Home | History | Annotate | Download | only in Scalar
      1 //===- GVN.cpp - Eliminate redundant values and loads ---------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This pass performs global value numbering to eliminate fully redundant
     11 // instructions.  It also performs simple dead load elimination.
     12 //
     13 // Note that this pass does the value numbering itself; it does not use the
     14 // ValueNumbering analysis passes.
     15 //
     16 //===----------------------------------------------------------------------===//
     17 
     18 #include "llvm/Transforms/Scalar.h"
     19 #include "llvm/ADT/DenseMap.h"
     20 #include "llvm/ADT/DepthFirstIterator.h"
     21 #include "llvm/ADT/Hashing.h"
     22 #include "llvm/ADT/MapVector.h"
     23 #include "llvm/ADT/PostOrderIterator.h"
     24 #include "llvm/ADT/SetVector.h"
     25 #include "llvm/ADT/SmallPtrSet.h"
     26 #include "llvm/ADT/Statistic.h"
     27 #include "llvm/Analysis/AliasAnalysis.h"
     28 #include "llvm/Analysis/AssumptionCache.h"
     29 #include "llvm/Analysis/CFG.h"
     30 #include "llvm/Analysis/ConstantFolding.h"
     31 #include "llvm/Analysis/InstructionSimplify.h"
     32 #include "llvm/Analysis/Loads.h"
     33 #include "llvm/Analysis/MemoryBuiltins.h"
     34 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
     35 #include "llvm/Analysis/PHITransAddr.h"
     36 #include "llvm/Analysis/TargetLibraryInfo.h"
     37 #include "llvm/Analysis/ValueTracking.h"
     38 #include "llvm/IR/DataLayout.h"
     39 #include "llvm/IR/Dominators.h"
     40 #include "llvm/IR/GlobalVariable.h"
     41 #include "llvm/IR/IRBuilder.h"
     42 #include "llvm/IR/IntrinsicInst.h"
     43 #include "llvm/IR/LLVMContext.h"
     44 #include "llvm/IR/Metadata.h"
     45 #include "llvm/IR/PatternMatch.h"
     46 #include "llvm/Support/Allocator.h"
     47 #include "llvm/Support/CommandLine.h"
     48 #include "llvm/Support/Debug.h"
     49 #include "llvm/Support/raw_ostream.h"
     50 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
     51 #include "llvm/Transforms/Utils/Local.h"
     52 #include "llvm/Transforms/Utils/SSAUpdater.h"
     53 #include <vector>
     54 using namespace llvm;
     55 using namespace PatternMatch;
     56 
     57 #define DEBUG_TYPE "gvn"
     58 
     59 STATISTIC(NumGVNInstr,  "Number of instructions deleted");
     60 STATISTIC(NumGVNLoad,   "Number of loads deleted");
     61 STATISTIC(NumGVNPRE,    "Number of instructions PRE'd");
     62 STATISTIC(NumGVNBlocks, "Number of blocks merged");
     63 STATISTIC(NumGVNSimpl,  "Number of instructions simplified");
     64 STATISTIC(NumGVNEqProp, "Number of equalities propagated");
     65 STATISTIC(NumPRELoad,   "Number of loads PRE'd");
     66 
     67 static cl::opt<bool> EnablePRE("enable-pre",
     68                                cl::init(true), cl::Hidden);
     69 static cl::opt<bool> EnableLoadPRE("enable-load-pre", cl::init(true));
     70 
     71 // Maximum allowed recursion depth.
     72 static cl::opt<uint32_t>
     73 MaxRecurseDepth("max-recurse-depth", cl::Hidden, cl::init(1000), cl::ZeroOrMore,
     74                 cl::desc("Max recurse depth (default = 1000)"));
     75 
     76 //===----------------------------------------------------------------------===//
     77 //                         ValueTable Class
     78 //===----------------------------------------------------------------------===//
     79 
     80 /// This class holds the mapping between values and value numbers.  It is used
     81 /// as an efficient mechanism to determine the expression-wise equivalence of
     82 /// two values.
     83 namespace {
     84   struct Expression {
     85     uint32_t opcode;
     86     Type *type;
     87     SmallVector<uint32_t, 4> varargs;
     88 
     89     Expression(uint32_t o = ~2U) : opcode(o) { }
     90 
     91     bool operator==(const Expression &other) const {
     92       if (opcode != other.opcode)
     93         return false;
     94       if (opcode == ~0U || opcode == ~1U)
     95         return true;
     96       if (type != other.type)
     97         return false;
     98       if (varargs != other.varargs)
     99         return false;
    100       return true;
    101     }
    102 
    103     friend hash_code hash_value(const Expression &Value) {
    104       return hash_combine(Value.opcode, Value.type,
    105                           hash_combine_range(Value.varargs.begin(),
    106                                              Value.varargs.end()));
    107     }
    108   };
    109 
    110   class ValueTable {
    111     DenseMap<Value*, uint32_t> valueNumbering;
    112     DenseMap<Expression, uint32_t> expressionNumbering;
    113     AliasAnalysis *AA;
    114     MemoryDependenceAnalysis *MD;
    115     DominatorTree *DT;
    116 
    117     uint32_t nextValueNumber;
    118 
    119     Expression create_expression(Instruction* I);
    120     Expression create_cmp_expression(unsigned Opcode,
    121                                      CmpInst::Predicate Predicate,
    122                                      Value *LHS, Value *RHS);
    123     Expression create_extractvalue_expression(ExtractValueInst* EI);
    124     uint32_t lookup_or_add_call(CallInst* C);
    125   public:
    126     ValueTable() : nextValueNumber(1) { }
    127     uint32_t lookup_or_add(Value *V);
    128     uint32_t lookup(Value *V) const;
    129     uint32_t lookup_or_add_cmp(unsigned Opcode, CmpInst::Predicate Pred,
    130                                Value *LHS, Value *RHS);
    131     void add(Value *V, uint32_t num);
    132     void clear();
    133     void erase(Value *v);
    134     void setAliasAnalysis(AliasAnalysis* A) { AA = A; }
    135     AliasAnalysis *getAliasAnalysis() const { return AA; }
    136     void setMemDep(MemoryDependenceAnalysis* M) { MD = M; }
    137     void setDomTree(DominatorTree* D) { DT = D; }
    138     uint32_t getNextUnusedValueNumber() { return nextValueNumber; }
    139     void verifyRemoved(const Value *) const;
    140   };
    141 }
    142 
    143 namespace llvm {
    144 template <> struct DenseMapInfo<Expression> {
    145   static inline Expression getEmptyKey() {
    146     return ~0U;
    147   }
    148 
    149   static inline Expression getTombstoneKey() {
    150     return ~1U;
    151   }
    152 
    153   static unsigned getHashValue(const Expression e) {
    154     using llvm::hash_value;
    155     return static_cast<unsigned>(hash_value(e));
    156   }
    157   static bool isEqual(const Expression &LHS, const Expression &RHS) {
    158     return LHS == RHS;
    159   }
    160 };
    161 
    162 }
    163 
    164 //===----------------------------------------------------------------------===//
    165 //                     ValueTable Internal Functions
    166 //===----------------------------------------------------------------------===//
    167 
    168 Expression ValueTable::create_expression(Instruction *I) {
    169   Expression e;
    170   e.type = I->getType();
    171   e.opcode = I->getOpcode();
    172   for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end();
    173        OI != OE; ++OI)
    174     e.varargs.push_back(lookup_or_add(*OI));
    175   if (I->isCommutative()) {
    176     // Ensure that commutative instructions that only differ by a permutation
    177     // of their operands get the same value number by sorting the operand value
    178     // numbers.  Since all commutative instructions have two operands it is more
    179     // efficient to sort by hand rather than using, say, std::sort.
    180     assert(I->getNumOperands() == 2 && "Unsupported commutative instruction!");
    181     if (e.varargs[0] > e.varargs[1])
    182       std::swap(e.varargs[0], e.varargs[1]);
    183   }
    184 
    185   if (CmpInst *C = dyn_cast<CmpInst>(I)) {
    186     // Sort the operand value numbers so x<y and y>x get the same value number.
    187     CmpInst::Predicate Predicate = C->getPredicate();
    188     if (e.varargs[0] > e.varargs[1]) {
    189       std::swap(e.varargs[0], e.varargs[1]);
    190       Predicate = CmpInst::getSwappedPredicate(Predicate);
    191     }
    192     e.opcode = (C->getOpcode() << 8) | Predicate;
    193   } else if (InsertValueInst *E = dyn_cast<InsertValueInst>(I)) {
    194     for (InsertValueInst::idx_iterator II = E->idx_begin(), IE = E->idx_end();
    195          II != IE; ++II)
    196       e.varargs.push_back(*II);
    197   }
    198 
    199   return e;
    200 }
    201 
    202 Expression ValueTable::create_cmp_expression(unsigned Opcode,
    203                                              CmpInst::Predicate Predicate,
    204                                              Value *LHS, Value *RHS) {
    205   assert((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) &&
    206          "Not a comparison!");
    207   Expression e;
    208   e.type = CmpInst::makeCmpResultType(LHS->getType());
    209   e.varargs.push_back(lookup_or_add(LHS));
    210   e.varargs.push_back(lookup_or_add(RHS));
    211 
    212   // Sort the operand value numbers so x<y and y>x get the same value number.
    213   if (e.varargs[0] > e.varargs[1]) {
    214     std::swap(e.varargs[0], e.varargs[1]);
    215     Predicate = CmpInst::getSwappedPredicate(Predicate);
    216   }
    217   e.opcode = (Opcode << 8) | Predicate;
    218   return e;
    219 }
    220 
    221 Expression ValueTable::create_extractvalue_expression(ExtractValueInst *EI) {
    222   assert(EI && "Not an ExtractValueInst?");
    223   Expression e;
    224   e.type = EI->getType();
    225   e.opcode = 0;
    226 
    227   IntrinsicInst *I = dyn_cast<IntrinsicInst>(EI->getAggregateOperand());
    228   if (I != nullptr && EI->getNumIndices() == 1 && *EI->idx_begin() == 0 ) {
    229     // EI might be an extract from one of our recognised intrinsics. If it
    230     // is we'll synthesize a semantically equivalent expression instead on
    231     // an extract value expression.
    232     switch (I->getIntrinsicID()) {
    233       case Intrinsic::sadd_with_overflow:
    234       case Intrinsic::uadd_with_overflow:
    235         e.opcode = Instruction::Add;
    236         break;
    237       case Intrinsic::ssub_with_overflow:
    238       case Intrinsic::usub_with_overflow:
    239         e.opcode = Instruction::Sub;
    240         break;
    241       case Intrinsic::smul_with_overflow:
    242       case Intrinsic::umul_with_overflow:
    243         e.opcode = Instruction::Mul;
    244         break;
    245       default:
    246         break;
    247     }
    248 
    249     if (e.opcode != 0) {
    250       // Intrinsic recognized. Grab its args to finish building the expression.
    251       assert(I->getNumArgOperands() == 2 &&
    252              "Expect two args for recognised intrinsics.");
    253       e.varargs.push_back(lookup_or_add(I->getArgOperand(0)));
    254       e.varargs.push_back(lookup_or_add(I->getArgOperand(1)));
    255       return e;
    256     }
    257   }
    258 
    259   // Not a recognised intrinsic. Fall back to producing an extract value
    260   // expression.
    261   e.opcode = EI->getOpcode();
    262   for (Instruction::op_iterator OI = EI->op_begin(), OE = EI->op_end();
    263        OI != OE; ++OI)
    264     e.varargs.push_back(lookup_or_add(*OI));
    265 
    266   for (ExtractValueInst::idx_iterator II = EI->idx_begin(), IE = EI->idx_end();
    267          II != IE; ++II)
    268     e.varargs.push_back(*II);
    269 
    270   return e;
    271 }
    272 
    273 //===----------------------------------------------------------------------===//
    274 //                     ValueTable External Functions
    275 //===----------------------------------------------------------------------===//
    276 
    277 /// add - Insert a value into the table with a specified value number.
    278 void ValueTable::add(Value *V, uint32_t num) {
    279   valueNumbering.insert(std::make_pair(V, num));
    280 }
    281 
    282 uint32_t ValueTable::lookup_or_add_call(CallInst *C) {
    283   if (AA->doesNotAccessMemory(C)) {
    284     Expression exp = create_expression(C);
    285     uint32_t &e = expressionNumbering[exp];
    286     if (!e) e = nextValueNumber++;
    287     valueNumbering[C] = e;
    288     return e;
    289   } else if (AA->onlyReadsMemory(C)) {
    290     Expression exp = create_expression(C);
    291     uint32_t &e = expressionNumbering[exp];
    292     if (!e) {
    293       e = nextValueNumber++;
    294       valueNumbering[C] = e;
    295       return e;
    296     }
    297     if (!MD) {
    298       e = nextValueNumber++;
    299       valueNumbering[C] = e;
    300       return e;
    301     }
    302 
    303     MemDepResult local_dep = MD->getDependency(C);
    304 
    305     if (!local_dep.isDef() && !local_dep.isNonLocal()) {
    306       valueNumbering[C] =  nextValueNumber;
    307       return nextValueNumber++;
    308     }
    309 
    310     if (local_dep.isDef()) {
    311       CallInst* local_cdep = cast<CallInst>(local_dep.getInst());
    312 
    313       if (local_cdep->getNumArgOperands() != C->getNumArgOperands()) {
    314         valueNumbering[C] = nextValueNumber;
    315         return nextValueNumber++;
    316       }
    317 
    318       for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) {
    319         uint32_t c_vn = lookup_or_add(C->getArgOperand(i));
    320         uint32_t cd_vn = lookup_or_add(local_cdep->getArgOperand(i));
    321         if (c_vn != cd_vn) {
    322           valueNumbering[C] = nextValueNumber;
    323           return nextValueNumber++;
    324         }
    325       }
    326 
    327       uint32_t v = lookup_or_add(local_cdep);
    328       valueNumbering[C] = v;
    329       return v;
    330     }
    331 
    332     // Non-local case.
    333     const MemoryDependenceAnalysis::NonLocalDepInfo &deps =
    334       MD->getNonLocalCallDependency(CallSite(C));
    335     // FIXME: Move the checking logic to MemDep!
    336     CallInst* cdep = nullptr;
    337 
    338     // Check to see if we have a single dominating call instruction that is
    339     // identical to C.
