Home | History | Annotate | Download | only in X86
      1 //===-- X86MCInstLower.cpp - Convert X86 MachineInstr to an MCInst --------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file contains code to lower X86 MachineInstrs to their corresponding
     11 // MCInst records.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "X86AsmPrinter.h"
     16 #include "X86RegisterInfo.h"
     17 #include "InstPrinter/X86ATTInstPrinter.h"
     18 #include "MCTargetDesc/X86BaseInfo.h"
     19 #include "Utils/X86ShuffleDecode.h"
     20 #include "llvm/ADT/SmallString.h"
     21 #include "llvm/CodeGen/MachineFunction.h"
     22 #include "llvm/CodeGen/MachineConstantPool.h"
     23 #include "llvm/CodeGen/MachineOperand.h"
     24 #include "llvm/CodeGen/MachineModuleInfoImpls.h"
     25 #include "llvm/CodeGen/StackMaps.h"
     26 #include "llvm/IR/DataLayout.h"
     27 #include "llvm/IR/GlobalValue.h"
     28 #include "llvm/IR/Mangler.h"
     29 #include "llvm/MC/MCAsmInfo.h"
     30 #include "llvm/MC/MCCodeEmitter.h"
     31 #include "llvm/MC/MCContext.h"
     32 #include "llvm/MC/MCExpr.h"
     33 #include "llvm/MC/MCInst.h"
     34 #include "llvm/MC/MCInstBuilder.h"
     35 #include "llvm/MC/MCStreamer.h"
     36 #include "llvm/MC/MCSymbol.h"
     37 #include "llvm/Support/TargetRegistry.h"
     38 using namespace llvm;
     39 
     40 namespace {
     41 
     42 /// X86MCInstLower - This class is used to lower an MachineInstr into an MCInst.
     43 class X86MCInstLower {
     44   MCContext &Ctx;
     45   const MachineFunction &MF;
     46   const TargetMachine &TM;
     47   const MCAsmInfo &MAI;
     48   X86AsmPrinter &AsmPrinter;
     49 public:
     50   X86MCInstLower(const MachineFunction &MF, X86AsmPrinter &asmprinter);
     51 
     52   void Lower(const MachineInstr *MI, MCInst &OutMI) const;
     53 
     54   MCSymbol *GetSymbolFromOperand(const MachineOperand &MO) const;
     55   MCOperand LowerSymbolOperand(const MachineOperand &MO, MCSymbol *Sym) const;
     56 
     57 private:
     58   MachineModuleInfoMachO &getMachOMMI() const;
     59   Mangler *getMang() const {
     60     return AsmPrinter.Mang;
     61   }
     62 };
     63 
     64 } // end anonymous namespace
     65 
     66 // Emit a minimal sequence of nops spanning NumBytes bytes.
     67 static void EmitNops(MCStreamer &OS, unsigned NumBytes, bool Is64Bit,
     68                      const MCSubtargetInfo &STI);
     69 
     70 namespace llvm {
     71    X86AsmPrinter::StackMapShadowTracker::StackMapShadowTracker(TargetMachine &TM)
     72      : TM(TM), InShadow(false), RequiredShadowSize(0), CurrentShadowSize(0) {}
     73 
     74   X86AsmPrinter::StackMapShadowTracker::~StackMapShadowTracker() {}
     75 
     76   void
     77   X86AsmPrinter::StackMapShadowTracker::startFunction(MachineFunction &F) {
     78     MF = &F;
     79     CodeEmitter.reset(TM.getTarget().createMCCodeEmitter(
     80         *MF->getSubtarget().getInstrInfo(),
     81         *MF->getSubtarget().getRegisterInfo(), MF->getContext()));
     82   }
     83 
     84   void X86AsmPrinter::StackMapShadowTracker::count(MCInst &Inst,
     85                                                    const MCSubtargetInfo &STI) {
     86     if (InShadow) {
     87       SmallString<256> Code;
     88       SmallVector<MCFixup, 4> Fixups;
     89       raw_svector_ostream VecOS(Code);
     90       CodeEmitter->EncodeInstruction(Inst, VecOS, Fixups, STI);
     91       VecOS.flush();
     92       CurrentShadowSize += Code.size();
     93       if (CurrentShadowSize >= RequiredShadowSize)
     94         InShadow = false; // The shadow is big enough. Stop counting.
     95     }
     96   }
     97 
     98   void X86AsmPrinter::StackMapShadowTracker::emitShadowPadding(
     99     MCStreamer &OutStreamer, const MCSubtargetInfo &STI) {
    100     if (InShadow && CurrentShadowSize < RequiredShadowSize) {
    101       InShadow = false;
    102       EmitNops(OutStreamer, RequiredShadowSize - CurrentShadowSize,
    103                MF->getSubtarget<X86Subtarget>().is64Bit(), STI);
    104     }
    105   }
    106 
    107   void X86AsmPrinter::EmitAndCountInstruction(MCInst &Inst) {
    108     OutStreamer.EmitInstruction(Inst, getSubtargetInfo());
    109     SMShadowTracker.count(Inst, getSubtargetInfo());
    110   }
    111 } // end llvm namespace
    112 
    113 X86MCInstLower::X86MCInstLower(const MachineFunction &mf,
    114                                X86AsmPrinter &asmprinter)
    115     : Ctx(mf.getContext()), MF(mf), TM(mf.getTarget()), MAI(*TM.getMCAsmInfo()),
    116       AsmPrinter(asmprinter) {}
    117 
    118 MachineModuleInfoMachO &X86MCInstLower::getMachOMMI() const {
    119   return MF.getMMI().getObjFileInfo<MachineModuleInfoMachO>();
    120 }
    121 
    122 
    123 /// GetSymbolFromOperand - Lower an MO_GlobalAddress or MO_ExternalSymbol
    124 /// operand to an MCSymbol.
    125 MCSymbol *X86MCInstLower::
    126 GetSymbolFromOperand(const MachineOperand &MO) const {
    127   const DataLayout *DL = TM.getDataLayout();
    128   assert((MO.isGlobal() || MO.isSymbol() || MO.isMBB()) && "Isn't a symbol reference");
    129 
    130   SmallString<128> Name;
    131   StringRef Suffix;
    132 
    133   switch (MO.getTargetFlags()) {
    134   case X86II::MO_DLLIMPORT:
    135     // Handle dllimport linkage.
    136     Name += "__imp_";
    137     break;
    138   case X86II::MO_DARWIN_STUB:
    139     Suffix = "$stub";
    140     break;
    141   case X86II::MO_DARWIN_NONLAZY:
    142   case X86II::MO_DARWIN_NONLAZY_PIC_BASE:
    143   case X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE:
    144     Suffix = "$non_lazy_ptr";
    145     break;
    146   }
    147 
    148   if (!Suffix.empty())
    149     Name += DL->getPrivateGlobalPrefix();
    150 
    151   unsigned PrefixLen = Name.size();
    152 
    153   if (MO.isGlobal()) {
    154     const GlobalValue *GV = MO.getGlobal();
    155     AsmPrinter.getNameWithPrefix(Name, GV);
    156   } else if (MO.isSymbol()) {
    157     getMang()->getNameWithPrefix(Name, MO.getSymbolName());
    158   } else if (MO.isMBB()) {
    159     Name += MO.getMBB()->getSymbol()->getName();
    160   }
    161   unsigned OrigLen = Name.size() - PrefixLen;
    162 
    163   Name += Suffix;
    164   MCSymbol *Sym = Ctx.GetOrCreateSymbol(Name);
    165 
    166   StringRef OrigName = StringRef(Name).substr(PrefixLen, OrigLen);
    167 
    168   // If the target flags on the operand changes the name of the symbol, do that
    169   // before we return the symbol.
