Home | History | Annotate | Download | only in InstCombine
      1 //===- InstructionCombining.cpp - Combine multiple instructions -----------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // InstructionCombining - Combine instructions to form fewer, simple
     11 // instructions.  This pass does not modify the CFG.  This pass is where
     12 // algebraic simplification happens.
     13 //
     14 // This pass combines things like:
     15 //    %Y = add i32 %X, 1
     16 //    %Z = add i32 %Y, 1
     17 // into:
     18 //    %Z = add i32 %X, 2
     19 //
     20 // This is a simple worklist driven algorithm.
     21 //
     22 // This pass guarantees that the following canonicalizations are performed on
     23 // the program:
     24 //    1. If a binary operator has a constant operand, it is moved to the RHS
     25 //    2. Bitwise operators with constant operands are always grouped so that
     26 //       shifts are performed first, then or's, then and's, then xor's.
     27 //    3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible
     28 //    4. All cmp instructions on boolean values are replaced with logical ops
     29 //    5. add X, X is represented as (X*2) => (X << 1)
     30 //    6. Multiplies with a power-of-two constant argument are transformed into
     31 //       shifts.
     32 //   ... etc.
     33 //
     34 //===----------------------------------------------------------------------===//
     35 
     36 #include "llvm/Transforms/InstCombine/InstCombine.h"
     37 #include "InstCombineInternal.h"
     38 #include "llvm-c/Initialization.h"
     39 #include "llvm/ADT/SmallPtrSet.h"
     40 #include "llvm/ADT/Statistic.h"
     41 #include "llvm/ADT/StringSwitch.h"
     42 #include "llvm/Analysis/AssumptionCache.h"
     43 #include "llvm/Analysis/CFG.h"
     44 #include "llvm/Analysis/ConstantFolding.h"
     45 #include "llvm/Analysis/InstructionSimplify.h"
     46 #include "llvm/Analysis/LibCallSemantics.h"
     47 #include "llvm/Analysis/LoopInfo.h"
     48 #include "llvm/Analysis/MemoryBuiltins.h"
     49 #include "llvm/Analysis/TargetLibraryInfo.h"
     50 #include "llvm/Analysis/ValueTracking.h"
     51 #include "llvm/IR/CFG.h"
     52 #include "llvm/IR/DataLayout.h"
     53 #include "llvm/IR/Dominators.h"
     54 #include "llvm/IR/GetElementPtrTypeIterator.h"
     55 #include "llvm/IR/IntrinsicInst.h"
     56 #include "llvm/IR/PatternMatch.h"
     57 #include "llvm/IR/ValueHandle.h"
     58 #include "llvm/Support/CommandLine.h"
     59 #include "llvm/Support/Debug.h"
     60 #include "llvm/Support/raw_ostream.h"
     61 #include "llvm/Transforms/Scalar.h"
     62 #include "llvm/Transforms/Utils/Local.h"
     63 #include <algorithm>
     64 #include <climits>
     65 using namespace llvm;
     66 using namespace llvm::PatternMatch;
     67 
     68 #define DEBUG_TYPE "instcombine"
     69 
     70 STATISTIC(NumCombined , "Number of insts combined");
     71 STATISTIC(NumConstProp, "Number of constant folds");
     72 STATISTIC(NumDeadInst , "Number of dead inst eliminated");
     73 STATISTIC(NumSunkInst , "Number of instructions sunk");
     74 STATISTIC(NumExpand,    "Number of expansions");
     75 STATISTIC(NumFactor   , "Number of factorizations");
     76 STATISTIC(NumReassoc  , "Number of reassociations");
     77 
     78 Value *InstCombiner::EmitGEPOffset(User *GEP) {
     79   return llvm::EmitGEPOffset(Builder, DL, GEP);
     80 }
     81 
     82 /// ShouldChangeType - Return true if it is desirable to convert a computation
     83 /// from 'From' to 'To'.  We don't want to convert from a legal to an illegal
     84 /// type for example, or from a smaller to a larger illegal type.
     85 bool InstCombiner::ShouldChangeType(Type *From, Type *To) const {
     86   assert(From->isIntegerTy() && To->isIntegerTy());
     87 
     88   unsigned FromWidth = From->getPrimitiveSizeInBits();
     89   unsigned ToWidth = To->getPrimitiveSizeInBits();
     90   bool FromLegal = DL.isLegalInteger(FromWidth);
     91   bool ToLegal = DL.isLegalInteger(ToWidth);
     92 
     93   // If this is a legal integer from type, and the result would be an illegal
     94   // type, don't do the transformation.
     95   if (FromLegal && !ToLegal)
     96     return false;
     97 
     98   // Otherwise, if both are illegal, do not increase the size of the result. We
     99   // do allow things like i160 -> i64, but not i64 -> i160.
    100   if (!FromLegal && !ToLegal && ToWidth > FromWidth)
    101     return false;
    102 
    103   return true;
    104 }
    105 
    106 // Return true, if No Signed Wrap should be maintained for I.
    107 // The No Signed Wrap flag can be kept if the operation "B (I.getOpcode) C",
    108 // where both B and C should be ConstantInts, results in a constant that does
    109 // not overflow. This function only handles the Add and Sub opcodes. For
    110 // all other opcodes, the function conservatively returns false.
    111 static bool MaintainNoSignedWrap(BinaryOperator &I, Value *B, Value *C) {
    112   OverflowingBinaryOperator *OBO = dyn_cast<OverflowingBinaryOperator>(&I);
    113   if (!OBO || !OBO->hasNoSignedWrap()) {
    114     return false;
    115   }
    116 
    117   // We reason about Add and Sub Only.
    118   Instruction::BinaryOps Opcode = I.getOpcode();
    119   if (Opcode != Instruction::Add &&
    120       Opcode != Instruction::Sub) {
    121     return false;
    122   }
    123 
    124   ConstantInt *CB = dyn_cast<ConstantInt>(B);
    125   ConstantInt *CC = dyn_cast<ConstantInt>(C);
    126 
    127   if (!CB || !CC) {
    128     return false;
    129   }
    130 
    131   const APInt &BVal = CB->getValue();
    132   const APInt &CVal = CC->getValue();
    133   bool Overflow = false;
    134 
    135   if (Opcode == Instruction::Add) {
    136     BVal.sadd_ov(CVal, Overflow);
    137   } else {
    138     BVal.ssub_ov(CVal, Overflow);
    139   }
    140 
    141   return !Overflow;
    142 }
    143 
    144 /// Conservatively clears subclassOptionalData after a reassociation or
    145 /// commutation. We preserve fast-math flags when applicable as they can be
    146 /// preserved.
    147 static void ClearSubclassDataAfterReassociation(BinaryOperator &I) {
    148   FPMathOperator *FPMO = dyn_cast<FPMathOperator>(&I);
    149   if (!FPMO) {
    150     I.clearSubclassOptionalData();
    151     return;
    152   }
    153 
    154   FastMathFlags FMF = I.getFastMathFlags();
    155   I.clearSubclassOptionalData();
    156   I.setFastMathFlags(FMF);
    157 }
    158 
    159 /// SimplifyAssociativeOrCommutative - This performs a few simplifications for
    160 /// operators which are associative or commutative:
    161 //
    162 //  Commutative operators:
    163 //
    164 //  1. Order operands such that they are listed from right (least complex) to
    165 //     left (most complex).  This puts constants before unary operators before
    166 //     binary operators.
    167 //
    168 //  Associative operators:
    169 //
    170 //  2. Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
    171 //  3. Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
    172 //
    173 //  Associative and commutative operators:
    174 //
    175 //  4. Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
    176 //  5. Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
    177 //  6. Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
    178 //     if C1 and C2 are constants.
    179 //
    180 bool InstCombiner::SimplifyAssociativeOrCommutative(BinaryOperator &I) {
    181   Instruction::BinaryOps Opcode = I.getOpcode();
    182   bool Changed = false;
    183 
    184   do {
    185     // Order operands such that they are listed from right (least complex) to
    186     // left (most complex).  This puts constants before unary operators before
    187     // binary operators.
    188     if (I.isCommutative() && getComplexity(I.getOperand(0)) <
    189         getComplexity(I.getOperand(1)))
    190       Changed = !I.swapOperands();
    191 
    192     BinaryOperator *Op0 = dyn_cast<BinaryOperator>(I.getOperand(0));
    193     BinaryOperator *Op1 = dyn_cast<BinaryOperator>(I.getOperand(1));
    194 
    195     if (I.isAssociative()) {
    196       // Transform: "(A op B) op C" ==> "A op (B op C)" if "B op C" simplifies.
    197       if (Op0 && Op0->getOpcode() == Opcode) {
    198         Value *A = Op0->getOperand(0);
    199         Value *B = Op0->getOperand(1);
    200         Value *C = I.getOperand(1);
    201 
    202         // Does "B op C" simplify?
    203         if (Value *V = SimplifyBinOp(Opcode, B, C, DL)) {
    204           // It simplifies to V.  Form "A op V".
    205           I.setOperand(0, A);
    206           I.setOperand(1, V);
    207           // Conservatively clear the optional flags, since they may not be
    208           // preserved by the reassociation.
    209           if (MaintainNoSignedWrap(I, B, C) &&
    210               (!Op0 || (isa<BinaryOperator>(Op0) && Op0->hasNoSignedWrap()))) {
    211             // Note: this is only valid because SimplifyBinOp doesn't look at
    212             // the operands to Op0.
    213             I.clearSubclassOptionalData();
    214             I.setHasNoSignedWrap(true);
    215           } else {
    216             ClearSubclassDataAfterReassociation(I);
    217           }
    218 
    219           Changed = true;
    220           ++NumReassoc;
    221           continue;
    222         }
    223       }
    224 
    225       // Transform: "A op (B op C)" ==> "(A op B) op C" if "A op B" simplifies.
    226       if (Op1 && Op1->getOpcode() == Opcode) {
    227         Value *A = I.getOperand(0);
    228         Value *B = Op1->getOperand(0);
    229         Value *C = Op1->getOperand(1);
    230 
    231         // Does "A op B" simplify?
    232         if (Value *V = SimplifyBinOp(Opcode, A, B, DL)) {
    233           // It simplifies to V.  Form "V op C".
    234           I.setOperand(0, V);
    235           I.setOperand(1, C);
    236           // Conservatively clear the optional flags, since they may not be
    237           // preserved by the reassociation.
    238           ClearSubclassDataAfterReassociation(I);
    239           Changed = true;
    240           ++NumReassoc;
    241           continue;
    242         }
    243       }
    244     }
    245 
    246     if (I.isAssociative() && I.isCommutative()) {
    247       // Transform: "(A op B) op C" ==> "(C op A) op B" if "C op A" simplifies.
    248       if (Op0 && Op0->getOpcode() == Opcode) {
    249         Value *A = Op0->getOperand(0);
    250         Value *B = Op0->getOperand(1);
    251         Value *C = I.getOperand(1);
    252 
    253         // Does "C op A" simplify?
    254         if (Value *V = SimplifyBinOp(Opcode, C, A, DL)) {
    255           // It simplifies to V.  Form "V op B".
    256           I.setOperand(0, V);
    257           I.setOperand(1, B);
    258           // Conservatively clear the optional flags, since they may not be
    259           // preserved by the reassociation.
    260           ClearSubclassDataAfterReassociation(I);
    261           Changed = true;
    262           ++NumReassoc;
    263           continue;
    264         }
    265       }
    266 
    267       // Transform: "A op (B op C)" ==> "B op (C op A)" if "C op A" simplifies.
    268       if (Op1 && Op1->getOpcode() == Opcode) {
    269         Value *A = I.getOperand(0);
    270         Value *B = Op1->getOperand(0);
    271         Value *C = Op1->getOperand(1);
    272 
    273         // Does "C op A" simplify?
    274         if (Value *V = SimplifyBinOp(Opcode, C, A, DL)) {
    275           // It simplifies to V.  Form "B op V".
    276           I.setOperand(0, B);
    277           I.setOperand(1, V);
    278           // Conservatively clear the optional flags, since they may not be
    279           // preserved by the reassociation.
    280           ClearSubclassDataAfterReassociation(I);
    281           Changed = true;
    282           ++NumReassoc;
    283           continue;
    284         }
    285       }
    286 
    287       // Transform: "(A op C1) op (B op C2)" ==> "(A op B) op (C1 op C2)"
    288       // if C1 and C2 are constants.
    289       if (Op0 && Op1 &&
    290           Op0->getOpcode() == Opcode && Op1->getOpcode() == Opcode &&
    291           isa<Constant>(Op0->getOperand(1)) &&
    292           isa<Constant>(Op1->getOperand(1)) &&
    293           Op0->hasOneUse() && Op1->hasOneUse()) {
    294         Value *A = Op0->getOperand(0);
    295         Constant *C1 = cast<Constant>(Op0->getOperand(1));
    296         Value *B = Op1->getOperand(0);
    297         Constant *C2 = cast<Constant>(Op1->getOperand(1));
    298 
    299         Constant *Folded = ConstantExpr::get(Opcode, C1, C2);
    300         BinaryOperator *New = BinaryOperator::Create(Opcode, A, B);
    301         if (isa<FPMathOperator>(New)) {
    302           FastMathFlags Flags = I.getFastMathFlags();
    303           Flags &= Op0->getFastMathFlags();
    304           Flags &= Op1->getFastMathFlags();
    305           New->setFastMathFlags(Flags);
    306         }
    307         InsertNewInstWith(New, I);
    308         New->takeName(Op1);
    309         I.setOperand(0, New);
    310         I.setOperand(1, Folded);
    311         // Conservatively clear the optional flags, since they may not be
    312         // preserved by the reassociation.
    313         ClearSubclassDataAfterReassociation(I);
    314 
    315         Changed = true;
    316         continue;
    317       }
    318     }
    319 
    320     // No further simplifications.
    321     return Changed;
    322   } while (1);
    323 }
    324 
    325 /// LeftDistributesOverRight - Whether "X LOp (Y ROp Z)" is always equal to
    326 /// "(X LOp Y) ROp (X LOp Z)".
    327 static bool LeftDistributesOverRight(Instruction::BinaryOps LOp,
    328                                      Instruction::BinaryOps ROp) {
    329   switch (LOp) {
    330   default:
    331     return false;
    332 
    333   case Instruction::And:
    334     // And distributes over Or and Xor.
    335     switch (ROp) {
    336     default:
    337       return false;
    338     case Instruction::Or:
    339     case Instruction::Xor:
    340       return true;
    341     }
    342 
    343   case Instruction::Mul:
    344     // Multiplication distributes over addition and subtraction.
    345     switch (ROp) {
    346     default:
    347       return false;
    348     case Instruction::Add:
    349     case Instruction::Sub:
    350       return true;
    351     }
    352 
    353   case Instruction::Or:
    354     // Or distributes over And.
    355     switch (ROp) {
    356     default:
    357       return false;
    358     case Instruction::And:
    359       return true;
    360     }
    361   }
    362 }
    363 
    364 /// RightDistributesOverLeft - Whether "(X LOp Y) ROp Z" is always equal to
    365 /// "(X ROp Z) LOp (Y ROp Z)".
    366 static bool RightDistributesOverLeft(Instruction::BinaryOps LOp,
    367                                      Instruction::BinaryOps ROp) {
    368   if (Instruction::isCommutative(ROp))
    369     return LeftDistributesOverRight(ROp, LOp);
    370 
    371   switch (LOp) {
    372   default:
    373     return false;
    374   // (X >> Z) & (Y >> Z)  -> (X&Y) >> Z  for all shifts.
    375   // (X >> Z) | (Y >> Z)  -> (X|Y) >> Z  for all shifts.
    376   // (X >> Z) ^ (Y >> Z)  -> (X^Y) >> Z  for all shifts.
    377   case Instruction::And:
    378   case Instruction::Or:
    379   case Instruction::Xor:
    380     switch (ROp) {
    381     default:
    382       return false;
    383     case Instruction::Shl:
    384     case Instruction::LShr:
    385     case Instruction::AShr:
    386       return true;
    387     }
    388   }
    389   // TODO: It would be nice to handle division, aka "(X + Y)/Z = X/Z + Y/Z",
    390   // but this requires knowing that the addition does not overflow and other
    391   // such subtleties.
    392   return false;
    393 }
    394 
    395 /// This function returns identity value for given opcode, which can be used to
    396 /// factor patterns like (X * 2) + X ==> (X * 2) + (X * 1) ==> X * (2 + 1).
    397 static Value *getIdentityValue(Instruction::BinaryOps OpCode, Value *V) {
    398   if (isa<Constant>(V))
    399     return nullptr;
    400 
    401   if (OpCode == Instruction::Mul)
    402     return ConstantInt::get(V->getType(), 1);
    403 
    404   // TODO: We can handle other cases e.g. Instruction::And, Instruction::Or etc.
    405 
    406   return nullptr;
    407 }
    408 
    409 /// This function factors binary ops which can be combined using distributive
    410 /// laws. This function tries to transform 'Op' based TopLevelOpcode to enable
    411 /// factorization e.g for ADD(SHL(X , 2), MUL(X, 5)), When this function called
    412 /// with TopLevelOpcode == Instruction::Add and Op = SHL(X, 2), transforms
    413 /// SHL(X, 2) to MUL(X, 4) i.e. returns Instruction::Mul with LHS set to 'X' and
    414 /// RHS to 4.
    415 static Instruction::BinaryOps
    416 getBinOpsForFactorization(Instruction::BinaryOps TopLevelOpcode,
    417                           BinaryOperator *Op, Value *&LHS, Value *&RHS) {
    418   if (!Op)
    419     return Instruction::BinaryOpsEnd;
    420 
    421   LHS = Op->getOperand(0);
    422   RHS = Op->getOperand(1);
    423 
    424   switch (TopLevelOpcode) {
    425   default:
    426     return Op->getOpcode();
    427 
    428   case Instruction::Add:
    429   case Instruction::Sub:
    430     if (Op->getOpcode() == Instruction::Shl) {
    431       if (Constant *CST = dyn_cast<Constant>(Op->getOperand(1))) {
    432         // The multiplier is really 1 << CST.
