Home | History | Annotate | Download | only in InstCombine
      1 //===- InstCombineMulDivRem.cpp -------------------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the visit functions for mul, fmul, sdiv, udiv, fdiv,
     11 // srem, urem, frem.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "InstCombineInternal.h"
     16 #include "llvm/Analysis/InstructionSimplify.h"
     17 #include "llvm/IR/IntrinsicInst.h"
     18 #include "llvm/IR/PatternMatch.h"
     19 using namespace llvm;
     20 using namespace PatternMatch;
     21 
     22 #define DEBUG_TYPE "instcombine"
     23 
     24 
     25 /// simplifyValueKnownNonZero - The specific integer value is used in a context
     26 /// where it is known to be non-zero.  If this allows us to simplify the
     27 /// computation, do so and return the new operand, otherwise return null.
     28 static Value *simplifyValueKnownNonZero(Value *V, InstCombiner &IC,
     29                                         Instruction &CxtI) {
     30   // If V has multiple uses, then we would have to do more analysis to determine
     31   // if this is safe.  For example, the use could be in dynamically unreached
     32   // code.
     33   if (!V->hasOneUse()) return nullptr;
     34 
     35   bool MadeChange = false;
     36 
     37   // ((1 << A) >>u B) --> (1 << (A-B))
     38   // Because V cannot be zero, we know that B is less than A.
     39   Value *A = nullptr, *B = nullptr, *One = nullptr;
     40   if (match(V, m_LShr(m_OneUse(m_Shl(m_Value(One), m_Value(A))), m_Value(B))) &&
     41       match(One, m_One())) {
     42     A = IC.Builder->CreateSub(A, B);
     43     return IC.Builder->CreateShl(One, A);
     44   }
     45 
     46   // (PowerOfTwo >>u B) --> isExact since shifting out the result would make it
     47   // inexact.  Similarly for <<.
     48   if (BinaryOperator *I = dyn_cast<BinaryOperator>(V))
     49     if (I->isLogicalShift() &&
     50         isKnownToBeAPowerOfTwo(I->getOperand(0), IC.getDataLayout(), false, 0,
     51                                IC.getAssumptionCache(), &CxtI,
     52                                IC.getDominatorTree())) {
     53       // We know that this is an exact/nuw shift and that the input is a
     54       // non-zero context as well.
     55       if (Value *V2 = simplifyValueKnownNonZero(I->getOperand(0), IC, CxtI)) {
     56         I->setOperand(0, V2);
     57         MadeChange = true;
     58       }
     59 
     60       if (I->getOpcode() == Instruction::LShr && !I->isExact()) {
     61         I->setIsExact();
     62         MadeChange = true;
     63       }
     64 
     65       if (I->getOpcode() == Instruction::Shl && !I->hasNoUnsignedWrap()) {
     66         I->setHasNoUnsignedWrap();
     67         MadeChange = true;
     68       }
     69     }
     70 
     71   // TODO: Lots more we could do here:
     72   //    If V is a phi node, we can call this on each of its operands.
     73   //    "select cond, X, 0" can simplify to "X".
     74 
     75   return MadeChange ? V : nullptr;
     76 }
     77 
     78 
     79 /// MultiplyOverflows - True if the multiply can not be expressed in an int
     80 /// this size.
     81 static bool MultiplyOverflows(const APInt &C1, const APInt &C2, APInt &Product,
     82                               bool IsSigned) {
     83   bool Overflow;
     84   if (IsSigned)
     85     Product = C1.smul_ov(C2, Overflow);
     86   else
     87     Product = C1.umul_ov(C2, Overflow);
     88 
     89   return Overflow;
     90 }
     91 
     92 /// \brief True if C2 is a multiple of C1. Quotient contains C2/C1.
     93 static bool IsMultiple(const APInt &C1, const APInt &C2, APInt &Quotient,
     94                        bool IsSigned) {
     95   assert(C1.getBitWidth() == C2.getBitWidth() &&
     96          "Inconsistent width of constants!");
     97 
     98   APInt Remainder(C1.getBitWidth(), /*Val=*/0ULL, IsSigned);
     99   if (IsSigned)
    100     APInt::sdivrem(C1, C2, Quotient, Remainder);
    101   else
    102     APInt::udivrem(C1, C2, Quotient, Remainder);
    103 
    104   return Remainder.isMinValue();
    105 }
    106 
    107 /// \brief A helper routine of InstCombiner::visitMul().
    108 ///
    109 /// If C is a vector of known powers of 2, then this function returns
    110 /// a new vector obtained from C replacing each element with its logBase2.
    111 /// Return a null pointer otherwise.
    112 static Constant *getLogBase2Vector(ConstantDataVector *CV) {
    113   const APInt *IVal;
    114   SmallVector<Constant *, 4> Elts;
    115 
    116   for (unsigned I = 0, E = CV->getNumElements(); I != E; ++I) {
    117     Constant *Elt = CV->getElementAsConstant(I);
    118     if (!match(Elt, m_APInt(IVal)) || !IVal->isPowerOf2())
    119       return nullptr;
    120     Elts.push_back(ConstantInt::get(Elt->getType(), IVal->logBase2()));
    121   }
    122 
    123   return ConstantVector::get(Elts);
    124 }
    125 
    126 /// \brief Return true if we can prove that:
    127 ///    (mul LHS, RHS)  === (mul nsw LHS, RHS)
    128 bool InstCombiner::WillNotOverflowSignedMul(Value *LHS, Value *RHS,
    129                                             Instruction &CxtI) {
    130   // Multiplying n * m significant bits yields a result of n + m significant
    131   // bits. If the total number of significant bits does not exceed the
    132   // result bit width (minus 1), there is no overflow.
    133   // This means if we have enough leading sign bits in the operands
    134   // we can guarantee that the result does not overflow.
    135   // Ref: "Hacker's Delight" by Henry Warren
    136   unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
    137 
    138   // Note that underestimating the number of sign bits gives a more
    139   // conservative answer.
    140   unsigned SignBits =
    141       ComputeNumSignBits(LHS, 0, &CxtI) + ComputeNumSignBits(RHS, 0, &CxtI);
    142 
    143   // First handle the easy case: if we have enough sign bits there's
    144   // definitely no overflow.
    145   if (SignBits > BitWidth + 1)
    146     return true;
    147 
    148   // There are two ambiguous cases where there can be no overflow:
    149   //   SignBits == BitWidth + 1    and
    150   //   SignBits == BitWidth
    151   // The second case is difficult to check, therefore we only handle the
    152   // first case.
    153   if (SignBits == BitWidth + 1) {
    154     // It overflows only when both arguments are negative and the true
    155     // product is exactly the minimum negative number.
    156     // E.g. mul i16 with 17 sign bits: 0xff00 * 0xff80 = 0x8000
    157     // For simplicity we just check if at least one side is not negative.
    158     bool LHSNonNegative, LHSNegative;
    159     bool RHSNonNegative, RHSNegative;
    160     ComputeSignBit(LHS, LHSNonNegative, LHSNegative, /*Depth=*/0, &CxtI);
    161     ComputeSignBit(RHS, RHSNonNegative, RHSNegative, /*Depth=*/0, &CxtI);
    162     if (LHSNonNegative || RHSNonNegative)
    163       return true;
    164   }
    165   return false;
    166 }
    167 
    168 Instruction *InstCombiner::visitMul(BinaryOperator &I) {
    169   bool Changed = SimplifyAssociativeOrCommutative(I);
    170   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
    171 
    172   if (Value *V = SimplifyVectorOp(I))
    173     return ReplaceInstUsesWith(I, V);
    174 
    175   if (Value *V = SimplifyMulInst(Op0, Op1, DL, TLI, DT, AC))
    176     return ReplaceInstUsesWith(I, V);
    177 
    178   if (Value *V = SimplifyUsingDistributiveLaws(I))
    179     return ReplaceInstUsesWith(I, V);
    180 
    181   // X * -1 == 0 - X
    182   if (match(Op1, m_AllOnes())) {
    183     BinaryOperator *BO = BinaryOperator::CreateNeg(Op0, I.getName());
    184     if (I.hasNoSignedWrap())
    185       BO->setHasNoSignedWrap();
    186     return BO;
    187   }
    188 
    189   // Also allow combining multiply instructions on vectors.
