Home | History | Annotate | Download | only in Analysis
      1 //===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the primary stateless implementation of the
     11 // Alias Analysis interface that implements identities (two different
     12 // globals cannot alias, etc), but does no stateful analysis.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #include "llvm/Analysis/Passes.h"
     17 #include "llvm/ADT/SmallPtrSet.h"
     18 #include "llvm/ADT/SmallVector.h"
     19 #include "llvm/Analysis/AliasAnalysis.h"
     20 #include "llvm/Analysis/AssumptionCache.h"
     21 #include "llvm/Analysis/CFG.h"
     22 #include "llvm/Analysis/CaptureTracking.h"
     23 #include "llvm/Analysis/InstructionSimplify.h"
     24 #include "llvm/Analysis/LoopInfo.h"
     25 #include "llvm/Analysis/MemoryBuiltins.h"
     26 #include "llvm/Analysis/TargetLibraryInfo.h"
     27 #include "llvm/Analysis/ValueTracking.h"
     28 #include "llvm/IR/Constants.h"
     29 #include "llvm/IR/DataLayout.h"
     30 #include "llvm/IR/DerivedTypes.h"
     31 #include "llvm/IR/Dominators.h"
     32 #include "llvm/IR/Function.h"
     33 #include "llvm/IR/GetElementPtrTypeIterator.h"
     34 #include "llvm/IR/GlobalAlias.h"
     35 #include "llvm/IR/GlobalVariable.h"
     36 #include "llvm/IR/Instructions.h"
     37 #include "llvm/IR/IntrinsicInst.h"
     38 #include "llvm/IR/LLVMContext.h"
     39 #include "llvm/IR/Operator.h"
     40 #include "llvm/Pass.h"
     41 #include "llvm/Support/ErrorHandling.h"
     42 #include <algorithm>
     43 using namespace llvm;
     44 
     45 /// Cutoff after which to stop analysing a set of phi nodes potentially involved
     46 /// in a cycle. Because we are analysing 'through' phi nodes we need to be
     47 /// careful with value equivalence. We use reachability to make sure a value
     48 /// cannot be involved in a cycle.
     49 const unsigned MaxNumPhiBBsValueReachabilityCheck = 20;
     50 
     51 // The max limit of the search depth in DecomposeGEPExpression() and
     52 // GetUnderlyingObject(), both functions need to use the same search
     53 // depth otherwise the algorithm in aliasGEP will assert.
     54 static const unsigned MaxLookupSearchDepth = 6;
     55 
     56 //===----------------------------------------------------------------------===//
     57 // Useful predicates
     58 //===----------------------------------------------------------------------===//
     59 
     60 /// isNonEscapingLocalObject - Return true if the pointer is to a function-local
     61 /// object that never escapes from the function.
     62 static bool isNonEscapingLocalObject(const Value *V) {
     63   // If this is a local allocation, check to see if it escapes.
     64   if (isa<AllocaInst>(V) || isNoAliasCall(V))
     65     // Set StoreCaptures to True so that we can assume in our callers that the
     66     // pointer is not the result of a load instruction. Currently
     67     // PointerMayBeCaptured doesn't have any special analysis for the
     68     // StoreCaptures=false case; if it did, our callers could be refined to be
     69     // more precise.
     70     return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true);
     71 
     72   // If this is an argument that corresponds to a byval or noalias argument,
     73   // then it has not escaped before entering the function.  Check if it escapes
     74   // inside the function.
     75   if (const Argument *A = dyn_cast<Argument>(V))
     76     if (A->hasByValAttr() || A->hasNoAliasAttr())
     77       // Note even if the argument is marked nocapture we still need to check
     78       // for copies made inside the function. The nocapture attribute only
     79       // specifies that there are no copies made that outlive the function.
     80       return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true);
     81 
     82   return false;
     83 }
     84 
     85 /// isEscapeSource - Return true if the pointer is one which would have
     86 /// been considered an escape by isNonEscapingLocalObject.
     87 static bool isEscapeSource(const Value *V) {
     88   if (isa<CallInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V))
     89     return true;
     90 
     91   // The load case works because isNonEscapingLocalObject considers all
     92   // stores to be escapes (it passes true for the StoreCaptures argument
     93   // to PointerMayBeCaptured).
     94   if (isa<LoadInst>(V))
     95     return true;
     96 
     97   return false;
     98 }
     99 
    100 /// getObjectSize - Return the size of the object specified by V, or
    101 /// UnknownSize if unknown.
    102 static uint64_t getObjectSize(const Value *V, const DataLayout &DL,
    103                               const TargetLibraryInfo &TLI,
    104                               bool RoundToAlign = false) {
    105   uint64_t Size;
    106   if (getObjectSize(V, Size, DL, &TLI, RoundToAlign))
    107     return Size;
    108   return AliasAnalysis::UnknownSize;
    109 }
    110 
    111 /// isObjectSmallerThan - Return true if we can prove that the object specified
    112 /// by V is smaller than Size.
    113 static bool isObjectSmallerThan(const Value *V, uint64_t Size,
    114                                 const DataLayout &DL,
    115                                 const TargetLibraryInfo &TLI) {
    116   // Note that the meanings of the "object" are slightly different in the
    117   // following contexts:
    118   //    c1: llvm::getObjectSize()
    119   //    c2: llvm.objectsize() intrinsic
    120   //    c3: isObjectSmallerThan()
    121   // c1 and c2 share the same meaning; however, the meaning of "object" in c3
    122   // refers to the "entire object".
    123   //
    124   //  Consider this example:
    125   //     char *p = (char*)malloc(100)
    126   //     char *q = p+80;
    127   //
    128   //  In the context of c1 and c2, the "object" pointed by q refers to the
    129   // stretch of memory of q[0:19]. So, getObjectSize(q) should return 20.
    130   //
    131   //  However, in the context of c3, the "object" refers to the chunk of memory
    132   // being allocated. So, the "object" has 100 bytes, and q points to the middle
    133   // the "object". In case q is passed to isObjectSmallerThan() as the 1st
    134   // parameter, before the llvm::getObjectSize() is called to get the size of
    135   // entire object, we should:
    136   //    - either rewind the pointer q to the base-address of the object in
    137   //      question (in this case rewind to p), or
    138   //    - just give up. It is up to caller to make sure the pointer is pointing
    139   //      to the base address the object.
    140   //
    141   // We go for 2nd option for simplicity.
    142   if (!isIdentifiedObject(V))
    143     return false;
    144 
    145   // This function needs to use the aligned object size because we allow
    146   // reads a bit past the end given sufficient alignment.
    147   uint64_t ObjectSize = getObjectSize(V, DL, TLI, /*RoundToAlign*/true);
    148 
    149   return ObjectSize != AliasAnalysis::UnknownSize && ObjectSize < Size;
    150 }
    151 
    152 /// isObjectSize - Return true if we can prove that the object specified
    153 /// by V has size Size.
    154 static bool isObjectSize(const Value *V, uint64_t Size,
    155                          const DataLayout &DL, const TargetLibraryInfo &TLI) {
    156   uint64_t ObjectSize = getObjectSize(V, DL, TLI);
    157   return ObjectSize != AliasAnalysis::UnknownSize && ObjectSize == Size;
    158 }
    159 
    160 //===----------------------------------------------------------------------===//
    161 // GetElementPtr Instruction Decomposition and Analysis
    162 //===----------------------------------------------------------------------===//
    163 
    164 namespace {
    165   enum ExtensionKind {
    166     EK_NotExtended,
    167     EK_SignExt,
    168     EK_ZeroExt
    169   };
    170 
    171   struct VariableGEPIndex {
    172     const Value *V;
    173     ExtensionKind Extension;
    174     int64_t Scale;
    175 
    176     bool operator==(const VariableGEPIndex &Other) const {
    177       return V == Other.V && Extension == Other.Extension &&
    178         Scale == Other.Scale;
    179     }
    180 
    181     bool operator!=(const VariableGEPIndex &Other) const {
    182       return !operator==(Other);
    183     }
    184   };
    185 }
    186 
    187 
    188 /// GetLinearExpression - Analyze the specified value as a linear expression:
    189 /// "A*V + B", where A and B are constant integers.  Return the scale and offset
    190 /// values as APInts and return V as a Value*, and return whether we looked
    191 /// through any sign or zero extends.  The incoming Value is known to have
    192 /// IntegerType and it may already be sign or zero extended.
    193 ///
    194 /// Note that this looks through extends, so the high bits may not be
    195 /// represented in the result.
    196 static Value *GetLinearExpression(Value *V, APInt &Scale, APInt &Offset,
    197                                   ExtensionKind &Extension,
    198                                   const DataLayout &DL, unsigned Depth,
    199                                   AssumptionCache *AC, DominatorTree *DT) {
    200   assert(V->getType()->isIntegerTy() && "Not an integer value");
    201 
    202   // Limit our recursion depth.
    203   if (Depth == 6) {
    204     Scale = 1;
    205     Offset = 0;
    206     return V;
    207   }
    208 
    209   if (ConstantInt *Const = dyn_cast<ConstantInt>(V)) {
    210     // if it's a constant, just convert it to an offset
    211     // and remove the variable.
    212     Offset += Const->getValue();
    213     assert(Scale == 0 && "Constant values don't have a scale");
    214     return V;
    215   }
    216 
    217   if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(V)) {
    218     if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) {
    219       switch (BOp->getOpcode()) {
    220       default: break;
    221       case Instruction::Or:
    222         // X|C == X+C if all the bits in C are unset in X.  Otherwise we can't
    223         // analyze it.