    433         RHS = ConstantExpr::getShl(ConstantInt::get(Op->getType(), 1), CST);
    434         return Instruction::Mul;
    435       }
    436     }
    437     return Op->getOpcode();
    438   }
    439 
    440   // TODO: We can add other conversions e.g. shr => div etc.
    441 }
    442 
    443 /// This tries to simplify binary operations by factorizing out common terms
    444 /// (e. g. "(A*B)+(A*C)" -> "A*(B+C)").
    445 static Value *tryFactorization(InstCombiner::BuilderTy *Builder,
    446                                const DataLayout &DL, BinaryOperator &I,
    447                                Instruction::BinaryOps InnerOpcode, Value *A,
    448                                Value *B, Value *C, Value *D) {
    449 
    450   // If any of A, B, C, D are null, we can not factor I, return early.
    451   // Checking A and C should be enough.
    452   if (!A || !C || !B || !D)
    453     return nullptr;
    454 
    455   Value *SimplifiedInst = nullptr;
    456   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
    457   Instruction::BinaryOps TopLevelOpcode = I.getOpcode();
    458 
    459   // Does "X op' Y" always equal "Y op' X"?
    460   bool InnerCommutative = Instruction::isCommutative(InnerOpcode);
    461 
    462   // Does "X op' (Y op Z)" always equal "(X op' Y) op (X op' Z)"?
    463   if (LeftDistributesOverRight(InnerOpcode, TopLevelOpcode))
    464     // Does the instruction have the form "(A op' B) op (A op' D)" or, in the
    465     // commutative case, "(A op' B) op (C op' A)"?
    466     if (A == C || (InnerCommutative && A == D)) {
    467       if (A != C)
    468         std::swap(C, D);
    469       // Consider forming "A op' (B op D)".
    470       // If "B op D" simplifies then it can be formed with no cost.
    471       Value *V = SimplifyBinOp(TopLevelOpcode, B, D, DL);
    472       // If "B op D" doesn't simplify then only go on if both of the existing
    473       // operations "A op' B" and "C op' D" will be zapped as no longer used.
    474       if (!V && LHS->hasOneUse() && RHS->hasOneUse())
    475         V = Builder->CreateBinOp(TopLevelOpcode, B, D, RHS->getName());
    476       if (V) {
    477         SimplifiedInst = Builder->CreateBinOp(InnerOpcode, A, V);
    478       }
    479     }
    480 
    481   // Does "(X op Y) op' Z" always equal "(X op' Z) op (Y op' Z)"?
    482   if (!SimplifiedInst && RightDistributesOverLeft(TopLevelOpcode, InnerOpcode))
    483     // Does the instruction have the form "(A op' B) op (C op' B)" or, in the
    484     // commutative case, "(A op' B) op (B op' D)"?
    485     if (B == D || (InnerCommutative && B == C)) {
    486       if (B != D)
    487         std::swap(C, D);
    488       // Consider forming "(A op C) op' B".
    489       // If "A op C" simplifies then it can be formed with no cost.
    490       Value *V = SimplifyBinOp(TopLevelOpcode, A, C, DL);
    491 
    492       // If "A op C" doesn't simplify then only go on if both of the existing
    493       // operations "A op' B" and "C op' D" will be zapped as no longer used.
    494       if (!V && LHS->hasOneUse() && RHS->hasOneUse())
    495         V = Builder->CreateBinOp(TopLevelOpcode, A, C, LHS->getName());
    496       if (V) {
    497         SimplifiedInst = Builder->CreateBinOp(InnerOpcode, V, B);
    498       }
    499     }
    500 
    501   if (SimplifiedInst) {
    502     ++NumFactor;
    503     SimplifiedInst->takeName(&I);
    504 
    505     // Check if we can add NSW flag to SimplifiedInst. If so, set NSW flag.
    506     // TODO: Check for NUW.
    507     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(SimplifiedInst)) {
    508       if (isa<OverflowingBinaryOperator>(SimplifiedInst)) {
    509         bool HasNSW = false;
    510         if (isa<OverflowingBinaryOperator>(&I))
    511           HasNSW = I.hasNoSignedWrap();
    512 
    513         if (BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS))
    514           if (isa<OverflowingBinaryOperator>(Op0))
    515             HasNSW &= Op0->hasNoSignedWrap();
    516 
    517         if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS))
    518           if (isa<OverflowingBinaryOperator>(Op1))
    519             HasNSW &= Op1->hasNoSignedWrap();
    520         BO->setHasNoSignedWrap(HasNSW);
    521       }
    522     }
    523   }
    524   return SimplifiedInst;
    525 }
    526 
    527 /// SimplifyUsingDistributiveLaws - This tries to simplify binary operations
    528 /// which some other binary operation distributes over either by factorizing
    529 /// out common terms (eg "(A*B)+(A*C)" -> "A*(B+C)") or expanding out if this
    530 /// results in simplifications (eg: "A & (B | C) -> (A&B) | (A&C)" if this is
    531 /// a win).  Returns the simplified value, or null if it didn't simplify.
    532 Value *InstCombiner::SimplifyUsingDistributiveLaws(BinaryOperator &I) {
    533   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
    534   BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
    535   BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
    536 
    537   // Factorization.
    538   Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
    539   auto TopLevelOpcode = I.getOpcode();
    540   auto LHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op0, A, B);
    541   auto RHSOpcode = getBinOpsForFactorization(TopLevelOpcode, Op1, C, D);
    542 
    543   // The instruction has the form "(A op' B) op (C op' D)".  Try to factorize
    544   // a common term.
    545   if (LHSOpcode == RHSOpcode) {
    546     if (Value *V = tryFactorization(Builder, DL, I, LHSOpcode, A, B, C, D))
    547       return V;
    548   }
    549 
    550   // The instruction has the form "(A op' B) op (C)".  Try to factorize common
    551   // term.
    552   if (Value *V = tryFactorization(Builder, DL, I, LHSOpcode, A, B, RHS,
    553                                   getIdentityValue(LHSOpcode, RHS)))
    554     return V;
    555 
    556   // The instruction has the form "(B) op (C op' D)".  Try to factorize common
    557   // term.
    558   if (Value *V = tryFactorization(Builder, DL, I, RHSOpcode, LHS,
    559                                   getIdentityValue(RHSOpcode, LHS), C, D))
    560     return V;
    561 
    562   // Expansion.
    563   if (Op0 && RightDistributesOverLeft(Op0->getOpcode(), TopLevelOpcode)) {
    564     // The instruction has the form "(A op' B) op C".  See if expanding it out
    565     // to "(A op C) op' (B op C)" results in simplifications.
    566     Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
    567     Instruction::BinaryOps InnerOpcode = Op0->getOpcode(); // op'
    568 
    569     // Do "A op C" and "B op C" both simplify?
    570     if (Value *L = SimplifyBinOp(TopLevelOpcode, A, C, DL))
    571       if (Value *R = SimplifyBinOp(TopLevelOpcode, B, C, DL)) {
    572         // They do! Return "L op' R".
    573         ++NumExpand;
    574         // If "L op' R" equals "A op' B" then "L op' R" is just the LHS.
    575         if ((L == A && R == B) ||
    576             (Instruction::isCommutative(InnerOpcode) && L == B && R == A))
    577           return Op0;
    578         // Otherwise return "L op' R" if it simplifies.
    579         if (Value *V = SimplifyBinOp(InnerOpcode, L, R, DL))
    580           return V;
    581         // Otherwise, create a new instruction.
    582         C = Builder->CreateBinOp(InnerOpcode, L, R);
    583         C->takeName(&I);
    584         return C;
    585       }
    586   }
    587 
    588   if (Op1 && LeftDistributesOverRight(TopLevelOpcode, Op1->getOpcode())) {
    589     // The instruction has the form "A op (B op' C)".  See if expanding it out
    590     // to "(A op B) op' (A op C)" results in simplifications.
    591     Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
    592     Instruction::BinaryOps InnerOpcode = Op1->getOpcode(); // op'
    593 
    594     // Do "A op B" and "A op C" both simplify?
    595     if (Value *L = SimplifyBinOp(TopLevelOpcode, A, B, DL))
    596       if (Value *R = SimplifyBinOp(TopLevelOpcode, A, C, DL)) {
    597         // They do! Return "L op' R".
    598         ++NumExpand;
    599         // If "L op' R" equals "B op' C" then "L op' R" is just the RHS.
    600         if ((L == B && R == C) ||
    601             (Instruction::isCommutative(InnerOpcode) && L == C && R == B))
    602           return Op1;
    603         // Otherwise return "L op' R" if it simplifies.
    604         if (Value *V = SimplifyBinOp(InnerOpcode, L, R, DL))
    605           return V;
    606         // Otherwise, create a new instruction.
    607         A = Builder->CreateBinOp(InnerOpcode, L, R);
    608         A->takeName(&I);
    609         return A;
    610       }
    611   }
    612 
    613   return nullptr;
    614 }
    615 
    616 // dyn_castNegVal - Given a 'sub' instruction, return the RHS of the instruction
    617 // if the LHS is a constant zero (which is the 'negate' form).
    618 //
    619 Value *InstCombiner::dyn_castNegVal(Value *V) const {
    620   if (BinaryOperator::isNeg(V))
    621     return BinaryOperator::getNegArgument(V);
    622 
    623   // Constants can be considered to be negated values if they can be folded.
    624   if (ConstantInt *C = dyn_cast<ConstantInt>(V))
    625     return ConstantExpr::getNeg(C);
    626 
    627   if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V))
    628     if (C->getType()->getElementType()->isIntegerTy())
    629       return ConstantExpr::getNeg(C);
    630 
    631   return nullptr;
    632 }
    633 
    634 // dyn_castFNegVal - Given a 'fsub' instruction, return the RHS of the
    635 // instruction if the LHS is a constant negative zero (which is the 'negate'
    636 // form).
    637 //
    638 Value *InstCombiner::dyn_castFNegVal(Value *V, bool IgnoreZeroSign) const {
    639   if (BinaryOperator::isFNeg(V, IgnoreZeroSign))
    640     return BinaryOperator::getFNegArgument(V);
    641 
    642   // Constants can be considered to be negated values if they can be folded.
    643   if (ConstantFP *C = dyn_cast<ConstantFP>(V))
    644     return ConstantExpr::getFNeg(C);
    645 
    646   if (ConstantDataVector *C = dyn_cast<ConstantDataVector>(V))
    647     if (C->getType()->getElementType()->isFloatingPointTy())
    648       return ConstantExpr::getFNeg(C);
    649 
    650   return nullptr;
    651 }
    652 
    653 static Value *FoldOperationIntoSelectOperand(Instruction &I, Value *SO,
    654                                              InstCombiner *IC) {
    655   if (CastInst *CI = dyn_cast<CastInst>(&I)) {
    656     return IC->Builder->CreateCast(CI->getOpcode(), SO, I.getType());
    657   }
    658 
    659   // Figure out if the constant is the left or the right argument.
    660   bool ConstIsRHS = isa<Constant>(I.getOperand(1));
    661   Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS));
    662 
    663   if (Constant *SOC = dyn_cast<Constant>(SO)) {
    664     if (ConstIsRHS)
    665       return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand);
    666     return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC);
    667   }
    668 
    669   Value *Op0 = SO, *Op1 = ConstOperand;
    670   if (!ConstIsRHS)
    671     std::swap(Op0, Op1);
    672 
    673   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I)) {
    674     Value *RI = IC->Builder->CreateBinOp(BO->getOpcode(), Op0, Op1,
    675                                     SO->getName()+".op");
    676     Instruction *FPInst = dyn_cast<Instruction>(RI);
    677     if (FPInst && isa<FPMathOperator>(FPInst))
    678       FPInst->copyFastMathFlags(BO);
    679     return RI;
    680   }
    681   if (ICmpInst *CI = dyn_cast<ICmpInst>(&I))
    682     return IC->Builder->CreateICmp(CI->getPredicate(), Op0, Op1,
    683                                    SO->getName()+".cmp");
    684   if (FCmpInst *CI = dyn_cast<FCmpInst>(&I))
    685     return IC->Builder->CreateICmp(CI->getPredicate(), Op0, Op1,
    686                                    SO->getName()+".cmp");
    687   llvm_unreachable("Unknown binary instruction type!");
    688 }
    689 
    690 // FoldOpIntoSelect - Given an instruction with a select as one operand and a
    691 // constant as the other operand, try to fold the binary operator into the
    692 // select arguments.  This also works for Cast instructions, which obviously do
    693 // not have a second operand.
    694 Instruction *InstCombiner::FoldOpIntoSelect(Instruction &Op, SelectInst *SI) {
    695   // Don't modify shared select instructions
    696   if (!SI->hasOneUse()) return nullptr;
    697   Value *TV = SI->getOperand(1);
    698   Value *FV = SI->getOperand(2);
    699 
    700   if (isa<Constant>(TV) || isa<Constant>(FV)) {
    701     // Bool selects with constant operands can be folded to logical ops.
    702     if (SI->getType()->isIntegerTy(1)) return nullptr;
    703 
    704     // If it's a bitcast involving vectors, make sure it has the same number of
    705     // elements on both sides.
    706     if (BitCastInst *BC = dyn_cast<BitCastInst>(&Op)) {
    707       VectorType *DestTy = dyn_cast<VectorType>(BC->getDestTy());
    708       VectorType *SrcTy = dyn_cast<VectorType>(BC->getSrcTy());
    709 
    710       // Verify that either both or neither are vectors.
    711       if ((SrcTy == nullptr) != (DestTy == nullptr)) return nullptr;
    712       // If vectors, verify that they have the same number of elements.
    713       if (SrcTy && SrcTy->getNumElements() != DestTy->getNumElements())
    714         return nullptr;
    715     }
    716 
    717     Value *SelectTrueVal = FoldOperationIntoSelectOperand(Op, TV, this);
    718     Value *SelectFalseVal = FoldOperationIntoSelectOperand(Op, FV, this);
    719 
    720     return SelectInst::Create(SI->getCondition(),
    721                               SelectTrueVal, SelectFalseVal);
    722   }
    723   return nullptr;
    724 }
    725 
    726 
    727 /// FoldOpIntoPhi - Given a binary operator, cast instruction, or select which
    728 /// has a PHI node as operand #0, see if we can fold the instruction into the
    729 /// PHI (which is only possible if all operands to the PHI are constants).
    730 ///
    731 Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I) {
    732   PHINode *PN = cast<PHINode>(I.getOperand(0));
    733   unsigned NumPHIValues = PN->getNumIncomingValues();
    734   if (NumPHIValues == 0)
    735     return nullptr;
    736 
    737   // We normally only transform phis with a single use.  However, if a PHI has
    738   // multiple uses and they are all the same operation, we can fold *all* of the
    739   // uses into the PHI.
    740   if (!PN->hasOneUse()) {
    741     // Walk the use list for the instruction, comparing them to I.
    742     for (User *U : PN->users()) {
    743       Instruction *UI = cast<Instruction>(U);
    744       if (UI != &I && !I.isIdenticalTo(UI))
    745         return nullptr;
    746     }
    747     // Otherwise, we can replace *all* users with the new PHI we form.
    748   }
    749 
    750   // Check to see if all of the operands of the PHI are simple constants
    751   // (constantint/constantfp/undef).  If there is one non-constant value,
    752   // remember the BB it is in.  If there is more than one or if *it* is a PHI,
    753   // bail out.  We don't do arbitrary constant expressions here because moving
    754   // their computation can be expensive without a cost model.
    755   BasicBlock *NonConstBB = nullptr;
    756   for (unsigned i = 0; i != NumPHIValues; ++i) {
    757     Value *InVal = PN->getIncomingValue(i);
    758     if (isa<Constant>(InVal) && !isa<ConstantExpr>(InVal))
    759       continue;
    760 
    761     if (isa<PHINode>(InVal)) return nullptr;  // Itself a phi.
    762     if (NonConstBB) return nullptr;  // More than one non-const value.
    763 
    764     NonConstBB = PN->getIncomingBlock(i);
    765 
    766     // If the InVal is an invoke at the end of the pred block, then we can't
    767     // insert a computation after it without breaking the edge.
    768     if (InvokeInst *II = dyn_cast<InvokeInst>(InVal))
    769       if (II->getParent() == NonConstBB)
    770         return nullptr;
    771 
    772     // If the incoming non-constant value is in I's block, we will remove one
    773     // instruction, but insert another equivalent one, leading to infinite
    774     // instcombine.
    775     if (isPotentiallyReachable(I.getParent(), NonConstBB, DT, LI))
    776       return nullptr;
    777   }
    778 
    779   // If there is exactly one non-constant value, we can insert a copy of the
    780   // operation in that block.  However, if this is a critical edge, we would be
    781   // inserting the computation on some other paths (e.g. inside a loop).  Only
    782   // do this if the pred block is unconditionally branching into the phi block.
    783   if (NonConstBB != nullptr) {
    784     BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator());
    785     if (!BI || !BI->isUnconditional()) return nullptr;
    786   }
    787 
    788   // Okay, we can do the transformation: create the new PHI node.
    789   PHINode *NewPN = PHINode::Create(I.getType(), PN->getNumIncomingValues());
    790   InsertNewInstBefore(NewPN, *PN);
    791   NewPN->takeName(PN);
    792 
    793   // If we are going to have to insert a new computation, do so right before the
    794   // predecessors terminator.
    795   if (NonConstBB)
    796     Builder->SetInsertPoint(NonConstBB->getTerminator());
    797 
    798   // Next, add all of the operands to the PHI.
    799   if (SelectInst *SI = dyn_cast<SelectInst>(&I)) {
    800     // We only currently try to fold the condition of a select when it is a phi,
    801     // not the true/false values.
    802     Value *TrueV = SI->getTrueValue();
    803     Value *FalseV = SI->getFalseValue();
    804     BasicBlock *PhiTransBB = PN->getParent();
    805     for (unsigned i = 0; i != NumPHIValues; ++i) {
    806       BasicBlock *ThisBB = PN->getIncomingBlock(i);
    807       Value *TrueVInPred = TrueV->DoPHITranslation(PhiTransBB, ThisBB);
    808       Value *FalseVInPred = FalseV->DoPHITranslation(PhiTransBB, ThisBB);
    809       Value *InV = nullptr;
    810       // Beware of ConstantExpr:  it may eventually evaluate to getNullValue,
    811       // even if currently isNullValue gives false.
