0;
   1417     virtual void OpRegCopy(RegStorage r_dest, RegStorage r_src) = 0;
   1418     virtual LIR* OpRegCopyNoInsert(RegStorage r_dest, RegStorage r_src) = 0;
   1419     virtual LIR* OpRegImm(OpKind op, RegStorage r_dest_src1, int value) = 0;
   1420     virtual LIR* OpRegReg(OpKind op, RegStorage r_dest_src1, RegStorage r_src2) = 0;
   1421 
   1422     /**
   1423      * @brief Used to generate an LIR that does a load from mem to reg.
   1424      * @param r_dest The destination physical register.
   1425      * @param r_base The base physical register for memory operand.
   1426      * @param offset The displacement for memory operand.
   1427      * @param move_type Specification on the move desired (size, alignment, register kind).
   1428      * @return Returns the generate move LIR.
   1429      */
   1430     virtual LIR* OpMovRegMem(RegStorage r_dest, RegStorage r_base, int offset,
   1431                              MoveType move_type) = 0;
   1432 
   1433     /**
   1434      * @brief Used to generate an LIR that does a store from reg to mem.
   1435      * @param r_base The base physical register for memory operand.
   1436      * @param offset The displacement for memory operand.
   1437      * @param r_src The destination physical register.
   1438      * @param bytes_to_move The number of bytes to move.
   1439      * @param is_aligned Whether the memory location is known to be aligned.
   1440      * @return Returns the generate move LIR.
   1441      */
   1442     virtual LIR* OpMovMemReg(RegStorage r_base, int offset, RegStorage r_src,
   1443                              MoveType move_type) = 0;
   1444 
   1445     /**
   1446      * @brief Used for generating a conditional register to register operation.
   1447      * @param op The opcode kind.
   1448      * @param cc The condition code that when true will perform the opcode.
   1449      * @param r_dest The destination physical register.
   1450      * @param r_src The source physical register.
   1451      * @return Returns the newly created LIR or null in case of creation failure.
   1452      */
   1453     virtual LIR* OpCondRegReg(OpKind op, ConditionCode cc, RegStorage r_dest, RegStorage r_src) = 0;
   1454 
   1455     virtual LIR* OpRegRegImm(OpKind op, RegStorage r_dest, RegStorage r_src1, int value) = 0;
   1456     virtual LIR* OpRegRegReg(OpKind op, RegStorage r_dest, RegStorage r_src1,
   1457                              RegStorage r_src2) = 0;
   1458     virtual LIR* OpTestSuspend(LIR* target) = 0;
   1459     virtual LIR* OpVldm(RegStorage r_base, int count) = 0;
   1460     virtual LIR* OpVstm(RegStorage r_base, int count) = 0;
   1461     virtual void OpRegCopyWide(RegStorage dest, RegStorage src) = 0;
   1462     virtual bool InexpensiveConstantInt(int32_t value) = 0;
   1463     virtual bool InexpensiveConstantFloat(int32_t value) = 0;
   1464     virtual bool InexpensiveConstantLong(int64_t value) = 0;
   1465     virtual bool InexpensiveConstantDouble(int64_t value) = 0;
   1466     virtual bool InexpensiveConstantInt(int32_t value, Instruction::Code opcode) {
   1467       UNUSED(opcode);
   1468       return InexpensiveConstantInt(value);
   1469     }
   1470 
   1471     // May be optimized by targets.
   1472     virtual void GenMonitorEnter(int opt_flags, RegLocation rl_src);
   1473     virtual void GenMonitorExit(int opt_flags, RegLocation rl_src);
   1474 
   1475     virtual LIR* InvokeTrampoline(OpKind op, RegStorage r_tgt, QuickEntrypointEnum trampoline) = 0;
   1476 
   1477     // Queries for backend support for vectors
   1478     /*
   1479      * Return the number of bits in a vector register.
   1480      * @return 0 if vector registers are not supported, or the
   1481      * number of bits in the vector register if supported.
   1482      */
   1483     virtual int VectorRegisterSize() {
   1484       return 0;
   1485     }
   1486 
   1487     /*
   1488      * Return the number of reservable vector registers supported
   1489      * @param long_or_fp, true if floating point computations will be
   1490      * executed or the operations will be long type while vector
   1491      * registers are reserved.
