Home | History | Annotate | Download | only in x86
      1 /*
      2  * Copyright (C) 2012 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #include "codegen_x86.h"
     18 
     19 #include <cstdarg>
     20 #include <inttypes.h>
     21 #include <string>
     22 
     23 #include "arch/instruction_set_features.h"
     24 #include "art_method.h"
     25 #include "backend_x86.h"
     26 #include "base/logging.h"
     27 #include "dex/compiler_ir.h"
     28 #include "dex/quick/mir_to_lir-inl.h"
     29 #include "dex/reg_storage_eq.h"
     30 #include "driver/compiler_driver.h"
     31 #include "mirror/array-inl.h"
     32 #include "mirror/string.h"
     33 #include "oat.h"
     34 #include "x86_lir.h"
     35 
     36 namespace art {
     37 
     38 static constexpr RegStorage core_regs_arr_32[] = {
     39     rs_rAX, rs_rCX, rs_rDX, rs_rBX, rs_rX86_SP_32, rs_rBP, rs_rSI, rs_rDI,
     40 };
     41 static constexpr RegStorage core_regs_arr_64[] = {
     42     rs_rAX, rs_rCX, rs_rDX, rs_rBX, rs_rX86_SP_32, rs_rBP, rs_rSI, rs_rDI,
     43     rs_r8, rs_r9, rs_r10, rs_r11, rs_r12, rs_r13, rs_r14, rs_r15
     44 };
     45 static constexpr RegStorage core_regs_arr_64q[] = {
     46     rs_r0q, rs_r1q, rs_r2q, rs_r3q, rs_rX86_SP_64, rs_r5q, rs_r6q, rs_r7q,
     47     rs_r8q, rs_r9q, rs_r10q, rs_r11q, rs_r12q, rs_r13q, rs_r14q, rs_r15q
     48 };
     49 static constexpr RegStorage sp_regs_arr_32[] = {
     50     rs_fr0, rs_fr1, rs_fr2, rs_fr3, rs_fr4, rs_fr5, rs_fr6, rs_fr7,
     51 };
     52 static constexpr RegStorage sp_regs_arr_64[] = {
     53     rs_fr0, rs_fr1, rs_fr2, rs_fr3, rs_fr4, rs_fr5, rs_fr6, rs_fr7,
     54     rs_fr8, rs_fr9, rs_fr10, rs_fr11, rs_fr12, rs_fr13, rs_fr14, rs_fr15
     55 };
     56 static constexpr RegStorage dp_regs_arr_32[] = {
     57     rs_dr0, rs_dr1, rs_dr2, rs_dr3, rs_dr4, rs_dr5, rs_dr6, rs_dr7,
     58 };
     59 static constexpr RegStorage dp_regs_arr_64[] = {
     60     rs_dr0, rs_dr1, rs_dr2, rs_dr3, rs_dr4, rs_dr5, rs_dr6, rs_dr7,
     61     rs_dr8, rs_dr9, rs_dr10, rs_dr11, rs_dr12, rs_dr13, rs_dr14, rs_dr15
     62 };
     63 static constexpr RegStorage xp_regs_arr_32[] = {
     64     rs_xr0, rs_xr1, rs_xr2, rs_xr3, rs_xr4, rs_xr5, rs_xr6, rs_xr7,
     65 };
     66 static constexpr RegStorage xp_regs_arr_64[] = {
     67     rs_xr0, rs_xr1, rs_xr2, rs_xr3, rs_xr4, rs_xr5, rs_xr6, rs_xr7,
     68     rs_xr8, rs_xr9, rs_xr10, rs_xr11, rs_xr12, rs_xr13, rs_xr14, rs_xr15
     69 };
     70 static constexpr RegStorage reserved_regs_arr_32[] = {rs_rX86_SP_32};
     71 static constexpr RegStorage reserved_regs_arr_64[] = {rs_rX86_SP_32};
     72 static constexpr RegStorage reserved_regs_arr_64q[] = {rs_rX86_SP_64};
     73 static constexpr RegStorage core_temps_arr_32[] = {rs_rAX, rs_rCX, rs_rDX, rs_rBX};
     74 static constexpr RegStorage core_temps_arr_64[] = {
     75     rs_rAX, rs_rCX, rs_rDX, rs_rSI, rs_rDI,
     76     rs_r8, rs_r9, rs_r10, rs_r11
     77 };
     78 
     79 // How to add register to be available for promotion:
     80 // 1) Remove register from array defining temp
     81 // 2) Update ClobberCallerSave
     82 // 3) Update JNI compiler ABI:
     83 // 3.1) add reg in JniCallingConvention method
     84 // 3.2) update CoreSpillMask/FpSpillMask
     85 // 4) Update entrypoints
     86 // 4.1) Update constants in asm_support_x86_64.h for new frame size
     87 // 4.2) Remove entry in SmashCallerSaves
     88 // 4.3) Update jni_entrypoints to spill/unspill new callee save reg
     89 // 4.4) Update quick_entrypoints to spill/unspill new callee save reg
     90 // 5) Update runtime ABI
     91 // 5.1) Update quick_method_frame_info with new required spills
     92 // 5.2) Update QuickArgumentVisitor with new offsets to gprs and xmms
     93 // Note that you cannot use register corresponding to incoming args
     94 // according to ABI and QCG needs one additional XMM temp for
     95 // bulk copy in preparation to call.
     96 static constexpr RegStorage core_temps_arr_64q[] = {
     97     rs_r0q, rs_r1q, rs_r2q, rs_r6q, rs_r7q,
     98     rs_r8q, rs_r9q, rs_r10q, rs_r11q
     99 };
    100 static constexpr RegStorage sp_temps_arr_32[] = {
    101     rs_fr0, rs_fr1, rs_fr2, rs_fr3, rs_fr4, rs_fr5, rs_fr6, rs_fr7,
    102 };
    103 static constexpr RegStorage sp_temps_arr_64[] = {
    104     rs_fr0, rs_fr1, rs_fr2, rs_fr3, rs_fr4, rs_fr5, rs_fr6, rs_fr7,
    105     rs_fr8, rs_fr9, rs_fr10, rs_fr11
    106 };
    107 static constexpr RegStorage dp_temps_arr_32[] = {
    108     rs_dr0, rs_dr1, rs_dr2, rs_dr3, rs_dr4, rs_dr5, rs_dr6, rs_dr7,
    109 };
    110 static constexpr RegStorage dp_temps_arr_64[] = {
    111     rs_dr0, rs_dr1, rs_dr2, rs_dr3, rs_dr4, rs_dr5, rs_dr6, rs_dr7,
    112     rs_dr8, rs_dr9, rs_dr10, rs_dr11
    113 };
    114 
    115 static constexpr RegStorage xp_temps_arr_32[] = {
    116     rs_xr0, rs_xr1, rs_xr2, rs_xr3, rs_xr4, rs_xr5, rs_xr6, rs_xr7,
    117 };
    118 static constexpr RegStorage xp_temps_arr_64[] = {
    119     rs_xr0, rs_xr1, rs_xr2, rs_xr3, rs_xr4, rs_xr5, rs_xr6, rs_xr7,
    120     rs_xr8, rs_xr9, rs_xr10, rs_xr11
    121 };
    122 
    123 static constexpr ArrayRef<const RegStorage> empty_pool;
    124 static constexpr ArrayRef<const RegStorage> core_regs_32(core_regs_arr_32);
    125 static constexpr ArrayRef<const RegStorage> core_regs_64(core_regs_arr_64);
    126 static constexpr ArrayRef<const RegStorage> core_regs_64q(core_regs_arr_64q);
    127 static constexpr ArrayRef<const RegStorage> sp_regs_32(sp_regs_arr_32);
    128 static constexpr ArrayRef<const RegStorage> sp_regs_64(sp_regs_arr_64);
    129 static constexpr ArrayRef<const RegStorage> dp_regs_32(dp_regs_arr_32);
    130 static constexpr ArrayRef<const RegStorage> dp_regs_64(dp_regs_arr_64);
    131 static constexpr ArrayRef<const RegStorage> xp_regs_32(xp_regs_arr_32);
    132 static constexpr ArrayRef<const RegStorage> xp_regs_64(xp_regs_arr_64);
    133 static constexpr ArrayRef<const RegStorage> reserved_regs_32(reserved_regs_arr_32);
    134 static constexpr ArrayRef<const RegStorage> reserved_regs_64(reserved_regs_arr_64);
    135 static constexpr ArrayRef<const RegStorage> reserved_regs_64q(reserved_regs_arr_64q);
    136 static constexpr ArrayRef<const RegStorage> core_temps_32(core_temps_arr_32);
    137 static constexpr ArrayRef<const RegStorage> core_temps_64(core_temps_arr_64);
    138 static constexpr ArrayRef<const RegStorage> core_temps_64q(core_temps_arr_64q);
    139 static constexpr ArrayRef<const RegStorage> sp_temps_32(sp_temps_arr_32);
    140 static constexpr ArrayRef<const RegStorage> sp_temps_64(sp_temps_arr_64);
    141 static constexpr ArrayRef<const RegStorage> dp_temps_32(dp_temps_arr_32);
    142 static constexpr ArrayRef<const RegStorage> dp_temps_64(dp_temps_arr_64);
    143 
    144 static constexpr ArrayRef<const RegStorage> xp_temps_32(xp_temps_arr_32);
    145 static constexpr ArrayRef<const RegStorage> xp_temps_64(xp_temps_arr_64);
    146 
    147 RegLocation X86Mir2Lir::LocCReturn() {
    148   return x86_loc_c_return;
    149 }
    150 
    151 RegLocation X86Mir2Lir::LocCReturnRef() {
    152   return cu_->target64 ? x86_64_loc_c_return_ref : x86_loc_c_return_ref;
    153 }
    154 
    155 RegLocation X86Mir2Lir::LocCReturnWide() {
    156   return cu_->target64 ? x86_64_loc_c_return_wide : x86_loc_c_return_wide;
    157 }
    158 
    159 RegLocation X86Mir2Lir::LocCReturnFloat() {
    160   return x86_loc_c_return_float;
    161 }
    162 
    163 RegLocation X86Mir2Lir::LocCReturnDouble() {
    164   return x86_loc_c_return_double;
    165 }
    166 
    167 // 32-bit reg storage locations for 32-bit targets.
    168 static const RegStorage RegStorage32FromSpecialTargetRegister_Target32[] {
    169   RegStorage::InvalidReg(),  // kSelf - Thread pointer.
    170   RegStorage::InvalidReg(),  // kSuspend - Used to reduce suspend checks for some targets.
    171   RegStorage::InvalidReg(),  // kLr - no register as the return address is pushed on entry.
    172   RegStorage::InvalidReg(),  // kPc - not exposed on X86 see kX86StartOfMethod.
    173   rs_rX86_SP_32,             // kSp
    174   rs_rAX,                    // kArg0
    175   rs_rCX,                    // kArg1
    176   rs_rDX,                    // kArg2
    177   rs_rBX,                    // kArg3
    178   RegStorage::InvalidReg(),  // kArg4
    179   RegStorage::InvalidReg(),  // kArg5
    180   RegStorage::InvalidReg(),  // kArg6
    181   RegStorage::InvalidReg(),  // kArg7
    182   rs_fr0,                    // kFArg0
    183   rs_fr1,                    // kFArg1
    184   rs_fr2,                    // kFArg2
    185   rs_fr3,                    // kFArg3
    186   RegStorage::InvalidReg(),  // kFArg4
    187   RegStorage::InvalidReg(),  // kFArg5
    188   RegStorage::InvalidReg(),  // kFArg6
    189   RegStorage::InvalidReg(),  // kFArg7
    190   RegStorage::InvalidReg(),  // kFArg8
    191   RegStorage::InvalidReg(),  // kFArg9
    192   RegStorage::InvalidReg(),  // kFArg10
    193   RegStorage::InvalidReg(),  // kFArg11
    194   RegStorage::InvalidReg(),  // kFArg12
    195   RegStorage::InvalidReg(),  // kFArg13
    196   RegStorage::InvalidReg(),  // kFArg14
    197   RegStorage::InvalidReg(),  // kFArg15
    198   rs_rAX,                    // kRet0
    199   rs_rDX,                    // kRet1
    200   rs_rAX,                    // kInvokeTgt
    201   rs_rAX,                    // kHiddenArg - used to hold the method index before copying to fr0.
    202   rs_fr7,                    // kHiddenFpArg
    203   rs_rCX,                    // kCount
    204 };
    205 
    206 // 32-bit reg storage locations for 64-bit targets.
    207 static const RegStorage RegStorage32FromSpecialTargetRegister_Target64[] {
    208   RegStorage::InvalidReg(),  // kSelf - Thread pointer.
    209   RegStorage::InvalidReg(),  // kSuspend - Used to reduce suspend checks for some targets.
    210   RegStorage::InvalidReg(),  // kLr - no register as the return address is pushed on entry.
    211   RegStorage(kRIPReg),       // kPc
    212   rs_rX86_SP_32,             // kSp
    213   rs_rDI,                    // kArg0
    214   rs_rSI,                    // kArg1
    215   rs_rDX,                    // kArg2
    216   rs_rCX,                    // kArg3
    217   rs_r8,                     // kArg4
    218   rs_r9,                     // kArg5
    219   RegStorage::InvalidReg(),  // kArg6
    220   RegStorage::InvalidReg(),  // kArg7
    221   rs_fr0,                    // kFArg0
    222   rs_fr1,                    // kFArg1
    223   rs_fr2,                    // kFArg2
    224   rs_fr3,                    // kFArg3
    225   rs_fr4,                    // kFArg4
    226   rs_fr5,                    // kFArg5
    227   rs_fr6,                    // kFArg6
    228   rs_fr7,                    // kFArg7
    229   RegStorage::InvalidReg(),  // kFArg8
    230   RegStorage::InvalidReg(),  // kFArg9
    231   RegStorage::InvalidReg(),  // kFArg10
    232   RegStorage::InvalidReg(),  // kFArg11
    233   RegStorage::InvalidReg(),  // kFArg12
    234   RegStorage::InvalidReg(),  // kFArg13
    235   RegStorage::InvalidReg(),  // kFArg14
    236   RegStorage::InvalidReg(),  // kFArg15
    237   rs_rAX,                    // kRet0
    238   rs_rDX,                    // kRet1
    239   rs_rAX,                    // kInvokeTgt
    240   rs_rAX,                    // kHiddenArg
    241   RegStorage::InvalidReg(),  // kHiddenFpArg
    242   rs_rCX,                    // kCount
    243 };
    244 static_assert(arraysize(RegStorage32FromSpecialTargetRegister_Target32) ==
    245               arraysize(RegStorage32FromSpecialTargetRegister_Target64),
    246               "Mismatch in RegStorage array sizes");
    247 
    248 // Return a target-dependent special register for 32-bit.
    249 RegStorage X86Mir2Lir::TargetReg32(SpecialTargetRegister reg) const {
    250   DCHECK_EQ(RegStorage32FromSpecialTargetRegister_Target32[kCount], rs_rCX);
    251   DCHECK_EQ(RegStorage32FromSpecialTargetRegister_Target64[kCount], rs_rCX);
    252   DCHECK_LT(reg, arraysize(RegStorage32FromSpecialTargetRegister_Target32));
    253   return cu_->target64 ? RegStorage32FromSpecialTargetRegister_Target64[reg]
    254                        : RegStorage32FromSpecialTargetRegister_Target32[reg];
    255 }
    256 
    257 RegStorage X86Mir2Lir::TargetReg(SpecialTargetRegister reg) {
    258   UNUSED(reg);
    259   LOG(FATAL) << "Do not use this function!!!";
    260   UNREACHABLE();
    261 }
    262 
    263 /*
    264  * Decode the register id.
    265  */
    266 ResourceMask X86Mir2Lir::GetRegMaskCommon(const RegStorage& reg) const {
    267   /* Double registers in x86 are just a single FP register. This is always just a single bit. */
    268   return ResourceMask::Bit(
    269       /* FP register starts at bit position 16 */
    270       ((reg.IsFloat() || reg.StorageSize() > 8) ? kX86FPReg0 : 0) + reg.GetRegNum());
    271 }
    272 
    273 ResourceMask X86Mir2Lir::GetPCUseDefEncoding() const {
    274   return kEncodeNone;
    275 }
    276 
    277 void X86Mir2Lir::SetupTargetResourceMasks(LIR* lir, uint64_t flags,
    278                                           ResourceMask* use_mask, ResourceMask* def_mask) {
    279   DCHECK(cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64);
    280   DCHECK(!lir->flags.use_def_invalid);
    281 
    282   // X86-specific resource map setup here.