    224         if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), DL, 0, AC,
    225                                BOp, DT))
    226           break;
    227         // FALL THROUGH.
    228       case Instruction::Add:
    229         V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension,
    230                                 DL, Depth + 1, AC, DT);
    231         Offset += RHSC->getValue();
    232         return V;
    233       case Instruction::Mul:
    234         V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension,
    235                                 DL, Depth + 1, AC, DT);
    236         Offset *= RHSC->getValue();
    237         Scale *= RHSC->getValue();
    238         return V;
    239       case Instruction::Shl:
    240         V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, Extension,
    241                                 DL, Depth + 1, AC, DT);
    242         Offset <<= RHSC->getValue().getLimitedValue();
    243         Scale <<= RHSC->getValue().getLimitedValue();
    244         return V;
    245       }
    246     }
    247   }
    248 
    249   // Since GEP indices are sign extended anyway, we don't care about the high
    250   // bits of a sign or zero extended value - just scales and offsets.  The
    251   // extensions have to be consistent though.
    252   if ((isa<SExtInst>(V) && Extension != EK_ZeroExt) ||
    253       (isa<ZExtInst>(V) && Extension != EK_SignExt)) {
    254     Value *CastOp = cast<CastInst>(V)->getOperand(0);
    255     unsigned OldWidth = Scale.getBitWidth();
    256     unsigned SmallWidth = CastOp->getType()->getPrimitiveSizeInBits();
    257     Scale = Scale.trunc(SmallWidth);
    258     Offset = Offset.trunc(SmallWidth);
    259     Extension = isa<SExtInst>(V) ? EK_SignExt : EK_ZeroExt;
    260 
    261     Value *Result = GetLinearExpression(CastOp, Scale, Offset, Extension, DL,
    262                                         Depth + 1, AC, DT);
    263     Scale = Scale.zext(OldWidth);
    264 
    265     // We have to sign-extend even if Extension == EK_ZeroExt as we can't
    266     // decompose a sign extension (i.e. zext(x - 1) != zext(x) - zext(-1)).
    267     Offset = Offset.sext(OldWidth);
    268 
    269     return Result;
    270   }
    271 
    272   Scale = 1;
    273   Offset = 0;
    274   return V;
    275 }
    276 
    277 /// DecomposeGEPExpression - If V is a symbolic pointer expression, decompose it
    278 /// into a base pointer with a constant offset and a number of scaled symbolic
    279 /// offsets.
    280 ///
    281 /// The scaled symbolic offsets (represented by pairs of a Value* and a scale in
    282 /// the VarIndices vector) are Value*'s that are known to be scaled by the
    283 /// specified amount, but which may have other unrepresented high bits. As such,
    284 /// the gep cannot necessarily be reconstructed from its decomposed form.
    285 ///
    286 /// When DataLayout is around, this function is capable of analyzing everything
    287 /// that GetUnderlyingObject can look through. To be able to do that
    288 /// GetUnderlyingObject and DecomposeGEPExpression must use the same search
    289 /// depth (MaxLookupSearchDepth).
    290 /// When DataLayout not is around, it just looks through pointer casts.
    291 ///
    292 static const Value *
    293 DecomposeGEPExpression(const Value *V, int64_t &BaseOffs,
    294                        SmallVectorImpl<VariableGEPIndex> &VarIndices,
    295                        bool &MaxLookupReached, const DataLayout &DL,
    296                        AssumptionCache *AC, DominatorTree *DT) {
    297   // Limit recursion depth to limit compile time in crazy cases.
    298   unsigned MaxLookup = MaxLookupSearchDepth;
    299   MaxLookupReached = false;
    300 
    301   BaseOffs = 0;
    302   do {
    303     // See if this is a bitcast or GEP.
    304     const Operator *Op = dyn_cast<Operator>(V);
    305     if (!Op) {
    306       // The only non-operator case we can handle are GlobalAliases.
    307       if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
    308         if (!GA->mayBeOverridden()) {
    309           V = GA->getAliasee();
    310           continue;
    311         }
    312       }
    313       return V;
    314     }
    315 
    316     if (Op->getOpcode() == Instruction::BitCast ||
    317         Op->getOpcode() == Instruction::AddrSpaceCast) {
    318       V = Op->getOperand(0);
    319       continue;
    320     }
    321 
    322     const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op);
    323     if (!GEPOp) {
    324       // If it's not a GEP, hand it off to SimplifyInstruction to see if it
    325       // can come up with something. This matches what GetUnderlyingObject does.
    326       if (const Instruction *I = dyn_cast<Instruction>(V))
    327         // TODO: Get a DominatorTree and AssumptionCache and use them here
    328         // (these are both now available in this function, but this should be
    329         // updated when GetUnderlyingObject is updated). TLI should be
    330         // provided also.
    331         if (const Value *Simplified =
    332               SimplifyInstruction(const_cast<Instruction *>(I), DL)) {
    333           V = Simplified;
    334           continue;
    335         }
    336 
    337       return V;
    338     }
    339 
    340     // Don't attempt to analyze GEPs over unsized objects.
    341     if (!GEPOp->getOperand(0)->getType()->getPointerElementType()->isSized())
    342       return V;
    343 
    344     unsigned AS = GEPOp->getPointerAddressSpace();
    345     // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices.
    346     gep_type_iterator GTI = gep_type_begin(GEPOp);
    347     for (User::const_op_iterator I = GEPOp->op_begin()+1,
    348          E = GEPOp->op_end(); I != E; ++I) {
    349       Value *Index = *I;
    350       // Compute the (potentially symbolic) offset in bytes for this index.
    351       if (StructType *STy = dyn_cast<StructType>(*GTI++)) {
    352         // For a struct, add the member offset.
    353         unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
    354         if (FieldNo == 0) continue;
    355 
    356         BaseOffs += DL.getStructLayout(STy)->getElementOffset(FieldNo);
    357         continue;
    358       }
    359 
    360       // For an array/pointer, add the element offset, explicitly scaled.
    361       if (ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) {
    362         if (CIdx->isZero()) continue;
    363         BaseOffs += DL.getTypeAllocSize(*GTI) * CIdx->getSExtValue();
    364         continue;
    365       }
    366 
    367       uint64_t Scale = DL.getTypeAllocSize(*GTI);
    368       ExtensionKind Extension = EK_NotExtended;
    369 
    370       // If the integer type is smaller than the pointer size, it is implicitly
    371       // sign extended to pointer size.
    372       unsigned Width = Index->getType()->getIntegerBitWidth();
    373       if (DL.getPointerSizeInBits(AS) > Width)
    374         Extension = EK_SignExt;
    375 
    376       // Use GetLinearExpression to decompose the index into a C1*V+C2 form.
    377       APInt IndexScale(Width, 0), IndexOffset(Width, 0);
    378       Index = GetLinearExpression(Index, IndexScale, IndexOffset, Extension, DL,
    379                                   0, AC, DT);
    380 
    381       // The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale.
    382       // This gives us an aggregate computation of (C1*Scale)*V + C2*Scale.
    383       BaseOffs += IndexOffset.getSExtValue()*Scale;
    384       Scale *= IndexScale.getSExtValue();
    385 
    386       // If we already had an occurrence of this index variable, merge this
    387       // scale into it.  For example, we want to handle:
    388       //   A[x][x] -> x*16 + x*4 -> x*20
    389       // This also ensures that 'x' only appears in the index list once.
    390       for (unsigned i = 0, e = VarIndices.size(); i != e; ++i) {
    391         if (VarIndices[i].V == Index &&
    392             VarIndices[i].Extension == Extension) {
    393           Scale += VarIndices[i].Scale;
    394           VarIndices.erase(VarIndices.begin()+i);
    395           break;
    396         }
    397       }
    398 
    399       // Make sure that we have a scale that makes sense for this target's
    400       // pointer size.
    401       if (unsigned ShiftBits = 64 - DL.getPointerSizeInBits(AS)) {
    402         Scale <<= ShiftBits;
    403         Scale = (int64_t)Scale >> ShiftBits;
    404       }
    405 
    406       if (Scale) {
    407         VariableGEPIndex Entry = {Index, Extension,
    408                                   static_cast<int64_t>(Scale)};
    409         VarIndices.push_back(Entry);
    410       }
    411     }
    412 
    413     // Analyze the base pointer next.
    414     V = GEPOp->getOperand(0);
    415   } while (--MaxLookup);
    416 
    417   // If the chain of expressions is too deep, just return early.
    418   MaxLookupReached = true;
    419   return V;
    420 }
    421 
    422 //===----------------------------------------------------------------------===//
    423 // BasicAliasAnalysis Pass
    424 //===----------------------------------------------------------------------===//
    425 
    426 #ifndef NDEBUG
    427 static const Function *getParent(const Value *V) {
    428   if (const Instruction *inst = dyn_cast<Instruction>(V))
    429     return inst->getParent()->getParent();
    430 
    431   if (const Argument *arg = dyn_cast<Argument>(V))
    432     return arg->getParent();
    433 
    434   return nullptr;
    435 }
    436 
    437 static bool notDifferentParent(const Value *O1, const Value *O2) {
    438 
    439   const Function *F1 = getParent(O1);
    440   const Function *F2 = getParent(O2);
    441 
    442   return !F1 || !F2 || F1 == F2;
    443 }
    444 #endif
    445 
    446 namespace {
    447   /// BasicAliasAnalysis - This is the primary alias analysis implementation.