   1492      * @return the number of vector registers that are available
   1493      * @note The backend should ensure that sufficient vector registers
   1494      * are held back to generate scalar code without exhausting vector
   1495      * registers, if scalar code also uses the vector registers.
   1496      */
   1497     virtual int NumReservableVectorRegisters(bool long_or_fp ATTRIBUTE_UNUSED) {
   1498       return 0;
   1499     }
   1500 
   1501     /**
   1502      * @brief Buffer of DWARF's Call Frame Information opcodes.
   1503      * @details It is used by debuggers and other tools to unwind the call stack.
   1504      */
   1505     dwarf::LazyDebugFrameOpCodeWriter& cfi() { return cfi_; }
   1506 
   1507   protected:
   1508     Mir2Lir(CompilationUnit* cu, MIRGraph* mir_graph, ArenaAllocator* arena);
   1509 
   1510     CompilationUnit* GetCompilationUnit() {
   1511       return cu_;
   1512     }
   1513     /*
   1514      * @brief Do these SRs overlap?
   1515      * @param rl_op1 One RegLocation
   1516      * @param rl_op2 The other RegLocation
   1517      * @return 'true' if the VR pairs overlap
   1518      *
   1519      * Check to see if a result pair has a misaligned overlap with an operand pair.  This
   1520      * is not usual for dx to generate, but it is legal (for now).  In a future rev of
   1521      * dex, we'll want to make this case illegal.
   1522      */
   1523     bool PartiallyIntersects(RegLocation rl_op1, RegLocation rl_op2);
   1524 
   1525     /*
   1526      * @brief Do these SRs intersect?
   1527      * @param rl_op1 One RegLocation
   1528      * @param rl_op2 The other RegLocation
   1529      * @return 'true' if the VR pairs intersect
   1530      *
   1531      * Check to see if a result pair has misaligned overlap or
   1532      * full overlap with an operand pair.
   1533      */
   1534     bool Intersects(RegLocation rl_op1, RegLocation rl_op2);
   1535 
   1536     /*
   1537      * @brief Force a location (in a register) into a temporary register
   1538      * @param loc location of result
   1539      * @returns update location
   1540      */
   1541     virtual RegLocation ForceTemp(RegLocation loc);
   1542 
   1543     /*
   1544      * @brief Force a wide location (in registers) into temporary registers
   1545      * @param loc location of result
   1546      * @returns update location
   1547      */
   1548     virtual RegLocation ForceTempWide(RegLocation loc);
   1549 
   1550     virtual void GenInstanceofFinal(bool use_declaring_class, uint32_t type_idx,
   1551                                     RegLocation rl_dest, RegLocation rl_src);
   1552 
   1553     void AddSlowPath(LIRSlowPath* slowpath);
   1554 
   1555     /*
   1556      *
   1557      * @brief Implement Set up instanceof a class.
   1558      * @param needs_access_check 'true' if we must check the access.
   1559      * @param type_known_final 'true' if the type is known to be a final class.
   1560      * @param type_known_abstract 'true' if the type is known to be an abstract class.
   1561      * @param use_declaring_class 'true' if the type can be loaded off the current Method*.
   1562      * @param can_assume_type_is_in_dex_cache 'true' if the type is known to be in the cache.
   1563      * @param type_idx Type index to use if use_declaring_class is 'false'.
   1564      * @param rl_dest Result to be set to 0 or 1.
   1565      * @param rl_src Object to be tested.
   1566      */
   1567     void GenInstanceofCallingHelper(bool needs_access_check, bool type_known_final,
   1568                                     bool type_known_abstract, bool use_declaring_class,
   1569                                     bool can_assume_type_is_in_dex_cache,
   1570                                     uint32_t type_idx, RegLocation rl_dest,
   1571                                     RegLocation rl_src);
   1572 
   1573     /**
   1574      * @brief Used to insert marker that can be used to associate MIR with LIR.
   1575      * @details Only inserts marker if verbosity is enabled.
   1576      * @param mir The mir that is currently being generated.