    283   if (flags & REG_USE_SP) {
    284     use_mask->SetBit(kX86RegSP);
    285   }
    286 
    287   if (flags & REG_DEF_SP) {
    288     def_mask->SetBit(kX86RegSP);
    289   }
    290 
    291   if (flags & REG_DEFA) {
    292     SetupRegMask(def_mask, rs_rAX.GetReg());
    293   }
    294 
    295   if (flags & REG_DEFD) {
    296     SetupRegMask(def_mask, rs_rDX.GetReg());
    297   }
    298   if (flags & REG_USEA) {
    299     SetupRegMask(use_mask, rs_rAX.GetReg());
    300   }
    301 
    302   if (flags & REG_USEC) {
    303     SetupRegMask(use_mask, rs_rCX.GetReg());
    304   }
    305 
    306   if (flags & REG_USED) {
    307     SetupRegMask(use_mask, rs_rDX.GetReg());
    308   }
    309 
    310   if (flags & REG_USEB) {
    311     SetupRegMask(use_mask, rs_rBX.GetReg());
    312   }
    313 
    314   // Fixup hard to describe instruction: Uses rAX, rCX, rDI; sets rDI.
    315   if (lir->opcode == kX86RepneScasw) {
    316     SetupRegMask(use_mask, rs_rAX.GetReg());
    317     SetupRegMask(use_mask, rs_rCX.GetReg());
    318     SetupRegMask(use_mask, rs_rDI.GetReg());
    319     SetupRegMask(def_mask, rs_rDI.GetReg());
    320   }
    321 
    322   if (flags & USE_FP_STACK) {
    323     use_mask->SetBit(kX86FPStack);
    324     def_mask->SetBit(kX86FPStack);
    325   }
    326 }
    327 
    328 /* For dumping instructions */
    329 static const char* x86RegName[] = {
    330   "rax", "rcx", "rdx", "rbx", "rsp", "rbp", "rsi", "rdi",
    331   "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
    332 };
    333 
    334 static const char* x86CondName[] = {
    335   "O",
    336   "NO",
    337   "B/NAE/C",
    338   "NB/AE/NC",
    339   "Z/EQ",
    340   "NZ/NE",
    341   "BE/NA",
    342   "NBE/A",
    343   "S",
    344   "NS",
    345   "P/PE",
    346   "NP/PO",
    347   "L/NGE",
    348   "NL/GE",
    349   "LE/NG",
    350   "NLE/G"
    351 };
    352 
    353 /*
    354  * Interpret a format string and build a string no longer than size
    355  * See format key in Assemble.cc.
    356  */
    357 std::string X86Mir2Lir::BuildInsnString(const char *fmt, LIR *lir, unsigned char* base_addr) {
    358   std::string buf;
    359   size_t i = 0;
    360   size_t fmt_len = strlen(fmt);
    361   while (i < fmt_len) {
    362     if (fmt[i] != '!') {
    363       buf += fmt[i];
    364       i++;
    365     } else {
    366       i++;
    367       DCHECK_LT(i, fmt_len);
    368       char operand_number_ch = fmt[i];
    369       i++;
    370       if (operand_number_ch == '!') {
    371         buf += "!";
    372       } else {
    373         int operand_number = operand_number_ch - '0';
    374         DCHECK_LT(operand_number, 6);  // Expect upto 6 LIR operands.
    375         DCHECK_LT(i, fmt_len);
    376         int operand = lir->operands[operand_number];
    377         switch (fmt[i]) {
    378           case 'c':
    379             DCHECK_LT(static_cast<size_t>(operand), sizeof(x86CondName));
    380             buf += x86CondName[operand];
    381             break;
    382           case 'd':
    383             buf += StringPrintf("%d", operand);
    384             break;
    385           case 'q': {
    386              int64_t value = static_cast<int64_t>(static_cast<int64_t>(operand) << 32 |
    387                              static_cast<uint32_t>(lir->operands[operand_number+1]));
    388              buf +=StringPrintf("%" PRId64, value);
    389              break;
    390           }
    391           case 'p': {
    392             const EmbeddedData* tab_rec = UnwrapPointer<EmbeddedData>(operand);
    393             buf += StringPrintf("0x%08x", tab_rec->offset);
    394             break;
    395           }
    396           case 'r':
    397             if (RegStorage::IsFloat(operand)) {
    398               int fp_reg = RegStorage::RegNum(operand);
    399               buf += StringPrintf("xmm%d", fp_reg);
    400             } else {
    401               int reg_num = RegStorage::RegNum(operand);
    402               DCHECK_LT(static_cast<size_t>(reg_num), sizeof(x86RegName));
    403               buf += x86RegName[reg_num];
    404             }
    405             break;
    406           case 't':
    407             buf += StringPrintf("0x%08" PRIxPTR " (L%p)",
    408                                 reinterpret_cast<uintptr_t>(base_addr) + lir->offset + operand,
    409                                 lir->target);
    410             break;
    411           default:
    412             buf += StringPrintf("DecodeError '%c'", fmt[i]);
    413             break;
    414         }
    415         i++;
    416       }
    417     }
    418   }
    419   return buf;
    420 }
    421 
    422 void X86Mir2Lir::DumpResourceMask(LIR *x86LIR, const ResourceMask& mask, const char *prefix) {
    423   char buf[256];
    424   buf[0] = 0;
    425 
    426   if (mask.Equals(kEncodeAll)) {
    427     strcpy(buf, "all");
    428   } else {
    429     char num[8];
    430     int i;
    431 
    432     for (i = 0; i < kX86RegEnd; i++) {
    433       if (mask.HasBit(i)) {
    434         snprintf(num, arraysize(num), "%d ", i);
    435         strcat(buf, num);
    436       }
    437     }
    438 
    439     if (mask.HasBit(ResourceMask::kCCode)) {
    440       strcat(buf, "cc ");
    441     }
    442     /* Memory bits */
    443     if (x86LIR && (mask.HasBit(ResourceMask::kDalvikReg))) {
    444       snprintf(buf + strlen(buf), arraysize(buf) - strlen(buf), "dr%d%s",
    445                DECODE_ALIAS_INFO_REG(x86LIR->flags.alias_info),
    446                (DECODE_ALIAS_INFO_WIDE(x86LIR->flags.alias_info)) ? "(+1)" : "");
    447     }
    448     if (mask.HasBit(ResourceMask::kLiteral)) {
    449       strcat(buf, "lit ");
    450     }
    451 
    452     if (mask.HasBit(ResourceMask::kHeapRef)) {
    453       strcat(buf, "heap ");
    454     }
    455     if (mask.HasBit(ResourceMask::kMustNotAlias)) {
    456       strcat(buf, "noalias ");
    457     }
    458   }
    459   if (buf[0]) {
    460     LOG(INFO) << prefix << ": " <<  buf;
    461   }
    462 }
    463 
    464 void X86Mir2Lir::AdjustSpillMask() {
    465   // Adjustment for LR spilling, x86 has no LR so nothing to do here
    466   core_spill_mask_ |= (1 << rs_rRET.GetRegNum());
    467   num_core_spills_++;
    468 }
    469 
    470 RegStorage X86Mir2Lir::AllocateByteRegister() {
    471   RegStorage reg = AllocTypedTemp(false, kCoreReg);
    472   if (!cu_->target64) {
    473     DCHECK_LT(reg.GetRegNum(), rs_rX86_SP_32.GetRegNum());
    474   }
    475   return reg;
    476 }
    477 
    478 RegStorage X86Mir2Lir::Get128BitRegister(RegStorage reg) {
    479   return GetRegInfo(reg)->Master()->GetReg();
    480 }
    481 
    482 bool X86Mir2Lir::IsByteRegister(RegStorage reg) const {
    483   return cu_->target64 || reg.GetRegNum() < rs_rX86_SP_32.GetRegNum();
    484 }
    485 
    486 /* Clobber all regs that might be used by an external C call */
    487 void X86Mir2Lir::ClobberCallerSave() {
    488   if (cu_->target64) {
    489     Clobber(rs_rAX);
    490     Clobber(rs_rCX);
    491     Clobber(rs_rDX);
    492     Clobber(rs_rSI);
    493     Clobber(rs_rDI);
    494 
    495     Clobber(rs_r8);
    496     Clobber(rs_r9);
    497     Clobber(rs_r10);
    498     Clobber(rs_r11);
    499 
    500     Clobber(rs_fr8);
    501     Clobber(rs_fr9);
    502     Clobber(rs_fr10);
    503     Clobber(rs_fr11);
    504   } else {
    505     Clobber(rs_rAX);
    506     Clobber(rs_rCX);
    507     Clobber(rs_rDX);
    508     Clobber(rs_rBX);
    509   }
    510 
    511   Clobber(rs_fr0);
    512   Clobber(rs_fr1);
    513   Clobber(rs_fr2);
    514   Clobber(rs_fr3);
    515   Clobber(rs_fr4);
    516   Clobber(rs_fr5);
    517   Clobber(rs_fr6);
    518   Clobber(rs_fr7);
    519 }
    520 
    521 RegLocation X86Mir2Lir::GetReturnWideAlt() {
    522   RegLocation res = LocCReturnWide();
    523   DCHECK_EQ(res.reg.GetLowReg(), rs_rAX.GetReg());
    524   DCHECK_EQ(res.reg.GetHighReg(), rs_rDX.GetReg());
    525   Clobber(rs_rAX);
    526   Clobber(rs_rDX);
    527   MarkInUse(rs_rAX);
    528   MarkInUse(rs_rDX);
    529   MarkWide(res.reg);
    530   return res;
    531 }
    532 
    533 RegLocation X86Mir2Lir::GetReturnAlt() {
    534   RegLocation res = LocCReturn();
    535   res.reg.SetReg(rs_rDX.GetReg());
    536   Clobber(rs_rDX);
    537   MarkInUse(rs_rDX);
    538   return res;
    539 }
    540 
    541 /* To be used when explicitly managing register use */
    542 void X86Mir2Lir::LockCallTemps() {
    543   LockTemp(TargetReg32(kArg0));
    544   LockTemp(TargetReg32(kArg1));
    545   LockTemp(TargetReg32(kArg2));
    546   LockTemp(TargetReg32(kArg3));
    547   LockTemp(TargetReg32(kFArg0));
    548   LockTemp(TargetReg32(kFArg1));
    549   LockTemp(TargetReg32(kFArg2));
    550   LockTemp(TargetReg32(kFArg3));
    551   if (cu_->target64) {
    552     LockTemp(TargetReg32(kArg4));
    553     LockTemp(TargetReg32(kArg5));
    554     LockTemp(TargetReg32(kFArg4));
    555     LockTemp(TargetReg32(kFArg5));
    556     LockTemp(TargetReg32(kFArg6));
    557     LockTemp(TargetReg32(kFArg7));
    558   }
    559 }
    560 
    561 /* To be used when explicitly managing register use */
    562 void X86Mir2Lir::FreeCallTemps() {
    563   FreeTemp(TargetReg32(kArg0));
    564   FreeTemp(TargetReg32(kArg1));
    565   FreeTemp(TargetReg32(kArg2));
    566   FreeTemp(TargetReg32(kArg3));
    567   FreeTemp(TargetReg32(kHiddenArg));
    568   FreeTemp(TargetReg32(kFArg0));
    569   FreeTemp(TargetReg32(kFArg1));
    570   FreeTemp(TargetReg32(kFArg2));
    571   FreeTemp(TargetReg32(kFArg3));
    572   if (cu_->target64) {
    573     FreeTemp(TargetReg32(kArg4));
    574     FreeTemp(TargetReg32(kArg5));
    575     FreeTemp(TargetReg32(kFArg4));
    576     FreeTemp(TargetReg32(kFArg5));
    577     FreeTemp(TargetReg32(kFArg6));
    578     FreeTemp(TargetReg32(kFArg7));
    579   }
    580 }
    581 
    582 bool X86Mir2Lir::ProvidesFullMemoryBarrier(X86OpCode opcode) {
    583     switch (opcode) {
    584       case kX86LockCmpxchgMR:
    585       case kX86LockCmpxchgAR:
    586       case kX86LockCmpxchg64M:
    587       case kX86LockCmpxchg64A:
    588       case kX86XchgMR:
    589       case kX86Mfence:
    590         // Atomic memory instructions provide full barrier.
    591         return true;
    592       default:
    593         break;
    594     }
    595 
    596     // Conservative if cannot prove it provides full barrier.
    597     return false;
    598 }
    599 
    600 bool X86Mir2Lir::GenMemBarrier(MemBarrierKind barrier_kind) {
    601   if (!cu_->compiler_driver->GetInstructionSetFeatures()->IsSmp()) {
    602     return false;
    603   }
    604   // Start off with using the last LIR as the barrier. If it is not enough, then we will update it.
    605   LIR* mem_barrier = last_lir_insn_;
    606 
    607   bool ret = false;
    608   /*
    609    * According to the JSR-133 Cookbook, for x86 only StoreLoad/AnyAny barriers need memory fence.
    610    * All other barriers (LoadAny, AnyStore, StoreStore) are nops due to the x86 memory model.
    611    * For those cases, all we need to ensure is that there is a scheduling barrier in place.
    612    */
    613   if (barrier_kind == kAnyAny) {
    614     // If no LIR exists already that can be used a barrier, then generate an mfence.
    615     if (mem_barrier == nullptr) {
    616       mem_barrier = NewLIR0(kX86Mfence);
    617       ret = true;
    618     }
    619 
    620     // If last instruction does not provide full barrier, then insert an mfence.
    621     if (ProvidesFullMemoryBarrier(static_cast<X86OpCode>(mem_barrier->opcode)) == false) {
    622       mem_barrier = NewLIR0(kX86Mfence);
    623       ret = true;
    624     }
    625   } else if (barrier_kind == kNTStoreStore) {
    626       mem_barrier = NewLIR0(kX86Sfence);
    627       ret = true;
    628   }
    629 
    630   // Now ensure that a scheduling barrier is in place.
    631   if (mem_barrier == nullptr) {
    632     GenBarrier();
    633   } else {
    634     // Mark as a scheduling barrier.
    635     DCHECK(!mem_barrier->flags.use_def_invalid);
    636     mem_barrier->u.m.def_mask = &kEncodeAll;
    637   }
    638   return ret;
    639 }
    640 
    641 void X86Mir2Lir::CompilerInitializeRegAlloc() {
    642   if (cu_->target64) {
    643     reg_pool_.reset(new (arena_) RegisterPool(this, arena_, core_regs_64, core_regs_64q, sp_regs_64,
    644                                               dp_regs_64, reserved_regs_64, reserved_regs_64q,
    645                                               core_temps_64, core_temps_64q,
    646                                               sp_temps_64, dp_temps_64));
    647   } else {
    648     reg_pool_.reset(new (arena_) RegisterPool(this, arena_, core_regs_32, empty_pool, sp_regs_32,
    649                                               dp_regs_32, reserved_regs_32, empty_pool,
    650                                               core_temps_32, empty_pool,
    651                                               sp_temps_32, dp_temps_32));
    652   }
    653 
    654   // Target-specific adjustments.
    655 
    656   // Add in XMM registers.
    657   const ArrayRef<const RegStorage> *xp_regs = cu_->target64 ? &xp_regs_64 : &xp_regs_32;
    658   for (RegStorage reg : *xp_regs) {
    659     RegisterInfo* info = new (arena_) RegisterInfo(reg, GetRegMaskCommon(reg));
    660     reginfo_map_[reg.GetReg()] = info;
    661   }
    662   const ArrayRef<const RegStorage> *xp_temps = cu_->target64 ? &xp_temps_64 : &xp_temps_32;
    663   for (RegStorage reg : *xp_temps) {
    664     RegisterInfo* xp_reg_info = GetRegInfo(reg);
    665     xp_reg_info->SetIsTemp(true);
    666   }
    667 
    668   // Special Handling for x86_64 RIP addressing.
    669   if (cu_->target64) {
    670     RegisterInfo* info = new (arena_) RegisterInfo(RegStorage(kRIPReg), kEncodeNone);
    671     reginfo_map_[kRIPReg] = info;
    672   }
    673 
    674   // Alias single precision xmm to double xmms.
    675   // TODO: as needed, add larger vector sizes - alias all to the largest.
    676   for (RegisterInfo* info : reg_pool_->sp_regs_) {
    677     int sp_reg_num = info->GetReg().GetRegNum();
    678     RegStorage xp_reg = RegStorage::Solo128(sp_reg_num);
    679     RegisterInfo* xp_reg_info = GetRegInfo(xp_reg);
    680     // 128-bit xmm vector register's master storage should refer to itself.
    681     DCHECK_EQ(xp_reg_info, xp_reg_info->Master());
    682 
    683     // Redirect 32-bit vector's master storage to 128-bit vector.
    684     info->SetMaster(xp_reg_info);
    685 
    686     RegStorage dp_reg = RegStorage::FloatSolo64(sp_reg_num);
    687     RegisterInfo* dp_reg_info = GetRegInfo(dp_reg);
    688     // Redirect 64-bit vector's master storage to 128-bit vector.
