Home | History | Annotate | Download | only in SelectionDAG
      1 //===-- FunctionLoweringInfo.cpp ------------------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This implements routines for translating functions from LLVM IR into
     11 // Machine IR.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "llvm/CodeGen/FunctionLoweringInfo.h"
     16 #include "llvm/ADT/PostOrderIterator.h"
     17 #include "llvm/CodeGen/Analysis.h"
     18 #include "llvm/CodeGen/MachineFrameInfo.h"
     19 #include "llvm/CodeGen/MachineFunction.h"
     20 #include "llvm/CodeGen/MachineInstrBuilder.h"
     21 #include "llvm/CodeGen/MachineModuleInfo.h"
     22 #include "llvm/CodeGen/MachineRegisterInfo.h"
     23 #include "llvm/CodeGen/WinEHFuncInfo.h"
     24 #include "llvm/IR/DataLayout.h"
     25 #include "llvm/IR/DebugInfo.h"
     26 #include "llvm/IR/DerivedTypes.h"
     27 #include "llvm/IR/Function.h"
     28 #include "llvm/IR/Instructions.h"
     29 #include "llvm/IR/IntrinsicInst.h"
     30 #include "llvm/IR/LLVMContext.h"
     31 #include "llvm/IR/Module.h"
     32 #include "llvm/Support/Debug.h"
     33 #include "llvm/Support/ErrorHandling.h"
     34 #include "llvm/Support/MathExtras.h"
     35 #include "llvm/Support/raw_ostream.h"
     36 #include "llvm/Target/TargetFrameLowering.h"
     37 #include "llvm/Target/TargetInstrInfo.h"
     38 #include "llvm/Target/TargetLowering.h"
     39 #include "llvm/Target/TargetOptions.h"
     40 #include "llvm/Target/TargetRegisterInfo.h"
     41 #include "llvm/Target/TargetSubtargetInfo.h"
     42 #include <algorithm>
     43 using namespace llvm;
     44 
     45 #define DEBUG_TYPE "function-lowering-info"
     46 
     47 /// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
     48 /// PHI nodes or outside of the basic block that defines it, or used by a
     49 /// switch or atomic instruction, which may expand to multiple basic blocks.
     50 static bool isUsedOutsideOfDefiningBlock(const Instruction *I) {
     51   if (I->use_empty()) return false;
     52   if (isa<PHINode>(I)) return true;
     53   const BasicBlock *BB = I->getParent();
     54   for (const User *U : I->users())
     55     if (cast<Instruction>(U)->getParent() != BB || isa<PHINode>(U))
     56       return true;
     57 
     58   return false;
     59 }
     60 
     61 static ISD::NodeType getPreferredExtendForValue(const Value *V) {
     62   // For the users of the source value being used for compare instruction, if
     63   // the number of signed predicate is greater than unsigned predicate, we
     64   // prefer to use SIGN_EXTEND.
     65   //
     66   // With this optimization, we would be able to reduce some redundant sign or
     67   // zero extension instruction, and eventually more machine CSE opportunities
     68   // can be exposed.