    340     for (unsigned i = 0, e = deps.size(); i != e; ++i) {
    341       const NonLocalDepEntry *I = &deps[i];
    342       if (I->getResult().isNonLocal())
    343         continue;
    344 
    345       // We don't handle non-definitions.  If we already have a call, reject
    346       // instruction dependencies.
    347       if (!I->getResult().isDef() || cdep != nullptr) {
    348         cdep = nullptr;
    349         break;
    350       }
    351 
    352       CallInst *NonLocalDepCall = dyn_cast<CallInst>(I->getResult().getInst());
    353       // FIXME: All duplicated with non-local case.
    354       if (NonLocalDepCall && DT->properlyDominates(I->getBB(), C->getParent())){
    355         cdep = NonLocalDepCall;
    356         continue;
    357       }
    358 
    359       cdep = nullptr;
    360       break;
    361     }
    362 
    363     if (!cdep) {
    364       valueNumbering[C] = nextValueNumber;
    365       return nextValueNumber++;
    366     }
    367 
    368     if (cdep->getNumArgOperands() != C->getNumArgOperands()) {
    369       valueNumbering[C] = nextValueNumber;
    370       return nextValueNumber++;
    371     }
    372     for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) {
    373       uint32_t c_vn = lookup_or_add(C->getArgOperand(i));
    374       uint32_t cd_vn = lookup_or_add(cdep->getArgOperand(i));
    375       if (c_vn != cd_vn) {
    376         valueNumbering[C] = nextValueNumber;
    377         return nextValueNumber++;
    378       }
    379     }
    380 
    381     uint32_t v = lookup_or_add(cdep);
    382     valueNumbering[C] = v;
    383     return v;
    384 
    385   } else {
    386     valueNumbering[C] = nextValueNumber;
    387     return nextValueNumber++;
    388   }
    389 }
    390 
    391 /// lookup_or_add - Returns the value number for the specified value, assigning
    392 /// it a new number if it did not have one before.
    393 uint32_t ValueTable::lookup_or_add(Value *V) {
    394   DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V);
    395   if (VI != valueNumbering.end())
    396     return VI->second;
    397 
    398   if (!isa<Instruction>(V)) {
    399     valueNumbering[V] = nextValueNumber;
    400     return nextValueNumber++;
    401   }
    402 
    403   Instruction* I = cast<Instruction>(V);
    404   Expression exp;
    405   switch (I->getOpcode()) {
    406     case Instruction::Call:
    407       return lookup_or_add_call(cast<CallInst>(I));
    408     case Instruction::Add:
    409     case Instruction::FAdd:
    410     case Instruction::Sub:
    411     case Instruction::FSub:
    412     case Instruction::Mul:
    413     case Instruction::FMul:
    414     case Instruction::UDiv:
    415     case Instruction::SDiv:
    416     case Instruction::FDiv:
    417     case Instruction::URem:
    418     case Instruction::SRem:
    419     case Instruction::FRem:
    420     case Instruction::Shl:
    421     case Instruction::LShr:
    422     case Instruction::AShr:
    423     case Instruction::And:
    424     case Instruction::Or:
    425     case Instruction::Xor:
    426     case Instruction::ICmp:
    427     case Instruction::FCmp:
    428     case Instruction::Trunc:
    429     case Instruction::ZExt:
    430     case Instruction::SExt:
    431     case Instruction::FPToUI:
    432     case Instruction::FPToSI:
    433     case Instruction::UIToFP:
    434     case Instruction::SIToFP:
    435     case Instruction::FPTrunc:
    436     case Instruction::FPExt:
    437     case Instruction::PtrToInt:
    438     case Instruction::IntToPtr:
    439     case Instruction::BitCast:
    440     case Instruction::Select:
    441     case Instruction::ExtractElement:
    442     case Instruction::InsertElement:
    443     case Instruction::ShuffleVector:
    444     case Instruction::InsertValue:
    445     case Instruction::GetElementPtr:
    446       exp = create_expression(I);
    447       break;
    448     case Instruction::ExtractValue:
    449       exp = create_extractvalue_expression(cast<ExtractValueInst>(I));
    450       break;
    451     default:
    452       valueNumbering[V] = nextValueNumber;
    453       return nextValueNumber++;
    454   }
    455 
    456   uint32_t& e = expressionNumbering[exp];
    457   if (!e) e = nextValueNumber++;
    458   valueNumbering[V] = e;
    459   return e;
    460 }
    461 
    462 /// Returns the value number of the specified value. Fails if
    463 /// the value has not yet been numbered.
    464 uint32_t ValueTable::lookup(Value *V) const {
    465   DenseMap<Value*, uint32_t>::const_iterator VI = valueNumbering.find(V);
    466   assert(VI != valueNumbering.end() && "Value not numbered?");
    467   return VI->second;
    468 }
    469 
    470 /// Returns the value number of the given comparison,
    471 /// assigning it a new number if it did not have one before.  Useful when
    472 /// we deduced the result of a comparison, but don't immediately have an
    473 /// instruction realizing that comparison to hand.
    474 uint32_t ValueTable::lookup_or_add_cmp(unsigned Opcode,
    475                                        CmpInst::Predicate Predicate,
    476                                        Value *LHS, Value *RHS) {
    477   Expression exp = create_cmp_expression(Opcode, Predicate, LHS, RHS);
    478   uint32_t& e = expressionNumbering[exp];
    479   if (!e) e = nextValueNumber++;
    480   return e;
    481 }
    482 
    483 /// Remove all entries from the ValueTable.
    484 void ValueTable::clear() {
    485   valueNumbering.clear();
    486   expressionNumbering.clear();
    487   nextValueNumber = 1;
    488 }
    489 
    490 /// Remove a value from the value numbering.
    491 void ValueTable::erase(Value *V) {
    492   valueNumbering.erase(V);
    493 }
    494 
    495 /// verifyRemoved - Verify that the value is removed from all internal data
    496 /// structures.
    497 void ValueTable::verifyRemoved(const Value *V) const {
    498   for (DenseMap<Value*, uint32_t>::const_iterator
    499          I = valueNumbering.begin(), E = valueNumbering.end(); I != E; ++I) {
    500     assert(I->first != V && "Inst still occurs in value numbering map!");
    501   }
    502 }
    503 
    504 //===----------------------------------------------------------------------===//
    505 //                                GVN Pass
    506 //===----------------------------------------------------------------------===//
    507 
    508 namespace {
    509   class GVN;
    510   struct AvailableValueInBlock {
    511     /// BB - The basic block in question.
    512     BasicBlock *BB;
    513     enum ValType {
    514       SimpleVal,  // A simple offsetted value that is accessed.
    515       LoadVal,    // A value produced by a load.
    516       MemIntrin,  // A memory intrinsic which is loaded from.
    517       UndefVal    // A UndefValue representing a value from dead block (which
    518                   // is not yet physically removed from the CFG).
    519     };
    520 
    521     /// V - The value that is live out of the block.
    522     PointerIntPair<Value *, 2, ValType> Val;
    523 
    524     /// Offset - The byte offset in Val that is interesting for the load query.
    525     unsigned Offset;
    526 
    527     static AvailableValueInBlock get(BasicBlock *BB, Value *V,
    528                                      unsigned Offset = 0) {
    529       AvailableValueInBlock Res;
    530       Res.BB = BB;
    531       Res.Val.setPointer(V);
    532       Res.Val.setInt(SimpleVal);
    533       Res.Offset = Offset;
    534       return Res;
    535     }
    536 
    537     static AvailableValueInBlock getMI(BasicBlock *BB, MemIntrinsic *MI,
    538                                        unsigned Offset = 0) {
    539       AvailableValueInBlock Res;
    540       Res.BB = BB;
    541       Res.Val.setPointer(MI);
    542       Res.Val.setInt(MemIntrin);
    543       Res.Offset = Offset;
    544       return Res;
    545     }
    546 
    547     static AvailableValueInBlock getLoad(BasicBlock *BB, LoadInst *LI,
    548                                          unsigned Offset = 0) {
    549       AvailableValueInBlock Res;
    550       Res.BB = BB;
    551       Res.Val.setPointer(LI);
    552       Res.Val.setInt(LoadVal);
    553       Res.Offset = Offset;
    554       return Res;
    555     }
    556 
    557     static AvailableValueInBlock getUndef(BasicBlock *BB) {
    558       AvailableValueInBlock Res;
    559       Res.BB = BB;
    560       Res.Val.setPointer(nullptr);
    561       Res.Val.setInt(UndefVal);
    562       Res.Offset = 0;
    563       return Res;
    564     }
    565 
    566     bool isSimpleValue() const { return Val.getInt() == SimpleVal; }
    567     bool isCoercedLoadValue() const { return Val.getInt() == LoadVal; }
    568     bool isMemIntrinValue() const { return Val.getInt() == MemIntrin; }
    569     bool isUndefValue() const { return Val.getInt() == UndefVal; }
    570 
    571     Value *getSimpleValue() const {
    572       assert(isSimpleValue() && "Wrong accessor");
    573       return Val.getPointer();
    574     }
    575 
    576     LoadInst *getCoercedLoadValue() const {
    577       assert(isCoercedLoadValue() && "Wrong accessor");
    578       return cast<LoadInst>(Val.getPointer());
    579     }
    580 
    581     MemIntrinsic *getMemIntrinValue() const {
    582       assert(isMemIntrinValue() && "Wrong accessor");
    583       return cast<MemIntrinsic>(Val.getPointer());
    584     }
    585 
    586     /// Emit code into this block to adjust the value defined here to the
    587     /// specified type. This handles various coercion cases.
    588     Value *MaterializeAdjustedValue(LoadInst *LI, GVN &gvn) const;
    589   };
    590 
    591   class GVN : public FunctionPass {
    592     bool NoLoads;
    593     MemoryDependenceAnalysis *MD;
    594     DominatorTree *DT;
    595     const TargetLibraryInfo *TLI;
    596     AssumptionCache *AC;
    597     SetVector<BasicBlock *> DeadBlocks;
    598 
    599     ValueTable VN;
    600 
    601     /// A mapping from value numbers to lists of Value*'s that
    602     /// have that value number.  Use findLeader to query it.
    603     struct LeaderTableEntry {
    604       Value *Val;
    605       const BasicBlock *BB;
    606       LeaderTableEntry *Next;
    607     };
    608     DenseMap<uint32_t, LeaderTableEntry> LeaderTable;
    609     BumpPtrAllocator TableAllocator;
    610 
    611     SmallVector<Instruction*, 8> InstrsToErase;
    612 
    613     typedef SmallVector<NonLocalDepResult, 64> LoadDepVect;
    614     typedef SmallVector<AvailableValueInBlock, 64> AvailValInBlkVect;
    615     typedef SmallVector<BasicBlock*, 64> UnavailBlkVect;
    616 
    617   public:
    618     static char ID; // Pass identification, replacement for typeid
    619     explicit GVN(bool noloads = false)
    620         : FunctionPass(ID), NoLoads(noloads), MD(nullptr) {
    621       initializeGVNPass(*PassRegistry::getPassRegistry());
    622     }
    623 
    624     bool runOnFunction(Function &F) override;
    625 
    626     /// This removes the specified instruction from
    627     /// our various maps and marks it for deletion.
    628     void markInstructionForDeletion(Instruction *I) {
    629       VN.erase(I);
    630       InstrsToErase.push_back(I);
    631     }
    632 
    633     DominatorTree &getDominatorTree() const { return *DT; }
    634     AliasAnalysis *getAliasAnalysis() const { return VN.getAliasAnalysis(); }
    635     MemoryDependenceAnalysis &getMemDep() const { return *MD; }
    636   private:
    637     /// Push a new Value to the LeaderTable onto the list for its value number.
    638     void addToLeaderTable(uint32_t N, Value *V, const BasicBlock *BB) {
    639       LeaderTableEntry &Curr = LeaderTable[N];
    640       if (!Curr.Val) {
    641         Curr.Val = V;
    642         Curr.BB = BB;
    643         return;
    644       }
    645 
    646       LeaderTableEntry *Node = TableAllocator.Allocate<LeaderTableEntry>();
    647       Node->Val = V;
    648       Node->BB = BB;
    649       Node->Next = Curr.Next;
    650       Curr.Next = Node;
    651     }
    652 
    653     /// Scan the list of values corresponding to a given
    654     /// value number, and remove the given instruction if encountered.
    655     void removeFromLeaderTable(uint32_t N, Instruction *I, BasicBlock *BB) {
    656       LeaderTableEntry* Prev = nullptr;
    657       LeaderTableEntry* Curr = &LeaderTable[N];
    658 
    659       while (Curr->Val != I || Curr->BB != BB) {
    660         Prev = Curr;
    661         Curr = Curr->Next;
    662       }
    663 
    664       if (Prev) {
    665         Prev->Next = Curr->Next;
    666       } else {
    667         if (!Curr->Next) {
    668           Curr->Val = nullptr;
    669           Curr->BB = nullptr;
    670         } else {
    671           LeaderTableEntry* Next = Curr->Next;
    672           Curr->Val = Next->Val;
    673           Curr->BB = Next->BB;
    674           Curr->Next = Next->Next;
    675         }
    676       }
    677     }
    678 
    679     // List of critical edges to be split between iterations.