    190   {
    191     Value *NewOp;
    192     Constant *C1, *C2;
    193     const APInt *IVal;
    194     if (match(&I, m_Mul(m_Shl(m_Value(NewOp), m_Constant(C2)),
    195                         m_Constant(C1))) &&
    196         match(C1, m_APInt(IVal))) {
    197       // ((X << C2)*C1) == (X * (C1 << C2))
    198       Constant *Shl = ConstantExpr::getShl(C1, C2);
    199       BinaryOperator *Mul = cast<BinaryOperator>(I.getOperand(0));
    200       BinaryOperator *BO = BinaryOperator::CreateMul(NewOp, Shl);
    201       if (I.hasNoUnsignedWrap() && Mul->hasNoUnsignedWrap())
    202         BO->setHasNoUnsignedWrap();
    203       if (I.hasNoSignedWrap() && Mul->hasNoSignedWrap() &&
    204           Shl->isNotMinSignedValue())
    205         BO->setHasNoSignedWrap();
    206       return BO;
    207     }
    208 
    209     if (match(&I, m_Mul(m_Value(NewOp), m_Constant(C1)))) {
    210       Constant *NewCst = nullptr;
    211       if (match(C1, m_APInt(IVal)) && IVal->isPowerOf2())
    212         // Replace X*(2^C) with X << C, where C is either a scalar or a splat.
    213         NewCst = ConstantInt::get(NewOp->getType(), IVal->logBase2());
    214       else if (ConstantDataVector *CV = dyn_cast<ConstantDataVector>(C1))
    215         // Replace X*(2^C) with X << C, where C is a vector of known
    216         // constant powers of 2.
    217         NewCst = getLogBase2Vector(CV);
    218 
    219       if (NewCst) {
    220         BinaryOperator *Shl = BinaryOperator::CreateShl(NewOp, NewCst);
    221 
    222         if (I.hasNoUnsignedWrap())
    223           Shl->setHasNoUnsignedWrap();
    224         if (I.hasNoSignedWrap() && NewCst->isNotMinSignedValue())
    225           Shl->setHasNoSignedWrap();
    226 
    227         return Shl;
    228       }
    229     }
    230   }
    231 
    232   if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
    233     // (Y - X) * (-(2**n)) -> (X - Y) * (2**n), for positive nonzero n
    234     // (Y + const) * (-(2**n)) -> (-constY) * (2**n), for positive nonzero n
    235     // The "* (2**n)" thus becomes a potential shifting opportunity.
    236     {
    237       const APInt &   Val = CI->getValue();
    238       const APInt &PosVal = Val.abs();
    239       if (Val.isNegative() && PosVal.isPowerOf2()) {
    240         Value *X = nullptr, *Y = nullptr;
    241         if (Op0->hasOneUse()) {
    242           ConstantInt *C1;
    243           Value *Sub = nullptr;
    244           if (match(Op0, m_Sub(m_Value(Y), m_Value(X))))
    245             Sub = Builder->CreateSub(X, Y, "suba");
    246           else if (match(Op0, m_Add(m_Value(Y), m_ConstantInt(C1))))
    247             Sub = Builder->CreateSub(Builder->CreateNeg(C1), Y, "subc");
    248           if (Sub)
    249             return
    250               BinaryOperator::CreateMul(Sub,
    251                                         ConstantInt::get(Y->getType(), PosVal));
    252         }
    253       }
    254     }
    255   }
    256 
    257   // Simplify mul instructions with a constant RHS.
    258   if (isa<Constant>(Op1)) {
    259     // Try to fold constant mul into select arguments.
    260     if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
    261       if (Instruction *R = FoldOpIntoSelect(I, SI))
    262         return R;
    263 
    264     if (isa<PHINode>(Op0))
    265       if (Instruction *NV = FoldOpIntoPhi(I))
    266         return NV;
    267 
    268     // Canonicalize (X+C1)*CI -> X*CI+C1*CI.
    269     {
    270       Value *X;
    271       Constant *C1;
    272       if (match(Op0, m_OneUse(m_Add(m_Value(X), m_Constant(C1))))) {
    273         Value *Mul = Builder->CreateMul(C1, Op1);
    274         // Only go forward with the transform if C1*CI simplifies to a tidier
    275         // constant.
    276         if (!match(Mul, m_Mul(m_Value(), m_Value())))
    277           return BinaryOperator::CreateAdd(Builder->CreateMul(X, Op1), Mul);
    278       }
    279     }
    280   }
    281 
    282   if (Value *Op0v = dyn_castNegVal(Op0)) {   // -X * -Y = X*Y
    283     if (Value *Op1v = dyn_castNegVal(Op1)) {
    284       BinaryOperator *BO = BinaryOperator::CreateMul(Op0v, Op1v);
    285       if (I.hasNoSignedWrap() &&
    286           match(Op0, m_NSWSub(m_Value(), m_Value())) &&
    287           match(Op1, m_NSWSub(m_Value(), m_Value())))
    288         BO->setHasNoSignedWrap();
    289       return BO;
    290     }
    291   }
    292 
    293   // (X / Y) *  Y = X - (X % Y)
    294   // (X / Y) * -Y = (X % Y) - X
    295   {
    296     Value *Op1C = Op1;
    297     BinaryOperator *BO = dyn_cast<BinaryOperator>(Op0);
    298     if (!BO ||
    299         (BO->getOpcode() != Instruction::UDiv &&
    300          BO->getOpcode() != Instruction::SDiv)) {
    301       Op1C = Op0;
    302       BO = dyn_cast<BinaryOperator>(Op1);
    303     }
    304     Value *Neg = dyn_castNegVal(Op1C);
    305     if (BO && BO->hasOneUse() &&
    306         (BO->getOperand(1) == Op1C || BO->getOperand(1) == Neg) &&
    307         (BO->getOpcode() == Instruction::UDiv ||
    308          BO->getOpcode() == Instruction::SDiv)) {
    309       Value *Op0BO = BO->getOperand(0), *Op1BO = BO->getOperand(1);
    310 
    311       // If the division is exact, X % Y is zero, so we end up with X or -X.
    312       if (PossiblyExactOperator *SDiv = dyn_cast<PossiblyExactOperator>(BO))
    313         if (SDiv->isExact()) {
    314           if (Op1BO == Op1C)
    315             return ReplaceInstUsesWith(I, Op0BO);
    316           return BinaryOperator::CreateNeg(Op0BO);
    317         }
    318 
    319       Value *Rem;
    320       if (BO->getOpcode() == Instruction::UDiv)
    321         Rem = Builder->CreateURem(Op0BO, Op1BO);
    322       else
    323         Rem = Builder->CreateSRem(Op0BO, Op1BO);
    324       Rem->takeName(BO);
    325 
    326       if (Op1BO == Op1C)
    327         return BinaryOperator::CreateSub(Op0BO, Rem);
    328       return BinaryOperator::CreateSub(Rem, Op0BO);
    329     }
    330   }
    331 
    332   /// i1 mul -> i1 and.
    333   if (I.getType()->getScalarType()->isIntegerTy(1))
    334     return BinaryOperator::CreateAnd(Op0, Op1);
    335 
    336   // X*(1 << Y) --> X << Y
    337   // (1 << Y)*X --> X << Y
    338   {
    339     Value *Y;
    340     BinaryOperator *BO = nullptr;
    341     bool ShlNSW = false;
    342     if (match(Op0, m_Shl(m_One(), m_Value(Y)))) {
    343       BO = BinaryOperator::CreateShl(Op1, Y);
    344       ShlNSW = cast<ShlOperator>(Op0)->hasNoSignedWrap();
    345     } else if (match(Op1, m_Shl(m_One(), m_Value(Y)))) {
    346       BO = BinaryOperator::CreateShl(Op0, Y);
    347       ShlNSW = cast<ShlOperator>(Op1)->hasNoSignedWrap();
    348     }
    349     if (BO) {
    350       if (I.hasNoUnsignedWrap())
    351         BO->setHasNoUnsignedWrap();
    352       if (I.hasNoSignedWrap() && ShlNSW)
    353         BO->setHasNoSignedWrap();
    354       return BO;
    355     }
    356   }
    357 
    358   // If one of the operands of the multiply is a cast from a boolean value, then
    359   // we know the bool is either zero or one, so this is a 'masking' multiply.
    360   //   X * Y (where Y is 0 or 1) -> X & (0-Y)
    361   if (!I.getType()->isVectorTy()) {
    362     // -2 is "-1 << 1" so it is all bits set except the low one.
    363     APInt Negative2(I.getType()->getPrimitiveSizeInBits(), (uint64_t)-2, true);
    364 
    365     Value *BoolCast = nullptr, *OtherOp = nullptr;
    366     if (MaskedValueIsZero(Op0, Negative2, 0, &I))
    367       BoolCast = Op0, OtherOp = Op1;
    368     else if (MaskedValueIsZero(Op1, Negative2, 0, &I))
    369       BoolCast = Op1, OtherOp = Op0;
    370 
    371     if (BoolCast) {
    372       Value *V = Builder->CreateSub(Constant::getNullValue(I.getType()),
    373                                     BoolCast);
    374       return BinaryOperator::CreateAnd(V, OtherOp);
    375     }
    376   }
    377 
    378   if (!I.hasNoSignedWrap() && WillNotOverflowSignedMul(Op0, Op1, I)) {
    379     Changed = true;
    380     I.setHasNoSignedWrap(true);
    381   }
    382 
    383   if (!I.hasNoUnsignedWrap() &&
    384       computeOverflowForUnsignedMul(Op0, Op1, &I) ==
    385           OverflowResult::NeverOverflows) {
    386     Changed = true;
    387     I.setHasNoUnsignedWrap(true);
    388   }
    389 
    390   return Changed ? &I : nullptr;
    391 }
    392 
    393 /// Detect pattern log2(Y * 0.5) with corresponding fast math flags.