    170   switch (MO.getTargetFlags()) {
    171   default: break;
    172   case X86II::MO_DARWIN_NONLAZY:
    173   case X86II::MO_DARWIN_NONLAZY_PIC_BASE: {
    174     MachineModuleInfoImpl::StubValueTy &StubSym =
    175       getMachOMMI().getGVStubEntry(Sym);
    176     if (!StubSym.getPointer()) {
    177       assert(MO.isGlobal() && "Extern symbol not handled yet");
    178       StubSym =
    179         MachineModuleInfoImpl::
    180         StubValueTy(AsmPrinter.getSymbol(MO.getGlobal()),
    181                     !MO.getGlobal()->hasInternalLinkage());
    182     }
    183     break;
    184   }
    185   case X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE: {
    186     MachineModuleInfoImpl::StubValueTy &StubSym =
    187       getMachOMMI().getHiddenGVStubEntry(Sym);
    188     if (!StubSym.getPointer()) {
    189       assert(MO.isGlobal() && "Extern symbol not handled yet");
    190       StubSym =
    191         MachineModuleInfoImpl::
    192         StubValueTy(AsmPrinter.getSymbol(MO.getGlobal()),
    193                     !MO.getGlobal()->hasInternalLinkage());
    194     }
    195     break;
    196   }
    197   case X86II::MO_DARWIN_STUB: {
    198     MachineModuleInfoImpl::StubValueTy &StubSym =
    199       getMachOMMI().getFnStubEntry(Sym);
    200     if (StubSym.getPointer())
    201       return Sym;
    202 
    203     if (MO.isGlobal()) {
    204       StubSym =
    205         MachineModuleInfoImpl::
    206         StubValueTy(AsmPrinter.getSymbol(MO.getGlobal()),
    207                     !MO.getGlobal()->hasInternalLinkage());
    208     } else {
    209       StubSym =
    210         MachineModuleInfoImpl::
    211         StubValueTy(Ctx.GetOrCreateSymbol(OrigName), false);
    212     }
    213     break;
    214   }
    215   }
    216 
    217   return Sym;
    218 }
    219 
    220 MCOperand X86MCInstLower::LowerSymbolOperand(const MachineOperand &MO,
    221                                              MCSymbol *Sym) const {
    222   // FIXME: We would like an efficient form for this, so we don't have to do a
    223   // lot of extra uniquing.
    224   const MCExpr *Expr = nullptr;
    225   MCSymbolRefExpr::VariantKind RefKind = MCSymbolRefExpr::VK_None;
    226 
    227   switch (MO.getTargetFlags()) {
    228   default: llvm_unreachable("Unknown target flag on GV operand");
    229   case X86II::MO_NO_FLAG:    // No flag.
    230   // These affect the name of the symbol, not any suffix.
    231   case X86II::MO_DARWIN_NONLAZY:
    232   case X86II::MO_DLLIMPORT:
    233   case X86II::MO_DARWIN_STUB:
    234     break;
    235 
    236   case X86II::MO_TLVP:      RefKind = MCSymbolRefExpr::VK_TLVP; break;
    237   case X86II::MO_TLVP_PIC_BASE:
    238     Expr = MCSymbolRefExpr::Create(Sym, MCSymbolRefExpr::VK_TLVP, Ctx);
    239     // Subtract the pic base.
    240     Expr = MCBinaryExpr::CreateSub(Expr,
    241                                   MCSymbolRefExpr::Create(MF.getPICBaseSymbol(),
    242                                                            Ctx),
    243                                    Ctx);
    244     break;
    245   case X86II::MO_SECREL:    RefKind = MCSymbolRefExpr::VK_SECREL; break;
    246   case X86II::MO_TLSGD:     RefKind = MCSymbolRefExpr::VK_TLSGD; break;
    247   case X86II::MO_TLSLD:     RefKind = MCSymbolRefExpr::VK_TLSLD; break;
    248   case X86II::MO_TLSLDM:    RefKind = MCSymbolRefExpr::VK_TLSLDM; break;
    249   case X86II::MO_GOTTPOFF:  RefKind = MCSymbolRefExpr::VK_GOTTPOFF; break;
    250   case X86II::MO_INDNTPOFF: RefKind = MCSymbolRefExpr::VK_INDNTPOFF; break;
    251   case X86II::MO_TPOFF:     RefKind = MCSymbolRefExpr::VK_TPOFF; break;
    252   case X86II::MO_DTPOFF:    RefKind = MCSymbolRefExpr::VK_DTPOFF; break;
    253   case X86II::MO_NTPOFF:    RefKind = MCSymbolRefExpr::VK_NTPOFF; break;
    254   case X86II::MO_GOTNTPOFF: RefKind = MCSymbolRefExpr::VK_GOTNTPOFF; break;
    255   case X86II::MO_GOTPCREL:  RefKind = MCSymbolRefExpr::VK_GOTPCREL; break;
    256   case X86II::MO_GOT:       RefKind = MCSymbolRefExpr::VK_GOT; break;
    257   case X86II::MO_GOTOFF:    RefKind = MCSymbolRefExpr::VK_GOTOFF; break;
    258   case X86II::MO_PLT:       RefKind = MCSymbolRefExpr::VK_PLT; break;
    259   case X86II::MO_PIC_BASE_OFFSET:
    260   case X86II::MO_DARWIN_NONLAZY_PIC_BASE:
    261   case X86II::MO_DARWIN_HIDDEN_NONLAZY_PIC_BASE:
    262     Expr = MCSymbolRefExpr::Create(Sym, Ctx);
    263     // Subtract the pic base.
    264     Expr = MCBinaryExpr::CreateSub(Expr,
    265                             MCSymbolRefExpr::Create(MF.getPICBaseSymbol(), Ctx),
    266                                    Ctx);
    267     if (MO.isJTI()) {
    268       assert(MAI.doesSetDirectiveSuppressesReloc());
    269       // If .set directive is supported, use it to reduce the number of
    270       // relocations the assembler will generate for differences between
    271       // local labels. This is only safe when the symbols are in the same
    272       // section so we are restricting it to jumptable references.
    273       MCSymbol *Label = Ctx.CreateTempSymbol();
    274       AsmPrinter.OutStreamer.EmitAssignment(Label, Expr);
    275       Expr = MCSymbolRefExpr::Create(Label, Ctx);
    276     }
    277     break;
    278   }
    279 
    280   if (!Expr)
    281     Expr = MCSymbolRefExpr::Create(Sym, RefKind, Ctx);
    282 
    283   if (!MO.isJTI() && !MO.isMBB() && MO.getOffset())
    284     Expr = MCBinaryExpr::CreateAdd(Expr,
    285                                    MCConstantExpr::Create(MO.getOffset(), Ctx),
    286                                    Ctx);
    287   return MCOperand::CreateExpr(Expr);
    288 }
    289 
    290 
    291 /// \brief Simplify FOO $imm, %{al,ax,eax,rax} to FOO $imm, for instruction with
    292 /// a short fixed-register form.
    293 static void SimplifyShortImmForm(MCInst &Inst, unsigned Opcode) {
    294   unsigned ImmOp = Inst.getNumOperands() - 1;
    295   assert(Inst.getOperand(0).isReg() &&
    296          (Inst.getOperand(ImmOp).isImm() || Inst.getOperand(ImmOp).isExpr()) &&
    297          ((Inst.getNumOperands() == 3 && Inst.getOperand(1).isReg() &&
    298            Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg()) ||
    299           Inst.getNumOperands() == 2) && "Unexpected instruction!");
    300 
    301   // Check whether the destination register can be fixed.
    302   unsigned Reg = Inst.getOperand(0).getReg();
    303   if (Reg != X86::AL && Reg != X86::AX && Reg != X86::EAX && Reg != X86::RAX)
    304     return;
    305 
    306   // If so, rewrite the instruction.
    307   MCOperand Saved = Inst.getOperand(ImmOp);
    308   Inst = MCInst();
    309   Inst.setOpcode(Opcode);
    310   Inst.addOperand(Saved);
    311 }
    312 
    313 /// \brief If a movsx instruction has a shorter encoding for the used register
    314 /// simplify the instruction to use it instead.
    315 static void SimplifyMOVSX(MCInst &Inst) {
    316   unsigned NewOpcode = 0;
    317   unsigned Op0 = Inst.getOperand(0).getReg(), Op1 = Inst.getOperand(1).getReg();
    318   switch (Inst.getOpcode()) {
    319   default:
    320     llvm_unreachable("Unexpected instruction!");
    321   case X86::MOVSX16rr8:  // movsbw %al, %ax   --> cbtw
    322     if (Op0 == X86::AX && Op1 == X86::AL)
    323       NewOpcode = X86::CBW;
    324     break;
    325   case X86::MOVSX32rr16: // movswl %ax, %eax  --> cwtl
    326     if (Op0 == X86::EAX && Op1 == X86::AX)
    327       NewOpcode = X86::CWDE;
    328     break;
    329   case X86::MOVSX64rr32: // movslq %eax, %rax --> cltq
    330     if (Op0 == X86::RAX && Op1 == X86::EAX)
    331       NewOpcode = X86::CDQE;
    332     break;
    333   }
    334 
    335   if (NewOpcode != 0) {
    336     Inst = MCInst();
    337     Inst.setOpcode(NewOpcode);
    338   }
    339 }
    340 
    341 /// \brief Simplify things like MOV32rm to MOV32o32a.
    342 static void SimplifyShortMoveForm(X86AsmPrinter &Printer, MCInst &Inst,
    343                                   unsigned Opcode) {
    344   // Don't make these simplifications in 64-bit mode; other assemblers don't
    345   // perform them because they make the code larger.
