Home | History | Annotate | Download | only in InstCombine
      1 //===- InstCombineAddSub.cpp ----------------------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the visit functions for add, fadd, sub, and fsub.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "InstCombineInternal.h"
     15 #include "llvm/ADT/STLExtras.h"
     16 #include "llvm/Analysis/InstructionSimplify.h"
     17 #include "llvm/IR/DataLayout.h"
     18 #include "llvm/IR/GetElementPtrTypeIterator.h"
     19 #include "llvm/IR/PatternMatch.h"
     20 using namespace llvm;
     21 using namespace PatternMatch;
     22 
     23 #define DEBUG_TYPE "instcombine"
     24 
     25 namespace {
     26 
     27   /// Class representing coefficient of floating-point addend.
     28   /// This class needs to be highly efficient, which is especially true for
     29   /// the constructor. As of I write this comment, the cost of the default
     30   /// constructor is merely 4-byte-store-zero (Assuming compiler is able to
     31   /// perform write-merging).
     32   ///
     33   class FAddendCoef {
     34   public:
     35     // The constructor has to initialize a APFloat, which is unnecessary for
     36     // most addends which have coefficient either 1 or -1. So, the constructor
     37     // is expensive. In order to avoid the cost of the constructor, we should
     38     // reuse some instances whenever possible. The pre-created instances
     39     // FAddCombine::Add[0-5] embodies this idea.
     40     //
     41     FAddendCoef() : IsFp(false), BufHasFpVal(false), IntVal(0) {}
     42     ~FAddendCoef();
     43 
     44     void set(short C) {
     45       assert(!insaneIntVal(C) && "Insane coefficient");
     46       IsFp = false; IntVal = C;
     47     }
     48 
     49     void set(const APFloat& C);
     50 
     51     void negate();
     52 
     53     bool isZero() const { return isInt() ? !IntVal : getFpVal().isZero(); }
     54     Value *getValue(Type *) const;
     55 
     56     // If possible, don't define operator+/operator- etc because these
     57     // operators inevitably call FAddendCoef's constructor which is not cheap.
     58     void operator=(const FAddendCoef &A);
     59     void operator+=(const FAddendCoef &A);
     60     void operator-=(const FAddendCoef &A);
     61     void operator*=(const FAddendCoef &S);
     62 
     63     bool isOne() const { return isInt() && IntVal == 1; }
     64     bool isTwo() const { return isInt() && IntVal == 2; }
     65     bool isMinusOne() const { return isInt() && IntVal == -1; }
     66     bool isMinusTwo() const { return isInt() && IntVal == -2; }
     67 
     68   private:
     69     bool insaneIntVal(int V) { return V > 4 || V < -4; }
     70     APFloat *getFpValPtr(void)
     71       { return reinterpret_cast<APFloat*>(&FpValBuf.buffer[0]); }
     72     const APFloat *getFpValPtr(void) const
     73       { return reinterpret_cast<const APFloat*>(&FpValBuf.buffer[0]); }
     74 
     75     const APFloat &getFpVal(void) const {
     76       assert(IsFp && BufHasFpVal && "Incorret state");
     77       return *getFpValPtr();
     78     }
     79 
     80     APFloat &getFpVal(void) {
     81       assert(IsFp && BufHasFpVal && "Incorret state");
     82       return *getFpValPtr();
     83     }
     84 
     85     bool isInt() const { return !IsFp; }
     86 
     87     // If the coefficient is represented by an integer, promote it to a
     88     // floating point.
     89     void convertToFpType(const fltSemantics &Sem);
     90 
     91     // Construct an APFloat from a signed integer.
     92     // TODO: We should get rid of this function when APFloat can be constructed
     93     //       from an *SIGNED* integer.
     94     APFloat createAPFloatFromInt(const fltSemantics &Sem, int Val);
     95   private:
     96 
     97     bool IsFp;
     98 
     99     // True iff FpValBuf contains an instance of APFloat.
    100     bool BufHasFpVal;
    101 
    102     // The integer coefficient of an individual addend is either 1 or -1,
    103     // and we try to simplify at most 4 addends from neighboring at most
    104     // two instructions. So the range of <IntVal> falls in [-4, 4]. APInt
    105     // is overkill of this end.
    106     short IntVal;
    107 
    108     AlignedCharArrayUnion<APFloat> FpValBuf;
    109   };
    110 
    111   /// FAddend is used to represent floating-point addend. An addend is
    112   /// represented as <C, V>, where the V is a symbolic value, and C is a
    113   /// constant coefficient. A constant addend is represented as <C, 0>.
    114   ///
    115   class FAddend {
    116   public:
    117     FAddend() { Val = nullptr; }
    118 
    119     Value *getSymVal (void) const { return Val; }
    120     const FAddendCoef &getCoef(void) const { return Coeff; }
    121 
    122     bool isConstant() const { return Val == nullptr; }
    123     bool isZero() const { return Coeff.isZero(); }
    124 
    125     void set(short Coefficient, Value *V) { Coeff.set(Coefficient), Val = V; }
    126     void set(const APFloat& Coefficient, Value *V)
    127       { Coeff.set(Coefficient); Val = V; }
    128     void set(const ConstantFP* Coefficient, Value *V)
    129       { Coeff.set(Coefficient->getValueAPF()); Val = V; }
    130 
    131     void negate() { Coeff.negate(); }
    132 
    133     /// Drill down the U-D chain one step to find the definition of V, and
    134     /// try to break the definition into one or two addends.
    135     static unsigned drillValueDownOneStep(Value* V, FAddend &A0, FAddend &A1);
    136 
    137     /// Similar to FAddend::drillDownOneStep() except that the value being
    138     /// splitted is the addend itself.
    139     unsigned drillAddendDownOneStep(FAddend &Addend0, FAddend &Addend1) const;
    140 
    141     void operator+=(const FAddend &T) {
    142       assert((Val == T.Val) && "Symbolic-values disagree");
    143       Coeff += T.Coeff;
    144     }
    145 
    146   private:
    147     void Scale(const FAddendCoef& ScaleAmt) { Coeff *= ScaleAmt; }
    148 
    149     // This addend has the value of "Coeff * Val".
    150     Value *Val;
    151     FAddendCoef Coeff;
    152   };
    153 
    154   /// FAddCombine is the class for optimizing an unsafe fadd/fsub along
    155   /// with its neighboring at most two instructions.
    156   ///
    157   class FAddCombine {
    158   public:
    159     FAddCombine(InstCombiner::BuilderTy *B) : Builder(B), Instr(nullptr) {}
    160     Value *simplify(Instruction *FAdd);
    161 
    162   private:
    163     typedef SmallVector<const FAddend*, 4> AddendVect;
    164 
    165     Value *simplifyFAdd(AddendVect& V, unsigned InstrQuota);
    166 
    167     Value *performFactorization(Instruction *I);
    168 
    169     /// Convert given addend to a Value
    170     Value *createAddendVal(const FAddend &A, bool& NeedNeg);
    171 
    172     /// Return the number of instructions needed to emit the N-ary addition.
    173     unsigned calcInstrNumber(const AddendVect& Vect);
    174     Value *createFSub(Value *Opnd0, Value *Opnd1);
    175     Value *createFAdd(Value *Opnd0, Value *Opnd1);
    176     Value *createFMul(Value *Opnd0, Value *Opnd1);
    177     Value *createFDiv(Value *Opnd0, Value *Opnd1);
    178     Value *createFNeg(Value *V);
    179     Value *createNaryFAdd(const AddendVect& Opnds, unsigned InstrQuota);
    180     void createInstPostProc(Instruction *NewInst, bool NoNumber = false);
    181 
    182     InstCombiner::BuilderTy *Builder;
    183     Instruction *Instr;
    184 
    185   private:
    186      // Debugging stuff are clustered here.
    187     #ifndef NDEBUG
    188       unsigned CreateInstrNum;
    189       void initCreateInstNum() { CreateInstrNum = 0; }
    190       void incCreateInstNum() { CreateInstrNum++; }
    191     #else
    192       void initCreateInstNum() {}
    193       void incCreateInstNum() {}
    194     #endif
    195   };
    196 }
    197 
    198 //===----------------------------------------------------------------------===//
    199 //
    200 // Implementation of
    201 //    {FAddendCoef, FAddend, FAddition, FAddCombine}.
    202 //
    203 //===----------------------------------------------------------------------===//
    204 FAddendCoef::~FAddendCoef() {
    205   if (BufHasFpVal)
    206     getFpValPtr()->~APFloat();
    207 }
    208 
    209 void FAddendCoef::set(const APFloat& C) {
    210   APFloat *P = getFpValPtr();
    211 
    212   if (isInt()) {
    213     // As the buffer is meanless byte stream, we cannot call
    214     // APFloat::operator=().