    680     SmallVector<std::pair<TerminatorInst*, unsigned>, 4> toSplit;
    681 
    682     // This transformation requires dominator postdominator info
    683     void getAnalysisUsage(AnalysisUsage &AU) const override {
    684       AU.addRequired<AssumptionCacheTracker>();
    685       AU.addRequired<DominatorTreeWrapperPass>();
    686       AU.addRequired<TargetLibraryInfoWrapperPass>();
    687       if (!NoLoads)
    688         AU.addRequired<MemoryDependenceAnalysis>();
    689       AU.addRequired<AliasAnalysis>();
    690 
    691       AU.addPreserved<DominatorTreeWrapperPass>();
    692       AU.addPreserved<AliasAnalysis>();
    693     }
    694 
    695 
    696     // Helper fuctions of redundant load elimination
    697     bool processLoad(LoadInst *L);
    698     bool processNonLocalLoad(LoadInst *L);
    699     void AnalyzeLoadAvailability(LoadInst *LI, LoadDepVect &Deps,
    700                                  AvailValInBlkVect &ValuesPerBlock,
    701                                  UnavailBlkVect &UnavailableBlocks);
    702     bool PerformLoadPRE(LoadInst *LI, AvailValInBlkVect &ValuesPerBlock,
    703                         UnavailBlkVect &UnavailableBlocks);
    704 
    705     // Other helper routines
    706     bool processInstruction(Instruction *I);
    707     bool processBlock(BasicBlock *BB);
    708     void dump(DenseMap<uint32_t, Value*> &d);
    709     bool iterateOnFunction(Function &F);
    710     bool performPRE(Function &F);
    711     bool performScalarPRE(Instruction *I);
    712     bool performScalarPREInsertion(Instruction *Instr, BasicBlock *Pred,
    713                                    unsigned int ValNo);
    714     Value *findLeader(const BasicBlock *BB, uint32_t num);
    715     void cleanupGlobalSets();
    716     void verifyRemoved(const Instruction *I) const;
    717     bool splitCriticalEdges();
    718     BasicBlock *splitCriticalEdges(BasicBlock *Pred, BasicBlock *Succ);
    719     unsigned replaceAllDominatedUsesWith(Value *From, Value *To,
    720                                          const BasicBlockEdge &Root);
    721     bool propagateEquality(Value *LHS, Value *RHS, const BasicBlockEdge &Root);
    722     bool processFoldableCondBr(BranchInst *BI);
    723     void addDeadBlock(BasicBlock *BB);
    724     void assignValNumForDeadCode();
    725   };
    726 
    727   char GVN::ID = 0;
    728 }
    729 
    730 // The public interface to this file...
    731 FunctionPass *llvm::createGVNPass(bool NoLoads) {
    732   return new GVN(NoLoads);
    733 }
    734 
    735 INITIALIZE_PASS_BEGIN(GVN, "gvn", "Global Value Numbering", false, false)
    736 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
    737 INITIALIZE_PASS_DEPENDENCY(MemoryDependenceAnalysis)
    738 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
    739 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
    740 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
    741 INITIALIZE_PASS_END(GVN, "gvn", "Global Value Numbering", false, false)
    742 
    743 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
    744 void GVN::dump(DenseMap<uint32_t, Value*>& d) {
    745   errs() << "{\n";
    746   for (DenseMap<uint32_t, Value*>::iterator I = d.begin(),
    747        E = d.end(); I != E; ++I) {
    748       errs() << I->first << "\n";
    749       I->second->dump();
    750   }
    751   errs() << "}\n";
    752 }
    753 #endif
    754 
    755 /// Return true if we can prove that the value
    756 /// we're analyzing is fully available in the specified block.  As we go, keep
    757 /// track of which blocks we know are fully alive in FullyAvailableBlocks.  This
    758 /// map is actually a tri-state map with the following values:
    759 ///   0) we know the block *is not* fully available.
    760 ///   1) we know the block *is* fully available.
    761 ///   2) we do not know whether the block is fully available or not, but we are
    762 ///      currently speculating that it will be.
    763 ///   3) we are speculating for this block and have used that to speculate for
    764 ///      other blocks.
    765 static bool IsValueFullyAvailableInBlock(BasicBlock *BB,
    766                             DenseMap<BasicBlock*, char> &FullyAvailableBlocks,
    767                             uint32_t RecurseDepth) {
    768   if (RecurseDepth > MaxRecurseDepth)
    769     return false;
    770 
    771   // Optimistically assume that the block is fully available and check to see
    772   // if we already know about this block in one lookup.
    773   std::pair<DenseMap<BasicBlock*, char>::iterator, char> IV =
    774     FullyAvailableBlocks.insert(std::make_pair(BB, 2));
    775 
    776   // If the entry already existed for this block, return the precomputed value.
    777   if (!IV.second) {
    778     // If this is a speculative "available" value, mark it as being used for
    779     // speculation of other blocks.
    780     if (IV.first->second == 2)
    781       IV.first->second = 3;
    782     return IV.first->second != 0;
    783   }
    784 
    785   // Otherwise, see if it is fully available in all predecessors.
    786   pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
    787 
    788   // If this block has no predecessors, it isn't live-in here.
    789   if (PI == PE)
    790     goto SpeculationFailure;
    791 
    792   for (; PI != PE; ++PI)
    793     // If the value isn't fully available in one of our predecessors, then it
    794     // isn't fully available in this block either.  Undo our previous
    795     // optimistic assumption and bail out.
    796     if (!IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks,RecurseDepth+1))
    797       goto SpeculationFailure;
    798 
    799   return true;
    800 
    801 // If we get here, we found out that this is not, after
    802 // all, a fully-available block.  We have a problem if we speculated on this and
    803 // used the speculation to mark other blocks as available.
    804 SpeculationFailure:
    805   char &BBVal = FullyAvailableBlocks[BB];
    806 
    807   // If we didn't speculate on this, just return with it set to false.
    808   if (BBVal == 2) {
    809     BBVal = 0;
    810     return false;
    811   }
    812 
    813   // If we did speculate on this value, we could have blocks set to 1 that are
    814   // incorrect.  Walk the (transitive) successors of this block and mark them as
    815   // 0 if set to one.
    816   SmallVector<BasicBlock*, 32> BBWorklist;
    817   BBWorklist.push_back(BB);
    818 
    819   do {
    820     BasicBlock *Entry = BBWorklist.pop_back_val();
    821     // Note that this sets blocks to 0 (unavailable) if they happen to not
    822     // already be in FullyAvailableBlocks.  This is safe.
    823     char &EntryVal = FullyAvailableBlocks[Entry];
    824     if (EntryVal == 0) continue;  // Already unavailable.
    825 
    826     // Mark as unavailable.
    827     EntryVal = 0;
    828 
    829     BBWorklist.append(succ_begin(Entry), succ_end(Entry));
    830   } while (!BBWorklist.empty());
    831 
    832   return false;
    833 }
    834 
    835 
    836 /// Return true if CoerceAvailableValueToLoadType will succeed.
    837 static bool CanCoerceMustAliasedValueToLoad(Value *StoredVal,
    838                                             Type *LoadTy,
    839                                             const DataLayout &DL) {
    840   // If the loaded or stored value is an first class array or struct, don't try
    841   // to transform them.  We need to be able to bitcast to integer.
    842   if (LoadTy->isStructTy() || LoadTy->isArrayTy() ||
    843       StoredVal->getType()->isStructTy() ||
    844       StoredVal->getType()->isArrayTy())
    845     return false;
    846 
    847   // The store has to be at least as big as the load.
    848   if (DL.getTypeSizeInBits(StoredVal->getType()) <
    849         DL.getTypeSizeInBits(LoadTy))
    850     return false;
    851 
    852   return true;
    853 }
    854 
    855 /// If we saw a store of a value to memory, and
    856 /// then a load from a must-aliased pointer of a different type, try to coerce
    857 /// the stored value.  LoadedTy is the type of the load we want to replace and
    858 /// InsertPt is the place to insert new instructions.
    859 ///
    860 /// If we can't do it, return null.
    861 static Value *CoerceAvailableValueToLoadType(Value *StoredVal,
    862                                              Type *LoadedTy,
    863                                              Instruction *InsertPt,
    864                                              const DataLayout &DL) {
    865   if (!CanCoerceMustAliasedValueToLoad(StoredVal, LoadedTy, DL))
    866     return nullptr;
    867 
    868   // If this is already the right type, just return it.
    869   Type *StoredValTy = StoredVal->getType();
    870 
    871   uint64_t StoreSize = DL.getTypeSizeInBits(StoredValTy);
    872   uint64_t LoadSize = DL.getTypeSizeInBits(LoadedTy);
    873 
    874   // If the store and reload are the same size, we can always reuse it.
    875   if (StoreSize == LoadSize) {
    876     // Pointer to Pointer -> use bitcast.
    877     if (StoredValTy->getScalarType()->isPointerTy() &&
    878         LoadedTy->getScalarType()->isPointerTy())
    879       return new BitCastInst(StoredVal, LoadedTy, "", InsertPt);
    880 
    881     // Convert source pointers to integers, which can be bitcast.
    882     if (StoredValTy->getScalarType()->isPointerTy()) {
    883       StoredValTy = DL.getIntPtrType(StoredValTy);
    884       StoredVal = new PtrToIntInst(StoredVal, StoredValTy, "", InsertPt);
    885     }
    886 
    887     Type *TypeToCastTo = LoadedTy;
    888     if (TypeToCastTo->getScalarType()->isPointerTy())
    889       TypeToCastTo = DL.getIntPtrType(TypeToCastTo);
    890 
    891     if (StoredValTy != TypeToCastTo)
    892       StoredVal = new BitCastInst(StoredVal, TypeToCastTo, "", InsertPt);
    893 
    894     // Cast to pointer if the load needs a pointer type.
    895     if (LoadedTy->getScalarType()->isPointerTy())
    896       StoredVal = new IntToPtrInst(StoredVal, LoadedTy, "", InsertPt);
    897 
    898     return StoredVal;
    899   }
    900 
    901   // If the loaded value is smaller than the available value, then we can
    902   // extract out a piece from it.  If the available value is too small, then we
    903   // can't do anything.
    904   assert(StoreSize >= LoadSize && "CanCoerceMustAliasedValueToLoad fail");
    905 
    906   // Convert source pointers to integers, which can be manipulated.
    907   if (StoredValTy->getScalarType()->isPointerTy()) {
    908     StoredValTy = DL.getIntPtrType(StoredValTy);
    909     StoredVal = new PtrToIntInst(StoredVal, StoredValTy, "", InsertPt);
    910   }
    911 
    912   // Convert vectors and fp to integer, which can be manipulated.
    913   if (!StoredValTy->isIntegerTy()) {
    914     StoredValTy = IntegerType::get(StoredValTy->getContext(), StoreSize);
    915     StoredVal = new BitCastInst(StoredVal, StoredValTy, "", InsertPt);
    916   }
    917 
    918   // If this is a big-endian system, we need to shift the value down to the low
    919   // bits so that a truncate will work.
    920   if (DL.isBigEndian()) {
    921     Constant *Val = ConstantInt::get(StoredVal->getType(), StoreSize-LoadSize);
    922     StoredVal = BinaryOperator::CreateLShr(StoredVal, Val, "tmp", InsertPt);
    923   }
    924 
    925   // Truncate the integer to the right size now.
    926   Type *NewIntTy = IntegerType::get(StoredValTy->getContext(), LoadSize);
    927   StoredVal = new TruncInst(StoredVal, NewIntTy, "trunc", InsertPt);
    928 
    929   if (LoadedTy == NewIntTy)
    930     return StoredVal;
    931 
    932   // If the result is a pointer, inttoptr.
    933   if (LoadedTy->getScalarType()->isPointerTy())
    934     return new IntToPtrInst(StoredVal, LoadedTy, "inttoptr", InsertPt);
    935 
    936   // Otherwise, bitcast.
    937   return new BitCastInst(StoredVal, LoadedTy, "bitcast", InsertPt);
    938 }
    939 
    940 /// This function is called when we have a
    941 /// memdep query of a load that ends up being a clobbering memory write (store,
    942 /// memset, memcpy, memmove).  This means that the write *may* provide bits used
    943 /// by the load but we can't be sure because the pointers don't mustalias.
    944 ///
    945 /// Check this case to see if there is anything more we can do before we give
    946 /// up.  This returns -1 if we have to give up, or a byte number in the stored
    947 /// value of the piece that feeds the load.
    948 static int AnalyzeLoadFromClobberingWrite(Type *LoadTy, Value *LoadPtr,
    949                                           Value *WritePtr,
    950                                           uint64_t WriteSizeInBits,
    951                                           const DataLayout &DL) {
    952   // If the loaded or stored value is a first class array or struct, don't try
    953   // to transform them.  We need to be able to bitcast to integer.
    954   if (LoadTy->isStructTy() || LoadTy->isArrayTy())
    955     return -1;
    956 
    957   int64_t StoreOffset = 0, LoadOffset = 0;
    958   Value *StoreBase =
    959       GetPointerBaseWithConstantOffset(WritePtr, StoreOffset, DL);
    960   Value *LoadBase = GetPointerBaseWithConstantOffset(LoadPtr, LoadOffset, DL);
    961   if (StoreBase != LoadBase)
    962     return -1;
    963 
    964   // If the load and store are to the exact same address, they should have been
    965   // a must alias.  AA must have gotten confused.
    966   // FIXME: Study to see if/when this happens.  One case is forwarding a memset
    967   // to a load from the base of the memset.
    968 #if 0
    969   if (LoadOffset == StoreOffset) {
    970     dbgs() << "STORE/LOAD DEP WITH COMMON POINTER MISSED:\n"
    971     << "Base       = " << *StoreBase << "\n"
    972     << "Store Ptr  = " << *WritePtr << "\n"
    973     << "Store Offs = " << StoreOffset << "\n"
    974     << "Load Ptr   = " << *LoadPtr << "\n";
    975     abort();
    976   }
    977 #endif
    978 
    979   // If the load and store don't overlap at all, the store doesn't provide
    980   // anything to the load.  In this case, they really don't alias at all, AA
    981   // must have gotten confused.
    982   uint64_t LoadSize = DL.getTypeSizeInBits(LoadTy);
    983 
    984   if ((WriteSizeInBits & 7) | (LoadSize & 7))
    985     return -1;
    986   uint64_t StoreSize = WriteSizeInBits >> 3;  // Convert to bytes.
    987   LoadSize >>= 3;
    988 
    989 
    990   bool isAAFailure = false;
    991   if (StoreOffset < LoadOffset)
    992     isAAFailure = StoreOffset+int64_t(StoreSize) <= LoadOffset;
    993   else
    994     isAAFailure = LoadOffset+int64_t(LoadSize) <= StoreOffset;
    995 
    996   if (isAAFailure) {
    997 #if 0
    998     dbgs() << "STORE LOAD DEP WITH COMMON BASE:\n"
    999     << "Base       = " << *StoreBase << "\n"
   1000     << "Store Ptr  = " << *WritePtr << "\n"
   1001     << "Store Offs = " << StoreOffset << "\n"
   1002     << "Load Ptr   = " << *LoadPtr << "\n";
   1003     abort();
   1004 #endif
   1005     return -1;
   1006   }
   1007 
   1008   // If the Load isn't completely contained within the stored bits, we don't
   1009   // have all the bits to feed it.  We could do something crazy in the future
   1010   // (issue a smaller load then merge the bits in) but this seems unlikely to be
   1011   // valuable.