     69   ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
     70   unsigned NumOfSigned = 0, NumOfUnsigned = 0;
     71   for (const User *U : V->users()) {
     72     if (const auto *CI = dyn_cast<CmpInst>(U)) {
     73       NumOfSigned += CI->isSigned();
     74       NumOfUnsigned += CI->isUnsigned();
     75     }
     76   }
     77   if (NumOfSigned > NumOfUnsigned)
     78     ExtendKind = ISD::SIGN_EXTEND;
     79 
     80   return ExtendKind;
     81 }
     82 
     83 namespace {
     84 struct WinEHNumbering {
     85   WinEHNumbering(WinEHFuncInfo &FuncInfo) : FuncInfo(FuncInfo), NextState(0) {}
     86 
     87   WinEHFuncInfo &FuncInfo;
     88   int NextState;
     89 
     90   SmallVector<ActionHandler *, 4> HandlerStack;
     91   SmallPtrSet<const Function *, 4> VisitedHandlers;
     92 
     93   int currentEHNumber() const {
     94     return HandlerStack.empty() ? -1 : HandlerStack.back()->getEHState();
     95   }
     96 
     97   void createUnwindMapEntry(int ToState, ActionHandler *AH);
     98   void createTryBlockMapEntry(int TryLow, int TryHigh,
     99                               ArrayRef<CatchHandler *> Handlers);
    100   void processCallSite(ArrayRef<ActionHandler *> Actions, ImmutableCallSite CS);
    101   void calculateStateNumbers(const Function &F);
    102 };
    103 }
    104 
    105 void FunctionLoweringInfo::set(const Function &fn, MachineFunction &mf,
    106                                SelectionDAG *DAG) {
    107   Fn = &fn;
    108   MF = &mf;
    109   TLI = MF->getSubtarget().getTargetLowering();
    110   RegInfo = &MF->getRegInfo();
    111   MachineModuleInfo &MMI = MF->getMMI();
    112 
    113   // Check whether the function can return without sret-demotion.
    114   SmallVector<ISD::OutputArg, 4> Outs;
    115   GetReturnInfo(Fn->getReturnType(), Fn->getAttributes(), Outs, *TLI);
    116   CanLowerReturn = TLI->CanLowerReturn(Fn->getCallingConv(), *MF,
    117                                        Fn->isVarArg(), Outs, Fn->getContext());
    118 
    119   // Initialize the mapping of values to registers.  This is only set up for
    120   // instruction values that are used outside of the block that defines
    121   // them.
    122   Function::const_iterator BB = Fn->begin(), EB = Fn->end();
    123   for (; BB != EB; ++BB)
    124     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end();
    125          I != E; ++I) {
    126       if (const AllocaInst *AI = dyn_cast<AllocaInst>(I)) {
    127         // Static allocas can be folded into the initial stack frame adjustment.
    128         if (AI->isStaticAlloca()) {
    129           const ConstantInt *CUI = cast<ConstantInt>(AI->getArraySize());
    130           Type *Ty = AI->getAllocatedType();
    131           uint64_t TySize = TLI->getDataLayout()->getTypeAllocSize(Ty);
    132           unsigned Align =
    133               std::max((unsigned)TLI->getDataLayout()->getPrefTypeAlignment(Ty),
    134                        AI->getAlignment());
    135 
    136           TySize *= CUI->getZExtValue();   // Get total allocated size.
    137           if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
    138 
    139           StaticAllocaMap[AI] =
    140             MF->getFrameInfo()->CreateStackObject(TySize, Align, false, AI);
    141 
    142         } else {
    143           unsigned Align = std::max(
    144               (unsigned)TLI->getDataLayout()->getPrefTypeAlignment(
    145                 AI->getAllocatedType()),
    146               AI->getAlignment());
    147           unsigned StackAlign =
    148               MF->getSubtarget().getFrameLowering()->getStackAlignment();
    149           if (Align <= StackAlign)
    150             Align = 0;
    151           // Inform the Frame Information that we have variable-sized objects.
    152           MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1, AI);
    153         }
    154       }
    155 
    156       // Look for inline asm that clobbers the SP register.
    157       if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
    158         ImmutableCallSite CS(I);
    159         if (isa<InlineAsm>(CS.getCalledValue())) {
    160           unsigned SP = TLI->getStackPointerRegisterToSaveRestore();
    161           const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
    162           std::vector<TargetLowering::AsmOperandInfo> Ops =
    163               TLI->ParseConstraints(TRI, CS);
    164           for (size_t I = 0, E = Ops.size(); I != E; ++I) {
    165             TargetLowering::AsmOperandInfo &Op = Ops[I];
    166             if (Op.Type == InlineAsm::isClobber) {
    167               // Clobbers don't have SDValue operands, hence SDValue().