    215     new(P) APFloat(C);
    216   } else
    217     *P = C;
    218 
    219   IsFp = BufHasFpVal = true;
    220 }
    221 
    222 void FAddendCoef::convertToFpType(const fltSemantics &Sem) {
    223   if (!isInt())
    224     return;
    225 
    226   APFloat *P = getFpValPtr();
    227   if (IntVal > 0)
    228     new(P) APFloat(Sem, IntVal);
    229   else {
    230     new(P) APFloat(Sem, 0 - IntVal);
    231     P->changeSign();
    232   }
    233   IsFp = BufHasFpVal = true;
    234 }
    235 
    236 APFloat FAddendCoef::createAPFloatFromInt(const fltSemantics &Sem, int Val) {
    237   if (Val >= 0)
    238     return APFloat(Sem, Val);
    239 
    240   APFloat T(Sem, 0 - Val);
    241   T.changeSign();
    242 
    243   return T;
    244 }
    245 
    246 void FAddendCoef::operator=(const FAddendCoef &That) {
    247   if (That.isInt())
    248     set(That.IntVal);
    249   else
    250     set(That.getFpVal());
    251 }
    252 
    253 void FAddendCoef::operator+=(const FAddendCoef &That) {
    254   enum APFloat::roundingMode RndMode = APFloat::rmNearestTiesToEven;
    255   if (isInt() == That.isInt()) {
    256     if (isInt())
    257       IntVal += That.IntVal;
    258     else
    259       getFpVal().add(That.getFpVal(), RndMode);
    260     return;
    261   }
    262 
    263   if (isInt()) {
    264     const APFloat &T = That.getFpVal();
    265     convertToFpType(T.getSemantics());
    266     getFpVal().add(T, RndMode);
    267     return;
    268   }
    269 
    270   APFloat &T = getFpVal();
    271   T.add(createAPFloatFromInt(T.getSemantics(), That.IntVal), RndMode);
    272 }
    273 
    274 void FAddendCoef::operator-=(const FAddendCoef &That) {
    275   enum APFloat::roundingMode RndMode = APFloat::rmNearestTiesToEven;
    276   if (isInt() == That.isInt()) {
    277     if (isInt())
    278       IntVal -= That.IntVal;
    279     else
    280       getFpVal().subtract(That.getFpVal(), RndMode);
    281     return;
    282   }
    283 
    284   if (isInt()) {
    285     const APFloat &T = That.getFpVal();
    286     convertToFpType(T.getSemantics());
    287     getFpVal().subtract(T, RndMode);
    288     return;
    289   }
    290 
    291   APFloat &T = getFpVal();
    292   T.subtract(createAPFloatFromInt(T.getSemantics(), IntVal), RndMode);
    293 }
    294 
    295 void FAddendCoef::operator*=(const FAddendCoef &That) {
    296   if (That.isOne())
    297     return;
    298 
    299   if (That.isMinusOne()) {
    300     negate();
    301     return;
    302   }
    303 
    304   if (isInt() && That.isInt()) {
    305     int Res = IntVal * (int)That.IntVal;
    306     assert(!insaneIntVal(Res) && "Insane int value");
    307     IntVal = Res;
    308     return;
    309   }
    310 
    311   const fltSemantics &Semantic =
    312     isInt() ? That.getFpVal().getSemantics() : getFpVal().getSemantics();
    313 
    314   if (isInt())
    315     convertToFpType(Semantic);
    316   APFloat &F0 = getFpVal();
    317 
    318   if (That.isInt())
    319     F0.multiply(createAPFloatFromInt(Semantic, That.IntVal),
    320                 APFloat::rmNearestTiesToEven);
    321   else
    322     F0.multiply(That.getFpVal(), APFloat::rmNearestTiesToEven);
    323 
    324   return;
    325 }
    326 
    327 void FAddendCoef::negate() {
    328   if (isInt())
    329     IntVal = 0 - IntVal;
    330   else
    331     getFpVal().changeSign();
    332 }
    333 
    334 Value *FAddendCoef::getValue(Type *Ty) const {
    335   return isInt() ?
    336     ConstantFP::get(Ty, float(IntVal)) :
    337     ConstantFP::get(Ty->getContext(), getFpVal());
    338 }
    339 
    340 // The definition of <Val>     Addends
    341 // =========================================
    342 //  A + B                     <1, A>, <1,B>
    343 //  A - B                     <1, A>, <1,B>
    344 //  0 - B                     <-1, B>
    345 //  C * A,                    <C, A>
    346 //  A + C                     <1, A> <C, NULL>
    347 //  0 +/- 0                   <0, NULL> (corner case)
    348 //
    349 // Legend: A and B are not constant, C is constant
    350 //
    351 unsigned FAddend::drillValueDownOneStep
    352   (Value *Val, FAddend &Addend0, FAddend &Addend1) {
    353   Instruction *I = nullptr;
    354   if (!Val || !(I = dyn_cast<Instruction>(Val)))
    355     return 0;
    356 
    357   unsigned Opcode = I->getOpcode();
    358 
    359   if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub) {
    360     ConstantFP *C0, *C1;
    361     Value *Opnd0 = I->getOperand(0);
    362     Value *Opnd1 = I->getOperand(1);
    363     if ((C0 = dyn_cast<ConstantFP>(Opnd0)) && C0->isZero())
    364       Opnd0 = nullptr;
    365 
    366     if ((C1 = dyn_cast<ConstantFP>(Opnd1)) && C1->isZero())
    367       Opnd1 = nullptr;
    368 
    369     if (Opnd0) {
    370       if (!C0)
    371         Addend0.set(1, Opnd0);
    372       else
    373         Addend0.set(C0, nullptr);
    374     }
    375 
    376     if (Opnd1) {
    377       FAddend &Addend = Opnd0 ? Addend1 : Addend0;
    378       if (!C1)
    379         Addend.set(1, Opnd1);
    380       else
    381         Addend.set(C1, nullptr);
    382       if (Opcode == Instruction::FSub)
    383         Addend.negate();
    384     }
    385 
    386     if (Opnd0 || Opnd1)
    387       return Opnd0 && Opnd1 ? 2 : 1;
    388 
    389     // Both operands are zero. Weird!
    390     Addend0.set(APFloat(C0->getValueAPF().getSemantics()), nullptr);
    391     return 1;
    392   }
    393 
    394   if (I->getOpcode() == Instruction::FMul) {
    395     Value *V0 = I->getOperand(0);
    396     Value *V1 = I->getOperand(1);
    397     if (ConstantFP *C = dyn_cast<ConstantFP>(V0)) {
    398       Addend0.set(C, V1);
    399       return 1;
    400     }
    401 
    402     if (ConstantFP *C = dyn_cast<ConstantFP>(V1)) {
    403       Addend0.set(C, V0);
    404       return 1;
    405     }
    406   }
    407 
    408   return 0;
    409 }
    410 
    411 // Try to break *this* addend into two addends. e.g. Suppose this addend is
    412 // <2.3, V>, and V = X + Y, by calling this function, we obtain two addends,
    413 // i.e. <2.3, X> and <2.3, Y>.
    414 //
    415 unsigned FAddend::drillAddendDownOneStep
    416   (FAddend &Addend0, FAddend &Addend1) const {
    417   if (isConstant())
    418     return 0;
    419 
    420   unsigned BreakNum = FAddend::drillValueDownOneStep(Val, Addend0, Addend1);
    421   if (!BreakNum || Coeff.isOne())
    422     return BreakNum;
    423 
    424   Addend0.Scale(Coeff);
    425 
    426   if (BreakNum == 2)
    427     Addend1.Scale(Coeff);
    428 
    429   return BreakNum;
    430 }
    431 
    432 // Try to perform following optimization on the input instruction I. Return the
    433 // simplified expression if was successful; otherwise, return 0.
    434 //
    435 //   Instruction "I" is                Simplified into
    436 // -------------------------------------------------------
    437 //   (x * y) +/- (x * z)               x * (y +/- z)
    438 //   (y / x) +/- (z / x)               (y +/- z) / x
    439 //
    440 Value *FAddCombine::performFactorization(Instruction *I) {
    441   assert((I->getOpcode() == Instruction::FAdd ||
    442           I->getOpcode() == Instruction::FSub) && "Expect add/sub");
    443 
    444   Instruction *I0 = dyn_cast<Instruction>(I->getOperand(0));
    445   Instruction *I1 = dyn_cast<Instruction>(I->getOperand(1));
    446 
    447   if (!I0 || !I1 || I0->getOpcode() != I1->getOpcode())
    448     return nullptr;
    449 
    450   bool isMpy = false;
    451   if (I0->getOpcode() == Instruction::FMul)
    452     isMpy = true;
    453   else if (I0->getOpcode() != Instruction::FDiv)
    454     return nullptr;
    455 
    456   Value *Opnd0_0 = I0->getOperand(0);
    457   Value *Opnd0_1 = I0->getOperand(1);
    458   Value *Opnd1_0 = I1->getOperand(0);
    459   Value *Opnd1_1 = I1->getOperand(1);
    460 
    461   //  Input Instr I       Factor   AddSub0  AddSub1
    462   //  ----------------------------------------------
    463   // (x*y) +/- (x*z)        x        y         z
    464   // (y/x) +/- (z/x)        x        y         z
    465   //
    466   Value *Factor = nullptr;
    467   Value *AddSub0 = nullptr, *AddSub1 = nullptr;
    468 
    469   if (isMpy) {
    470     if (Opnd0_0 == Opnd1_0 || Opnd0_0 == Opnd1_1)
    471       Factor = Opnd0_0;
    472     else if (Opnd0_1 == Opnd1_0 || Opnd0_1 == Opnd1_1)
    473       Factor = Opnd0_1;
    474 
    475     if (Factor) {
    476       AddSub0 = (Factor == Opnd0_0) ? Opnd0_1 : Opnd0_0;
    477       AddSub1 = (Factor == Opnd1_0) ? Opnd1_1 : Opnd1_0;
    478     }
    479   } else if (Opnd0_1 == Opnd1_1) {
    480     Factor = Opnd0_1;
    481     AddSub0 = Opnd0_0;
    482     AddSub1 = Opnd1_0;
    483   }
    484 
    485   if (!Factor)
    486     return nullptr;
    487 
    488   FastMathFlags Flags;
    489   Flags.setUnsafeAlgebra();
    490   if (I0) Flags &= I->getFastMathFlags();
    491   if (I1) Flags &= I->getFastMathFlags();
    492 
    493   // Create expression "NewAddSub = AddSub0 +/- AddsSub1"
    494   Value *NewAddSub = (I->getOpcode() == Instruction::FAdd) ?
    495                       createFAdd(AddSub0, AddSub1) :
    496                       createFSub(AddSub0, AddSub1);
    497   if (ConstantFP *CFP = dyn_cast<ConstantFP>(NewAddSub)) {
    498     const APFloat &F = CFP->getValueAPF();
    499     if (!F.isNormal())
    500       return nullptr;
    501   } else if (Instruction *II = dyn_cast<Instruction>(NewAddSub))
    502     II->setFastMathFlags(Flags);
    503 
    504   if (isMpy) {
    505     Value *RI = createFMul(Factor, NewAddSub);
    506     if (Instruction *II = dyn_cast<Instruction>(RI))
    507       II->setFastMathFlags(Flags);
    508     return RI;
    509   }
    510 
    511   Value *RI = createFDiv(NewAddSub, Factor);
    512   if (Instruction *II = dyn_cast<Instruction>(RI))
    513     II->setFastMathFlags(Flags);
    514   return RI;
    515 }
    516 
    517 Value *FAddCombine::simplify(Instruction *I) {
    518   assert(I->hasUnsafeAlgebra() && "Should be in unsafe mode");
    519 
    520   // Currently we are not able to handle vector type.