   1012   if (StoreOffset > LoadOffset ||
   1013       StoreOffset+StoreSize < LoadOffset+LoadSize)
   1014     return -1;
   1015 
   1016   // Okay, we can do this transformation.  Return the number of bytes into the
   1017   // store that the load is.
   1018   return LoadOffset-StoreOffset;
   1019 }
   1020 
   1021 /// This function is called when we have a
   1022 /// memdep query of a load that ends up being a clobbering store.
   1023 static int AnalyzeLoadFromClobberingStore(Type *LoadTy, Value *LoadPtr,
   1024                                           StoreInst *DepSI) {
   1025   // Cannot handle reading from store of first-class aggregate yet.
   1026   if (DepSI->getValueOperand()->getType()->isStructTy() ||
   1027       DepSI->getValueOperand()->getType()->isArrayTy())
   1028     return -1;
   1029 
   1030   const DataLayout &DL = DepSI->getModule()->getDataLayout();
   1031   Value *StorePtr = DepSI->getPointerOperand();
   1032   uint64_t StoreSize =DL.getTypeSizeInBits(DepSI->getValueOperand()->getType());
   1033   return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr,
   1034                                         StorePtr, StoreSize, DL);
   1035 }
   1036 
   1037 /// This function is called when we have a
   1038 /// memdep query of a load that ends up being clobbered by another load.  See if
   1039 /// the other load can feed into the second load.
   1040 static int AnalyzeLoadFromClobberingLoad(Type *LoadTy, Value *LoadPtr,
   1041                                          LoadInst *DepLI, const DataLayout &DL){
   1042   // Cannot handle reading from store of first-class aggregate yet.
   1043   if (DepLI->getType()->isStructTy() || DepLI->getType()->isArrayTy())
   1044     return -1;
   1045 
   1046   Value *DepPtr = DepLI->getPointerOperand();
   1047   uint64_t DepSize = DL.getTypeSizeInBits(DepLI->getType());
   1048   int R = AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, DepSize, DL);
   1049   if (R != -1) return R;
   1050 
   1051   // If we have a load/load clobber an DepLI can be widened to cover this load,
   1052   // then we should widen it!
   1053   int64_t LoadOffs = 0;
   1054   const Value *LoadBase =
   1055       GetPointerBaseWithConstantOffset(LoadPtr, LoadOffs, DL);
   1056   unsigned LoadSize = DL.getTypeStoreSize(LoadTy);
   1057 
   1058   unsigned Size = MemoryDependenceAnalysis::getLoadLoadClobberFullWidthSize(
   1059       LoadBase, LoadOffs, LoadSize, DepLI);
   1060   if (Size == 0) return -1;
   1061 
   1062   return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, DepPtr, Size*8, DL);
   1063 }
   1064 
   1065 
   1066 
   1067 static int AnalyzeLoadFromClobberingMemInst(Type *LoadTy, Value *LoadPtr,
   1068                                             MemIntrinsic *MI,
   1069                                             const DataLayout &DL) {
   1070   // If the mem operation is a non-constant size, we can't handle it.
   1071   ConstantInt *SizeCst = dyn_cast<ConstantInt>(MI->getLength());
   1072   if (!SizeCst) return -1;
   1073   uint64_t MemSizeInBits = SizeCst->getZExtValue()*8;
   1074 
   1075   // If this is memset, we just need to see if the offset is valid in the size
   1076   // of the memset..
   1077   if (MI->getIntrinsicID() == Intrinsic::memset)
   1078     return AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr, MI->getDest(),
   1079                                           MemSizeInBits, DL);
   1080 
   1081   // If we have a memcpy/memmove, the only case we can handle is if this is a
   1082   // copy from constant memory.  In that case, we can read directly from the
   1083   // constant memory.
   1084   MemTransferInst *MTI = cast<MemTransferInst>(MI);
   1085 
   1086   Constant *Src = dyn_cast<Constant>(MTI->getSource());
   1087   if (!Src) return -1;
   1088 
   1089   GlobalVariable *GV = dyn_cast<GlobalVariable>(GetUnderlyingObject(Src, DL));
   1090   if (!GV || !GV->isConstant()) return -1;
   1091 
   1092   // See if the access is within the bounds of the transfer.
   1093   int Offset = AnalyzeLoadFromClobberingWrite(LoadTy, LoadPtr,
   1094                                               MI->getDest(), MemSizeInBits, DL);
   1095   if (Offset == -1)
   1096     return Offset;
   1097 
   1098   unsigned AS = Src->getType()->getPointerAddressSpace();
   1099   // Otherwise, see if we can constant fold a load from the constant with the
   1100   // offset applied as appropriate.
   1101   Src = ConstantExpr::getBitCast(Src,
   1102                                  Type::getInt8PtrTy(Src->getContext(), AS));
   1103   Constant *OffsetCst =
   1104     ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset);
   1105   Src = ConstantExpr::getGetElementPtr(Type::getInt8Ty(Src->getContext()), Src,
   1106                                        OffsetCst);
   1107   Src = ConstantExpr::getBitCast(Src, PointerType::get(LoadTy, AS));
   1108   if (ConstantFoldLoadFromConstPtr(Src, DL))
   1109     return Offset;
   1110   return -1;
   1111 }
   1112 
   1113 
   1114 /// This function is called when we have a
   1115 /// memdep query of a load that ends up being a clobbering store.  This means
   1116 /// that the store provides bits used by the load but we the pointers don't
   1117 /// mustalias.  Check this case to see if there is anything more we can do
   1118 /// before we give up.
   1119 static Value *GetStoreValueForLoad(Value *SrcVal, unsigned Offset,
   1120                                    Type *LoadTy,
   1121                                    Instruction *InsertPt, const DataLayout &DL){
   1122   LLVMContext &Ctx = SrcVal->getType()->getContext();
   1123 
   1124   uint64_t StoreSize = (DL.getTypeSizeInBits(SrcVal->getType()) + 7) / 8;
   1125   uint64_t LoadSize = (DL.getTypeSizeInBits(LoadTy) + 7) / 8;
   1126 
   1127   IRBuilder<> Builder(InsertPt->getParent(), InsertPt);
   1128 
   1129   // Compute which bits of the stored value are being used by the load.  Convert
   1130   // to an integer type to start with.
   1131   if (SrcVal->getType()->getScalarType()->isPointerTy())
   1132     SrcVal = Builder.CreatePtrToInt(SrcVal,
   1133         DL.getIntPtrType(SrcVal->getType()));
   1134   if (!SrcVal->getType()->isIntegerTy())
   1135     SrcVal = Builder.CreateBitCast(SrcVal, IntegerType::get(Ctx, StoreSize*8));
   1136 
   1137   // Shift the bits to the least significant depending on endianness.
   1138   unsigned ShiftAmt;
   1139   if (DL.isLittleEndian())
   1140     ShiftAmt = Offset*8;
   1141   else
   1142     ShiftAmt = (StoreSize-LoadSize-Offset)*8;
   1143 
   1144   if (ShiftAmt)
   1145     SrcVal = Builder.CreateLShr(SrcVal, ShiftAmt);
   1146 
   1147   if (LoadSize != StoreSize)
   1148     SrcVal = Builder.CreateTrunc(SrcVal, IntegerType::get(Ctx, LoadSize*8));
   1149 
   1150   return CoerceAvailableValueToLoadType(SrcVal, LoadTy, InsertPt, DL);
   1151 }
   1152 
   1153 /// This function is called when we have a
   1154 /// memdep query of a load that ends up being a clobbering load.  This means
   1155 /// that the load *may* provide bits used by the load but we can't be sure
   1156 /// because the pointers don't mustalias.  Check this case to see if there is
   1157 /// anything more we can do before we give up.
   1158 static Value *GetLoadValueForLoad(LoadInst *SrcVal, unsigned Offset,
   1159                                   Type *LoadTy, Instruction *InsertPt,
   1160                                   GVN &gvn) {
   1161   const DataLayout &DL = SrcVal->getModule()->getDataLayout();
   1162   // If Offset+LoadTy exceeds the size of SrcVal, then we must be wanting to
   1163   // widen SrcVal out to a larger load.
   1164   unsigned SrcValSize = DL.getTypeStoreSize(SrcVal->getType());
   1165   unsigned LoadSize = DL.getTypeStoreSize(LoadTy);
   1166   if (Offset+LoadSize > SrcValSize) {
   1167     assert(SrcVal->isSimple() && "Cannot widen volatile/atomic load!");
   1168     assert(SrcVal->getType()->isIntegerTy() && "Can't widen non-integer load");
   1169     // If we have a load/load clobber an DepLI can be widened to cover this
   1170     // load, then we should widen it to the next power of 2 size big enough!
   1171     unsigned NewLoadSize = Offset+LoadSize;
   1172     if (!isPowerOf2_32(NewLoadSize))
   1173       NewLoadSize = NextPowerOf2(NewLoadSize);
   1174 
   1175     Value *PtrVal = SrcVal->getPointerOperand();
   1176 
   1177     // Insert the new load after the old load.  This ensures that subsequent
   1178     // memdep queries will find the new load.  We can't easily remove the old
   1179     // load completely because it is already in the value numbering table.
   1180     IRBuilder<> Builder(SrcVal->getParent(), ++BasicBlock::iterator(SrcVal));
   1181     Type *DestPTy =
   1182       IntegerType::get(LoadTy->getContext(), NewLoadSize*8);
   1183     DestPTy = PointerType::get(DestPTy,
   1184                                PtrVal->getType()->getPointerAddressSpace());
   1185     Builder.SetCurrentDebugLocation(SrcVal->getDebugLoc());
   1186     PtrVal = Builder.CreateBitCast(PtrVal, DestPTy);
   1187     LoadInst *NewLoad = Builder.CreateLoad(PtrVal);
   1188     NewLoad->takeName(SrcVal);
   1189     NewLoad->setAlignment(SrcVal->getAlignment());
   1190 
   1191     DEBUG(dbgs() << "GVN WIDENED LOAD: " << *SrcVal << "\n");
   1192     DEBUG(dbgs() << "TO: " << *NewLoad << "\n");
   1193 
   1194     // Replace uses of the original load with the wider load.  On a big endian
   1195     // system, we need to shift down to get the relevant bits.
   1196     Value *RV = NewLoad;
   1197     if (DL.isBigEndian())
   1198       RV = Builder.CreateLShr(RV,
   1199                     NewLoadSize*8-SrcVal->getType()->getPrimitiveSizeInBits());
   1200     RV = Builder.CreateTrunc(RV, SrcVal->getType());
   1201     SrcVal->replaceAllUsesWith(RV);
   1202 
   1203     // We would like to use gvn.markInstructionForDeletion here, but we can't
   1204     // because the load is already memoized into the leader map table that GVN
   1205     // tracks.  It is potentially possible to remove the load from the table,
   1206     // but then there all of the operations based on it would need to be
   1207     // rehashed.  Just leave the dead load around.
   1208     gvn.getMemDep().removeInstruction(SrcVal);
   1209     SrcVal = NewLoad;
   1210   }
   1211 
   1212   return GetStoreValueForLoad(SrcVal, Offset, LoadTy, InsertPt, DL);
   1213 }
   1214 
   1215 
   1216 /// This function is called when we have a
   1217 /// memdep query of a load that ends up being a clobbering mem intrinsic.
   1218 static Value *GetMemInstValueForLoad(MemIntrinsic *SrcInst, unsigned Offset,
   1219                                      Type *LoadTy, Instruction *InsertPt,
   1220                                      const DataLayout &DL){
   1221   LLVMContext &Ctx = LoadTy->getContext();
   1222   uint64_t LoadSize = DL.getTypeSizeInBits(LoadTy)/8;
   1223 
   1224   IRBuilder<> Builder(InsertPt->getParent(), InsertPt);
   1225 
   1226   // We know that this method is only called when the mem transfer fully
   1227   // provides the bits for the load.
   1228   if (MemSetInst *MSI = dyn_cast<MemSetInst>(SrcInst)) {
   1229     // memset(P, 'x', 1234) -> splat('x'), even if x is a variable, and
   1230     // independently of what the offset is.
   1231     Value *Val = MSI->getValue();
   1232     if (LoadSize != 1)
   1233       Val = Builder.CreateZExt(Val, IntegerType::get(Ctx, LoadSize*8));
   1234 
   1235     Value *OneElt = Val;
   1236 
   1237     // Splat the value out to the right number of bits.
   1238     for (unsigned NumBytesSet = 1; NumBytesSet != LoadSize; ) {
   1239       // If we can double the number of bytes set, do it.
   1240       if (NumBytesSet*2 <= LoadSize) {
   1241         Value *ShVal = Builder.CreateShl(Val, NumBytesSet*8);
   1242         Val = Builder.CreateOr(Val, ShVal);
   1243         NumBytesSet <<= 1;
   1244         continue;
   1245       }
   1246 
   1247       // Otherwise insert one byte at a time.
   1248       Value *ShVal = Builder.CreateShl(Val, 1*8);
   1249       Val = Builder.CreateOr(OneElt, ShVal);
   1250       ++NumBytesSet;
   1251     }
   1252 
   1253     return CoerceAvailableValueToLoadType(Val, LoadTy, InsertPt, DL);
   1254   }
   1255 
   1256   // Otherwise, this is a memcpy/memmove from a constant global.
   1257   MemTransferInst *MTI = cast<MemTransferInst>(SrcInst);
   1258   Constant *Src = cast<Constant>(MTI->getSource());
   1259   unsigned AS = Src->getType()->getPointerAddressSpace();
   1260 
   1261   // Otherwise, see if we can constant fold a load from the constant with the
   1262   // offset applied as appropriate.
   1263   Src = ConstantExpr::getBitCast(Src,
   1264                                  Type::getInt8PtrTy(Src->getContext(), AS));
   1265   Constant *OffsetCst =
   1266     ConstantInt::get(Type::getInt64Ty(Src->getContext()), (unsigned)Offset);
   1267   Src = ConstantExpr::getGetElementPtr(Type::getInt8Ty(Src->getContext()), Src,
   1268                                        OffsetCst);
   1269   Src = ConstantExpr::getBitCast(Src, PointerType::get(LoadTy, AS));
   1270   return ConstantFoldLoadFromConstPtr(Src, DL);
   1271 }
   1272 
   1273 
   1274 /// Given a set of loads specified by ValuesPerBlock,
   1275 /// construct SSA form, allowing us to eliminate LI.  This returns the value
   1276 /// that should be used at LI's definition site.