    346   if (Printer.getSubtarget().is64Bit())
    347     return;
    348 
    349   bool IsStore = Inst.getOperand(0).isReg() && Inst.getOperand(1).isReg();
    350   unsigned AddrBase = IsStore;
    351   unsigned RegOp = IsStore ? 0 : 5;
    352   unsigned AddrOp = AddrBase + 3;
    353   assert(Inst.getNumOperands() == 6 && Inst.getOperand(RegOp).isReg() &&
    354          Inst.getOperand(AddrBase + X86::AddrBaseReg).isReg() &&
    355          Inst.getOperand(AddrBase + X86::AddrScaleAmt).isImm() &&
    356          Inst.getOperand(AddrBase + X86::AddrIndexReg).isReg() &&
    357          Inst.getOperand(AddrBase + X86::AddrSegmentReg).isReg() &&
    358          (Inst.getOperand(AddrOp).isExpr() ||
    359           Inst.getOperand(AddrOp).isImm()) &&
    360          "Unexpected instruction!");
    361 
    362   // Check whether the destination register can be fixed.
    363   unsigned Reg = Inst.getOperand(RegOp).getReg();
    364   if (Reg != X86::AL && Reg != X86::AX && Reg != X86::EAX && Reg != X86::RAX)
    365     return;
    366 
    367   // Check whether this is an absolute address.
    368   // FIXME: We know TLVP symbol refs aren't, but there should be a better way
    369   // to do this here.
    370   bool Absolute = true;
    371   if (Inst.getOperand(AddrOp).isExpr()) {
    372     const MCExpr *MCE = Inst.getOperand(AddrOp).getExpr();
    373     if (const MCSymbolRefExpr *SRE = dyn_cast<MCSymbolRefExpr>(MCE))
    374       if (SRE->getKind() == MCSymbolRefExpr::VK_TLVP)
    375         Absolute = false;
    376   }
    377 
    378   if (Absolute &&
    379       (Inst.getOperand(AddrBase + X86::AddrBaseReg).getReg() != 0 ||
    380        Inst.getOperand(AddrBase + X86::AddrScaleAmt).getImm() != 1 ||
    381        Inst.getOperand(AddrBase + X86::AddrIndexReg).getReg() != 0))
    382     return;
    383 
    384   // If so, rewrite the instruction.
    385   MCOperand Saved = Inst.getOperand(AddrOp);
    386   MCOperand Seg = Inst.getOperand(AddrBase + X86::AddrSegmentReg);
    387   Inst = MCInst();
    388   Inst.setOpcode(Opcode);
    389   Inst.addOperand(Saved);
    390   Inst.addOperand(Seg);
    391 }
    392 
    393 static unsigned getRetOpcode(const X86Subtarget &Subtarget) {
    394   return Subtarget.is64Bit() ? X86::RETQ : X86::RETL;
    395 }
    396 
    397 void X86MCInstLower::Lower(const MachineInstr *MI, MCInst &OutMI) const {
    398   OutMI.setOpcode(MI->getOpcode());
    399 
    400   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
    401     const MachineOperand &MO = MI->getOperand(i);
    402 
    403     MCOperand MCOp;
    404     switch (MO.getType()) {
    405     default:
    406       MI->dump();
    407       llvm_unreachable("unknown operand type");
    408     case MachineOperand::MO_Register:
    409       // Ignore all implicit register operands.
    410       if (MO.isImplicit()) continue;
    411       MCOp = MCOperand::CreateReg(MO.getReg());
    412       break;
    413     case MachineOperand::MO_Immediate:
    414       MCOp = MCOperand::CreateImm(MO.getImm());
    415       break;
    416     case MachineOperand::MO_MachineBasicBlock:
    417     case MachineOperand::MO_GlobalAddress:
    418     case MachineOperand::MO_ExternalSymbol:
    419       MCOp = LowerSymbolOperand(MO, GetSymbolFromOperand(MO));
    420       break;
    421     case MachineOperand::MO_JumpTableIndex:
    422       MCOp = LowerSymbolOperand(MO, AsmPrinter.GetJTISymbol(MO.getIndex()));
    423       break;
    424     case MachineOperand::MO_ConstantPoolIndex:
    425       MCOp = LowerSymbolOperand(MO, AsmPrinter.GetCPISymbol(MO.getIndex()));
    426       break;
    427     case MachineOperand::MO_BlockAddress:
    428       MCOp = LowerSymbolOperand(MO,
    429                      AsmPrinter.GetBlockAddressSymbol(MO.getBlockAddress()));
    430       break;
    431     case MachineOperand::MO_RegisterMask:
    432       // Ignore call clobbers.
    433       continue;
    434     }
    435 
    436     OutMI.addOperand(MCOp);
    437   }
    438 
    439   // Handle a few special cases to eliminate operand modifiers.
    440 ReSimplify:
    441   switch (OutMI.getOpcode()) {
    442   case X86::LEA64_32r:
    443   case X86::LEA64r:
    444   case X86::LEA16r:
    445   case X86::LEA32r:
    446     // LEA should have a segment register, but it must be empty.
    447     assert(OutMI.getNumOperands() == 1+X86::AddrNumOperands &&
    448            "Unexpected # of LEA operands");
    449     assert(OutMI.getOperand(1+X86::AddrSegmentReg).getReg() == 0 &&
    450            "LEA has segment specified!");
    451     break;
    452 
    453   case X86::MOV32ri64:
    454     OutMI.setOpcode(X86::MOV32ri);
    455     break;
    456 
    457   // Commute operands to get a smaller encoding by using VEX.R instead of VEX.B
    458   // if one of the registers is extended, but other isn't.
    459   case X86::VMOVAPDrr:
    460   case X86::VMOVAPDYrr:
    461   case X86::VMOVAPSrr:
    462   case X86::VMOVAPSYrr:
    463   case X86::VMOVDQArr:
    464   case X86::VMOVDQAYrr:
    465   case X86::VMOVDQUrr:
    466   case X86::VMOVDQUYrr:
    467   case X86::VMOVUPDrr:
    468   case X86::VMOVUPDYrr:
    469   case X86::VMOVUPSrr:
    470   case X86::VMOVUPSYrr: {
    471     if (!X86II::isX86_64ExtendedReg(OutMI.getOperand(0).getReg()) &&
    472         X86II::isX86_64ExtendedReg(OutMI.getOperand(1).getReg())) {
    473       unsigned NewOpc;
    474       switch (OutMI.getOpcode()) {
    475       default: llvm_unreachable("Invalid opcode");
    476       case X86::VMOVAPDrr:  NewOpc = X86::VMOVAPDrr_REV;  break;
    477       case X86::VMOVAPDYrr: NewOpc = X86::VMOVAPDYrr_REV; break;
    478       case X86::VMOVAPSrr:  NewOpc = X86::VMOVAPSrr_REV;  break;
    479       case X86::VMOVAPSYrr: NewOpc = X86::VMOVAPSYrr_REV; break;
    480       case X86::VMOVDQArr:  NewOpc = X86::VMOVDQArr_REV;  break;
    481       case X86::VMOVDQAYrr: NewOpc = X86::VMOVDQAYrr_REV; break;
    482       case X86::VMOVDQUrr:  NewOpc = X86::VMOVDQUrr_REV;  break;
    483       case X86::VMOVDQUYrr: NewOpc = X86::VMOVDQUYrr_REV; break;
    484       case X86::VMOVUPDrr:  NewOpc = X86::VMOVUPDrr_REV;  break;
    485       case X86::VMOVUPDYrr: NewOpc = X86::VMOVUPDYrr_REV; break;
    486       case X86::VMOVUPSrr:  NewOpc = X86::VMOVUPSrr_REV;  break;
    487       case X86::VMOVUPSYrr: NewOpc = X86::VMOVUPSYrr_REV; break;
    488       }
    489       OutMI.setOpcode(NewOpc);
    490     }
    491     break;
    492   }
    493   case X86::VMOVSDrr:
    494   case X86::VMOVSSrr: {
    495     if (!X86II::isX86_64ExtendedReg(OutMI.getOperand(0).getReg()) &&
    496         X86II::isX86_64ExtendedReg(OutMI.getOperand(2).getReg())) {
    497       unsigned NewOpc;
    498       switch (OutMI.getOpcode()) {
    499       default: llvm_unreachable("Invalid opcode");
    500       case X86::VMOVSDrr:   NewOpc = X86::VMOVSDrr_REV;   break;
    501       case X86::VMOVSSrr:   NewOpc = X86::VMOVSSrr_REV;   break;
    502       }
    503       OutMI.setOpcode(NewOpc);
    504     }
    505     break;
    506   }
    507 
    508   // TAILJMPr64, CALL64r, CALL64pcrel32 - These instructions have register
    509   // inputs modeled as normal uses instead of implicit uses.  As such, truncate
    510   // off all but the first operand (the callee).  FIXME: Change isel.