    521   if (I->getType()->isVectorTy())
    522     return nullptr;
    523 
    524   assert((I->getOpcode() == Instruction::FAdd ||
    525           I->getOpcode() == Instruction::FSub) && "Expect add/sub");
    526 
    527   // Save the instruction before calling other member-functions.
    528   Instr = I;
    529 
    530   FAddend Opnd0, Opnd1, Opnd0_0, Opnd0_1, Opnd1_0, Opnd1_1;
    531 
    532   unsigned OpndNum = FAddend::drillValueDownOneStep(I, Opnd0, Opnd1);
    533 
    534   // Step 1: Expand the 1st addend into Opnd0_0 and Opnd0_1.
    535   unsigned Opnd0_ExpNum = 0;
    536   unsigned Opnd1_ExpNum = 0;
    537 
    538   if (!Opnd0.isConstant())
    539     Opnd0_ExpNum = Opnd0.drillAddendDownOneStep(Opnd0_0, Opnd0_1);
    540 
    541   // Step 2: Expand the 2nd addend into Opnd1_0 and Opnd1_1.
    542   if (OpndNum == 2 && !Opnd1.isConstant())
    543     Opnd1_ExpNum = Opnd1.drillAddendDownOneStep(Opnd1_0, Opnd1_1);
    544 
    545   // Step 3: Try to optimize Opnd0_0 + Opnd0_1 + Opnd1_0 + Opnd1_1
    546   if (Opnd0_ExpNum && Opnd1_ExpNum) {
    547     AddendVect AllOpnds;
    548     AllOpnds.push_back(&Opnd0_0);
    549     AllOpnds.push_back(&Opnd1_0);
    550     if (Opnd0_ExpNum == 2)
    551       AllOpnds.push_back(&Opnd0_1);
    552     if (Opnd1_ExpNum == 2)
    553       AllOpnds.push_back(&Opnd1_1);
    554 
    555     // Compute instruction quota. We should save at least one instruction.
    556     unsigned InstQuota = 0;
    557 
    558     Value *V0 = I->getOperand(0);
    559     Value *V1 = I->getOperand(1);
    560     InstQuota = ((!isa<Constant>(V0) && V0->hasOneUse()) &&
    561                  (!isa<Constant>(V1) && V1->hasOneUse())) ? 2 : 1;
    562 
    563     if (Value *R = simplifyFAdd(AllOpnds, InstQuota))
    564       return R;
    565   }
    566 
    567   if (OpndNum != 2) {
    568     // The input instruction is : "I=0.0 +/- V". If the "V" were able to be
    569     // splitted into two addends, say "V = X - Y", the instruction would have
    570     // been optimized into "I = Y - X" in the previous steps.
    571     //
    572     const FAddendCoef &CE = Opnd0.getCoef();
    573     return CE.isOne() ? Opnd0.getSymVal() : nullptr;
    574   }
    575 
    576   // step 4: Try to optimize Opnd0 + Opnd1_0 [+ Opnd1_1]
    577   if (Opnd1_ExpNum) {
    578     AddendVect AllOpnds;
    579     AllOpnds.push_back(&Opnd0);
    580     AllOpnds.push_back(&Opnd1_0);
    581     if (Opnd1_ExpNum == 2)
    582       AllOpnds.push_back(&Opnd1_1);
    583 
    584     if (Value *R = simplifyFAdd(AllOpnds, 1))
    585       return R;
    586   }
    587 
    588   // step 5: Try to optimize Opnd1 + Opnd0_0 [+ Opnd0_1]
    589   if (Opnd0_ExpNum) {
    590     AddendVect AllOpnds;
    591     AllOpnds.push_back(&Opnd1);
    592     AllOpnds.push_back(&Opnd0_0);
    593     if (Opnd0_ExpNum == 2)
    594       AllOpnds.push_back(&Opnd0_1);
    595 
    596     if (Value *R = simplifyFAdd(AllOpnds, 1))
    597       return R;
    598   }
    599 
    600   // step 6: Try factorization as the last resort,
    601   return performFactorization(I);
    602 }
    603 
    604 Value *FAddCombine::simplifyFAdd(AddendVect& Addends, unsigned InstrQuota) {
    605 
    606   unsigned AddendNum = Addends.size();
    607   assert(AddendNum <= 4 && "Too many addends");
    608 
    609   // For saving intermediate results;
    610   unsigned NextTmpIdx = 0;
    611   FAddend TmpResult[3];
    612 
    613   // Points to the constant addend of the resulting simplified expression.
    614   // If the resulting expr has constant-addend, this constant-addend is
    615   // desirable to reside at the top of the resulting expression tree. Placing
    616   // constant close to supper-expr(s) will potentially reveal some optimization
    617   // opportunities in super-expr(s).
    618   //
    619   const FAddend *ConstAdd = nullptr;
    620 
    621   // Simplified addends are placed <SimpVect>.
    622   AddendVect SimpVect;
    623 
    624   // The outer loop works on one symbolic-value at a time. Suppose the input
    625   // addends are : <a1, x>, <b1, y>, <a2, x>, <c1, z>, <b2, y>, ...
    626   // The symbolic-values will be processed in this order: x, y, z.
    627   //
    628   for (unsigned SymIdx = 0; SymIdx < AddendNum; SymIdx++) {
    629 
    630     const FAddend *ThisAddend = Addends[SymIdx];
    631     if (!ThisAddend) {
    632       // This addend was processed before.
    633       continue;
    634     }
    635 
    636     Value *Val = ThisAddend->getSymVal();
    637     unsigned StartIdx = SimpVect.size();
    638     SimpVect.push_back(ThisAddend);
    639 
    640     // The inner loop collects addends sharing same symbolic-value, and these
    641     // addends will be later on folded into a single addend. Following above
    642     // example, if the symbolic value "y" is being processed, the inner loop
    643     // will collect two addends "<b1,y>" and "<b2,Y>". These two addends will
    644     // be later on folded into "<b1+b2, y>".
    645     //
    646     for (unsigned SameSymIdx = SymIdx + 1;
    647          SameSymIdx < AddendNum; SameSymIdx++) {
    648       const FAddend *T = Addends[SameSymIdx];
    649       if (T && T->getSymVal() == Val) {
    650         // Set null such that next iteration of the outer loop will not process
    651         // this addend again.
    652         Addends[SameSymIdx] = nullptr;
    653         SimpVect.push_back(T);
    654       }
    655     }
    656 
    657     // If multiple addends share same symbolic value, fold them together.
    658     if (StartIdx + 1 != SimpVect.size()) {
    659       FAddend &R = TmpResult[NextTmpIdx ++];
    660       R = *SimpVect[StartIdx];
    661       for (unsigned Idx = StartIdx + 1; Idx < SimpVect.size(); Idx++)
    662         R += *SimpVect[Idx];
    663 
    664       // Pop all addends being folded and push the resulting folded addend.
    665       SimpVect.resize(StartIdx);
    666       if (Val) {
    667         if (!R.isZero()) {
    668           SimpVect.push_back(&R);
    669         }
    670       } else {
    671         // Don't push constant addend at this time. It will be the last element
    672         // of <SimpVect>.
    673         ConstAdd = &R;
    674       }
    675     }
    676   }
    677 
    678   assert((NextTmpIdx <= array_lengthof(TmpResult) + 1) &&
    679          "out-of-bound access");
    680 
    681   if (ConstAdd)
    682     SimpVect.push_back(ConstAdd);
    683 
    684   Value *Result;
    685   if (!SimpVect.empty())
    686     Result = createNaryFAdd(SimpVect, InstrQuota);
    687   else {
    688     // The addition is folded to 0.0.
    689     Result = ConstantFP::get(Instr->getType(), 0.0);
    690   }
    691 
    692   return Result;
    693 }
    694 
    695 Value *FAddCombine::createNaryFAdd
    696   (const AddendVect &Opnds, unsigned InstrQuota) {
    697   assert(!Opnds.empty() && "Expect at least one addend");
    698 
    699   // Step 1: Check if the # of instructions needed exceeds the quota.
    700   //
    701   unsigned InstrNeeded = calcInstrNumber(Opnds);
    702   if (InstrNeeded > InstrQuota)
    703     return nullptr;
    704 
    705   initCreateInstNum();
    706 
    707   // step 2: Emit the N-ary addition.
    708   // Note that at most three instructions are involved in Fadd-InstCombine: the
    709   // addition in question, and at most two neighboring instructions.
    710   // The resulting optimized addition should have at least one less instruction
    711   // than the original addition expression tree. This implies that the resulting
    712   // N-ary addition has at most two instructions, and we don't need to worry
    713   // about tree-height when constructing the N-ary addition.
    714 
    715   Value *LastVal = nullptr;
    716   bool LastValNeedNeg = false;
    717 
    718   // Iterate the addends, creating fadd/fsub using adjacent two addends.
    719   for (AddendVect::const_iterator I = Opnds.begin(), E = Opnds.end();
    720        I != E; I++) {
    721     bool NeedNeg;
    722     Value *V = createAddendVal(**I, NeedNeg);
    723     if (!LastVal) {
    724       LastVal = V;
    725       LastValNeedNeg = NeedNeg;
    726       continue;
    727     }
    728 
    729     if (LastValNeedNeg == NeedNeg) {
    730       LastVal = createFAdd(LastVal, V);
    731       continue;
    732     }
    733 
    734     if (LastValNeedNeg)
    735       LastVal = createFSub(V, LastVal);
    736     else
    737       LastVal = createFSub(LastVal, V);
    738 
    739     LastValNeedNeg = false;
    740   }
    741 
    742   if (LastValNeedNeg) {
    743     LastVal = createFNeg(LastVal);
    744   }
    745 
    746   #ifndef NDEBUG
    747     assert(CreateInstrNum == InstrNeeded &&
    748            "Inconsistent in instruction numbers");
    749   #endif
    750 
    751   return LastVal;
    752 }
    753 
    754 Value *FAddCombine::createFSub(Value *Opnd0, Value *Opnd1) {
    755   Value *V = Builder->CreateFSub(Opnd0, Opnd1);
    756   if (Instruction *I = dyn_cast<Instruction>(V))
    757     createInstPostProc(I);
    758   return V;
    759 }
    760 
    761 Value *FAddCombine::createFNeg(Value *V) {
    762   Value *Zero = cast<Value>(ConstantFP::getZeroValueForNegation(V->getType()));
    763   Value *NewV = createFSub(Zero, V);
    764   if (Instruction *I = dyn_cast<Instruction>(NewV))
    765     createInstPostProc(I, true); // fneg's don't receive instruction numbers.