   1577      */
   1578     void GenPrintLabel(MIR* mir);
   1579 
   1580     /**
   1581      * @brief Used to generate return sequence when there is no frame.
   1582      * @details Assumes that the return registers have already been populated.
   1583      */
   1584     virtual void GenSpecialExitSequence() = 0;
   1585 
   1586     /**
   1587      * @brief Used to generate stack frame for suspend path of special methods.
   1588      */
   1589     virtual void GenSpecialEntryForSuspend() = 0;
   1590 
   1591     /**
   1592      * @brief Used to pop the stack frame for suspend path of special methods.
   1593      */
   1594     virtual void GenSpecialExitForSuspend() = 0;
   1595 
   1596     /**
   1597      * @brief Used to generate code for special methods that are known to be
   1598      * small enough to work in frameless mode.
   1599      * @param bb The basic block of the first MIR.
   1600      * @param mir The first MIR of the special method.
   1601      * @param special Information about the special method.
   1602      * @return Returns whether or not this was handled successfully. Returns false
   1603      * if caller should punt to normal MIR2LIR conversion.
   1604      */
   1605     virtual bool GenSpecialCase(BasicBlock* bb, MIR* mir, const InlineMethod& special);
   1606 
   1607     void ClobberBody(RegisterInfo* p);
   1608     void SetCurrentDexPc(DexOffset dexpc) {
   1609       current_dalvik_offset_ = dexpc;
   1610     }
   1611 
   1612     /**
   1613      * @brief Used to lock register if argument at in_position was passed that way.
   1614      * @details Does nothing if the argument is passed via stack.
   1615      * @param in_position The argument number whose register to lock.
   1616      */
   1617     void LockArg(size_t in_position);
   1618 
   1619     /**
   1620      * @brief Used to load VR argument to a physical register.
   1621      * @details The load is only done if the argument is not already in physical register.
   1622      * LockArg must have been previously called.
   1623      * @param in_position The argument number to load.
   1624      * @param wide Whether the argument is 64-bit or not.
   1625      * @return Returns the register (or register pair) for the loaded argument.
   1626      */
   1627     RegStorage LoadArg(size_t in_position, RegisterClass reg_class, bool wide = false);
   1628 
   1629     /**
   1630      * @brief Used to load a VR argument directly to a specified register location.
   1631      * @param in_position The argument number to place in register.
   1632      * @param rl_dest The register location where to place argument.
   1633      */
   1634     void LoadArgDirect(size_t in_position, RegLocation rl_dest);
   1635 
   1636     /**
   1637      * @brief Used to spill register if argument at in_position was passed that way.
   1638      * @details Does nothing if the argument is passed via stack.
   1639      * @param in_position The argument number whose register to spill.
   1640      */
   1641     void SpillArg(size_t in_position);
   1642 
   1643     /**
   1644      * @brief Used to unspill register if argument at in_position was passed that way.
   1645      * @details Does nothing if the argument is passed via stack.
   1646      * @param in_position The argument number whose register to spill.
   1647      */
   1648     void UnspillArg(size_t in_position);
   1649 
   1650     /**
   1651      * @brief Generate suspend test in a special method.
   1652      */
   1653     SpecialSuspendCheckSlowPath* GenSpecialSuspendTest();
   1654 
   1655     /**
   1656      * @brief Used to generate LIR for special getter method.
   1657      * @param mir The mir that represents the iget.
   1658      * @param special Information about the special getter method.
   1659      * @return Returns whether LIR was successfully generated.
   1660      */
   1661     bool GenSpecialIGet(MIR* mir, const InlineMethod& special);
   1662 
   1663     /**
   1664      * @brief Used to generate LIR for special setter method.
   1665      * @param mir The mir that represents the iput.
   1666      * @param special Information about the special setter method.
   1667      * @return Returns whether LIR was successfully generated.
   1668      */
   1669     bool GenSpecialIPut(MIR* mir, const InlineMethod& special);
   1670 
   1671     /**
   1672      * @brief Used to generate LIR for special return-args method.
   1673      * @param mir The mir that represents the return of argument.
   1674      * @param special Information about the special return-args method.
   1675      * @return Returns whether LIR was successfully generated.