    394 static void detectLog2OfHalf(Value *&Op, Value *&Y, IntrinsicInst *&Log2) {
    395   if (!Op->hasOneUse())
    396     return;
    397 
    398   IntrinsicInst *II = dyn_cast<IntrinsicInst>(Op);
    399   if (!II)
    400     return;
    401   if (II->getIntrinsicID() != Intrinsic::log2 || !II->hasUnsafeAlgebra())
    402     return;
    403   Log2 = II;
    404 
    405   Value *OpLog2Of = II->getArgOperand(0);
    406   if (!OpLog2Of->hasOneUse())
    407     return;
    408 
    409   Instruction *I = dyn_cast<Instruction>(OpLog2Of);
    410   if (!I)
    411     return;
    412   if (I->getOpcode() != Instruction::FMul || !I->hasUnsafeAlgebra())
    413     return;
    414 
    415   if (match(I->getOperand(0), m_SpecificFP(0.5)))
    416     Y = I->getOperand(1);
    417   else if (match(I->getOperand(1), m_SpecificFP(0.5)))
    418     Y = I->getOperand(0);
    419 }
    420 
    421 static bool isFiniteNonZeroFp(Constant *C) {
    422   if (C->getType()->isVectorTy()) {
    423     for (unsigned I = 0, E = C->getType()->getVectorNumElements(); I != E;
    424          ++I) {
    425       ConstantFP *CFP = dyn_cast_or_null<ConstantFP>(C->getAggregateElement(I));
    426       if (!CFP || !CFP->getValueAPF().isFiniteNonZero())
    427         return false;
    428     }
    429     return true;
    430   }
    431 
    432   return isa<ConstantFP>(C) &&
    433          cast<ConstantFP>(C)->getValueAPF().isFiniteNonZero();
    434 }
    435 
    436 static bool isNormalFp(Constant *C) {
    437   if (C->getType()->isVectorTy()) {
    438     for (unsigned I = 0, E = C->getType()->getVectorNumElements(); I != E;
    439          ++I) {
    440       ConstantFP *CFP = dyn_cast_or_null<ConstantFP>(C->getAggregateElement(I));
    441       if (!CFP || !CFP->getValueAPF().isNormal())
    442         return false;
    443     }
    444     return true;
    445   }
    446 
    447   return isa<ConstantFP>(C) && cast<ConstantFP>(C)->getValueAPF().isNormal();
    448 }
    449 
    450 /// Helper function of InstCombiner::visitFMul(BinaryOperator(). It returns
    451 /// true iff the given value is FMul or FDiv with one and only one operand
    452 /// being a normal constant (i.e. not Zero/NaN/Infinity).
    453 static bool isFMulOrFDivWithConstant(Value *V) {
    454   Instruction *I = dyn_cast<Instruction>(V);
    455   if (!I || (I->getOpcode() != Instruction::FMul &&
    456              I->getOpcode() != Instruction::FDiv))
    457     return false;
    458 
    459   Constant *C0 = dyn_cast<Constant>(I->getOperand(0));
    460   Constant *C1 = dyn_cast<Constant>(I->getOperand(1));
    461 
    462   if (C0 && C1)
    463     return false;
    464 
    465   return (C0 && isFiniteNonZeroFp(C0)) || (C1 && isFiniteNonZeroFp(C1));
    466 }
    467 
    468 /// foldFMulConst() is a helper routine of InstCombiner::visitFMul().
    469 /// The input \p FMulOrDiv is a FMul/FDiv with one and only one operand
    470 /// being a constant (i.e. isFMulOrFDivWithConstant(FMulOrDiv) == true).
    471 /// This function is to simplify "FMulOrDiv * C" and returns the
    472 /// resulting expression. Note that this function could return NULL in
    473 /// case the constants cannot be folded into a normal floating-point.
    474 ///
    475 Value *InstCombiner::foldFMulConst(Instruction *FMulOrDiv, Constant *C,
    476                                    Instruction *InsertBefore) {
    477   assert(isFMulOrFDivWithConstant(FMulOrDiv) && "V is invalid");
    478 
    479   Value *Opnd0 = FMulOrDiv->getOperand(0);
    480   Value *Opnd1 = FMulOrDiv->getOperand(1);
    481 
    482   Constant *C0 = dyn_cast<Constant>(Opnd0);
    483   Constant *C1 = dyn_cast<Constant>(Opnd1);
    484 
    485   BinaryOperator *R = nullptr;
    486 
    487   // (X * C0) * C => X * (C0*C)
    488   if (FMulOrDiv->getOpcode() == Instruction::FMul) {
    489     Constant *F = ConstantExpr::getFMul(C1 ? C1 : C0, C);
    490     if (isNormalFp(F))
    491       R = BinaryOperator::CreateFMul(C1 ? Opnd0 : Opnd1, F);
    492   } else {
    493     if (C0) {
    494       // (C0 / X) * C => (C0 * C) / X
    495       if (FMulOrDiv->hasOneUse()) {
    496         // It would otherwise introduce another div.
    497         Constant *F = ConstantExpr::getFMul(C0, C);
    498         if (isNormalFp(F))
    499           R = BinaryOperator::CreateFDiv(F, Opnd1);
    500       }
    501     } else {
    502       // (X / C1) * C => X * (C/C1) if C/C1 is not a denormal
    503       Constant *F = ConstantExpr::getFDiv(C, C1);
    504       if (isNormalFp(F)) {
    505         R = BinaryOperator::CreateFMul(Opnd0, F);
    506       } else {
    507         // (X / C1) * C => X / (C1/C)
    508         Constant *F = ConstantExpr::getFDiv(C1, C);
    509         if (isNormalFp(F))
    510           R = BinaryOperator::CreateFDiv(Opnd0, F);
    511       }
    512     }
    513   }
    514 
    515   if (R) {
    516     R->setHasUnsafeAlgebra(true);
    517     InsertNewInstWith(R, *InsertBefore);
    518   }
    519 
    520   return R;
    521 }
    522 
    523 Instruction *InstCombiner::visitFMul(BinaryOperator &I) {
    524   bool Changed = SimplifyAssociativeOrCommutative(I);
    525   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
    526 
    527   if (Value *V = SimplifyVectorOp(I))
    528     return ReplaceInstUsesWith(I, V);
    529 
    530   if (isa<Constant>(Op0))
    531     std::swap(Op0, Op1);
    532 
    533   if (Value *V =
    534           SimplifyFMulInst(Op0, Op1, I.getFastMathFlags(), DL, TLI, DT, AC))
    535     return ReplaceInstUsesWith(I, V);
    536 
    537   bool AllowReassociate = I.hasUnsafeAlgebra();
    538 
    539   // Simplify mul instructions with a constant RHS.
    540   if (isa<Constant>(Op1)) {
    541     // Try to fold constant mul into select arguments.
    542     if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
    543       if (Instruction *R = FoldOpIntoSelect(I, SI))
    544         return R;
    545 
    546     if (isa<PHINode>(Op0))
    547       if (Instruction *NV = FoldOpIntoPhi(I))
    548         return NV;
    549 
    550     // (fmul X, -1.0) --> (fsub -0.0, X)
    551     if (match(Op1, m_SpecificFP(-1.0))) {
    552       Constant *NegZero = ConstantFP::getNegativeZero(Op1->getType());
    553       Instruction *RI = BinaryOperator::CreateFSub(NegZero, Op0);
    554       RI->copyFastMathFlags(&I);
    555       return RI;
    556     }
    557 
    558     Constant *C = cast<Constant>(Op1);
    559     if (AllowReassociate && isFiniteNonZeroFp(C)) {
    560       // Let MDC denote an expression in one of these forms:
    561       // X * C, C/X, X/C, where C is a constant.