    511   case X86::TAILJMPr64:
    512   case X86::TAILJMPr64_REX:
    513   case X86::CALL64r:
    514   case X86::CALL64pcrel32: {
    515     unsigned Opcode = OutMI.getOpcode();
    516     MCOperand Saved = OutMI.getOperand(0);
    517     OutMI = MCInst();
    518     OutMI.setOpcode(Opcode);
    519     OutMI.addOperand(Saved);
    520     break;
    521   }
    522 
    523   case X86::EH_RETURN:
    524   case X86::EH_RETURN64: {
    525     OutMI = MCInst();
    526     OutMI.setOpcode(getRetOpcode(AsmPrinter.getSubtarget()));
    527     break;
    528   }
    529 
    530   // TAILJMPd, TAILJMPd64 - Lower to the correct jump instructions.
    531   case X86::TAILJMPr:
    532   case X86::TAILJMPd:
    533   case X86::TAILJMPd64: {
    534     unsigned Opcode;
    535     switch (OutMI.getOpcode()) {
    536     default: llvm_unreachable("Invalid opcode");
    537     case X86::TAILJMPr: Opcode = X86::JMP32r; break;
    538     case X86::TAILJMPd:
    539     case X86::TAILJMPd64: Opcode = X86::JMP_1; break;
    540     }
    541 
    542     MCOperand Saved = OutMI.getOperand(0);
    543     OutMI = MCInst();
    544     OutMI.setOpcode(Opcode);
    545     OutMI.addOperand(Saved);
    546     break;
    547   }
    548 
    549   case X86::DEC16r:
    550   case X86::DEC32r:
    551   case X86::INC16r:
    552   case X86::INC32r:
    553     // If we aren't in 64-bit mode we can use the 1-byte inc/dec instructions.
    554     if (!AsmPrinter.getSubtarget().is64Bit()) {
    555       unsigned Opcode;
    556       switch (OutMI.getOpcode()) {
    557       default: llvm_unreachable("Invalid opcode");
    558       case X86::DEC16r: Opcode = X86::DEC16r_alt; break;
    559       case X86::DEC32r: Opcode = X86::DEC32r_alt; break;
    560       case X86::INC16r: Opcode = X86::INC16r_alt; break;
    561       case X86::INC32r: Opcode = X86::INC32r_alt; break;
    562       }
    563       OutMI.setOpcode(Opcode);
    564     }
    565     break;
    566 
    567   // These are pseudo-ops for OR to help with the OR->ADD transformation.  We do
    568   // this with an ugly goto in case the resultant OR uses EAX and needs the
    569   // short form.
    570   case X86::ADD16rr_DB:   OutMI.setOpcode(X86::OR16rr); goto ReSimplify;
    571   case X86::ADD32rr_DB:   OutMI.setOpcode(X86::OR32rr); goto ReSimplify;
    572   case X86::ADD64rr_DB:   OutMI.setOpcode(X86::OR64rr); goto ReSimplify;
    573   case X86::ADD16ri_DB:   OutMI.setOpcode(X86::OR16ri); goto ReSimplify;
    574   case X86::ADD32ri_DB:   OutMI.setOpcode(X86::OR32ri); goto ReSimplify;
    575   case X86::ADD64ri32_DB: OutMI.setOpcode(X86::OR64ri32); goto ReSimplify;
    576   case X86::ADD16ri8_DB:  OutMI.setOpcode(X86::OR16ri8); goto ReSimplify;
    577   case X86::ADD32ri8_DB:  OutMI.setOpcode(X86::OR32ri8); goto ReSimplify;
    578   case X86::ADD64ri8_DB:  OutMI.setOpcode(X86::OR64ri8); goto ReSimplify;
    579 
    580   // Atomic load and store require a separate pseudo-inst because Acquire
    581   // implies mayStore and Release implies mayLoad; fix these to regular MOV
    582   // instructions here
    583   case X86::ACQUIRE_MOV8rm:    OutMI.setOpcode(X86::MOV8rm); goto ReSimplify;
    584   case X86::ACQUIRE_MOV16rm:   OutMI.setOpcode(X86::MOV16rm); goto ReSimplify;
    585   case X86::ACQUIRE_MOV32rm:   OutMI.setOpcode(X86::MOV32rm); goto ReSimplify;
    586   case X86::ACQUIRE_MOV64rm:   OutMI.setOpcode(X86::MOV64rm); goto ReSimplify;
    587   case X86::RELEASE_MOV8mr:    OutMI.setOpcode(X86::MOV8mr); goto ReSimplify;
    588   case X86::RELEASE_MOV16mr:   OutMI.setOpcode(X86::MOV16mr); goto ReSimplify;
    589   case X86::RELEASE_MOV32mr:   OutMI.setOpcode(X86::MOV32mr); goto ReSimplify;
    590   case X86::RELEASE_MOV64mr:   OutMI.setOpcode(X86::MOV64mr); goto ReSimplify;
    591   case X86::RELEASE_MOV8mi:    OutMI.setOpcode(X86::MOV8mi); goto ReSimplify;
    592   case X86::RELEASE_MOV16mi:   OutMI.setOpcode(X86::MOV16mi); goto ReSimplify;
    593   case X86::RELEASE_MOV32mi:   OutMI.setOpcode(X86::MOV32mi); goto ReSimplify;
    594   case X86::RELEASE_MOV64mi32: OutMI.setOpcode(X86::MOV64mi32); goto ReSimplify;
    595   case X86::RELEASE_ADD8mi:    OutMI.setOpcode(X86::ADD8mi); goto ReSimplify;
    596   case X86::RELEASE_ADD32mi:   OutMI.setOpcode(X86::ADD32mi); goto ReSimplify;
    597   case X86::RELEASE_ADD64mi32: OutMI.setOpcode(X86::ADD64mi32); goto ReSimplify;
    598   case X86::RELEASE_AND8mi:    OutMI.setOpcode(X86::AND8mi); goto ReSimplify;
    599   case X86::RELEASE_AND32mi:   OutMI.setOpcode(X86::AND32mi); goto ReSimplify;
    600   case X86::RELEASE_AND64mi32: OutMI.setOpcode(X86::AND64mi32); goto ReSimplify;
    601   case X86::RELEASE_OR8mi:     OutMI.setOpcode(X86::OR8mi); goto ReSimplify;
    602   case X86::RELEASE_OR32mi:    OutMI.setOpcode(X86::OR32mi); goto ReSimplify;
    603   case X86::RELEASE_OR64mi32:  OutMI.setOpcode(X86::OR64mi32); goto ReSimplify;
    604   case X86::RELEASE_XOR8mi:    OutMI.setOpcode(X86::XOR8mi); goto ReSimplify;
    605   case X86::RELEASE_XOR32mi:   OutMI.setOpcode(X86::XOR32mi); goto ReSimplify;
    606   case X86::RELEASE_XOR64mi32: OutMI.setOpcode(X86::XOR64mi32); goto ReSimplify;
    607   case X86::RELEASE_INC8m:     OutMI.setOpcode(X86::INC8m); goto ReSimplify;
    608   case X86::RELEASE_INC16m:    OutMI.setOpcode(X86::INC16m); goto ReSimplify;
    609   case X86::RELEASE_INC32m:    OutMI.setOpcode(X86::INC32m); goto ReSimplify;
    610   case X86::RELEASE_INC64m:    OutMI.setOpcode(X86::INC64m); goto ReSimplify;
    611   case X86::RELEASE_DEC8m:     OutMI.setOpcode(X86::DEC8m); goto ReSimplify;
    612   case X86::RELEASE_DEC16m:    OutMI.setOpcode(X86::DEC16m); goto ReSimplify;
    613   case X86::RELEASE_DEC32m:    OutMI.setOpcode(X86::DEC32m); goto ReSimplify;
    614   case X86::RELEASE_DEC64m:    OutMI.setOpcode(X86::DEC64m); goto ReSimplify;
    615 
    616   // We don't currently select the correct instruction form for instructions
    617   // which have a short %eax, etc. form. Handle this by custom lowering, for
    618   // now.