   1676      */
   1677     bool GenSpecialIdentity(MIR* mir, const InlineMethod& special);
   1678 
   1679     /**
   1680      * @brief Generate code to check if result is null and, if it is, call helper to load it.
   1681      * @param r_result the result register.
   1682      * @param trampoline the helper to call in slow path.
   1683      * @param imm the immediate passed to the helper.
   1684      */
   1685     void GenIfNullUseHelperImm(RegStorage r_result, QuickEntrypointEnum trampoline, int imm);
   1686 
   1687     /**
   1688      * @brief Generate code to retrieve Class* for another type to be used by SGET/SPUT.
   1689      * @param field_info information about the field to be accessed.
   1690      * @param opt_flags the optimization flags of the MIR.
   1691      */
   1692     RegStorage GenGetOtherTypeForSgetSput(const MirSFieldLoweringInfo& field_info, int opt_flags);
   1693 
   1694     void AddDivZeroCheckSlowPath(LIR* branch);
   1695 
   1696     // Copy arg0 and arg1 to kArg0 and kArg1 safely, possibly using
   1697     // kArg2 as temp.
   1698     virtual void CopyToArgumentRegs(RegStorage arg0, RegStorage arg1);
   1699 
   1700     /**
   1701      * @brief Load Constant into RegLocation
   1702      * @param rl_dest Destination RegLocation
   1703      * @param value Constant value
   1704      */
   1705     virtual void GenConst(RegLocation rl_dest, int value);
   1706 
   1707     /**
   1708      * Returns true iff wide GPRs are just different views on the same physical register.
   1709      */
   1710     virtual bool WideGPRsAreAliases() const = 0;
   1711 
   1712     /**
   1713      * Returns true iff wide FPRs are just different views on the same physical register.
   1714      */
   1715     virtual bool WideFPRsAreAliases() const = 0;
   1716 
   1717 
   1718     enum class WidenessCheck {  // private
   1719       kIgnoreWide,
   1720       kCheckWide,
   1721       kCheckNotWide
   1722     };
   1723 
   1724     enum class RefCheck {  // private
   1725       kIgnoreRef,
   1726       kCheckRef,
   1727       kCheckNotRef
   1728     };
   1729 
   1730     enum class FPCheck {  // private
   1731       kIgnoreFP,
   1732       kCheckFP,
   1733       kCheckNotFP
   1734     };
   1735 
   1736     /**
   1737      * Check whether a reg storage seems well-formed, that is, if a reg storage is valid,
   1738      * that it has the expected form for the flags.
   1739      * A flag value of 0 means ignore. A flag value of -1 means false. A flag value of 1 means true.
   1740      */
   1741     void CheckRegStorageImpl(RegStorage rs, WidenessCheck wide, RefCheck ref, FPCheck fp, bool fail,
   1742                              bool report)
   1743         const;
   1744 
   1745     /**
   1746      * Check whether a reg location seems well-formed, that is, if a reg storage is encoded,
   1747      * that it has the expected size.
   1748      */
   1749     void CheckRegLocationImpl(RegLocation rl, bool fail, bool report) const;
   1750 
   1751     // See CheckRegStorageImpl. Will print or fail depending on kFailOnSizeError and
   1752     // kReportSizeError.
   1753     void CheckRegStorage(RegStorage rs, WidenessCheck wide, RefCheck ref, FPCheck fp) const;
   1754     // See CheckRegLocationImpl.
   1755     void CheckRegLocation(RegLocation rl) const;
   1756 
   1757     // Find the references at the beginning of a basic block (for generating GC maps).
   1758     void InitReferenceVRegs(BasicBlock* bb, BitVector* references);
   1759 
   1760     // Update references from prev_mir to mir in the same BB. If mir is null or before
   1761     // prev_mir, report failure (return false) and update references to the end of the BB.
   1762     bool UpdateReferenceVRegsLocal(MIR* mir, MIR* prev_mir, BitVector* references);
   1763 
   1764     // Update references from prev_mir to mir.
   1765     void UpdateReferenceVRegs(MIR* mir, MIR* prev_mir, BitVector* references);
   1766 
   1767     /**
   1768      * Returns true if the frame spills the given core register.