    812       Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i));
    813       if (InC && !isa<ConstantExpr>(InC))
    814         InV = InC->isNullValue() ? FalseVInPred : TrueVInPred;
    815       else
    816         InV = Builder->CreateSelect(PN->getIncomingValue(i),
    817                                     TrueVInPred, FalseVInPred, "phitmp");
    818       NewPN->addIncoming(InV, ThisBB);
    819     }
    820   } else if (CmpInst *CI = dyn_cast<CmpInst>(&I)) {
    821     Constant *C = cast<Constant>(I.getOperand(1));
    822     for (unsigned i = 0; i != NumPHIValues; ++i) {
    823       Value *InV = nullptr;
    824       if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
    825         InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C);
    826       else if (isa<ICmpInst>(CI))
    827         InV = Builder->CreateICmp(CI->getPredicate(), PN->getIncomingValue(i),
    828                                   C, "phitmp");
    829       else
    830         InV = Builder->CreateFCmp(CI->getPredicate(), PN->getIncomingValue(i),
    831                                   C, "phitmp");
    832       NewPN->addIncoming(InV, PN->getIncomingBlock(i));
    833     }
    834   } else if (I.getNumOperands() == 2) {
    835     Constant *C = cast<Constant>(I.getOperand(1));
    836     for (unsigned i = 0; i != NumPHIValues; ++i) {
    837       Value *InV = nullptr;
    838       if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
    839         InV = ConstantExpr::get(I.getOpcode(), InC, C);
    840       else
    841         InV = Builder->CreateBinOp(cast<BinaryOperator>(I).getOpcode(),
    842                                    PN->getIncomingValue(i), C, "phitmp");
    843       NewPN->addIncoming(InV, PN->getIncomingBlock(i));
    844     }
    845   } else {
    846     CastInst *CI = cast<CastInst>(&I);
    847     Type *RetTy = CI->getType();
    848     for (unsigned i = 0; i != NumPHIValues; ++i) {
    849       Value *InV;
    850       if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i)))
    851         InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy);
    852       else
    853         InV = Builder->CreateCast(CI->getOpcode(),
    854                                 PN->getIncomingValue(i), I.getType(), "phitmp");
    855       NewPN->addIncoming(InV, PN->getIncomingBlock(i));
    856     }
    857   }
    858 
    859   for (auto UI = PN->user_begin(), E = PN->user_end(); UI != E;) {
    860     Instruction *User = cast<Instruction>(*UI++);
    861     if (User == &I) continue;
    862     ReplaceInstUsesWith(*User, NewPN);
    863     EraseInstFromFunction(*User);
    864   }
    865   return ReplaceInstUsesWith(I, NewPN);
    866 }
    867 
    868 /// FindElementAtOffset - Given a pointer type and a constant offset, determine
    869 /// whether or not there is a sequence of GEP indices into the pointed type that
    870 /// will land us at the specified offset.  If so, fill them into NewIndices and
    871 /// return the resultant element type, otherwise return null.
    872 Type *InstCombiner::FindElementAtOffset(PointerType *PtrTy, int64_t Offset,
    873                                         SmallVectorImpl<Value *> &NewIndices) {
    874   Type *Ty = PtrTy->getElementType();
    875   if (!Ty->isSized())
    876     return nullptr;
    877 
    878   // Start with the index over the outer type.  Note that the type size
    879   // might be zero (even if the offset isn't zero) if the indexed type
    880   // is something like [0 x {int, int}]
    881   Type *IntPtrTy = DL.getIntPtrType(PtrTy);
    882   int64_t FirstIdx = 0;
    883   if (int64_t TySize = DL.getTypeAllocSize(Ty)) {
    884     FirstIdx = Offset/TySize;
    885     Offset -= FirstIdx*TySize;
    886 
    887     // Handle hosts where % returns negative instead of values [0..TySize).
    888     if (Offset < 0) {
    889       --FirstIdx;
    890       Offset += TySize;
    891       assert(Offset >= 0);
    892     }
    893     assert((uint64_t)Offset < (uint64_t)TySize && "Out of range offset");
    894   }
    895 
    896   NewIndices.push_back(ConstantInt::get(IntPtrTy, FirstIdx));
    897 
    898   // Index into the types.  If we fail, set OrigBase to null.
    899   while (Offset) {
    900     // Indexing into tail padding between struct/array elements.
    901     if (uint64_t(Offset * 8) >= DL.getTypeSizeInBits(Ty))
    902       return nullptr;
    903 
    904     if (StructType *STy = dyn_cast<StructType>(Ty)) {
    905       const StructLayout *SL = DL.getStructLayout(STy);
    906       assert(Offset < (int64_t)SL->getSizeInBytes() &&
    907              "Offset must stay within the indexed type");
    908 
    909       unsigned Elt = SL->getElementContainingOffset(Offset);
    910       NewIndices.push_back(ConstantInt::get(Type::getInt32Ty(Ty->getContext()),
    911                                             Elt));
    912 
    913       Offset -= SL->getElementOffset(Elt);
    914       Ty = STy->getElementType(Elt);
    915     } else if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
    916       uint64_t EltSize = DL.getTypeAllocSize(AT->getElementType());
    917       assert(EltSize && "Cannot index into a zero-sized array");
    918       NewIndices.push_back(ConstantInt::get(IntPtrTy,Offset/EltSize));
    919       Offset %= EltSize;
    920       Ty = AT->getElementType();
    921     } else {
    922       // Otherwise, we can't index into the middle of this atomic type, bail.
    923       return nullptr;
    924     }
    925   }
    926 
    927   return Ty;
    928 }
    929 
    930 static bool shouldMergeGEPs(GEPOperator &GEP, GEPOperator &Src) {
    931   // If this GEP has only 0 indices, it is the same pointer as
    932   // Src. If Src is not a trivial GEP too, don't combine
    933   // the indices.
    934   if (GEP.hasAllZeroIndices() && !Src.hasAllZeroIndices() &&
    935       !Src.hasOneUse())
    936     return false;
    937   return true;
    938 }
    939 
    940 /// Descale - Return a value X such that Val = X * Scale, or null if none.  If
    941 /// the multiplication is known not to overflow then NoSignedWrap is set.
    942 Value *InstCombiner::Descale(Value *Val, APInt Scale, bool &NoSignedWrap) {
    943   assert(isa<IntegerType>(Val->getType()) && "Can only descale integers!");
    944   assert(cast<IntegerType>(Val->getType())->getBitWidth() ==
    945          Scale.getBitWidth() && "Scale not compatible with value!");
    946 
    947   // If Val is zero or Scale is one then Val = Val * Scale.
    948   if (match(Val, m_Zero()) || Scale == 1) {
    949     NoSignedWrap = true;
    950     return Val;
    951   }
    952 
    953   // If Scale is zero then it does not divide Val.
    954   if (Scale.isMinValue())
    955     return nullptr;
    956 
    957   // Look through chains of multiplications, searching for a constant that is
    958   // divisible by Scale.  For example, descaling X*(Y*(Z*4)) by a factor of 4
    959   // will find the constant factor 4 and produce X*(Y*Z).  Descaling X*(Y*8) by
    960   // a factor of 4 will produce X*(Y*2).  The principle of operation is to bore
    961   // down from Val:
    962   //
    963   //     Val = M1 * X          ||   Analysis starts here and works down
    964   //      M1 = M2 * Y          ||   Doesn't descend into terms with more
    965   //      M2 =  Z * 4          \/   than one use
    966   //
    967   // Then to modify a term at the bottom:
    968   //
    969   //     Val = M1 * X
    970   //      M1 =  Z * Y          ||   Replaced M2 with Z
    971   //
    972   // Then to work back up correcting nsw flags.
    973 
    974   // Op - the term we are currently analyzing.  Starts at Val then drills down.
    975   // Replaced with its descaled value before exiting from the drill down loop.
    976   Value *Op = Val;
    977 
    978   // Parent - initially null, but after drilling down notes where Op came from.
    979   // In the example above, Parent is (Val, 0) when Op is M1, because M1 is the
    980   // 0'th operand of Val.
    981   std::pair<Instruction*, unsigned> Parent;
    982 
    983   // RequireNoSignedWrap - Set if the transform requires a descaling at deeper
    984   // levels that doesn't overflow.
    985   bool RequireNoSignedWrap = false;
    986 
    987   // logScale - log base 2 of the scale.  Negative if not a power of 2.
    988   int32_t logScale = Scale.exactLogBase2();
    989 
    990   for (;; Op = Parent.first->getOperand(Parent.second)) { // Drill down
    991 
    992     if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
    993       // If Op is a constant divisible by Scale then descale to the quotient.
    994       APInt Quotient(Scale), Remainder(Scale); // Init ensures right bitwidth.
    995       APInt::sdivrem(CI->getValue(), Scale, Quotient, Remainder);
    996       if (!Remainder.isMinValue())
    997         // Not divisible by Scale.
    998         return nullptr;
    999       // Replace with the quotient in the parent.
   1000       Op = ConstantInt::get(CI->getType(), Quotient);
   1001       NoSignedWrap = true;
   1002       break;
   1003     }
   1004 
   1005     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op)) {
   1006 
   1007       if (BO->getOpcode() == Instruction::Mul) {
   1008         // Multiplication.
   1009         NoSignedWrap = BO->hasNoSignedWrap();
   1010         if (RequireNoSignedWrap && !NoSignedWrap)
   1011           return nullptr;
   1012 
   1013         // There are three cases for multiplication: multiplication by exactly
   1014         // the scale, multiplication by a constant different to the scale, and
   1015         // multiplication by something else.
   1016         Value *LHS = BO->getOperand(0);
   1017         Value *RHS = BO->getOperand(1);
   1018 
   1019         if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
   1020           // Multiplication by a constant.
   1021           if (CI->getValue() == Scale) {
   1022             // Multiplication by exactly the scale, replace the multiplication
   1023             // by its left-hand side in the parent.
   1024             Op = LHS;
   1025             break;
   1026           }
   1027 
   1028           // Otherwise drill down into the constant.
   1029           if (!Op->hasOneUse())
   1030             return nullptr;
   1031 
   1032           Parent = std::make_pair(BO, 1);
   1033           continue;
   1034         }
   1035 
   1036         // Multiplication by something else. Drill down into the left-hand side
   1037         // since that's where the reassociate pass puts the good stuff.
   1038         if (!Op->hasOneUse())
   1039           return nullptr;
   1040 
   1041         Parent = std::make_pair(BO, 0);
   1042         continue;
   1043       }
   1044 
   1045       if (logScale > 0 && BO->getOpcode() == Instruction::Shl &&
   1046           isa<ConstantInt>(BO->getOperand(1))) {
   1047         // Multiplication by a power of 2.
   1048         NoSignedWrap = BO->hasNoSignedWrap();
   1049         if (RequireNoSignedWrap && !NoSignedWrap)
   1050           return nullptr;
   1051 
   1052         Value *LHS = BO->getOperand(0);
   1053         int32_t Amt = cast<ConstantInt>(BO->getOperand(1))->
   1054           getLimitedValue(Scale.getBitWidth());
   1055         // Op = LHS << Amt.
   1056 
   1057         if (Amt == logScale) {
   1058           // Multiplication by exactly the scale, replace the multiplication
   1059           // by its left-hand side in the parent.
   1060           Op = LHS;
   1061           break;
   1062         }
   1063         if (Amt < logScale || !Op->hasOneUse())
   1064           return nullptr;
   1065 
   1066         // Multiplication by more than the scale.  Reduce the multiplying amount
   1067         // by the scale in the parent.
   1068         Parent = std::make_pair(BO, 1);
   1069         Op = ConstantInt::get(BO->getType(), Amt - logScale);
   1070         break;
   1071       }
   1072     }
   1073 
   1074     if (!Op->hasOneUse())
   1075       return nullptr;
   1076 
   1077     if (CastInst *Cast = dyn_cast<CastInst>(Op)) {
   1078       if (Cast->getOpcode() == Instruction::SExt) {
   1079         // Op is sign-extended from a smaller type, descale in the smaller type.
   1080         unsigned SmallSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
   1081         APInt SmallScale = Scale.trunc(SmallSize);
   1082         // Suppose Op = sext X, and we descale X as Y * SmallScale.  We want to
   1083         // descale Op as (sext Y) * Scale.  In order to have
   1084         //   sext (Y * SmallScale) = (sext Y) * Scale
   1085         // some conditions need to hold however: SmallScale must sign-extend to
   1086         // Scale and the multiplication Y * SmallScale should not overflow.
   1087         if (SmallScale.sext(Scale.getBitWidth()) != Scale)
   1088           // SmallScale does not sign-extend to Scale.
   1089           return nullptr;
   1090         assert(SmallScale.exactLogBase2() == logScale);
   1091         // Require that Y * SmallScale must not overflow.
   1092         RequireNoSignedWrap = true;
   1093 
   1094         // Drill down through the cast.
   1095         Parent = std::make_pair(Cast, 0);
   1096         Scale = SmallScale;
   1097         continue;
   1098       }
   1099 
   1100       if (Cast->getOpcode() == Instruction::Trunc) {
   1101         // Op is truncated from a larger type, descale in the larger type.
   1102         // Suppose Op = trunc X, and we descale X as Y * sext Scale.  Then
   1103         //   trunc (Y * sext Scale) = (trunc Y) * Scale
   1104         // always holds.  However (trunc Y) * Scale may overflow even if
   1105         // trunc (Y * sext Scale) does not, so nsw flags need to be cleared
   1106         // from this point up in the expression (see later).
   1107         if (RequireNoSignedWrap)
   1108           return nullptr;
   1109 
   1110         // Drill down through the cast.
   1111         unsigned LargeSize = Cast->getSrcTy()->getPrimitiveSizeInBits();
   1112         Parent = std::make_pair(Cast, 0);
   1113         Scale = Scale.sext(LargeSize);
   1114         if (logScale + 1 == (int32_t)Cast->getType()->getPrimitiveSizeInBits())
   1115           logScale = -1;
   1116         assert(Scale.exactLogBase2() == logScale);
   1117         continue;
   1118       }
   1119     }
   1120 
   1121     // Unsupported expression, bail out.
   1122     return nullptr;
   1123   }
   1124 
   1125   // If Op is zero then Val = Op * Scale.
   1126   if (match(Op, m_Zero())) {
   1127     NoSignedWrap = true;
   1128     return Op;
   1129   }
   1130 
   1131   // We know that we can successfully descale, so from here on we can safely
   1132   // modify the IR.  Op holds the descaled version of the deepest term in the
   1133   // expression.  NoSignedWrap is 'true' if multiplying Op by Scale is known
   1134   // not to overflow.
   1135 
   1136   if (!Parent.first)
   1137     // The expression only had one term.
   1138     return Op;
   1139 
   1140   // Rewrite the parent using the descaled version of its operand.
   1141   assert(Parent.first->hasOneUse() && "Drilled down when more than one use!");
   1142   assert(Op != Parent.first->getOperand(Parent.second) &&
   1143          "Descaling was a no-op?");
   1144   Parent.first->setOperand(Parent.second, Op);
   1145   Worklist.Add(Parent.first);
   1146 
   1147   // Now work back up the expression correcting nsw flags.  The logic is based
   1148   // on the following observation: if X * Y is known not to overflow as a signed
   1149   // multiplication, and Y is replaced by a value Z with smaller absolute value,
   1150   // then X * Z will not overflow as a signed multiplication either.  As we work
   1151   // our way up, having NoSignedWrap 'true' means that the descaled value at the
   1152   // current level has strictly smaller absolute value than the original.
   1153   Instruction *Ancestor = Parent.first;
   1154   do {
   1155     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Ancestor)) {
   1156       // If the multiplication wasn't nsw then we can't say anything about the
   1157       // value of the descaled multiplication, and we have to clear nsw flags
   1158       // from this point on up.
   1159       bool OpNoSignedWrap = BO->hasNoSignedWrap();
   1160       NoSignedWrap &= OpNoSignedWrap;
   1161       if (NoSignedWrap != OpNoSignedWrap) {
   1162         BO->setHasNoSignedWrap(NoSignedWrap);
   1163         Worklist.Add(Ancestor);
   1164       }
   1165     } else if (Ancestor->getOpcode() == Instruction::Trunc) {
   1166       // The fact that the descaled input to the trunc has smaller absolute
   1167       // value than the original input doesn't tell us anything useful about
   1168       // the absolute values of the truncations.
   1169       NoSignedWrap = false;
   1170     }
   1171     assert((Ancestor->getOpcode() != Instruction::SExt || NoSignedWrap) &&
   1172            "Failed to keep proper track of nsw flags while drilling down?");
   1173 
   1174     if (Ancestor == Val)
   1175       // Got to the top, all done!
   1176       return Val;
   1177 
   1178     // Move up one level in the expression.
   1179     assert(Ancestor->hasOneUse() && "Drilled down when more than one use!");
   1180     Ancestor = Ancestor->user_back();
   1181   } while (1);
   1182 }
   1183 
   1184 /// \brief Creates node of binary operation with the same attributes as the
   1185 /// specified one but with other operands.
   1186 static Value *CreateBinOpAsGiven(BinaryOperator &Inst, Value *LHS, Value *RHS,
   1187                                  InstCombiner::BuilderTy *B) {
   1188   Value *BORes = B->CreateBinOp(Inst.getOpcode(), LHS, RHS);
   1189   if (BinaryOperator *NewBO = dyn_cast<BinaryOperator>(BORes)) {
   1190     if (isa<OverflowingBinaryOperator>(NewBO)) {
   1191       NewBO->setHasNoSignedWrap(Inst.hasNoSignedWrap());
   1192       NewBO->setHasNoUnsignedWrap(Inst.hasNoUnsignedWrap());
   1193     }
   1194     if (isa<PossiblyExactOperator>(NewBO))
   1195       NewBO->setIsExact(Inst.isExact());
   1196   }
   1197   return BORes;
   1198 }
   1199 
   1200 /// \brief Makes transformation of binary operation specific for vector types.