    168               TLI->ComputeConstraintToUse(Op, SDValue(), DAG);
    169               std::pair<unsigned, const TargetRegisterClass *> PhysReg =
    170                   TLI->getRegForInlineAsmConstraint(TRI, Op.ConstraintCode,
    171                                                     Op.ConstraintVT);
    172               if (PhysReg.first == SP)
    173                 MF->getFrameInfo()->setHasInlineAsmWithSPAdjust(true);
    174             }
    175           }
    176         }
    177       }
    178 
    179       // Look for calls to the @llvm.va_start intrinsic. We can omit some
    180       // prologue boilerplate for variadic functions that don't examine their
    181       // arguments.
    182       if (const auto *II = dyn_cast<IntrinsicInst>(I)) {
    183         if (II->getIntrinsicID() == Intrinsic::vastart)
    184           MF->getFrameInfo()->setHasVAStart(true);
    185       }
    186 
    187       // If we have a musttail call in a variadic funciton, we need to ensure we
    188       // forward implicit register parameters.
    189       if (const auto *CI = dyn_cast<CallInst>(I)) {
    190         if (CI->isMustTailCall() && Fn->isVarArg())
    191           MF->getFrameInfo()->setHasMustTailInVarArgFunc(true);
    192       }
    193 
    194       // Mark values used outside their block as exported, by allocating
    195       // a virtual register for them.
    196       if (isUsedOutsideOfDefiningBlock(I))
    197         if (!isa<AllocaInst>(I) ||
    198             !StaticAllocaMap.count(cast<AllocaInst>(I)))
    199           InitializeRegForValue(I);
    200 
    201       // Collect llvm.dbg.declare information. This is done now instead of
    202       // during the initial isel pass through the IR so that it is done
    203       // in a predictable order.
    204       if (const DbgDeclareInst *DI = dyn_cast<DbgDeclareInst>(I)) {
    205         DIVariable DIVar = DI->getVariable();
    206         if (MMI.hasDebugInfo() && DIVar && DI->getDebugLoc()) {
    207           // Don't handle byval struct arguments or VLAs, for example.
    208           // Non-byval arguments are handled here (they refer to the stack
    209           // temporary alloca at this point).
    210           const Value *Address = DI->getAddress();
    211           if (Address) {
    212             if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
    213               Address = BCI->getOperand(0);
    214             if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
    215               DenseMap<const AllocaInst *, int>::iterator SI =
    216                 StaticAllocaMap.find(AI);
    217               if (SI != StaticAllocaMap.end()) { // Check for VLAs.
    218                 int FI = SI->second;
    219                 MMI.setVariableDbgInfo(DI->getVariable(), DI->getExpression(),
    220                                        FI, DI->getDebugLoc());
    221               }
    222             }
    223           }
    224         }
    225       }
    226 
    227       // Decide the preferred extend type for a value.
    228       PreferredExtendType[I] = getPreferredExtendForValue(I);
    229     }
    230 
    231   // Create an initial MachineBasicBlock for each LLVM BasicBlock in F.  This
    232   // also creates the initial PHI MachineInstrs, though none of the input
    233   // operands are populated.
    234   for (BB = Fn->begin(); BB != EB; ++BB) {
    235     MachineBasicBlock *MBB = mf.CreateMachineBasicBlock(BB);
    236     MBBMap[BB] = MBB;
    237     MF->push_back(MBB);
    238 
    239     // Transfer the address-taken flag. This is necessary because there could
    240     // be multiple MachineBasicBlocks corresponding to one BasicBlock, and only
    241     // the first one should be marked.
    242     if (BB->hasAddressTaken())
    243       MBB->setHasAddressTaken();
    244 
    245     // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
    246     // appropriate.
    247     for (BasicBlock::const_iterator I = BB->begin();
    248          const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
    249       if (PN->use_empty()) continue;
    250 
    251       // Skip empty types
    252       if (PN->getType()->isEmptyTy())
    253         continue;
    254 
    255       DebugLoc DL = PN->getDebugLoc();
    256       unsigned PHIReg = ValueMap[PN];
    257       assert(PHIReg && "PHI node does not have an assigned virtual register!");
    258 
    259       SmallVector<EVT, 4> ValueVTs;
    260       ComputeValueVTs(*TLI, PN->getType(), ValueVTs);
    261       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
    262         EVT VT = ValueVTs[vti];
    263         unsigned NumRegisters = TLI->getNumRegisters(Fn->getContext(), VT);
    264         const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
    265         for (unsigned i = 0; i != NumRegisters; ++i)
    266           BuildMI(MBB, DL, TII->get(TargetOpcode::PHI), PHIReg + i);
    267         PHIReg += NumRegisters;
    268       }
    269     }
    270   }
    271 
    272   // Mark landing pad blocks.