   1769      */
   1770     bool CoreSpillMaskContains(int reg) {
   1771       return (core_spill_mask_ & (1u << reg)) != 0;
   1772     }
   1773 
   1774   public:
   1775     // TODO: add accessors for these.
   1776     LIR* literal_list_;                        // Constants.
   1777     LIR* method_literal_list_;                 // Method literals requiring patching.
   1778     LIR* class_literal_list_;                  // Class literals requiring patching.
   1779     LIR* code_literal_list_;                   // Code literals requiring patching.
   1780     LIR* first_fixup_;                         // Doubly-linked list of LIR nodes requiring fixups.
   1781 
   1782   protected:
   1783     ArenaAllocator* const arena_;
   1784     CompilationUnit* const cu_;
   1785     MIRGraph* const mir_graph_;
   1786     ArenaVector<SwitchTable*> switch_tables_;
   1787     ArenaVector<FillArrayData*> fill_array_data_;
   1788     ArenaVector<RegisterInfo*> tempreg_info_;
   1789     ArenaVector<RegisterInfo*> reginfo_map_;
   1790     ArenaVector<const void*> pointer_storage_;
   1791     CodeOffset data_offset_;            // starting offset of literal pool.
   1792     size_t total_size_;                   // header + code size.
   1793     LIR* block_label_list_;
   1794     PromotionMap* promotion_map_;
   1795     /*
   1796      * TODO: The code generation utilities don't have a built-in
   1797      * mechanism to propagate the original Dalvik opcode address to the
   1798      * associated generated instructions.  For the trace compiler, this wasn't
   1799      * necessary because the interpreter handled all throws and debugging
   1800      * requests.  For now we'll handle this by placing the Dalvik offset
   1801      * in the CompilationUnit struct before codegen for each instruction.
   1802      * The low-level LIR creation utilites will pull it from here.  Rework this.
   1803      */
   1804     DexOffset current_dalvik_offset_;
   1805     MIR* current_mir_;
   1806     size_t estimated_native_code_size_;     // Just an estimate; used to reserve code_buffer_ size.
   1807     std::unique_ptr<RegisterPool> reg_pool_;
   1808     /*
   1809      * Sanity checking for the register temp tracking.  The same ssa
   1810      * name should never be associated with one temp register per
   1811      * instruction compilation.
   1812      */
   1813     int live_sreg_;
   1814     CodeBuffer code_buffer_;
   1815     // The source mapping table data (pc -> dex). More entries than in encoded_mapping_table_
   1816     DefaultSrcMap src_mapping_table_;
   1817     // The encoding mapping table data (dex -> pc offset and pc offset -> dex) with a size prefix.
   1818     ArenaVector<uint8_t> encoded_mapping_table_;
   1819     ArenaVector<uint32_t> core_vmap_table_;
   1820     ArenaVector<uint32_t> fp_vmap_table_;
   1821     ArenaVector<uint8_t> native_gc_map_;
   1822     ArenaVector<LinkerPatch> patches_;
   1823     int num_core_spills_;
   1824     int num_fp_spills_;
   1825     int frame_size_;
   1826     unsigned int core_spill_mask_;
   1827     unsigned int fp_spill_mask_;
   1828     LIR* first_lir_insn_;
   1829     LIR* last_lir_insn_;
   1830 
   1831     ArenaVector<LIRSlowPath*> slow_paths_;
   1832 
   1833     // The memory reference type for new LIRs.
   1834     // NOTE: Passing this as an explicit parameter by all functions that directly or indirectly
   1835     // invoke RawLIR() would clutter the code and reduce the readability.
   1836     ResourceMask::ResourceBit mem_ref_type_;
   1837 
   1838     // Each resource mask now takes 16-bytes, so having both use/def masks directly in a LIR
   1839     // would consume 32 bytes per LIR. Instead, the LIR now holds only pointers to the masks
   1840     // (i.e. 8 bytes on 32-bit arch, 16 bytes on 64-bit arch) and we use ResourceMaskCache
   1841     // to deduplicate the masks.