    562       //
    563       // Try to simplify "MDC * Constant"
    564       if (isFMulOrFDivWithConstant(Op0))
    565         if (Value *V = foldFMulConst(cast<Instruction>(Op0), C, &I))
    566           return ReplaceInstUsesWith(I, V);
    567 
    568       // (MDC +/- C1) * C => (MDC * C) +/- (C1 * C)
    569       Instruction *FAddSub = dyn_cast<Instruction>(Op0);
    570       if (FAddSub &&
    571           (FAddSub->getOpcode() == Instruction::FAdd ||
    572            FAddSub->getOpcode() == Instruction::FSub)) {
    573         Value *Opnd0 = FAddSub->getOperand(0);
    574         Value *Opnd1 = FAddSub->getOperand(1);
    575         Constant *C0 = dyn_cast<Constant>(Opnd0);
    576         Constant *C1 = dyn_cast<Constant>(Opnd1);
    577         bool Swap = false;
    578         if (C0) {
    579           std::swap(C0, C1);
    580           std::swap(Opnd0, Opnd1);
    581           Swap = true;
    582         }
    583 
    584         if (C1 && isFiniteNonZeroFp(C1) && isFMulOrFDivWithConstant(Opnd0)) {
    585           Value *M1 = ConstantExpr::getFMul(C1, C);
    586           Value *M0 = isNormalFp(cast<Constant>(M1)) ?
    587                       foldFMulConst(cast<Instruction>(Opnd0), C, &I) :
    588                       nullptr;
    589           if (M0 && M1) {
    590             if (Swap && FAddSub->getOpcode() == Instruction::FSub)
    591               std::swap(M0, M1);
    592 
    593             Instruction *RI = (FAddSub->getOpcode() == Instruction::FAdd)
    594                                   ? BinaryOperator::CreateFAdd(M0, M1)
    595                                   : BinaryOperator::CreateFSub(M0, M1);
    596             RI->copyFastMathFlags(&I);
    597             return RI;
    598           }
    599         }
    600       }
    601     }
    602   }
    603 
    604   // sqrt(X) * sqrt(X) -> X
    605   if (AllowReassociate && (Op0 == Op1))
    606     if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Op0))
    607       if (II->getIntrinsicID() == Intrinsic::sqrt)
    608         return ReplaceInstUsesWith(I, II->getOperand(0));
    609 
    610   // Under unsafe algebra do:
    611   // X * log2(0.5*Y) = X*log2(Y) - X
    612   if (AllowReassociate) {
    613     Value *OpX = nullptr;
    614     Value *OpY = nullptr;
    615     IntrinsicInst *Log2;
    616     detectLog2OfHalf(Op0, OpY, Log2);
    617     if (OpY) {
    618       OpX = Op1;
    619     } else {
    620       detectLog2OfHalf(Op1, OpY, Log2);
    621       if (OpY) {
    622         OpX = Op0;
    623       }
    624     }
    625     // if pattern detected emit alternate sequence
    626     if (OpX && OpY) {
    627       BuilderTy::FastMathFlagGuard Guard(*Builder);
    628       Builder->SetFastMathFlags(Log2->getFastMathFlags());
    629       Log2->setArgOperand(0, OpY);
    630       Value *FMulVal = Builder->CreateFMul(OpX, Log2);
    631       Value *FSub = Builder->CreateFSub(FMulVal, OpX);
    632       FSub->takeName(&I);
    633       return ReplaceInstUsesWith(I, FSub);
    634     }
    635   }
    636 
    637   // Handle symmetric situation in a 2-iteration loop
    638   Value *Opnd0 = Op0;
    639   Value *Opnd1 = Op1;
    640   for (int i = 0; i < 2; i++) {
    641     bool IgnoreZeroSign = I.hasNoSignedZeros();
    642     if (BinaryOperator::isFNeg(Opnd0, IgnoreZeroSign)) {
    643       BuilderTy::FastMathFlagGuard Guard(*Builder);
    644       Builder->SetFastMathFlags(I.getFastMathFlags());
    645 
    646       Value *N0 = dyn_castFNegVal(Opnd0, IgnoreZeroSign);
    647       Value *N1 = dyn_castFNegVal(Opnd1, IgnoreZeroSign);
    648 
    649       // -X * -Y => X*Y
    650       if (N1) {
    651         Value *FMul = Builder->CreateFMul(N0, N1);
    652         FMul->takeName(&I);
    653         return ReplaceInstUsesWith(I, FMul);
    654       }
    655 
    656       if (Opnd0->hasOneUse()) {
    657         // -X * Y => -(X*Y) (Promote negation as high as possible)
    658         Value *T = Builder->CreateFMul(N0, Opnd1);
    659         Value *Neg = Builder->CreateFNeg(T);
    660         Neg->takeName(&I);
    661         return ReplaceInstUsesWith(I, Neg);
    662       }
    663     }
    664 
    665     // (X*Y) * X => (X*X) * Y where Y != X
    666     //  The purpose is two-fold:
    667     //   1) to form a power expression (of X).
    668     //   2) potentially shorten the critical path: After transformation, the
    669     //  latency of the instruction Y is amortized by the expression of X*X,
    670     //  and therefore Y is in a "less critical" position compared to what it
    671     //  was before the transformation.
    672     //
    673     if (AllowReassociate) {
    674       Value *Opnd0_0, *Opnd0_1;
    675       if (Opnd0->hasOneUse() &&
    676           match(Opnd0, m_FMul(m_Value(Opnd0_0), m_Value(Opnd0_1)))) {
    677         Value *Y = nullptr;
    678         if (Opnd0_0 == Opnd1 && Opnd0_1 != Opnd1)
    679           Y = Opnd0_1;
    680         else if (Opnd0_1 == Opnd1 && Opnd0_0 != Opnd1)
    681           Y = Opnd0_0;
    682 
    683         if (Y) {
    684           BuilderTy::FastMathFlagGuard Guard(*Builder);
    685           Builder->SetFastMathFlags(I.getFastMathFlags());
    686           Value *T = Builder->CreateFMul(Opnd1, Opnd1);
    687 
    688           Value *R = Builder->CreateFMul(T, Y);
    689           R->takeName(&I);
    690           return ReplaceInstUsesWith(I, R);
    691         }
    692       }
    693     }
    694 
    695     if (!isa<Constant>(Op1))
    696       std::swap(Opnd0, Opnd1);
    697     else
    698       break;
    699   }
    700 
    701   return Changed ? &I : nullptr;
    702 }
    703 
    704 /// SimplifyDivRemOfSelect - Try to fold a divide or remainder of a select
    705 /// instruction.
    706 bool InstCombiner::SimplifyDivRemOfSelect(BinaryOperator &I) {
    707   SelectInst *SI = cast<SelectInst>(I.getOperand(1));
    708 
    709   // div/rem X, (Cond ? 0 : Y) -> div/rem X, Y
    710   int NonNullOperand = -1;
    711   if (Constant *ST = dyn_cast<Constant>(SI->getOperand(1)))
    712     if (ST->isNullValue())
    713       NonNullOperand = 2;
    714   // div/rem X, (Cond ? Y : 0) -> div/rem X, Y
    715   if (Constant *ST = dyn_cast<Constant>(SI->getOperand(2)))
    716     if (ST->isNullValue())
    717       NonNullOperand = 1;
    718 
    719   if (NonNullOperand == -1)
    720     return false;
    721 
    722   Value *SelectCond = SI->getOperand(0);
    723 
    724   // Change the div/rem to use 'Y' instead of the select.
    725   I.setOperand(1, SI->getOperand(NonNullOperand));
    726 
    727   // Okay, we know we replace the operand of the div/rem with 'Y' with no
    728   // problem.  However, the select, or the condition of the select may have
    729   // multiple uses.  Based on our knowledge that the operand must be non-zero,
    730   // propagate the known value for the select into other uses of it, and
    731   // propagate a known value of the condition into its other users.
    732 
    733   // If the select and condition only have a single use, don't bother with this,
    734   // early exit.
    735   if (SI->use_empty() && SelectCond->hasOneUse())
    736     return true;
    737 
    738   // Scan the current block backward, looking for other uses of SI.
    739   BasicBlock::iterator BBI = &I, BBFront = I.getParent()->begin();
    740 
    741   while (BBI != BBFront) {
    742     --BBI;
    743     // If we found a call to a function, we can't assume it will return, so
    744     // information from below it cannot be propagated above it.
    745     if (isa<CallInst>(BBI) && !isa<IntrinsicInst>(BBI))
    746       break;
    747 
    748     // Replace uses of the select or its condition with the known values.
    749     for (Instruction::op_iterator I = BBI->op_begin(), E = BBI->op_end();
    750          I != E; ++I) {
    751       if (*I == SI) {
    752         *I = SI->getOperand(NonNullOperand);
    753         Worklist.Add(BBI);
    754       } else if (*I == SelectCond) {
    755         *I = Builder->getInt1(NonNullOperand == 1);
    756         Worklist.Add(BBI);
    757       }
    758     }
    759 
    760     // If we past the instruction, quit looking for it.
    761     if (&*BBI == SI)
    762       SI = nullptr;
    763     if (&*BBI == SelectCond)
    764       SelectCond = nullptr;
    765 
    766     // If we ran out of things to eliminate, break out of the loop.