    273   for (BB = Fn->begin(); BB != EB; ++BB)
    274     if (const auto *Invoke = dyn_cast<InvokeInst>(BB->getTerminator()))
    275       MBBMap[Invoke->getSuccessor(1)]->setIsLandingPad();
    276 
    277   // Calculate EH numbers for WinEH.
    278   if (fn.hasFnAttribute("wineh-parent")) {
    279     const Function *WinEHParentFn = MMI.getWinEHParent(&fn);
    280     WinEHFuncInfo &FI = MMI.getWinEHFuncInfo(WinEHParentFn);
    281     if (FI.LandingPadStateMap.empty()) {
    282       WinEHNumbering Num(FI);
    283       Num.calculateStateNumbers(*WinEHParentFn);
    284       // Pop everything on the handler stack.
    285       Num.processCallSite(None, ImmutableCallSite());
    286     }
    287   }
    288 }
    289 
    290 void WinEHNumbering::createUnwindMapEntry(int ToState, ActionHandler *AH) {
    291   WinEHUnwindMapEntry UME;
    292   UME.ToState = ToState;
    293   if (auto *CH = dyn_cast_or_null<CleanupHandler>(AH))
    294     UME.Cleanup = cast<Function>(CH->getHandlerBlockOrFunc());
    295   else
    296     UME.Cleanup = nullptr;
    297   FuncInfo.UnwindMap.push_back(UME);
    298 }
    299 
    300 void WinEHNumbering::createTryBlockMapEntry(int TryLow, int TryHigh,
    301                                             ArrayRef<CatchHandler *> Handlers) {
    302   WinEHTryBlockMapEntry TBME;
    303   TBME.TryLow = TryLow;
    304   TBME.TryHigh = TryHigh;
    305   assert(TBME.TryLow <= TBME.TryHigh);
    306   for (CatchHandler *CH : Handlers) {
    307     WinEHHandlerType HT;
    308     if (CH->getSelector()->isNullValue()) {
    309       HT.Adjectives = 0x40;
    310       HT.TypeDescriptor = nullptr;
    311     } else {
    312       auto *GV = cast<GlobalVariable>(CH->getSelector()->stripPointerCasts());
    313       // Selectors are always pointers to GlobalVariables with 'struct' type.
    314       // The struct has two fields, adjectives and a type descriptor.
    315       auto *CS = cast<ConstantStruct>(GV->getInitializer());
    316       HT.Adjectives =
    317           cast<ConstantInt>(CS->getAggregateElement(0U))->getZExtValue();
    318       HT.TypeDescriptor =
    319           cast<GlobalVariable>(CS->getAggregateElement(1)->stripPointerCasts());
    320     }
    321     HT.Handler = cast<Function>(CH->getHandlerBlockOrFunc());
    322     HT.CatchObjRecoverIdx = CH->getExceptionVarIndex();
    323     TBME.HandlerArray.push_back(HT);
    324   }
    325   FuncInfo.TryBlockMap.push_back(TBME);
    326 }
    327 
    328 static void print_name(const Value *V) {
    329 #ifndef NDEBUG
    330   if (!V) {
    331     DEBUG(dbgs() << "null");
    332     return;
    333   }
    334 
    335   if (const auto *F = dyn_cast<Function>(V))
    336     DEBUG(dbgs() << F->getName());
    337   else
    338     DEBUG(V->dump());
    339 #endif
    340 }
    341 
    342 void WinEHNumbering::processCallSite(ArrayRef<ActionHandler *> Actions,
    343                                      ImmutableCallSite CS) {
    344   int FirstMismatch = 0;
    345   for (int E = std::min(HandlerStack.size(), Actions.size()); FirstMismatch < E;
    346        ++FirstMismatch) {
    347     if (HandlerStack[FirstMismatch]->getHandlerBlockOrFunc() !=
    348         Actions[FirstMismatch]->getHandlerBlockOrFunc())
    349       break;
    350     delete Actions[FirstMismatch];
    351   }
    352 
    353   bool EnteringScope = (int)Actions.size() > FirstMismatch;
    354 
    355   // Don't recurse while we are looping over the handler stack.  Instead, defer
    356   // the numbering of the catch handlers until we are done popping.