   1201 /// \param Inst Binary operator to transform.
   1202 /// \return Pointer to node that must replace the original binary operator, or
   1203 ///         null pointer if no transformation was made.
   1204 Value *InstCombiner::SimplifyVectorOp(BinaryOperator &Inst) {
   1205   if (!Inst.getType()->isVectorTy()) return nullptr;
   1206 
   1207   // It may not be safe to reorder shuffles and things like div, urem, etc.
   1208   // because we may trap when executing those ops on unknown vector elements.
   1209   // See PR20059.
   1210   if (!isSafeToSpeculativelyExecute(&Inst))
   1211     return nullptr;
   1212 
   1213   unsigned VWidth = cast<VectorType>(Inst.getType())->getNumElements();
   1214   Value *LHS = Inst.getOperand(0), *RHS = Inst.getOperand(1);
   1215   assert(cast<VectorType>(LHS->getType())->getNumElements() == VWidth);
   1216   assert(cast<VectorType>(RHS->getType())->getNumElements() == VWidth);
   1217 
   1218   // If both arguments of binary operation are shuffles, which use the same
   1219   // mask and shuffle within a single vector, it is worthwhile to move the
   1220   // shuffle after binary operation:
   1221   //   Op(shuffle(v1, m), shuffle(v2, m)) -> shuffle(Op(v1, v2), m)
   1222   if (isa<ShuffleVectorInst>(LHS) && isa<ShuffleVectorInst>(RHS)) {
   1223     ShuffleVectorInst *LShuf = cast<ShuffleVectorInst>(LHS);
   1224     ShuffleVectorInst *RShuf = cast<ShuffleVectorInst>(RHS);
   1225     if (isa<UndefValue>(LShuf->getOperand(1)) &&
   1226         isa<UndefValue>(RShuf->getOperand(1)) &&
   1227         LShuf->getOperand(0)->getType() == RShuf->getOperand(0)->getType() &&
   1228         LShuf->getMask() == RShuf->getMask()) {
   1229       Value *NewBO = CreateBinOpAsGiven(Inst, LShuf->getOperand(0),
   1230           RShuf->getOperand(0), Builder);
   1231       Value *Res = Builder->CreateShuffleVector(NewBO,
   1232           UndefValue::get(NewBO->getType()), LShuf->getMask());
   1233       return Res;
   1234     }
   1235   }
   1236 
   1237   // If one argument is a shuffle within one vector, the other is a constant,
   1238   // try moving the shuffle after the binary operation.
   1239   ShuffleVectorInst *Shuffle = nullptr;
   1240   Constant *C1 = nullptr;
   1241   if (isa<ShuffleVectorInst>(LHS)) Shuffle = cast<ShuffleVectorInst>(LHS);
   1242   if (isa<ShuffleVectorInst>(RHS)) Shuffle = cast<ShuffleVectorInst>(RHS);
   1243   if (isa<Constant>(LHS)) C1 = cast<Constant>(LHS);
   1244   if (isa<Constant>(RHS)) C1 = cast<Constant>(RHS);
   1245   if (Shuffle && C1 &&
   1246       (isa<ConstantVector>(C1) || isa<ConstantDataVector>(C1)) &&
   1247       isa<UndefValue>(Shuffle->getOperand(1)) &&
   1248       Shuffle->getType() == Shuffle->getOperand(0)->getType()) {
   1249     SmallVector<int, 16> ShMask = Shuffle->getShuffleMask();
   1250     // Find constant C2 that has property:
   1251     //   shuffle(C2, ShMask) = C1
   1252     // If such constant does not exist (example: ShMask=<0,0> and C1=<1,2>)
   1253     // reorder is not possible.
   1254     SmallVector<Constant*, 16> C2M(VWidth,
   1255                                UndefValue::get(C1->getType()->getScalarType()));
   1256     bool MayChange = true;
   1257     for (unsigned I = 0; I < VWidth; ++I) {
   1258       if (ShMask[I] >= 0) {
   1259         assert(ShMask[I] < (int)VWidth);
   1260         if (!isa<UndefValue>(C2M[ShMask[I]])) {
   1261           MayChange = false;
   1262           break;
   1263         }
   1264         C2M[ShMask[I]] = C1->getAggregateElement(I);
   1265       }
   1266     }
   1267     if (MayChange) {
   1268       Constant *C2 = ConstantVector::get(C2M);
   1269       Value *NewLHS, *NewRHS;
   1270       if (isa<Constant>(LHS)) {
   1271         NewLHS = C2;
   1272         NewRHS = Shuffle->getOperand(0);
   1273       } else {
   1274         NewLHS = Shuffle->getOperand(0);
   1275         NewRHS = C2;
   1276       }
   1277       Value *NewBO = CreateBinOpAsGiven(Inst, NewLHS, NewRHS, Builder);
   1278       Value *Res = Builder->CreateShuffleVector(NewBO,
   1279           UndefValue::get(Inst.getType()), Shuffle->getMask());
   1280       return Res;
   1281     }
   1282   }
   1283 
   1284   return nullptr;
   1285 }
   1286 
   1287 Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
   1288   SmallVector<Value*, 8> Ops(GEP.op_begin(), GEP.op_end());
   1289 
   1290   if (Value *V = SimplifyGEPInst(Ops, DL, TLI, DT, AC))
   1291     return ReplaceInstUsesWith(GEP, V);
   1292 
   1293   Value *PtrOp = GEP.getOperand(0);
   1294 
   1295   // Eliminate unneeded casts for indices, and replace indices which displace
   1296   // by multiples of a zero size type with zero.
   1297   bool MadeChange = false;
   1298   Type *IntPtrTy = DL.getIntPtrType(GEP.getPointerOperandType());
   1299 
   1300   gep_type_iterator GTI = gep_type_begin(GEP);
   1301   for (User::op_iterator I = GEP.op_begin() + 1, E = GEP.op_end(); I != E;
   1302        ++I, ++GTI) {
   1303     // Skip indices into struct types.
   1304     SequentialType *SeqTy = dyn_cast<SequentialType>(*GTI);
   1305     if (!SeqTy)
   1306       continue;
   1307 
   1308     // If the element type has zero size then any index over it is equivalent
   1309     // to an index of zero, so replace it with zero if it is not zero already.
   1310     if (SeqTy->getElementType()->isSized() &&
   1311         DL.getTypeAllocSize(SeqTy->getElementType()) == 0)
   1312       if (!isa<Constant>(*I) || !cast<Constant>(*I)->isNullValue()) {
   1313         *I = Constant::getNullValue(IntPtrTy);
   1314         MadeChange = true;
   1315       }
   1316 
   1317     Type *IndexTy = (*I)->getType();
   1318     if (IndexTy != IntPtrTy) {
   1319       // If we are using a wider index than needed for this platform, shrink
   1320       // it to what we need.  If narrower, sign-extend it to what we need.
   1321       // This explicit cast can make subsequent optimizations more obvious.
   1322       *I = Builder->CreateIntCast(*I, IntPtrTy, true);
   1323       MadeChange = true;
   1324     }
   1325   }
   1326   if (MadeChange)
   1327     return &GEP;
   1328 
   1329   // Check to see if the inputs to the PHI node are getelementptr instructions.
   1330   if (PHINode *PN = dyn_cast<PHINode>(PtrOp)) {
   1331     GetElementPtrInst *Op1 = dyn_cast<GetElementPtrInst>(PN->getOperand(0));
   1332     if (!Op1)
   1333       return nullptr;
   1334 
   1335     // Don't fold a GEP into itself through a PHI node. This can only happen
   1336     // through the back-edge of a loop. Folding a GEP into itself means that
   1337     // the value of the previous iteration needs to be stored in the meantime,
   1338     // thus requiring an additional register variable to be live, but not
   1339     // actually achieving anything (the GEP still needs to be executed once per
   1340     // loop iteration).
   1341     if (Op1 == &GEP)
   1342       return nullptr;
   1343 
   1344     signed DI = -1;
   1345 
   1346     for (auto I = PN->op_begin()+1, E = PN->op_end(); I !=E; ++I) {
   1347       GetElementPtrInst *Op2 = dyn_cast<GetElementPtrInst>(*I);
   1348       if (!Op2 || Op1->getNumOperands() != Op2->getNumOperands())
   1349         return nullptr;
   1350 
   1351       // As for Op1 above, don't try to fold a GEP into itself.
   1352       if (Op2 == &GEP)
   1353         return nullptr;
   1354 
   1355       // Keep track of the type as we walk the GEP.
   1356       Type *CurTy = Op1->getOperand(0)->getType()->getScalarType();
   1357 
   1358       for (unsigned J = 0, F = Op1->getNumOperands(); J != F; ++J) {
   1359         if (Op1->getOperand(J)->getType() != Op2->getOperand(J)->getType())
   1360           return nullptr;
   1361 
   1362         if (Op1->getOperand(J) != Op2->getOperand(J)) {
   1363           if (DI == -1) {
   1364             // We have not seen any differences yet in the GEPs feeding the
   1365             // PHI yet, so we record this one if it is allowed to be a
   1366             // variable.
   1367 
   1368             // The first two arguments can vary for any GEP, the rest have to be
   1369             // static for struct slots
   1370             if (J > 1 && CurTy->isStructTy())
   1371               return nullptr;
   1372 
   1373             DI = J;
   1374           } else {
   1375             // The GEP is different by more than one input. While this could be
   1376             // extended to support GEPs that vary by more than one variable it
   1377             // doesn't make sense since it greatly increases the complexity and
   1378             // would result in an R+R+R addressing mode which no backend
   1379             // directly supports and would need to be broken into several
   1380             // simpler instructions anyway.
   1381             return nullptr;
   1382           }
   1383         }
   1384 
   1385         // Sink down a layer of the type for the next iteration.
   1386         if (J > 0) {
   1387           if (CompositeType *CT = dyn_cast<CompositeType>(CurTy)) {
   1388             CurTy = CT->getTypeAtIndex(Op1->getOperand(J));
   1389           } else {
   1390             CurTy = nullptr;
   1391           }
   1392         }
   1393       }
   1394     }
   1395 
   1396     GetElementPtrInst *NewGEP = cast<GetElementPtrInst>(Op1->clone());
   1397 
   1398     if (DI == -1) {
   1399       // All the GEPs feeding the PHI are identical. Clone one down into our
   1400       // BB so that it can be merged with the current GEP.
   1401       GEP.getParent()->getInstList().insert(
   1402           GEP.getParent()->getFirstInsertionPt(), NewGEP);
   1403     } else {
   1404       // All the GEPs feeding the PHI differ at a single offset. Clone a GEP
   1405       // into the current block so it can be merged, and create a new PHI to
   1406       // set that index.
   1407       Instruction *InsertPt = Builder->GetInsertPoint();
   1408       Builder->SetInsertPoint(PN);
   1409       PHINode *NewPN = Builder->CreatePHI(Op1->getOperand(DI)->getType(),
   1410                                           PN->getNumOperands());
   1411       Builder->SetInsertPoint(InsertPt);
   1412 
   1413       for (auto &I : PN->operands())
   1414         NewPN->addIncoming(cast<GEPOperator>(I)->getOperand(DI),
   1415                            PN->getIncomingBlock(I));
   1416 
   1417       NewGEP->setOperand(DI, NewPN);
   1418       GEP.getParent()->getInstList().insert(
   1419           GEP.getParent()->getFirstInsertionPt(), NewGEP);
   1420       NewGEP->setOperand(DI, NewPN);
   1421     }
   1422 
   1423     GEP.setOperand(0, NewGEP);
   1424     PtrOp = NewGEP;
   1425   }
   1426 
   1427   // Combine Indices - If the source pointer to this getelementptr instruction
   1428   // is a getelementptr instruction, combine the indices of the two
   1429   // getelementptr instructions into a single instruction.
   1430   //
   1431   if (GEPOperator *Src = dyn_cast<GEPOperator>(PtrOp)) {
   1432     if (!shouldMergeGEPs(*cast<GEPOperator>(&GEP), *Src))
   1433       return nullptr;
   1434 
   1435     // Note that if our source is a gep chain itself then we wait for that
   1436     // chain to be resolved before we perform this transformation.  This
   1437     // avoids us creating a TON of code in some cases.
   1438     if (GEPOperator *SrcGEP =
   1439           dyn_cast<GEPOperator>(Src->getOperand(0)))
   1440       if (SrcGEP->getNumOperands() == 2 && shouldMergeGEPs(*Src, *SrcGEP))
   1441         return nullptr;   // Wait until our source is folded to completion.
   1442 
   1443     SmallVector<Value*, 8> Indices;
   1444 
   1445     // Find out whether the last index in the source GEP is a sequential idx.
   1446     bool EndsWithSequential = false;
   1447     for (gep_type_iterator I = gep_type_begin(*Src), E = gep_type_end(*Src);
   1448          I != E; ++I)
   1449       EndsWithSequential = !(*I)->isStructTy();
   1450 
   1451     // Can we combine the two pointer arithmetics offsets?
   1452     if (EndsWithSequential) {
   1453       // Replace: gep (gep %P, long B), long A, ...
   1454       // With:    T = long A+B; gep %P, T, ...
   1455       //
   1456       Value *Sum;
   1457       Value *SO1 = Src->getOperand(Src->getNumOperands()-1);
   1458       Value *GO1 = GEP.getOperand(1);
   1459       if (SO1 == Constant::getNullValue(SO1->getType())) {
   1460         Sum = GO1;
   1461       } else if (GO1 == Constant::getNullValue(GO1->getType())) {
   1462         Sum = SO1;
   1463       } else {
   1464         // If they aren't the same type, then the input hasn't been processed
   1465         // by the loop above yet (which canonicalizes sequential index types to
   1466         // intptr_t).  Just avoid transforming this until the input has been
   1467         // normalized.
   1468         if (SO1->getType() != GO1->getType())
   1469           return nullptr;
   1470         Sum = Builder->CreateAdd(SO1, GO1, PtrOp->getName()+".sum");
   1471       }
   1472 
   1473       // Update the GEP in place if possible.
   1474       if (Src->getNumOperands() == 2) {
   1475         GEP.setOperand(0, Src->getOperand(0));
   1476         GEP.setOperand(1, Sum);
   1477         return &GEP;
   1478       }
   1479       Indices.append(Src->op_begin()+1, Src->op_end()-1);
   1480       Indices.push_back(Sum);
   1481       Indices.append(GEP.op_begin()+2, GEP.op_end());
   1482     } else if (isa<Constant>(*GEP.idx_begin()) &&
   1483                cast<Constant>(*GEP.idx_begin())->isNullValue() &&
   1484                Src->getNumOperands() != 1) {
   1485       // Otherwise we can do the fold if the first index of the GEP is a zero
   1486       Indices.append(Src->op_begin()+1, Src->op_end());
   1487       Indices.append(GEP.idx_begin()+1, GEP.idx_end());
   1488     }
   1489 
   1490     if (!Indices.empty())
   1491       return GEP.isInBounds() && Src->isInBounds()
   1492                  ? GetElementPtrInst::CreateInBounds(
   1493                        Src->getSourceElementType(), Src->getOperand(0), Indices,
   1494                        GEP.getName())
   1495                  : GetElementPtrInst::Create(Src->getSourceElementType(),
   1496                                              Src->getOperand(0), Indices,
   1497                                              GEP.getName());
   1498   }
   1499 
   1500   if (GEP.getNumIndices() == 1) {
   1501     unsigned AS = GEP.getPointerAddressSpace();
   1502     if (GEP.getOperand(1)->getType()->getScalarSizeInBits() ==
   1503         DL.getPointerSizeInBits(AS)) {
   1504       Type *PtrTy = GEP.getPointerOperandType();
   1505       Type *Ty = PtrTy->getPointerElementType();
   1506       uint64_t TyAllocSize = DL.getTypeAllocSize(Ty);
   1507 
   1508       bool Matched = false;
   1509       uint64_t C;
   1510       Value *V = nullptr;
   1511       if (TyAllocSize == 1) {
   1512         V = GEP.getOperand(1);
   1513         Matched = true;
   1514       } else if (match(GEP.getOperand(1),
   1515                        m_AShr(m_Value(V), m_ConstantInt(C)))) {
   1516         if (TyAllocSize == 1ULL << C)
   1517           Matched = true;
   1518       } else if (match(GEP.getOperand(1),
   1519                        m_SDiv(m_Value(V), m_ConstantInt(C)))) {
   1520         if (TyAllocSize == C)
   1521           Matched = true;
   1522       }
   1523 
   1524       if (Matched) {
   1525         // Canonicalize (gep i8* X, -(ptrtoint Y))
   1526         // to (inttoptr (sub (ptrtoint X), (ptrtoint Y)))
   1527         // The GEP pattern is emitted by the SCEV expander for certain kinds of
   1528         // pointer arithmetic.
   1529         if (match(V, m_Neg(m_PtrToInt(m_Value())))) {
   1530           Operator *Index = cast<Operator>(V);
   1531           Value *PtrToInt = Builder->CreatePtrToInt(PtrOp, Index->getType());
   1532           Value *NewSub = Builder->CreateSub(PtrToInt, Index->getOperand(1));
   1533           return CastInst::Create(Instruction::IntToPtr, NewSub, GEP.getType());
   1534         }
   1535         // Canonicalize (gep i8* X, (ptrtoint Y)-(ptrtoint X))
   1536         // to (bitcast Y)
   1537         Value *Y;
   1538         if (match(V, m_Sub(m_PtrToInt(m_Value(Y)),
   1539                            m_PtrToInt(m_Specific(GEP.getOperand(0)))))) {
   1540           return CastInst::CreatePointerBitCastOrAddrSpaceCast(Y,
   1541                                                                GEP.getType());
   1542         }
   1543       }
   1544     }
   1545   }
   1546 
   1547   // Handle gep(bitcast x) and gep(gep x, 0, 0, 0).