    767     if (!SelectCond && !SI)
    768       break;
    769 
    770   }
    771   return true;
    772 }
    773 
    774 
    775 /// This function implements the transforms common to both integer division
    776 /// instructions (udiv and sdiv). It is called by the visitors to those integer
    777 /// division instructions.
    778 /// @brief Common integer divide transforms
    779 Instruction *InstCombiner::commonIDivTransforms(BinaryOperator &I) {
    780   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
    781 
    782   // The RHS is known non-zero.
    783   if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this, I)) {
    784     I.setOperand(1, V);
    785     return &I;
    786   }
    787 
    788   // Handle cases involving: [su]div X, (select Cond, Y, Z)
    789   // This does not apply for fdiv.
    790   if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I))
    791     return &I;
    792 
    793   if (Instruction *LHS = dyn_cast<Instruction>(Op0)) {
    794     const APInt *C2;
    795     if (match(Op1, m_APInt(C2))) {
    796       Value *X;
    797       const APInt *C1;
    798       bool IsSigned = I.getOpcode() == Instruction::SDiv;
    799 
    800       // (X / C1) / C2  -> X / (C1*C2)
    801       if ((IsSigned && match(LHS, m_SDiv(m_Value(X), m_APInt(C1)))) ||
    802           (!IsSigned && match(LHS, m_UDiv(m_Value(X), m_APInt(C1))))) {
    803         APInt Product(C1->getBitWidth(), /*Val=*/0ULL, IsSigned);
    804         if (!MultiplyOverflows(*C1, *C2, Product, IsSigned))
    805           return BinaryOperator::Create(I.getOpcode(), X,
    806                                         ConstantInt::get(I.getType(), Product));
    807       }
    808 
    809       if ((IsSigned && match(LHS, m_NSWMul(m_Value(X), m_APInt(C1)))) ||
    810           (!IsSigned && match(LHS, m_NUWMul(m_Value(X), m_APInt(C1))))) {
    811         APInt Quotient(C1->getBitWidth(), /*Val=*/0ULL, IsSigned);
    812 
    813         // (X * C1) / C2 -> X / (C2 / C1) if C2 is a multiple of C1.
    814         if (IsMultiple(*C2, *C1, Quotient, IsSigned)) {
    815           BinaryOperator *BO = BinaryOperator::Create(
    816               I.getOpcode(), X, ConstantInt::get(X->getType(), Quotient));
    817           BO->setIsExact(I.isExact());
    818           return BO;
    819         }
    820 
    821         // (X * C1) / C2 -> X * (C1 / C2) if C1 is a multiple of C2.
    822         if (IsMultiple(*C1, *C2, Quotient, IsSigned)) {
    823           BinaryOperator *BO = BinaryOperator::Create(
    824               Instruction::Mul, X, ConstantInt::get(X->getType(), Quotient));
    825           BO->setHasNoUnsignedWrap(
    826               !IsSigned &&
    827               cast<OverflowingBinaryOperator>(LHS)->hasNoUnsignedWrap());
    828           BO->setHasNoSignedWrap(
    829               cast<OverflowingBinaryOperator>(LHS)->hasNoSignedWrap());
    830           return BO;
    831         }
    832       }
    833 
    834       if ((IsSigned && match(LHS, m_NSWShl(m_Value(X), m_APInt(C1))) &&
    835            *C1 != C1->getBitWidth() - 1) ||
    836           (!IsSigned && match(LHS, m_NUWShl(m_Value(X), m_APInt(C1))))) {
    837         APInt Quotient(C1->getBitWidth(), /*Val=*/0ULL, IsSigned);
    838         APInt C1Shifted = APInt::getOneBitSet(
    839             C1->getBitWidth(), static_cast<unsigned>(C1->getLimitedValue()));
    840 
    841         // (X << C1) / C2 -> X / (C2 >> C1) if C2 is a multiple of C1.
    842         if (IsMultiple(*C2, C1Shifted, Quotient, IsSigned)) {
    843           BinaryOperator *BO = BinaryOperator::Create(
    844               I.getOpcode(), X, ConstantInt::get(X->getType(), Quotient));
    845           BO->setIsExact(I.isExact());
    846           return BO;
    847         }
    848 
    849         // (X << C1) / C2 -> X * (C2 >> C1) if C1 is a multiple of C2.
    850         if (IsMultiple(C1Shifted, *C2, Quotient, IsSigned)) {
    851           BinaryOperator *BO = BinaryOperator::Create(
    852               Instruction::Mul, X, ConstantInt::get(X->getType(), Quotient));
    853           BO->setHasNoUnsignedWrap(
    854               !IsSigned &&
    855               cast<OverflowingBinaryOperator>(LHS)->hasNoUnsignedWrap());
    856           BO->setHasNoSignedWrap(
    857               cast<OverflowingBinaryOperator>(LHS)->hasNoSignedWrap());
    858           return BO;
    859         }
    860       }
    861 
    862       if (*C2 != 0) { // avoid X udiv 0
    863         if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
    864           if (Instruction *R = FoldOpIntoSelect(I, SI))
    865             return R;
    866         if (isa<PHINode>(Op0))
    867           if (Instruction *NV = FoldOpIntoPhi(I))
    868             return NV;
    869       }
    870     }
    871   }
    872 
    873   if (ConstantInt *One = dyn_cast<ConstantInt>(Op0)) {
    874     if (One->isOne() && !I.getType()->isIntegerTy(1)) {
    875       bool isSigned = I.getOpcode() == Instruction::SDiv;
    876       if (isSigned) {
    877         // If Op1 is 0 then it's undefined behaviour, if Op1 is 1 then the
    878         // result is one, if Op1 is -1 then the result is minus one, otherwise
    879         // it's zero.
    880         Value *Inc = Builder->CreateAdd(Op1, One);
    881         Value *Cmp = Builder->CreateICmpULT(
    882                          Inc, ConstantInt::get(I.getType(), 3));
    883         return SelectInst::Create(Cmp, Op1, ConstantInt::get(I.getType(), 0));
    884       } else {
    885         // If Op1 is 0 then it's undefined behaviour. If Op1 is 1 then the
    886         // result is one, otherwise it's zero.
    887         return new ZExtInst(Builder->CreateICmpEQ(Op1, One), I.getType());
    888       }
    889     }
    890   }
    891 
    892   // See if we can fold away this div instruction.
    893   if (SimplifyDemandedInstructionBits(I))
    894     return &I;
    895 
    896   // (X - (X rem Y)) / Y -> X / Y; usually originates as ((X / Y) * Y) / Y
    897   Value *X = nullptr, *Z = nullptr;
    898   if (match(Op0, m_Sub(m_Value(X), m_Value(Z)))) { // (X - Z) / Y; Y = Op1
    899     bool isSigned = I.getOpcode() == Instruction::SDiv;
    900     if ((isSigned && match(Z, m_SRem(m_Specific(X), m_Specific(Op1)))) ||
    901         (!isSigned && match(Z, m_URem(m_Specific(X), m_Specific(Op1)))))
    902       return BinaryOperator::Create(I.getOpcode(), X, Op1);
    903   }
    904 
    905   return nullptr;
    906 }
    907 
    908 /// dyn_castZExtVal - Checks if V is a zext or constant that can
    909 /// be truncated to Ty without losing bits.
    910 static Value *dyn_castZExtVal(Value *V, Type *Ty) {
    911   if (ZExtInst *Z = dyn_cast<ZExtInst>(V)) {
    912     if (Z->getSrcTy() == Ty)
    913       return Z->getOperand(0);
    914   } else if (ConstantInt *C = dyn_cast<ConstantInt>(V)) {
    915     if (C->getValue().getActiveBits() <= cast<IntegerType>(Ty)->getBitWidth())
    916       return ConstantExpr::getTrunc(C, Ty);
    917   }
    918   return nullptr;
    919 }
    920 
    921 namespace {
    922 const unsigned MaxDepth = 6;
    923 typedef Instruction *(*FoldUDivOperandCb)(Value *Op0, Value *Op1,
    924                                           const BinaryOperator &I,
    925                                           InstCombiner &IC);
    926 
    927 /// \brief Used to maintain state for visitUDivOperand().
    928 struct UDivFoldAction {
    929   FoldUDivOperandCb FoldAction; ///< Informs visitUDiv() how to fold this
    930                                 ///< operand.  This can be zero if this action
    931                                 ///< joins two actions together.
    932 
    933   Value *OperandToFold;         ///< Which operand to fold.
    934   union {
    935     Instruction *FoldResult;    ///< The instruction returned when FoldAction is
    936                                 ///< invoked.
    937 
    938     size_t SelectLHSIdx;        ///< Stores the LHS action index if this action
    939                                 ///< joins two actions together.