    619   //
    620   // Note, we are currently not handling the following instructions:
    621   // MOV64ao8, MOV64o8a
    622   // XCHG16ar, XCHG32ar, XCHG64ar
    623   case X86::MOV8mr_NOREX:
    624   case X86::MOV8mr:     SimplifyShortMoveForm(AsmPrinter, OutMI, X86::MOV8o32a); break;
    625   case X86::MOV8rm_NOREX:
    626   case X86::MOV8rm:     SimplifyShortMoveForm(AsmPrinter, OutMI, X86::MOV8ao32); break;
    627   case X86::MOV16mr:    SimplifyShortMoveForm(AsmPrinter, OutMI, X86::MOV16o32a); break;
    628   case X86::MOV16rm:    SimplifyShortMoveForm(AsmPrinter, OutMI, X86::MOV16ao32); break;
    629   case X86::MOV32mr:    SimplifyShortMoveForm(AsmPrinter, OutMI, X86::MOV32o32a); break;
    630   case X86::MOV32rm:    SimplifyShortMoveForm(AsmPrinter, OutMI, X86::MOV32ao32); break;
    631 
    632   case X86::ADC8ri:     SimplifyShortImmForm(OutMI, X86::ADC8i8);    break;
    633   case X86::ADC16ri:    SimplifyShortImmForm(OutMI, X86::ADC16i16);  break;
    634   case X86::ADC32ri:    SimplifyShortImmForm(OutMI, X86::ADC32i32);  break;
    635   case X86::ADC64ri32:  SimplifyShortImmForm(OutMI, X86::ADC64i32);  break;
    636   case X86::ADD8ri:     SimplifyShortImmForm(OutMI, X86::ADD8i8);    break;
    637   case X86::ADD16ri:    SimplifyShortImmForm(OutMI, X86::ADD16i16);  break;
    638   case X86::ADD32ri:    SimplifyShortImmForm(OutMI, X86::ADD32i32);  break;
    639   case X86::ADD64ri32:  SimplifyShortImmForm(OutMI, X86::ADD64i32);  break;
    640   case X86::AND8ri:     SimplifyShortImmForm(OutMI, X86::AND8i8);    break;
    641   case X86::AND16ri:    SimplifyShortImmForm(OutMI, X86::AND16i16);  break;
    642   case X86::AND32ri:    SimplifyShortImmForm(OutMI, X86::AND32i32);  break;
    643   case X86::AND64ri32:  SimplifyShortImmForm(OutMI, X86::AND64i32);  break;
    644   case X86::CMP8ri:     SimplifyShortImmForm(OutMI, X86::CMP8i8);    break;
    645   case X86::CMP16ri:    SimplifyShortImmForm(OutMI, X86::CMP16i16);  break;
    646   case X86::CMP32ri:    SimplifyShortImmForm(OutMI, X86::CMP32i32);  break;
    647   case X86::CMP64ri32:  SimplifyShortImmForm(OutMI, X86::CMP64i32);  break;
    648   case X86::OR8ri:      SimplifyShortImmForm(OutMI, X86::OR8i8);     break;
    649   case X86::OR16ri:     SimplifyShortImmForm(OutMI, X86::OR16i16);   break;
    650   case X86::OR32ri:     SimplifyShortImmForm(OutMI, X86::OR32i32);   break;
    651   case X86::OR64ri32:   SimplifyShortImmForm(OutMI, X86::OR64i32);   break;
    652   case X86::SBB8ri:     SimplifyShortImmForm(OutMI, X86::SBB8i8);    break;
    653   case X86::SBB16ri:    SimplifyShortImmForm(OutMI, X86::SBB16i16);  break;
    654   case X86::SBB32ri:    SimplifyShortImmForm(OutMI, X86::SBB32i32);  break;
    655   case X86::SBB64ri32:  SimplifyShortImmForm(OutMI, X86::SBB64i32);  break;
    656   case X86::SUB8ri:     SimplifyShortImmForm(OutMI, X86::SUB8i8);    break;
    657   case X86::SUB16ri:    SimplifyShortImmForm(OutMI, X86::SUB16i16);  break;
    658   case X86::SUB32ri:    SimplifyShortImmForm(OutMI, X86::SUB32i32);  break;
    659   case X86::SUB64ri32:  SimplifyShortImmForm(OutMI, X86::SUB64i32);  break;
    660   case X86::TEST8ri:    SimplifyShortImmForm(OutMI, X86::TEST8i8);   break;
    661   case X86::TEST16ri:   SimplifyShortImmForm(OutMI, X86::TEST16i16); break;
    662   case X86::TEST32ri:   SimplifyShortImmForm(OutMI, X86::TEST32i32); break;
    663   case X86::TEST64ri32: SimplifyShortImmForm(OutMI, X86::TEST64i32); break;
    664   case X86::XOR8ri:     SimplifyShortImmForm(OutMI, X86::XOR8i8);    break;
    665   case X86::XOR16ri:    SimplifyShortImmForm(OutMI, X86::XOR16i16);  break;
    666   case X86::XOR32ri:    SimplifyShortImmForm(OutMI, X86::XOR32i32);  break;
    667   case X86::XOR64ri32:  SimplifyShortImmForm(OutMI, X86::XOR64i32);  break;
    668 
    669   // Try to shrink some forms of movsx.
    670   case X86::MOVSX16rr8:
    671   case X86::MOVSX32rr16:
    672   case X86::MOVSX64rr32:
    673     SimplifyMOVSX(OutMI);
    674     break;
    675   }
    676 }
    677 
    678 void X86AsmPrinter::LowerTlsAddr(X86MCInstLower &MCInstLowering,
    679                                  const MachineInstr &MI) {
    680 
    681   bool is64Bits = MI.getOpcode() == X86::TLS_addr64 ||
    682                   MI.getOpcode() == X86::TLS_base_addr64;
    683 
    684   bool needsPadding = MI.getOpcode() == X86::TLS_addr64;
    685 
    686   MCContext &context = OutStreamer.getContext();
    687 
    688   if (needsPadding)
    689     EmitAndCountInstruction(MCInstBuilder(X86::DATA16_PREFIX));
    690 
    691   MCSymbolRefExpr::VariantKind SRVK;
    692   switch (MI.getOpcode()) {
    693     case X86::TLS_addr32:
    694     case X86::TLS_addr64:
    695       SRVK = MCSymbolRefExpr::VK_TLSGD;
    696       break;
    697     case X86::TLS_base_addr32:
    698       SRVK = MCSymbolRefExpr::VK_TLSLDM;
    699       break;
    700     case X86::TLS_base_addr64:
    701       SRVK = MCSymbolRefExpr::VK_TLSLD;
    702       break;
    703     default:
    704       llvm_unreachable("unexpected opcode");
    705   }
    706 
    707   MCSymbol *sym = MCInstLowering.GetSymbolFromOperand(MI.getOperand(3));
    708   const MCSymbolRefExpr *symRef = MCSymbolRefExpr::Create(sym, SRVK, context);
    709 
    710   MCInst LEA;
    711   if (is64Bits) {
    712     LEA.setOpcode(X86::LEA64r);
    713     LEA.addOperand(MCOperand::CreateReg(X86::RDI)); // dest
    714     LEA.addOperand(MCOperand::CreateReg(X86::RIP)); // base
    715     LEA.addOperand(MCOperand::CreateImm(1));        // scale
    716     LEA.addOperand(MCOperand::CreateReg(0));        // index
    717     LEA.addOperand(MCOperand::CreateExpr(symRef));  // disp
    718     LEA.addOperand(MCOperand::CreateReg(0));        // seg
    719   } else if (SRVK == MCSymbolRefExpr::VK_TLSLDM) {
    720     LEA.setOpcode(X86::LEA32r);
    721     LEA.addOperand(MCOperand::CreateReg(X86::EAX)); // dest
    722     LEA.addOperand(MCOperand::CreateReg(X86::EBX)); // base
    723     LEA.addOperand(MCOperand::CreateImm(1));        // scale
    724     LEA.addOperand(MCOperand::CreateReg(0));        // index
    725     LEA.addOperand(MCOperand::CreateExpr(symRef));  // disp
    726     LEA.addOperand(MCOperand::CreateReg(0));        // seg
    727   } else {
    728     LEA.setOpcode(X86::LEA32r);
    729     LEA.addOperand(MCOperand::CreateReg(X86::EAX)); // dest
    730     LEA.addOperand(MCOperand::CreateReg(0));        // base
    731     LEA.addOperand(MCOperand::CreateImm(1));        // scale
    732     LEA.addOperand(MCOperand::CreateReg(X86::EBX)); // index
    733     LEA.addOperand(MCOperand::CreateExpr(symRef));  // disp
    734     LEA.addOperand(MCOperand::CreateReg(0));        // seg
    735   }
    736   EmitAndCountInstruction(LEA);
    737 
    738   if (needsPadding) {
    739     EmitAndCountInstruction(MCInstBuilder(X86::DATA16_PREFIX));
    740     EmitAndCountInstruction(MCInstBuilder(X86::DATA16_PREFIX));
    741     EmitAndCountInstruction(MCInstBuilder(X86::REX64_PREFIX));
    742   }
    743 
    744   StringRef name = is64Bits ? "__tls_get_addr" : "___tls_get_addr";
    745   MCSymbol *tlsGetAddr = context.GetOrCreateSymbol(name);
    746   const MCSymbolRefExpr *tlsRef =
    747     MCSymbolRefExpr::Create(tlsGetAddr,
    748                             MCSymbolRefExpr::VK_PLT,
    749                             context);
    750 
    751   EmitAndCountInstruction(MCInstBuilder(is64Bits ? X86::CALL64pcrel32
    752                                                  : X86::CALLpcrel32)
    753                             .addExpr(tlsRef));
    754 }
    755 
    756 /// \brief Emit the optimal amount of multi-byte nops on X86.