    448   struct BasicAliasAnalysis : public ImmutablePass, public AliasAnalysis {
    449     static char ID; // Class identification, replacement for typeinfo
    450     BasicAliasAnalysis() : ImmutablePass(ID) {
    451       initializeBasicAliasAnalysisPass(*PassRegistry::getPassRegistry());
    452     }
    453 
    454     bool doInitialization(Module &M) override;
    455 
    456     void getAnalysisUsage(AnalysisUsage &AU) const override {
    457       AU.addRequired<AliasAnalysis>();
    458       AU.addRequired<AssumptionCacheTracker>();
    459       AU.addRequired<TargetLibraryInfoWrapperPass>();
    460     }
    461 
    462     AliasResult alias(const Location &LocA, const Location &LocB) override {
    463       assert(AliasCache.empty() && "AliasCache must be cleared after use!");
    464       assert(notDifferentParent(LocA.Ptr, LocB.Ptr) &&
    465              "BasicAliasAnalysis doesn't support interprocedural queries.");
    466       AliasResult Alias = aliasCheck(LocA.Ptr, LocA.Size, LocA.AATags,
    467                                      LocB.Ptr, LocB.Size, LocB.AATags);
    468       // AliasCache rarely has more than 1 or 2 elements, always use
    469       // shrink_and_clear so it quickly returns to the inline capacity of the
    470       // SmallDenseMap if it ever grows larger.
    471       // FIXME: This should really be shrink_to_inline_capacity_and_clear().
    472       AliasCache.shrink_and_clear();
    473       VisitedPhiBBs.clear();
    474       return Alias;
    475     }
    476 
    477     ModRefResult getModRefInfo(ImmutableCallSite CS,
    478                                const Location &Loc) override;
    479 
    480     ModRefResult getModRefInfo(ImmutableCallSite CS1,
    481                                ImmutableCallSite CS2) override;
    482 
    483     /// pointsToConstantMemory - Chase pointers until we find a (constant
    484     /// global) or not.
    485     bool pointsToConstantMemory(const Location &Loc, bool OrLocal) override;
    486 
    487     /// Get the location associated with a pointer argument of a callsite.
    488     Location getArgLocation(ImmutableCallSite CS, unsigned ArgIdx,
    489                             ModRefResult &Mask) override;
    490 
    491     /// getModRefBehavior - Return the behavior when calling the given
    492     /// call site.
    493     ModRefBehavior getModRefBehavior(ImmutableCallSite CS) override;
    494 
    495     /// getModRefBehavior - Return the behavior when calling the given function.
    496     /// For use when the call site is not known.
    497     ModRefBehavior getModRefBehavior(const Function *F) override;
    498 
    499     /// getAdjustedAnalysisPointer - This method is used when a pass implements
    500     /// an analysis interface through multiple inheritance.  If needed, it
    501     /// should override this to adjust the this pointer as needed for the
    502     /// specified pass info.
    503     void *getAdjustedAnalysisPointer(const void *ID) override {
    504       if (ID == &AliasAnalysis::ID)
    505         return (AliasAnalysis*)this;
    506       return this;
    507     }
    508 
    509   private:
    510     // AliasCache - Track alias queries to guard against recursion.
    511     typedef std::pair<Location, Location> LocPair;
    512     typedef SmallDenseMap<LocPair, AliasResult, 8> AliasCacheTy;
    513     AliasCacheTy AliasCache;
    514 
    515     /// \brief Track phi nodes we have visited. When interpret "Value" pointer
    516     /// equality as value equality we need to make sure that the "Value" is not
    517     /// part of a cycle. Otherwise, two uses could come from different
    518     /// "iterations" of a cycle and see different values for the same "Value"
    519     /// pointer.
    520     /// The following example shows the problem:
    521     ///   %p = phi(%alloca1, %addr2)
    522     ///   %l = load %ptr
    523     ///   %addr1 = gep, %alloca2, 0, %l
    524     ///   %addr2 = gep  %alloca2, 0, (%l + 1)
    525     ///      alias(%p, %addr1) -> MayAlias !
    526     ///   store %l, ...
    527     SmallPtrSet<const BasicBlock*, 8> VisitedPhiBBs;
    528 
    529     // Visited - Track instructions visited by pointsToConstantMemory.
    530     SmallPtrSet<const Value*, 16> Visited;
    531 
    532     /// \brief Check whether two Values can be considered equivalent.
    533     ///
    534     /// In addition to pointer equivalence of \p V1 and \p V2 this checks
    535     /// whether they can not be part of a cycle in the value graph by looking at
    536     /// all visited phi nodes an making sure that the phis cannot reach the
    537     /// value. We have to do this because we are looking through phi nodes (That
    538     /// is we say noalias(V, phi(VA, VB)) if noalias(V, VA) and noalias(V, VB).
    539     bool isValueEqualInPotentialCycles(const Value *V1, const Value *V2);
    540 
    541     /// \brief Dest and Src are the variable indices from two decomposed
    542     /// GetElementPtr instructions GEP1 and GEP2 which have common base
    543     /// pointers.  Subtract the GEP2 indices from GEP1 to find the symbolic
    544     /// difference between the two pointers.
    545     void GetIndexDifference(SmallVectorImpl<VariableGEPIndex> &Dest,
    546                             const SmallVectorImpl<VariableGEPIndex> &Src);
    547 
    548     // aliasGEP - Provide a bunch of ad-hoc rules to disambiguate a GEP
    549     // instruction against another.
    550     AliasResult aliasGEP(const GEPOperator *V1, uint64_t V1Size,
    551                          const AAMDNodes &V1AAInfo,
    552                          const Value *V2, uint64_t V2Size,
    553                          const AAMDNodes &V2AAInfo,
    554                          const Value *UnderlyingV1, const Value *UnderlyingV2);
    555 
    556     // aliasPHI - Provide a bunch of ad-hoc rules to disambiguate a PHI
    557     // instruction against another.
    558     AliasResult aliasPHI(const PHINode *PN, uint64_t PNSize,
    559                          const AAMDNodes &PNAAInfo,
    560                          const Value *V2, uint64_t V2Size,
    561                          const AAMDNodes &V2AAInfo);
    562 
    563     /// aliasSelect - Disambiguate a Select instruction against another value.
    564     AliasResult aliasSelect(const SelectInst *SI, uint64_t SISize,
    565                             const AAMDNodes &SIAAInfo,
    566                             const Value *V2, uint64_t V2Size,
    567                             const AAMDNodes &V2AAInfo);
    568 
    569     AliasResult aliasCheck(const Value *V1, uint64_t V1Size,
    570                            AAMDNodes V1AATag,
    571                            const Value *V2, uint64_t V2Size,
    572                            AAMDNodes V2AATag);
    573   };
    574 }  // End of anonymous namespace
    575 
    576 // Register this pass...
    577 char BasicAliasAnalysis::ID = 0;
    578 INITIALIZE_AG_PASS_BEGIN(BasicAliasAnalysis, AliasAnalysis, "basicaa",
    579                    "Basic Alias Analysis (stateless AA impl)",
    580                    false, true, false)
    581 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
    582 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
    583 INITIALIZE_AG_PASS_END(BasicAliasAnalysis, AliasAnalysis, "basicaa",
    584                    "Basic Alias Analysis (stateless AA impl)",
    585                    false, true, false)
    586 
    587 
    588 ImmutablePass *llvm::createBasicAliasAnalysisPass() {
    589   return new BasicAliasAnalysis();
    590 }
    591 
    592 /// pointsToConstantMemory - Returns whether the given pointer value
    593 /// points to memory that is local to the function, with global constants being
    594 /// considered local to all functions.
    595 bool
    596 BasicAliasAnalysis::pointsToConstantMemory(const Location &Loc, bool OrLocal) {
    597   assert(Visited.empty() && "Visited must be cleared after use!");
    598 
    599   unsigned MaxLookup = 8;
    600   SmallVector<const Value *, 16> Worklist;
    601   Worklist.push_back(Loc.Ptr);
    602   do {
    603     const Value *V = GetUnderlyingObject(Worklist.pop_back_val(), *DL);
    604     if (!Visited.insert(V).second) {
    605       Visited.clear();
    606       return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
    607     }
    608 
    609     // An alloca instruction defines local memory.
    610     if (OrLocal && isa<AllocaInst>(V))
    611       continue;
    612 
    613     // A global constant counts as local memory for our purposes.
    614     if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
    615       // Note: this doesn't require GV to be "ODR" because it isn't legal for a
    616       // global to be marked constant in some modules and non-constant in
    617       // others.  GV may even be a declaration, not a definition.
    618       if (!GV->isConstant()) {
    619         Visited.clear();
    620         return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
    621       }
    622       continue;
    623     }
    624 
    625     // If both select values point to local memory, then so does the select.
    626     if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
    627       Worklist.push_back(SI->getTrueValue());
    628       Worklist.push_back(SI->getFalseValue());
    629       continue;
    630     }
    631 
    632     // If all values incoming to a phi node point to local memory, then so does
    633     // the phi.
    634     if (const PHINode *PN = dyn_cast<PHINode>(V)) {
    635       // Don't bother inspecting phi nodes with many operands.
    636       if (PN->getNumIncomingValues() > MaxLookup) {
    637         Visited.clear();
    638         return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
    639       }
    640       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
    641         Worklist.push_back(PN->getIncomingValue(i));
    642       continue;
    643     }
    644 
    645     // Otherwise be conservative.