    940   };
    941 
    942   UDivFoldAction(FoldUDivOperandCb FA, Value *InputOperand)
    943       : FoldAction(FA), OperandToFold(InputOperand), FoldResult(nullptr) {}
    944   UDivFoldAction(FoldUDivOperandCb FA, Value *InputOperand, size_t SLHS)
    945       : FoldAction(FA), OperandToFold(InputOperand), SelectLHSIdx(SLHS) {}
    946 };
    947 }
    948 
    949 // X udiv 2^C -> X >> C
    950 static Instruction *foldUDivPow2Cst(Value *Op0, Value *Op1,
    951                                     const BinaryOperator &I, InstCombiner &IC) {
    952   const APInt &C = cast<Constant>(Op1)->getUniqueInteger();
    953   BinaryOperator *LShr = BinaryOperator::CreateLShr(
    954       Op0, ConstantInt::get(Op0->getType(), C.logBase2()));
    955   if (I.isExact())
    956     LShr->setIsExact();
    957   return LShr;
    958 }
    959 
    960 // X udiv C, where C >= signbit
    961 static Instruction *foldUDivNegCst(Value *Op0, Value *Op1,
    962                                    const BinaryOperator &I, InstCombiner &IC) {
    963   Value *ICI = IC.Builder->CreateICmpULT(Op0, cast<ConstantInt>(Op1));
    964 
    965   return SelectInst::Create(ICI, Constant::getNullValue(I.getType()),
    966                             ConstantInt::get(I.getType(), 1));
    967 }
    968 
    969 // X udiv (C1 << N), where C1 is "1<<C2"  -->  X >> (N+C2)
    970 static Instruction *foldUDivShl(Value *Op0, Value *Op1, const BinaryOperator &I,
    971                                 InstCombiner &IC) {
    972   Instruction *ShiftLeft = cast<Instruction>(Op1);
    973   if (isa<ZExtInst>(ShiftLeft))
    974     ShiftLeft = cast<Instruction>(ShiftLeft->getOperand(0));
    975 
    976   const APInt &CI =
    977       cast<Constant>(ShiftLeft->getOperand(0))->getUniqueInteger();
    978   Value *N = ShiftLeft->getOperand(1);
    979   if (CI != 1)
    980     N = IC.Builder->CreateAdd(N, ConstantInt::get(N->getType(), CI.logBase2()));
    981   if (ZExtInst *Z = dyn_cast<ZExtInst>(Op1))
    982     N = IC.Builder->CreateZExt(N, Z->getDestTy());
    983   BinaryOperator *LShr = BinaryOperator::CreateLShr(Op0, N);
    984   if (I.isExact())
    985     LShr->setIsExact();
    986   return LShr;
    987 }
    988 
    989 // \brief Recursively visits the possible right hand operands of a udiv
    990 // instruction, seeing through select instructions, to determine if we can
    991 // replace the udiv with something simpler.  If we find that an operand is not
    992 // able to simplify the udiv, we abort the entire transformation.
    993 static size_t visitUDivOperand(Value *Op0, Value *Op1, const BinaryOperator &I,
    994                                SmallVectorImpl<UDivFoldAction> &Actions,
    995                                unsigned Depth = 0) {
    996   // Check to see if this is an unsigned division with an exact power of 2,
    997   // if so, convert to a right shift.
    998   if (match(Op1, m_Power2())) {
    999     Actions.push_back(UDivFoldAction(foldUDivPow2Cst, Op1));
   1000     return Actions.size();
   1001   }
   1002 
   1003   if (ConstantInt *C = dyn_cast<ConstantInt>(Op1))
   1004     // X udiv C, where C >= signbit
   1005     if (C->getValue().isNegative()) {
   1006       Actions.push_back(UDivFoldAction(foldUDivNegCst, C));
   1007       return Actions.size();
   1008     }
   1009 
   1010   // X udiv (C1 << N), where C1 is "1<<C2"  -->  X >> (N+C2)
   1011   if (match(Op1, m_Shl(m_Power2(), m_Value())) ||
   1012       match(Op1, m_ZExt(m_Shl(m_Power2(), m_Value())))) {
   1013     Actions.push_back(UDivFoldAction(foldUDivShl, Op1));
   1014     return Actions.size();
   1015   }
   1016 
   1017   // The remaining tests are all recursive, so bail out if we hit the limit.
   1018   if (Depth++ == MaxDepth)
   1019     return 0;
   1020 
   1021   if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
   1022     if (size_t LHSIdx =
   1023             visitUDivOperand(Op0, SI->getOperand(1), I, Actions, Depth))
   1024       if (visitUDivOperand(Op0, SI->getOperand(2), I, Actions, Depth)) {
   1025         Actions.push_back(UDivFoldAction(nullptr, Op1, LHSIdx - 1));
   1026         return Actions.size();
   1027       }
   1028 
   1029   return 0;
   1030 }
   1031 
   1032 Instruction *InstCombiner::visitUDiv(BinaryOperator &I) {
   1033   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
   1034 
   1035   if (Value *V = SimplifyVectorOp(I))
   1036     return ReplaceInstUsesWith(I, V);
   1037 
   1038   if (Value *V = SimplifyUDivInst(Op0, Op1, DL, TLI, DT, AC))
   1039     return ReplaceInstUsesWith(I, V);
   1040 
   1041   // Handle the integer div common cases
   1042   if (Instruction *Common = commonIDivTransforms(I))
   1043     return Common;
   1044 
   1045   // (x lshr C1) udiv C2 --> x udiv (C2 << C1)
   1046   {
   1047     Value *X;
   1048     const APInt *C1, *C2;
   1049     if (match(Op0, m_LShr(m_Value(X), m_APInt(C1))) &&
   1050         match(Op1, m_APInt(C2))) {
   1051       bool Overflow;
   1052       APInt C2ShlC1 = C2->ushl_ov(*C1, Overflow);
   1053       if (!Overflow) {
   1054         bool IsExact = I.isExact() && match(Op0, m_Exact(m_Value()));
   1055         BinaryOperator *BO = BinaryOperator::CreateUDiv(
   1056             X, ConstantInt::get(X->getType(), C2ShlC1));
   1057         if (IsExact)
   1058           BO->setIsExact();
   1059         return BO;
   1060       }
   1061     }
   1062   }
   1063 
   1064   // (zext A) udiv (zext B) --> zext (A udiv B)
   1065   if (ZExtInst *ZOp0 = dyn_cast<ZExtInst>(Op0))
   1066     if (Value *ZOp1 = dyn_castZExtVal(Op1, ZOp0->getSrcTy()))
   1067       return new ZExtInst(
   1068           Builder->CreateUDiv(ZOp0->getOperand(0), ZOp1, "div", I.isExact()),
   1069           I.getType());
   1070 
   1071   // (LHS udiv (select (select (...)))) -> (LHS >> (select (select (...))))
   1072   SmallVector<UDivFoldAction, 6> UDivActions;
   1073   if (visitUDivOperand(Op0, Op1, I, UDivActions))
   1074     for (unsigned i = 0, e = UDivActions.size(); i != e; ++i) {
   1075       FoldUDivOperandCb Action = UDivActions[i].FoldAction;
   1076       Value *ActionOp1 = UDivActions[i].OperandToFold;
   1077       Instruction *Inst;
   1078       if (Action)
   1079         Inst = Action(Op0, ActionOp1, I, *this);
   1080       else {
   1081         // This action joins two actions together.  The RHS of this action is
   1082         // simply the last action we processed, we saved the LHS action index in
   1083         // the joining action.
   1084         size_t SelectRHSIdx = i - 1;
   1085         Value *SelectRHS = UDivActions[SelectRHSIdx].FoldResult;
   1086         size_t SelectLHSIdx = UDivActions[i].SelectLHSIdx;
   1087         Value *SelectLHS = UDivActions[SelectLHSIdx].FoldResult;
   1088         Inst = SelectInst::Create(cast<SelectInst>(ActionOp1)->getCondition(),
   1089                                   SelectLHS, SelectRHS);
   1090       }
   1091 
   1092       // If this is the last action to process, return it to the InstCombiner.
   1093       // Otherwise, we insert it before the UDiv and record it so that we may
   1094       // use it as part of a joining action (i.e., a SelectInst).