   1548   Value *StrippedPtr = PtrOp->stripPointerCasts();
   1549   PointerType *StrippedPtrTy = dyn_cast<PointerType>(StrippedPtr->getType());
   1550 
   1551   // We do not handle pointer-vector geps here.
   1552   if (!StrippedPtrTy)
   1553     return nullptr;
   1554 
   1555   if (StrippedPtr != PtrOp) {
   1556     bool HasZeroPointerIndex = false;
   1557     if (ConstantInt *C = dyn_cast<ConstantInt>(GEP.getOperand(1)))
   1558       HasZeroPointerIndex = C->isZero();
   1559 
   1560     // Transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ...
   1561     // into     : GEP [10 x i8]* X, i32 0, ...
   1562     //
   1563     // Likewise, transform: GEP (bitcast i8* X to [0 x i8]*), i32 0, ...
   1564     //           into     : GEP i8* X, ...
   1565     //
   1566     // This occurs when the program declares an array extern like "int X[];"
   1567     if (HasZeroPointerIndex) {
   1568       PointerType *CPTy = cast<PointerType>(PtrOp->getType());
   1569       if (ArrayType *CATy =
   1570           dyn_cast<ArrayType>(CPTy->getElementType())) {
   1571         // GEP (bitcast i8* X to [0 x i8]*), i32 0, ... ?
   1572         if (CATy->getElementType() == StrippedPtrTy->getElementType()) {
   1573           // -> GEP i8* X, ...
   1574           SmallVector<Value*, 8> Idx(GEP.idx_begin()+1, GEP.idx_end());
   1575           GetElementPtrInst *Res = GetElementPtrInst::Create(
   1576               StrippedPtrTy->getElementType(), StrippedPtr, Idx, GEP.getName());
   1577           Res->setIsInBounds(GEP.isInBounds());
   1578           if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace())
   1579             return Res;
   1580           // Insert Res, and create an addrspacecast.
   1581           // e.g.,
   1582           // GEP (addrspacecast i8 addrspace(1)* X to [0 x i8]*), i32 0, ...
   1583           // ->
   1584           // %0 = GEP i8 addrspace(1)* X, ...
   1585           // addrspacecast i8 addrspace(1)* %0 to i8*
   1586           return new AddrSpaceCastInst(Builder->Insert(Res), GEP.getType());
   1587         }
   1588 
   1589         if (ArrayType *XATy =
   1590               dyn_cast<ArrayType>(StrippedPtrTy->getElementType())){
   1591           // GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ... ?
   1592           if (CATy->getElementType() == XATy->getElementType()) {
   1593             // -> GEP [10 x i8]* X, i32 0, ...
   1594             // At this point, we know that the cast source type is a pointer
   1595             // to an array of the same type as the destination pointer
   1596             // array.  Because the array type is never stepped over (there
   1597             // is a leading zero) we can fold the cast into this GEP.
   1598             if (StrippedPtrTy->getAddressSpace() == GEP.getAddressSpace()) {
   1599               GEP.setOperand(0, StrippedPtr);
   1600               return &GEP;
   1601             }
   1602             // Cannot replace the base pointer directly because StrippedPtr's
   1603             // address space is different. Instead, create a new GEP followed by
   1604             // an addrspacecast.
   1605             // e.g.,
   1606             // GEP (addrspacecast [10 x i8] addrspace(1)* X to [0 x i8]*),
   1607             //   i32 0, ...
   1608             // ->
   1609             // %0 = GEP [10 x i8] addrspace(1)* X, ...
   1610             // addrspacecast i8 addrspace(1)* %0 to i8*
   1611             SmallVector<Value*, 8> Idx(GEP.idx_begin(), GEP.idx_end());
   1612             Value *NewGEP = GEP.isInBounds()
   1613                                 ? Builder->CreateInBoundsGEP(
   1614                                       nullptr, StrippedPtr, Idx, GEP.getName())
   1615                                 : Builder->CreateGEP(nullptr, StrippedPtr, Idx,
   1616                                                      GEP.getName());
   1617             return new AddrSpaceCastInst(NewGEP, GEP.getType());
   1618           }
   1619         }
   1620       }
   1621     } else if (GEP.getNumOperands() == 2) {
   1622       // Transform things like:
   1623       // %t = getelementptr i32* bitcast ([2 x i32]* %str to i32*), i32 %V
   1624       // into:  %t1 = getelementptr [2 x i32]* %str, i32 0, i32 %V; bitcast
   1625       Type *SrcElTy = StrippedPtrTy->getElementType();
   1626       Type *ResElTy = PtrOp->getType()->getPointerElementType();
   1627       if (SrcElTy->isArrayTy() &&
   1628           DL.getTypeAllocSize(SrcElTy->getArrayElementType()) ==
   1629               DL.getTypeAllocSize(ResElTy)) {
   1630         Type *IdxType = DL.getIntPtrType(GEP.getType());
   1631         Value *Idx[2] = { Constant::getNullValue(IdxType), GEP.getOperand(1) };
   1632         Value *NewGEP =
   1633             GEP.isInBounds()
   1634                 ? Builder->CreateInBoundsGEP(nullptr, StrippedPtr, Idx,
   1635                                              GEP.getName())
   1636                 : Builder->CreateGEP(nullptr, StrippedPtr, Idx, GEP.getName());
   1637 
   1638         // V and GEP are both pointer types --> BitCast
   1639         return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP,
   1640                                                              GEP.getType());
   1641       }
   1642 
   1643       // Transform things like:
   1644       // %V = mul i64 %N, 4
   1645       // %t = getelementptr i8* bitcast (i32* %arr to i8*), i32 %V
   1646       // into:  %t1 = getelementptr i32* %arr, i32 %N; bitcast
   1647       if (ResElTy->isSized() && SrcElTy->isSized()) {
   1648         // Check that changing the type amounts to dividing the index by a scale
   1649         // factor.
   1650         uint64_t ResSize = DL.getTypeAllocSize(ResElTy);
   1651         uint64_t SrcSize = DL.getTypeAllocSize(SrcElTy);
   1652         if (ResSize && SrcSize % ResSize == 0) {
   1653           Value *Idx = GEP.getOperand(1);
   1654           unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits();
   1655           uint64_t Scale = SrcSize / ResSize;
   1656 
   1657           // Earlier transforms ensure that the index has type IntPtrType, which
   1658           // considerably simplifies the logic by eliminating implicit casts.
   1659           assert(Idx->getType() == DL.getIntPtrType(GEP.getType()) &&
   1660                  "Index not cast to pointer width?");
   1661 
   1662           bool NSW;
   1663           if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) {
   1664             // Successfully decomposed Idx as NewIdx * Scale, form a new GEP.
   1665             // If the multiplication NewIdx * Scale may overflow then the new
   1666             // GEP may not be "inbounds".
   1667             Value *NewGEP =
   1668                 GEP.isInBounds() && NSW
   1669                     ? Builder->CreateInBoundsGEP(nullptr, StrippedPtr, NewIdx,
   1670                                                  GEP.getName())
   1671                     : Builder->CreateGEP(nullptr, StrippedPtr, NewIdx,
   1672                                          GEP.getName());
   1673 
   1674             // The NewGEP must be pointer typed, so must the old one -> BitCast
   1675             return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP,
   1676                                                                  GEP.getType());
   1677           }
   1678         }
   1679       }
   1680 
   1681       // Similarly, transform things like:
   1682       // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp
   1683       //   (where tmp = 8*tmp2) into:
   1684       // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast
   1685       if (ResElTy->isSized() && SrcElTy->isSized() && SrcElTy->isArrayTy()) {
   1686         // Check that changing to the array element type amounts to dividing the
   1687         // index by a scale factor.
   1688         uint64_t ResSize = DL.getTypeAllocSize(ResElTy);
   1689         uint64_t ArrayEltSize =
   1690             DL.getTypeAllocSize(SrcElTy->getArrayElementType());
   1691         if (ResSize && ArrayEltSize % ResSize == 0) {
   1692           Value *Idx = GEP.getOperand(1);
   1693           unsigned BitWidth = Idx->getType()->getPrimitiveSizeInBits();
   1694           uint64_t Scale = ArrayEltSize / ResSize;
   1695 
   1696           // Earlier transforms ensure that the index has type IntPtrType, which
   1697           // considerably simplifies the logic by eliminating implicit casts.
   1698           assert(Idx->getType() == DL.getIntPtrType(GEP.getType()) &&
   1699                  "Index not cast to pointer width?");
   1700 
   1701           bool NSW;
   1702           if (Value *NewIdx = Descale(Idx, APInt(BitWidth, Scale), NSW)) {
   1703             // Successfully decomposed Idx as NewIdx * Scale, form a new GEP.
   1704             // If the multiplication NewIdx * Scale may overflow then the new
   1705             // GEP may not be "inbounds".
   1706             Value *Off[2] = {
   1707                 Constant::getNullValue(DL.getIntPtrType(GEP.getType())),
   1708                 NewIdx};
   1709 
   1710             Value *NewGEP = GEP.isInBounds() && NSW
   1711                                 ? Builder->CreateInBoundsGEP(
   1712                                       SrcElTy, StrippedPtr, Off, GEP.getName())
   1713                                 : Builder->CreateGEP(SrcElTy, StrippedPtr, Off,
   1714                                                      GEP.getName());
   1715             // The NewGEP must be pointer typed, so must the old one -> BitCast
   1716             return CastInst::CreatePointerBitCastOrAddrSpaceCast(NewGEP,
   1717                                                                  GEP.getType());
   1718           }
   1719         }
   1720       }
   1721     }
   1722   }
   1723 
   1724   // addrspacecast between types is canonicalized as a bitcast, then an
   1725   // addrspacecast. To take advantage of the below bitcast + struct GEP, look
   1726   // through the addrspacecast.
   1727   if (AddrSpaceCastInst *ASC = dyn_cast<AddrSpaceCastInst>(PtrOp)) {
   1728     //   X = bitcast A addrspace(1)* to B addrspace(1)*
   1729     //   Y = addrspacecast A addrspace(1)* to B addrspace(2)*
   1730     //   Z = gep Y, <...constant indices...>
   1731     // Into an addrspacecasted GEP of the struct.
   1732     if (BitCastInst *BC = dyn_cast<BitCastInst>(ASC->getOperand(0)))
   1733       PtrOp = BC;
   1734   }
   1735 
   1736   /// See if we can simplify:
   1737   ///   X = bitcast A* to B*
   1738   ///   Y = gep X, <...constant indices...>
   1739   /// into a gep of the original struct.  This is important for SROA and alias
   1740   /// analysis of unions.  If "A" is also a bitcast, wait for A/X to be merged.
   1741   if (BitCastInst *BCI = dyn_cast<BitCastInst>(PtrOp)) {
   1742     Value *Operand = BCI->getOperand(0);
   1743     PointerType *OpType = cast<PointerType>(Operand->getType());
   1744     unsigned OffsetBits = DL.getPointerTypeSizeInBits(GEP.getType());
   1745     APInt Offset(OffsetBits, 0);
   1746     if (!isa<BitCastInst>(Operand) &&
   1747         GEP.accumulateConstantOffset(DL, Offset)) {
   1748 
   1749       // If this GEP instruction doesn't move the pointer, just replace the GEP
   1750       // with a bitcast of the real input to the dest type.
   1751       if (!Offset) {
   1752         // If the bitcast is of an allocation, and the allocation will be
   1753         // converted to match the type of the cast, don't touch this.
   1754         if (isa<AllocaInst>(Operand) || isAllocationFn(Operand, TLI)) {
   1755           // See if the bitcast simplifies, if so, don't nuke this GEP yet.
   1756           if (Instruction *I = visitBitCast(*BCI)) {
   1757             if (I != BCI) {
   1758               I->takeName(BCI);
   1759               BCI->getParent()->getInstList().insert(BCI, I);
   1760               ReplaceInstUsesWith(*BCI, I);
   1761             }
   1762             return &GEP;
   1763           }
   1764         }
   1765 
   1766         if (Operand->getType()->getPointerAddressSpace() != GEP.getAddressSpace())
   1767           return new AddrSpaceCastInst(Operand, GEP.getType());
   1768         return new BitCastInst(Operand, GEP.getType());
   1769       }
   1770 
   1771       // Otherwise, if the offset is non-zero, we need to find out if there is a
   1772       // field at Offset in 'A's type.  If so, we can pull the cast through the
   1773       // GEP.
   1774       SmallVector<Value*, 8> NewIndices;
   1775       if (FindElementAtOffset(OpType, Offset.getSExtValue(), NewIndices)) {
   1776         Value *NGEP =
   1777             GEP.isInBounds()
   1778                 ? Builder->CreateInBoundsGEP(nullptr, Operand, NewIndices)
   1779                 : Builder->CreateGEP(nullptr, Operand, NewIndices);
   1780 
   1781         if (NGEP->getType() == GEP.getType())
   1782           return ReplaceInstUsesWith(GEP, NGEP);
   1783         NGEP->takeName(&GEP);
   1784 
   1785         if (NGEP->getType()->getPointerAddressSpace() != GEP.getAddressSpace())
   1786           return new AddrSpaceCastInst(NGEP, GEP.getType());
   1787         return new BitCastInst(NGEP, GEP.getType());
   1788       }
   1789     }
   1790   }
   1791 
   1792   return nullptr;
   1793 }
   1794 
   1795 static bool
   1796 isAllocSiteRemovable(Instruction *AI, SmallVectorImpl<WeakVH> &Users,
   1797                      const TargetLibraryInfo *TLI) {
   1798   SmallVector<Instruction*, 4> Worklist;
   1799   Worklist.push_back(AI);
   1800 
   1801   do {
   1802     Instruction *PI = Worklist.pop_back_val();
   1803     for (User *U : PI->users()) {
   1804       Instruction *I = cast<Instruction>(U);
   1805       switch (I->getOpcode()) {
   1806       default:
   1807         // Give up the moment we see something we can't handle.
   1808         return false;
   1809 
   1810       case Instruction::BitCast:
   1811       case Instruction::GetElementPtr:
   1812         Users.push_back(I);
   1813         Worklist.push_back(I);
   1814         continue;
   1815 
   1816       case Instruction::ICmp: {
   1817         ICmpInst *ICI = cast<ICmpInst>(I);
   1818         // We can fold eq/ne comparisons with null to false/true, respectively.
   1819         if (!ICI->isEquality() || !isa<ConstantPointerNull>(ICI->getOperand(1)))
   1820           return false;
   1821         Users.push_back(I);
   1822         continue;
   1823       }
   1824 
   1825       case Instruction::Call:
   1826         // Ignore no-op and store intrinsics.
   1827         if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
   1828           switch (II->getIntrinsicID()) {
   1829           default:
   1830             return false;
   1831 
   1832           case Intrinsic::memmove:
   1833           case Intrinsic::memcpy:
   1834           case Intrinsic::memset: {
   1835             MemIntrinsic *MI = cast<MemIntrinsic>(II);
   1836             if (MI->isVolatile() || MI->getRawDest() != PI)
   1837               return false;
   1838           }
   1839           // fall through
   1840           case Intrinsic::dbg_declare:
   1841           case Intrinsic::dbg_value:
   1842           case Intrinsic::invariant_start:
   1843           case Intrinsic::invariant_end:
   1844           case Intrinsic::lifetime_start:
   1845           case Intrinsic::lifetime_end:
   1846           case Intrinsic::objectsize:
   1847             Users.push_back(I);
   1848             continue;
   1849           }
   1850         }
   1851 
   1852         if (isFreeCall(I, TLI)) {
   1853           Users.push_back(I);
   1854           continue;
   1855         }
   1856         return false;
   1857 
   1858       case Instruction::Store: {
   1859         StoreInst *SI = cast<StoreInst>(I);
   1860         if (SI->isVolatile() || SI->getPointerOperand() != PI)
   1861           return false;
   1862         Users.push_back(I);
   1863         continue;
   1864       }
   1865       }
   1866       llvm_unreachable("missing a return?");
   1867     }
   1868   } while (!Worklist.empty());
   1869   return true;
   1870 }
   1871 
   1872 Instruction *InstCombiner::visitAllocSite(Instruction &MI) {
   1873   // If we have a malloc call which is only used in any amount of comparisons
   1874   // to null and free calls, delete the calls and replace the comparisons with
   1875   // true or false as appropriate.
   1876   SmallVector<WeakVH, 64> Users;
   1877   if (isAllocSiteRemovable(&MI, Users, TLI)) {
   1878     for (unsigned i = 0, e = Users.size(); i != e; ++i) {
   1879       Instruction *I = cast_or_null<Instruction>(&*Users[i]);
   1880       if (!I) continue;
   1881 
   1882       if (ICmpInst *C = dyn_cast<ICmpInst>(I)) {
   1883         ReplaceInstUsesWith(*C,
   1884                             ConstantInt::get(Type::getInt1Ty(C->getContext()),
   1885                                              C->isFalseWhenEqual()));
   1886       } else if (isa<BitCastInst>(I) || isa<GetElementPtrInst>(I)) {
   1887         ReplaceInstUsesWith(*I, UndefValue::get(I->getType()));
   1888       } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
   1889         if (II->getIntrinsicID() == Intrinsic::objectsize) {
   1890           ConstantInt *CI = cast<ConstantInt>(II->getArgOperand(1));
   1891           uint64_t DontKnow = CI->isZero() ? -1ULL : 0;
   1892           ReplaceInstUsesWith(*I, ConstantInt::get(I->getType(), DontKnow));
   1893         }
   1894       }
   1895       EraseInstFromFunction(*I);
   1896     }
   1897 
   1898     if (InvokeInst *II = dyn_cast<InvokeInst>(&MI)) {
   1899       // Replace invoke with a NOP intrinsic to maintain the original CFG
   1900       Module *M = II->getParent()->getParent()->getParent();
   1901       Function *F = Intrinsic::getDeclaration(M, Intrinsic::donothing);
   1902       InvokeInst::Create(F, II->getNormalDest(), II->getUnwindDest(),
   1903                          None, "", II->getParent());
   1904     }
   1905     return EraseInstFromFunction(MI);
   1906   }
   1907   return nullptr;
   1908 }
   1909 
   1910 /// \brief Move the call to free before a NULL test.