    689     dp_reg_info->SetMaster(xp_reg_info);
    690     // Singles should show a single 32-bit mask bit, at first referring to the low half.
    691     DCHECK_EQ(info->StorageMask(), 0x1U);
    692   }
    693 
    694   if (cu_->target64) {
    695     // Alias 32bit W registers to corresponding 64bit X registers.
    696     for (RegisterInfo* info : reg_pool_->core_regs_) {
    697       int x_reg_num = info->GetReg().GetRegNum();
    698       RegStorage x_reg = RegStorage::Solo64(x_reg_num);
    699       RegisterInfo* x_reg_info = GetRegInfo(x_reg);
    700       // 64bit X register's master storage should refer to itself.
    701       DCHECK_EQ(x_reg_info, x_reg_info->Master());
    702       // Redirect 32bit W master storage to 64bit X.
    703       info->SetMaster(x_reg_info);
    704       // 32bit W should show a single 32-bit mask bit, at first referring to the low half.
    705       DCHECK_EQ(info->StorageMask(), 0x1U);
    706     }
    707   }
    708 
    709   // Don't start allocating temps at r0/s0/d0 or you may clobber return regs in early-exit methods.
    710   // TODO: adjust for x86/hard float calling convention.
    711   reg_pool_->next_core_reg_ = 2;
    712   reg_pool_->next_sp_reg_ = 2;
    713   reg_pool_->next_dp_reg_ = 1;
    714 }
    715 
    716 int X86Mir2Lir::VectorRegisterSize() {
    717   return 128;
    718 }
    719 
    720 int X86Mir2Lir::NumReservableVectorRegisters(bool long_or_fp) {
    721   int num_vector_temps = cu_->target64 ? xp_temps_64.size() : xp_temps_32.size();
    722 
    723   // Leave a few temps for use by backend as scratch.
    724   return long_or_fp ? num_vector_temps - 2 : num_vector_temps - 1;
    725 }
    726 
    727 static dwarf::Reg DwarfCoreReg(bool is_x86_64, int num) {
    728   return is_x86_64 ? dwarf::Reg::X86_64Core(num) : dwarf::Reg::X86Core(num);
    729 }
    730 
    731 static dwarf::Reg DwarfFpReg(bool is_x86_64, int num) {
    732   return is_x86_64 ? dwarf::Reg::X86_64Fp(num) : dwarf::Reg::X86Fp(num);
    733 }
    734 
    735 void X86Mir2Lir::SpillCoreRegs() {
    736   if (num_core_spills_ == 0) {
    737     return;
    738   }
    739   // Spill mask not including fake return address register
    740   uint32_t mask = core_spill_mask_ & ~(1 << rs_rRET.GetRegNum());
    741   int offset =
    742       frame_size_ - (GetInstructionSetPointerSize(cu_->instruction_set) * num_core_spills_);
    743   OpSize size = cu_->target64 ? k64 : k32;
    744   const RegStorage rs_rSP = cu_->target64 ? rs_rX86_SP_64 : rs_rX86_SP_32;
    745   for (int reg = 0; mask != 0u; mask >>= 1, reg++) {
    746     if ((mask & 0x1) != 0u) {
    747       DCHECK_NE(offset, 0) << "offset 0 should be for method";
    748       RegStorage r_src = cu_->target64 ? RegStorage::Solo64(reg) : RegStorage::Solo32(reg);
    749       StoreBaseDisp(rs_rSP, offset, r_src, size, kNotVolatile);
    750       cfi_.RelOffset(DwarfCoreReg(cu_->target64, reg), offset);
    751       offset += GetInstructionSetPointerSize(cu_->instruction_set);
    752     }
    753   }
    754 }
    755 
    756 void X86Mir2Lir::UnSpillCoreRegs() {
    757   if (num_core_spills_ == 0) {
    758     return;
    759   }
    760   // Spill mask not including fake return address register
    761   uint32_t mask = core_spill_mask_ & ~(1 << rs_rRET.GetRegNum());
    762   int offset = frame_size_ - (GetInstructionSetPointerSize(cu_->instruction_set) * num_core_spills_);
    763   OpSize size = cu_->target64 ? k64 : k32;
    764   const RegStorage rs_rSP = cu_->target64 ? rs_rX86_SP_64 : rs_rX86_SP_32;
    765   for (int reg = 0; mask != 0u; mask >>= 1, reg++) {
    766     if ((mask & 0x1) != 0u) {
    767       RegStorage r_dest = cu_->target64 ? RegStorage::Solo64(reg) : RegStorage::Solo32(reg);
    768       LoadBaseDisp(rs_rSP, offset, r_dest, size, kNotVolatile);
    769       cfi_.Restore(DwarfCoreReg(cu_->target64, reg));
    770       offset += GetInstructionSetPointerSize(cu_->instruction_set);
    771     }
    772   }
    773 }
    774 
    775 void X86Mir2Lir::SpillFPRegs() {
    776   if (num_fp_spills_ == 0) {
    777     return;
    778   }
    779   uint32_t mask = fp_spill_mask_;
    780   int offset = frame_size_ -
    781       (GetInstructionSetPointerSize(cu_->instruction_set) * (num_fp_spills_ + num_core_spills_));
    782   const RegStorage rs_rSP = cu_->target64 ? rs_rX86_SP_64 : rs_rX86_SP_32;
    783   for (int reg = 0; mask != 0u; mask >>= 1, reg++) {
    784     if ((mask & 0x1) != 0u) {
    785       StoreBaseDisp(rs_rSP, offset, RegStorage::FloatSolo64(reg), k64, kNotVolatile);
    786       cfi_.RelOffset(DwarfFpReg(cu_->target64, reg), offset);
    787       offset += sizeof(double);
    788     }
    789   }
    790 }
    791 void X86Mir2Lir::UnSpillFPRegs() {
    792   if (num_fp_spills_ == 0) {
    793     return;
    794   }
    795   uint32_t mask = fp_spill_mask_;
    796   int offset = frame_size_ -
    797       (GetInstructionSetPointerSize(cu_->instruction_set) * (num_fp_spills_ + num_core_spills_));
    798   const RegStorage rs_rSP = cu_->target64 ? rs_rX86_SP_64 : rs_rX86_SP_32;
    799   for (int reg = 0; mask != 0u; mask >>= 1, reg++) {
    800     if ((mask & 0x1) != 0u) {
    801       LoadBaseDisp(rs_rSP, offset, RegStorage::FloatSolo64(reg),
    802                    k64, kNotVolatile);
    803       cfi_.Restore(DwarfFpReg(cu_->target64, reg));
    804       offset += sizeof(double);
    805     }
    806   }
    807 }
    808 
    809 
    810 bool X86Mir2Lir::IsUnconditionalBranch(LIR* lir) {
    811   return (lir->opcode == kX86Jmp8 || lir->opcode == kX86Jmp32);
    812 }
    813 
    814 RegisterClass X86Mir2Lir::RegClassForFieldLoadStore(OpSize size, bool is_volatile) {
    815   // Prefer XMM registers.  Fixes a problem with iget/iput to a FP when cached temporary
    816   // with same VR is a Core register.
    817   if (size == kSingle || size == kDouble) {
    818     return kFPReg;
    819   }
    820 
    821   // X86_64 can handle any size.
    822   if (cu_->target64) {
    823     return RegClassBySize(size);
    824   }
    825 
    826   if (UNLIKELY(is_volatile)) {
    827     // On x86, atomic 64-bit load/store requires an fp register.
    828     // Smaller aligned load/store is atomic for both core and fp registers.
    829     if (size == k64 || size == kDouble) {
    830       return kFPReg;
    831     }
    832   }
    833   return RegClassBySize(size);
    834 }
    835 
    836 X86Mir2Lir::X86Mir2Lir(CompilationUnit* cu, MIRGraph* mir_graph, ArenaAllocator* arena)
    837     : Mir2Lir(cu, mir_graph, arena),
    838       in_to_reg_storage_x86_64_mapper_(this), in_to_reg_storage_x86_mapper_(this),
    839       pc_rel_base_reg_(RegStorage::InvalidReg()),
    840       pc_rel_base_reg_used_(false),
    841       setup_pc_rel_base_reg_(nullptr),
    842       method_address_insns_(arena->Adapter()),
    843       class_type_address_insns_(arena->Adapter()),
    844       call_method_insns_(arena->Adapter()),
    845       dex_cache_access_insns_(arena->Adapter()),
    846       const_vectors_(nullptr) {
    847   method_address_insns_.reserve(100);
    848   class_type_address_insns_.reserve(100);
    849   call_method_insns_.reserve(100);
    850   for (int i = 0; i < kX86Last; i++) {
    851     DCHECK_EQ(X86Mir2Lir::EncodingMap[i].opcode, i)
    852         << "Encoding order for " << X86Mir2Lir::EncodingMap[i].name
    853         << " is wrong: expecting " << i << ", seeing "
    854         << static_cast<int>(X86Mir2Lir::EncodingMap[i].opcode);
    855   }
    856 }
    857 
    858 Mir2Lir* X86CodeGenerator(CompilationUnit* const cu, MIRGraph* const mir_graph,
    859                           ArenaAllocator* const arena) {
    860   return new X86Mir2Lir(cu, mir_graph, arena);
    861 }
    862 
    863 // Not used in x86(-64)
    864 RegStorage X86Mir2Lir::LoadHelper(QuickEntrypointEnum trampoline) {
    865   UNUSED(trampoline);
    866   LOG(FATAL) << "Unexpected use of LoadHelper in x86";
    867   UNREACHABLE();
    868 }
    869 
    870 LIR* X86Mir2Lir::CheckSuspendUsingLoad() {
    871   // First load the pointer in fs:[suspend-trigger] into eax
    872   // Then use a test instruction to indirect via that address.
    873   if (cu_->target64) {
    874     NewLIR2(kX86Mov64RT, rs_rAX.GetReg(),
    875         Thread::ThreadSuspendTriggerOffset<8>().Int32Value());
    876   } else {
    877     NewLIR2(kX86Mov32RT, rs_rAX.GetReg(),
    878         Thread::ThreadSuspendTriggerOffset<4>().Int32Value());
    879   }
    880   return NewLIR3(kX86Test32RM, rs_rAX.GetReg(), rs_rAX.GetReg(), 0);
    881 }
    882 
    883 uint64_t X86Mir2Lir::GetTargetInstFlags(int opcode) {
    884   DCHECK(!IsPseudoLirOp(opcode));
    885   return X86Mir2Lir::EncodingMap[opcode].flags;
    886 }
    887 
    888 const char* X86Mir2Lir::GetTargetInstName(int opcode) {
    889   DCHECK(!IsPseudoLirOp(opcode));
    890   return X86Mir2Lir::EncodingMap[opcode].name;
    891 }
    892 
    893 const char* X86Mir2Lir::GetTargetInstFmt(int opcode) {
    894   DCHECK(!IsPseudoLirOp(opcode));
    895   return X86Mir2Lir::EncodingMap[opcode].fmt;
    896 }
    897 
    898 void X86Mir2Lir::GenConstWide(RegLocation rl_dest, int64_t value) {
    899   // Can we do this directly to memory?
    900   rl_dest = UpdateLocWide(rl_dest);
    901   if ((rl_dest.location == kLocDalvikFrame) ||
    902       (rl_dest.location == kLocCompilerTemp)) {
    903     int32_t val_lo = Low32Bits(value);
    904     int32_t val_hi = High32Bits(value);
    905     int r_base = rs_rX86_SP_32.GetReg();
    906     int displacement = SRegOffset(rl_dest.s_reg_low);
    907 
    908     ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
    909     LIR * store = NewLIR3(kX86Mov32MI, r_base, displacement + LOWORD_OFFSET, val_lo);
    910     AnnotateDalvikRegAccess(store, (displacement + LOWORD_OFFSET) >> 2,
    911                               false /* is_load */, true /* is64bit */);
    912     store = NewLIR3(kX86Mov32MI, r_base, displacement + HIWORD_OFFSET, val_hi);
    913     AnnotateDalvikRegAccess(store, (displacement + HIWORD_OFFSET) >> 2,
    914                               false /* is_load */, true /* is64bit */);
    915     return;
    916   }
    917 
    918   // Just use the standard code to do the generation.
    919   Mir2Lir::GenConstWide(rl_dest, value);
    920 }
    921 
    922 // TODO: Merge with existing RegLocation dumper in vreg_analysis.cc
    923 void X86Mir2Lir::DumpRegLocation(RegLocation loc) {
    924   LOG(INFO)  << "location: " << loc.location << ','
    925              << (loc.wide ? " w" : "  ")
    926              << (loc.defined ? " D" : "  ")
    927              << (loc.is_const ? " c" : "  ")
    928              << (loc.fp ? " F" : "  ")
    929              << (loc.core ? " C" : "  ")
    930              << (loc.ref ? " r" : "  ")
    931              << (loc.high_word ? " h" : "  ")
    932              << (loc.home ? " H" : "  ")
    933              << ", low: " << static_cast<int>(loc.reg.GetLowReg())
    934              << ", high: " << static_cast<int>(loc.reg.GetHighReg())
    935              << ", s_reg: " << loc.s_reg_low
    936              << ", orig: " << loc.orig_sreg;
    937 }
    938 
    939 void X86Mir2Lir::LoadMethodAddress(const MethodReference& target_method, InvokeType type,
    940                                    SpecialTargetRegister symbolic_reg) {
    941   /*
    942    * For x86, just generate a 32 bit move immediate instruction, that will be filled
    943    * in at 'link time'.  For now, put a unique value based on target to ensure that
    944    * code deduplication works.
    945    */
    946   int target_method_idx = target_method.dex_method_index;
    947   const DexFile* target_dex_file = target_method.dex_file;
    948   const DexFile::MethodId& target_method_id = target_dex_file->GetMethodId(target_method_idx);
    949   uintptr_t target_method_id_ptr = reinterpret_cast<uintptr_t>(&target_method_id);
    950 
    951   // Generate the move instruction with the unique pointer and save index, dex_file, and type.
    952   LIR *move = RawLIR(current_dalvik_offset_, kX86Mov32RI,
    953                      TargetReg(symbolic_reg, kNotWide).GetReg(),
    954                      static_cast<int>(target_method_id_ptr), target_method_idx,
    955                      WrapPointer(const_cast<DexFile*>(target_dex_file)), type);
    956   AppendLIR(move);
    957   method_address_insns_.push_back(move);
    958 }
    959 
    960 void X86Mir2Lir::LoadClassType(const DexFile& dex_file, uint32_t type_idx,
    961                                SpecialTargetRegister symbolic_reg) {
    962   /*
    963    * For x86, just generate a 32 bit move immediate instruction, that will be filled
    964    * in at 'link time'.  For now, put a unique value based on target to ensure that
    965    * code deduplication works.
    966    */
    967   const DexFile::TypeId& id = dex_file.GetTypeId(type_idx);
    968   uintptr_t ptr = reinterpret_cast<uintptr_t>(&id);
    969 
    970   // Generate the move instruction with the unique pointer and save index and type.
    971   LIR *move = RawLIR(current_dalvik_offset_, kX86Mov32RI,
    972                      TargetReg(symbolic_reg, kNotWide).GetReg(),
    973                      static_cast<int>(ptr), type_idx,
    974                      WrapPointer(const_cast<DexFile*>(&dex_file)));
    975   AppendLIR(move);
    976   class_type_address_insns_.push_back(move);
    977 }
    978 
    979 LIR* X86Mir2Lir::CallWithLinkerFixup(const MethodReference& target_method, InvokeType type) {
    980   /*
    981    * For x86, just generate a 32 bit call relative instruction, that will be filled
    982    * in at 'link time'.
    983    */
    984   int target_method_idx = target_method.dex_method_index;
    985   const DexFile* target_dex_file = target_method.dex_file;
    986 
    987   // Generate the call instruction with the unique pointer and save index, dex_file, and type.
    988   // NOTE: Method deduplication takes linker patches into account, so we can just pass 0
    989   // as a placeholder for the offset.