   1095       if (e - i != 1) {
   1096         Inst->insertBefore(&I);
   1097         UDivActions[i].FoldResult = Inst;
   1098       } else
   1099         return Inst;
   1100     }
   1101 
   1102   return nullptr;
   1103 }
   1104 
   1105 Instruction *InstCombiner::visitSDiv(BinaryOperator &I) {
   1106   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
   1107 
   1108   if (Value *V = SimplifyVectorOp(I))
   1109     return ReplaceInstUsesWith(I, V);
   1110 
   1111   if (Value *V = SimplifySDivInst(Op0, Op1, DL, TLI, DT, AC))
   1112     return ReplaceInstUsesWith(I, V);
   1113 
   1114   // Handle the integer div common cases
   1115   if (Instruction *Common = commonIDivTransforms(I))
   1116     return Common;
   1117 
   1118   // sdiv X, -1 == -X
   1119   if (match(Op1, m_AllOnes()))
   1120     return BinaryOperator::CreateNeg(Op0);
   1121 
   1122   if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
   1123     // sdiv X, C  -->  ashr exact X, log2(C)
   1124     if (I.isExact() && RHS->getValue().isNonNegative() &&
   1125         RHS->getValue().isPowerOf2()) {
   1126       Value *ShAmt = llvm::ConstantInt::get(RHS->getType(),
   1127                                             RHS->getValue().exactLogBase2());
   1128       return BinaryOperator::CreateExactAShr(Op0, ShAmt, I.getName());
   1129     }
   1130   }
   1131 
   1132   if (Constant *RHS = dyn_cast<Constant>(Op1)) {
   1133     // X/INT_MIN -> X == INT_MIN
   1134     if (RHS->isMinSignedValue())
   1135       return new ZExtInst(Builder->CreateICmpEQ(Op0, Op1), I.getType());
   1136 
   1137     // -X/C  -->  X/-C  provided the negation doesn't overflow.
   1138     Value *X;
   1139     if (match(Op0, m_NSWSub(m_Zero(), m_Value(X)))) {
   1140       auto *BO = BinaryOperator::CreateSDiv(X, ConstantExpr::getNeg(RHS));
   1141       BO->setIsExact(I.isExact());
   1142       return BO;
   1143     }
   1144   }
   1145 
   1146   // If the sign bits of both operands are zero (i.e. we can prove they are
   1147   // unsigned inputs), turn this into a udiv.
   1148   if (I.getType()->isIntegerTy()) {
   1149     APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits()));
   1150     if (MaskedValueIsZero(Op0, Mask, 0, &I)) {
   1151       if (MaskedValueIsZero(Op1, Mask, 0, &I)) {
   1152         // X sdiv Y -> X udiv Y, iff X and Y don't have sign bit set
   1153         auto *BO = BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
   1154         BO->setIsExact(I.isExact());
   1155         return BO;
   1156       }
   1157 
   1158       if (isKnownToBeAPowerOfTwo(Op1, DL, /*OrZero*/ true, 0, AC, &I, DT)) {
   1159         // X sdiv (1 << Y) -> X udiv (1 << Y) ( -> X u>> Y)
   1160         // Safe because the only negative value (1 << Y) can take on is
   1161         // INT_MIN, and X sdiv INT_MIN == X udiv INT_MIN == 0 if X doesn't have
   1162         // the sign bit set.
   1163         auto *BO = BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
   1164         BO->setIsExact(I.isExact());
   1165         return BO;
   1166       }
   1167     }
   1168   }
   1169 
   1170   return nullptr;
   1171 }
   1172 
   1173 /// CvtFDivConstToReciprocal tries to convert X/C into X*1/C if C not a special
   1174 /// FP value and:
   1175 ///    1) 1/C is exact, or
   1176 ///    2) reciprocal is allowed.
   1177 /// If the conversion was successful, the simplified expression "X * 1/C" is
   1178 /// returned; otherwise, NULL is returned.
   1179 ///
   1180 static Instruction *CvtFDivConstToReciprocal(Value *Dividend, Constant *Divisor,
   1181                                              bool AllowReciprocal) {
   1182   if (!isa<ConstantFP>(Divisor)) // TODO: handle vectors.
   1183     return nullptr;
   1184 
   1185   const APFloat &FpVal = cast<ConstantFP>(Divisor)->getValueAPF();
   1186   APFloat Reciprocal(FpVal.getSemantics());
   1187   bool Cvt = FpVal.getExactInverse(&Reciprocal);
   1188 
   1189   if (!Cvt && AllowReciprocal && FpVal.isFiniteNonZero()) {
   1190     Reciprocal = APFloat(FpVal.getSemantics(), 1.0f);
   1191     (void)Reciprocal.divide(FpVal, APFloat::rmNearestTiesToEven);
   1192     Cvt = !Reciprocal.isDenormal();
   1193   }
   1194 
   1195   if (!Cvt)
   1196     return nullptr;
   1197 
   1198   ConstantFP *R;
   1199   R = ConstantFP::get(Dividend->getType()->getContext(), Reciprocal);
   1200   return BinaryOperator::CreateFMul(Dividend, R);
   1201 }
   1202 
   1203 Instruction *InstCombiner::visitFDiv(BinaryOperator &I) {
   1204   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
   1205 
   1206   if (Value *V = SimplifyVectorOp(I))
   1207     return ReplaceInstUsesWith(I, V);
   1208 
   1209   if (Value *V = SimplifyFDivInst(Op0, Op1, I.getFastMathFlags(),
   1210                                   DL, TLI, DT, AC))
   1211     return ReplaceInstUsesWith(I, V);
   1212 
   1213   if (isa<Constant>(Op0))
   1214     if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
   1215       if (Instruction *R = FoldOpIntoSelect(I, SI))
   1216         return R;
   1217 
   1218   bool AllowReassociate = I.hasUnsafeAlgebra();
   1219   bool AllowReciprocal = I.hasAllowReciprocal();
   1220 
   1221   if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
   1222     if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
   1223       if (Instruction *R = FoldOpIntoSelect(I, SI))
   1224         return R;
   1225 
   1226     if (AllowReassociate) {
   1227       Constant *C1 = nullptr;
   1228       Constant *C2 = Op1C;
   1229       Value *X;
   1230       Instruction *Res = nullptr;
   1231 
   1232       if (match(Op0, m_FMul(m_Value(X), m_Constant(C1)))) {
   1233         // (X*C1)/C2 => X * (C1/C2)
   1234         //
   1235         Constant *C = ConstantExpr::getFDiv(C1, C2);
   1236         if (isNormalFp(C))
   1237           Res = BinaryOperator::CreateFMul(X, C);
   1238       } else if (match(Op0, m_FDiv(m_Value(X), m_Constant(C1)))) {
   1239         // (X/C1)/C2 => X /(C2*C1) [=> X * 1/(C2*C1) if reciprocal is allowed]
   1240         //
   1241         Constant *C = ConstantExpr::getFMul(C1, C2);
   1242         if (isNormalFp(C)) {
   1243           Res = CvtFDivConstToReciprocal(X, C, AllowReciprocal);
   1244           if (!Res)
   1245             Res = BinaryOperator::CreateFDiv(X, C);
   1246         }
   1247       }
   1248 
   1249       if (Res) {
   1250         Res->setFastMathFlags(I.getFastMathFlags());
   1251         return Res;
   1252       }
   1253     }
   1254 
   1255     // X / C => X * 1/C
   1256     if (Instruction *T = CvtFDivConstToReciprocal(Op0, Op1C, AllowReciprocal)) {
   1257       T->copyFastMathFlags(&I);
   1258       return T;
   1259     }
   1260 
   1261     return nullptr;
   1262   }
   1263 
   1264   if (AllowReassociate && isa<Constant>(Op0)) {
   1265     Constant *C1 = cast<Constant>(Op0), *C2;
   1266     Constant *Fold = nullptr;
   1267     Value *X;
   1268     bool CreateDiv = true;
   1269 
   1270     // C1 / (X*C2) => (C1/C2) / X
   1271     if (match(Op1, m_FMul(m_Value(X), m_Constant(C2))))
   1272       Fold = ConstantExpr::getFDiv(C1, C2);
   1273     else if (match(Op1, m_FDiv(m_Value(X), m_Constant(C2)))) {
   1274       // C1 / (X/C2) => (C1*C2) / X
   1275       Fold = ConstantExpr::getFMul(C1, C2);
   1276     } else if (match(Op1, m_FDiv(m_Constant(C2), m_Value(X)))) {
   1277       // C1 / (C2/X) => (C1/C2) * X
   1278       Fold = ConstantExpr::getFDiv(C1, C2);
   1279       CreateDiv = false;
   1280     }
   1281 
   1282     if (Fold && isNormalFp(Fold)) {
   1283       Instruction *R = CreateDiv ? BinaryOperator::CreateFDiv(Fold, X)
   1284                                  : BinaryOperator::CreateFMul(X, Fold);
   1285       R->setFastMathFlags(I.getFastMathFlags());
   1286       return R;
   1287     }
   1288     return nullptr;
   1289   }
   1290 
   1291   if (AllowReassociate) {
   1292     Value *X, *Y;
   1293     Value *NewInst = nullptr;
   1294     Instruction *SimpR = nullptr;
   1295 
   1296     if (Op0->hasOneUse() && match(Op0, m_FDiv(m_Value(X), m_Value(Y)))) {
   1297       // (X/Y) / Z => X / (Y*Z)
   1298       //
   1299       if (!isa<Constant>(Y) || !isa<Constant>(Op1)) {
   1300         NewInst = Builder->CreateFMul(Y, Op1);
   1301         if (Instruction *RI = dyn_cast<Instruction>(NewInst)) {
   1302           FastMathFlags Flags = I.getFastMathFlags();
   1303           Flags &= cast<Instruction>(Op0)->getFastMathFlags();
   1304           RI->setFastMathFlags(Flags);
   1305         }
   1306         SimpR = BinaryOperator::CreateFDiv(X, NewInst);
   1307       }
   1308     } else if (Op1->hasOneUse() && match(Op1, m_FDiv(m_Value(X), m_Value(Y)))) {
   1309       // Z / (X/Y) => Z*Y / X
   1310       //
   1311       if (!isa<Constant>(Y) || !isa<Constant>(Op0)) {
   1312         NewInst = Builder->CreateFMul(Op0, Y);
   1313         if (Instruction *RI = dyn_cast<Instruction>(NewInst)) {
   1314           FastMathFlags Flags = I.getFastMathFlags();
   1315           Flags &= cast<Instruction>(Op1)->getFastMathFlags();
   1316           RI->setFastMathFlags(Flags);
   1317         }
   1318         SimpR = BinaryOperator::CreateFDiv(NewInst, X);
   1319       }
   1320     }
   1321 
   1322     if (NewInst) {
   1323       if (Instruction *T = dyn_cast<Instruction>(NewInst))
   1324         T->setDebugLoc(I.getDebugLoc());
   1325       SimpR->setFastMathFlags(I.getFastMathFlags());
   1326       return SimpR;
   1327     }
   1328   }
   1329 
   1330   return nullptr;
   1331 }
   1332 
   1333 /// This function implements the transforms common to both integer remainder
   1334 /// instructions (urem and srem). It is called by the visitors to those integer
   1335 /// remainder instructions.