    757 static void EmitNops(MCStreamer &OS, unsigned NumBytes, bool Is64Bit, const MCSubtargetInfo &STI) {
    758   // This works only for 64bit. For 32bit we have to do additional checking if
    759   // the CPU supports multi-byte nops.
    760   assert(Is64Bit && "EmitNops only supports X86-64");
    761   while (NumBytes) {
    762     unsigned Opc, BaseReg, ScaleVal, IndexReg, Displacement, SegmentReg;
    763     Opc = IndexReg = Displacement = SegmentReg = 0;
    764     BaseReg = X86::RAX; ScaleVal = 1;
    765     switch (NumBytes) {
    766     case  0: llvm_unreachable("Zero nops?"); break;
    767     case  1: NumBytes -=  1; Opc = X86::NOOP; break;
    768     case  2: NumBytes -=  2; Opc = X86::XCHG16ar; break;
    769     case  3: NumBytes -=  3; Opc = X86::NOOPL; break;
    770     case  4: NumBytes -=  4; Opc = X86::NOOPL; Displacement = 8; break;
    771     case  5: NumBytes -=  5; Opc = X86::NOOPL; Displacement = 8;
    772              IndexReg = X86::RAX; break;
    773     case  6: NumBytes -=  6; Opc = X86::NOOPW; Displacement = 8;
    774              IndexReg = X86::RAX; break;
    775     case  7: NumBytes -=  7; Opc = X86::NOOPL; Displacement = 512; break;
    776     case  8: NumBytes -=  8; Opc = X86::NOOPL; Displacement = 512;
    777              IndexReg = X86::RAX; break;
    778     case  9: NumBytes -=  9; Opc = X86::NOOPW; Displacement = 512;
    779              IndexReg = X86::RAX; break;
    780     default: NumBytes -= 10; Opc = X86::NOOPW; Displacement = 512;
    781              IndexReg = X86::RAX; SegmentReg = X86::CS; break;
    782     }
    783 
    784     unsigned NumPrefixes = std::min(NumBytes, 5U);
    785     NumBytes -= NumPrefixes;
    786     for (unsigned i = 0; i != NumPrefixes; ++i)
    787       OS.EmitBytes("\x66");
    788 
    789     switch (Opc) {
    790     default: llvm_unreachable("Unexpected opcode"); break;
    791     case X86::NOOP:
    792       OS.EmitInstruction(MCInstBuilder(Opc), STI);
    793       break;
    794     case X86::XCHG16ar:
    795       OS.EmitInstruction(MCInstBuilder(Opc).addReg(X86::AX), STI);
    796       break;
    797     case X86::NOOPL:
    798     case X86::NOOPW:
    799       OS.EmitInstruction(MCInstBuilder(Opc).addReg(BaseReg)
    800                          .addImm(ScaleVal).addReg(IndexReg)
    801                          .addImm(Displacement).addReg(SegmentReg), STI);
    802       break;
    803     }
    804   } // while (NumBytes)
    805 }
    806 
    807 static void LowerSTATEPOINT(MCStreamer &OS, StackMaps &SM,
    808                             const MachineInstr &MI, bool Is64Bit,
    809                             const TargetMachine& TM,
    810                             const MCSubtargetInfo& STI,
    811                             X86MCInstLower &MCInstLowering) {
    812   assert(Is64Bit && "Statepoint currently only supports X86-64");
    813 
    814   // Lower call target and choose correct opcode
    815   const MachineOperand &call_target = StatepointOpers(&MI).getCallTarget();
    816   MCOperand call_target_mcop;
    817   unsigned call_opcode;
    818   switch (call_target.getType()) {
    819   case MachineOperand::MO_GlobalAddress:
    820   case MachineOperand::MO_ExternalSymbol:
    821     call_target_mcop = MCInstLowering.LowerSymbolOperand(
    822       call_target,
    823       MCInstLowering.GetSymbolFromOperand(call_target));
    824     call_opcode = X86::CALL64pcrel32;
    825     // Currently, we only support relative addressing with statepoints.
    826     // Otherwise, we'll need a scratch register to hold the target
    827     // address.  You'll fail asserts during load & relocation if this
    828     // symbol is to far away. (TODO: support non-relative addressing)
    829     break;
    830   case MachineOperand::MO_Immediate:
    831     call_target_mcop = MCOperand::CreateImm(call_target.getImm());
    832     call_opcode = X86::CALL64pcrel32;
    833     // Currently, we only support relative addressing with statepoints.
    834     // Otherwise, we'll need a scratch register to hold the target
    835     // immediate.  You'll fail asserts during load & relocation if this
    836     // address is to far away. (TODO: support non-relative addressing)
    837     break;
    838   case MachineOperand::MO_Register:
    839     call_target_mcop = MCOperand::CreateReg(call_target.getReg());
    840     call_opcode = X86::CALL64r;
    841     break;
    842   default:
    843     llvm_unreachable("Unsupported operand type in statepoint call target");
    844     break;
    845   }
    846 
    847   // Emit call
    848   MCInst call_inst;
    849   call_inst.setOpcode(call_opcode);
    850   call_inst.addOperand(call_target_mcop);
    851   OS.EmitInstruction(call_inst, STI);
    852 
    853   // Record our statepoint node in the same section used by STACKMAP
    854   // and PATCHPOINT
    855   SM.recordStatepoint(MI);
    856 }
    857 
    858 
    859 // Lower a stackmap of the form:
    860 // <id>, <shadowBytes>, ...
    861 void X86AsmPrinter::LowerSTACKMAP(const MachineInstr &MI) {
    862   SMShadowTracker.emitShadowPadding(OutStreamer, getSubtargetInfo());
    863   SM.recordStackMap(MI);
    864   unsigned NumShadowBytes = MI.getOperand(1).getImm();
    865   SMShadowTracker.reset(NumShadowBytes);
    866 }
    867 
    868 // Lower a patchpoint of the form:
    869 // [<def>], <id>, <numBytes>, <target>, <numArgs>, <cc>, ...
    870 void X86AsmPrinter::LowerPATCHPOINT(const MachineInstr &MI) {
    871   assert(Subtarget->is64Bit() && "Patchpoint currently only supports X86-64");
    872 
    873   SMShadowTracker.emitShadowPadding(OutStreamer, getSubtargetInfo());
    874 
    875   SM.recordPatchPoint(MI);
    876 
    877   PatchPointOpers opers(&MI);
    878   unsigned ScratchIdx = opers.getNextScratchIdx();
    879   unsigned EncodedBytes = 0;
    880   int64_t CallTarget = opers.getMetaOper(PatchPointOpers::TargetPos).getImm();
    881   if (CallTarget) {
    882     // Emit MOV to materialize the target address and the CALL to target.
    883     // This is encoded with 12-13 bytes, depending on which register is used.
    884     unsigned ScratchReg = MI.getOperand(ScratchIdx).getReg();
    885     if (X86II::isX86_64ExtendedReg(ScratchReg))
    886       EncodedBytes = 13;
    887     else
    888       EncodedBytes = 12;
    889     EmitAndCountInstruction(MCInstBuilder(X86::MOV64ri).addReg(ScratchReg)
    890                                                        .addImm(CallTarget));
    891     EmitAndCountInstruction(MCInstBuilder(X86::CALL64r).addReg(ScratchReg));
    892   }
    893   // Emit padding.
    894   unsigned NumBytes = opers.getMetaOper(PatchPointOpers::NBytesPos).getImm();
    895   assert(NumBytes >= EncodedBytes &&
    896          "Patchpoint can't request size less than the length of a call.");
    897 
    898   EmitNops(OutStreamer, NumBytes - EncodedBytes, Subtarget->is64Bit(),
    899            getSubtargetInfo());
    900 }
    901 
    902 // Returns instruction preceding MBBI in MachineFunction.
    903 // If MBBI is the first instruction of the first basic block, returns null.