   1911 ///
   1912 /// Check if this free is accessed after its argument has been test
   1913 /// against NULL (property 0).
   1914 /// If yes, it is legal to move this call in its predecessor block.
   1915 ///
   1916 /// The move is performed only if the block containing the call to free
   1917 /// will be removed, i.e.:
   1918 /// 1. it has only one predecessor P, and P has two successors
   1919 /// 2. it contains the call and an unconditional branch
   1920 /// 3. its successor is the same as its predecessor's successor
   1921 ///
   1922 /// The profitability is out-of concern here and this function should
   1923 /// be called only if the caller knows this transformation would be
   1924 /// profitable (e.g., for code size).
   1925 static Instruction *
   1926 tryToMoveFreeBeforeNullTest(CallInst &FI) {
   1927   Value *Op = FI.getArgOperand(0);
   1928   BasicBlock *FreeInstrBB = FI.getParent();
   1929   BasicBlock *PredBB = FreeInstrBB->getSinglePredecessor();
   1930 
   1931   // Validate part of constraint #1: Only one predecessor
   1932   // FIXME: We can extend the number of predecessor, but in that case, we
   1933   //        would duplicate the call to free in each predecessor and it may
   1934   //        not be profitable even for code size.
   1935   if (!PredBB)
   1936     return nullptr;
   1937 
   1938   // Validate constraint #2: Does this block contains only the call to
   1939   //                         free and an unconditional branch?
   1940   // FIXME: We could check if we can speculate everything in the
   1941   //        predecessor block
   1942   if (FreeInstrBB->size() != 2)
   1943     return nullptr;
   1944   BasicBlock *SuccBB;
   1945   if (!match(FreeInstrBB->getTerminator(), m_UnconditionalBr(SuccBB)))
   1946     return nullptr;
   1947 
   1948   // Validate the rest of constraint #1 by matching on the pred branch.
   1949   TerminatorInst *TI = PredBB->getTerminator();
   1950   BasicBlock *TrueBB, *FalseBB;
   1951   ICmpInst::Predicate Pred;
   1952   if (!match(TI, m_Br(m_ICmp(Pred, m_Specific(Op), m_Zero()), TrueBB, FalseBB)))
   1953     return nullptr;
   1954   if (Pred != ICmpInst::ICMP_EQ && Pred != ICmpInst::ICMP_NE)
   1955     return nullptr;
   1956 
   1957   // Validate constraint #3: Ensure the null case just falls through.
   1958   if (SuccBB != (Pred == ICmpInst::ICMP_EQ ? TrueBB : FalseBB))
   1959     return nullptr;
   1960   assert(FreeInstrBB == (Pred == ICmpInst::ICMP_EQ ? FalseBB : TrueBB) &&
   1961          "Broken CFG: missing edge from predecessor to successor");
   1962 
   1963   FI.moveBefore(TI);
   1964   return &FI;
   1965 }
   1966 
   1967 
   1968 Instruction *InstCombiner::visitFree(CallInst &FI) {
   1969   Value *Op = FI.getArgOperand(0);
   1970 
   1971   // free undef -> unreachable.
   1972   if (isa<UndefValue>(Op)) {
   1973     // Insert a new store to null because we cannot modify the CFG here.
   1974     Builder->CreateStore(ConstantInt::getTrue(FI.getContext()),
   1975                          UndefValue::get(Type::getInt1PtrTy(FI.getContext())));
   1976     return EraseInstFromFunction(FI);
   1977   }
   1978 
   1979   // If we have 'free null' delete the instruction.  This can happen in stl code
   1980   // when lots of inlining happens.
   1981   if (isa<ConstantPointerNull>(Op))
   1982     return EraseInstFromFunction(FI);
   1983 
   1984   // If we optimize for code size, try to move the call to free before the null
   1985   // test so that simplify cfg can remove the empty block and dead code
   1986   // elimination the branch. I.e., helps to turn something like:
   1987   // if (foo) free(foo);
   1988   // into
   1989   // free(foo);
   1990   if (MinimizeSize)
   1991     if (Instruction *I = tryToMoveFreeBeforeNullTest(FI))
   1992       return I;
   1993 
   1994   return nullptr;
   1995 }
   1996 
   1997 Instruction *InstCombiner::visitReturnInst(ReturnInst &RI) {
   1998   if (RI.getNumOperands() == 0) // ret void
   1999     return nullptr;
   2000 
   2001   Value *ResultOp = RI.getOperand(0);
   2002   Type *VTy = ResultOp->getType();
   2003   if (!VTy->isIntegerTy())
   2004     return nullptr;
   2005 
   2006   // There might be assume intrinsics dominating this return that completely
   2007   // determine the value. If so, constant fold it.
   2008   unsigned BitWidth = VTy->getPrimitiveSizeInBits();
   2009   APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
   2010   computeKnownBits(ResultOp, KnownZero, KnownOne, 0, &RI);
   2011   if ((KnownZero|KnownOne).isAllOnesValue())
   2012     RI.setOperand(0, Constant::getIntegerValue(VTy, KnownOne));
   2013 
   2014   return nullptr;
   2015 }
   2016 
   2017 Instruction *InstCombiner::visitBranchInst(BranchInst &BI) {
   2018   // Change br (not X), label True, label False to: br X, label False, True
   2019   Value *X = nullptr;
   2020   BasicBlock *TrueDest;
   2021   BasicBlock *FalseDest;
   2022   if (match(&BI, m_Br(m_Not(m_Value(X)), TrueDest, FalseDest)) &&
   2023       !isa<Constant>(X)) {
   2024     // Swap Destinations and condition...
   2025     BI.setCondition(X);
   2026     BI.swapSuccessors();
   2027     return &BI;
   2028   }
   2029 
   2030   // If the condition is irrelevant, remove the use so that other
   2031   // transforms on the condition become more effective.
   2032   if (BI.isConditional() &&
   2033       BI.getSuccessor(0) == BI.getSuccessor(1) &&
   2034       !isa<UndefValue>(BI.getCondition())) {
   2035     BI.setCondition(UndefValue::get(BI.getCondition()->getType()));
   2036     return &BI;
   2037   }
   2038 
   2039   // Canonicalize fcmp_one -> fcmp_oeq
   2040   FCmpInst::Predicate FPred; Value *Y;
   2041   if (match(&BI, m_Br(m_FCmp(FPred, m_Value(X), m_Value(Y)),
   2042                              TrueDest, FalseDest)) &&
   2043       BI.getCondition()->hasOneUse())
   2044     if (FPred == FCmpInst::FCMP_ONE || FPred == FCmpInst::FCMP_OLE ||
   2045         FPred == FCmpInst::FCMP_OGE) {
   2046       FCmpInst *Cond = cast<FCmpInst>(BI.getCondition());
   2047       Cond->setPredicate(FCmpInst::getInversePredicate(FPred));
   2048 
   2049       // Swap Destinations and condition.
   2050       BI.swapSuccessors();
   2051       Worklist.Add(Cond);
   2052       return &BI;
   2053     }
   2054 
   2055   // Canonicalize icmp_ne -> icmp_eq
   2056   ICmpInst::Predicate IPred;
   2057   if (match(&BI, m_Br(m_ICmp(IPred, m_Value(X), m_Value(Y)),
   2058                       TrueDest, FalseDest)) &&
   2059       BI.getCondition()->hasOneUse())
   2060     if (IPred == ICmpInst::ICMP_NE  || IPred == ICmpInst::ICMP_ULE ||
   2061         IPred == ICmpInst::ICMP_SLE || IPred == ICmpInst::ICMP_UGE ||
   2062         IPred == ICmpInst::ICMP_SGE) {
   2063       ICmpInst *Cond = cast<ICmpInst>(BI.getCondition());
   2064       Cond->setPredicate(ICmpInst::getInversePredicate(IPred));
   2065       // Swap Destinations and condition.
   2066       BI.swapSuccessors();
   2067       Worklist.Add(Cond);
   2068       return &BI;
   2069     }
   2070 
   2071   return nullptr;
   2072 }
   2073 
   2074 Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) {
   2075   Value *Cond = SI.getCondition();
   2076   unsigned BitWidth = cast<IntegerType>(Cond->getType())->getBitWidth();
   2077   APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
   2078   computeKnownBits(Cond, KnownZero, KnownOne, 0, &SI);
   2079   unsigned LeadingKnownZeros = KnownZero.countLeadingOnes();
   2080   unsigned LeadingKnownOnes = KnownOne.countLeadingOnes();
   2081 
   2082   // Compute the number of leading bits we can ignore.
   2083   for (auto &C : SI.cases()) {
   2084     LeadingKnownZeros = std::min(
   2085         LeadingKnownZeros, C.getCaseValue()->getValue().countLeadingZeros());
   2086     LeadingKnownOnes = std::min(
   2087         LeadingKnownOnes, C.getCaseValue()->getValue().countLeadingOnes());
   2088   }
   2089 
   2090   unsigned NewWidth = BitWidth - std::max(LeadingKnownZeros, LeadingKnownOnes);
   2091 
   2092   // Truncate the condition operand if the new type is equal to or larger than
   2093   // the largest legal integer type. We need to be conservative here since
   2094   // x86 generates redundant zero-extenstion instructions if the operand is
   2095   // truncated to i8 or i16.
   2096   bool TruncCond = false;
   2097   if (NewWidth > 0 && BitWidth > NewWidth &&
   2098       NewWidth >= DL.getLargestLegalIntTypeSize()) {
   2099     TruncCond = true;
   2100     IntegerType *Ty = IntegerType::get(SI.getContext(), NewWidth);
   2101     Builder->SetInsertPoint(&SI);
   2102     Value *NewCond = Builder->CreateTrunc(SI.getCondition(), Ty, "trunc");
   2103     SI.setCondition(NewCond);
   2104 
   2105     for (auto &C : SI.cases())
   2106       static_cast<SwitchInst::CaseIt *>(&C)->setValue(ConstantInt::get(
   2107           SI.getContext(), C.getCaseValue()->getValue().trunc(NewWidth)));
   2108   }
   2109 
   2110   if (Instruction *I = dyn_cast<Instruction>(Cond)) {
   2111     if (I->getOpcode() == Instruction::Add)
   2112       if (ConstantInt *AddRHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
   2113         // change 'switch (X+4) case 1:' into 'switch (X) case -3'
   2114         // Skip the first item since that's the default case.
   2115         for (SwitchInst::CaseIt i = SI.case_begin(), e = SI.case_end();
   2116              i != e; ++i) {
   2117           ConstantInt* CaseVal = i.getCaseValue();
   2118           Constant *LHS = CaseVal;
   2119           if (TruncCond)
   2120             LHS = LeadingKnownZeros
   2121                       ? ConstantExpr::getZExt(CaseVal, Cond->getType())
   2122                       : ConstantExpr::getSExt(CaseVal, Cond->getType());
   2123           Constant* NewCaseVal = ConstantExpr::getSub(LHS, AddRHS);
   2124           assert(isa<ConstantInt>(NewCaseVal) &&
   2125                  "Result of expression should be constant");
   2126           i.setValue(cast<ConstantInt>(NewCaseVal));
   2127         }
   2128         SI.setCondition(I->getOperand(0));
   2129         Worklist.Add(I);
   2130         return &SI;
   2131       }
   2132   }
   2133 
   2134   return TruncCond ? &SI : nullptr;
   2135 }
   2136 
   2137 Instruction *InstCombiner::visitExtractValueInst(ExtractValueInst &EV) {
   2138   Value *Agg = EV.getAggregateOperand();
   2139 
   2140   if (!EV.hasIndices())
   2141     return ReplaceInstUsesWith(EV, Agg);
   2142 
   2143   if (Constant *C = dyn_cast<Constant>(Agg)) {
   2144     if (Constant *C2 = C->getAggregateElement(*EV.idx_begin())) {
   2145       if (EV.getNumIndices() == 0)
   2146         return ReplaceInstUsesWith(EV, C2);
   2147       // Extract the remaining indices out of the constant indexed by the
   2148       // first index
   2149       return ExtractValueInst::Create(C2, EV.getIndices().slice(1));
   2150     }
   2151     return nullptr; // Can't handle other constants
   2152   }
   2153 
   2154   if (InsertValueInst *IV = dyn_cast<InsertValueInst>(Agg)) {
   2155     // We're extracting from an insertvalue instruction, compare the indices
   2156     const unsigned *exti, *exte, *insi, *inse;
   2157     for (exti = EV.idx_begin(), insi = IV->idx_begin(),
   2158          exte = EV.idx_end(), inse = IV->idx_end();
   2159          exti != exte && insi != inse;
   2160          ++exti, ++insi) {
   2161       if (*insi != *exti)
   2162         // The insert and extract both reference distinctly different elements.
   2163         // This means the extract is not influenced by the insert, and we can
   2164         // replace the aggregate operand of the extract with the aggregate
   2165         // operand of the insert. i.e., replace
   2166         // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
   2167         // %E = extractvalue { i32, { i32 } } %I, 0
   2168         // with
   2169         // %E = extractvalue { i32, { i32 } } %A, 0
   2170         return ExtractValueInst::Create(IV->getAggregateOperand(),
   2171                                         EV.getIndices());
   2172     }
   2173     if (exti == exte && insi == inse)
   2174       // Both iterators are at the end: Index lists are identical. Replace
   2175       // %B = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
   2176       // %C = extractvalue { i32, { i32 } } %B, 1, 0
   2177       // with "i32 42"
   2178       return ReplaceInstUsesWith(EV, IV->getInsertedValueOperand());
   2179     if (exti == exte) {
   2180       // The extract list is a prefix of the insert list. i.e. replace
   2181       // %I = insertvalue { i32, { i32 } } %A, i32 42, 1, 0
   2182       // %E = extractvalue { i32, { i32 } } %I, 1
   2183       // with
   2184       // %X = extractvalue { i32, { i32 } } %A, 1
   2185       // %E = insertvalue { i32 } %X, i32 42, 0
   2186       // by switching the order of the insert and extract (though the
   2187       // insertvalue should be left in, since it may have other uses).
   2188       Value *NewEV = Builder->CreateExtractValue(IV->getAggregateOperand(),
   2189                                                  EV.getIndices());
   2190       return InsertValueInst::Create(NewEV, IV->getInsertedValueOperand(),
   2191                                      makeArrayRef(insi, inse));
   2192     }
   2193     if (insi == inse)
   2194       // The insert list is a prefix of the extract list
   2195       // We can simply remove the common indices from the extract and make it
   2196       // operate on the inserted value instead of the insertvalue result.
   2197       // i.e., replace
   2198       // %I = insertvalue { i32, { i32 } } %A, { i32 } { i32 42 }, 1
   2199       // %E = extractvalue { i32, { i32 } } %I, 1, 0
   2200       // with
   2201       // %E extractvalue { i32 } { i32 42 }, 0
   2202       return ExtractValueInst::Create(IV->getInsertedValueOperand(),
   2203                                       makeArrayRef(exti, exte));
   2204   }
   2205   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Agg)) {
   2206     // We're extracting from an intrinsic, see if we're the only user, which
   2207     // allows us to simplify multiple result intrinsics to simpler things that
   2208     // just get one value.
   2209     if (II->hasOneUse()) {
   2210       // Check if we're grabbing the overflow bit or the result of a 'with
   2211       // overflow' intrinsic.  If it's the latter we can remove the intrinsic
   2212       // and replace it with a traditional binary instruction.
   2213       switch (II->getIntrinsicID()) {
   2214       case Intrinsic::uadd_with_overflow:
   2215       case Intrinsic::sadd_with_overflow:
   2216         if (*EV.idx_begin() == 0) {  // Normal result.
   2217           Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
   2218           ReplaceInstUsesWith(*II, UndefValue::get(II->getType()));
   2219           EraseInstFromFunction(*II);
   2220           return BinaryOperator::CreateAdd(LHS, RHS);
   2221         }
   2222 
   2223         // If the normal result of the add is dead, and the RHS is a constant,
   2224         // we can transform this into a range comparison.
   2225         // overflow = uadd a, -4  -->  overflow = icmp ugt a, 3
   2226         if (II->getIntrinsicID() == Intrinsic::uadd_with_overflow)
   2227           if (ConstantInt *CI = dyn_cast<ConstantInt>(II->getArgOperand(1)))
   2228             return new ICmpInst(ICmpInst::ICMP_UGT, II->getArgOperand(0),
   2229                                 ConstantExpr::getNot(CI));
   2230         break;
   2231       case Intrinsic::usub_with_overflow:
   2232       case Intrinsic::ssub_with_overflow:
   2233         if (*EV.idx_begin() == 0) {  // Normal result.
   2234           Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
   2235           ReplaceInstUsesWith(*II, UndefValue::get(II->getType()));
   2236           EraseInstFromFunction(*II);
   2237           return BinaryOperator::CreateSub(LHS, RHS);
   2238         }
   2239         break;
   2240       case Intrinsic::umul_with_overflow:
   2241       case Intrinsic::smul_with_overflow:
   2242         if (*EV.idx_begin() == 0) {  // Normal result.
   2243           Value *LHS = II->getArgOperand(0), *RHS = II->getArgOperand(1);
   2244           ReplaceInstUsesWith(*II, UndefValue::get(II->getType()));
   2245           EraseInstFromFunction(*II);
   2246           return BinaryOperator::CreateMul(LHS, RHS);
   2247         }
   2248         break;
   2249       default:
   2250         break;
   2251       }
   2252     }
   2253   }
   2254   if (LoadInst *L = dyn_cast<LoadInst>(Agg))
   2255     // If the (non-volatile) load only has one use, we can rewrite this to a
   2256     // load from a GEP. This reduces the size of the load.
   2257     // FIXME: If a load is used only by extractvalue instructions then this
   2258     //        could be done regardless of having multiple uses.
   2259     if (L->isSimple() && L->hasOneUse()) {
   2260       // extractvalue has integer indices, getelementptr has Value*s. Convert.
   2261       SmallVector<Value*, 4> Indices;
   2262       // Prefix an i32 0 since we need the first element.