   1277 static Value *ConstructSSAForLoadSet(LoadInst *LI,
   1278                          SmallVectorImpl<AvailableValueInBlock> &ValuesPerBlock,
   1279                                      GVN &gvn) {
   1280   // Check for the fully redundant, dominating load case.  In this case, we can
   1281   // just use the dominating value directly.
   1282   if (ValuesPerBlock.size() == 1 &&
   1283       gvn.getDominatorTree().properlyDominates(ValuesPerBlock[0].BB,
   1284                                                LI->getParent())) {
   1285     assert(!ValuesPerBlock[0].isUndefValue() && "Dead BB dominate this block");
   1286     return ValuesPerBlock[0].MaterializeAdjustedValue(LI, gvn);
   1287   }
   1288 
   1289   // Otherwise, we have to construct SSA form.
   1290   SmallVector<PHINode*, 8> NewPHIs;
   1291   SSAUpdater SSAUpdate(&NewPHIs);
   1292   SSAUpdate.Initialize(LI->getType(), LI->getName());
   1293 
   1294   for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i) {
   1295     const AvailableValueInBlock &AV = ValuesPerBlock[i];
   1296     BasicBlock *BB = AV.BB;
   1297 
   1298     if (SSAUpdate.HasValueForBlock(BB))
   1299       continue;
   1300 
   1301     SSAUpdate.AddAvailableValue(BB, AV.MaterializeAdjustedValue(LI, gvn));
   1302   }
   1303 
   1304   // Perform PHI construction.
   1305   Value *V = SSAUpdate.GetValueInMiddleOfBlock(LI->getParent());
   1306 
   1307   // If new PHI nodes were created, notify alias analysis.
   1308   if (V->getType()->getScalarType()->isPointerTy()) {
   1309     AliasAnalysis *AA = gvn.getAliasAnalysis();
   1310 
   1311     for (unsigned i = 0, e = NewPHIs.size(); i != e; ++i)
   1312       AA->copyValue(LI, NewPHIs[i]);
   1313 
   1314     // Now that we've copied information to the new PHIs, scan through
   1315     // them again and inform alias analysis that we've added potentially
   1316     // escaping uses to any values that are operands to these PHIs.
   1317     for (unsigned i = 0, e = NewPHIs.size(); i != e; ++i) {
   1318       PHINode *P = NewPHIs[i];
   1319       for (unsigned ii = 0, ee = P->getNumIncomingValues(); ii != ee; ++ii) {
   1320         unsigned jj = PHINode::getOperandNumForIncomingValue(ii);
   1321         AA->addEscapingUse(P->getOperandUse(jj));
   1322       }
   1323     }
   1324   }
   1325 
   1326   return V;
   1327 }
   1328 
   1329 Value *AvailableValueInBlock::MaterializeAdjustedValue(LoadInst *LI,
   1330                                                        GVN &gvn) const {
   1331   Value *Res;
   1332   Type *LoadTy = LI->getType();
   1333   const DataLayout &DL = LI->getModule()->getDataLayout();
   1334   if (isSimpleValue()) {
   1335     Res = getSimpleValue();
   1336     if (Res->getType() != LoadTy) {
   1337       Res = GetStoreValueForLoad(Res, Offset, LoadTy, BB->getTerminator(), DL);
   1338 
   1339       DEBUG(dbgs() << "GVN COERCED NONLOCAL VAL:\nOffset: " << Offset << "  "
   1340                    << *getSimpleValue() << '\n'
   1341                    << *Res << '\n' << "\n\n\n");
   1342     }
   1343   } else if (isCoercedLoadValue()) {
   1344     LoadInst *Load = getCoercedLoadValue();
   1345     if (Load->getType() == LoadTy && Offset == 0) {
   1346       Res = Load;
   1347     } else {
   1348       Res = GetLoadValueForLoad(Load, Offset, LoadTy, BB->getTerminator(),
   1349                                 gvn);
   1350 
   1351       DEBUG(dbgs() << "GVN COERCED NONLOCAL LOAD:\nOffset: " << Offset << "  "
   1352                    << *getCoercedLoadValue() << '\n'
   1353                    << *Res << '\n' << "\n\n\n");
   1354     }
   1355   } else if (isMemIntrinValue()) {
   1356     Res = GetMemInstValueForLoad(getMemIntrinValue(), Offset, LoadTy,
   1357                                  BB->getTerminator(), DL);
   1358     DEBUG(dbgs() << "GVN COERCED NONLOCAL MEM INTRIN:\nOffset: " << Offset
   1359                  << "  " << *getMemIntrinValue() << '\n'
   1360                  << *Res << '\n' << "\n\n\n");
   1361   } else {
   1362     assert(isUndefValue() && "Should be UndefVal");
   1363     DEBUG(dbgs() << "GVN COERCED NONLOCAL Undef:\n";);
   1364     return UndefValue::get(LoadTy);
   1365   }
   1366   return Res;
   1367 }
   1368 
   1369 static bool isLifetimeStart(const Instruction *Inst) {
   1370   if (const IntrinsicInst* II = dyn_cast<IntrinsicInst>(Inst))
   1371     return II->getIntrinsicID() == Intrinsic::lifetime_start;
   1372   return false;
   1373 }
   1374 
   1375 void GVN::AnalyzeLoadAvailability(LoadInst *LI, LoadDepVect &Deps,
   1376                                   AvailValInBlkVect &ValuesPerBlock,
   1377                                   UnavailBlkVect &UnavailableBlocks) {
   1378 
   1379   // Filter out useless results (non-locals, etc).  Keep track of the blocks
   1380   // where we have a value available in repl, also keep track of whether we see
   1381   // dependencies that produce an unknown value for the load (such as a call
   1382   // that could potentially clobber the load).
   1383   unsigned NumDeps = Deps.size();
   1384   const DataLayout &DL = LI->getModule()->getDataLayout();
   1385   for (unsigned i = 0, e = NumDeps; i != e; ++i) {
   1386     BasicBlock *DepBB = Deps[i].getBB();
   1387     MemDepResult DepInfo = Deps[i].getResult();
   1388 
   1389     if (DeadBlocks.count(DepBB)) {
   1390       // Dead dependent mem-op disguise as a load evaluating the same value
   1391       // as the load in question.
   1392       ValuesPerBlock.push_back(AvailableValueInBlock::getUndef(DepBB));
   1393       continue;
   1394     }
   1395 
   1396     if (!DepInfo.isDef() && !DepInfo.isClobber()) {
   1397       UnavailableBlocks.push_back(DepBB);
   1398       continue;
   1399     }
   1400 
   1401     if (DepInfo.isClobber()) {
   1402       // The address being loaded in this non-local block may not be the same as
   1403       // the pointer operand of the load if PHI translation occurs.  Make sure
   1404       // to consider the right address.
   1405       Value *Address = Deps[i].getAddress();
   1406 
   1407       // If the dependence is to a store that writes to a superset of the bits
   1408       // read by the load, we can extract the bits we need for the load from the
   1409       // stored value.
   1410       if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInfo.getInst())) {
   1411         if (Address) {
   1412           int Offset =
   1413               AnalyzeLoadFromClobberingStore(LI->getType(), Address, DepSI);
   1414           if (Offset != -1) {
   1415             ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
   1416                                                        DepSI->getValueOperand(),
   1417                                                                 Offset));
   1418             continue;
   1419           }
   1420         }
   1421       }
   1422 
   1423       // Check to see if we have something like this:
   1424       //    load i32* P
   1425       //    load i8* (P+1)
   1426       // if we have this, replace the later with an extraction from the former.
   1427       if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInfo.getInst())) {
   1428         // If this is a clobber and L is the first instruction in its block, then
   1429         // we have the first instruction in the entry block.
   1430         if (DepLI != LI && Address) {
   1431           int Offset =
   1432               AnalyzeLoadFromClobberingLoad(LI->getType(), Address, DepLI, DL);
   1433 
   1434           if (Offset != -1) {
   1435             ValuesPerBlock.push_back(AvailableValueInBlock::getLoad(DepBB,DepLI,
   1436                                                                     Offset));
   1437             continue;
   1438           }
   1439         }
   1440       }
   1441 
   1442       // If the clobbering value is a memset/memcpy/memmove, see if we can
   1443       // forward a value on from it.
   1444       if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(DepInfo.getInst())) {
   1445         if (Address) {
   1446           int Offset = AnalyzeLoadFromClobberingMemInst(LI->getType(), Address,
   1447                                                         DepMI, DL);
   1448           if (Offset != -1) {
   1449             ValuesPerBlock.push_back(AvailableValueInBlock::getMI(DepBB, DepMI,
   1450                                                                   Offset));
   1451             continue;
   1452           }
   1453         }
   1454       }
   1455 
   1456       UnavailableBlocks.push_back(DepBB);
   1457       continue;
   1458     }
   1459 
   1460     // DepInfo.isDef() here
   1461 
   1462     Instruction *DepInst = DepInfo.getInst();
   1463 
   1464     // Loading the allocation -> undef.
   1465     if (isa<AllocaInst>(DepInst) || isMallocLikeFn(DepInst, TLI) ||
   1466         // Loading immediately after lifetime begin -> undef.
   1467         isLifetimeStart(DepInst)) {
   1468       ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
   1469                                              UndefValue::get(LI->getType())));
   1470       continue;
   1471     }
   1472 
   1473     // Loading from calloc (which zero initializes memory) -> zero
   1474     if (isCallocLikeFn(DepInst, TLI)) {
   1475       ValuesPerBlock.push_back(AvailableValueInBlock::get(
   1476           DepBB, Constant::getNullValue(LI->getType())));
   1477       continue;
   1478     }
   1479 
   1480     if (StoreInst *S = dyn_cast<StoreInst>(DepInst)) {
   1481       // Reject loads and stores that are to the same address but are of
   1482       // different types if we have to.
   1483       if (S->getValueOperand()->getType() != LI->getType()) {
   1484         // If the stored value is larger or equal to the loaded value, we can
   1485         // reuse it.
   1486         if (!CanCoerceMustAliasedValueToLoad(S->getValueOperand(),
   1487                                              LI->getType(), DL)) {
   1488           UnavailableBlocks.push_back(DepBB);
   1489           continue;
   1490         }
   1491       }
   1492 
   1493       ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB,
   1494                                                          S->getValueOperand()));
   1495       continue;
   1496     }
   1497 
   1498     if (LoadInst *LD = dyn_cast<LoadInst>(DepInst)) {
   1499       // If the types mismatch and we can't handle it, reject reuse of the load.
   1500       if (LD->getType() != LI->getType()) {
   1501         // If the stored value is larger or equal to the loaded value, we can
   1502         // reuse it.
   1503         if (!CanCoerceMustAliasedValueToLoad(LD, LI->getType(), DL)) {
   1504           UnavailableBlocks.push_back(DepBB);
   1505           continue;
   1506         }
   1507       }
   1508       ValuesPerBlock.push_back(AvailableValueInBlock::getLoad(DepBB, LD));
   1509       continue;
   1510     }
   1511 
   1512     UnavailableBlocks.push_back(DepBB);
   1513   }
   1514 }
   1515 
   1516 bool GVN::PerformLoadPRE(LoadInst *LI, AvailValInBlkVect &ValuesPerBlock,
   1517                          UnavailBlkVect &UnavailableBlocks) {
   1518   // Okay, we have *some* definitions of the value.  This means that the value
   1519   // is available in some of our (transitive) predecessors.  Lets think about
   1520   // doing PRE of this load.  This will involve inserting a new load into the
   1521   // predecessor when it's not available.  We could do this in general, but
   1522   // prefer to not increase code size.  As such, we only do this when we know
   1523   // that we only have to insert *one* load (which means we're basically moving
   1524   // the load, not inserting a new one).
   1525 
   1526   SmallPtrSet<BasicBlock *, 4> Blockers;
   1527   for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
   1528     Blockers.insert(UnavailableBlocks[i]);
   1529 
   1530   // Let's find the first basic block with more than one predecessor.  Walk
   1531   // backwards through predecessors if needed.
   1532   BasicBlock *LoadBB = LI->getParent();
   1533   BasicBlock *TmpBB = LoadBB;
   1534 
   1535   while (TmpBB->getSinglePredecessor()) {
   1536     TmpBB = TmpBB->getSinglePredecessor();
   1537     if (TmpBB == LoadBB) // Infinite (unreachable) loop.
   1538       return false;
   1539     if (Blockers.count(TmpBB))
   1540       return false;
   1541 
   1542     // If any of these blocks has more than one successor (i.e. if the edge we
   1543     // just traversed was critical), then there are other paths through this
   1544     // block along which the load may not be anticipated.  Hoisting the load
   1545     // above this block would be adding the load to execution paths along
   1546     // which it was not previously executed.
   1547     if (TmpBB->getTerminator()->getNumSuccessors() != 1)
   1548       return false;
   1549   }
   1550 
   1551   assert(TmpBB);
   1552   LoadBB = TmpBB;
   1553 
   1554   // Check to see how many predecessors have the loaded value fully
   1555   // available.
   1556   MapVector<BasicBlock *, Value *> PredLoads;
   1557   DenseMap<BasicBlock*, char> FullyAvailableBlocks;
   1558   for (unsigned i = 0, e = ValuesPerBlock.size(); i != e; ++i)
   1559     FullyAvailableBlocks[ValuesPerBlock[i].BB] = true;
   1560   for (unsigned i = 0, e = UnavailableBlocks.size(); i != e; ++i)
   1561     FullyAvailableBlocks[UnavailableBlocks[i]] = false;
   1562 
   1563   SmallVector<BasicBlock *, 4> CriticalEdgePred;
   1564   for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB);
   1565        PI != E; ++PI) {
   1566     BasicBlock *Pred = *PI;
   1567     if (IsValueFullyAvailableInBlock(Pred, FullyAvailableBlocks, 0)) {
   1568       continue;
   1569     }
   1570 
   1571     if (Pred->getTerminator()->getNumSuccessors() != 1) {
   1572       if (isa<IndirectBrInst>(Pred->getTerminator())) {
   1573         DEBUG(dbgs() << "COULD NOT PRE LOAD BECAUSE OF INDBR CRITICAL EDGE '"
   1574               << Pred->getName() << "': " << *LI << '\n');
   1575         return false;
   1576       }
   1577 
   1578       if (LoadBB->isLandingPad()) {
   1579         DEBUG(dbgs()
   1580               << "COULD NOT PRE LOAD BECAUSE OF LANDING PAD CRITICAL EDGE '"
   1581               << Pred->getName() << "': " << *LI << '\n');
   1582         return false;
   1583       }
   1584 
   1585       CriticalEdgePred.push_back(Pred);
   1586     } else {
   1587       // Only add the predecessors that will not be split for now.