    904 static MachineBasicBlock::const_iterator
    905 PrevCrossBBInst(MachineBasicBlock::const_iterator MBBI) {
    906   const MachineBasicBlock *MBB = MBBI->getParent();
    907   while (MBBI == MBB->begin()) {
    908     if (MBB == MBB->getParent()->begin())
    909       return nullptr;
    910     MBB = MBB->getPrevNode();
    911     MBBI = MBB->end();
    912   }
    913   return --MBBI;
    914 }
    915 
    916 static const Constant *getConstantFromPool(const MachineInstr &MI,
    917                                            const MachineOperand &Op) {
    918   if (!Op.isCPI())
    919     return nullptr;
    920 
    921   ArrayRef<MachineConstantPoolEntry> Constants =
    922       MI.getParent()->getParent()->getConstantPool()->getConstants();
    923   const MachineConstantPoolEntry &ConstantEntry =
    924       Constants[Op.getIndex()];
    925 
    926   // Bail if this is a machine constant pool entry, we won't be able to dig out
    927   // anything useful.
    928   if (ConstantEntry.isMachineConstantPoolEntry())
    929     return nullptr;
    930 
    931   auto *C = dyn_cast<Constant>(ConstantEntry.Val.ConstVal);
    932   assert((!C || ConstantEntry.getType() == C->getType()) &&
    933          "Expected a constant of the same type!");
    934   return C;
    935 }
    936 
    937 static std::string getShuffleComment(const MachineOperand &DstOp,
    938                                      const MachineOperand &SrcOp,
    939                                      ArrayRef<int> Mask) {
    940   std::string Comment;
    941 
    942   // Compute the name for a register. This is really goofy because we have
    943   // multiple instruction printers that could (in theory) use different
    944   // names. Fortunately most people use the ATT style (outside of Windows)
    945   // and they actually agree on register naming here. Ultimately, this is
    946   // a comment, and so its OK if it isn't perfect.
    947   auto GetRegisterName = [](unsigned RegNum) -> StringRef {
    948     return X86ATTInstPrinter::getRegisterName(RegNum);
    949   };
    950 
    951   StringRef DstName = DstOp.isReg() ? GetRegisterName(DstOp.getReg()) : "mem";
    952   StringRef SrcName = SrcOp.isReg() ? GetRegisterName(SrcOp.getReg()) : "mem";
    953 
    954   raw_string_ostream CS(Comment);
    955   CS << DstName << " = ";
    956   bool NeedComma = false;
    957   bool InSrc = false;
    958   for (int M : Mask) {
    959     // Wrap up any prior entry...
    960     if (M == SM_SentinelZero && InSrc) {
    961       InSrc = false;
    962       CS << "]";
    963     }
    964     if (NeedComma)
    965       CS << ",";
    966     else
    967       NeedComma = true;
    968 
    969     // Print this shuffle...
    970     if (M == SM_SentinelZero) {
    971       CS << "zero";
    972     } else {
    973       if (!InSrc) {
    974         InSrc = true;
    975         CS << SrcName << "[";
    976       }
    977       if (M == SM_SentinelUndef)
    978         CS << "u";
    979       else
    980         CS << M;
    981     }
    982   }
    983   if (InSrc)
    984     CS << "]";
    985   CS.flush();
    986 
    987   return Comment;
    988 }
    989 
    990 void X86AsmPrinter::EmitInstruction(const MachineInstr *MI) {
    991   X86MCInstLower MCInstLowering(*MF, *this);
    992   const X86RegisterInfo *RI = MF->getSubtarget<X86Subtarget>().getRegisterInfo();
    993 
    994   switch (MI->getOpcode()) {
    995   case TargetOpcode::DBG_VALUE:
    996     llvm_unreachable("Should be handled target independently");
    997 
    998   // Emit nothing here but a comment if we can.
    999   case X86::Int_MemBarrier:
   1000     OutStreamer.emitRawComment("MEMBARRIER");
   1001     return;
   1002 
   1003 
   1004   case X86::EH_RETURN:
   1005   case X86::EH_RETURN64: {
   1006     // Lower these as normal, but add some comments.
   1007     unsigned Reg = MI->getOperand(0).getReg();
   1008     OutStreamer.AddComment(StringRef("eh_return, addr: %") +
   1009                            X86ATTInstPrinter::getRegisterName(Reg));
   1010     break;
   1011   }
   1012   case X86::TAILJMPr:
   1013   case X86::TAILJMPm:
   1014   case X86::TAILJMPd:
   1015   case X86::TAILJMPr64:
   1016   case X86::TAILJMPm64:
   1017   case X86::TAILJMPd64:
   1018   case X86::TAILJMPr64_REX:
   1019   case X86::TAILJMPm64_REX:
   1020   case X86::TAILJMPd64_REX:
   1021     // Lower these as normal, but add some comments.
   1022     OutStreamer.AddComment("TAILCALL");
   1023     break;
   1024 
   1025   case X86::TLS_addr32:
   1026   case X86::TLS_addr64:
   1027   case X86::TLS_base_addr32:
   1028   case X86::TLS_base_addr64:
   1029     return LowerTlsAddr(MCInstLowering, *MI);
   1030 
   1031   case X86::MOVPC32r: {
   1032     // This is a pseudo op for a two instruction sequence with a label, which
   1033     // looks like:
   1034     //     call "L1$pb"
   1035     // "L1$pb":
   1036     //     popl %esi
   1037 
   1038     // Emit the call.
   1039     MCSymbol *PICBase = MF->getPICBaseSymbol();
   1040     // FIXME: We would like an efficient form for this, so we don't have to do a
   1041     // lot of extra uniquing.
   1042     EmitAndCountInstruction(MCInstBuilder(X86::CALLpcrel32)
   1043       .addExpr(MCSymbolRefExpr::Create(PICBase, OutContext)));
   1044 
   1045     // Emit the label.
   1046     OutStreamer.EmitLabel(PICBase);
   1047 
   1048     // popl $reg
   1049     EmitAndCountInstruction(MCInstBuilder(X86::POP32r)
   1050                             .addReg(MI->getOperand(0).getReg()));
   1051     return;
   1052   }
   1053 
   1054   case X86::ADD32ri: {
   1055     // Lower the MO_GOT_ABSOLUTE_ADDRESS form of ADD32ri.
   1056     if (MI->getOperand(2).getTargetFlags() != X86II::MO_GOT_ABSOLUTE_ADDRESS)
   1057       break;
   1058 
   1059     // Okay, we have something like:
   1060     //  EAX = ADD32ri EAX, MO_GOT_ABSOLUTE_ADDRESS(@MYGLOBAL)
   1061 
   1062     // For this, we want to print something like:
   1063     //   MYGLOBAL + (. - PICBASE)
   1064     // However, we can't generate a ".", so just emit a new label here and refer
   1065     // to it.
   1066     MCSymbol *DotSym = OutContext.CreateTempSymbol();
   1067     OutStreamer.EmitLabel(DotSym);
   1068 
   1069     // Now that we have emitted the label, lower the complex operand expression.
   1070     MCSymbol *OpSym = MCInstLowering.GetSymbolFromOperand(MI->getOperand(2));
   1071 
   1072     const MCExpr *DotExpr = MCSymbolRefExpr::Create(DotSym, OutContext);
   1073     const MCExpr *PICBase =
   1074       MCSymbolRefExpr::Create(MF->getPICBaseSymbol(), OutContext);
   1075     DotExpr = MCBinaryExpr::CreateSub(DotExpr, PICBase, OutContext);
   1076 
   1077     DotExpr = MCBinaryExpr::CreateAdd(MCSymbolRefExpr::Create(OpSym,OutContext),
   1078                                       DotExpr, OutContext);
   1079 
   1080     EmitAndCountInstruction(MCInstBuilder(X86::ADD32ri)
   1081       .addReg(MI->getOperand(0).getReg())
   1082       .addReg(MI->getOperand(1).getReg())
   1083       .addExpr(DotExpr));
   1084     return;
   1085   }
   1086   case TargetOpcode::STATEPOINT:
   1087     return LowerSTATEPOINT(OutStreamer, SM, *MI, Subtarget->is64Bit(), TM,
   1088                            getSubtargetInfo(), MCInstLowering);
   1089 
   1090   case TargetOpcode::STACKMAP:
   1091     return LowerSTACKMAP(*MI);
   1092 
   1093   case TargetOpcode::PATCHPOINT:
   1094     return LowerPATCHPOINT(*MI);
   1095 
   1096   case X86::MORESTACK_RET:
   1097     EmitAndCountInstruction(MCInstBuilder(getRetOpcode(*Subtarget)));
   1098     return;
   1099 
   1100   case X86::MORESTACK_RET_RESTORE_R10:
   1101     // Return, then restore R10.