    766   return NewV;
    767 }
    768 
    769 Value *FAddCombine::createFAdd(Value *Opnd0, Value *Opnd1) {
    770   Value *V = Builder->CreateFAdd(Opnd0, Opnd1);
    771   if (Instruction *I = dyn_cast<Instruction>(V))
    772     createInstPostProc(I);
    773   return V;
    774 }
    775 
    776 Value *FAddCombine::createFMul(Value *Opnd0, Value *Opnd1) {
    777   Value *V = Builder->CreateFMul(Opnd0, Opnd1);
    778   if (Instruction *I = dyn_cast<Instruction>(V))
    779     createInstPostProc(I);
    780   return V;
    781 }
    782 
    783 Value *FAddCombine::createFDiv(Value *Opnd0, Value *Opnd1) {
    784   Value *V = Builder->CreateFDiv(Opnd0, Opnd1);
    785   if (Instruction *I = dyn_cast<Instruction>(V))
    786     createInstPostProc(I);
    787   return V;
    788 }
    789 
    790 void FAddCombine::createInstPostProc(Instruction *NewInstr, bool NoNumber) {
    791   NewInstr->setDebugLoc(Instr->getDebugLoc());
    792 
    793   // Keep track of the number of instruction created.
    794   if (!NoNumber)
    795     incCreateInstNum();
    796 
    797   // Propagate fast-math flags
    798   NewInstr->setFastMathFlags(Instr->getFastMathFlags());
    799 }
    800 
    801 // Return the number of instruction needed to emit the N-ary addition.
    802 // NOTE: Keep this function in sync with createAddendVal().
    803 unsigned FAddCombine::calcInstrNumber(const AddendVect &Opnds) {
    804   unsigned OpndNum = Opnds.size();
    805   unsigned InstrNeeded = OpndNum - 1;
    806 
    807   // The number of addends in the form of "(-1)*x".
    808   unsigned NegOpndNum = 0;
    809 
    810   // Adjust the number of instructions needed to emit the N-ary add.
    811   for (AddendVect::const_iterator I = Opnds.begin(), E = Opnds.end();
    812        I != E; I++) {
    813     const FAddend *Opnd = *I;
    814     if (Opnd->isConstant())
    815       continue;
    816 
    817     const FAddendCoef &CE = Opnd->getCoef();
    818     if (CE.isMinusOne() || CE.isMinusTwo())
    819       NegOpndNum++;
    820 
    821     // Let the addend be "c * x". If "c == +/-1", the value of the addend
    822     // is immediately available; otherwise, it needs exactly one instruction
    823     // to evaluate the value.
    824     if (!CE.isMinusOne() && !CE.isOne())
    825       InstrNeeded++;
    826   }
    827   if (NegOpndNum == OpndNum)
    828     InstrNeeded++;
    829   return InstrNeeded;
    830 }
    831 
    832 // Input Addend        Value           NeedNeg(output)
    833 // ================================================================
    834 // Constant C          C               false
    835 // <+/-1, V>           V               coefficient is -1
    836 // <2/-2, V>          "fadd V, V"      coefficient is -2
    837 // <C, V>             "fmul V, C"      false
    838 //
    839 // NOTE: Keep this function in sync with FAddCombine::calcInstrNumber.
    840 Value *FAddCombine::createAddendVal(const FAddend &Opnd, bool &NeedNeg) {
    841   const FAddendCoef &Coeff = Opnd.getCoef();
    842 
    843   if (Opnd.isConstant()) {
    844     NeedNeg = false;
    845     return Coeff.getValue(Instr->getType());
    846   }
    847 
    848   Value *OpndVal = Opnd.getSymVal();
    849 
    850   if (Coeff.isMinusOne() || Coeff.isOne()) {
    851     NeedNeg = Coeff.isMinusOne();
    852     return OpndVal;
    853   }
    854 
    855   if (Coeff.isTwo() || Coeff.isMinusTwo()) {
    856     NeedNeg = Coeff.isMinusTwo();
    857     return createFAdd(OpndVal, OpndVal);
    858   }
    859 
    860   NeedNeg = false;
    861   return createFMul(OpndVal, Coeff.getValue(Instr->getType()));
    862 }
    863 
    864 // If one of the operands only has one non-zero bit, and if the other
    865 // operand has a known-zero bit in a more significant place than it (not
    866 // including the sign bit) the ripple may go up to and fill the zero, but
    867 // won't change the sign. For example, (X & ~4) + 1.
    868 static bool checkRippleForAdd(const APInt &Op0KnownZero,
    869                               const APInt &Op1KnownZero) {
    870   APInt Op1MaybeOne = ~Op1KnownZero;
    871   // Make sure that one of the operand has at most one bit set to 1.
    872   if (Op1MaybeOne.countPopulation() != 1)
    873     return false;
    874 
    875   // Find the most significant known 0 other than the sign bit.
    876   int BitWidth = Op0KnownZero.getBitWidth();
    877   APInt Op0KnownZeroTemp(Op0KnownZero);
    878   Op0KnownZeroTemp.clearBit(BitWidth - 1);
    879   int Op0ZeroPosition = BitWidth - Op0KnownZeroTemp.countLeadingZeros() - 1;
    880 
    881   int Op1OnePosition = BitWidth - Op1MaybeOne.countLeadingZeros() - 1;
    882   assert(Op1OnePosition >= 0);
    883 
    884   // This also covers the case of no known zero, since in that case
    885   // Op0ZeroPosition is -1.
    886   return Op0ZeroPosition >= Op1OnePosition;
    887 }
    888 
    889 /// WillNotOverflowSignedAdd - Return true if we can prove that:
    890 ///    (sext (add LHS, RHS))  === (add (sext LHS), (sext RHS))
    891 /// This basically requires proving that the add in the original type would not
    892 /// overflow to change the sign bit or have a carry out.
    893 bool InstCombiner::WillNotOverflowSignedAdd(Value *LHS, Value *RHS,
    894                                             Instruction &CxtI) {
    895   // There are different heuristics we can use for this.  Here are some simple
    896   // ones.
    897 
    898   // If LHS and RHS each have at least two sign bits, the addition will look
    899   // like
    900   //
    901   // XX..... +
    902   // YY.....
    903   //
    904   // If the carry into the most significant position is 0, X and Y can't both
    905   // be 1 and therefore the carry out of the addition is also 0.
    906   //
    907   // If the carry into the most significant position is 1, X and Y can't both
    908   // be 0 and therefore the carry out of the addition is also 1.
    909   //
    910   // Since the carry into the most significant position is always equal to
    911   // the carry out of the addition, there is no signed overflow.
    912   if (ComputeNumSignBits(LHS, 0, &CxtI) > 1 &&
    913       ComputeNumSignBits(RHS, 0, &CxtI) > 1)
    914     return true;
    915 
    916   unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
    917   APInt LHSKnownZero(BitWidth, 0);
    918   APInt LHSKnownOne(BitWidth, 0);
    919   computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, 0, &CxtI);
    920 
    921   APInt RHSKnownZero(BitWidth, 0);
    922   APInt RHSKnownOne(BitWidth, 0);
    923   computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, 0, &CxtI);
    924 
    925   // Addition of two 2's compliment numbers having opposite signs will never
    926   // overflow.
    927   if ((LHSKnownOne[BitWidth - 1] && RHSKnownZero[BitWidth - 1]) ||
    928       (LHSKnownZero[BitWidth - 1] && RHSKnownOne[BitWidth - 1]))
    929     return true;
    930 
    931   // Check if carry bit of addition will not cause overflow.
    932   if (checkRippleForAdd(LHSKnownZero, RHSKnownZero))
    933     return true;
    934   if (checkRippleForAdd(RHSKnownZero, LHSKnownZero))
    935     return true;
    936 
    937   return false;
    938 }
    939 
    940 /// \brief Return true if we can prove that:
    941 ///    (sub LHS, RHS)  === (sub nsw LHS, RHS)
    942 /// This basically requires proving that the add in the original type would not
    943 /// overflow to change the sign bit or have a carry out.
    944 /// TODO: Handle this for Vectors.
    945 bool InstCombiner::WillNotOverflowSignedSub(Value *LHS, Value *RHS,
    946                                             Instruction &CxtI) {
    947   // If LHS and RHS each have at least two sign bits, the subtraction
    948   // cannot overflow.
    949   if (ComputeNumSignBits(LHS, 0, &CxtI) > 1 &&
    950       ComputeNumSignBits(RHS, 0, &CxtI) > 1)
    951     return true;
    952 
    953   unsigned BitWidth = LHS->getType()->getScalarSizeInBits();
    954   APInt LHSKnownZero(BitWidth, 0);
    955   APInt LHSKnownOne(BitWidth, 0);
    956   computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, 0, &CxtI);
    957 
    958   APInt RHSKnownZero(BitWidth, 0);
    959   APInt RHSKnownOne(BitWidth, 0);
    960   computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, 0, &CxtI);
    961 
    962   // Subtraction of two 2's compliment numbers having identical signs will
    963   // never overflow.