    357   SmallVector<CatchHandler *, 4> PoppedCatches;
    358   for (int I = HandlerStack.size() - 1; I >= FirstMismatch; --I) {
    359     if (auto *CH = dyn_cast<CatchHandler>(HandlerStack.back())) {
    360       PoppedCatches.push_back(CH);
    361     } else {
    362       // Delete cleanup handlers
    363       delete HandlerStack.back();
    364     }
    365     HandlerStack.pop_back();
    366   }
    367 
    368   // We need to create a new state number if we are exiting a try scope and we
    369   // will not push any more actions.
    370   int TryHigh = NextState - 1;
    371   if (!EnteringScope && !PoppedCatches.empty()) {
    372     createUnwindMapEntry(currentEHNumber(), nullptr);
    373     ++NextState;
    374   }
    375 
    376   int LastTryLowIdx = 0;
    377   for (int I = 0, E = PoppedCatches.size(); I != E; ++I) {
    378     CatchHandler *CH = PoppedCatches[I];
    379     if (I + 1 == E || CH->getEHState() != PoppedCatches[I + 1]->getEHState()) {
    380       int TryLow = CH->getEHState();
    381       auto Handlers =
    382           makeArrayRef(&PoppedCatches[LastTryLowIdx], I - LastTryLowIdx + 1);
    383       createTryBlockMapEntry(TryLow, TryHigh, Handlers);
    384       LastTryLowIdx = I + 1;
    385     }
    386   }
    387 
    388   for (CatchHandler *CH : PoppedCatches) {
    389     if (auto *F = dyn_cast<Function>(CH->getHandlerBlockOrFunc()))
    390       calculateStateNumbers(*F);
    391     delete CH;
    392   }
    393 
    394   bool LastActionWasCatch = false;
    395   for (size_t I = FirstMismatch; I != Actions.size(); ++I) {
    396     // We can reuse eh states when pushing two catches for the same invoke.
    397     bool CurrActionIsCatch = isa<CatchHandler>(Actions[I]);
    398     // FIXME: Reenable this optimization!
    399     if (CurrActionIsCatch && LastActionWasCatch && false) {
    400       Actions[I]->setEHState(currentEHNumber());
    401     } else {
    402       createUnwindMapEntry(currentEHNumber(), Actions[I]);
    403       Actions[I]->setEHState(NextState);
    404       NextState++;
    405       DEBUG(dbgs() << "Creating unwind map entry for: (");
    406       print_name(Actions[I]->getHandlerBlockOrFunc());
    407       DEBUG(dbgs() << ", " << currentEHNumber() << ")\n");
    408     }
    409     HandlerStack.push_back(Actions[I]);
    410     LastActionWasCatch = CurrActionIsCatch;
    411   }
    412 
    413   DEBUG(dbgs() << "In EHState " << currentEHNumber() << " for CallSite: ");
    414   print_name(CS ? CS.getCalledValue() : nullptr);
    415   DEBUG(dbgs() << '\n');
    416 }
    417 
    418 void WinEHNumbering::calculateStateNumbers(const Function &F) {
    419   auto I = VisitedHandlers.insert(&F);
    420   if (!I.second)
    421     return; // We've already visited this handler, don't renumber it.