    646     Visited.clear();
    647     return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
    648 
    649   } while (!Worklist.empty() && --MaxLookup);
    650 
    651   Visited.clear();
    652   return Worklist.empty();
    653 }
    654 
    655 static bool isMemsetPattern16(const Function *MS,
    656                               const TargetLibraryInfo &TLI) {
    657   if (TLI.has(LibFunc::memset_pattern16) &&
    658       MS->getName() == "memset_pattern16") {
    659     FunctionType *MemsetType = MS->getFunctionType();
    660     if (!MemsetType->isVarArg() && MemsetType->getNumParams() == 3 &&
    661         isa<PointerType>(MemsetType->getParamType(0)) &&
    662         isa<PointerType>(MemsetType->getParamType(1)) &&
    663         isa<IntegerType>(MemsetType->getParamType(2)))
    664       return true;
    665   }
    666 
    667   return false;
    668 }
    669 
    670 /// getModRefBehavior - Return the behavior when calling the given call site.
    671 AliasAnalysis::ModRefBehavior
    672 BasicAliasAnalysis::getModRefBehavior(ImmutableCallSite CS) {
    673   if (CS.doesNotAccessMemory())
    674     // Can't do better than this.
    675     return DoesNotAccessMemory;
    676 
    677   ModRefBehavior Min = UnknownModRefBehavior;
    678 
    679   // If the callsite knows it only reads memory, don't return worse
    680   // than that.
    681   if (CS.onlyReadsMemory())
    682     Min = OnlyReadsMemory;
    683 
    684   // The AliasAnalysis base class has some smarts, lets use them.
    685   return ModRefBehavior(AliasAnalysis::getModRefBehavior(CS) & Min);
    686 }
    687 
    688 /// getModRefBehavior - Return the behavior when calling the given function.
    689 /// For use when the call site is not known.
    690 AliasAnalysis::ModRefBehavior
    691 BasicAliasAnalysis::getModRefBehavior(const Function *F) {
    692   // If the function declares it doesn't access memory, we can't do better.
    693   if (F->doesNotAccessMemory())
    694     return DoesNotAccessMemory;
    695 
    696   // For intrinsics, we can check the table.
    697   if (unsigned iid = F->getIntrinsicID()) {
    698 #define GET_INTRINSIC_MODREF_BEHAVIOR
    699 #include "llvm/IR/Intrinsics.gen"
    700 #undef GET_INTRINSIC_MODREF_BEHAVIOR
    701   }
    702 
    703   ModRefBehavior Min = UnknownModRefBehavior;
    704 
    705   // If the function declares it only reads memory, go with that.
    706   if (F->onlyReadsMemory())
    707     Min = OnlyReadsMemory;
    708 
    709   const TargetLibraryInfo &TLI =
    710       getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
    711   if (isMemsetPattern16(F, TLI))
    712     Min = OnlyAccessesArgumentPointees;
    713 
    714   // Otherwise be conservative.
    715   return ModRefBehavior(AliasAnalysis::getModRefBehavior(F) & Min);
    716 }
    717 
    718 AliasAnalysis::Location
    719 BasicAliasAnalysis::getArgLocation(ImmutableCallSite CS, unsigned ArgIdx,
    720                                    ModRefResult &Mask) {
    721   Location Loc = AliasAnalysis::getArgLocation(CS, ArgIdx, Mask);
    722   const TargetLibraryInfo &TLI =
    723       getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
    724   const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction());
    725   if (II != nullptr)
    726     switch (II->getIntrinsicID()) {
    727     default: break;
    728     case Intrinsic::memset:
    729     case Intrinsic::memcpy:
    730     case Intrinsic::memmove: {
    731       assert((ArgIdx == 0 || ArgIdx == 1) &&
    732              "Invalid argument index for memory intrinsic");
    733       if (ConstantInt *LenCI = dyn_cast<ConstantInt>(II->getArgOperand(2)))
    734         Loc.Size = LenCI->getZExtValue();
    735       assert(Loc.Ptr == II->getArgOperand(ArgIdx) &&
    736              "Memory intrinsic location pointer not argument?");
    737       Mask = ArgIdx ? Ref : Mod;
    738       break;
    739     }
    740     case Intrinsic::lifetime_start:
    741     case Intrinsic::lifetime_end:
    742     case Intrinsic::invariant_start: {
    743       assert(ArgIdx == 1 && "Invalid argument index");
    744       assert(Loc.Ptr == II->getArgOperand(ArgIdx) &&
    745              "Intrinsic location pointer not argument?");
    746       Loc.Size = cast<ConstantInt>(II->getArgOperand(0))->getZExtValue();
    747       break;
    748     }
    749     case Intrinsic::invariant_end: {
    750       assert(ArgIdx == 2 && "Invalid argument index");
    751       assert(Loc.Ptr == II->getArgOperand(ArgIdx) &&
    752              "Intrinsic location pointer not argument?");
    753       Loc.Size = cast<ConstantInt>(II->getArgOperand(1))->getZExtValue();
    754       break;
    755     }
    756     case Intrinsic::arm_neon_vld1: {
    757       assert(ArgIdx == 0 && "Invalid argument index");
    758       assert(Loc.Ptr == II->getArgOperand(ArgIdx) &&
    759              "Intrinsic location pointer not argument?");
    760       // LLVM's vld1 and vst1 intrinsics currently only support a single
    761       // vector register.
    762       if (DL)
    763         Loc.Size = DL->getTypeStoreSize(II->getType());
    764       break;
    765     }
    766     case Intrinsic::arm_neon_vst1: {
    767       assert(ArgIdx == 0 && "Invalid argument index");
    768       assert(Loc.Ptr == II->getArgOperand(ArgIdx) &&
    769              "Intrinsic location pointer not argument?");
    770       if (DL)
    771         Loc.Size = DL->getTypeStoreSize(II->getArgOperand(1)->getType());
    772       break;
    773     }
    774     }
    775 
    776   // We can bound the aliasing properties of memset_pattern16 just as we can
    777   // for memcpy/memset.  This is particularly important because the
    778   // LoopIdiomRecognizer likes to turn loops into calls to memset_pattern16
    779   // whenever possible.
    780   else if (CS.getCalledFunction() &&
    781            isMemsetPattern16(CS.getCalledFunction(), TLI)) {
    782     assert((ArgIdx == 0 || ArgIdx == 1) &&
    783            "Invalid argument index for memset_pattern16");
    784     if (ArgIdx == 1)
    785       Loc.Size = 16;
    786     else if (const ConstantInt *LenCI =
    787              dyn_cast<ConstantInt>(CS.getArgument(2)))
    788       Loc.Size = LenCI->getZExtValue();
    789     assert(Loc.Ptr == CS.getArgument(ArgIdx) &&
    790            "memset_pattern16 location pointer not argument?");
    791     Mask = ArgIdx ? Ref : Mod;
    792   }
    793   // FIXME: Handle memset_pattern4 and memset_pattern8 also.
    794 
    795   return Loc;
    796 }
    797 
    798 static bool isAssumeIntrinsic(ImmutableCallSite CS) {
    799   const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction());
    800   if (II && II->getIntrinsicID() == Intrinsic::assume)
    801     return true;
    802 
    803   return false;
    804 }
    805 
    806 bool BasicAliasAnalysis::doInitialization(Module &M) {
    807   InitializeAliasAnalysis(this, &M.getDataLayout());
    808   return true;
    809 }
    810 
    811 /// getModRefInfo - Check to see if the specified callsite can clobber the
    812 /// specified memory object.  Since we only look at local properties of this
    813 /// function, we really can't say much about this query.  We do, however, use
    814 /// simple "address taken" analysis on local objects.
    815 AliasAnalysis::ModRefResult
    816 BasicAliasAnalysis::getModRefInfo(ImmutableCallSite CS,
    817                                   const Location &Loc) {
    818   assert(notDifferentParent(CS.getInstruction(), Loc.Ptr) &&
    819          "AliasAnalysis query involving multiple functions!");
    820 
    821   const Value *Object = GetUnderlyingObject(Loc.Ptr, *DL);
    822 
    823   // If this is a tail call and Loc.Ptr points to a stack location, we know that
    824   // the tail call cannot access or modify the local stack.
    825   // We cannot exclude byval arguments here; these belong to the caller of
    826   // the current function not to the current function, and a tail callee
    827   // may reference them.
    828   if (isa<AllocaInst>(Object))
    829     if (const CallInst *CI = dyn_cast<CallInst>(CS.getInstruction()))
    830       if (CI->isTailCall())
    831         return NoModRef;
    832 
    833   // If the pointer is to a locally allocated object that does not escape,
    834   // then the call can not mod/ref the pointer unless the call takes the pointer
    835   // as an argument, and itself doesn't capture it.
    836   if (!isa<Constant>(Object) && CS.getInstruction() != Object &&
    837       isNonEscapingLocalObject(Object)) {
    838     bool PassedAsArg = false;
    839     unsigned ArgNo = 0;
    840     for (ImmutableCallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end();
    841          CI != CE; ++CI, ++ArgNo) {
    842       // Only look at the no-capture or byval pointer arguments.  If this
    843       // pointer were passed to arguments that were neither of these, then it
    844       // couldn't be no-capture.