    964   if ((LHSKnownOne[BitWidth - 1] && RHSKnownOne[BitWidth - 1]) ||
    965       (LHSKnownZero[BitWidth - 1] && RHSKnownZero[BitWidth - 1]))
    966     return true;
    967 
    968   // TODO: implement logic similar to checkRippleForAdd
    969   return false;
    970 }
    971 
    972 /// \brief Return true if we can prove that:
    973 ///    (sub LHS, RHS)  === (sub nuw LHS, RHS)
    974 bool InstCombiner::WillNotOverflowUnsignedSub(Value *LHS, Value *RHS,
    975                                               Instruction &CxtI) {
    976   // If the LHS is negative and the RHS is non-negative, no unsigned wrap.
    977   bool LHSKnownNonNegative, LHSKnownNegative;
    978   bool RHSKnownNonNegative, RHSKnownNegative;
    979   ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, /*Depth=*/0,
    980                  &CxtI);
    981   ComputeSignBit(RHS, RHSKnownNonNegative, RHSKnownNegative, /*Depth=*/0,
    982                  &CxtI);
    983   if (LHSKnownNegative && RHSKnownNonNegative)
    984     return true;
    985 
    986   return false;
    987 }
    988 
    989 // Checks if any operand is negative and we can convert add to sub.
    990 // This function checks for following negative patterns
    991 //   ADD(XOR(OR(Z, NOT(C)), C)), 1) == NEG(AND(Z, C))
    992 //   ADD(XOR(AND(Z, C), C), 1) == NEG(OR(Z, ~C))
    993 //   XOR(AND(Z, C), (C + 1)) == NEG(OR(Z, ~C)) if C is even
    994 static Value *checkForNegativeOperand(BinaryOperator &I,
    995                                       InstCombiner::BuilderTy *Builder) {
    996   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
    997 
    998   // This function creates 2 instructions to replace ADD, we need at least one
    999   // of LHS or RHS to have one use to ensure benefit in transform.
   1000   if (!LHS->hasOneUse() && !RHS->hasOneUse())
   1001     return nullptr;
   1002 
   1003   Value *X = nullptr, *Y = nullptr, *Z = nullptr;
   1004   const APInt *C1 = nullptr, *C2 = nullptr;
   1005 
   1006   // if ONE is on other side, swap
   1007   if (match(RHS, m_Add(m_Value(X), m_One())))
   1008     std::swap(LHS, RHS);
   1009 
   1010   if (match(LHS, m_Add(m_Value(X), m_One()))) {
   1011     // if XOR on other side, swap
   1012     if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1))))
   1013       std::swap(X, RHS);
   1014 
   1015     if (match(X, m_Xor(m_Value(Y), m_APInt(C1)))) {
   1016       // X = XOR(Y, C1), Y = OR(Z, C2), C2 = NOT(C1) ==> X == NOT(AND(Z, C1))
   1017       // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, AND(Z, C1))
   1018       if (match(Y, m_Or(m_Value(Z), m_APInt(C2))) && (*C2 == ~(*C1))) {
   1019         Value *NewAnd = Builder->CreateAnd(Z, *C1);
   1020         return Builder->CreateSub(RHS, NewAnd, "sub");
   1021       } else if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && (*C1 == *C2)) {
   1022         // X = XOR(Y, C1), Y = AND(Z, C2), C2 == C1 ==> X == NOT(OR(Z, ~C1))
   1023         // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, OR(Z, ~C1))
   1024         Value *NewOr = Builder->CreateOr(Z, ~(*C1));
   1025         return Builder->CreateSub(RHS, NewOr, "sub");
   1026       }
   1027     }
   1028   }
   1029 
   1030   // Restore LHS and RHS
   1031   LHS = I.getOperand(0);
   1032   RHS = I.getOperand(1);
   1033 
   1034   // if XOR is on other side, swap
   1035   if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1))))
   1036     std::swap(LHS, RHS);
   1037 
   1038   // C2 is ODD
   1039   // LHS = XOR(Y, C1), Y = AND(Z, C2), C1 == (C2 + 1) => LHS == NEG(OR(Z, ~C2))
   1040   // ADD(LHS, RHS) == SUB(RHS, OR(Z, ~C2))
   1041   if (match(LHS, m_Xor(m_Value(Y), m_APInt(C1))))
   1042     if (C1->countTrailingZeros() == 0)
   1043       if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && *C1 == (*C2 + 1)) {
   1044         Value *NewOr = Builder->CreateOr(Z, ~(*C2));
   1045         return Builder->CreateSub(RHS, NewOr, "sub");
   1046       }
   1047   return nullptr;
   1048 }
   1049 
   1050 Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
   1051   bool Changed = SimplifyAssociativeOrCommutative(I);
   1052   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
   1053 
   1054   if (Value *V = SimplifyVectorOp(I))
   1055     return ReplaceInstUsesWith(I, V);
   1056 
   1057   if (Value *V = SimplifyAddInst(LHS, RHS, I.hasNoSignedWrap(),
   1058                                  I.hasNoUnsignedWrap(), DL, TLI, DT, AC))
   1059     return ReplaceInstUsesWith(I, V);
   1060 
   1061    // (A*B)+(A*C) -> A*(B+C) etc
   1062   if (Value *V = SimplifyUsingDistributiveLaws(I))
   1063     return ReplaceInstUsesWith(I, V);
   1064 
   1065   if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
   1066     // X + (signbit) --> X ^ signbit
   1067     const APInt &Val = CI->getValue();
   1068     if (Val.isSignBit())
   1069       return BinaryOperator::CreateXor(LHS, RHS);
   1070 
   1071     // See if SimplifyDemandedBits can simplify this.  This handles stuff like
   1072     // (X & 254)+1 -> (X&254)|1
   1073     if (SimplifyDemandedInstructionBits(I))
   1074       return &I;
   1075 
   1076     // zext(bool) + C -> bool ? C + 1 : C
   1077     if (ZExtInst *ZI = dyn_cast<ZExtInst>(LHS))
   1078       if (ZI->getSrcTy()->isIntegerTy(1))
   1079         return SelectInst::Create(ZI->getOperand(0), AddOne(CI), CI);
   1080 
   1081     Value *XorLHS = nullptr; ConstantInt *XorRHS = nullptr;
   1082     if (match(LHS, m_Xor(m_Value(XorLHS), m_ConstantInt(XorRHS)))) {
   1083       uint32_t TySizeBits = I.getType()->getScalarSizeInBits();
   1084       const APInt &RHSVal = CI->getValue();
   1085       unsigned ExtendAmt = 0;
   1086       // If we have ADD(XOR(AND(X, 0xFF), 0x80), 0xF..F80), it's a sext.
   1087       // If we have ADD(XOR(AND(X, 0xFF), 0xF..F80), 0x80), it's a sext.
   1088       if (XorRHS->getValue() == -RHSVal) {
   1089         if (RHSVal.isPowerOf2())
   1090           ExtendAmt = TySizeBits - RHSVal.logBase2() - 1;
   1091         else if (XorRHS->getValue().isPowerOf2())
   1092           ExtendAmt = TySizeBits - XorRHS->getValue().logBase2() - 1;
   1093       }
   1094 
   1095       if (ExtendAmt) {
   1096         APInt Mask = APInt::getHighBitsSet(TySizeBits, ExtendAmt);
   1097         if (!MaskedValueIsZero(XorLHS, Mask, 0, &I))
   1098           ExtendAmt = 0;
   1099       }
   1100 
   1101       if (ExtendAmt) {
   1102         Constant *ShAmt = ConstantInt::get(I.getType(), ExtendAmt);
   1103         Value *NewShl = Builder->CreateShl(XorLHS, ShAmt, "sext");
   1104         return BinaryOperator::CreateAShr(NewShl, ShAmt);
   1105       }
   1106 
   1107       // If this is a xor that was canonicalized from a sub, turn it back into
   1108       // a sub and fuse this add with it.
   1109       if (LHS->hasOneUse() && (XorRHS->getValue()+1).isPowerOf2()) {
   1110         IntegerType *IT = cast<IntegerType>(I.getType());
   1111         APInt LHSKnownOne(IT->getBitWidth(), 0);
   1112         APInt LHSKnownZero(IT->getBitWidth(), 0);
   1113         computeKnownBits(XorLHS, LHSKnownZero, LHSKnownOne, 0, &I);
   1114         if ((XorRHS->getValue() | LHSKnownZero).isAllOnesValue())
   1115           return BinaryOperator::CreateSub(ConstantExpr::getAdd(XorRHS, CI),
   1116                                            XorLHS);
   1117       }
   1118       // (X + signbit) + C could have gotten canonicalized to (X ^ signbit) + C,
   1119       // transform them into (X + (signbit ^ C))
   1120       if (XorRHS->getValue().isSignBit())
   1121           return BinaryOperator::CreateAdd(XorLHS,
   1122                                            ConstantExpr::getXor(XorRHS, CI));
   1123     }
   1124   }
   1125 
   1126   if (isa<Constant>(RHS) && isa<PHINode>(LHS))
   1127     if (Instruction *NV = FoldOpIntoPhi(I))
   1128       return NV;
   1129 
   1130   if (I.getType()->getScalarType()->isIntegerTy(1))
   1131     return BinaryOperator::CreateXor(LHS, RHS);
   1132 
   1133   // X + X --> X << 1
   1134   if (LHS == RHS) {
   1135     BinaryOperator *New =
   1136       BinaryOperator::CreateShl(LHS, ConstantInt::get(I.getType(), 1));
   1137     New->setHasNoSignedWrap(I.hasNoSignedWrap());
   1138     New->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
   1139     return New;
   1140   }
   1141 
   1142   // -A + B  -->  B - A
   1143   // -A + -B  -->  -(A + B)
   1144   if (Value *LHSV = dyn_castNegVal(LHS)) {
   1145     if (!isa<Constant>(RHS))
   1146       if (Value *RHSV = dyn_castNegVal(RHS)) {
   1147         Value *NewAdd = Builder->CreateAdd(LHSV, RHSV, "sum");
   1148         return BinaryOperator::CreateNeg(NewAdd);
   1149       }
   1150 
   1151     return BinaryOperator::CreateSub(RHS, LHSV);
   1152   }
   1153 
   1154   // A + -B  -->  A - B
   1155   if (!isa<Constant>(RHS))
   1156     if (Value *V = dyn_castNegVal(RHS))
   1157       return BinaryOperator::CreateSub(LHS, V);
   1158 
   1159   if (Value *V = checkForNegativeOperand(I, Builder))
   1160     return ReplaceInstUsesWith(I, V);
   1161 
   1162   // A+B --> A|B iff A and B have no bits set in common.