   1588       PredLoads[Pred] = nullptr;
   1589     }
   1590   }
   1591 
   1592   // Decide whether PRE is profitable for this load.
   1593   unsigned NumUnavailablePreds = PredLoads.size() + CriticalEdgePred.size();
   1594   assert(NumUnavailablePreds != 0 &&
   1595          "Fully available value should already be eliminated!");
   1596 
   1597   // If this load is unavailable in multiple predecessors, reject it.
   1598   // FIXME: If we could restructure the CFG, we could make a common pred with
   1599   // all the preds that don't have an available LI and insert a new load into
   1600   // that one block.
   1601   if (NumUnavailablePreds != 1)
   1602       return false;
   1603 
   1604   // Split critical edges, and update the unavailable predecessors accordingly.
   1605   for (BasicBlock *OrigPred : CriticalEdgePred) {
   1606     BasicBlock *NewPred = splitCriticalEdges(OrigPred, LoadBB);
   1607     assert(!PredLoads.count(OrigPred) && "Split edges shouldn't be in map!");
   1608     PredLoads[NewPred] = nullptr;
   1609     DEBUG(dbgs() << "Split critical edge " << OrigPred->getName() << "->"
   1610                  << LoadBB->getName() << '\n');
   1611   }
   1612 
   1613   // Check if the load can safely be moved to all the unavailable predecessors.
   1614   bool CanDoPRE = true;
   1615   const DataLayout &DL = LI->getModule()->getDataLayout();
   1616   SmallVector<Instruction*, 8> NewInsts;
   1617   for (auto &PredLoad : PredLoads) {
   1618     BasicBlock *UnavailablePred = PredLoad.first;
   1619 
   1620     // Do PHI translation to get its value in the predecessor if necessary.  The
   1621     // returned pointer (if non-null) is guaranteed to dominate UnavailablePred.
   1622 
   1623     // If all preds have a single successor, then we know it is safe to insert
   1624     // the load on the pred (?!?), so we can insert code to materialize the
   1625     // pointer if it is not available.
   1626     PHITransAddr Address(LI->getPointerOperand(), DL, AC);
   1627     Value *LoadPtr = nullptr;
   1628     LoadPtr = Address.PHITranslateWithInsertion(LoadBB, UnavailablePred,
   1629                                                 *DT, NewInsts);
   1630 
   1631     // If we couldn't find or insert a computation of this phi translated value,
   1632     // we fail PRE.
   1633     if (!LoadPtr) {
   1634       DEBUG(dbgs() << "COULDN'T INSERT PHI TRANSLATED VALUE OF: "
   1635             << *LI->getPointerOperand() << "\n");
   1636       CanDoPRE = false;
   1637       break;
   1638     }
   1639 
   1640     PredLoad.second = LoadPtr;
   1641   }
   1642 
   1643   if (!CanDoPRE) {
   1644     while (!NewInsts.empty()) {
   1645       Instruction *I = NewInsts.pop_back_val();
   1646       if (MD) MD->removeInstruction(I);
   1647       I->eraseFromParent();
   1648     }
   1649     // HINT: Don't revert the edge-splitting as following transformation may
   1650     // also need to split these critical edges.
   1651     return !CriticalEdgePred.empty();
   1652   }
   1653 
   1654   // Okay, we can eliminate this load by inserting a reload in the predecessor
   1655   // and using PHI construction to get the value in the other predecessors, do
   1656   // it.
   1657   DEBUG(dbgs() << "GVN REMOVING PRE LOAD: " << *LI << '\n');
   1658   DEBUG(if (!NewInsts.empty())
   1659           dbgs() << "INSERTED " << NewInsts.size() << " INSTS: "
   1660                  << *NewInsts.back() << '\n');
   1661 
   1662   // Assign value numbers to the new instructions.
   1663   for (unsigned i = 0, e = NewInsts.size(); i != e; ++i) {
   1664     // FIXME: We really _ought_ to insert these value numbers into their
   1665     // parent's availability map.  However, in doing so, we risk getting into
   1666     // ordering issues.  If a block hasn't been processed yet, we would be
   1667     // marking a value as AVAIL-IN, which isn't what we intend.
   1668     VN.lookup_or_add(NewInsts[i]);
   1669   }
   1670 
   1671   for (const auto &PredLoad : PredLoads) {
   1672     BasicBlock *UnavailablePred = PredLoad.first;
   1673     Value *LoadPtr = PredLoad.second;
   1674 
   1675     Instruction *NewLoad = new LoadInst(LoadPtr, LI->getName()+".pre", false,
   1676                                         LI->getAlignment(),
   1677                                         UnavailablePred->getTerminator());
   1678 
   1679     // Transfer the old load's AA tags to the new load.
   1680     AAMDNodes Tags;
   1681     LI->getAAMetadata(Tags);
   1682     if (Tags)
   1683       NewLoad->setAAMetadata(Tags);
   1684 
   1685     // Transfer DebugLoc.
   1686     NewLoad->setDebugLoc(LI->getDebugLoc());
   1687 
   1688     // Add the newly created load.
   1689     ValuesPerBlock.push_back(AvailableValueInBlock::get(UnavailablePred,
   1690                                                         NewLoad));
   1691     MD->invalidateCachedPointerInfo(LoadPtr);
   1692     DEBUG(dbgs() << "GVN INSERTED " << *NewLoad << '\n');
   1693   }
   1694 
   1695   // Perform PHI construction.
   1696   Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, *this);
   1697   LI->replaceAllUsesWith(V);
   1698   if (isa<PHINode>(V))
   1699     V->takeName(LI);
   1700   if (V->getType()->getScalarType()->isPointerTy())
   1701     MD->invalidateCachedPointerInfo(V);
   1702   markInstructionForDeletion(LI);
   1703   ++NumPRELoad;
   1704   return true;
   1705 }
   1706 
   1707 /// Attempt to eliminate a load whose dependencies are
   1708 /// non-local by performing PHI construction.
   1709 bool GVN::processNonLocalLoad(LoadInst *LI) {
   1710   // Step 1: Find the non-local dependencies of the load.
   1711   LoadDepVect Deps;
   1712   MD->getNonLocalPointerDependency(LI, Deps);
   1713 
   1714   // If we had to process more than one hundred blocks to find the
   1715   // dependencies, this load isn't worth worrying about.  Optimizing
   1716   // it will be too expensive.
   1717   unsigned NumDeps = Deps.size();
   1718   if (NumDeps > 100)
   1719     return false;
   1720 
   1721   // If we had a phi translation failure, we'll have a single entry which is a
   1722   // clobber in the current block.  Reject this early.
   1723   if (NumDeps == 1 &&
   1724       !Deps[0].getResult().isDef() && !Deps[0].getResult().isClobber()) {
   1725     DEBUG(
   1726       dbgs() << "GVN: non-local load ";
   1727       LI->printAsOperand(dbgs());
   1728       dbgs() << " has unknown dependencies\n";
   1729     );
   1730     return false;
   1731   }
   1732 
   1733   // If this load follows a GEP, see if we can PRE the indices before analyzing.
   1734   if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0))) {
   1735     for (GetElementPtrInst::op_iterator OI = GEP->idx_begin(),
   1736                                         OE = GEP->idx_end();
   1737          OI != OE; ++OI)
   1738       if (Instruction *I = dyn_cast<Instruction>(OI->get()))
   1739         performScalarPRE(I);
   1740   }
   1741 
   1742   // Step 2: Analyze the availability of the load
   1743   AvailValInBlkVect ValuesPerBlock;
   1744   UnavailBlkVect UnavailableBlocks;
   1745   AnalyzeLoadAvailability(LI, Deps, ValuesPerBlock, UnavailableBlocks);
   1746 
   1747   // If we have no predecessors that produce a known value for this load, exit
   1748   // early.
   1749   if (ValuesPerBlock.empty())
   1750     return false;
   1751 
   1752   // Step 3: Eliminate fully redundancy.
   1753   //
   1754   // If all of the instructions we depend on produce a known value for this
   1755   // load, then it is fully redundant and we can use PHI insertion to compute
   1756   // its value.  Insert PHIs and remove the fully redundant value now.
   1757   if (UnavailableBlocks.empty()) {
   1758     DEBUG(dbgs() << "GVN REMOVING NONLOCAL LOAD: " << *LI << '\n');
   1759 
   1760     // Perform PHI construction.
   1761     Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, *this);
   1762     LI->replaceAllUsesWith(V);
   1763 
   1764     if (isa<PHINode>(V))
   1765       V->takeName(LI);
   1766     if (V->getType()->getScalarType()->isPointerTy())
   1767       MD->invalidateCachedPointerInfo(V);
   1768     markInstructionForDeletion(LI);
   1769     ++NumGVNLoad;
   1770     return true;
   1771   }
   1772 
   1773   // Step 4: Eliminate partial redundancy.
   1774   if (!EnablePRE || !EnableLoadPRE)
   1775     return false;
   1776 
   1777   return PerformLoadPRE(LI, ValuesPerBlock, UnavailableBlocks);
   1778 }
   1779 
   1780 
   1781 static void patchReplacementInstruction(Instruction *I, Value *Repl) {
   1782   // Patch the replacement so that it is not more restrictive than the value
   1783   // being replaced.
   1784   BinaryOperator *Op = dyn_cast<BinaryOperator>(I);
   1785   BinaryOperator *ReplOp = dyn_cast<BinaryOperator>(Repl);
   1786   if (Op && ReplOp && isa<OverflowingBinaryOperator>(Op) &&
   1787       isa<OverflowingBinaryOperator>(ReplOp)) {
   1788     if (ReplOp->hasNoSignedWrap() && !Op->hasNoSignedWrap())
   1789       ReplOp->setHasNoSignedWrap(false);
   1790     if (ReplOp->hasNoUnsignedWrap() && !Op->hasNoUnsignedWrap())
   1791       ReplOp->setHasNoUnsignedWrap(false);
   1792   }
   1793   if (Instruction *ReplInst = dyn_cast<Instruction>(Repl)) {
   1794     // FIXME: If both the original and replacement value are part of the
   1795     // same control-flow region (meaning that the execution of one
   1796     // guarentees the executation of the other), then we can combine the
   1797     // noalias scopes here and do better than the general conservative
   1798     // answer used in combineMetadata().
   1799 
   1800     // In general, GVN unifies expressions over different control-flow
   1801     // regions, and so we need a conservative combination of the noalias
   1802     // scopes.
   1803     unsigned KnownIDs[] = {
   1804       LLVMContext::MD_tbaa,
   1805       LLVMContext::MD_alias_scope,
   1806       LLVMContext::MD_noalias,
   1807       LLVMContext::MD_range,
   1808       LLVMContext::MD_fpmath,
   1809       LLVMContext::MD_invariant_load,
   1810     };
   1811     combineMetadata(ReplInst, I, KnownIDs);
   1812   }
   1813 }
   1814 
   1815 static void patchAndReplaceAllUsesWith(Instruction *I, Value *Repl) {
   1816   patchReplacementInstruction(I, Repl);
   1817   I->replaceAllUsesWith(Repl);
   1818 }
   1819 
   1820 /// Attempt to eliminate a load, first by eliminating it
   1821 /// locally, and then attempting non-local elimination if that fails.
   1822 bool GVN::processLoad(LoadInst *L) {
   1823   if (!MD)
   1824     return false;
   1825 
   1826   if (!L->isSimple())
   1827     return false;
   1828 
   1829   if (L->use_empty()) {
   1830     markInstructionForDeletion(L);
   1831     return true;
   1832   }
   1833 
   1834   // ... to a pointer that has been loaded from before...
   1835   MemDepResult Dep = MD->getDependency(L);
   1836   const DataLayout &DL = L->getModule()->getDataLayout();
   1837 
   1838   // If we have a clobber and target data is around, see if this is a clobber
   1839   // that we can fix up through code synthesis.
   1840   if (Dep.isClobber()) {
   1841     // Check to see if we have something like this:
   1842     //   store i32 123, i32* %P
   1843     //   %A = bitcast i32* %P to i8*
   1844     //   %B = gep i8* %A, i32 1
   1845     //   %C = load i8* %B
   1846     //
   1847     // We could do that by recognizing if the clobber instructions are obviously
   1848     // a common base + constant offset, and if the previous store (or memset)
   1849     // completely covers this load.  This sort of thing can happen in bitfield
   1850     // access code.
   1851     Value *AvailVal = nullptr;
   1852     if (StoreInst *DepSI = dyn_cast<StoreInst>(Dep.getInst())) {
   1853       int Offset = AnalyzeLoadFromClobberingStore(
   1854           L->getType(), L->getPointerOperand(), DepSI);
   1855       if (Offset != -1)
   1856         AvailVal = GetStoreValueForLoad(DepSI->getValueOperand(), Offset,
   1857                                         L->getType(), L, DL);
   1858     }
   1859 
   1860     // Check to see if we have something like this:
   1861     //    load i32* P
   1862     //    load i8* (P+1)
   1863     // if we have this, replace the later with an extraction from the former.
   1864     if (LoadInst *DepLI = dyn_cast<LoadInst>(Dep.getInst())) {
   1865       // If this is a clobber and L is the first instruction in its block, then
   1866       // we have the first instruction in the entry block.
   1867       if (DepLI == L)
   1868         return false;
   1869 
   1870       int Offset = AnalyzeLoadFromClobberingLoad(
   1871           L->getType(), L->getPointerOperand(), DepLI, DL);
   1872       if (Offset != -1)
   1873         AvailVal = GetLoadValueForLoad(DepLI, Offset, L->getType(), L, *this);
   1874     }
   1875 
   1876     // If the clobbering value is a memset/memcpy/memmove, see if we can forward
   1877     // a value on from it.