    845       if (!(*CI)->getType()->isPointerTy() ||
    846           (!CS.doesNotCapture(ArgNo) && !CS.isByValArgument(ArgNo)))
    847         continue;
    848 
    849       // If this is a no-capture pointer argument, see if we can tell that it
    850       // is impossible to alias the pointer we're checking.  If not, we have to
    851       // assume that the call could touch the pointer, even though it doesn't
    852       // escape.
    853       if (!isNoAlias(Location(*CI), Location(Object))) {
    854         PassedAsArg = true;
    855         break;
    856       }
    857     }
    858 
    859     if (!PassedAsArg)
    860       return NoModRef;
    861   }
    862 
    863   // While the assume intrinsic is marked as arbitrarily writing so that
    864   // proper control dependencies will be maintained, it never aliases any
    865   // particular memory location.
    866   if (isAssumeIntrinsic(CS))
    867     return NoModRef;
    868 
    869   // The AliasAnalysis base class has some smarts, lets use them.
    870   return AliasAnalysis::getModRefInfo(CS, Loc);
    871 }
    872 
    873 AliasAnalysis::ModRefResult
    874 BasicAliasAnalysis::getModRefInfo(ImmutableCallSite CS1,
    875                                   ImmutableCallSite CS2) {
    876   // While the assume intrinsic is marked as arbitrarily writing so that
    877   // proper control dependencies will be maintained, it never aliases any
    878   // particular memory location.
    879   if (isAssumeIntrinsic(CS1) || isAssumeIntrinsic(CS2))
    880     return NoModRef;
    881 
    882   // The AliasAnalysis base class has some smarts, lets use them.
    883   return AliasAnalysis::getModRefInfo(CS1, CS2);
    884 }
    885 
    886 /// \brief Provide ad-hoc rules to disambiguate accesses through two GEP
    887 /// operators, both having the exact same pointer operand.
    888 static AliasAnalysis::AliasResult
    889 aliasSameBasePointerGEPs(const GEPOperator *GEP1, uint64_t V1Size,
    890                          const GEPOperator *GEP2, uint64_t V2Size,
    891                          const DataLayout &DL) {
    892 
    893   assert(GEP1->getPointerOperand() == GEP2->getPointerOperand() &&
    894          "Expected GEPs with the same pointer operand");
    895 
    896   // Try to determine whether GEP1 and GEP2 index through arrays, into structs,
    897   // such that the struct field accesses provably cannot alias.
    898   // We also need at least two indices (the pointer, and the struct field).
    899   if (GEP1->getNumIndices() != GEP2->getNumIndices() ||
    900       GEP1->getNumIndices() < 2)
    901     return AliasAnalysis::MayAlias;
    902 
    903   // If we don't know the size of the accesses through both GEPs, we can't
    904   // determine whether the struct fields accessed can't alias.
    905   if (V1Size == AliasAnalysis::UnknownSize ||
    906       V2Size == AliasAnalysis::UnknownSize)
    907     return AliasAnalysis::MayAlias;
    908 
    909   ConstantInt *C1 =
    910       dyn_cast<ConstantInt>(GEP1->getOperand(GEP1->getNumOperands() - 1));
    911   ConstantInt *C2 =
    912       dyn_cast<ConstantInt>(GEP2->getOperand(GEP2->getNumOperands() - 1));
    913 
    914   // If the last (struct) indices aren't constants, we can't say anything.
    915   // If they're identical, the other indices might be also be dynamically
    916   // equal, so the GEPs can alias.
    917   if (!C1 || !C2 || C1 == C2)
    918     return AliasAnalysis::MayAlias;
    919 
    920   // Find the last-indexed type of the GEP, i.e., the type you'd get if
    921   // you stripped the last index.
    922   // On the way, look at each indexed type.  If there's something other
    923   // than an array, different indices can lead to different final types.
    924   SmallVector<Value *, 8> IntermediateIndices;
    925 
    926   // Insert the first index; we don't need to check the type indexed
    927   // through it as it only drops the pointer indirection.
    928   assert(GEP1->getNumIndices() > 1 && "Not enough GEP indices to examine");
    929   IntermediateIndices.push_back(GEP1->getOperand(1));
    930 
    931   // Insert all the remaining indices but the last one.
    932   // Also, check that they all index through arrays.
    933   for (unsigned i = 1, e = GEP1->getNumIndices() - 1; i != e; ++i) {
    934     if (!isa<ArrayType>(GetElementPtrInst::getIndexedType(
    935             GEP1->getSourceElementType(), IntermediateIndices)))
    936       return AliasAnalysis::MayAlias;
    937     IntermediateIndices.push_back(GEP1->getOperand(i + 1));
    938   }
    939 
    940   StructType *LastIndexedStruct =
    941       dyn_cast<StructType>(GetElementPtrInst::getIndexedType(
    942           GEP1->getSourceElementType(), IntermediateIndices));
    943 
    944   if (!LastIndexedStruct)
    945     return AliasAnalysis::MayAlias;
    946 
    947   // We know that:
    948   // - both GEPs begin indexing from the exact same pointer;
    949   // - the last indices in both GEPs are constants, indexing into a struct;
    950   // - said indices are different, hence, the pointed-to fields are different;
    951   // - both GEPs only index through arrays prior to that.
    952   //
    953   // This lets us determine that the struct that GEP1 indexes into and the
    954   // struct that GEP2 indexes into must either precisely overlap or be
    955   // completely disjoint.  Because they cannot partially overlap, indexing into
    956   // different non-overlapping fields of the struct will never alias.
    957 
    958   // Therefore, the only remaining thing needed to show that both GEPs can't
    959   // alias is that the fields are not overlapping.
    960   const StructLayout *SL = DL.getStructLayout(LastIndexedStruct);
    961   const uint64_t StructSize = SL->getSizeInBytes();
    962   const uint64_t V1Off = SL->getElementOffset(C1->getZExtValue());
    963   const uint64_t V2Off = SL->getElementOffset(C2->getZExtValue());
    964 
    965   auto EltsDontOverlap = [StructSize](uint64_t V1Off, uint64_t V1Size,
    966                                       uint64_t V2Off, uint64_t V2Size) {
    967     return V1Off < V2Off && V1Off + V1Size <= V2Off &&
    968            ((V2Off + V2Size <= StructSize) ||
    969             (V2Off + V2Size - StructSize <= V1Off));
    970   };
    971 
    972   if (EltsDontOverlap(V1Off, V1Size, V2Off, V2Size) ||
    973       EltsDontOverlap(V2Off, V2Size, V1Off, V1Size))
    974     return AliasAnalysis::NoAlias;
    975 
    976   return AliasAnalysis::MayAlias;
    977 }
    978 
    979 /// aliasGEP - Provide a bunch of ad-hoc rules to disambiguate a GEP instruction
    980 /// against another pointer.  We know that V1 is a GEP, but we don't know
    981 /// anything about V2.  UnderlyingV1 is GetUnderlyingObject(GEP1, DL),
    982 /// UnderlyingV2 is the same for V2.
    983 ///
    984 AliasAnalysis::AliasResult
    985 BasicAliasAnalysis::aliasGEP(const GEPOperator *GEP1, uint64_t V1Size,
    986                              const AAMDNodes &V1AAInfo,
    987                              const Value *V2, uint64_t V2Size,
    988                              const AAMDNodes &V2AAInfo,
    989                              const Value *UnderlyingV1,
    990                              const Value *UnderlyingV2) {
    991   int64_t GEP1BaseOffset;
    992   bool GEP1MaxLookupReached;
    993   SmallVector<VariableGEPIndex, 4> GEP1VariableIndices;
    994 
    995   // We have to get two AssumptionCaches here because GEP1 and V2 may be from
    996   // different functions.
    997   // FIXME: This really doesn't make any sense. We get a dominator tree below
    998   // that can only refer to a single function. But this function (aliasGEP) is
    999   // a method on an immutable pass that can be called when there *isn't*
   1000   // a single function. The old pass management layer makes this "work", but
   1001   // this isn't really a clean solution.
   1002   AssumptionCacheTracker &ACT = getAnalysis<AssumptionCacheTracker>();
   1003   AssumptionCache *AC1 = nullptr, *AC2 = nullptr;
   1004   if (auto *GEP1I = dyn_cast<Instruction>(GEP1))
   1005     AC1 = &ACT.getAssumptionCache(
   1006         const_cast<Function &>(*GEP1I->getParent()->getParent()));
   1007   if (auto *I2 = dyn_cast<Instruction>(V2))
   1008     AC2 = &ACT.getAssumptionCache(
   1009         const_cast<Function &>(*I2->getParent()->getParent()));
   1010 
   1011   DominatorTreeWrapperPass *DTWP =
   1012       getAnalysisIfAvailable<DominatorTreeWrapperPass>();
   1013   DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr;
   1014 
   1015   // If we have two gep instructions with must-alias or not-alias'ing base
   1016   // pointers, figure out if the indexes to the GEP tell us anything about the
   1017   // derived pointer.
   1018   if (const GEPOperator *GEP2 = dyn_cast<GEPOperator>(V2)) {
   1019     // Do the base pointers alias?
   1020     AliasResult BaseAlias = aliasCheck(UnderlyingV1, UnknownSize, AAMDNodes(),
   1021                                        UnderlyingV2, UnknownSize, AAMDNodes());
   1022 
   1023     // Check for geps of non-aliasing underlying pointers where the offsets are
   1024     // identical.
   1025     if ((BaseAlias == MayAlias) && V1Size == V2Size) {
   1026       // Do the base pointers alias assuming type and size.