    422 
    423   DEBUG(dbgs() << "Calculating state numbers for: " << F.getName() << '\n');
    424   SmallVector<ActionHandler *, 4> ActionList;
    425   for (const BasicBlock &BB : F) {
    426     for (const Instruction &I : BB) {
    427       const auto *CI = dyn_cast<CallInst>(&I);
    428       if (!CI || CI->doesNotThrow())
    429         continue;
    430       processCallSite(None, CI);
    431     }
    432     const auto *II = dyn_cast<InvokeInst>(BB.getTerminator());
    433     if (!II)
    434       continue;
    435     const LandingPadInst *LPI = II->getLandingPadInst();
    436     auto *ActionsCall = dyn_cast<IntrinsicInst>(LPI->getNextNode());
    437     if (!ActionsCall)
    438       continue;
    439     assert(ActionsCall->getIntrinsicID() == Intrinsic::eh_actions);
    440     parseEHActions(ActionsCall, ActionList);
    441     processCallSite(ActionList, II);
    442     ActionList.clear();
    443     FuncInfo.LandingPadStateMap[LPI] = currentEHNumber();
    444   }
    445 
    446   FuncInfo.CatchHandlerMaxState[&F] = NextState - 1;
    447 }
    448 
    449 /// clear - Clear out all the function-specific state. This returns this
    450 /// FunctionLoweringInfo to an empty state, ready to be used for a
    451 /// different function.
    452 void FunctionLoweringInfo::clear() {
    453   assert(CatchInfoFound.size() == CatchInfoLost.size() &&
    454          "Not all catch info was assigned to a landing pad!");
    455 
    456   MBBMap.clear();
    457   ValueMap.clear();
    458   StaticAllocaMap.clear();
    459 #ifndef NDEBUG
    460   CatchInfoLost.clear();
    461   CatchInfoFound.clear();
    462 #endif
    463   LiveOutRegInfo.clear();
    464   VisitedBBs.clear();
    465   ArgDbgValues.clear();
    466   ByValArgFrameIndexMap.clear();
    467   RegFixups.clear();
    468   StatepointStackSlots.clear();
    469   PreferredExtendType.clear();
    470 }
    471 
    472 /// CreateReg - Allocate a single virtual register for the given type.
    473 unsigned FunctionLoweringInfo::CreateReg(MVT VT) {
    474   return RegInfo->createVirtualRegister(
    475       MF->getSubtarget().getTargetLowering()->getRegClassFor(VT));
    476 }
    477 
    478 /// CreateRegs - Allocate the appropriate number of virtual registers of
    479 /// the correctly promoted or expanded types.  Assign these registers
    480 /// consecutive vreg numbers and return the first assigned number.
    481 ///
    482 /// In the case that the given value has struct or array type, this function
    483 /// will assign registers for each member or element.
    484 ///
    485 unsigned FunctionLoweringInfo::CreateRegs(Type *Ty) {
    486   const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
    487 
    488   SmallVector<EVT, 4> ValueVTs;
    489   ComputeValueVTs(*TLI, Ty, ValueVTs);
    490 
    491   unsigned FirstReg = 0;
    492   for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
    493     EVT ValueVT = ValueVTs[Value];
    494     MVT RegisterVT = TLI->getRegisterType(Ty->getContext(), ValueVT);
    495 
    496     unsigned NumRegs = TLI->getNumRegisters(Ty->getContext(), ValueVT);
    497     for (unsigned i = 0; i != NumRegs; ++i) {
    498       unsigned R = CreateReg(RegisterVT);
    499       if (!FirstReg) FirstReg = R;
    500     }
    501   }
    502   return FirstReg;
    503 }
    504 
    505 /// GetLiveOutRegInfo - Gets LiveOutInfo for a register, returning NULL if the
    506 /// register is a PHI destination and the PHI's LiveOutInfo is not valid. If
    507 /// the register's LiveOutInfo is for a smaller bit width, it is extended to
    508 /// the larger bit width by zero extension. The bit width must be no smaller
    509 /// than the LiveOutInfo's existing bit width.