   2263       Indices.push_back(Builder->getInt32(0));
   2264       for (ExtractValueInst::idx_iterator I = EV.idx_begin(), E = EV.idx_end();
   2265             I != E; ++I)
   2266         Indices.push_back(Builder->getInt32(*I));
   2267 
   2268       // We need to insert these at the location of the old load, not at that of
   2269       // the extractvalue.
   2270       Builder->SetInsertPoint(L->getParent(), L);
   2271       Value *GEP = Builder->CreateInBoundsGEP(L->getType(),
   2272                                               L->getPointerOperand(), Indices);
   2273       // Returning the load directly will cause the main loop to insert it in
   2274       // the wrong spot, so use ReplaceInstUsesWith().
   2275       return ReplaceInstUsesWith(EV, Builder->CreateLoad(GEP));
   2276     }
   2277   // We could simplify extracts from other values. Note that nested extracts may
   2278   // already be simplified implicitly by the above: extract (extract (insert) )
   2279   // will be translated into extract ( insert ( extract ) ) first and then just
   2280   // the value inserted, if appropriate. Similarly for extracts from single-use
   2281   // loads: extract (extract (load)) will be translated to extract (load (gep))
   2282   // and if again single-use then via load (gep (gep)) to load (gep).
   2283   // However, double extracts from e.g. function arguments or return values
   2284   // aren't handled yet.
   2285   return nullptr;
   2286 }
   2287 
   2288 /// isCatchAll - Return 'true' if the given typeinfo will match anything.
   2289 static bool isCatchAll(EHPersonality Personality, Constant *TypeInfo) {
   2290   switch (Personality) {
   2291   case EHPersonality::GNU_C:
   2292     // The GCC C EH personality only exists to support cleanups, so it's not
   2293     // clear what the semantics of catch clauses are.
   2294     return false;
   2295   case EHPersonality::Unknown:
   2296     return false;
   2297   case EHPersonality::GNU_Ada:
   2298     // While __gnat_all_others_value will match any Ada exception, it doesn't
   2299     // match foreign exceptions (or didn't, before gcc-4.7).
   2300     return false;
   2301   case EHPersonality::GNU_CXX:
   2302   case EHPersonality::GNU_ObjC:
   2303   case EHPersonality::MSVC_X86SEH:
   2304   case EHPersonality::MSVC_Win64SEH:
   2305   case EHPersonality::MSVC_CXX:
   2306     return TypeInfo->isNullValue();
   2307   }
   2308   llvm_unreachable("invalid enum");
   2309 }
   2310 
   2311 static bool shorter_filter(const Value *LHS, const Value *RHS) {
   2312   return
   2313     cast<ArrayType>(LHS->getType())->getNumElements()
   2314   <
   2315     cast<ArrayType>(RHS->getType())->getNumElements();
   2316 }
   2317 
   2318 Instruction *InstCombiner::visitLandingPadInst(LandingPadInst &LI) {
   2319   // The logic here should be correct for any real-world personality function.
   2320   // However if that turns out not to be true, the offending logic can always
   2321   // be conditioned on the personality function, like the catch-all logic is.
   2322   EHPersonality Personality = classifyEHPersonality(LI.getPersonalityFn());
   2323 
   2324   // Simplify the list of clauses, eg by removing repeated catch clauses
   2325   // (these are often created by inlining).
   2326   bool MakeNewInstruction = false; // If true, recreate using the following:
   2327   SmallVector<Constant *, 16> NewClauses; // - Clauses for the new instruction;
   2328   bool CleanupFlag = LI.isCleanup();   // - The new instruction is a cleanup.
   2329 
   2330   SmallPtrSet<Value *, 16> AlreadyCaught; // Typeinfos known caught already.
   2331   for (unsigned i = 0, e = LI.getNumClauses(); i != e; ++i) {
   2332     bool isLastClause = i + 1 == e;
   2333     if (LI.isCatch(i)) {
   2334       // A catch clause.
   2335       Constant *CatchClause = LI.getClause(i);
   2336       Constant *TypeInfo = CatchClause->stripPointerCasts();
   2337 
   2338       // If we already saw this clause, there is no point in having a second
   2339       // copy of it.
   2340       if (AlreadyCaught.insert(TypeInfo).second) {
   2341         // This catch clause was not already seen.
   2342         NewClauses.push_back(CatchClause);
   2343       } else {
   2344         // Repeated catch clause - drop the redundant copy.
   2345         MakeNewInstruction = true;
   2346       }
   2347 
   2348       // If this is a catch-all then there is no point in keeping any following
   2349       // clauses or marking the landingpad as having a cleanup.
   2350       if (isCatchAll(Personality, TypeInfo)) {
   2351         if (!isLastClause)
   2352           MakeNewInstruction = true;
   2353         CleanupFlag = false;
   2354         break;
   2355       }
   2356     } else {
   2357       // A filter clause.  If any of the filter elements were already caught
   2358       // then they can be dropped from the filter.  It is tempting to try to
   2359       // exploit the filter further by saying that any typeinfo that does not
   2360       // occur in the filter can't be caught later (and thus can be dropped).
   2361       // However this would be wrong, since typeinfos can match without being
   2362       // equal (for example if one represents a C++ class, and the other some
   2363       // class derived from it).
   2364       assert(LI.isFilter(i) && "Unsupported landingpad clause!");
   2365       Constant *FilterClause = LI.getClause(i);
   2366       ArrayType *FilterType = cast<ArrayType>(FilterClause->getType());
   2367       unsigned NumTypeInfos = FilterType->getNumElements();
   2368 
   2369       // An empty filter catches everything, so there is no point in keeping any
   2370       // following clauses or marking the landingpad as having a cleanup.  By
   2371       // dealing with this case here the following code is made a bit simpler.
   2372       if (!NumTypeInfos) {
   2373         NewClauses.push_back(FilterClause);
   2374         if (!isLastClause)
   2375           MakeNewInstruction = true;
   2376         CleanupFlag = false;
   2377         break;
   2378       }
   2379 
   2380       bool MakeNewFilter = false; // If true, make a new filter.
   2381       SmallVector<Constant *, 16> NewFilterElts; // New elements.
   2382       if (isa<ConstantAggregateZero>(FilterClause)) {
   2383         // Not an empty filter - it contains at least one null typeinfo.
   2384         assert(NumTypeInfos > 0 && "Should have handled empty filter already!");
   2385         Constant *TypeInfo =
   2386           Constant::getNullValue(FilterType->getElementType());
   2387         // If this typeinfo is a catch-all then the filter can never match.
   2388         if (isCatchAll(Personality, TypeInfo)) {
   2389           // Throw the filter away.
   2390           MakeNewInstruction = true;
   2391           continue;
   2392         }
   2393 
   2394         // There is no point in having multiple copies of this typeinfo, so
   2395         // discard all but the first copy if there is more than one.
   2396         NewFilterElts.push_back(TypeInfo);
   2397         if (NumTypeInfos > 1)
   2398           MakeNewFilter = true;
   2399       } else {
   2400         ConstantArray *Filter = cast<ConstantArray>(FilterClause);
   2401         SmallPtrSet<Value *, 16> SeenInFilter; // For uniquing the elements.
   2402         NewFilterElts.reserve(NumTypeInfos);
   2403 
   2404         // Remove any filter elements that were already caught or that already
   2405         // occurred in the filter.  While there, see if any of the elements are
   2406         // catch-alls.  If so, the filter can be discarded.
   2407         bool SawCatchAll = false;
   2408         for (unsigned j = 0; j != NumTypeInfos; ++j) {
   2409           Constant *Elt = Filter->getOperand(j);
   2410           Constant *TypeInfo = Elt->stripPointerCasts();
   2411           if (isCatchAll(Personality, TypeInfo)) {
   2412             // This element is a catch-all.  Bail out, noting this fact.
   2413             SawCatchAll = true;
   2414             break;
   2415           }
   2416           if (AlreadyCaught.count(TypeInfo))
   2417             // Already caught by an earlier clause, so having it in the filter
   2418             // is pointless.
   2419             continue;
   2420           // There is no point in having multiple copies of the same typeinfo in
   2421           // a filter, so only add it if we didn't already.
   2422           if (SeenInFilter.insert(TypeInfo).second)
   2423             NewFilterElts.push_back(cast<Constant>(Elt));
   2424         }
   2425         // A filter containing a catch-all cannot match anything by definition.
   2426         if (SawCatchAll) {
   2427           // Throw the filter away.
   2428           MakeNewInstruction = true;
   2429           continue;
   2430         }
   2431 
   2432         // If we dropped something from the filter, make a new one.
   2433         if (NewFilterElts.size() < NumTypeInfos)
   2434           MakeNewFilter = true;
   2435       }
   2436       if (MakeNewFilter) {
   2437         FilterType = ArrayType::get(FilterType->getElementType(),
   2438                                     NewFilterElts.size());
   2439         FilterClause = ConstantArray::get(FilterType, NewFilterElts);
   2440         MakeNewInstruction = true;
   2441       }
   2442 
   2443       NewClauses.push_back(FilterClause);
   2444 
   2445       // If the new filter is empty then it will catch everything so there is
   2446       // no point in keeping any following clauses or marking the landingpad
   2447       // as having a cleanup.  The case of the original filter being empty was
   2448       // already handled above.
   2449       if (MakeNewFilter && !NewFilterElts.size()) {
   2450         assert(MakeNewInstruction && "New filter but not a new instruction!");
   2451         CleanupFlag = false;
   2452         break;
   2453       }
   2454     }
   2455   }
   2456 
   2457   // If several filters occur in a row then reorder them so that the shortest
   2458   // filters come first (those with the smallest number of elements).  This is
   2459   // advantageous because shorter filters are more likely to match, speeding up
   2460   // unwinding, but mostly because it increases the effectiveness of the other
   2461   // filter optimizations below.
   2462   for (unsigned i = 0, e = NewClauses.size(); i + 1 < e; ) {
   2463     unsigned j;
   2464     // Find the maximal 'j' s.t. the range [i, j) consists entirely of filters.
   2465     for (j = i; j != e; ++j)
   2466       if (!isa<ArrayType>(NewClauses[j]->getType()))
   2467         break;
   2468 
   2469     // Check whether the filters are already sorted by length.  We need to know
   2470     // if sorting them is actually going to do anything so that we only make a
   2471     // new landingpad instruction if it does.
   2472     for (unsigned k = i; k + 1 < j; ++k)
   2473       if (shorter_filter(NewClauses[k+1], NewClauses[k])) {
   2474         // Not sorted, so sort the filters now.  Doing an unstable sort would be
   2475         // correct too but reordering filters pointlessly might confuse users.
   2476         std::stable_sort(NewClauses.begin() + i, NewClauses.begin() + j,
   2477                          shorter_filter);
   2478         MakeNewInstruction = true;
   2479         break;
   2480       }
   2481 
   2482     // Look for the next batch of filters.
   2483     i = j + 1;
   2484   }
   2485 
   2486   // If typeinfos matched if and only if equal, then the elements of a filter L
   2487   // that occurs later than a filter F could be replaced by the intersection of
   2488   // the elements of F and L.  In reality two typeinfos can match without being
   2489   // equal (for example if one represents a C++ class, and the other some class
   2490   // derived from it) so it would be wrong to perform this transform in general.
   2491   // However the transform is correct and useful if F is a subset of L.  In that
   2492   // case L can be replaced by F, and thus removed altogether since repeating a
   2493   // filter is pointless.  So here we look at all pairs of filters F and L where
   2494   // L follows F in the list of clauses, and remove L if every element of F is
   2495   // an element of L.  This can occur when inlining C++ functions with exception
   2496   // specifications.
   2497   for (unsigned i = 0; i + 1 < NewClauses.size(); ++i) {
   2498     // Examine each filter in turn.
   2499     Value *Filter = NewClauses[i];
   2500     ArrayType *FTy = dyn_cast<ArrayType>(Filter->getType());
   2501     if (!FTy)
   2502       // Not a filter - skip it.
   2503       continue;
   2504     unsigned FElts = FTy->getNumElements();
   2505     // Examine each filter following this one.  Doing this backwards means that
   2506     // we don't have to worry about filters disappearing under us when removed.
   2507     for (unsigned j = NewClauses.size() - 1; j != i; --j) {
   2508       Value *LFilter = NewClauses[j];
   2509       ArrayType *LTy = dyn_cast<ArrayType>(LFilter->getType());
   2510       if (!LTy)
   2511         // Not a filter - skip it.
   2512         continue;
   2513       // If Filter is a subset of LFilter, i.e. every element of Filter is also
   2514       // an element of LFilter, then discard LFilter.
   2515       SmallVectorImpl<Constant *>::iterator J = NewClauses.begin() + j;
   2516       // If Filter is empty then it is a subset of LFilter.
   2517       if (!FElts) {
   2518         // Discard LFilter.
   2519         NewClauses.erase(J);
   2520         MakeNewInstruction = true;
   2521         // Move on to the next filter.
   2522         continue;
   2523       }
   2524       unsigned LElts = LTy->getNumElements();
   2525       // If Filter is longer than LFilter then it cannot be a subset of it.
   2526       if (FElts > LElts)
   2527         // Move on to the next filter.
   2528         continue;
   2529       // At this point we know that LFilter has at least one element.
   2530       if (isa<ConstantAggregateZero>(LFilter)) { // LFilter only contains zeros.
   2531         // Filter is a subset of LFilter iff Filter contains only zeros (as we
   2532         // already know that Filter is not longer than LFilter).
   2533         if (isa<ConstantAggregateZero>(Filter)) {
   2534           assert(FElts <= LElts && "Should have handled this case earlier!");
   2535           // Discard LFilter.
   2536           NewClauses.erase(J);
   2537           MakeNewInstruction = true;
   2538         }
   2539         // Move on to the next filter.
   2540         continue;
   2541       }
   2542       ConstantArray *LArray = cast<ConstantArray>(LFilter);
   2543       if (isa<ConstantAggregateZero>(Filter)) { // Filter only contains zeros.
   2544         // Since Filter is non-empty and contains only zeros, it is a subset of
   2545         // LFilter iff LFilter contains a zero.
   2546         assert(FElts > 0 && "Should have eliminated the empty filter earlier!");
   2547         for (unsigned l = 0; l != LElts; ++l)
   2548           if (LArray->getOperand(l)->isNullValue()) {
   2549             // LFilter contains a zero - discard it.
   2550             NewClauses.erase(J);
   2551             MakeNewInstruction = true;
   2552             break;
   2553           }
   2554         // Move on to the next filter.
   2555         continue;
   2556       }
   2557       // At this point we know that both filters are ConstantArrays.  Loop over
   2558       // operands to see whether every element of Filter is also an element of
   2559       // LFilter.  Since filters tend to be short this is probably faster than
   2560       // using a method that scales nicely.
   2561       ConstantArray *FArray = cast<ConstantArray>(Filter);
   2562       bool AllFound = true;
   2563       for (unsigned f = 0; f != FElts; ++f) {
   2564         Value *FTypeInfo = FArray->getOperand(f)->stripPointerCasts();
   2565         AllFound = false;
   2566         for (unsigned l = 0; l != LElts; ++l) {
   2567           Value *LTypeInfo = LArray->getOperand(l)->stripPointerCasts();
   2568           if (LTypeInfo == FTypeInfo) {
   2569             AllFound = true;
   2570             break;
   2571           }
   2572         }
   2573         if (!AllFound)
   2574           break;
   2575       }
   2576       if (AllFound) {
   2577         // Discard LFilter.
   2578         NewClauses.erase(J);
   2579         MakeNewInstruction = true;
   2580       }
   2581       // Move on to the next filter.
   2582     }
   2583   }
   2584 
   2585   // If we changed any of the clauses, replace the old landingpad instruction
   2586   // with a new one.
   2587   if (MakeNewInstruction) {
   2588     LandingPadInst *NLI = LandingPadInst::Create(LI.getType(),
   2589                                                  LI.getPersonalityFn(),
   2590                                                  NewClauses.size());
   2591     for (unsigned i = 0, e = NewClauses.size(); i != e; ++i)
   2592       NLI->addClause(NewClauses[i]);
   2593     // A landing pad with no clauses must have the cleanup flag set.  It is
   2594     // theoretically possible, though highly unlikely, that we eliminated all
   2595     // clauses.  If so, force the cleanup flag to true.
   2596     if (NewClauses.empty())
   2597       CleanupFlag = true;
   2598     NLI->setCleanup(CleanupFlag);
   2599     return NLI;
   2600   }
   2601 
   2602   // Even if none of the clauses changed, we may nonetheless have understood
   2603   // that the cleanup flag is pointless.  Clear it if so.
   2604   if (LI.isCleanup() != CleanupFlag) {
   2605     assert(!CleanupFlag && "Adding a cleanup, not removing one?!");
   2606     LI.setCleanup(CleanupFlag);
   2607     return &LI;
   2608   }
   2609 
   2610   return nullptr;
   2611 }
   2612 
   2613 /// TryToSinkInstruction - Try to move the specified instruction from its
   2614 /// current block into the beginning of DestBlock, which can only happen if it's
   2615 /// safe to move the instruction past all of the instructions between it and the
   2616 /// end of its block.
   2617 static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) {
   2618   assert(I->hasOneUse() && "Invariants didn't hold!");
   2619 
   2620   // Cannot move control-flow-involving, volatile loads, vaarg, etc.
   2621   if (isa<PHINode>(I) || isa<LandingPadInst>(I) || I->mayHaveSideEffects() ||
   2622       isa<TerminatorInst>(I))
   2623     return false;
   2624 
   2625   // Do not sink alloca instructions out of the entry block.
   2626   if (isa<AllocaInst>(I) && I->getParent() ==
   2627         &DestBlock->getParent()->getEntryBlock())
   2628     return false;
   2629 
   2630   // We can only sink load instructions if there is nothing between the load and
   2631   // the end of block that could change the value.