   1027       AliasResult PreciseBaseAlias = aliasCheck(UnderlyingV1, V1Size,
   1028                                                 V1AAInfo, UnderlyingV2,
   1029                                                 V2Size, V2AAInfo);
   1030       if (PreciseBaseAlias == NoAlias) {
   1031         // See if the computed offset from the common pointer tells us about the
   1032         // relation of the resulting pointer.
   1033         int64_t GEP2BaseOffset;
   1034         bool GEP2MaxLookupReached;
   1035         SmallVector<VariableGEPIndex, 4> GEP2VariableIndices;
   1036         const Value *GEP2BasePtr =
   1037             DecomposeGEPExpression(GEP2, GEP2BaseOffset, GEP2VariableIndices,
   1038                                    GEP2MaxLookupReached, *DL, AC2, DT);
   1039         const Value *GEP1BasePtr =
   1040             DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices,
   1041                                    GEP1MaxLookupReached, *DL, AC1, DT);
   1042         // DecomposeGEPExpression and GetUnderlyingObject should return the
   1043         // same result except when DecomposeGEPExpression has no DataLayout.
   1044         if (GEP1BasePtr != UnderlyingV1 || GEP2BasePtr != UnderlyingV2) {
   1045           assert(!DL &&
   1046                  "DecomposeGEPExpression and GetUnderlyingObject disagree!");
   1047           return MayAlias;
   1048         }
   1049         // If the max search depth is reached the result is undefined
   1050         if (GEP2MaxLookupReached || GEP1MaxLookupReached)
   1051           return MayAlias;
   1052 
   1053         // Same offsets.
   1054         if (GEP1BaseOffset == GEP2BaseOffset &&
   1055             GEP1VariableIndices == GEP2VariableIndices)
   1056           return NoAlias;
   1057         GEP1VariableIndices.clear();
   1058       }
   1059     }
   1060 
   1061     // If we get a No or May, then return it immediately, no amount of analysis
   1062     // will improve this situation.
   1063     if (BaseAlias != MustAlias) return BaseAlias;
   1064 
   1065     // Otherwise, we have a MustAlias.  Since the base pointers alias each other
   1066     // exactly, see if the computed offset from the common pointer tells us
   1067     // about the relation of the resulting pointer.
   1068     const Value *GEP1BasePtr =
   1069         DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices,
   1070                                GEP1MaxLookupReached, *DL, AC1, DT);
   1071 
   1072     int64_t GEP2BaseOffset;
   1073     bool GEP2MaxLookupReached;
   1074     SmallVector<VariableGEPIndex, 4> GEP2VariableIndices;
   1075     const Value *GEP2BasePtr =
   1076         DecomposeGEPExpression(GEP2, GEP2BaseOffset, GEP2VariableIndices,
   1077                                GEP2MaxLookupReached, *DL, AC2, DT);
   1078 
   1079     // DecomposeGEPExpression and GetUnderlyingObject should return the
   1080     // same result except when DecomposeGEPExpression has no DataLayout.
   1081     if (GEP1BasePtr != UnderlyingV1 || GEP2BasePtr != UnderlyingV2) {
   1082       assert(!DL &&
   1083              "DecomposeGEPExpression and GetUnderlyingObject disagree!");
   1084       return MayAlias;
   1085     }
   1086 
   1087     // If we know the two GEPs are based off of the exact same pointer (and not
   1088     // just the same underlying object), see if that tells us anything about
   1089     // the resulting pointers.
   1090     if (DL && GEP1->getPointerOperand() == GEP2->getPointerOperand()) {
   1091       AliasResult R = aliasSameBasePointerGEPs(GEP1, V1Size, GEP2, V2Size, *DL);
   1092       // If we couldn't find anything interesting, don't abandon just yet.
   1093       if (R != MayAlias)
   1094         return R;
   1095     }
   1096 
   1097     // If the max search depth is reached the result is undefined
   1098     if (GEP2MaxLookupReached || GEP1MaxLookupReached)
   1099       return MayAlias;
   1100 
   1101     // Subtract the GEP2 pointer from the GEP1 pointer to find out their
   1102     // symbolic difference.
   1103     GEP1BaseOffset -= GEP2BaseOffset;
   1104     GetIndexDifference(GEP1VariableIndices, GEP2VariableIndices);
   1105 
   1106   } else {
   1107     // Check to see if these two pointers are related by the getelementptr
   1108     // instruction.  If one pointer is a GEP with a non-zero index of the other
   1109     // pointer, we know they cannot alias.
   1110 
   1111     // If both accesses are unknown size, we can't do anything useful here.
   1112     if (V1Size == UnknownSize && V2Size == UnknownSize)
   1113       return MayAlias;
   1114 
   1115     AliasResult R = aliasCheck(UnderlyingV1, UnknownSize, AAMDNodes(),
   1116                                V2, V2Size, V2AAInfo);
   1117     if (R != MustAlias)
   1118       // If V2 may alias GEP base pointer, conservatively returns MayAlias.
   1119       // If V2 is known not to alias GEP base pointer, then the two values
   1120       // cannot alias per GEP semantics: "A pointer value formed from a
   1121       // getelementptr instruction is associated with the addresses associated
   1122       // with the first operand of the getelementptr".
   1123       return R;
   1124 
   1125     const Value *GEP1BasePtr =
   1126         DecomposeGEPExpression(GEP1, GEP1BaseOffset, GEP1VariableIndices,
   1127                                GEP1MaxLookupReached, *DL, AC1, DT);
   1128 
   1129     // DecomposeGEPExpression and GetUnderlyingObject should return the
   1130     // same result except when DecomposeGEPExpression has no DataLayout.
   1131     if (GEP1BasePtr != UnderlyingV1) {
   1132       assert(!DL &&
   1133              "DecomposeGEPExpression and GetUnderlyingObject disagree!");
   1134       return MayAlias;
   1135     }
   1136     // If the max search depth is reached the result is undefined
   1137     if (GEP1MaxLookupReached)
   1138       return MayAlias;
   1139   }
   1140 
   1141   // In the two GEP Case, if there is no difference in the offsets of the
   1142   // computed pointers, the resultant pointers are a must alias.  This
   1143   // hapens when we have two lexically identical GEP's (for example).
   1144   //
   1145   // In the other case, if we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2
   1146   // must aliases the GEP, the end result is a must alias also.
   1147   if (GEP1BaseOffset == 0 && GEP1VariableIndices.empty())
   1148     return MustAlias;
   1149 
   1150   // If there is a constant difference between the pointers, but the difference
   1151   // is less than the size of the associated memory object, then we know
   1152   // that the objects are partially overlapping.  If the difference is
   1153   // greater, we know they do not overlap.
   1154   if (GEP1BaseOffset != 0 && GEP1VariableIndices.empty()) {
   1155     if (GEP1BaseOffset >= 0) {
   1156       if (V2Size != UnknownSize) {
   1157         if ((uint64_t)GEP1BaseOffset < V2Size)
   1158           return PartialAlias;
   1159         return NoAlias;
   1160       }
   1161     } else {
   1162       // We have the situation where:
   1163       // +                +
   1164       // | BaseOffset     |
   1165       // ---------------->|
   1166       // |-->V1Size       |-------> V2Size
   1167       // GEP1             V2
   1168       // We need to know that V2Size is not unknown, otherwise we might have
   1169       // stripped a gep with negative index ('gep <ptr>, -1, ...).
   1170       if (V1Size != UnknownSize && V2Size != UnknownSize) {
   1171         if (-(uint64_t)GEP1BaseOffset < V1Size)
   1172           return PartialAlias;
   1173         return NoAlias;
   1174       }
   1175     }
   1176   }
   1177 
   1178   if (!GEP1VariableIndices.empty()) {
   1179     uint64_t Modulo = 0;
   1180     bool AllPositive = true;
   1181     for (unsigned i = 0, e = GEP1VariableIndices.size(); i != e; ++i) {
   1182 
   1183       // Try to distinguish something like &A[i][1] against &A[42][0].
   1184       // Grab the least significant bit set in any of the scales. We
   1185       // don't need std::abs here (even if the scale's negative) as we'll
   1186       // be ^'ing Modulo with itself later.
   1187       Modulo |= (uint64_t) GEP1VariableIndices[i].Scale;
   1188 
   1189       if (AllPositive) {
   1190         // If the Value could change between cycles, then any reasoning about
   1191         // the Value this cycle may not hold in the next cycle. We'll just
   1192         // give up if we can't determine conditions that hold for every cycle:
   1193         const Value *V = GEP1VariableIndices[i].V;
   1194 
   1195         bool SignKnownZero, SignKnownOne;
   1196         ComputeSignBit(const_cast<Value *>(V), SignKnownZero, SignKnownOne, *DL,
   1197                        0, AC1, nullptr, DT);
   1198 
   1199         // Zero-extension widens the variable, and so forces the sign
   1200         // bit to zero.
   1201         bool IsZExt = GEP1VariableIndices[i].Extension == EK_ZeroExt;
   1202         SignKnownZero |= IsZExt;
   1203         SignKnownOne &= !IsZExt;
   1204 
   1205         // If the variable begins with a zero then we know it's
   1206         // positive, regardless of whether the value is signed or
   1207         // unsigned.
   1208         int64_t Scale = GEP1VariableIndices[i].Scale;
   1209         AllPositive =
   1210           (SignKnownZero && Scale >= 0) ||
   1211           (SignKnownOne && Scale < 0);
   1212       }
   1213     }
   1214 
   1215     Modulo = Modulo ^ (Modulo & (Modulo - 1));
   1216 
   1217     // We can compute the difference between the two addresses
   1218     // mod Modulo. Check whether that difference guarantees that the
   1219     // two locations do not alias.