    990   LIR* call = RawLIR(current_dalvik_offset_, kX86CallI, 0,
    991                      target_method_idx, WrapPointer(const_cast<DexFile*>(target_dex_file)), type);
    992   AppendLIR(call);
    993   call_method_insns_.push_back(call);
    994   return call;
    995 }
    996 
    997 static LIR* GenInvokeNoInlineCall(Mir2Lir* mir_to_lir, InvokeType type) {
    998   QuickEntrypointEnum trampoline;
    999   switch (type) {
   1000     case kInterface:
   1001       trampoline = kQuickInvokeInterfaceTrampolineWithAccessCheck;
   1002       break;
   1003     case kDirect:
   1004       trampoline = kQuickInvokeDirectTrampolineWithAccessCheck;
   1005       break;
   1006     case kStatic:
   1007       trampoline = kQuickInvokeStaticTrampolineWithAccessCheck;
   1008       break;
   1009     case kSuper:
   1010       trampoline = kQuickInvokeSuperTrampolineWithAccessCheck;
   1011       break;
   1012     case kVirtual:
   1013       trampoline = kQuickInvokeVirtualTrampolineWithAccessCheck;
   1014       break;
   1015     default:
   1016       LOG(FATAL) << "Unexpected invoke type";
   1017       trampoline = kQuickInvokeInterfaceTrampolineWithAccessCheck;
   1018   }
   1019   return mir_to_lir->InvokeTrampoline(kOpBlx, RegStorage::InvalidReg(), trampoline);
   1020 }
   1021 
   1022 LIR* X86Mir2Lir::GenCallInsn(const MirMethodLoweringInfo& method_info) {
   1023   LIR* call_insn;
   1024   if (method_info.FastPath()) {
   1025     if (method_info.DirectCode() == static_cast<uintptr_t>(-1)) {
   1026       // We can have the linker fixup a call relative.
   1027       call_insn = CallWithLinkerFixup(method_info.GetTargetMethod(), method_info.GetSharpType());
   1028     } else {
   1029       call_insn = OpMem(kOpBlx, TargetReg(kArg0, kRef),
   1030                         ArtMethod::EntryPointFromQuickCompiledCodeOffset(
   1031                             cu_->target64 ? 8 : 4).Int32Value());
   1032     }
   1033   } else {
   1034     call_insn = GenInvokeNoInlineCall(this, method_info.GetSharpType());
   1035   }
   1036   return call_insn;
   1037 }
   1038 
   1039 void X86Mir2Lir::InstallLiteralPools() {
   1040   // These are handled differently for x86.
   1041   DCHECK(code_literal_list_ == nullptr);
   1042   DCHECK(method_literal_list_ == nullptr);
   1043   DCHECK(class_literal_list_ == nullptr);
   1044 
   1045 
   1046   if (const_vectors_ != nullptr) {
   1047     // Vector literals must be 16-byte aligned. The header that is placed
   1048     // in the code section causes misalignment so we take it into account.
   1049     // Otherwise, we are sure that for x86 method is aligned to 16.
   1050     DCHECK_EQ(GetInstructionSetAlignment(cu_->instruction_set), 16u);
   1051     uint32_t bytes_to_fill = (0x10 - ((code_buffer_.size() + sizeof(OatQuickMethodHeader)) & 0xF)) & 0xF;
   1052     while (bytes_to_fill > 0) {
   1053       code_buffer_.push_back(0);
   1054       bytes_to_fill--;
   1055     }
   1056 
   1057     for (LIR *p = const_vectors_; p != nullptr; p = p->next) {
   1058       Push32(&code_buffer_, p->operands[0]);
   1059       Push32(&code_buffer_, p->operands[1]);
   1060       Push32(&code_buffer_, p->operands[2]);
   1061       Push32(&code_buffer_, p->operands[3]);
   1062     }
   1063   }
   1064 
   1065   patches_.reserve(method_address_insns_.size() + class_type_address_insns_.size() +
   1066                    call_method_insns_.size() + dex_cache_access_insns_.size());
   1067 
   1068   // Handle the fixups for methods.
   1069   for (LIR* p : method_address_insns_) {
   1070       DCHECK_EQ(p->opcode, kX86Mov32RI);
   1071       uint32_t target_method_idx = p->operands[2];
   1072       const DexFile* target_dex_file = UnwrapPointer<DexFile>(p->operands[3]);
   1073 
   1074       // The offset to patch is the last 4 bytes of the instruction.
   1075       int patch_offset = p->offset + p->flags.size - 4;
   1076       patches_.push_back(LinkerPatch::MethodPatch(patch_offset,
   1077                                                   target_dex_file, target_method_idx));
   1078   }
   1079 
   1080   // Handle the fixups for class types.
   1081   for (LIR* p : class_type_address_insns_) {
   1082       DCHECK_EQ(p->opcode, kX86Mov32RI);
   1083 
   1084       const DexFile* class_dex_file = UnwrapPointer<DexFile>(p->operands[3]);
   1085       uint32_t target_type_idx = p->operands[2];
   1086 
   1087       // The offset to patch is the last 4 bytes of the instruction.
   1088       int patch_offset = p->offset + p->flags.size - 4;
   1089       patches_.push_back(LinkerPatch::TypePatch(patch_offset,
   1090                                                 class_dex_file, target_type_idx));
   1091   }
   1092 
   1093   // And now the PC-relative calls to methods.
   1094   for (LIR* p : call_method_insns_) {
   1095       DCHECK_EQ(p->opcode, kX86CallI);
   1096       uint32_t target_method_idx = p->operands[1];
   1097       const DexFile* target_dex_file = UnwrapPointer<DexFile>(p->operands[2]);
   1098 
   1099       // The offset to patch is the last 4 bytes of the instruction.
   1100       int patch_offset = p->offset + p->flags.size - 4;
   1101       patches_.push_back(LinkerPatch::RelativeCodePatch(patch_offset,
   1102                                                         target_dex_file, target_method_idx));
   1103   }
   1104 
   1105   // PC-relative references to dex cache arrays.
   1106   for (LIR* p : dex_cache_access_insns_) {
   1107     DCHECK(p->opcode == kX86Mov32RM || p->opcode == kX86Mov64RM);
   1108     const DexFile* dex_file = UnwrapPointer<DexFile>(p->operands[3]);
   1109     uint32_t offset = p->operands[4];
   1110     // The offset to patch is the last 4 bytes of the instruction.
   1111     int patch_offset = p->offset + p->flags.size - 4;
   1112     DCHECK(!p->flags.is_nop);
   1113     patches_.push_back(LinkerPatch::DexCacheArrayPatch(patch_offset, dex_file,
   1114                                                        p->target->offset, offset));
   1115   }
   1116 
   1117   // And do the normal processing.
   1118   Mir2Lir::InstallLiteralPools();
   1119 }
   1120 
   1121 bool X86Mir2Lir::GenInlinedArrayCopyCharArray(CallInfo* info) {
   1122   RegLocation rl_src = info->args[0];
   1123   RegLocation rl_srcPos = info->args[1];
   1124   RegLocation rl_dst = info->args[2];
   1125   RegLocation rl_dstPos = info->args[3];
   1126   RegLocation rl_length = info->args[4];
   1127   if (rl_srcPos.is_const && (mir_graph_->ConstantValue(rl_srcPos) < 0)) {
   1128     return false;
   1129   }
   1130   if (rl_dstPos.is_const && (mir_graph_->ConstantValue(rl_dstPos) < 0)) {
   1131     return false;
   1132   }
   1133   ClobberCallerSave();
   1134   LockCallTemps();  // Using fixed registers.
   1135   RegStorage tmp_reg = cu_->target64 ? rs_r11 : rs_rBX;
   1136   LoadValueDirectFixed(rl_src, rs_rAX);
   1137   LoadValueDirectFixed(rl_dst, rs_rCX);
   1138   LIR* src_dst_same  = OpCmpBranch(kCondEq, rs_rAX, rs_rCX, nullptr);
   1139   LIR* src_null_branch = OpCmpImmBranch(kCondEq, rs_rAX, 0, nullptr);
   1140   LIR* dst_null_branch = OpCmpImmBranch(kCondEq, rs_rCX, 0, nullptr);
   1141   LoadValueDirectFixed(rl_length, rs_rDX);
   1142   // If the length of the copy is > 128 characters (256 bytes) or negative then go slow path.
   1143   LIR* len_too_big  = OpCmpImmBranch(kCondHi, rs_rDX, 128, nullptr);
   1144   LoadValueDirectFixed(rl_src, rs_rAX);
   1145   LoadWordDisp(rs_rAX, mirror::Array::LengthOffset().Int32Value(), rs_rAX);
   1146   LIR* src_bad_len  = nullptr;
   1147   LIR* src_bad_off = nullptr;
   1148   LIR* srcPos_negative  = nullptr;
   1149   if (!rl_srcPos.is_const) {
   1150     LoadValueDirectFixed(rl_srcPos, tmp_reg);
   1151     srcPos_negative  = OpCmpImmBranch(kCondLt, tmp_reg, 0, nullptr);
   1152     // src_pos < src_len
   1153     src_bad_off = OpCmpBranch(kCondLt, rs_rAX, tmp_reg, nullptr);
   1154     // src_len - src_pos < copy_len
   1155     OpRegRegReg(kOpSub, tmp_reg, rs_rAX, tmp_reg);
   1156     src_bad_len = OpCmpBranch(kCondLt, tmp_reg, rs_rDX, nullptr);
   1157   } else {
   1158     int32_t pos_val = mir_graph_->ConstantValue(rl_srcPos.orig_sreg);
   1159     if (pos_val == 0) {
   1160       src_bad_len  = OpCmpBranch(kCondLt, rs_rAX, rs_rDX, nullptr);
   1161     } else {
   1162       // src_pos < src_len
   1163       src_bad_off = OpCmpImmBranch(kCondLt, rs_rAX, pos_val, nullptr);
   1164       // src_len - src_pos < copy_len
   1165       OpRegRegImm(kOpSub, tmp_reg, rs_rAX, pos_val);
   1166       src_bad_len = OpCmpBranch(kCondLt, tmp_reg, rs_rDX, nullptr);
   1167     }
   1168   }
   1169   LIR* dstPos_negative = nullptr;
   1170   LIR* dst_bad_len = nullptr;
   1171   LIR* dst_bad_off = nullptr;
   1172   LoadValueDirectFixed(rl_dst, rs_rAX);
   1173   LoadWordDisp(rs_rAX, mirror::Array::LengthOffset().Int32Value(), rs_rAX);
   1174   if (!rl_dstPos.is_const) {
   1175     LoadValueDirectFixed(rl_dstPos, tmp_reg);
   1176     dstPos_negative = OpCmpImmBranch(kCondLt, tmp_reg, 0, nullptr);
   1177     // dst_pos < dst_len
   1178     dst_bad_off = OpCmpBranch(kCondLt, rs_rAX, tmp_reg, nullptr);
   1179     // dst_len - dst_pos < copy_len
   1180     OpRegRegReg(kOpSub, tmp_reg, rs_rAX, tmp_reg);
   1181     dst_bad_len = OpCmpBranch(kCondLt, tmp_reg, rs_rDX, nullptr);
   1182   } else {
   1183     int32_t pos_val = mir_graph_->ConstantValue(rl_dstPos.orig_sreg);
   1184     if (pos_val == 0) {
   1185       dst_bad_len = OpCmpBranch(kCondLt, rs_rAX, rs_rDX, nullptr);
   1186     } else {
   1187       // dst_pos < dst_len
   1188       dst_bad_off = OpCmpImmBranch(kCondLt, rs_rAX, pos_val, nullptr);
   1189       // dst_len - dst_pos < copy_len
   1190       OpRegRegImm(kOpSub, tmp_reg, rs_rAX, pos_val);
   1191       dst_bad_len = OpCmpBranch(kCondLt, tmp_reg, rs_rDX, nullptr);
   1192     }
   1193   }
   1194   // Everything is checked now.
   1195   LoadValueDirectFixed(rl_src, rs_rAX);
   1196   LoadValueDirectFixed(rl_dst, tmp_reg);
   1197   LoadValueDirectFixed(rl_srcPos, rs_rCX);
   1198   NewLIR5(kX86Lea32RA, rs_rAX.GetReg(), rs_rAX.GetReg(),
   1199        rs_rCX.GetReg(), 1, mirror::Array::DataOffset(2).Int32Value());
   1200   // RAX now holds the address of the first src element to be copied.
   1201 
   1202   LoadValueDirectFixed(rl_dstPos, rs_rCX);
   1203   NewLIR5(kX86Lea32RA, tmp_reg.GetReg(), tmp_reg.GetReg(),
   1204        rs_rCX.GetReg(), 1, mirror::Array::DataOffset(2).Int32Value() );
   1205   // RBX now holds the address of the first dst element to be copied.
   1206 
   1207   // Check if the number of elements to be copied is odd or even. If odd
   1208   // then copy the first element (so that the remaining number of elements
   1209   // is even).
   1210   LoadValueDirectFixed(rl_length, rs_rCX);
   1211   OpRegImm(kOpAnd, rs_rCX, 1);
   1212   LIR* jmp_to_begin_loop  = OpCmpImmBranch(kCondEq, rs_rCX, 0, nullptr);
   1213   OpRegImm(kOpSub, rs_rDX, 1);
   1214   LoadBaseIndexedDisp(rs_rAX, rs_rDX, 1, 0, rs_rCX, kSignedHalf);
   1215   StoreBaseIndexedDisp(tmp_reg, rs_rDX, 1, 0, rs_rCX, kSignedHalf);
   1216 
   1217   // Since the remaining number of elements is even, we will copy by
   1218   // two elements at a time.
   1219   LIR* beginLoop = NewLIR0(kPseudoTargetLabel);
   1220   LIR* jmp_to_ret  = OpCmpImmBranch(kCondEq, rs_rDX, 0, nullptr);
   1221   OpRegImm(kOpSub, rs_rDX, 2);
   1222   LoadBaseIndexedDisp(rs_rAX, rs_rDX, 1, 0, rs_rCX, kSingle);
   1223   StoreBaseIndexedDisp(tmp_reg, rs_rDX, 1, 0, rs_rCX, kSingle);
   1224   OpUnconditionalBranch(beginLoop);
   1225   LIR *check_failed = NewLIR0(kPseudoTargetLabel);
   1226   LIR* launchpad_branch  = OpUnconditionalBranch(nullptr);
   1227   LIR *return_point = NewLIR0(kPseudoTargetLabel);
   1228   jmp_to_ret->target = return_point;
   1229   jmp_to_begin_loop->target = beginLoop;
   1230   src_dst_same->target = check_failed;
   1231   len_too_big->target = check_failed;
   1232   src_null_branch->target = check_failed;
   1233   if (srcPos_negative != nullptr)
   1234     srcPos_negative ->target = check_failed;
   1235   if (src_bad_off != nullptr)
   1236     src_bad_off->target = check_failed;
   1237   if (src_bad_len != nullptr)
   1238     src_bad_len->target = check_failed;
   1239   dst_null_branch->target = check_failed;
   1240   if (dstPos_negative != nullptr)
   1241     dstPos_negative->target = check_failed;
   1242   if (dst_bad_off != nullptr)
   1243     dst_bad_off->target = check_failed;
   1244   if (dst_bad_len != nullptr)
   1245     dst_bad_len->target = check_failed;
   1246   AddIntrinsicSlowPath(info, launchpad_branch, return_point);
   1247   ClobberCallerSave();  // We must clobber everything because slow path will return here
   1248   return true;
   1249 }
   1250 
   1251 
   1252 /*
   1253  * Fast string.index_of(I) & (II).  Inline check for simple case of char <= 0xffff,
   1254  * otherwise bails to standard library code.
   1255  */
   1256 bool X86Mir2Lir::GenInlinedIndexOf(CallInfo* info, bool zero_based) {
   1257   RegLocation rl_obj = info->args[0];
   1258   RegLocation rl_char = info->args[1];
   1259   RegLocation rl_start;  // Note: only present in III flavor or IndexOf.
   1260   // RBX is promotable in 64-bit mode.
   1261   RegStorage rs_tmp = cu_->target64 ? rs_r11 : rs_rBX;
   1262   int start_value = -1;
   1263 
   1264   uint32_t char_value =
   1265     rl_char.is_const ? mir_graph_->ConstantValue(rl_char.orig_sreg) : 0;
   1266 
   1267   if (char_value > 0xFFFF) {
   1268     // We have to punt to the real String.indexOf.
   1269     return false;
   1270   }
   1271 
   1272   // Okay, we are commited to inlining this.
   1273   // EAX: 16 bit character being searched.
   1274   // ECX: count: number of words to be searched.
   1275   // EDI: String being searched.
   1276   // EDX: temporary during execution.
   1277   // EBX or R11: temporary during execution (depending on mode).
   1278   // REP SCASW: search instruction.
   1279 
   1280   FlushAllRegs();
   1281 
   1282   RegLocation rl_return = GetReturn(kCoreReg);
   1283   RegLocation rl_dest = InlineTarget(info);
   1284 
   1285   // Is the string non-null?
   1286   LoadValueDirectFixed(rl_obj, rs_rDX);
   1287   GenNullCheck(rs_rDX, info->opt_flags);
   1288   info->opt_flags |= MIR_IGNORE_NULL_CHECK;  // Record that we've null checked.
   1289 
   1290   LIR *slowpath_branch = nullptr, *length_compare = nullptr;
   1291 
   1292   // We need the value in EAX.