   1163   if (IntegerType *IT = dyn_cast<IntegerType>(I.getType())) {
   1164     APInt LHSKnownOne(IT->getBitWidth(), 0);
   1165     APInt LHSKnownZero(IT->getBitWidth(), 0);
   1166     computeKnownBits(LHS, LHSKnownZero, LHSKnownOne, 0, &I);
   1167     if (LHSKnownZero != 0) {
   1168       APInt RHSKnownOne(IT->getBitWidth(), 0);
   1169       APInt RHSKnownZero(IT->getBitWidth(), 0);
   1170       computeKnownBits(RHS, RHSKnownZero, RHSKnownOne, 0, &I);
   1171 
   1172       // No bits in common -> bitwise or.
   1173       if ((LHSKnownZero|RHSKnownZero).isAllOnesValue())
   1174         return BinaryOperator::CreateOr(LHS, RHS);
   1175     }
   1176   }
   1177 
   1178   if (Constant *CRHS = dyn_cast<Constant>(RHS)) {
   1179     Value *X;
   1180     if (match(LHS, m_Not(m_Value(X)))) // ~X + C --> (C-1) - X
   1181       return BinaryOperator::CreateSub(SubOne(CRHS), X);
   1182   }
   1183 
   1184   if (ConstantInt *CRHS = dyn_cast<ConstantInt>(RHS)) {
   1185     // (X & FF00) + xx00  -> (X+xx00) & FF00
   1186     Value *X;
   1187     ConstantInt *C2;
   1188     if (LHS->hasOneUse() &&
   1189         match(LHS, m_And(m_Value(X), m_ConstantInt(C2))) &&
   1190         CRHS->getValue() == (CRHS->getValue() & C2->getValue())) {
   1191       // See if all bits from the first bit set in the Add RHS up are included
   1192       // in the mask.  First, get the rightmost bit.
   1193       const APInt &AddRHSV = CRHS->getValue();
   1194 
   1195       // Form a mask of all bits from the lowest bit added through the top.
   1196       APInt AddRHSHighBits(~((AddRHSV & -AddRHSV)-1));
   1197 
   1198       // See if the and mask includes all of these bits.
   1199       APInt AddRHSHighBitsAnd(AddRHSHighBits & C2->getValue());
   1200 
   1201       if (AddRHSHighBits == AddRHSHighBitsAnd) {
   1202         // Okay, the xform is safe.  Insert the new add pronto.
   1203         Value *NewAdd = Builder->CreateAdd(X, CRHS, LHS->getName());
   1204         return BinaryOperator::CreateAnd(NewAdd, C2);
   1205       }
   1206     }
   1207 
   1208     // Try to fold constant add into select arguments.
   1209     if (SelectInst *SI = dyn_cast<SelectInst>(LHS))
   1210       if (Instruction *R = FoldOpIntoSelect(I, SI))
   1211         return R;
   1212   }
   1213 
   1214   // add (select X 0 (sub n A)) A  -->  select X A n
   1215   {
   1216     SelectInst *SI = dyn_cast<SelectInst>(LHS);
   1217     Value *A = RHS;
   1218     if (!SI) {
   1219       SI = dyn_cast<SelectInst>(RHS);
   1220       A = LHS;
   1221     }
   1222     if (SI && SI->hasOneUse()) {
   1223       Value *TV = SI->getTrueValue();
   1224       Value *FV = SI->getFalseValue();
   1225       Value *N;
   1226 
   1227       // Can we fold the add into the argument of the select?
   1228       // We check both true and false select arguments for a matching subtract.
   1229       if (match(FV, m_Zero()) && match(TV, m_Sub(m_Value(N), m_Specific(A))))
   1230         // Fold the add into the true select value.
   1231         return SelectInst::Create(SI->getCondition(), N, A);
   1232 
   1233       if (match(TV, m_Zero()) && match(FV, m_Sub(m_Value(N), m_Specific(A))))
   1234         // Fold the add into the false select value.
   1235         return SelectInst::Create(SI->getCondition(), A, N);
   1236     }
   1237   }
   1238 
   1239   // Check for (add (sext x), y), see if we can merge this into an
   1240   // integer add followed by a sext.
   1241   if (SExtInst *LHSConv = dyn_cast<SExtInst>(LHS)) {
   1242     // (add (sext x), cst) --> (sext (add x, cst'))
   1243     if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) {
   1244       Constant *CI =
   1245         ConstantExpr::getTrunc(RHSC, LHSConv->getOperand(0)->getType());
   1246       if (LHSConv->hasOneUse() &&
   1247           ConstantExpr::getSExt(CI, I.getType()) == RHSC &&
   1248           WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI, I)) {
   1249         // Insert the new, smaller add.
   1250         Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
   1251                                               CI, "addconv");
   1252         return new SExtInst(NewAdd, I.getType());
   1253       }
   1254     }
   1255 
   1256     // (add (sext x), (sext y)) --> (sext (add int x, y))
   1257     if (SExtInst *RHSConv = dyn_cast<SExtInst>(RHS)) {
   1258       // Only do this if x/y have the same type, if at last one of them has a
   1259       // single use (so we don't increase the number of sexts), and if the
   1260       // integer add will not overflow.
   1261       if (LHSConv->getOperand(0)->getType() ==
   1262               RHSConv->getOperand(0)->getType() &&
   1263           (LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
   1264           WillNotOverflowSignedAdd(LHSConv->getOperand(0),
   1265                                    RHSConv->getOperand(0), I)) {
   1266         // Insert the new integer add.
   1267         Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
   1268                                              RHSConv->getOperand(0), "addconv");
   1269         return new SExtInst(NewAdd, I.getType());
   1270       }
   1271     }
   1272   }
   1273 
   1274   // (add (xor A, B) (and A, B)) --> (or A, B)
   1275   {
   1276     Value *A = nullptr, *B = nullptr;
   1277     if (match(RHS, m_Xor(m_Value(A), m_Value(B))) &&
   1278         (match(LHS, m_And(m_Specific(A), m_Specific(B))) ||
   1279          match(LHS, m_And(m_Specific(B), m_Specific(A)))))
   1280       return BinaryOperator::CreateOr(A, B);
   1281 
   1282     if (match(LHS, m_Xor(m_Value(A), m_Value(B))) &&
   1283         (match(RHS, m_And(m_Specific(A), m_Specific(B))) ||
   1284          match(RHS, m_And(m_Specific(B), m_Specific(A)))))
   1285       return BinaryOperator::CreateOr(A, B);
   1286   }
   1287 
   1288   // (add (or A, B) (and A, B)) --> (add A, B)
   1289   {
   1290     Value *A = nullptr, *B = nullptr;
   1291     if (match(RHS, m_Or(m_Value(A), m_Value(B))) &&
   1292         (match(LHS, m_And(m_Specific(A), m_Specific(B))) ||
   1293          match(LHS, m_And(m_Specific(B), m_Specific(A))))) {
   1294       auto *New = BinaryOperator::CreateAdd(A, B);
   1295       New->setHasNoSignedWrap(I.hasNoSignedWrap());
   1296       New->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
   1297       return New;
   1298     }
   1299 
   1300     if (match(LHS, m_Or(m_Value(A), m_Value(B))) &&
   1301         (match(RHS, m_And(m_Specific(A), m_Specific(B))) ||
   1302          match(RHS, m_And(m_Specific(B), m_Specific(A))))) {
   1303       auto *New = BinaryOperator::CreateAdd(A, B);
   1304       New->setHasNoSignedWrap(I.hasNoSignedWrap());
   1305       New->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
   1306       return New;
   1307     }
   1308   }
   1309 
   1310   // TODO(jingyue): Consider WillNotOverflowSignedAdd and
   1311   // WillNotOverflowUnsignedAdd to reduce the number of invocations of
   1312   // computeKnownBits.
   1313   if (!I.hasNoSignedWrap() && WillNotOverflowSignedAdd(LHS, RHS, I)) {
   1314     Changed = true;
   1315     I.setHasNoSignedWrap(true);
   1316   }
   1317   if (!I.hasNoUnsignedWrap() &&
   1318       computeOverflowForUnsignedAdd(LHS, RHS, &I) ==
   1319           OverflowResult::NeverOverflows) {
   1320     Changed = true;
   1321     I.setHasNoUnsignedWrap(true);
   1322   }
   1323 
   1324   return Changed ? &I : nullptr;
   1325 }
   1326 
   1327 Instruction *InstCombiner::visitFAdd(BinaryOperator &I) {
   1328   bool Changed = SimplifyAssociativeOrCommutative(I);
   1329   Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
   1330 
   1331   if (Value *V = SimplifyVectorOp(I))
   1332     return ReplaceInstUsesWith(I, V);
   1333 
   1334   if (Value *V =
   1335           SimplifyFAddInst(LHS, RHS, I.getFastMathFlags(), DL, TLI, DT, AC))
   1336     return ReplaceInstUsesWith(I, V);
   1337 
   1338   if (isa<Constant>(RHS)) {
   1339     if (isa<PHINode>(LHS))
   1340       if (Instruction *NV = FoldOpIntoPhi(I))
   1341         return NV;
   1342 
   1343     if (SelectInst *SI = dyn_cast<SelectInst>(LHS))
   1344       if (Instruction *NV = FoldOpIntoSelect(I, SI))
   1345         return NV;
   1346   }
   1347 
   1348   // -A + B  -->  B - A
   1349   // -A + -B  -->  -(A + B)
   1350   if (Value *LHSV = dyn_castFNegVal(LHS)) {
   1351     Instruction *RI = BinaryOperator::CreateFSub(RHS, LHSV);
   1352     RI->copyFastMathFlags(&I);
   1353     return RI;
   1354   }
   1355 
   1356   // A + -B  -->  A - B
   1357   if (!isa<Constant>(RHS))
   1358     if (Value *V = dyn_castFNegVal(RHS)) {
   1359       Instruction *RI = BinaryOperator::CreateFSub(LHS, V);
   1360       RI->copyFastMathFlags(&I);
   1361       return RI;
   1362     }
   1363 
   1364   // Check for (fadd double (sitofp x), y), see if we can merge this into an
   1365   // integer add followed by a promotion.