   1220     uint64_t ModOffset = (uint64_t)GEP1BaseOffset & (Modulo - 1);
   1221     if (V1Size != UnknownSize && V2Size != UnknownSize &&
   1222         ModOffset >= V2Size && V1Size <= Modulo - ModOffset)
   1223       return NoAlias;
   1224 
   1225     // If we know all the variables are positive, then GEP1 >= GEP1BasePtr.
   1226     // If GEP1BasePtr > V2 (GEP1BaseOffset > 0) then we know the pointers
   1227     // don't alias if V2Size can fit in the gap between V2 and GEP1BasePtr.
   1228     if (AllPositive && GEP1BaseOffset > 0 && V2Size <= (uint64_t) GEP1BaseOffset)
   1229       return NoAlias;
   1230   }
   1231 
   1232   // Statically, we can see that the base objects are the same, but the
   1233   // pointers have dynamic offsets which we can't resolve. And none of our
   1234   // little tricks above worked.
   1235   //
   1236   // TODO: Returning PartialAlias instead of MayAlias is a mild hack; the
   1237   // practical effect of this is protecting TBAA in the case of dynamic
   1238   // indices into arrays of unions or malloc'd memory.
   1239   return PartialAlias;
   1240 }
   1241 
   1242 static AliasAnalysis::AliasResult
   1243 MergeAliasResults(AliasAnalysis::AliasResult A, AliasAnalysis::AliasResult B) {
   1244   // If the results agree, take it.
   1245   if (A == B)
   1246     return A;
   1247   // A mix of PartialAlias and MustAlias is PartialAlias.
   1248   if ((A == AliasAnalysis::PartialAlias && B == AliasAnalysis::MustAlias) ||
   1249       (B == AliasAnalysis::PartialAlias && A == AliasAnalysis::MustAlias))
   1250     return AliasAnalysis::PartialAlias;
   1251   // Otherwise, we don't know anything.
   1252   return AliasAnalysis::MayAlias;
   1253 }
   1254 
   1255 /// aliasSelect - Provide a bunch of ad-hoc rules to disambiguate a Select
   1256 /// instruction against another.
   1257 AliasAnalysis::AliasResult
   1258 BasicAliasAnalysis::aliasSelect(const SelectInst *SI, uint64_t SISize,
   1259                                 const AAMDNodes &SIAAInfo,
   1260                                 const Value *V2, uint64_t V2Size,
   1261                                 const AAMDNodes &V2AAInfo) {
   1262   // If the values are Selects with the same condition, we can do a more precise
   1263   // check: just check for aliases between the values on corresponding arms.
   1264   if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2))
   1265     if (SI->getCondition() == SI2->getCondition()) {
   1266       AliasResult Alias =
   1267         aliasCheck(SI->getTrueValue(), SISize, SIAAInfo,
   1268                    SI2->getTrueValue(), V2Size, V2AAInfo);
   1269       if (Alias == MayAlias)
   1270         return MayAlias;
   1271       AliasResult ThisAlias =
   1272         aliasCheck(SI->getFalseValue(), SISize, SIAAInfo,
   1273                    SI2->getFalseValue(), V2Size, V2AAInfo);
   1274       return MergeAliasResults(ThisAlias, Alias);
   1275     }
   1276 
   1277   // If both arms of the Select node NoAlias or MustAlias V2, then returns
   1278   // NoAlias / MustAlias. Otherwise, returns MayAlias.
   1279   AliasResult Alias =
   1280     aliasCheck(V2, V2Size, V2AAInfo, SI->getTrueValue(), SISize, SIAAInfo);
   1281   if (Alias == MayAlias)
   1282     return MayAlias;
   1283 
   1284   AliasResult ThisAlias =
   1285     aliasCheck(V2, V2Size, V2AAInfo, SI->getFalseValue(), SISize, SIAAInfo);
   1286   return MergeAliasResults(ThisAlias, Alias);
   1287 }
   1288 
   1289 // aliasPHI - Provide a bunch of ad-hoc rules to disambiguate a PHI instruction
   1290 // against another.
   1291 AliasAnalysis::AliasResult
   1292 BasicAliasAnalysis::aliasPHI(const PHINode *PN, uint64_t PNSize,
   1293                              const AAMDNodes &PNAAInfo,
   1294                              const Value *V2, uint64_t V2Size,
   1295                              const AAMDNodes &V2AAInfo) {
   1296   // Track phi nodes we have visited. We use this information when we determine
   1297   // value equivalence.
   1298   VisitedPhiBBs.insert(PN->getParent());
   1299 
   1300   // If the values are PHIs in the same block, we can do a more precise
   1301   // as well as efficient check: just check for aliases between the values
   1302   // on corresponding edges.
   1303   if (const PHINode *PN2 = dyn_cast<PHINode>(V2))
   1304     if (PN2->getParent() == PN->getParent()) {
   1305       LocPair Locs(Location(PN, PNSize, PNAAInfo),
   1306                    Location(V2, V2Size, V2AAInfo));
   1307       if (PN > V2)
   1308         std::swap(Locs.first, Locs.second);
   1309       // Analyse the PHIs' inputs under the assumption that the PHIs are
   1310       // NoAlias.
   1311       // If the PHIs are May/MustAlias there must be (recursively) an input
   1312       // operand from outside the PHIs' cycle that is MayAlias/MustAlias or
   1313       // there must be an operation on the PHIs within the PHIs' value cycle
   1314       // that causes a MayAlias.
   1315       // Pretend the phis do not alias.
   1316       AliasResult Alias = NoAlias;
   1317       assert(AliasCache.count(Locs) &&
   1318              "There must exist an entry for the phi node");
   1319       AliasResult OrigAliasResult = AliasCache[Locs];
   1320       AliasCache[Locs] = NoAlias;
   1321 
   1322       for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
   1323         AliasResult ThisAlias =
   1324           aliasCheck(PN->getIncomingValue(i), PNSize, PNAAInfo,
   1325                      PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)),
   1326                      V2Size, V2AAInfo);
   1327         Alias = MergeAliasResults(ThisAlias, Alias);
   1328         if (Alias == MayAlias)
   1329           break;
   1330       }
   1331 
   1332       // Reset if speculation failed.
   1333       if (Alias != NoAlias)
   1334         AliasCache[Locs] = OrigAliasResult;
   1335 
   1336       return Alias;
   1337     }
   1338 
   1339   SmallPtrSet<Value*, 4> UniqueSrc;
   1340   SmallVector<Value*, 4> V1Srcs;
   1341   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
   1342     Value *PV1 = PN->getIncomingValue(i);
   1343     if (isa<PHINode>(PV1))
   1344       // If any of the source itself is a PHI, return MayAlias conservatively
   1345       // to avoid compile time explosion. The worst possible case is if both
   1346       // sides are PHI nodes. In which case, this is O(m x n) time where 'm'
   1347       // and 'n' are the number of PHI sources.
   1348       return MayAlias;
   1349     if (UniqueSrc.insert(PV1).second)
   1350       V1Srcs.push_back(PV1);
   1351   }
   1352 
   1353   AliasResult Alias = aliasCheck(V2, V2Size, V2AAInfo,
   1354                                  V1Srcs[0], PNSize, PNAAInfo);
   1355   // Early exit if the check of the first PHI source against V2 is MayAlias.
   1356   // Other results are not possible.
   1357   if (Alias == MayAlias)
   1358     return MayAlias;
   1359 
   1360   // If all sources of the PHI node NoAlias or MustAlias V2, then returns
   1361   // NoAlias / MustAlias. Otherwise, returns MayAlias.
   1362   for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) {
   1363     Value *V = V1Srcs[i];
   1364 
   1365     AliasResult ThisAlias = aliasCheck(V2, V2Size, V2AAInfo,
   1366                                        V, PNSize, PNAAInfo);
   1367     Alias = MergeAliasResults(ThisAlias, Alias);
   1368     if (Alias == MayAlias)
   1369       break;
   1370   }
   1371 
   1372   return Alias;
   1373 }
   1374 
   1375 // aliasCheck - Provide a bunch of ad-hoc rules to disambiguate in common cases,
   1376 // such as array references.
   1377 //
   1378 AliasAnalysis::AliasResult
   1379 BasicAliasAnalysis::aliasCheck(const Value *V1, uint64_t V1Size,
   1380                                AAMDNodes V1AAInfo,
   1381                                const Value *V2, uint64_t V2Size,
   1382                                AAMDNodes V2AAInfo) {
   1383   // If either of the memory references is empty, it doesn't matter what the
   1384   // pointer values are.
   1385   if (V1Size == 0 || V2Size == 0)
   1386     return NoAlias;
   1387 
   1388   // Strip off any casts if they exist.
   1389   V1 = V1->stripPointerCasts();
   1390   V2 = V2->stripPointerCasts();
   1391 
   1392   // Are we checking for alias of the same value?
   1393   // Because we look 'through' phi nodes we could look at "Value" pointers from
   1394   // different iterations. We must therefore make sure that this is not the
   1395   // case. The function isValueEqualInPotentialCycles ensures that this cannot
   1396   // happen by looking at the visited phi nodes and making sure they cannot
   1397   // reach the value.