   1293   if (rl_char.is_const) {
   1294     LoadConstantNoClobber(rs_rAX, char_value);
   1295   } else {
   1296     // Does the character fit in 16 bits? Compare it at runtime.
   1297     LoadValueDirectFixed(rl_char, rs_rAX);
   1298     slowpath_branch = OpCmpImmBranch(kCondGt, rs_rAX, 0xFFFF, nullptr);
   1299   }
   1300 
   1301   // From here down, we know that we are looking for a char that fits in 16 bits.
   1302   // Location of reference to data array within the String object.
   1303   int value_offset = mirror::String::ValueOffset().Int32Value();
   1304   // Location of count within the String object.
   1305   int count_offset = mirror::String::CountOffset().Int32Value();
   1306 
   1307   // Compute the number of words to search in to rCX.
   1308   Load32Disp(rs_rDX, count_offset, rs_rCX);
   1309 
   1310   // Possible signal here due to null pointer dereference.
   1311   // Note that the signal handler will expect the top word of
   1312   // the stack to be the ArtMethod*.  If the PUSH edi instruction
   1313   // below is ahead of the load above then this will not be true
   1314   // and the signal handler will not work.
   1315   MarkPossibleNullPointerException(0);
   1316 
   1317   if (!cu_->target64) {
   1318     // EDI is promotable in 32-bit mode.
   1319     NewLIR1(kX86Push32R, rs_rDI.GetReg());
   1320     cfi_.AdjustCFAOffset(4);
   1321     // Record cfi only if it is not already spilled.
   1322     if (!CoreSpillMaskContains(rs_rDI.GetReg())) {
   1323       cfi_.RelOffset(DwarfCoreReg(cu_->target64, rs_rDI.GetReg()), 0);
   1324     }
   1325   }
   1326 
   1327   if (zero_based) {
   1328     // Start index is not present.
   1329     // We have to handle an empty string.  Use special instruction JECXZ.
   1330     length_compare = NewLIR0(kX86Jecxz8);
   1331 
   1332     // Copy the number of words to search in a temporary register.
   1333     // We will use the register at the end to calculate result.
   1334     OpRegReg(kOpMov, rs_tmp, rs_rCX);
   1335   } else {
   1336     // Start index is present.
   1337     rl_start = info->args[2];
   1338 
   1339     // We have to offset by the start index.
   1340     if (rl_start.is_const) {
   1341       start_value = mir_graph_->ConstantValue(rl_start.orig_sreg);
   1342       start_value = std::max(start_value, 0);
   1343 
   1344       // Is the start > count?
   1345       length_compare = OpCmpImmBranch(kCondLe, rs_rCX, start_value, nullptr);
   1346       OpRegImm(kOpMov, rs_rDI, start_value);
   1347 
   1348       // Copy the number of words to search in a temporary register.
   1349       // We will use the register at the end to calculate result.
   1350       OpRegReg(kOpMov, rs_tmp, rs_rCX);
   1351 
   1352       if (start_value != 0) {
   1353         // Decrease the number of words to search by the start index.
   1354         OpRegImm(kOpSub, rs_rCX, start_value);
   1355       }
   1356     } else {
   1357       // Handle "start index < 0" case.
   1358       if (!cu_->target64 && rl_start.location != kLocPhysReg) {
   1359         // Load the start index from stack, remembering that we pushed EDI.
   1360         int displacement = SRegOffset(rl_start.s_reg_low) + sizeof(uint32_t);
   1361         ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
   1362         Load32Disp(rs_rX86_SP_32, displacement, rs_rDI);
   1363         // Dalvik register annotation in LoadBaseIndexedDisp() used wrong offset. Fix it.
   1364         DCHECK(!DECODE_ALIAS_INFO_WIDE(last_lir_insn_->flags.alias_info));
   1365         int reg_id = DECODE_ALIAS_INFO_REG(last_lir_insn_->flags.alias_info) - 1;
   1366         AnnotateDalvikRegAccess(last_lir_insn_, reg_id, true, false);
   1367       } else {
   1368         LoadValueDirectFixed(rl_start, rs_rDI);
   1369       }
   1370       OpRegReg(kOpXor, rs_tmp, rs_tmp);
   1371       OpRegReg(kOpCmp, rs_rDI, rs_tmp);
   1372       OpCondRegReg(kOpCmov, kCondLt, rs_rDI, rs_tmp);
   1373 
   1374       // The length of the string should be greater than the start index.
   1375       length_compare = OpCmpBranch(kCondLe, rs_rCX, rs_rDI, nullptr);
   1376 
   1377       // Copy the number of words to search in a temporary register.
   1378       // We will use the register at the end to calculate result.
   1379       OpRegReg(kOpMov, rs_tmp, rs_rCX);
   1380 
   1381       // Decrease the number of words to search by the start index.
   1382       OpRegReg(kOpSub, rs_rCX, rs_rDI);
   1383     }
   1384   }
   1385 
   1386   // Load the address of the string into EDI.
   1387   // In case of start index we have to add the address to existing value in EDI.
   1388   if (zero_based || (!zero_based && rl_start.is_const && start_value == 0)) {
   1389     OpRegRegImm(kOpAdd, rs_rDI, rs_rDX, value_offset);
   1390   } else {
   1391     OpRegImm(kOpLsl, rs_rDI, 1);
   1392     OpRegReg(kOpAdd, rs_rDI, rs_rDX);
   1393     OpRegImm(kOpAdd, rs_rDI, value_offset);
   1394   }
   1395 
   1396   // EDI now contains the start of the string to be searched.
   1397   // We are all prepared to do the search for the character.
   1398   NewLIR0(kX86RepneScasw);
   1399 
   1400   // Did we find a match?
   1401   LIR* failed_branch = OpCondBranch(kCondNe, nullptr);
   1402 
   1403   // yes, we matched.  Compute the index of the result.
   1404   OpRegReg(kOpSub, rs_tmp, rs_rCX);
   1405   NewLIR3(kX86Lea32RM, rl_return.reg.GetReg(), rs_tmp.GetReg(), -1);
   1406 
   1407   LIR *all_done = NewLIR1(kX86Jmp8, 0);
   1408 
   1409   // Failed to match; return -1.
   1410   LIR *not_found = NewLIR0(kPseudoTargetLabel);
   1411   length_compare->target = not_found;
   1412   failed_branch->target = not_found;
   1413   LoadConstantNoClobber(rl_return.reg, -1);
   1414 
   1415   // And join up at the end.
   1416   all_done->target = NewLIR0(kPseudoTargetLabel);
   1417 
   1418   if (!cu_->target64) {
   1419     NewLIR1(kX86Pop32R, rs_rDI.GetReg());
   1420     cfi_.AdjustCFAOffset(-4);
   1421     if (!CoreSpillMaskContains(rs_rDI.GetReg())) {
   1422       cfi_.Restore(DwarfCoreReg(cu_->target64, rs_rDI.GetReg()));
   1423     }
   1424   }
   1425 
   1426   // Out of line code returns here.
   1427   if (slowpath_branch != nullptr) {
   1428     LIR *return_point = NewLIR0(kPseudoTargetLabel);
   1429     AddIntrinsicSlowPath(info, slowpath_branch, return_point);
   1430     ClobberCallerSave();  // We must clobber everything because slow path will return here
   1431   }
   1432 
   1433   StoreValue(rl_dest, rl_return);
   1434   return true;
   1435 }
   1436 
   1437 void X86Mir2Lir::GenMachineSpecificExtendedMethodMIR(BasicBlock* bb, MIR* mir) {
   1438   switch (static_cast<ExtendedMIROpcode>(mir->dalvikInsn.opcode)) {
   1439     case kMirOpReserveVectorRegisters:
   1440       ReserveVectorRegisters(mir);
   1441       break;
   1442     case kMirOpReturnVectorRegisters:
   1443       ReturnVectorRegisters(mir);
   1444       break;
   1445     case kMirOpConstVector:
   1446       GenConst128(mir);
   1447       break;
   1448     case kMirOpMoveVector:
   1449       GenMoveVector(mir);
   1450       break;
   1451     case kMirOpPackedMultiply:
   1452       GenMultiplyVector(mir);
   1453       break;
   1454     case kMirOpPackedAddition:
   1455       GenAddVector(mir);
   1456       break;
   1457     case kMirOpPackedSubtract:
   1458       GenSubtractVector(mir);
   1459       break;
   1460     case kMirOpPackedShiftLeft:
   1461       GenShiftLeftVector(mir);
   1462       break;
   1463     case kMirOpPackedSignedShiftRight:
   1464       GenSignedShiftRightVector(mir);
   1465       break;
   1466     case kMirOpPackedUnsignedShiftRight:
   1467       GenUnsignedShiftRightVector(mir);
   1468       break;
   1469     case kMirOpPackedAnd:
   1470       GenAndVector(mir);
   1471       break;
   1472     case kMirOpPackedOr:
   1473       GenOrVector(mir);
   1474       break;
   1475     case kMirOpPackedXor:
   1476       GenXorVector(mir);
   1477       break;
   1478     case kMirOpPackedAddReduce:
   1479       GenAddReduceVector(mir);
   1480       break;
   1481     case kMirOpPackedReduce:
   1482       GenReduceVector(mir);
   1483       break;
   1484     case kMirOpPackedSet:
   1485       GenSetVector(mir);
   1486       break;
   1487     case kMirOpMemBarrier:
   1488       GenMemBarrier(static_cast<MemBarrierKind>(mir->dalvikInsn.vA));
   1489       break;
   1490     case kMirOpPackedArrayGet:
   1491       GenPackedArrayGet(bb, mir);
   1492       break;
   1493     case kMirOpPackedArrayPut:
   1494       GenPackedArrayPut(bb, mir);
   1495       break;
   1496     default:
   1497       break;
   1498   }
   1499 }
   1500 
   1501 void X86Mir2Lir::ReserveVectorRegisters(MIR* mir) {
   1502   for (uint32_t i = mir->dalvikInsn.vA; i <= mir->dalvikInsn.vB; i++) {
   1503     RegStorage xp_reg = RegStorage::Solo128(i);
   1504     RegisterInfo *xp_reg_info = GetRegInfo(xp_reg);
   1505     Clobber(xp_reg);
   1506 
   1507     for (RegisterInfo *info = xp_reg_info->GetAliasChain();
   1508                        info != nullptr;
   1509                        info = info->GetAliasChain()) {
   1510       ArenaVector<RegisterInfo*>* regs =
   1511           info->GetReg().IsSingle() ? &reg_pool_->sp_regs_ : &reg_pool_->dp_regs_;
   1512       auto it = std::find(regs->begin(), regs->end(), info);
   1513       DCHECK(it != regs->end());
   1514       regs->erase(it);
   1515     }
   1516   }
   1517 }
   1518 
   1519 void X86Mir2Lir::ReturnVectorRegisters(MIR* mir) {
   1520   for (uint32_t i = mir->dalvikInsn.vA; i <= mir->dalvikInsn.vB; i++) {
   1521     RegStorage xp_reg = RegStorage::Solo128(i);
   1522     RegisterInfo *xp_reg_info = GetRegInfo(xp_reg);
   1523 
   1524     for (RegisterInfo *info = xp_reg_info->GetAliasChain();
   1525                        info != nullptr;
   1526                        info = info->GetAliasChain()) {
   1527       if (info->GetReg().IsSingle()) {
   1528         reg_pool_->sp_regs_.push_back(info);
   1529       } else {
   1530         reg_pool_->dp_regs_.push_back(info);
   1531       }
   1532     }
   1533   }
   1534 }
   1535 
   1536 void X86Mir2Lir::GenConst128(MIR* mir) {
   1537   RegStorage rs_dest = RegStorage::Solo128(mir->dalvikInsn.vA);
   1538   Clobber(rs_dest);
   1539 
   1540   uint32_t *args = mir->dalvikInsn.arg;
   1541   int reg = rs_dest.GetReg();
   1542   // Check for all 0 case.
   1543   if (args[0] == 0 && args[1] == 0 && args[2] == 0 && args[3] == 0) {
   1544     NewLIR2(kX86XorpsRR, reg, reg);
   1545     return;
   1546   }
   1547 
   1548   // Append the mov const vector to reg opcode.
   1549   AppendOpcodeWithConst(kX86MovdqaRM, reg, mir);
   1550 }
   1551 
   1552 void X86Mir2Lir::AppendOpcodeWithConst(X86OpCode opcode, int reg, MIR* mir) {
   1553   // To deal with correct memory ordering, reverse order of constants.
   1554   int32_t constants[4];
   1555   constants[3] = mir->dalvikInsn.arg[0];
   1556   constants[2] = mir->dalvikInsn.arg[1];
   1557   constants[1] = mir->dalvikInsn.arg[2];
   1558   constants[0] = mir->dalvikInsn.arg[3];
   1559 
   1560   // Search if there is already a constant in pool with this value.
   1561   LIR *data_target = ScanVectorLiteral(constants);
   1562   if (data_target == nullptr) {
   1563     data_target = AddVectorLiteral(constants);
   1564   }
   1565 
   1566   // Load the proper value from the literal area.
   1567   // We don't know the proper offset for the value, so pick one that will force
   1568   // 4 byte offset.  We will fix this up in the assembler later to have the
   1569   // right value.
   1570   LIR* load;
   1571   ScopedMemRefType mem_ref_type(this, ResourceMask::kLiteral);
   1572   if (cu_->target64) {
   1573     load = NewLIR3(opcode, reg, kRIPReg, kDummy32BitOffset);
   1574   } else {
   1575     // Get the PC to a register and get the anchor.
   1576     LIR* anchor;
   1577     RegStorage r_pc = GetPcAndAnchor(&anchor);
   1578 
   1579     load = NewLIR3(opcode, reg, r_pc.GetReg(), kDummy32BitOffset);
   1580     load->operands[4] = WrapPointer(anchor);
   1581     if (IsTemp(r_pc)) {
   1582       FreeTemp(r_pc);
   1583     }
   1584   }
   1585   load->flags.fixup = kFixupLoad;
   1586   load->target = data_target;
   1587 }
   1588 
   1589 void X86Mir2Lir::GenMoveVector(MIR* mir) {
   1590   // We only support 128 bit registers.
   1591   DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U);
   1592   RegStorage rs_dest = RegStorage::Solo128(mir->dalvikInsn.vA);
   1593   Clobber(rs_dest);
   1594   RegStorage rs_src = RegStorage::Solo128(mir->dalvikInsn.vB);
   1595   NewLIR2(kX86MovdqaRR, rs_dest.GetReg(), rs_src.GetReg());
   1596 }
   1597 
   1598 void X86Mir2Lir::GenMultiplyVectorSignedByte(RegStorage rs_dest_src1, RegStorage rs_src2) {
   1599   /*
   1600    * Emulate the behavior of a kSignedByte by separating out the 16 values in the two XMM
   1601    * and multiplying 8 at a time before recombining back into one XMM register.
   1602    *
   1603    *   let xmm1, xmm2 be real srcs (keep low bits of 16bit lanes)
   1604    *       xmm3 is tmp             (operate on high bits of 16bit lanes)
   1605    *
   1606    *    xmm3 = xmm1
   1607    *    xmm1 = xmm1 .* xmm2
   1608    *    xmm1 = xmm1 & 0x00ff00ff00ff00ff00ff00ff00ff00ff  // xmm1 now has low bits
   1609    *    xmm3 = xmm3 .>> 8
   1610    *    xmm2 = xmm2 & 0xff00ff00ff00ff00ff00ff00ff00ff00
   1611    *    xmm2 = xmm2 .* xmm3                               // xmm2 now has high bits
   1612    *    xmm1 = xmm1 | xmm2                                // combine results
   1613    */
   1614 
   1615   // Copy xmm1.
   1616   RegStorage rs_src1_high_tmp = Get128BitRegister(AllocTempDouble());
   1617   RegStorage rs_dest_high_tmp = Get128BitRegister(AllocTempDouble());
   1618   NewLIR2(kX86MovdqaRR, rs_src1_high_tmp.GetReg(), rs_src2.GetReg());
   1619   NewLIR2(kX86MovdqaRR, rs_dest_high_tmp.GetReg(), rs_dest_src1.GetReg());
   1620 
   1621   // Multiply low bits.
   1622   // x7 *= x3
   1623   NewLIR2(kX86PmullwRR, rs_dest_src1.GetReg(), rs_src2.GetReg());
   1624 
   1625   // xmm1 now has low bits.
   1626   AndMaskVectorRegister(rs_dest_src1, 0x00FF00FF, 0x00FF00FF, 0x00FF00FF, 0x00FF00FF);
   1627 
   1628   // Prepare high bits for multiplication.