   1366   if (SIToFPInst *LHSConv = dyn_cast<SIToFPInst>(LHS)) {
   1367     // (fadd double (sitofp x), fpcst) --> (sitofp (add int x, intcst))
   1368     // ... if the constant fits in the integer value.  This is useful for things
   1369     // like (double)(x & 1234) + 4.0 -> (double)((X & 1234)+4) which no longer
   1370     // requires a constant pool load, and generally allows the add to be better
   1371     // instcombined.
   1372     if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS)) {
   1373       Constant *CI =
   1374       ConstantExpr::getFPToSI(CFP, LHSConv->getOperand(0)->getType());
   1375       if (LHSConv->hasOneUse() &&
   1376           ConstantExpr::getSIToFP(CI, I.getType()) == CFP &&
   1377           WillNotOverflowSignedAdd(LHSConv->getOperand(0), CI, I)) {
   1378         // Insert the new integer add.
   1379         Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
   1380                                               CI, "addconv");
   1381         return new SIToFPInst(NewAdd, I.getType());
   1382       }
   1383     }
   1384 
   1385     // (fadd double (sitofp x), (sitofp y)) --> (sitofp (add int x, y))
   1386     if (SIToFPInst *RHSConv = dyn_cast<SIToFPInst>(RHS)) {
   1387       // Only do this if x/y have the same type, if at last one of them has a
   1388       // single use (so we don't increase the number of int->fp conversions),
   1389       // and if the integer add will not overflow.
   1390       if (LHSConv->getOperand(0)->getType() ==
   1391               RHSConv->getOperand(0)->getType() &&
   1392           (LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
   1393           WillNotOverflowSignedAdd(LHSConv->getOperand(0),
   1394                                    RHSConv->getOperand(0), I)) {
   1395         // Insert the new integer add.
   1396         Value *NewAdd = Builder->CreateNSWAdd(LHSConv->getOperand(0),
   1397                                               RHSConv->getOperand(0),"addconv");
   1398         return new SIToFPInst(NewAdd, I.getType());
   1399       }
   1400     }
   1401   }
   1402 
   1403   // select C, 0, B + select C, A, 0 -> select C, A, B
   1404   {
   1405     Value *A1, *B1, *C1, *A2, *B2, *C2;
   1406     if (match(LHS, m_Select(m_Value(C1), m_Value(A1), m_Value(B1))) &&
   1407         match(RHS, m_Select(m_Value(C2), m_Value(A2), m_Value(B2)))) {
   1408       if (C1 == C2) {
   1409         Constant *Z1=nullptr, *Z2=nullptr;
   1410         Value *A, *B, *C=C1;
   1411         if (match(A1, m_AnyZero()) && match(B2, m_AnyZero())) {
   1412             Z1 = dyn_cast<Constant>(A1); A = A2;
   1413             Z2 = dyn_cast<Constant>(B2); B = B1;
   1414         } else if (match(B1, m_AnyZero()) && match(A2, m_AnyZero())) {
   1415             Z1 = dyn_cast<Constant>(B1); B = B2;
   1416             Z2 = dyn_cast<Constant>(A2); A = A1;
   1417         }
   1418 
   1419         if (Z1 && Z2 &&
   1420             (I.hasNoSignedZeros() ||
   1421              (Z1->isNegativeZeroValue() && Z2->isNegativeZeroValue()))) {
   1422           return SelectInst::Create(C, A, B);
   1423         }
   1424       }
   1425     }
   1426   }
   1427 
   1428   if (I.hasUnsafeAlgebra()) {
   1429     if (Value *V = FAddCombine(Builder).simplify(&I))
   1430       return ReplaceInstUsesWith(I, V);
   1431   }
   1432 
   1433   return Changed ? &I : nullptr;
   1434 }
   1435 
   1436 
   1437 /// Optimize pointer differences into the same array into a size.  Consider:
   1438 ///  &A[10] - &A[0]: we should compile this to "10".  LHS/RHS are the pointer
   1439 /// operands to the ptrtoint instructions for the LHS/RHS of the subtract.
   1440 ///
   1441 Value *InstCombiner::OptimizePointerDifference(Value *LHS, Value *RHS,
   1442                                                Type *Ty) {
   1443   // If LHS is a gep based on RHS or RHS is a gep based on LHS, we can optimize
   1444   // this.
   1445   bool Swapped = false;
   1446   GEPOperator *GEP1 = nullptr, *GEP2 = nullptr;
   1447 
   1448   // For now we require one side to be the base pointer "A" or a constant
   1449   // GEP derived from it.
   1450   if (GEPOperator *LHSGEP = dyn_cast<GEPOperator>(LHS)) {
   1451     // (gep X, ...) - X
   1452     if (LHSGEP->getOperand(0) == RHS) {
   1453       GEP1 = LHSGEP;
   1454       Swapped = false;
   1455     } else if (GEPOperator *RHSGEP = dyn_cast<GEPOperator>(RHS)) {
   1456       // (gep X, ...) - (gep X, ...)
   1457       if (LHSGEP->getOperand(0)->stripPointerCasts() ==
   1458             RHSGEP->getOperand(0)->stripPointerCasts()) {
   1459         GEP2 = RHSGEP;
   1460         GEP1 = LHSGEP;
   1461         Swapped = false;
   1462       }
   1463     }
   1464   }
   1465 
   1466   if (GEPOperator *RHSGEP = dyn_cast<GEPOperator>(RHS)) {
   1467     // X - (gep X, ...)
   1468     if (RHSGEP->getOperand(0) == LHS) {
   1469       GEP1 = RHSGEP;
   1470       Swapped = true;
   1471     } else if (GEPOperator *LHSGEP = dyn_cast<GEPOperator>(LHS)) {
   1472       // (gep X, ...) - (gep X, ...)
   1473       if (RHSGEP->getOperand(0)->stripPointerCasts() ==
   1474             LHSGEP->getOperand(0)->stripPointerCasts()) {
   1475         GEP2 = LHSGEP;
   1476         GEP1 = RHSGEP;
   1477         Swapped = true;
   1478       }
   1479     }
   1480   }
   1481 
   1482   // Avoid duplicating the arithmetic if GEP2 has non-constant indices and
   1483   // multiple users.
   1484   if (!GEP1 ||
   1485       (GEP2 && !GEP2->hasAllConstantIndices() && !GEP2->hasOneUse()))
   1486     return nullptr;
   1487 
   1488   // Emit the offset of the GEP and an intptr_t.
   1489   Value *Result = EmitGEPOffset(GEP1);
   1490 
   1491   // If we had a constant expression GEP on the other side offsetting the
   1492   // pointer, subtract it from the offset we have.
   1493   if (GEP2) {
   1494     Value *Offset = EmitGEPOffset(GEP2);
   1495     Result = Builder->CreateSub(Result, Offset);
   1496   }
   1497 
   1498   // If we have p - gep(p, ...)  then we have to negate the result.
   1499   if (Swapped)
   1500     Result = Builder->CreateNeg(Result, "diff.neg");
   1501 
   1502   return Builder->CreateIntCast(Result, Ty, true);
   1503 }
   1504 
   1505 Instruction *InstCombiner::visitSub(BinaryOperator &I) {
   1506   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
   1507 
   1508   if (Value *V = SimplifyVectorOp(I))
   1509     return ReplaceInstUsesWith(I, V);
   1510 
   1511   if (Value *V = SimplifySubInst(Op0, Op1, I.hasNoSignedWrap(),
   1512                                  I.hasNoUnsignedWrap(), DL, TLI, DT, AC))
   1513     return ReplaceInstUsesWith(I, V);
   1514 
   1515   // (A*B)-(A*C) -> A*(B-C) etc
   1516   if (Value *V = SimplifyUsingDistributiveLaws(I))
   1517     return ReplaceInstUsesWith(I, V);
   1518 
   1519   // If this is a 'B = x-(-A)', change to B = x+A.
   1520   if (Value *V = dyn_castNegVal(Op1)) {
   1521     BinaryOperator *Res = BinaryOperator::CreateAdd(Op0, V);
   1522 
   1523     if (const auto *BO = dyn_cast<BinaryOperator>(Op1)) {
   1524       assert(BO->getOpcode() == Instruction::Sub &&
   1525              "Expected a subtraction operator!");
   1526       if (BO->hasNoSignedWrap() && I.hasNoSignedWrap())
   1527         Res->setHasNoSignedWrap(true);
   1528     } else {
   1529       if (cast<Constant>(Op1)->isNotMinSignedValue() && I.hasNoSignedWrap())
   1530         Res->setHasNoSignedWrap(true);
   1531     }
   1532 
   1533     return Res;
   1534   }
   1535 
   1536   if (I.getType()->isIntegerTy(1))
   1537     return BinaryOperator::CreateXor(Op0, Op1);
   1538 
   1539   // Replace (-1 - A) with (~A).
   1540   if (match(Op0, m_AllOnes()))
   1541     return BinaryOperator::CreateNot(Op1);
   1542 
   1543   if (Constant *C = dyn_cast<Constant>(Op0)) {
   1544     // C - ~X == X + (1+C)
   1545     Value *X = nullptr;
   1546     if (match(Op1, m_Not(m_Value(X))))
   1547       return BinaryOperator::CreateAdd(X, AddOne(C));
   1548 
   1549     // Try to fold constant sub into select arguments.