   1102     EmitAndCountInstruction(MCInstBuilder(getRetOpcode(*Subtarget)));
   1103     EmitAndCountInstruction(MCInstBuilder(X86::MOV64rr)
   1104                             .addReg(X86::R10)
   1105                             .addReg(X86::RAX));
   1106     return;
   1107 
   1108   case X86::SEH_PushReg:
   1109     OutStreamer.EmitWinCFIPushReg(RI->getSEHRegNum(MI->getOperand(0).getImm()));
   1110     return;
   1111 
   1112   case X86::SEH_SaveReg:
   1113     OutStreamer.EmitWinCFISaveReg(RI->getSEHRegNum(MI->getOperand(0).getImm()),
   1114                                   MI->getOperand(1).getImm());
   1115     return;
   1116 
   1117   case X86::SEH_SaveXMM:
   1118     OutStreamer.EmitWinCFISaveXMM(RI->getSEHRegNum(MI->getOperand(0).getImm()),
   1119                                   MI->getOperand(1).getImm());
   1120     return;
   1121 
   1122   case X86::SEH_StackAlloc:
   1123     OutStreamer.EmitWinCFIAllocStack(MI->getOperand(0).getImm());
   1124     return;
   1125 
   1126   case X86::SEH_SetFrame:
   1127     OutStreamer.EmitWinCFISetFrame(RI->getSEHRegNum(MI->getOperand(0).getImm()),
   1128                                    MI->getOperand(1).getImm());
   1129     return;
   1130 
   1131   case X86::SEH_PushFrame:
   1132     OutStreamer.EmitWinCFIPushFrame(MI->getOperand(0).getImm());
   1133     return;
   1134 
   1135   case X86::SEH_EndPrologue:
   1136     OutStreamer.EmitWinCFIEndProlog();
   1137     return;
   1138 
   1139   case X86::SEH_Epilogue: {
   1140     MachineBasicBlock::const_iterator MBBI(MI);
   1141     // Check if preceded by a call and emit nop if so.
   1142     for (MBBI = PrevCrossBBInst(MBBI); MBBI; MBBI = PrevCrossBBInst(MBBI)) {
   1143       // Conservatively assume that pseudo instructions don't emit code and keep
   1144       // looking for a call. We may emit an unnecessary nop in some cases.
   1145       if (!MBBI->isPseudo()) {
   1146         if (MBBI->isCall())
   1147           EmitAndCountInstruction(MCInstBuilder(X86::NOOP));
   1148         break;
   1149       }
   1150     }
   1151     return;
   1152   }
   1153 
   1154     // Lower PSHUFB and VPERMILP normally but add a comment if we can find
   1155     // a constant shuffle mask. We won't be able to do this at the MC layer
   1156     // because the mask isn't an immediate.
   1157   case X86::PSHUFBrm:
   1158   case X86::VPSHUFBrm:
   1159   case X86::VPSHUFBYrm: {
   1160     if (!OutStreamer.isVerboseAsm())
   1161       break;
   1162     assert(MI->getNumOperands() > 5 &&
   1163            "We should always have at least 5 operands!");
   1164     const MachineOperand &DstOp = MI->getOperand(0);
   1165     const MachineOperand &SrcOp = MI->getOperand(1);
   1166     const MachineOperand &MaskOp = MI->getOperand(5);
   1167 
   1168     if (auto *C = getConstantFromPool(*MI, MaskOp)) {
   1169       SmallVector<int, 16> Mask;
   1170       DecodePSHUFBMask(C, Mask);
   1171       if (!Mask.empty())
   1172         OutStreamer.AddComment(getShuffleComment(DstOp, SrcOp, Mask));
   1173     }
   1174     break;
   1175   }
   1176   case X86::VPERMILPSrm:
   1177   case X86::VPERMILPDrm:
   1178   case X86::VPERMILPSYrm:
   1179   case X86::VPERMILPDYrm: {
   1180     if (!OutStreamer.isVerboseAsm())
   1181       break;
   1182     assert(MI->getNumOperands() > 5 &&
   1183            "We should always have at least 5 operands!");
   1184     const MachineOperand &DstOp = MI->getOperand(0);
   1185     const MachineOperand &SrcOp = MI->getOperand(1);
   1186     const MachineOperand &MaskOp = MI->getOperand(5);
   1187 
   1188     if (auto *C = getConstantFromPool(*MI, MaskOp)) {
   1189       SmallVector<int, 16> Mask;
   1190       DecodeVPERMILPMask(C, Mask);
   1191       if (!Mask.empty())
   1192         OutStreamer.AddComment(getShuffleComment(DstOp, SrcOp, Mask));
   1193     }
   1194     break;
   1195   }
   1196 
   1197     // For loads from a constant pool to a vector register, print the constant
   1198     // loaded.
   1199   case X86::MOVAPDrm:
   1200   case X86::VMOVAPDrm:
   1201   case X86::VMOVAPDYrm:
   1202   case X86::MOVUPDrm:
   1203   case X86::VMOVUPDrm:
   1204   case X86::VMOVUPDYrm:
   1205   case X86::MOVAPSrm:
   1206   case X86::VMOVAPSrm:
   1207   case X86::VMOVAPSYrm:
   1208   case X86::MOVUPSrm:
   1209   case X86::VMOVUPSrm:
   1210   case X86::VMOVUPSYrm:
   1211   case X86::MOVDQArm:
   1212   case X86::VMOVDQArm:
   1213   case X86::VMOVDQAYrm:
   1214   case X86::MOVDQUrm:
   1215   case X86::VMOVDQUrm:
   1216   case X86::VMOVDQUYrm:
   1217     if (!OutStreamer.isVerboseAsm())
   1218       break;
   1219     if (MI->getNumOperands() > 4)
   1220     if (auto *C = getConstantFromPool(*MI, MI->getOperand(4))) {
   1221       std::string Comment;
   1222       raw_string_ostream CS(Comment);
   1223       const MachineOperand &DstOp = MI->getOperand(0);
   1224       CS << X86ATTInstPrinter::getRegisterName(DstOp.getReg()) << " = ";
   1225       if (auto *CDS = dyn_cast<ConstantDataSequential>(C)) {
   1226         CS << "[";
   1227         for (int i = 0, NumElements = CDS->getNumElements(); i < NumElements; ++i) {
   1228           if (i != 0)
   1229             CS << ",";
   1230           if (CDS->getElementType()->isIntegerTy())
   1231             CS << CDS->getElementAsInteger(i);
   1232           else if (CDS->getElementType()->isFloatTy())
   1233             CS << CDS->getElementAsFloat(i);
   1234           else if (CDS->getElementType()->isDoubleTy())
   1235             CS << CDS->getElementAsDouble(i);
   1236           else
   1237             CS << "?";
   1238         }
   1239         CS << "]";
   1240         OutStreamer.AddComment(CS.str());
   1241       } else if (auto *CV = dyn_cast<ConstantVector>(C)) {
   1242         CS << "<";
   1243         for (int i = 0, NumOperands = CV->getNumOperands(); i < NumOperands; ++i) {
   1244           if (i != 0)
   1245             CS << ",";
   1246           Constant *COp = CV->getOperand(i);
   1247           if (isa<UndefValue>(COp)) {
   1248             CS << "u";
   1249           } else if (auto *CI = dyn_cast<ConstantInt>(COp)) {
   1250             CS << CI->getZExtValue();
   1251           } else if (auto *CF = dyn_cast<ConstantFP>(COp)) {
   1252             SmallString<32> Str;
   1253             CF->getValueAPF().toString(Str);
   1254             CS << Str;
   1255           } else {
   1256             CS << "?";
   1257           }
   1258         }
   1259         CS << ">";
   1260         OutStreamer.AddComment(CS.str());
   1261       }
   1262     }
   1263     break;
   1264   }
   1265 
   1266   MCInst TmpInst;
   1267   MCInstLowering.Lower(MI, TmpInst);
   1268 
   1269   // Stackmap shadows cannot include branch targets, so we can count the bytes
   1270   // in a call towards the shadow, but must ensure that the no thread returns
   1271   // in to the stackmap shadow.  The only way to achieve this is if the call
   1272   // is at the end of the shadow.
   1273   if (MI->isCall()) {
   1274     // Count then size of the call towards the shadow
   1275     SMShadowTracker.count(TmpInst, getSubtargetInfo());
   1276     // Then flush the shadow so that we fill with nops before the call, not
   1277     // after it.
   1278     SMShadowTracker.emitShadowPadding(OutStreamer, getSubtargetInfo());
   1279     // Then emit the call
   1280     OutStreamer.EmitInstruction(TmpInst, getSubtargetInfo());
   1281     return;
   1282   }
   1283 
   1284   EmitAndCountInstruction(TmpInst);
   1285 }
   1286