   1629   NewLIR2(kX86PsrlwRI, rs_src1_high_tmp.GetReg(), 0x8);
   1630   AndMaskVectorRegister(rs_dest_high_tmp,  0xFF00FF00, 0xFF00FF00, 0xFF00FF00, 0xFF00FF00);
   1631 
   1632   // Multiply high bits and xmm2 now has high bits.
   1633   NewLIR2(kX86PmullwRR, rs_src1_high_tmp.GetReg(), rs_dest_high_tmp.GetReg());
   1634 
   1635   // Combine back into dest XMM register.
   1636   NewLIR2(kX86PorRR, rs_dest_src1.GetReg(), rs_src1_high_tmp.GetReg());
   1637 }
   1638 
   1639 void X86Mir2Lir::GenMultiplyVectorLong(RegStorage rs_dest_src1, RegStorage rs_src2) {
   1640   /*
   1641    * We need to emulate the packed long multiply.
   1642    * For kMirOpPackedMultiply xmm1, xmm0:
   1643    * - xmm1 is src/dest
   1644    * - xmm0 is src
   1645    * - Get xmm2 and xmm3 as temp
   1646    * - Idea is to multiply the lower 32 of each operand with the higher 32 of the other.
   1647    * - Then add the two results.
   1648    * - Move it to the upper 32 of the destination
   1649    * - Then multiply the lower 32-bits of the operands and add the result to the destination.
   1650    *
   1651    * (op     dest   src )
   1652    * movdqa  %xmm2, %xmm1
   1653    * movdqa  %xmm3, %xmm0
   1654    * psrlq   %xmm3, $0x20
   1655    * pmuludq %xmm3, %xmm2
   1656    * psrlq   %xmm1, $0x20
   1657    * pmuludq %xmm1, %xmm0
   1658    * paddq   %xmm1, %xmm3
   1659    * psllq   %xmm1, $0x20
   1660    * pmuludq %xmm2, %xmm0
   1661    * paddq   %xmm1, %xmm2
   1662    *
   1663    * When both the operands are the same, then we need to calculate the lower-32 * higher-32
   1664    * calculation only once. Thus we don't need the xmm3 temp above. That sequence becomes:
   1665    *
   1666    * (op     dest   src )
   1667    * movdqa  %xmm2, %xmm1
   1668    * psrlq   %xmm1, $0x20
   1669    * pmuludq %xmm1, %xmm0
   1670    * paddq   %xmm1, %xmm1
   1671    * psllq   %xmm1, $0x20
   1672    * pmuludq %xmm2, %xmm0
   1673    * paddq   %xmm1, %xmm2
   1674    *
   1675    */
   1676 
   1677   bool both_operands_same = (rs_dest_src1.GetReg() == rs_src2.GetReg());
   1678 
   1679   RegStorage rs_tmp_vector_1;
   1680   RegStorage rs_tmp_vector_2;
   1681   rs_tmp_vector_1 = Get128BitRegister(AllocTempDouble());
   1682   NewLIR2(kX86MovdqaRR, rs_tmp_vector_1.GetReg(), rs_dest_src1.GetReg());
   1683 
   1684   if (both_operands_same == false) {
   1685     rs_tmp_vector_2 = Get128BitRegister(AllocTempDouble());
   1686     NewLIR2(kX86MovdqaRR, rs_tmp_vector_2.GetReg(), rs_src2.GetReg());
   1687     NewLIR2(kX86PsrlqRI, rs_tmp_vector_2.GetReg(), 0x20);
   1688     NewLIR2(kX86PmuludqRR, rs_tmp_vector_2.GetReg(), rs_tmp_vector_1.GetReg());
   1689   }
   1690 
   1691   NewLIR2(kX86PsrlqRI, rs_dest_src1.GetReg(), 0x20);
   1692   NewLIR2(kX86PmuludqRR, rs_dest_src1.GetReg(), rs_src2.GetReg());
   1693 
   1694   if (both_operands_same == false) {
   1695     NewLIR2(kX86PaddqRR, rs_dest_src1.GetReg(), rs_tmp_vector_2.GetReg());
   1696   } else {
   1697     NewLIR2(kX86PaddqRR, rs_dest_src1.GetReg(), rs_dest_src1.GetReg());
   1698   }
   1699 
   1700   NewLIR2(kX86PsllqRI, rs_dest_src1.GetReg(), 0x20);
   1701   NewLIR2(kX86PmuludqRR, rs_tmp_vector_1.GetReg(), rs_src2.GetReg());
   1702   NewLIR2(kX86PaddqRR, rs_dest_src1.GetReg(), rs_tmp_vector_1.GetReg());
   1703 }
   1704 
   1705 void X86Mir2Lir::GenMultiplyVector(MIR* mir) {
   1706   DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U);
   1707   OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vC >> 16);
   1708   RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA);
   1709   Clobber(rs_dest_src1);
   1710   RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vB);
   1711   int opcode = 0;
   1712   switch (opsize) {
   1713     case k32:
   1714       opcode = kX86PmulldRR;
   1715       break;
   1716     case kSignedHalf:
   1717       opcode = kX86PmullwRR;
   1718       break;
   1719     case kSingle:
   1720       opcode = kX86MulpsRR;
   1721       break;
   1722     case kDouble:
   1723       opcode = kX86MulpdRR;
   1724       break;
   1725     case kSignedByte:
   1726       // HW doesn't support 16x16 byte multiplication so emulate it.
   1727       GenMultiplyVectorSignedByte(rs_dest_src1, rs_src2);
   1728       return;
   1729     case k64:
   1730       GenMultiplyVectorLong(rs_dest_src1, rs_src2);
   1731       return;
   1732     default:
   1733       LOG(FATAL) << "Unsupported vector multiply " << opsize;
   1734       break;
   1735   }
   1736   NewLIR2(opcode, rs_dest_src1.GetReg(), rs_src2.GetReg());
   1737 }
   1738 
   1739 void X86Mir2Lir::GenAddVector(MIR* mir) {
   1740   DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U);
   1741   OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vC >> 16);
   1742   RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA);
   1743   Clobber(rs_dest_src1);
   1744   RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vB);
   1745   int opcode = 0;
   1746   switch (opsize) {
   1747     case k32:
   1748       opcode = kX86PadddRR;
   1749       break;
   1750     case k64:
   1751       opcode = kX86PaddqRR;
   1752       break;
   1753     case kSignedHalf:
   1754     case kUnsignedHalf:
   1755       opcode = kX86PaddwRR;
   1756       break;
   1757     case kUnsignedByte:
   1758     case kSignedByte:
   1759       opcode = kX86PaddbRR;
   1760       break;
   1761     case kSingle:
   1762       opcode = kX86AddpsRR;
   1763       break;
   1764     case kDouble:
   1765       opcode = kX86AddpdRR;
   1766       break;
   1767     default:
   1768       LOG(FATAL) << "Unsupported vector addition " << opsize;
   1769       break;
   1770   }
   1771   NewLIR2(opcode, rs_dest_src1.GetReg(), rs_src2.GetReg());
   1772 }
   1773 
   1774 void X86Mir2Lir::GenSubtractVector(MIR* mir) {
   1775   DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U);
   1776   OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vC >> 16);
   1777   RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA);
   1778   Clobber(rs_dest_src1);
   1779   RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vB);
   1780   int opcode = 0;
   1781   switch (opsize) {
   1782     case k32:
   1783       opcode = kX86PsubdRR;
   1784       break;
   1785     case k64:
   1786       opcode = kX86PsubqRR;
   1787       break;
   1788     case kSignedHalf:
   1789     case kUnsignedHalf:
   1790       opcode = kX86PsubwRR;
   1791       break;
   1792     case kUnsignedByte:
   1793     case kSignedByte:
   1794       opcode = kX86PsubbRR;
   1795       break;
   1796     case kSingle:
   1797       opcode = kX86SubpsRR;
   1798       break;
   1799     case kDouble:
   1800       opcode = kX86SubpdRR;
   1801       break;
   1802     default:
   1803       LOG(FATAL) << "Unsupported vector subtraction " << opsize;
   1804       break;
   1805   }
   1806   NewLIR2(opcode, rs_dest_src1.GetReg(), rs_src2.GetReg());
   1807 }
   1808 
   1809 void X86Mir2Lir::GenShiftByteVector(MIR* mir) {
   1810   // Destination does not need clobbered because it has already been as part
   1811   // of the general packed shift handler (caller of this method).
   1812   RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA);
   1813 
   1814   int opcode = 0;
   1815   switch (static_cast<ExtendedMIROpcode>(mir->dalvikInsn.opcode)) {
   1816     case kMirOpPackedShiftLeft:
   1817       opcode = kX86PsllwRI;
   1818       break;
   1819     case kMirOpPackedSignedShiftRight:
   1820     case kMirOpPackedUnsignedShiftRight:
   1821       // TODO Add support for emulated byte shifts.
   1822     default:
   1823       LOG(FATAL) << "Unsupported shift operation on byte vector " << opcode;
   1824       break;
   1825   }
   1826 
   1827   // Clear xmm register and return if shift more than byte length.
   1828   int imm = mir->dalvikInsn.vB;
   1829   if (imm >= 8) {
   1830     NewLIR2(kX86PxorRR, rs_dest_src1.GetReg(), rs_dest_src1.GetReg());
   1831     return;
   1832   }
   1833 
   1834   // Shift lower values.
   1835   NewLIR2(opcode, rs_dest_src1.GetReg(), imm);
   1836 
   1837   /*
   1838    * The above shift will shift the whole word, but that means
   1839    * both the bytes will shift as well. To emulate a byte level
   1840    * shift, we can just throw away the lower (8 - N) bits of the
   1841    * upper byte, and we are done.
   1842    */
   1843   uint8_t byte_mask = 0xFF << imm;
   1844   uint32_t int_mask = byte_mask;
   1845   int_mask = int_mask << 8 | byte_mask;
   1846   int_mask = int_mask << 8 | byte_mask;
   1847   int_mask = int_mask << 8 | byte_mask;
   1848 
   1849   // And the destination with the mask
   1850   AndMaskVectorRegister(rs_dest_src1, int_mask, int_mask, int_mask, int_mask);
   1851 }
   1852 
   1853 void X86Mir2Lir::GenShiftLeftVector(MIR* mir) {
   1854   DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U);
   1855   OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vC >> 16);
   1856   RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA);
   1857   Clobber(rs_dest_src1);
   1858   int imm = mir->dalvikInsn.vB;
   1859   int opcode = 0;
   1860   switch (opsize) {
   1861     case k32:
   1862       opcode = kX86PslldRI;
   1863       break;
   1864     case k64:
   1865       opcode = kX86PsllqRI;
   1866       break;
   1867     case kSignedHalf:
   1868     case kUnsignedHalf:
   1869       opcode = kX86PsllwRI;
   1870       break;
   1871     case kSignedByte:
   1872     case kUnsignedByte:
   1873       GenShiftByteVector(mir);
   1874       return;
   1875     default:
   1876       LOG(FATAL) << "Unsupported vector shift left " << opsize;
   1877       break;
   1878   }
   1879   NewLIR2(opcode, rs_dest_src1.GetReg(), imm);
   1880 }
   1881 
   1882 void X86Mir2Lir::GenSignedShiftRightVector(MIR* mir) {
   1883   DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U);
   1884   OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vC >> 16);
   1885   RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA);
   1886   Clobber(rs_dest_src1);
   1887   int imm = mir->dalvikInsn.vB;
   1888   int opcode = 0;
   1889   switch (opsize) {
   1890     case k32:
   1891       opcode = kX86PsradRI;
   1892       break;
   1893     case kSignedHalf:
   1894     case kUnsignedHalf:
   1895       opcode = kX86PsrawRI;
   1896       break;
   1897     case kSignedByte:
   1898     case kUnsignedByte:
   1899       GenShiftByteVector(mir);
   1900       return;
   1901     case k64:
   1902       // TODO Implement emulated shift algorithm.
   1903     default:
   1904       LOG(FATAL) << "Unsupported vector signed shift right " << opsize;
   1905       UNREACHABLE();
   1906   }
   1907   NewLIR2(opcode, rs_dest_src1.GetReg(), imm);
   1908 }
   1909 
   1910 void X86Mir2Lir::GenUnsignedShiftRightVector(MIR* mir) {
   1911   DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U);
   1912   OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vC >> 16);
   1913   RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA);
   1914   Clobber(rs_dest_src1);
   1915   int imm = mir->dalvikInsn.vB;
   1916   int opcode = 0;
   1917   switch (opsize) {
   1918     case k32:
   1919       opcode = kX86PsrldRI;
   1920       break;
   1921     case k64:
   1922       opcode = kX86PsrlqRI;
   1923       break;
   1924     case kSignedHalf:
   1925     case kUnsignedHalf:
   1926       opcode = kX86PsrlwRI;
   1927       break;
   1928     case kSignedByte:
   1929     case kUnsignedByte:
   1930       GenShiftByteVector(mir);
   1931       return;
   1932     default:
   1933       LOG(FATAL) << "Unsupported vector unsigned shift right " << opsize;
   1934       break;
   1935   }
   1936   NewLIR2(opcode, rs_dest_src1.GetReg(), imm);
   1937 }
   1938 
   1939 void X86Mir2Lir::GenAndVector(MIR* mir) {
   1940   // We only support 128 bit registers.
   1941   DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U);
   1942   RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA);
   1943   Clobber(rs_dest_src1);
   1944   RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vB);
   1945   NewLIR2(kX86PandRR, rs_dest_src1.GetReg(), rs_src2.GetReg());
   1946 }
   1947 
   1948 void X86Mir2Lir::GenOrVector(MIR* mir) {
   1949   // We only support 128 bit registers.
   1950   DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U);
   1951   RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA);
   1952   Clobber(rs_dest_src1);
   1953   RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vB);
   1954   NewLIR2(kX86PorRR, rs_dest_src1.GetReg(), rs_src2.GetReg());
   1955 }
   1956 
   1957 void X86Mir2Lir::GenXorVector(MIR* mir) {
   1958   // We only support 128 bit registers.
   1959   DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U);
   1960   RegStorage rs_dest_src1 = RegStorage::Solo128(mir->dalvikInsn.vA);
   1961   Clobber(rs_dest_src1);
   1962   RegStorage rs_src2 = RegStorage::Solo128(mir->dalvikInsn.vB);
   1963   NewLIR2(kX86PxorRR, rs_dest_src1.GetReg(), rs_src2.GetReg());
   1964 }
   1965 
   1966 void X86Mir2Lir::AndMaskVectorRegister(RegStorage rs_src1, uint32_t m1, uint32_t m2, uint32_t m3, uint32_t m4) {
   1967   MaskVectorRegister(kX86PandRM, rs_src1, m1, m2, m3, m4);
   1968 }
   1969 
   1970 void X86Mir2Lir::MaskVectorRegister(X86OpCode opcode, RegStorage rs_src1, uint32_t m0, uint32_t m1, uint32_t m2, uint32_t m3) {
   1971   // Create temporary MIR as container for 128-bit binary mask.
   1972   MIR const_mir;
   1973   MIR* const_mirp = &const_mir;
   1974   const_mirp->dalvikInsn.opcode = static_cast<Instruction::Code>(kMirOpConstVector);
   1975   const_mirp->dalvikInsn.arg[0] = m0;
   1976   const_mirp->dalvikInsn.arg[1] = m1;
   1977   const_mirp->dalvikInsn.arg[2] = m2;
   1978   const_mirp->dalvikInsn.arg[3] = m3;
   1979 
   1980   // Mask vector with const from literal pool.
   1981   AppendOpcodeWithConst(opcode, rs_src1.GetReg(), const_mirp);
   1982 }
   1983 
   1984 void X86Mir2Lir::GenAddReduceVector(MIR* mir) {
   1985   OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vC >> 16);
   1986   RegStorage vector_src = RegStorage::Solo128(mir->dalvikInsn.vB);
   1987   bool is_wide = opsize == k64 || opsize == kDouble;
   1988 
   1989   // Get the location of the virtual register. Since this bytecode is overloaded
   1990   // for different types (and sizes), we need different logic for each path.
   1991   // The design of bytecode uses same VR for source and destination.
   1992   RegLocation rl_src, rl_dest, rl_result;
   1993   if (is_wide) {
   1994     rl_src = mir_graph_->GetSrcWide(mir, 0);
   1995     rl_dest = mir_graph_->GetDestWide(mir);
   1996   } else {
   1997     rl_src = mir_graph_->GetSrc(mir, 0);
   1998     rl_dest = mir_graph_->GetDest(mir);
   1999   }
   2000 
   2001   // We need a temp for byte and short values
   2002   RegStorage temp;
   2003 
   2004   // There is a different path depending on type and size.
   2005   if (opsize == kSingle) {
   2006     // Handle float case.
   2007     // TODO Add support for fast math (not value safe) and do horizontal add in that case.