   1878     if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(Dep.getInst())) {
   1879       int Offset = AnalyzeLoadFromClobberingMemInst(
   1880           L->getType(), L->getPointerOperand(), DepMI, DL);
   1881       if (Offset != -1)
   1882         AvailVal = GetMemInstValueForLoad(DepMI, Offset, L->getType(), L, DL);
   1883     }
   1884 
   1885     if (AvailVal) {
   1886       DEBUG(dbgs() << "GVN COERCED INST:\n" << *Dep.getInst() << '\n'
   1887             << *AvailVal << '\n' << *L << "\n\n\n");
   1888 
   1889       // Replace the load!
   1890       L->replaceAllUsesWith(AvailVal);
   1891       if (AvailVal->getType()->getScalarType()->isPointerTy())
   1892         MD->invalidateCachedPointerInfo(AvailVal);
   1893       markInstructionForDeletion(L);
   1894       ++NumGVNLoad;
   1895       return true;
   1896     }
   1897   }
   1898 
   1899   // If the value isn't available, don't do anything!
   1900   if (Dep.isClobber()) {
   1901     DEBUG(
   1902       // fast print dep, using operator<< on instruction is too slow.
   1903       dbgs() << "GVN: load ";
   1904       L->printAsOperand(dbgs());
   1905       Instruction *I = Dep.getInst();
   1906       dbgs() << " is clobbered by " << *I << '\n';
   1907     );
   1908     return false;
   1909   }
   1910 
   1911   // If it is defined in another block, try harder.
   1912   if (Dep.isNonLocal())
   1913     return processNonLocalLoad(L);
   1914 
   1915   if (!Dep.isDef()) {
   1916     DEBUG(
   1917       // fast print dep, using operator<< on instruction is too slow.
   1918       dbgs() << "GVN: load ";
   1919       L->printAsOperand(dbgs());
   1920       dbgs() << " has unknown dependence\n";
   1921     );
   1922     return false;
   1923   }
   1924 
   1925   Instruction *DepInst = Dep.getInst();
   1926   if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInst)) {
   1927     Value *StoredVal = DepSI->getValueOperand();
   1928 
   1929     // The store and load are to a must-aliased pointer, but they may not
   1930     // actually have the same type.  See if we know how to reuse the stored
   1931     // value (depending on its type).
   1932     if (StoredVal->getType() != L->getType()) {
   1933       StoredVal =
   1934           CoerceAvailableValueToLoadType(StoredVal, L->getType(), L, DL);
   1935       if (!StoredVal)
   1936         return false;
   1937 
   1938       DEBUG(dbgs() << "GVN COERCED STORE:\n" << *DepSI << '\n' << *StoredVal
   1939                    << '\n' << *L << "\n\n\n");
   1940     }
   1941 
   1942     // Remove it!
   1943     L->replaceAllUsesWith(StoredVal);
   1944     if (StoredVal->getType()->getScalarType()->isPointerTy())
   1945       MD->invalidateCachedPointerInfo(StoredVal);
   1946     markInstructionForDeletion(L);
   1947     ++NumGVNLoad;
   1948     return true;
   1949   }
   1950 
   1951   if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInst)) {
   1952     Value *AvailableVal = DepLI;
   1953 
   1954     // The loads are of a must-aliased pointer, but they may not actually have
   1955     // the same type.  See if we know how to reuse the previously loaded value
   1956     // (depending on its type).
   1957     if (DepLI->getType() != L->getType()) {
   1958       AvailableVal = CoerceAvailableValueToLoadType(DepLI, L->getType(), L, DL);
   1959       if (!AvailableVal)
   1960         return false;
   1961 
   1962       DEBUG(dbgs() << "GVN COERCED LOAD:\n" << *DepLI << "\n" << *AvailableVal
   1963                    << "\n" << *L << "\n\n\n");
   1964     }
   1965 
   1966     // Remove it!
   1967     patchAndReplaceAllUsesWith(L, AvailableVal);
   1968     if (DepLI->getType()->getScalarType()->isPointerTy())
   1969       MD->invalidateCachedPointerInfo(DepLI);
   1970     markInstructionForDeletion(L);
   1971     ++NumGVNLoad;
   1972     return true;
   1973   }
   1974 
   1975   // If this load really doesn't depend on anything, then we must be loading an
   1976   // undef value.  This can happen when loading for a fresh allocation with no
   1977   // intervening stores, for example.
   1978   if (isa<AllocaInst>(DepInst) || isMallocLikeFn(DepInst, TLI)) {
   1979     L->replaceAllUsesWith(UndefValue::get(L->getType()));
   1980     markInstructionForDeletion(L);
   1981     ++NumGVNLoad;
   1982     return true;
   1983   }
   1984 
   1985   // If this load occurs either right after a lifetime begin,
   1986   // then the loaded value is undefined.
   1987   if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(DepInst)) {
   1988     if (II->getIntrinsicID() == Intrinsic::lifetime_start) {
   1989       L->replaceAllUsesWith(UndefValue::get(L->getType()));
   1990       markInstructionForDeletion(L);
   1991       ++NumGVNLoad;
   1992       return true;
   1993     }
   1994   }
   1995 
   1996   // If this load follows a calloc (which zero initializes memory),
   1997   // then the loaded value is zero
   1998   if (isCallocLikeFn(DepInst, TLI)) {
   1999     L->replaceAllUsesWith(Constant::getNullValue(L->getType()));
   2000     markInstructionForDeletion(L);
   2001     ++NumGVNLoad;
   2002     return true;
   2003   }
   2004 
   2005   return false;
   2006 }
   2007 
   2008 // In order to find a leader for a given value number at a
   2009 // specific basic block, we first obtain the list of all Values for that number,
   2010 // and then scan the list to find one whose block dominates the block in
   2011 // question.  This is fast because dominator tree queries consist of only
   2012 // a few comparisons of DFS numbers.
   2013 Value *GVN::findLeader(const BasicBlock *BB, uint32_t num) {
   2014   LeaderTableEntry Vals = LeaderTable[num];
   2015   if (!Vals.Val) return nullptr;
   2016 
   2017   Value *Val = nullptr;
   2018   if (DT->dominates(Vals.BB, BB)) {
   2019     Val = Vals.Val;
   2020     if (isa<Constant>(Val)) return Val;
   2021   }
   2022 
   2023   LeaderTableEntry* Next = Vals.Next;
   2024   while (Next) {
   2025     if (DT->dominates(Next->BB, BB)) {
   2026       if (isa<Constant>(Next->Val)) return Next->Val;
   2027       if (!Val) Val = Next->Val;
   2028     }
   2029 
   2030     Next = Next->Next;
   2031   }
   2032 
   2033   return Val;
   2034 }
   2035 
   2036 /// Replace all uses of 'From' with 'To' if the use is dominated by the given
   2037 /// basic block.  Returns the number of uses that were replaced.
   2038 unsigned GVN::replaceAllDominatedUsesWith(Value *From, Value *To,
   2039                                           const BasicBlockEdge &Root) {
   2040   unsigned Count = 0;
   2041   for (Value::use_iterator UI = From->use_begin(), UE = From->use_end();
   2042        UI != UE; ) {
   2043     Use &U = *UI++;
   2044 
   2045     if (DT->dominates(Root, U)) {
   2046       U.set(To);
   2047       ++Count;
   2048     }
   2049   }
   2050   return Count;
   2051 }
   2052 
   2053 /// There is an edge from 'Src' to 'Dst'.  Return
   2054 /// true if every path from the entry block to 'Dst' passes via this edge.  In
   2055 /// particular 'Dst' must not be reachable via another edge from 'Src'.
   2056 static bool isOnlyReachableViaThisEdge(const BasicBlockEdge &E,
   2057                                        DominatorTree *DT) {
   2058   // While in theory it is interesting to consider the case in which Dst has
   2059   // more than one predecessor, because Dst might be part of a loop which is
   2060   // only reachable from Src, in practice it is pointless since at the time
   2061   // GVN runs all such loops have preheaders, which means that Dst will have
   2062   // been changed to have only one predecessor, namely Src.
   2063   const BasicBlock *Pred = E.getEnd()->getSinglePredecessor();
   2064   const BasicBlock *Src = E.getStart();
   2065   assert((!Pred || Pred == Src) && "No edge between these basic blocks!");
   2066   (void)Src;
   2067   return Pred != nullptr;
   2068 }
   2069 
   2070 /// The given values are known to be equal in every block
   2071 /// dominated by 'Root'.  Exploit this, for example by replacing 'LHS' with
   2072 /// 'RHS' everywhere in the scope.  Returns whether a change was made.
   2073 bool GVN::propagateEquality(Value *LHS, Value *RHS,
   2074                             const BasicBlockEdge &Root) {
   2075   SmallVector<std::pair<Value*, Value*>, 4> Worklist;
   2076   Worklist.push_back(std::make_pair(LHS, RHS));
   2077   bool Changed = false;
   2078   // For speed, compute a conservative fast approximation to
   2079   // DT->dominates(Root, Root.getEnd());
   2080   bool RootDominatesEnd = isOnlyReachableViaThisEdge(Root, DT);
   2081 
   2082   while (!Worklist.empty()) {
   2083     std::pair<Value*, Value*> Item = Worklist.pop_back_val();
   2084     LHS = Item.first; RHS = Item.second;
   2085 
   2086     if (LHS == RHS) continue;
   2087     assert(LHS->getType() == RHS->getType() && "Equality but unequal types!");
   2088 
   2089     // Don't try to propagate equalities between constants.
   2090     if (isa<Constant>(LHS) && isa<Constant>(RHS)) continue;
   2091 
   2092     // Prefer a constant on the right-hand side, or an Argument if no constants.
   2093     if (isa<Constant>(LHS) || (isa<Argument>(LHS) && !isa<Constant>(RHS)))
   2094       std::swap(LHS, RHS);
   2095     assert((isa<Argument>(LHS) || isa<Instruction>(LHS)) && "Unexpected value!");
   2096 
   2097     // If there is no obvious reason to prefer the left-hand side over the
   2098     // right-hand side, ensure the longest lived term is on the right-hand side,
   2099     // so the shortest lived term will be replaced by the longest lived.
   2100     // This tends to expose more simplifications.
   2101     uint32_t LVN = VN.lookup_or_add(LHS);
   2102     if ((isa<Argument>(LHS) && isa<Argument>(RHS)) ||
   2103         (isa<Instruction>(LHS) && isa<Instruction>(RHS))) {
   2104       // Move the 'oldest' value to the right-hand side, using the value number
   2105       // as a proxy for age.
   2106       uint32_t RVN = VN.lookup_or_add(RHS);
   2107       if (LVN < RVN) {
   2108         std::swap(LHS, RHS);
   2109         LVN = RVN;
   2110       }
   2111     }
   2112 
   2113     // If value numbering later sees that an instruction in the scope is equal
   2114     // to 'LHS' then ensure it will be turned into 'RHS'.  In order to preserve
   2115     // the invariant that instructions only occur in the leader table for their
   2116     // own value number (this is used by removeFromLeaderTable), do not do this
   2117     // if RHS is an instruction (if an instruction in the scope is morphed into
   2118     // LHS then it will be turned into RHS by the next GVN iteration anyway, so
   2119     // using the leader table is about compiling faster, not optimizing better).
   2120     // The leader table only tracks basic blocks, not edges. Only add to if we
   2121     // have the simple case where the edge dominates the end.
   2122     if (RootDominatesEnd && !isa<Instruction>(RHS))
   2123       addToLeaderTable(LVN, RHS, Root.getEnd());
   2124 
   2125     // Replace all occurrences of 'LHS' with 'RHS' everywhere in the scope.  As
   2126     // LHS always has at least one use that is not dominated by Root, this will
   2127     // never do anything if LHS has only one use.
   2128     if (!LHS->hasOneUse()) {
   2129       unsigned NumReplacements = replaceAllDominatedUsesWith(LHS, RHS, Root);
   2130       Changed |= NumReplacements > 0;
   2131       NumGVNEqProp += NumReplacements;
   2132     }
   2133 
   2134     // Now try to deduce additional equalities from this one. For example, if
   2135     // the known equality was "(A != B)" == "false" then it follows that A and B
   2136     // are equal in the scope. Only boolean equalities with an explicit true or
   2137     // false RHS are currently supported.
   2138     if (!RHS->getType()->isIntegerTy(1))
   2139       // Not a boolean equality - bail out.
   2140       continue;
   2141     ConstantInt *CI = dyn_cast<ConstantInt>(RHS);
   2142     if (!CI)
   2143       // RHS neither 'true' nor 'false' - bail out.
   2144       continue;
   2145     // Whether RHS equals 'true'.  Otherwise it equals 'false'.
   2146     bool isKnownTrue = CI->isAllOnesValue();
   2147     bool isKnownFalse = !isKnownTrue;
   2148 
   2149     // If "A && B" is known true then both A and B are known true.  If "A || B"
   2150     // is known false then both A and B are known false.
   2151     Value *A, *B;
   2152     if ((isKnownTrue && match(LHS, m_And(m_Value(A), m_Value(B)))) ||
   2153         (isKnownFalse && match(LHS, m_Or(m_Value(A), m_Value(B))))) {
   2154       Worklist.push_back(std::make_pair(A, RHS));
   2155       Worklist.push_back(std::make_pair(B, RHS));
   2156       continue;
   2157     }
   2158 
   2159     // If we are propagating an equality like "(A == B)" == "true" then also
   2160     // propagate the equality A == B.  When propagating a comparison such as
   2161     // "(A >= B)" == "true", replace all instances of "A < B" with "false".
   2162     if (CmpInst *Cmp = dyn_cast<CmpInst>(LHS)) {
   2163       Value *Op0 = Cmp->getOperand(0), *Op1 = Cmp->getOperand(1);
   2164 
   2165       // If "A == B" is known true, or "A != B" is known false, then replace
   2166       // A with B everywhere in the scope.
   2167       if ((isKnownTrue && Cmp->getPredicate() == CmpInst::ICMP_EQ) ||
   2168           (isKnownFalse && Cmp->getPredicate() == CmpInst::ICMP_NE))
   2169         Worklist.push_back(std::make_pair(Op0, Op1));
   2170 
   2171       // Handle the floating point versions of equality comparisons too.