   1842     ResourceMaskCache mask_cache_;
   1843 
   1844     // Record the MIR that generated a given safepoint (null for prologue safepoints).
   1845     ArenaVector<std::pair<LIR*, MIR*>> safepoints_;
   1846 
   1847     // The layout of the cu_->dex_file's dex cache arrays for PC-relative addressing.
   1848     const DexCacheArraysLayout dex_cache_arrays_layout_;
   1849 
   1850     // For architectures that don't have true PC-relative addressing, we can promote
   1851     // a PC of an instruction (or another PC-relative address such as a pointer to
   1852     // the dex cache arrays if supported) to a register. This is indicated to the
   1853     // register promotion by allocating a backend temp.
   1854     CompilerTemp* pc_rel_temp_;
   1855 
   1856     // For architectures that don't have true PC-relative addressing (see pc_rel_temp_
   1857     // above) and also have a limited range of offsets for loads, it's be useful to
   1858     // know the minimum offset into the dex cache arrays, so we calculate that as well
   1859     // if pc_rel_temp_ isn't null.
   1860     uint32_t dex_cache_arrays_min_offset_;
   1861 
   1862     dwarf::LazyDebugFrameOpCodeWriter cfi_;
   1863 
   1864     // ABI support
   1865     class ShortyArg {
   1866       public:
   1867         explicit ShortyArg(char type) : type_(type) { }
   1868         bool IsFP() { return type_ == 'F' || type_ == 'D'; }
   1869         bool IsWide() { return type_ == 'J' || type_ == 'D'; }
   1870         bool IsRef() { return type_ == 'L'; }
   1871         char GetType() { return type_; }
   1872       private:
   1873         char type_;
   1874     };
   1875 
   1876     class ShortyIterator {
   1877       public:
   1878         ShortyIterator(const char* shorty, bool is_static);
   1879         bool Next();
   1880         ShortyArg GetArg() { return ShortyArg(pending_this_ ? 'L' : *cur_); }
   1881       private:
   1882         const char* cur_;
   1883         bool pending_this_;
   1884         bool initialized_;
   1885     };
   1886 
   1887     class InToRegStorageMapper {
   1888      public:
   1889       virtual RegStorage GetNextReg(ShortyArg arg) = 0;
   1890       virtual ~InToRegStorageMapper() {}
   1891       virtual void Reset() = 0;
   1892     };
   1893 
   1894     class InToRegStorageMapping {
   1895      public:
   1896       explicit InToRegStorageMapping(ArenaAllocator* arena)
   1897           : mapping_(arena->Adapter()),
   1898             end_mapped_in_(0u), has_arguments_on_stack_(false),  initialized_(false) {}
   1899       void Initialize(ShortyIterator* shorty, InToRegStorageMapper* mapper);
   1900       /**
   1901        * @return the past-the-end index of VRs mapped to physical registers.
   1902        * In other words any VR starting from this index is mapped to memory.
   1903        */
   1904       size_t GetEndMappedIn() { return end_mapped_in_; }
   1905       bool HasArgumentsOnStack() { return has_arguments_on_stack_; }
   1906       RegStorage GetReg(size_t in_position);
   1907       ShortyArg GetShorty(size_t in_position);
   1908       bool IsInitialized() { return initialized_; }
   1909      private:
   1910       static constexpr char kInvalidShorty = '-';
   1911       ArenaVector<std::pair<ShortyArg, RegStorage>> mapping_;
   1912       size_t end_mapped_in_;
   1913       bool has_arguments_on_stack_;
   1914       bool initialized_;
   1915     };
   1916 
   1917   // Cached mapping of method input to reg storage according to ABI.
   1918   InToRegStorageMapping in_to_reg_storage_mapping_;
   1919   virtual InToRegStorageMapper* GetResetedInToRegStorageMapper() = 0;
   1920 
   1921   private:
   1922     static bool SizeMatchesTypeForEntrypoint(OpSize size, Primitive::Type type);
   1923 
   1924     friend class QuickCFITest;
   1925 };  // Class Mir2Lir
   1926 
   1927 }  // namespace art
   1928 
   1929 #endif  // ART_COMPILER_DEX_QUICK_MIR_TO_LIR_H_
   1930