   2008 
   2009     rl_src = LoadValue(rl_src, kFPReg);
   2010     rl_result = EvalLoc(rl_dest, kFPReg, true);
   2011 
   2012     // Since we are doing an add-reduce, we move the reg holding the VR
   2013     // into the result so we include it in result.
   2014     OpRegCopy(rl_result.reg, rl_src.reg);
   2015     NewLIR2(kX86AddssRR, rl_result.reg.GetReg(), vector_src.GetReg());
   2016 
   2017     // Since FP must keep order of operation for value safety, we shift to low
   2018     // 32-bits and add to result.
   2019     for (int i = 0; i < 3; i++) {
   2020       NewLIR3(kX86ShufpsRRI, vector_src.GetReg(), vector_src.GetReg(), 0x39);
   2021       NewLIR2(kX86AddssRR, rl_result.reg.GetReg(), vector_src.GetReg());
   2022     }
   2023 
   2024     StoreValue(rl_dest, rl_result);
   2025   } else if (opsize == kDouble) {
   2026     // Handle double case.
   2027     rl_src = LoadValueWide(rl_src, kFPReg);
   2028     rl_result = EvalLocWide(rl_dest, kFPReg, true);
   2029     LOG(FATAL) << "Unsupported vector add reduce for double.";
   2030   } else if (opsize == k64) {
   2031     /*
   2032      * Handle long case:
   2033      * 1) Reduce the vector register to lower half (with addition).
   2034      * 1-1) Get an xmm temp and fill it with vector register.
   2035      * 1-2) Shift the xmm temp by 8-bytes.
   2036      * 1-3) Add the xmm temp to vector register that is being reduced.
   2037      * 2) Allocate temp GP / GP pair.
   2038      * 2-1) In 64-bit case, use movq to move result to a 64-bit GP.
   2039      * 2-2) In 32-bit case, use movd twice to move to 32-bit GP pair.
   2040      * 3) Finish the add reduction by doing what add-long/2addr does,
   2041      * but instead of having a VR as one of the sources, we have our temp GP.
   2042      */
   2043     RegStorage rs_tmp_vector = Get128BitRegister(AllocTempDouble());
   2044     NewLIR2(kX86MovdqaRR, rs_tmp_vector.GetReg(), vector_src.GetReg());
   2045     NewLIR2(kX86PsrldqRI, rs_tmp_vector.GetReg(), 8);
   2046     NewLIR2(kX86PaddqRR, vector_src.GetReg(), rs_tmp_vector.GetReg());
   2047     FreeTemp(rs_tmp_vector);
   2048 
   2049     // We would like to be able to reuse the add-long implementation, so set up a fake
   2050     // register location to pass it.
   2051     RegLocation temp_loc = mir_graph_->GetBadLoc();
   2052     temp_loc.core = 1;
   2053     temp_loc.wide = 1;
   2054     temp_loc.location = kLocPhysReg;
   2055     temp_loc.reg = AllocTempWide();
   2056 
   2057     if (cu_->target64) {
   2058       DCHECK(!temp_loc.reg.IsPair());
   2059       NewLIR2(kX86MovqrxRR, temp_loc.reg.GetReg(), vector_src.GetReg());
   2060     } else {
   2061       NewLIR2(kX86MovdrxRR, temp_loc.reg.GetLowReg(), vector_src.GetReg());
   2062       NewLIR2(kX86PsrlqRI, vector_src.GetReg(), 0x20);
   2063       NewLIR2(kX86MovdrxRR, temp_loc.reg.GetHighReg(), vector_src.GetReg());
   2064     }
   2065 
   2066     GenArithOpLong(Instruction::ADD_LONG_2ADDR, rl_dest, temp_loc, temp_loc, mir->optimization_flags);
   2067   } else if (opsize == kSignedByte || opsize == kUnsignedByte) {
   2068     RegStorage rs_tmp = Get128BitRegister(AllocTempDouble());
   2069     NewLIR2(kX86PxorRR, rs_tmp.GetReg(), rs_tmp.GetReg());
   2070     NewLIR2(kX86PsadbwRR, vector_src.GetReg(), rs_tmp.GetReg());
   2071     NewLIR3(kX86PshufdRRI, rs_tmp.GetReg(), vector_src.GetReg(), 0x4e);
   2072     NewLIR2(kX86PaddbRR, vector_src.GetReg(), rs_tmp.GetReg());
   2073     // Move to a GPR
   2074     temp = AllocTemp();
   2075     NewLIR2(kX86MovdrxRR, temp.GetReg(), vector_src.GetReg());
   2076   } else {
   2077     // Handle and the int and short cases together
   2078 
   2079     // Initialize as if we were handling int case. Below we update
   2080     // the opcode if handling byte or short.
   2081     int vec_bytes = (mir->dalvikInsn.vC & 0xFFFF) / 8;
   2082     int vec_unit_size;
   2083     int horizontal_add_opcode;
   2084     int extract_opcode;
   2085 
   2086     if (opsize == kSignedHalf || opsize == kUnsignedHalf) {
   2087       extract_opcode = kX86PextrwRRI;
   2088       horizontal_add_opcode = kX86PhaddwRR;
   2089       vec_unit_size = 2;
   2090     } else if (opsize == k32) {
   2091       vec_unit_size = 4;
   2092       horizontal_add_opcode = kX86PhadddRR;
   2093       extract_opcode = kX86PextrdRRI;
   2094     } else {
   2095       LOG(FATAL) << "Unsupported vector add reduce " << opsize;
   2096       return;
   2097     }
   2098 
   2099     int elems = vec_bytes / vec_unit_size;
   2100 
   2101     while (elems > 1) {
   2102       NewLIR2(horizontal_add_opcode, vector_src.GetReg(), vector_src.GetReg());
   2103       elems >>= 1;
   2104     }
   2105 
   2106     // Handle this as arithmetic unary case.
   2107     ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
   2108 
   2109     // Extract to a GP register because this is integral typed.
   2110     temp = AllocTemp();
   2111     NewLIR3(extract_opcode, temp.GetReg(), vector_src.GetReg(), 0);
   2112   }
   2113 
   2114   if (opsize != k64 && opsize != kSingle && opsize != kDouble) {
   2115     // The logic below looks very similar to the handling of ADD_INT_2ADDR
   2116     // except the rhs is not a VR but a physical register allocated above.
   2117     // No load of source VR is done because it assumes that rl_result will
   2118     // share physical register / memory location.
   2119     rl_result = UpdateLocTyped(rl_dest);
   2120     if (rl_result.location == kLocPhysReg) {
   2121       // Ensure res is in a core reg.
   2122       rl_result = EvalLoc(rl_dest, kCoreReg, true);
   2123       OpRegReg(kOpAdd, rl_result.reg, temp);
   2124       StoreFinalValue(rl_dest, rl_result);
   2125     } else {
   2126       // Do the addition directly to memory.
   2127       ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
   2128       OpMemReg(kOpAdd, rl_result, temp.GetReg());
   2129     }
   2130   }
   2131 }
   2132 
   2133 void X86Mir2Lir::GenReduceVector(MIR* mir) {
   2134   OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vC >> 16);
   2135   RegLocation rl_dest = mir_graph_->GetDest(mir);
   2136   RegStorage vector_src = RegStorage::Solo128(mir->dalvikInsn.vB);
   2137   RegLocation rl_result;
   2138   bool is_wide = false;
   2139 
   2140   // There is a different path depending on type and size.
   2141   if (opsize == kSingle) {
   2142     // Handle float case.
   2143     // TODO Add support for fast math (not value safe) and do horizontal add in that case.
   2144 
   2145     int extract_index = mir->dalvikInsn.arg[0];
   2146 
   2147     rl_result = EvalLoc(rl_dest, kFPReg, true);
   2148     NewLIR2(kX86PxorRR, rl_result.reg.GetReg(), rl_result.reg.GetReg());
   2149 
   2150     if (LIKELY(extract_index != 0)) {
   2151       // We know the index of element which we want to extract. We want to extract it and
   2152       // keep values in vector register correct for future use. So the way we act is:
   2153       // 1. Generate shuffle mask that allows to swap zeroth and required elements;
   2154       // 2. Shuffle vector register with this mask;
   2155       // 3. Extract zeroth element where required value lies;
   2156       // 4. Shuffle with same mask again to restore original values in vector register.
   2157       // The mask is generated from equivalence mask 0b11100100 swapping 0th and extracted
   2158       // element indices.
   2159       int shuffle[4] = {0b00, 0b01, 0b10, 0b11};
   2160       shuffle[0] = extract_index;
   2161       shuffle[extract_index] = 0;
   2162       int mask = 0;
   2163       for (int i = 0; i < 4; i++) {
   2164         mask |= (shuffle[i] << (2 * i));
   2165       }
   2166       NewLIR3(kX86ShufpsRRI, vector_src.GetReg(), vector_src.GetReg(), mask);
   2167       NewLIR2(kX86AddssRR, rl_result.reg.GetReg(), vector_src.GetReg());
   2168       NewLIR3(kX86ShufpsRRI, vector_src.GetReg(), vector_src.GetReg(), mask);
   2169     } else {
   2170       // We need to extract zeroth element and don't need any complex stuff to do it.
   2171       NewLIR2(kX86AddssRR, rl_result.reg.GetReg(), vector_src.GetReg());
   2172     }
   2173 
   2174     StoreFinalValue(rl_dest, rl_result);
   2175   } else if (opsize == kDouble) {
   2176     // TODO Handle double case.
   2177     LOG(FATAL) << "Unsupported add reduce for double.";
   2178   } else if (opsize == k64) {
   2179     /*
   2180      * Handle long case:
   2181      * 1) Reduce the vector register to lower half (with addition).
   2182      * 1-1) Get an xmm temp and fill it with vector register.
   2183      * 1-2) Shift the xmm temp by 8-bytes.
   2184      * 1-3) Add the xmm temp to vector register that is being reduced.
   2185      * 2) Evaluate destination to a GP / GP pair.
   2186      * 2-1) In 64-bit case, use movq to move result to a 64-bit GP.
   2187      * 2-2) In 32-bit case, use movd twice to move to 32-bit GP pair.
   2188      * 3) Store the result to the final destination.
   2189      */
   2190     NewLIR2(kX86PsrldqRI, vector_src.GetReg(), 8);
   2191     rl_result = EvalLocWide(rl_dest, kCoreReg, true);
   2192     if (cu_->target64) {
   2193       DCHECK(!rl_result.reg.IsPair());
   2194       NewLIR2(kX86MovqrxRR, rl_result.reg.GetReg(), vector_src.GetReg());
   2195     } else {
   2196       NewLIR2(kX86MovdrxRR, rl_result.reg.GetLowReg(), vector_src.GetReg());
   2197       NewLIR2(kX86PsrlqRI, vector_src.GetReg(), 0x20);
   2198       NewLIR2(kX86MovdrxRR, rl_result.reg.GetHighReg(), vector_src.GetReg());
   2199     }
   2200 
   2201     StoreValueWide(rl_dest, rl_result);
   2202   } else {
   2203     int extract_index = mir->dalvikInsn.arg[0];
   2204     int extr_opcode = 0;
   2205     rl_result = UpdateLocTyped(rl_dest);
   2206 
   2207     // Handle the rest of integral types now.
   2208     switch (opsize) {
   2209       case k32:
   2210         extr_opcode = (rl_result.location == kLocPhysReg) ? kX86PextrdRRI : kX86PextrdMRI;
   2211         break;
   2212       case kSignedHalf:
   2213       case kUnsignedHalf:
   2214         extr_opcode = (rl_result.location == kLocPhysReg) ? kX86PextrwRRI : kX86PextrwMRI;
   2215         break;
   2216       case kSignedByte:
   2217         extr_opcode = (rl_result.location == kLocPhysReg) ? kX86PextrbRRI : kX86PextrbMRI;
   2218         break;
   2219       default:
   2220         LOG(FATAL) << "Unsupported vector reduce " << opsize;
   2221         UNREACHABLE();
   2222     }
   2223 
   2224     if (rl_result.location == kLocPhysReg) {
   2225       NewLIR3(extr_opcode, rl_result.reg.GetReg(), vector_src.GetReg(), extract_index);
   2226       StoreFinalValue(rl_dest, rl_result);
   2227     } else {
   2228       int displacement = SRegOffset(rl_result.s_reg_low);
   2229       ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
   2230       LIR *l = NewLIR4(extr_opcode, rs_rX86_SP_32.GetReg(), displacement, vector_src.GetReg(),
   2231                        extract_index);
   2232       AnnotateDalvikRegAccess(l, displacement >> 2, false /* is_load */, is_wide /* is_64bit */);
   2233     }
   2234   }
   2235 }
   2236 
   2237 void X86Mir2Lir::LoadVectorRegister(RegStorage rs_dest, RegStorage rs_src,
   2238                                     OpSize opsize, int op_mov) {
   2239   if (!cu_->target64 && opsize == k64) {
   2240     // Logic assumes that longs are loaded in GP register pairs.
   2241     NewLIR2(kX86MovdxrRR, rs_dest.GetReg(), rs_src.GetLowReg());
   2242     RegStorage r_tmp = AllocTempDouble();
   2243     NewLIR2(kX86MovdxrRR, r_tmp.GetReg(), rs_src.GetHighReg());
   2244     NewLIR2(kX86PunpckldqRR, rs_dest.GetReg(), r_tmp.GetReg());
   2245     FreeTemp(r_tmp);
   2246   } else {
   2247     NewLIR2(op_mov, rs_dest.GetReg(), rs_src.GetReg());
   2248   }
   2249 }
   2250 
   2251 void X86Mir2Lir::GenSetVector(MIR* mir) {
   2252   DCHECK_EQ(mir->dalvikInsn.vC & 0xFFFF, 128U);
   2253   OpSize opsize = static_cast<OpSize>(mir->dalvikInsn.vC >> 16);
   2254   RegStorage rs_dest = RegStorage::Solo128(mir->dalvikInsn.vA);
   2255   Clobber(rs_dest);
   2256   int op_shuffle = 0, op_shuffle_high = 0, op_mov = kX86MovdxrRR;
   2257   RegisterClass reg_type = kCoreReg;
   2258   bool is_wide = false;
   2259 
   2260   switch (opsize) {
   2261     case k32:
   2262       op_shuffle = kX86PshufdRRI;
   2263       break;
   2264     case kSingle:
   2265       op_shuffle = kX86PshufdRRI;
   2266       op_mov = kX86MovdqaRR;
   2267       reg_type = kFPReg;
   2268       break;
   2269     case k64:
   2270       op_shuffle = kX86PunpcklqdqRR;
   2271       op_mov = kX86MovqxrRR;
   2272       is_wide = true;
   2273       break;
   2274     case kSignedByte:
   2275     case kUnsignedByte:
   2276       // We will have the source loaded up in a
   2277       // double-word before we use this shuffle
   2278       op_shuffle = kX86PshufdRRI;
   2279       break;
   2280     case kSignedHalf:
   2281     case kUnsignedHalf:
   2282       // Handles low quadword.
   2283       op_shuffle = kX86PshuflwRRI;
   2284       // Handles upper quadword.
   2285       op_shuffle_high = kX86PshufdRRI;
   2286       break;
   2287     default:
   2288       LOG(FATAL) << "Unsupported vector set " << opsize;
   2289       break;
   2290   }
   2291 
   2292   // Load the value from the VR into a physical register.
   2293   RegLocation rl_src;
   2294   if (!is_wide) {
   2295     rl_src = mir_graph_->GetSrc(mir, 0);
   2296     rl_src = LoadValue(rl_src, reg_type);
   2297   } else {
   2298     rl_src = mir_graph_->GetSrcWide(mir, 0);
   2299     rl_src = LoadValueWide(rl_src, reg_type);
   2300   }
   2301   RegStorage reg_to_shuffle = rl_src.reg;
   2302 
   2303   // Load the value into the XMM register.
   2304   LoadVectorRegister(rs_dest, reg_to_shuffle, opsize, op_mov);
   2305 
   2306   if (opsize == kSignedByte || opsize == kUnsignedByte) {
   2307     // In the byte case, first duplicate it to be a word
   2308     // Then duplicate it to be a double-word
   2309     NewLIR2(kX86PunpcklbwRR, rs_dest.GetReg(), rs_dest.GetReg());
   2310     NewLIR2(kX86PunpcklwdRR, rs_dest.GetReg(), rs_dest.GetReg());
   2311   }
   2312 
   2313   // Now shuffle the value across the destination.
   2314   if (op_shuffle == kX86PunpcklqdqRR) {
   2315     NewLIR2(op_shuffle, rs_dest.GetReg(), rs_dest.GetReg());
   2316   } else {
   2317     NewLIR3(op_shuffle, rs_dest.GetReg(), rs_dest.GetReg(), 0);
   2318   }
   2319 
   2320   // And then repeat as needed.