   1398   if (isValueEqualInPotentialCycles(V1, V2))
   1399     return MustAlias;
   1400 
   1401   if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy())
   1402     return NoAlias;  // Scalars cannot alias each other
   1403 
   1404   // Figure out what objects these things are pointing to if we can.
   1405   const Value *O1 = GetUnderlyingObject(V1, *DL, MaxLookupSearchDepth);
   1406   const Value *O2 = GetUnderlyingObject(V2, *DL, MaxLookupSearchDepth);
   1407 
   1408   // Null values in the default address space don't point to any object, so they
   1409   // don't alias any other pointer.
   1410   if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1))
   1411     if (CPN->getType()->getAddressSpace() == 0)
   1412       return NoAlias;
   1413   if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2))
   1414     if (CPN->getType()->getAddressSpace() == 0)
   1415       return NoAlias;
   1416 
   1417   if (O1 != O2) {
   1418     // If V1/V2 point to two different objects we know that we have no alias.
   1419     if (isIdentifiedObject(O1) && isIdentifiedObject(O2))
   1420       return NoAlias;
   1421 
   1422     // Constant pointers can't alias with non-const isIdentifiedObject objects.
   1423     if ((isa<Constant>(O1) && isIdentifiedObject(O2) && !isa<Constant>(O2)) ||
   1424         (isa<Constant>(O2) && isIdentifiedObject(O1) && !isa<Constant>(O1)))
   1425       return NoAlias;
   1426 
   1427     // Function arguments can't alias with things that are known to be
   1428     // unambigously identified at the function level.
   1429     if ((isa<Argument>(O1) && isIdentifiedFunctionLocal(O2)) ||
   1430         (isa<Argument>(O2) && isIdentifiedFunctionLocal(O1)))
   1431       return NoAlias;
   1432 
   1433     // Most objects can't alias null.
   1434     if ((isa<ConstantPointerNull>(O2) && isKnownNonNull(O1)) ||
   1435         (isa<ConstantPointerNull>(O1) && isKnownNonNull(O2)))
   1436       return NoAlias;
   1437 
   1438     // If one pointer is the result of a call/invoke or load and the other is a
   1439     // non-escaping local object within the same function, then we know the
   1440     // object couldn't escape to a point where the call could return it.
   1441     //
   1442     // Note that if the pointers are in different functions, there are a
   1443     // variety of complications. A call with a nocapture argument may still
   1444     // temporary store the nocapture argument's value in a temporary memory
   1445     // location if that memory location doesn't escape. Or it may pass a
   1446     // nocapture value to other functions as long as they don't capture it.
   1447     if (isEscapeSource(O1) && isNonEscapingLocalObject(O2))
   1448       return NoAlias;
   1449     if (isEscapeSource(O2) && isNonEscapingLocalObject(O1))
   1450       return NoAlias;
   1451   }
   1452 
   1453   // If the size of one access is larger than the entire object on the other
   1454   // side, then we know such behavior is undefined and can assume no alias.
   1455   if (DL)
   1456     if ((V1Size != UnknownSize && isObjectSmallerThan(O2, V1Size, *DL, *TLI)) ||
   1457         (V2Size != UnknownSize && isObjectSmallerThan(O1, V2Size, *DL, *TLI)))
   1458       return NoAlias;
   1459 
   1460   // Check the cache before climbing up use-def chains. This also terminates
   1461   // otherwise infinitely recursive queries.
   1462   LocPair Locs(Location(V1, V1Size, V1AAInfo),
   1463                Location(V2, V2Size, V2AAInfo));
   1464   if (V1 > V2)
   1465     std::swap(Locs.first, Locs.second);
   1466   std::pair<AliasCacheTy::iterator, bool> Pair =
   1467     AliasCache.insert(std::make_pair(Locs, MayAlias));
   1468   if (!Pair.second)
   1469     return Pair.first->second;
   1470 
   1471   // FIXME: This isn't aggressively handling alias(GEP, PHI) for example: if the
   1472   // GEP can't simplify, we don't even look at the PHI cases.
   1473   if (!isa<GEPOperator>(V1) && isa<GEPOperator>(V2)) {
   1474     std::swap(V1, V2);
   1475     std::swap(V1Size, V2Size);
   1476     std::swap(O1, O2);
   1477     std::swap(V1AAInfo, V2AAInfo);
   1478   }
   1479   if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1)) {
   1480     AliasResult Result = aliasGEP(GV1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O1, O2);
   1481     if (Result != MayAlias) return AliasCache[Locs] = Result;
   1482   }
   1483 
   1484   if (isa<PHINode>(V2) && !isa<PHINode>(V1)) {
   1485     std::swap(V1, V2);
   1486     std::swap(V1Size, V2Size);
   1487     std::swap(V1AAInfo, V2AAInfo);
   1488   }
   1489   if (const PHINode *PN = dyn_cast<PHINode>(V1)) {
   1490     AliasResult Result = aliasPHI(PN, V1Size, V1AAInfo,
   1491                                   V2, V2Size, V2AAInfo);
   1492     if (Result != MayAlias) return AliasCache[Locs] = Result;
   1493   }
   1494 
   1495   if (isa<SelectInst>(V2) && !isa<SelectInst>(V1)) {
   1496     std::swap(V1, V2);
   1497     std::swap(V1Size, V2Size);
   1498     std::swap(V1AAInfo, V2AAInfo);
   1499   }
   1500   if (const SelectInst *S1 = dyn_cast<SelectInst>(V1)) {
   1501     AliasResult Result = aliasSelect(S1, V1Size, V1AAInfo,
   1502                                      V2, V2Size, V2AAInfo);
   1503     if (Result != MayAlias) return AliasCache[Locs] = Result;
   1504   }
   1505 
   1506   // If both pointers are pointing into the same object and one of them
   1507   // accesses is accessing the entire object, then the accesses must
   1508   // overlap in some way.
   1509   if (DL && O1 == O2)
   1510     if ((V1Size != UnknownSize && isObjectSize(O1, V1Size, *DL, *TLI)) ||
   1511         (V2Size != UnknownSize && isObjectSize(O2, V2Size, *DL, *TLI)))
   1512       return AliasCache[Locs] = PartialAlias;
   1513 
   1514   AliasResult Result =
   1515     AliasAnalysis::alias(Location(V1, V1Size, V1AAInfo),
   1516                          Location(V2, V2Size, V2AAInfo));
   1517   return AliasCache[Locs] = Result;
   1518 }
   1519 
   1520 bool BasicAliasAnalysis::isValueEqualInPotentialCycles(const Value *V,
   1521                                                        const Value *V2) {
   1522   if (V != V2)
   1523     return false;
   1524 
   1525   const Instruction *Inst = dyn_cast<Instruction>(V);
   1526   if (!Inst)
   1527     return true;
   1528 
   1529   if (VisitedPhiBBs.empty())
   1530     return true;
   1531 
   1532   if (VisitedPhiBBs.size() > MaxNumPhiBBsValueReachabilityCheck)
   1533     return false;
   1534 
   1535   // Use dominance or loop info if available.
   1536   DominatorTreeWrapperPass *DTWP =
   1537       getAnalysisIfAvailable<DominatorTreeWrapperPass>();
   1538   DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr;
   1539   auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();
   1540   LoopInfo *LI = LIWP ? &LIWP->getLoopInfo() : nullptr;
   1541 
   1542   // Make sure that the visited phis cannot reach the Value. This ensures that
   1543   // the Values cannot come from different iterations of a potential cycle the
   1544   // phi nodes could be involved in.
   1545   for (auto *P : VisitedPhiBBs)
   1546     if (isPotentiallyReachable(P->begin(), Inst, DT, LI))
   1547       return false;
   1548 
   1549   return true;
   1550 }
   1551 
   1552 /// GetIndexDifference - Dest and Src are the variable indices from two
   1553 /// decomposed GetElementPtr instructions GEP1 and GEP2 which have common base
   1554 /// pointers.  Subtract the GEP2 indices from GEP1 to find the symbolic
   1555 /// difference between the two pointers.
   1556 void BasicAliasAnalysis::GetIndexDifference(
   1557     SmallVectorImpl<VariableGEPIndex> &Dest,
   1558     const SmallVectorImpl<VariableGEPIndex> &Src) {
   1559   if (Src.empty())
   1560     return;
   1561 
   1562   for (unsigned i = 0, e = Src.size(); i != e; ++i) {
   1563     const Value *V = Src[i].V;
   1564     ExtensionKind Extension = Src[i].Extension;
   1565     int64_t Scale = Src[i].Scale;
   1566 
   1567     // Find V in Dest.  This is N^2, but pointer indices almost never have more
   1568     // than a few variable indexes.
   1569     for (unsigned j = 0, e = Dest.size(); j != e; ++j) {
   1570       if (!isValueEqualInPotentialCycles(Dest[j].V, V) ||
   1571           Dest[j].Extension != Extension)
   1572         continue;
   1573 
   1574       // If we found it, subtract off Scale V's from the entry in Dest.  If it
   1575       // goes to zero, remove the entry.
   1576       if (Dest[j].Scale != Scale)
   1577         Dest[j].Scale -= Scale;
   1578       else
   1579         Dest.erase(Dest.begin() + j);
   1580       Scale = 0;
   1581       break;
   1582     }
   1583 
   1584     // If we didn't consume this entry, add it to the end of the Dest list.
   1585     if (Scale) {
   1586       VariableGEPIndex Entry = { V, Extension, -Scale };
   1587       Dest.push_back(Entry);
   1588     }
   1589   }
   1590 }
   1591