   2632   if (I->mayReadFromMemory()) {
   2633     for (BasicBlock::iterator Scan = I, E = I->getParent()->end();
   2634          Scan != E; ++Scan)
   2635       if (Scan->mayWriteToMemory())
   2636         return false;
   2637   }
   2638 
   2639   BasicBlock::iterator InsertPos = DestBlock->getFirstInsertionPt();
   2640   I->moveBefore(InsertPos);
   2641   ++NumSunkInst;
   2642   return true;
   2643 }
   2644 
   2645 bool InstCombiner::run() {
   2646   while (!Worklist.isEmpty()) {
   2647     Instruction *I = Worklist.RemoveOne();
   2648     if (I == nullptr) continue;  // skip null values.
   2649 
   2650     // Check to see if we can DCE the instruction.
   2651     if (isInstructionTriviallyDead(I, TLI)) {
   2652       DEBUG(dbgs() << "IC: DCE: " << *I << '\n');
   2653       EraseInstFromFunction(*I);
   2654       ++NumDeadInst;
   2655       MadeIRChange = true;
   2656       continue;
   2657     }
   2658 
   2659     // Instruction isn't dead, see if we can constant propagate it.
   2660     if (!I->use_empty() && isa<Constant>(I->getOperand(0))) {
   2661       if (Constant *C = ConstantFoldInstruction(I, DL, TLI)) {
   2662         DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: " << *I << '\n');
   2663 
   2664         // Add operands to the worklist.
   2665         ReplaceInstUsesWith(*I, C);
   2666         ++NumConstProp;
   2667         EraseInstFromFunction(*I);
   2668         MadeIRChange = true;
   2669         continue;
   2670       }
   2671     }
   2672 
   2673     // See if we can trivially sink this instruction to a successor basic block.
   2674     if (I->hasOneUse()) {
   2675       BasicBlock *BB = I->getParent();
   2676       Instruction *UserInst = cast<Instruction>(*I->user_begin());
   2677       BasicBlock *UserParent;
   2678 
   2679       // Get the block the use occurs in.
   2680       if (PHINode *PN = dyn_cast<PHINode>(UserInst))
   2681         UserParent = PN->getIncomingBlock(*I->use_begin());
   2682       else
   2683         UserParent = UserInst->getParent();
   2684 
   2685       if (UserParent != BB) {
   2686         bool UserIsSuccessor = false;
   2687         // See if the user is one of our successors.
   2688         for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI)
   2689           if (*SI == UserParent) {
   2690             UserIsSuccessor = true;
   2691             break;
   2692           }
   2693 
   2694         // If the user is one of our immediate successors, and if that successor
   2695         // only has us as a predecessors (we'd have to split the critical edge
   2696         // otherwise), we can keep going.
   2697         if (UserIsSuccessor && UserParent->getSinglePredecessor()) {
   2698           // Okay, the CFG is simple enough, try to sink this instruction.
   2699           if (TryToSinkInstruction(I, UserParent)) {
   2700             MadeIRChange = true;
   2701             // We'll add uses of the sunk instruction below, but since sinking
   2702             // can expose opportunities for it's *operands* add them to the
   2703             // worklist
   2704             for (Use &U : I->operands())
   2705               if (Instruction *OpI = dyn_cast<Instruction>(U.get()))
   2706                 Worklist.Add(OpI);
   2707           }
   2708         }
   2709       }
   2710     }
   2711 
   2712     // Now that we have an instruction, try combining it to simplify it.
   2713     Builder->SetInsertPoint(I->getParent(), I);
   2714     Builder->SetCurrentDebugLocation(I->getDebugLoc());
   2715 
   2716 #ifndef NDEBUG
   2717     std::string OrigI;
   2718 #endif
   2719     DEBUG(raw_string_ostream SS(OrigI); I->print(SS); OrigI = SS.str(););
   2720     DEBUG(dbgs() << "IC: Visiting: " << OrigI << '\n');
   2721 
   2722     if (Instruction *Result = visit(*I)) {
   2723       ++NumCombined;
   2724       // Should we replace the old instruction with a new one?
   2725       if (Result != I) {
   2726         DEBUG(dbgs() << "IC: Old = " << *I << '\n'
   2727                      << "    New = " << *Result << '\n');
   2728 
   2729         if (I->getDebugLoc())
   2730           Result->setDebugLoc(I->getDebugLoc());
   2731         // Everything uses the new instruction now.
   2732         I->replaceAllUsesWith(Result);
   2733 
   2734         // Move the name to the new instruction first.
   2735         Result->takeName(I);
   2736 
   2737         // Push the new instruction and any users onto the worklist.
   2738         Worklist.Add(Result);
   2739         Worklist.AddUsersToWorkList(*Result);
   2740 
   2741         // Insert the new instruction into the basic block...
   2742         BasicBlock *InstParent = I->getParent();
   2743         BasicBlock::iterator InsertPos = I;
   2744 
   2745         // If we replace a PHI with something that isn't a PHI, fix up the
   2746         // insertion point.
   2747         if (!isa<PHINode>(Result) && isa<PHINode>(InsertPos))
   2748           InsertPos = InstParent->getFirstInsertionPt();
   2749 
   2750         InstParent->getInstList().insert(InsertPos, Result);
   2751 
   2752         EraseInstFromFunction(*I);
   2753       } else {
   2754 #ifndef NDEBUG
   2755         DEBUG(dbgs() << "IC: Mod = " << OrigI << '\n'
   2756                      << "    New = " << *I << '\n');
   2757 #endif
   2758 
   2759         // If the instruction was modified, it's possible that it is now dead.
   2760         // if so, remove it.
   2761         if (isInstructionTriviallyDead(I, TLI)) {
   2762           EraseInstFromFunction(*I);
   2763         } else {
   2764           Worklist.Add(I);
   2765           Worklist.AddUsersToWorkList(*I);
   2766         }
   2767       }
   2768       MadeIRChange = true;
   2769     }
   2770   }
   2771 
   2772   Worklist.Zap();
   2773   return MadeIRChange;
   2774 }
   2775 
   2776 /// AddReachableCodeToWorklist - Walk the function in depth-first order, adding
   2777 /// all reachable code to the worklist.
   2778 ///
   2779 /// This has a couple of tricks to make the code faster and more powerful.  In
   2780 /// particular, we constant fold and DCE instructions as we go, to avoid adding
   2781 /// them to the worklist (this significantly speeds up instcombine on code where
   2782 /// many instructions are dead or constant).  Additionally, if we find a branch
   2783 /// whose condition is a known constant, we only visit the reachable successors.
   2784 ///
   2785 static bool AddReachableCodeToWorklist(BasicBlock *BB, const DataLayout &DL,
   2786                                        SmallPtrSetImpl<BasicBlock *> &Visited,
   2787                                        InstCombineWorklist &ICWorklist,
   2788                                        const TargetLibraryInfo *TLI) {
   2789   bool MadeIRChange = false;
   2790   SmallVector<BasicBlock*, 256> Worklist;
   2791   Worklist.push_back(BB);
   2792 
   2793   SmallVector<Instruction*, 128> InstrsForInstCombineWorklist;
   2794   DenseMap<ConstantExpr*, Constant*> FoldedConstants;
   2795 
   2796   do {
   2797     BB = Worklist.pop_back_val();
   2798 
   2799     // We have now visited this block!  If we've already been here, ignore it.
   2800     if (!Visited.insert(BB).second)
   2801       continue;
   2802 
   2803     for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
   2804       Instruction *Inst = BBI++;
   2805 
   2806       // DCE instruction if trivially dead.
   2807       if (isInstructionTriviallyDead(Inst, TLI)) {
   2808         ++NumDeadInst;
   2809         DEBUG(dbgs() << "IC: DCE: " << *Inst << '\n');
   2810         Inst->eraseFromParent();
   2811         continue;
   2812       }
   2813 
   2814       // ConstantProp instruction if trivially constant.
   2815       if (!Inst->use_empty() && isa<Constant>(Inst->getOperand(0)))
   2816         if (Constant *C = ConstantFoldInstruction(Inst, DL, TLI)) {
   2817           DEBUG(dbgs() << "IC: ConstFold to: " << *C << " from: "
   2818                        << *Inst << '\n');
   2819           Inst->replaceAllUsesWith(C);
   2820           ++NumConstProp;
   2821           Inst->eraseFromParent();
   2822           continue;
   2823         }
   2824 
   2825       // See if we can constant fold its operands.
   2826       for (User::op_iterator i = Inst->op_begin(), e = Inst->op_end(); i != e;
   2827            ++i) {
   2828         ConstantExpr *CE = dyn_cast<ConstantExpr>(i);
   2829         if (CE == nullptr)
   2830           continue;
   2831 
   2832         Constant *&FoldRes = FoldedConstants[CE];
   2833         if (!FoldRes)
   2834           FoldRes = ConstantFoldConstantExpression(CE, DL, TLI);
   2835         if (!FoldRes)
   2836           FoldRes = CE;
   2837 
   2838         if (FoldRes != CE) {
   2839           *i = FoldRes;
   2840           MadeIRChange = true;
   2841         }
   2842       }
   2843 
   2844       InstrsForInstCombineWorklist.push_back(Inst);
   2845     }
   2846 
   2847     // Recursively visit successors.  If this is a branch or switch on a
   2848     // constant, only visit the reachable successor.
   2849     TerminatorInst *TI = BB->getTerminator();
   2850     if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
   2851       if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) {
   2852         bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue();
   2853         BasicBlock *ReachableBB = BI->getSuccessor(!CondVal);
   2854         Worklist.push_back(ReachableBB);
   2855         continue;
   2856       }
   2857     } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
   2858       if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) {
   2859         // See if this is an explicit destination.
   2860         for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
   2861              i != e; ++i)
   2862           if (i.getCaseValue() == Cond) {
   2863             BasicBlock *ReachableBB = i.getCaseSuccessor();
   2864             Worklist.push_back(ReachableBB);
   2865             continue;
   2866           }
   2867 
   2868         // Otherwise it is the default destination.
   2869         Worklist.push_back(SI->getDefaultDest());
   2870         continue;
   2871       }
   2872     }
   2873 
   2874     for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
   2875       Worklist.push_back(TI->getSuccessor(i));
   2876   } while (!Worklist.empty());
   2877 
   2878   // Once we've found all of the instructions to add to instcombine's worklist,
   2879   // add them in reverse order.  This way instcombine will visit from the top
   2880   // of the function down.  This jives well with the way that it adds all uses
   2881   // of instructions to the worklist after doing a transformation, thus avoiding
   2882   // some N^2 behavior in pathological cases.
   2883   ICWorklist.AddInitialGroup(&InstrsForInstCombineWorklist[0],
   2884                              InstrsForInstCombineWorklist.size());
   2885 
   2886   return MadeIRChange;
   2887 }
   2888 
   2889 /// \brief Populate the IC worklist from a function, and prune any dead basic
   2890 /// blocks discovered in the process.
   2891 ///
   2892 /// This also does basic constant propagation and other forward fixing to make
   2893 /// the combiner itself run much faster.
   2894 static bool prepareICWorklistFromFunction(Function &F, const DataLayout &DL,
   2895                                           TargetLibraryInfo *TLI,
   2896                                           InstCombineWorklist &ICWorklist) {
   2897   bool MadeIRChange = false;
   2898 
   2899   // Do a depth-first traversal of the function, populate the worklist with
   2900   // the reachable instructions.  Ignore blocks that are not reachable.  Keep
   2901   // track of which blocks we visit.
   2902   SmallPtrSet<BasicBlock *, 64> Visited;
   2903   MadeIRChange |=
   2904       AddReachableCodeToWorklist(F.begin(), DL, Visited, ICWorklist, TLI);
   2905 
   2906   // Do a quick scan over the function.  If we find any blocks that are
   2907   // unreachable, remove any instructions inside of them.  This prevents
   2908   // the instcombine code from having to deal with some bad special cases.
   2909   for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
   2910     if (Visited.count(BB))
   2911       continue;
   2912 
   2913     // Delete the instructions backwards, as it has a reduced likelihood of
   2914     // having to update as many def-use and use-def chains.
   2915     Instruction *EndInst = BB->getTerminator(); // Last not to be deleted.
   2916     while (EndInst != BB->begin()) {
   2917       // Delete the next to last instruction.
   2918       BasicBlock::iterator I = EndInst;
   2919       Instruction *Inst = --I;
   2920       if (!Inst->use_empty())
   2921         Inst->replaceAllUsesWith(UndefValue::get(Inst->getType()));
   2922       if (isa<LandingPadInst>(Inst)) {
   2923         EndInst = Inst;
   2924         continue;
   2925       }
   2926       if (!isa<DbgInfoIntrinsic>(Inst)) {
   2927         ++NumDeadInst;
   2928         MadeIRChange = true;
   2929       }
   2930       Inst->eraseFromParent();
   2931     }
   2932   }
   2933 
   2934   return MadeIRChange;
   2935 }
   2936 
   2937 static bool
   2938 combineInstructionsOverFunction(Function &F, InstCombineWorklist &Worklist,
   2939                                 AssumptionCache &AC, TargetLibraryInfo &TLI,
   2940                                 DominatorTree &DT, LoopInfo *LI = nullptr) {
   2941   // Minimizing size?
   2942   bool MinimizeSize = F.hasFnAttribute(Attribute::MinSize);
   2943   auto &DL = F.getParent()->getDataLayout();
   2944 
   2945   /// Builder - This is an IRBuilder that automatically inserts new
   2946   /// instructions into the worklist when they are created.
   2947   IRBuilder<true, TargetFolder, InstCombineIRInserter> Builder(
   2948       F.getContext(), TargetFolder(DL), InstCombineIRInserter(Worklist, &AC));
   2949 
   2950   // Lower dbg.declare intrinsics otherwise their value may be clobbered
   2951   // by instcombiner.
   2952   bool DbgDeclaresChanged = LowerDbgDeclare(F);
   2953 
   2954   // Iterate while there is work to do.
   2955   int Iteration = 0;
   2956   for (;;) {
   2957     ++Iteration;
   2958     DEBUG(dbgs() << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on "
   2959                  << F.getName() << "\n");
   2960 
   2961     bool Changed = false;
   2962     if (prepareICWorklistFromFunction(F, DL, &TLI, Worklist))
   2963       Changed = true;
   2964 
   2965     InstCombiner IC(Worklist, &Builder, MinimizeSize, &AC, &TLI, &DT, DL, LI);
   2966     if (IC.run())
   2967       Changed = true;
   2968 
   2969     if (!Changed)
   2970       break;
   2971   }
   2972 
   2973   return DbgDeclaresChanged || Iteration > 1;
   2974 }
   2975 
   2976 PreservedAnalyses InstCombinePass::run(Function &F,
   2977                                        AnalysisManager<Function> *AM) {
   2978   auto &AC = AM->getResult<AssumptionAnalysis>(F);
   2979   auto &DT = AM->getResult<DominatorTreeAnalysis>(F);
   2980   auto &TLI = AM->getResult<TargetLibraryAnalysis>(F);
   2981 
   2982   auto *LI = AM->getCachedResult<LoopAnalysis>(F);
   2983 
   2984   if (!combineInstructionsOverFunction(F, Worklist, AC, TLI, DT, LI))
   2985     // No changes, all analyses are preserved.
   2986     return PreservedAnalyses::all();
   2987 
   2988   // Mark all the analyses that instcombine updates as preserved.
   2989   // FIXME: Need a way to preserve CFG analyses here!
   2990   PreservedAnalyses PA;
   2991   PA.preserve<DominatorTreeAnalysis>();
   2992   return PA;
   2993 }
   2994 
   2995 namespace {
   2996 /// \brief The legacy pass manager's instcombine pass.
   2997 ///
   2998 /// This is a basic whole-function wrapper around the instcombine utility. It
   2999 /// will try to combine all instructions in the function.
   3000 class InstructionCombiningPass : public FunctionPass {
   3001   InstCombineWorklist Worklist;
   3002 
   3003 public:
   3004   static char ID; // Pass identification, replacement for typeid
   3005 
   3006   InstructionCombiningPass() : FunctionPass(ID) {
   3007     initializeInstructionCombiningPassPass(*PassRegistry::getPassRegistry());
   3008   }
   3009 
   3010   void getAnalysisUsage(AnalysisUsage &AU) const override;
   3011   bool runOnFunction(Function &F) override;
   3012 };
   3013 }
   3014 
   3015 void InstructionCombiningPass::getAnalysisUsage(AnalysisUsage &AU) const {
   3016   AU.setPreservesCFG();
   3017   AU.addRequired<AssumptionCacheTracker>();
   3018   AU.addRequired<TargetLibraryInfoWrapperPass>();
   3019   AU.addRequired<DominatorTreeWrapperPass>();
   3020   AU.addPreserved<DominatorTreeWrapperPass>();
   3021 }
   3022 
   3023 bool InstructionCombiningPass::runOnFunction(Function &F) {
   3024   if (skipOptnoneFunction(F))
   3025     return false;
   3026 
   3027   // Required analyses.
   3028   auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
   3029   auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
   3030   auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
   3031 
   3032   // Optional analyses.
   3033   auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
   3034   auto *LI = LIWP ? &LIWP->getLoopInfo() : nullptr;
   3035 
   3036   return combineInstructionsOverFunction(F, Worklist, AC, TLI, DT, LI);
   3037 }
   3038 
   3039 char InstructionCombiningPass::ID = 0;
   3040 INITIALIZE_PASS_BEGIN(InstructionCombiningPass, "instcombine",
   3041                       "Combine redundant instructions", false, false)
   3042 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
   3043 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
   3044 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
   3045 INITIALIZE_PASS_END(InstructionCombiningPass, "instcombine",
   3046                     "Combine redundant instructions", false, false)
   3047 
   3048 // Initialization Routines
   3049 void llvm::initializeInstCombine(PassRegistry &Registry) {
   3050   initializeInstructionCombiningPassPass(Registry);
   3051 }
   3052 
   3053 void LLVMInitializeInstCombine(LLVMPassRegistryRef R) {
   3054   initializeInstructionCombiningPassPass(*unwrap(R));
   3055 }
   3056 
   3057 FunctionPass *llvm::createInstructionCombiningPass() {
   3058   return new InstructionCombiningPass();
   3059 }
   3060