   2321   if (op_shuffle_high != 0) {
   2322     NewLIR3(op_shuffle_high, rs_dest.GetReg(), rs_dest.GetReg(), 0);
   2323   }
   2324 }
   2325 
   2326 void X86Mir2Lir::GenPackedArrayGet(BasicBlock* bb, MIR* mir) {
   2327   UNUSED(bb, mir);
   2328   UNIMPLEMENTED(FATAL) << "Extended opcode kMirOpPackedArrayGet not supported.";
   2329 }
   2330 
   2331 void X86Mir2Lir::GenPackedArrayPut(BasicBlock* bb, MIR* mir) {
   2332   UNUSED(bb, mir);
   2333   UNIMPLEMENTED(FATAL) << "Extended opcode kMirOpPackedArrayPut not supported.";
   2334 }
   2335 
   2336 LIR* X86Mir2Lir::ScanVectorLiteral(int32_t* constants) {
   2337   for (LIR *p = const_vectors_; p != nullptr; p = p->next) {
   2338     if (constants[0] == p->operands[0] && constants[1] == p->operands[1] &&
   2339         constants[2] == p->operands[2] && constants[3] == p->operands[3]) {
   2340       return p;
   2341     }
   2342   }
   2343   return nullptr;
   2344 }
   2345 
   2346 LIR* X86Mir2Lir::AddVectorLiteral(int32_t* constants) {
   2347   LIR* new_value = static_cast<LIR*>(arena_->Alloc(sizeof(LIR), kArenaAllocData));
   2348   new_value->operands[0] = constants[0];
   2349   new_value->operands[1] = constants[1];
   2350   new_value->operands[2] = constants[2];
   2351   new_value->operands[3] = constants[3];
   2352   new_value->next = const_vectors_;
   2353   if (const_vectors_ == nullptr) {
   2354     estimated_native_code_size_ += 12;  // Maximum needed to align to 16 byte boundary.
   2355   }
   2356   estimated_native_code_size_ += 16;  // Space for one vector.
   2357   const_vectors_ = new_value;
   2358   return new_value;
   2359 }
   2360 
   2361 // ------------ ABI support: mapping of args to physical registers -------------
   2362 RegStorage X86Mir2Lir::InToRegStorageX86_64Mapper::GetNextReg(ShortyArg arg) {
   2363   const SpecialTargetRegister coreArgMappingToPhysicalReg[] = {kArg1, kArg2, kArg3, kArg4, kArg5};
   2364   const size_t coreArgMappingToPhysicalRegSize = arraysize(coreArgMappingToPhysicalReg);
   2365   const SpecialTargetRegister fpArgMappingToPhysicalReg[] = {kFArg0, kFArg1, kFArg2, kFArg3,
   2366                                                              kFArg4, kFArg5, kFArg6, kFArg7};
   2367   const size_t fpArgMappingToPhysicalRegSize = arraysize(fpArgMappingToPhysicalReg);
   2368 
   2369   if (arg.IsFP()) {
   2370     if (cur_fp_reg_ < fpArgMappingToPhysicalRegSize) {
   2371       return m2l_->TargetReg(fpArgMappingToPhysicalReg[cur_fp_reg_++],
   2372                              arg.IsWide() ? kWide : kNotWide);
   2373     }
   2374   } else {
   2375     if (cur_core_reg_ < coreArgMappingToPhysicalRegSize) {
   2376       return m2l_->TargetReg(coreArgMappingToPhysicalReg[cur_core_reg_++],
   2377                              arg.IsRef() ? kRef : (arg.IsWide() ? kWide : kNotWide));
   2378     }
   2379   }
   2380   return RegStorage::InvalidReg();
   2381 }
   2382 
   2383 RegStorage X86Mir2Lir::InToRegStorageX86Mapper::GetNextReg(ShortyArg arg) {
   2384   const SpecialTargetRegister coreArgMappingToPhysicalReg[] = {kArg1, kArg2, kArg3};
   2385   const size_t coreArgMappingToPhysicalRegSize = arraysize(coreArgMappingToPhysicalReg);
   2386   const SpecialTargetRegister fpArgMappingToPhysicalReg[] = {kFArg0, kFArg1, kFArg2, kFArg3};
   2387   const size_t fpArgMappingToPhysicalRegSize = arraysize(fpArgMappingToPhysicalReg);
   2388 
   2389   RegStorage result = RegStorage::InvalidReg();
   2390   if (arg.IsFP()) {
   2391     if (cur_fp_reg_ < fpArgMappingToPhysicalRegSize) {
   2392       return m2l_->TargetReg(fpArgMappingToPhysicalReg[cur_fp_reg_++],
   2393                              arg.IsWide() ? kWide : kNotWide);
   2394     }
   2395   } else if (cur_core_reg_ < coreArgMappingToPhysicalRegSize) {
   2396     result = m2l_->TargetReg(coreArgMappingToPhysicalReg[cur_core_reg_++],
   2397                              arg.IsRef() ? kRef : kNotWide);
   2398     if (arg.IsWide()) {
   2399       // This must be a long, as double is handled above.
   2400       // Ensure that we don't split a long across the last register and the stack.
   2401       if (cur_core_reg_ == coreArgMappingToPhysicalRegSize) {
   2402         // Leave the last core register unused and force the whole long to the stack.
   2403         cur_core_reg_++;
   2404         result = RegStorage::InvalidReg();
   2405       } else if (cur_core_reg_ < coreArgMappingToPhysicalRegSize) {
   2406         result = RegStorage::MakeRegPair(
   2407             result, m2l_->TargetReg(coreArgMappingToPhysicalReg[cur_core_reg_++], kNotWide));
   2408       }
   2409     }
   2410   }
   2411   return result;
   2412 }
   2413 
   2414 // ---------End of ABI support: mapping of args to physical registers -------------
   2415 
   2416 bool X86Mir2Lir::GenInlinedCharAt(CallInfo* info) {
   2417   // Location of reference to data array
   2418   int value_offset = mirror::String::ValueOffset().Int32Value();
   2419   // Location of count
   2420   int count_offset = mirror::String::CountOffset().Int32Value();
   2421 
   2422   RegLocation rl_obj = info->args[0];
   2423   RegLocation rl_idx = info->args[1];
   2424   rl_obj = LoadValue(rl_obj, kRefReg);
   2425   rl_idx = LoadValue(rl_idx, kCoreReg);
   2426   RegStorage reg_max;
   2427   GenNullCheck(rl_obj.reg, info->opt_flags);
   2428   bool range_check = (!(info->opt_flags & MIR_IGNORE_RANGE_CHECK));
   2429   LIR* range_check_branch = nullptr;
   2430   if (range_check) {
   2431     // On x86, we can compare to memory directly
   2432     // Set up a launch pad to allow retry in case of bounds violation */
   2433     if (rl_idx.is_const) {
   2434       LIR* comparison;
   2435       range_check_branch = OpCmpMemImmBranch(
   2436           kCondLs, RegStorage::InvalidReg(), rl_obj.reg, count_offset,
   2437           mir_graph_->ConstantValue(rl_idx.orig_sreg), nullptr, &comparison);
   2438       MarkPossibleNullPointerExceptionAfter(0, comparison);
   2439     } else {
   2440       OpRegMem(kOpCmp, rl_idx.reg, rl_obj.reg, count_offset);
   2441       MarkPossibleNullPointerException(0);
   2442       range_check_branch = OpCondBranch(kCondUge, nullptr);
   2443     }
   2444   }
   2445   RegLocation rl_dest = InlineTarget(info);
   2446   RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
   2447   LoadBaseIndexedDisp(rl_obj.reg, rl_idx.reg, 1, value_offset, rl_result.reg, kUnsignedHalf);
   2448   FreeTemp(rl_idx.reg);
   2449   FreeTemp(rl_obj.reg);
   2450   StoreValue(rl_dest, rl_result);
   2451   if (range_check) {
   2452     DCHECK(range_check_branch != nullptr);
   2453     info->opt_flags |= MIR_IGNORE_NULL_CHECK;  // Record that we've already null checked.
   2454     AddIntrinsicSlowPath(info, range_check_branch);
   2455   }
   2456   return true;
   2457 }
   2458 
   2459 bool X86Mir2Lir::GenInlinedCurrentThread(CallInfo* info) {
   2460   RegLocation rl_dest = InlineTarget(info);
   2461 
   2462   // Early exit if the result is unused.
   2463   if (rl_dest.orig_sreg < 0) {
   2464     return true;
   2465   }
   2466 
   2467   RegLocation rl_result = EvalLoc(rl_dest, kRefReg, true);
   2468 
   2469   if (cu_->target64) {
   2470     OpRegThreadMem(kOpMov, rl_result.reg, Thread::PeerOffset<8>());
   2471   } else {
   2472     OpRegThreadMem(kOpMov, rl_result.reg, Thread::PeerOffset<4>());
   2473   }
   2474 
   2475   StoreValue(rl_dest, rl_result);
   2476   return true;
   2477 }
   2478 
   2479 /**
   2480  * Lock temp registers for explicit usage. Registers will be freed in destructor.
   2481  */
   2482 X86Mir2Lir::ExplicitTempRegisterLock::ExplicitTempRegisterLock(X86Mir2Lir* mir_to_lir,
   2483                                                                int n_regs, ...) :
   2484     temp_regs_(n_regs),
   2485     mir_to_lir_(mir_to_lir) {
   2486   va_list regs;
   2487   va_start(regs, n_regs);
   2488   for (int i = 0; i < n_regs; i++) {
   2489     RegStorage reg = *(va_arg(regs, RegStorage*));
   2490     RegisterInfo* info = mir_to_lir_->GetRegInfo(reg);
   2491 
   2492     // Make sure we don't have promoted register here.
   2493     DCHECK(info->IsTemp());
   2494 
   2495     temp_regs_.push_back(reg);
   2496     mir_to_lir_->FlushReg(reg);
   2497 
   2498     if (reg.IsPair()) {
   2499       RegStorage partner = info->Partner();
   2500       temp_regs_.push_back(partner);
   2501       mir_to_lir_->FlushReg(partner);
   2502     }
   2503 
   2504     mir_to_lir_->Clobber(reg);
   2505     mir_to_lir_->LockTemp(reg);
   2506   }
   2507 
   2508   va_end(regs);
   2509 }
   2510 
   2511 /*
   2512  * Free all locked registers.
   2513  */
   2514 X86Mir2Lir::ExplicitTempRegisterLock::~ExplicitTempRegisterLock() {
   2515   // Free all locked temps.
   2516   for (auto it : temp_regs_) {
   2517     mir_to_lir_->FreeTemp(it);
   2518   }
   2519 }
   2520 
   2521 int X86Mir2Lir::GenDalvikArgsBulkCopy(CallInfo* info, int first, int count) {
   2522   if (count < 4) {
   2523     // It does not make sense to use this utility if we have no chance to use
   2524     // 128-bit move.
   2525     return count;
   2526   }
   2527   GenDalvikArgsFlushPromoted(info, first);
   2528 
   2529   // The rest can be copied together
   2530   int current_src_offset = SRegOffset(info->args[first].s_reg_low);
   2531   int current_dest_offset = StackVisitor::GetOutVROffset(first, cu_->instruction_set);
   2532 
   2533   // Only davik regs are accessed in this loop; no next_call_insn() calls.
   2534   ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
   2535   while (count > 0) {
   2536     // This is based on the knowledge that the stack itself is 16-byte aligned.
   2537     bool src_is_16b_aligned = (current_src_offset & 0xF) == 0;
   2538     bool dest_is_16b_aligned = (current_dest_offset & 0xF) == 0;
   2539     size_t bytes_to_move;
   2540 
   2541     /*
   2542      * The amount to move defaults to 32-bit. If there are 4 registers left to move, then do a
   2543      * a 128-bit move because we won't get the chance to try to aligned. If there are more than
   2544      * 4 registers left to move, consider doing a 128-bit only if either src or dest are aligned.
   2545      * We do this because we could potentially do a smaller move to align.
   2546      */
   2547     if (count == 4 || (count > 4 && (src_is_16b_aligned || dest_is_16b_aligned))) {
   2548       // Moving 128-bits via xmm register.
   2549       bytes_to_move = sizeof(uint32_t) * 4;
   2550 
   2551       // Allocate a free xmm temp. Since we are working through the calling sequence,
   2552       // we expect to have an xmm temporary available. AllocTempDouble will abort if
   2553       // there are no free registers.
   2554       RegStorage temp = AllocTempDouble();
   2555 
   2556       LIR* ld1 = nullptr;
   2557       LIR* ld2 = nullptr;
   2558       LIR* st1 = nullptr;
   2559       LIR* st2 = nullptr;
   2560 
   2561       /*
   2562        * The logic is similar for both loads and stores. If we have 16-byte alignment,
   2563        * do an aligned move. If we have 8-byte alignment, then do the move in two
   2564        * parts. This approach prevents possible cache line splits. Finally, fall back
   2565        * to doing an unaligned move. In most cases we likely won't split the cache
   2566        * line but we cannot prove it and thus take a conservative approach.
   2567        */
   2568       bool src_is_8b_aligned = (current_src_offset & 0x7) == 0;
   2569       bool dest_is_8b_aligned = (current_dest_offset & 0x7) == 0;
   2570 
   2571       if (src_is_16b_aligned) {
   2572         ld1 = OpMovRegMem(temp, TargetPtrReg(kSp), current_src_offset, kMovA128FP);
   2573       } else if (src_is_8b_aligned) {
   2574         ld1 = OpMovRegMem(temp, TargetPtrReg(kSp), current_src_offset, kMovLo128FP);
   2575         ld2 = OpMovRegMem(temp, TargetPtrReg(kSp), current_src_offset + (bytes_to_move >> 1),
   2576                           kMovHi128FP);
   2577       } else {
   2578         ld1 = OpMovRegMem(temp, TargetPtrReg(kSp), current_src_offset, kMovU128FP);
   2579       }
   2580 
   2581       if (dest_is_16b_aligned) {
   2582         st1 = OpMovMemReg(TargetPtrReg(kSp), current_dest_offset, temp, kMovA128FP);
   2583       } else if (dest_is_8b_aligned) {
   2584         st1 = OpMovMemReg(TargetPtrReg(kSp), current_dest_offset, temp, kMovLo128FP);
   2585         st2 = OpMovMemReg(TargetPtrReg(kSp), current_dest_offset + (bytes_to_move >> 1),
   2586                           temp, kMovHi128FP);
   2587       } else {
   2588         st1 = OpMovMemReg(TargetPtrReg(kSp), current_dest_offset, temp, kMovU128FP);
   2589       }
   2590 
   2591       // TODO If we could keep track of aliasing information for memory accesses that are wider
   2592       // than 64-bit, we wouldn't need to set up a barrier.
   2593       if (ld1 != nullptr) {
   2594         if (ld2 != nullptr) {
   2595           // For 64-bit load we can actually set up the aliasing information.
   2596           AnnotateDalvikRegAccess(ld1, current_src_offset >> 2, true, true);
   2597           AnnotateDalvikRegAccess(ld2, (current_src_offset + (bytes_to_move >> 1)) >> 2, true,
   2598                                   true);
   2599         } else {
   2600           // Set barrier for 128-bit load.
   2601           ld1->u.m.def_mask = &kEncodeAll;
   2602         }
   2603       }
   2604       if (st1 != nullptr) {
   2605         if (st2 != nullptr) {
   2606           // For 64-bit store we can actually set up the aliasing information.
   2607           AnnotateDalvikRegAccess(st1, current_dest_offset >> 2, false, true);
   2608           AnnotateDalvikRegAccess(st2, (current_dest_offset + (bytes_to_move >> 1)) >> 2, false,
   2609                                   true);
   2610         } else {
   2611           // Set barrier for 128-bit store.
   2612           st1->u.m.def_mask = &kEncodeAll;
   2613         }
   2614       }
   2615 
   2616       // Free the temporary used for the data movement.
   2617       FreeTemp(temp);
   2618     } else {
   2619       // Moving 32-bits via general purpose register.
   2620       bytes_to_move = sizeof(uint32_t);
   2621 
   2622       // Instead of allocating a new temp, simply reuse one of the registers being used
   2623       // for argument passing.
   2624       RegStorage temp = TargetReg(kArg3, kNotWide);
   2625 
   2626       // Now load the argument VR and store to the outs.
   2627       Load32Disp(TargetPtrReg(kSp), current_src_offset, temp);
   2628       Store32Disp(TargetPtrReg(kSp), current_dest_offset, temp);
   2629     }
   2630 
   2631     current_src_offset += bytes_to_move;
   2632     current_dest_offset += bytes_to_move;
   2633     count -= (bytes_to_move >> 2);
   2634   }
   2635   DCHECK_EQ(count, 0);
   2636   return count;
   2637 }
   2638 
   2639 }  // namespace art
   2640