   1336 /// @brief Common integer remainder transforms
   1337 Instruction *InstCombiner::commonIRemTransforms(BinaryOperator &I) {
   1338   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
   1339 
   1340   // The RHS is known non-zero.
   1341   if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this, I)) {
   1342     I.setOperand(1, V);
   1343     return &I;
   1344   }
   1345 
   1346   // Handle cases involving: rem X, (select Cond, Y, Z)
   1347   if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I))
   1348     return &I;
   1349 
   1350   if (isa<Constant>(Op1)) {
   1351     if (Instruction *Op0I = dyn_cast<Instruction>(Op0)) {
   1352       if (SelectInst *SI = dyn_cast<SelectInst>(Op0I)) {
   1353         if (Instruction *R = FoldOpIntoSelect(I, SI))
   1354           return R;
   1355       } else if (isa<PHINode>(Op0I)) {
   1356         if (Instruction *NV = FoldOpIntoPhi(I))
   1357           return NV;
   1358       }
   1359 
   1360       // See if we can fold away this rem instruction.
   1361       if (SimplifyDemandedInstructionBits(I))
   1362         return &I;
   1363     }
   1364   }
   1365 
   1366   return nullptr;
   1367 }
   1368 
   1369 Instruction *InstCombiner::visitURem(BinaryOperator &I) {
   1370   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
   1371 
   1372   if (Value *V = SimplifyVectorOp(I))
   1373     return ReplaceInstUsesWith(I, V);
   1374 
   1375   if (Value *V = SimplifyURemInst(Op0, Op1, DL, TLI, DT, AC))
   1376     return ReplaceInstUsesWith(I, V);
   1377 
   1378   if (Instruction *common = commonIRemTransforms(I))
   1379     return common;
   1380 
   1381   // (zext A) urem (zext B) --> zext (A urem B)
   1382   if (ZExtInst *ZOp0 = dyn_cast<ZExtInst>(Op0))
   1383     if (Value *ZOp1 = dyn_castZExtVal(Op1, ZOp0->getSrcTy()))
   1384       return new ZExtInst(Builder->CreateURem(ZOp0->getOperand(0), ZOp1),
   1385                           I.getType());
   1386 
   1387   // X urem Y -> X and Y-1, where Y is a power of 2,
   1388   if (isKnownToBeAPowerOfTwo(Op1, DL, /*OrZero*/ true, 0, AC, &I, DT)) {
   1389     Constant *N1 = Constant::getAllOnesValue(I.getType());
   1390     Value *Add = Builder->CreateAdd(Op1, N1);
   1391     return BinaryOperator::CreateAnd(Op0, Add);
   1392   }
   1393 
   1394   // 1 urem X -> zext(X != 1)
   1395   if (match(Op0, m_One())) {
   1396     Value *Cmp = Builder->CreateICmpNE(Op1, Op0);
   1397     Value *Ext = Builder->CreateZExt(Cmp, I.getType());
   1398     return ReplaceInstUsesWith(I, Ext);
   1399   }
   1400 
   1401   return nullptr;
   1402 }
   1403 
   1404 Instruction *InstCombiner::visitSRem(BinaryOperator &I) {
   1405   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
   1406 
   1407   if (Value *V = SimplifyVectorOp(I))
   1408     return ReplaceInstUsesWith(I, V);
   1409 
   1410   if (Value *V = SimplifySRemInst(Op0, Op1, DL, TLI, DT, AC))
   1411     return ReplaceInstUsesWith(I, V);
   1412 
   1413   // Handle the integer rem common cases
   1414   if (Instruction *Common = commonIRemTransforms(I))
   1415     return Common;
   1416 
   1417   {
   1418     const APInt *Y;
   1419     // X % -Y -> X % Y
   1420     if (match(Op1, m_APInt(Y)) && Y->isNegative() && !Y->isMinSignedValue()) {
   1421       Worklist.AddValue(I.getOperand(1));
   1422       I.setOperand(1, ConstantInt::get(I.getType(), -*Y));
   1423       return &I;
   1424     }
   1425   }
   1426 
   1427   // If the sign bits of both operands are zero (i.e. we can prove they are
   1428   // unsigned inputs), turn this into a urem.
   1429   if (I.getType()->isIntegerTy()) {
   1430     APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits()));
   1431     if (MaskedValueIsZero(Op1, Mask, 0, &I) &&
   1432         MaskedValueIsZero(Op0, Mask, 0, &I)) {
   1433       // X srem Y -> X urem Y, iff X and Y don't have sign bit set
   1434       return BinaryOperator::CreateURem(Op0, Op1, I.getName());
   1435     }
   1436   }
   1437 
   1438   // If it's a constant vector, flip any negative values positive.
   1439   if (isa<ConstantVector>(Op1) || isa<ConstantDataVector>(Op1)) {
   1440     Constant *C = cast<Constant>(Op1);
   1441     unsigned VWidth = C->getType()->getVectorNumElements();
   1442 
   1443     bool hasNegative = false;
   1444     bool hasMissing = false;
   1445     for (unsigned i = 0; i != VWidth; ++i) {
   1446       Constant *Elt = C->getAggregateElement(i);
   1447       if (!Elt) {
   1448         hasMissing = true;
   1449         break;
   1450       }
   1451 
   1452       if (ConstantInt *RHS = dyn_cast<ConstantInt>(Elt))
   1453         if (RHS->isNegative())
   1454           hasNegative = true;
   1455     }
   1456 
   1457     if (hasNegative && !hasMissing) {
   1458       SmallVector<Constant *, 16> Elts(VWidth);
   1459       for (unsigned i = 0; i != VWidth; ++i) {
   1460         Elts[i] = C->getAggregateElement(i);  // Handle undef, etc.
   1461         if (ConstantInt *RHS = dyn_cast<ConstantInt>(Elts[i])) {
   1462           if (RHS->isNegative())
   1463             Elts[i] = cast<ConstantInt>(ConstantExpr::getNeg(RHS));
   1464         }
   1465       }
   1466 
   1467       Constant *NewRHSV = ConstantVector::get(Elts);
   1468       if (NewRHSV != C) {  // Don't loop on -MININT
   1469         Worklist.AddValue(I.getOperand(1));
   1470         I.setOperand(1, NewRHSV);
   1471         return &I;
   1472       }
   1473     }
   1474   }
   1475 
   1476   return nullptr;
   1477 }
   1478 
   1479 Instruction *InstCombiner::visitFRem(BinaryOperator &I) {
   1480   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
   1481 
   1482   if (Value *V = SimplifyVectorOp(I))
   1483     return ReplaceInstUsesWith(I, V);
   1484 
   1485   if (Value *V = SimplifyFRemInst(Op0, Op1, I.getFastMathFlags(),
   1486                                   DL, TLI, DT, AC))
   1487     return ReplaceInstUsesWith(I, V);
   1488 
   1489   // Handle cases involving: rem X, (select Cond, Y, Z)
   1490   if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I))
   1491     return &I;
   1492 
   1493   return nullptr;
   1494 }
   1495