   1550     if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
   1551       if (Instruction *R = FoldOpIntoSelect(I, SI))
   1552         return R;
   1553 
   1554     // C-(X+C2) --> (C-C2)-X
   1555     Constant *C2;
   1556     if (match(Op1, m_Add(m_Value(X), m_Constant(C2))))
   1557       return BinaryOperator::CreateSub(ConstantExpr::getSub(C, C2), X);
   1558 
   1559     if (SimplifyDemandedInstructionBits(I))
   1560       return &I;
   1561 
   1562     // Fold (sub 0, (zext bool to B)) --> (sext bool to B)
   1563     if (C->isNullValue() && match(Op1, m_ZExt(m_Value(X))))
   1564       if (X->getType()->getScalarType()->isIntegerTy(1))
   1565         return CastInst::CreateSExtOrBitCast(X, Op1->getType());
   1566 
   1567     // Fold (sub 0, (sext bool to B)) --> (zext bool to B)
   1568     if (C->isNullValue() && match(Op1, m_SExt(m_Value(X))))
   1569       if (X->getType()->getScalarType()->isIntegerTy(1))
   1570         return CastInst::CreateZExtOrBitCast(X, Op1->getType());
   1571   }
   1572 
   1573   if (ConstantInt *C = dyn_cast<ConstantInt>(Op0)) {
   1574     // -(X >>u 31) -> (X >>s 31)
   1575     // -(X >>s 31) -> (X >>u 31)
   1576     if (C->isZero()) {
   1577       Value *X;
   1578       ConstantInt *CI;
   1579       if (match(Op1, m_LShr(m_Value(X), m_ConstantInt(CI))) &&
   1580           // Verify we are shifting out everything but the sign bit.
   1581           CI->getValue() == I.getType()->getPrimitiveSizeInBits() - 1)
   1582         return BinaryOperator::CreateAShr(X, CI);
   1583 
   1584       if (match(Op1, m_AShr(m_Value(X), m_ConstantInt(CI))) &&
   1585           // Verify we are shifting out everything but the sign bit.
   1586           CI->getValue() == I.getType()->getPrimitiveSizeInBits() - 1)
   1587         return BinaryOperator::CreateLShr(X, CI);
   1588     }
   1589   }
   1590 
   1591 
   1592   {
   1593     Value *Y;
   1594     // X-(X+Y) == -Y    X-(Y+X) == -Y
   1595     if (match(Op1, m_Add(m_Specific(Op0), m_Value(Y))) ||
   1596         match(Op1, m_Add(m_Value(Y), m_Specific(Op0))))
   1597       return BinaryOperator::CreateNeg(Y);
   1598 
   1599     // (X-Y)-X == -Y
   1600     if (match(Op0, m_Sub(m_Specific(Op1), m_Value(Y))))
   1601       return BinaryOperator::CreateNeg(Y);
   1602   }
   1603 
   1604   // (sub (or A, B) (xor A, B)) --> (and A, B)
   1605   {
   1606     Value *A = nullptr, *B = nullptr;
   1607     if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
   1608         (match(Op0, m_Or(m_Specific(A), m_Specific(B))) ||
   1609          match(Op0, m_Or(m_Specific(B), m_Specific(A)))))
   1610       return BinaryOperator::CreateAnd(A, B);
   1611   }
   1612 
   1613   if (Op0->hasOneUse()) {
   1614     Value *Y = nullptr;
   1615     // ((X | Y) - X) --> (~X & Y)
   1616     if (match(Op0, m_Or(m_Value(Y), m_Specific(Op1))) ||
   1617         match(Op0, m_Or(m_Specific(Op1), m_Value(Y))))
   1618       return BinaryOperator::CreateAnd(
   1619           Y, Builder->CreateNot(Op1, Op1->getName() + ".not"));
   1620   }
   1621 
   1622   if (Op1->hasOneUse()) {
   1623     Value *X = nullptr, *Y = nullptr, *Z = nullptr;
   1624     Constant *C = nullptr;
   1625     Constant *CI = nullptr;
   1626 
   1627     // (X - (Y - Z))  -->  (X + (Z - Y)).
   1628     if (match(Op1, m_Sub(m_Value(Y), m_Value(Z))))
   1629       return BinaryOperator::CreateAdd(Op0,
   1630                                       Builder->CreateSub(Z, Y, Op1->getName()));
   1631 
   1632     // (X - (X & Y))   -->   (X & ~Y)
   1633     //
   1634     if (match(Op1, m_And(m_Value(Y), m_Specific(Op0))) ||
   1635         match(Op1, m_And(m_Specific(Op0), m_Value(Y))))
   1636       return BinaryOperator::CreateAnd(Op0,
   1637                                   Builder->CreateNot(Y, Y->getName() + ".not"));
   1638 
   1639     // 0 - (X sdiv C)  -> (X sdiv -C)  provided the negation doesn't overflow.
   1640     if (match(Op1, m_SDiv(m_Value(X), m_Constant(C))) && match(Op0, m_Zero()) &&
   1641         C->isNotMinSignedValue() && !C->isOneValue())
   1642       return BinaryOperator::CreateSDiv(X, ConstantExpr::getNeg(C));
   1643 
   1644     // 0 - (X << Y)  -> (-X << Y)   when X is freely negatable.
   1645     if (match(Op1, m_Shl(m_Value(X), m_Value(Y))) && match(Op0, m_Zero()))
   1646       if (Value *XNeg = dyn_castNegVal(X))
   1647         return BinaryOperator::CreateShl(XNeg, Y);
   1648 
   1649     // X - A*-B -> X + A*B
   1650     // X - -A*B -> X + A*B
   1651     Value *A, *B;
   1652     if (match(Op1, m_Mul(m_Value(A), m_Neg(m_Value(B)))) ||
   1653         match(Op1, m_Mul(m_Neg(m_Value(A)), m_Value(B))))
   1654       return BinaryOperator::CreateAdd(Op0, Builder->CreateMul(A, B));
   1655 
   1656     // X - A*CI -> X + A*-CI
   1657     // X - CI*A -> X + A*-CI
   1658     if (match(Op1, m_Mul(m_Value(A), m_Constant(CI))) ||
   1659         match(Op1, m_Mul(m_Constant(CI), m_Value(A)))) {
   1660       Value *NewMul = Builder->CreateMul(A, ConstantExpr::getNeg(CI));
   1661       return BinaryOperator::CreateAdd(Op0, NewMul);
   1662     }
   1663   }
   1664 
   1665   // Optimize pointer differences into the same array into a size.  Consider:
   1666   //  &A[10] - &A[0]: we should compile this to "10".
   1667   Value *LHSOp, *RHSOp;
   1668   if (match(Op0, m_PtrToInt(m_Value(LHSOp))) &&
   1669       match(Op1, m_PtrToInt(m_Value(RHSOp))))
   1670     if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType()))
   1671       return ReplaceInstUsesWith(I, Res);
   1672 
   1673   // trunc(p)-trunc(q) -> trunc(p-q)
   1674   if (match(Op0, m_Trunc(m_PtrToInt(m_Value(LHSOp)))) &&
   1675       match(Op1, m_Trunc(m_PtrToInt(m_Value(RHSOp)))))
   1676     if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType()))
   1677       return ReplaceInstUsesWith(I, Res);
   1678 
   1679   bool Changed = false;
   1680   if (!I.hasNoSignedWrap() && WillNotOverflowSignedSub(Op0, Op1, I)) {
   1681     Changed = true;
   1682     I.setHasNoSignedWrap(true);
   1683   }
   1684   if (!I.hasNoUnsignedWrap() && WillNotOverflowUnsignedSub(Op0, Op1, I)) {
   1685     Changed = true;
   1686     I.setHasNoUnsignedWrap(true);
   1687   }
   1688 
   1689   return Changed ? &I : nullptr;
   1690 }
   1691 
   1692 Instruction *InstCombiner::visitFSub(BinaryOperator &I) {
   1693   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
   1694 
   1695   if (Value *V = SimplifyVectorOp(I))
   1696     return ReplaceInstUsesWith(I, V);
   1697 
   1698   if (Value *V =
   1699           SimplifyFSubInst(Op0, Op1, I.getFastMathFlags(), DL, TLI, DT, AC))
   1700     return ReplaceInstUsesWith(I, V);
   1701 
   1702   // fsub nsz 0, X ==> fsub nsz -0.0, X
   1703   if (I.getFastMathFlags().noSignedZeros() && match(Op0, m_Zero())) {
   1704     // Subtraction from -0.0 is the canonical form of fneg.
   1705     Instruction *NewI = BinaryOperator::CreateFNeg(Op1);
   1706     NewI->copyFastMathFlags(&I);
   1707     return NewI;
   1708   }
   1709 
   1710   if (isa<Constant>(Op0))
   1711     if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
   1712       if (Instruction *NV = FoldOpIntoSelect(I, SI))
   1713         return NV;
   1714 
   1715   // If this is a 'B = x-(-A)', change to B = x+A, potentially looking
   1716   // through FP extensions/truncations along the way.
   1717   if (Value *V = dyn_castFNegVal(Op1)) {
   1718     Instruction *NewI = BinaryOperator::CreateFAdd(Op0, V);
   1719     NewI->copyFastMathFlags(&I);
   1720     return NewI;
   1721   }
   1722   if (FPTruncInst *FPTI = dyn_cast<FPTruncInst>(Op1)) {
   1723     if (Value *V = dyn_castFNegVal(FPTI->getOperand(0))) {
   1724       Value *NewTrunc = Builder->CreateFPTrunc(V, I.getType());
   1725       Instruction *NewI = BinaryOperator::CreateFAdd(Op0, NewTrunc);
   1726       NewI->copyFastMathFlags(&I);
   1727       return NewI;
   1728     }
   1729   } else if (FPExtInst *FPEI = dyn_cast<FPExtInst>(Op1)) {
   1730     if (Value *V = dyn_castFNegVal(FPEI->getOperand(0))) {
   1731       Value *NewExt = Builder->CreateFPExt(V, I.getType());
   1732       Instruction *NewI = BinaryOperator::CreateFAdd(Op0, NewExt);
   1733       NewI->copyFastMathFlags(&I);
   1734       return NewI;
   1735     }
   1736   }
   1737 
   1738   if (I.hasUnsafeAlgebra()) {
   1739     if (Value *V = FAddCombine(Builder).simplify(&I))
   1740       return ReplaceInstUsesWith(I, V);
   1741   }
   1742 
   1743   return nullptr;
   1744 }
   1745