    510 const FunctionLoweringInfo::LiveOutInfo *
    511 FunctionLoweringInfo::GetLiveOutRegInfo(unsigned Reg, unsigned BitWidth) {
    512   if (!LiveOutRegInfo.inBounds(Reg))
    513     return nullptr;
    514 
    515   LiveOutInfo *LOI = &LiveOutRegInfo[Reg];
    516   if (!LOI->IsValid)
    517     return nullptr;
    518 
    519   if (BitWidth > LOI->KnownZero.getBitWidth()) {
    520     LOI->NumSignBits = 1;
    521     LOI->KnownZero = LOI->KnownZero.zextOrTrunc(BitWidth);
    522     LOI->KnownOne = LOI->KnownOne.zextOrTrunc(BitWidth);
    523   }
    524 
    525   return LOI;
    526 }
    527 
    528 /// ComputePHILiveOutRegInfo - Compute LiveOutInfo for a PHI's destination
    529 /// register based on the LiveOutInfo of its operands.
    530 void FunctionLoweringInfo::ComputePHILiveOutRegInfo(const PHINode *PN) {
    531   Type *Ty = PN->getType();
    532   if (!Ty->isIntegerTy() || Ty->isVectorTy())
    533     return;
    534 
    535   SmallVector<EVT, 1> ValueVTs;
    536   ComputeValueVTs(*TLI, Ty, ValueVTs);
    537   assert(ValueVTs.size() == 1 &&
    538          "PHIs with non-vector integer types should have a single VT.");
    539   EVT IntVT = ValueVTs[0];
    540 
    541   if (TLI->getNumRegisters(PN->getContext(), IntVT) != 1)
    542     return;
    543   IntVT = TLI->getTypeToTransformTo(PN->getContext(), IntVT);
    544   unsigned BitWidth = IntVT.getSizeInBits();
    545 
    546   unsigned DestReg = ValueMap[PN];
    547   if (!TargetRegisterInfo::isVirtualRegister(DestReg))
    548     return;
    549   LiveOutRegInfo.grow(DestReg);
    550   LiveOutInfo &DestLOI = LiveOutRegInfo[DestReg];
    551 
    552   Value *V = PN->getIncomingValue(0);
    553   if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) {
    554     DestLOI.NumSignBits = 1;
    555     APInt Zero(BitWidth, 0);
    556     DestLOI.KnownZero = Zero;
    557     DestLOI.KnownOne = Zero;
    558     return;
    559   }
    560 
    561   if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
    562     APInt Val = CI->getValue().zextOrTrunc(BitWidth);
    563     DestLOI.NumSignBits = Val.getNumSignBits();
    564     DestLOI.KnownZero = ~Val;
    565     DestLOI.KnownOne = Val;
    566   } else {
    567     assert(ValueMap.count(V) && "V should have been placed in ValueMap when its"
    568                                 "CopyToReg node was created.");
    569     unsigned SrcReg = ValueMap[V];
    570     if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) {
    571       DestLOI.IsValid = false;
    572       return;
    573     }
    574     const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth);
    575     if (!SrcLOI) {
    576       DestLOI.IsValid = false;
    577       return;
    578     }
    579     DestLOI = *SrcLOI;
    580   }
    581 
    582   assert(DestLOI.KnownZero.getBitWidth() == BitWidth &&
    583          DestLOI.KnownOne.getBitWidth() == BitWidth &&
    584          "Masks should have the same bit width as the type.");
    585 
    586   for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) {
    587     Value *V = PN->getIncomingValue(i);
    588     if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) {
    589       DestLOI.NumSignBits = 1;
    590       APInt Zero(BitWidth, 0);
    591       DestLOI.KnownZero = Zero;
    592       DestLOI.KnownOne = Zero;
    593       return;
    594     }
    595 
    596     if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
    597       APInt Val = CI->getValue().zextOrTrunc(BitWidth);
    598       DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, Val.getNumSignBits());
    599       DestLOI.KnownZero &= ~Val;
    600       DestLOI.KnownOne &= Val;
    601       continue;
    602     }
    603 
    604     assert(ValueMap.count(V) && "V should have been placed in ValueMap when "
    605                                 "its CopyToReg node was created.");
    606     unsigned SrcReg = ValueMap[V];
    607     if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) {
    608       DestLOI.IsValid = false;
    609       return;
    610     }
    611     const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth);
    612     if (!SrcLOI) {
    613       DestLOI.IsValid = false;
    614       return;
    615     }
    616     DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, SrcLOI->NumSignBits);
    617     DestLOI.KnownZero &= SrcLOI->KnownZero;
    618     DestLOI.KnownOne &= SrcLOI->KnownOne;
    619   }
    620 }
    621 
    622 /// setArgumentFrameIndex - Record frame index for the byval
    623 /// argument. This overrides previous frame index entry for this argument,
    624 /// if any.
    625 void FunctionLoweringInfo::setArgumentFrameIndex(const Argument *A,
    626                                                  int FI) {
    627   ByValArgFrameIndexMap[A] = FI;
    628 }
    629 
    630 /// getArgumentFrameIndex - Get frame index for the byval argument.
    631 /// If the argument does not have any assigned frame index then 0 is
    632 /// returned.
    633 int FunctionLoweringInfo::getArgumentFrameIndex(const Argument *A) {
    634   DenseMap<const Argument *, int>::iterator I =
    635     ByValArgFrameIndexMap.find(A);
    636   if (I != ByValArgFrameIndexMap.end())
    637     return I->second;
    638   DEBUG(dbgs() << "Argument does not have assigned frame index!\n");
    639   return 0;
    640 }
    641 
    642 /// ComputeUsesVAFloatArgument - Determine if any floating-point values are
    643 /// being passed to this variadic function, and set the MachineModuleInfo's
    644 /// usesVAFloatArgument flag if so. This flag is used to emit an undefined
    645 /// reference to _fltused on Windows, which will link in MSVCRT's
    646 /// floating-point support.
    647 void llvm::ComputeUsesVAFloatArgument(const CallInst &I,
    648                                       MachineModuleInfo *MMI)
    649 {
    650   FunctionType *FT = cast<FunctionType>(
    651     I.getCalledValue()->getType()->getContainedType(0));
    652   if (FT->isVarArg() && !MMI->usesVAFloatArgument()) {
    653     for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
    654       Type* T = I.getArgOperand(i)->getType();
    655       for (auto i : post_order(T)) {
    656         if (i->isFloatingPointTy()) {
    657           MMI->setUsesVAFloatArgument(true);
    658           return;
    659         }
    660       }
    661     }
    662   }
    663 }
    664 
    665 /// AddLandingPadInfo - Extract the exception handling information from the
    666 /// landingpad instruction and add them to the specified machine module info.
    667 void llvm::AddLandingPadInfo(const LandingPadInst &I, MachineModuleInfo &MMI,
    668                              MachineBasicBlock *MBB) {
    669   MMI.addPersonality(MBB,
    670                      cast<Function>(I.getPersonalityFn()->stripPointerCasts()));
    671 
    672   if (I.isCleanup())
    673     MMI.addCleanup(MBB);
    674 
    675   // FIXME: New EH - Add the clauses in reverse order. This isn't 100% correct,
    676   //        but we need to do it this way because of how the DWARF EH emitter
    677   //        processes the clauses.
    678   for (unsigned i = I.getNumClauses(); i != 0; --i) {
    679     Value *Val = I.getClause(i - 1);
    680     if (I.isCatch(i - 1)) {
    681       MMI.addCatchTypeInfo(MBB,
    682                            dyn_cast<GlobalValue>(Val->stripPointerCasts()));
    683     } else {
    684       // Add filters in a list.
    685       Constant *CVal = cast<Constant>(Val);
    686       SmallVector<const GlobalValue*, 4> FilterList;
    687       for (User::op_iterator
    688              II = CVal->op_begin(), IE = CVal->op_end(); II != IE; ++II)
    689         FilterList.push_back(cast<GlobalValue>((*II)->stripPointerCasts()));
    690 
    691       MMI.addFilterTypeInfo(MBB, FilterList);
    692     }
    693   }
    694 }
    695