   2172       if ((isKnownTrue && Cmp->getPredicate() == CmpInst::FCMP_OEQ) ||
   2173           (isKnownFalse && Cmp->getPredicate() == CmpInst::FCMP_UNE)) {
   2174 
   2175         // Floating point -0.0 and 0.0 compare equal, so we can only
   2176         // propagate values if we know that we have a constant and that
   2177         // its value is non-zero.
   2178 
   2179         // FIXME: We should do this optimization if 'no signed zeros' is
   2180         // applicable via an instruction-level fast-math-flag or some other
   2181         // indicator that relaxed FP semantics are being used.
   2182 
   2183         if (isa<ConstantFP>(Op1) && !cast<ConstantFP>(Op1)->isZero())
   2184           Worklist.push_back(std::make_pair(Op0, Op1));
   2185       }
   2186 
   2187       // If "A >= B" is known true, replace "A < B" with false everywhere.
   2188       CmpInst::Predicate NotPred = Cmp->getInversePredicate();
   2189       Constant *NotVal = ConstantInt::get(Cmp->getType(), isKnownFalse);
   2190       // Since we don't have the instruction "A < B" immediately to hand, work
   2191       // out the value number that it would have and use that to find an
   2192       // appropriate instruction (if any).
   2193       uint32_t NextNum = VN.getNextUnusedValueNumber();
   2194       uint32_t Num = VN.lookup_or_add_cmp(Cmp->getOpcode(), NotPred, Op0, Op1);
   2195       // If the number we were assigned was brand new then there is no point in
   2196       // looking for an instruction realizing it: there cannot be one!
   2197       if (Num < NextNum) {
   2198         Value *NotCmp = findLeader(Root.getEnd(), Num);
   2199         if (NotCmp && isa<Instruction>(NotCmp)) {
   2200           unsigned NumReplacements =
   2201             replaceAllDominatedUsesWith(NotCmp, NotVal, Root);
   2202           Changed |= NumReplacements > 0;
   2203           NumGVNEqProp += NumReplacements;
   2204         }
   2205       }
   2206       // Ensure that any instruction in scope that gets the "A < B" value number
   2207       // is replaced with false.
   2208       // The leader table only tracks basic blocks, not edges. Only add to if we
   2209       // have the simple case where the edge dominates the end.
   2210       if (RootDominatesEnd)
   2211         addToLeaderTable(Num, NotVal, Root.getEnd());
   2212 
   2213       continue;
   2214     }
   2215   }
   2216 
   2217   return Changed;
   2218 }
   2219 
   2220 /// When calculating availability, handle an instruction
   2221 /// by inserting it into the appropriate sets
   2222 bool GVN::processInstruction(Instruction *I) {
   2223   // Ignore dbg info intrinsics.
   2224   if (isa<DbgInfoIntrinsic>(I))
   2225     return false;
   2226 
   2227   // If the instruction can be easily simplified then do so now in preference
   2228   // to value numbering it.  Value numbering often exposes redundancies, for
   2229   // example if it determines that %y is equal to %x then the instruction
   2230   // "%z = and i32 %x, %y" becomes "%z = and i32 %x, %x" which we now simplify.
   2231   const DataLayout &DL = I->getModule()->getDataLayout();
   2232   if (Value *V = SimplifyInstruction(I, DL, TLI, DT, AC)) {
   2233     I->replaceAllUsesWith(V);
   2234     if (MD && V->getType()->getScalarType()->isPointerTy())
   2235       MD->invalidateCachedPointerInfo(V);
   2236     markInstructionForDeletion(I);
   2237     ++NumGVNSimpl;
   2238     return true;
   2239   }
   2240 
   2241   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
   2242     if (processLoad(LI))
   2243       return true;
   2244 
   2245     unsigned Num = VN.lookup_or_add(LI);
   2246     addToLeaderTable(Num, LI, LI->getParent());
   2247     return false;
   2248   }
   2249 
   2250   // For conditional branches, we can perform simple conditional propagation on
   2251   // the condition value itself.
   2252   if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
   2253     if (!BI->isConditional())
   2254       return false;
   2255 
   2256     if (isa<Constant>(BI->getCondition()))
   2257       return processFoldableCondBr(BI);
   2258 
   2259     Value *BranchCond = BI->getCondition();
   2260     BasicBlock *TrueSucc = BI->getSuccessor(0);
   2261     BasicBlock *FalseSucc = BI->getSuccessor(1);
   2262     // Avoid multiple edges early.
   2263     if (TrueSucc == FalseSucc)
   2264       return false;
   2265 
   2266     BasicBlock *Parent = BI->getParent();
   2267     bool Changed = false;
   2268 
   2269     Value *TrueVal = ConstantInt::getTrue(TrueSucc->getContext());
   2270     BasicBlockEdge TrueE(Parent, TrueSucc);
   2271     Changed |= propagateEquality(BranchCond, TrueVal, TrueE);
   2272 
   2273     Value *FalseVal = ConstantInt::getFalse(FalseSucc->getContext());
   2274     BasicBlockEdge FalseE(Parent, FalseSucc);
   2275     Changed |= propagateEquality(BranchCond, FalseVal, FalseE);
   2276 
   2277     return Changed;
   2278   }
   2279 
   2280   // For switches, propagate the case values into the case destinations.
   2281   if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) {
   2282     Value *SwitchCond = SI->getCondition();
   2283     BasicBlock *Parent = SI->getParent();
   2284     bool Changed = false;
   2285 
   2286     // Remember how many outgoing edges there are to every successor.
   2287     SmallDenseMap<BasicBlock *, unsigned, 16> SwitchEdges;
   2288     for (unsigned i = 0, n = SI->getNumSuccessors(); i != n; ++i)
   2289       ++SwitchEdges[SI->getSuccessor(i)];
   2290 
   2291     for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end();
   2292          i != e; ++i) {
   2293       BasicBlock *Dst = i.getCaseSuccessor();
   2294       // If there is only a single edge, propagate the case value into it.
   2295       if (SwitchEdges.lookup(Dst) == 1) {
   2296         BasicBlockEdge E(Parent, Dst);
   2297         Changed |= propagateEquality(SwitchCond, i.getCaseValue(), E);
   2298       }
   2299     }
   2300     return Changed;
   2301   }
   2302 
   2303   // Instructions with void type don't return a value, so there's
   2304   // no point in trying to find redundancies in them.
   2305   if (I->getType()->isVoidTy()) return false;
   2306 
   2307   uint32_t NextNum = VN.getNextUnusedValueNumber();
   2308   unsigned Num = VN.lookup_or_add(I);
   2309 
   2310   // Allocations are always uniquely numbered, so we can save time and memory
   2311   // by fast failing them.
   2312   if (isa<AllocaInst>(I) || isa<TerminatorInst>(I) || isa<PHINode>(I)) {
   2313     addToLeaderTable(Num, I, I->getParent());
   2314     return false;
   2315   }
   2316 
   2317   // If the number we were assigned was a brand new VN, then we don't
   2318   // need to do a lookup to see if the number already exists
   2319   // somewhere in the domtree: it can't!
   2320   if (Num >= NextNum) {
   2321     addToLeaderTable(Num, I, I->getParent());
   2322     return false;
   2323   }
   2324 
   2325   // Perform fast-path value-number based elimination of values inherited from
   2326   // dominators.
   2327   Value *repl = findLeader(I->getParent(), Num);
   2328   if (!repl) {
   2329     // Failure, just remember this instance for future use.
   2330     addToLeaderTable(Num, I, I->getParent());
   2331     return false;
   2332   }
   2333 
   2334   // Remove it!
   2335   patchAndReplaceAllUsesWith(I, repl);
   2336   if (MD && repl->getType()->getScalarType()->isPointerTy())
   2337     MD->invalidateCachedPointerInfo(repl);
   2338   markInstructionForDeletion(I);
   2339   return true;
   2340 }
   2341 
   2342 /// runOnFunction - This is the main transformation entry point for a function.
   2343 bool GVN::runOnFunction(Function& F) {
   2344   if (skipOptnoneFunction(F))
   2345     return false;
   2346 
   2347   if (!NoLoads)
   2348     MD = &getAnalysis<MemoryDependenceAnalysis>();
   2349   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
   2350   AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
   2351   TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
   2352   VN.setAliasAnalysis(&getAnalysis<AliasAnalysis>());
   2353   VN.setMemDep(MD);
   2354   VN.setDomTree(DT);
   2355 
   2356   bool Changed = false;
   2357   bool ShouldContinue = true;
   2358 
   2359   // Merge unconditional branches, allowing PRE to catch more
   2360   // optimization opportunities.
   2361   for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ) {
   2362     BasicBlock *BB = FI++;
   2363 
   2364     bool removedBlock = MergeBlockIntoPredecessor(
   2365         BB, DT, /* LoopInfo */ nullptr, VN.getAliasAnalysis(), MD);
   2366     if (removedBlock) ++NumGVNBlocks;
   2367 
   2368     Changed |= removedBlock;
   2369   }
   2370 
   2371   unsigned Iteration = 0;
   2372   while (ShouldContinue) {
   2373     DEBUG(dbgs() << "GVN iteration: " << Iteration << "\n");
   2374     ShouldContinue = iterateOnFunction(F);
   2375     Changed |= ShouldContinue;
   2376     ++Iteration;
   2377   }
   2378 
   2379   if (EnablePRE) {
   2380     // Fabricate val-num for dead-code in order to suppress assertion in
   2381     // performPRE().
   2382     assignValNumForDeadCode();
   2383     bool PREChanged = true;
   2384     while (PREChanged) {
   2385       PREChanged = performPRE(F);
   2386       Changed |= PREChanged;
   2387     }
   2388   }
   2389 
   2390   // FIXME: Should perform GVN again after PRE does something.  PRE can move
   2391   // computations into blocks where they become fully redundant.  Note that
   2392   // we can't do this until PRE's critical edge splitting updates memdep.
   2393   // Actually, when this happens, we should just fully integrate PRE into GVN.
   2394 
   2395   cleanupGlobalSets();
   2396   // Do not cleanup DeadBlocks in cleanupGlobalSets() as it's called for each
   2397   // iteration.
   2398   DeadBlocks.clear();
   2399 
   2400   return Changed;
   2401 }
   2402 
   2403 
   2404 bool GVN::processBlock(BasicBlock *BB) {
   2405   // FIXME: Kill off InstrsToErase by doing erasing eagerly in a helper function
   2406   // (and incrementing BI before processing an instruction).
   2407   assert(InstrsToErase.empty() &&
   2408          "We expect InstrsToErase to be empty across iterations");
   2409   if (DeadBlocks.count(BB))
   2410     return false;
   2411 
   2412   bool ChangedFunction = false;
   2413 
   2414   for (BasicBlock::iterator BI = BB->begin(), BE = BB->end();
   2415        BI != BE;) {
   2416     ChangedFunction |= processInstruction(BI);
   2417     if (InstrsToErase.empty()) {
   2418       ++BI;
   2419       continue;
   2420     }
   2421 
   2422     // If we need some instructions deleted, do it now.
   2423     NumGVNInstr += InstrsToErase.size();
   2424 
   2425     // Avoid iterator invalidation.
   2426     bool AtStart = BI == BB->begin();
   2427     if (!AtStart)
   2428       --BI;
   2429 
   2430     for (SmallVectorImpl<Instruction *>::iterator I = InstrsToErase.begin(),
   2431          E = InstrsToErase.end(); I != E; ++I) {
   2432       DEBUG(dbgs() << "GVN removed: " << **I << '\n');
   2433       if (MD) MD->removeInstruction(*I);
   2434       DEBUG(verifyRemoved(*I));
   2435       (*I)->eraseFromParent();
   2436     }
   2437     InstrsToErase.clear();
   2438 
   2439     if (AtStart)
   2440       BI = BB->begin();
   2441     else
   2442       ++BI;
   2443   }
   2444 
   2445   return ChangedFunction;
   2446 }
   2447 
   2448 // Instantiate an expression in a predecessor that lacked it.
   2449 bool GVN::performScalarPREInsertion(Instruction *Instr, BasicBlock *Pred,
   2450                                     unsigned int ValNo) {
   2451   // Because we are going top-down through the block, all value numbers
   2452   // will be available in the predecessor by the time we need them.  Any
   2453   // that weren't originally present will have been instantiated earlier
   2454   // in this loop.
   2455   bool success = true;
   2456   for (unsigned i = 0, e = Instr->getNumOperands(); i != e; ++i) {
   2457     Value *Op = Instr->getOperand(i);
   2458     if (isa<Argument>(Op) || isa<Constant>(Op) || isa<GlobalValue>(Op))
   2459       continue;
   2460 
   2461     if (Value *V = findLeader(Pred, VN.lookup(Op))) {
   2462       Instr->setOperand(i, V);
   2463     } else {
   2464       success = false;
   2465       break;
   2466     }
   2467   }
   2468 
   2469   // Fail out if we encounter an operand that is not available in
   2470   // the PRE predecessor.  This is typically because of loads which
   2471   // are not value numbered precisely.
   2472   if (!success)
   2473     return false;
   2474 
   2475   Instr->insertBefore(Pred->getTerminator());
   2476   Instr->setName(Instr->getName() + ".pre");
   2477   Instr->setDebugLoc(Instr->getDebugLoc());
   2478   VN.add(Instr, ValNo);
   2479 
   2480   // Update the availability map to include the new instruction.
   2481   addToLeaderTable(ValNo, Instr, Pred);
   2482   return true;
   2483 }
   2484 
   2485 bool GVN::performScalarPRE(Instruction *CurInst) {
   2486   SmallVector<std::pair<Value*, BasicBlock*>, 8> predMap;
   2487 
   2488   if (isa<AllocaInst>(CurInst) || isa<TerminatorInst>(CurInst) ||
   2489       isa<PHINode>(CurInst) || CurInst->getType()->isVoidTy() ||
   2490       CurInst->mayReadFromMemory() || CurInst->mayHaveSideEffects() ||
   2491       isa<DbgInfoIntrinsic>(CurInst))
   2492     return false;
   2493 
   2494   // Don't do PRE on compares. The PHI would prevent CodeGenPrepare from
   2495   // sinking the compare again, and it would force the code generator to
   2496   // move the i1 from processor flags or predicate registers into a general
   2497   // purpose register.
   2498   if (isa<CmpInst>(CurInst))
   2499     return false;
   2500 
   2501   // We don't currently value number ANY inline asm calls.
   2502   if (CallInst *CallI = dyn_cast<CallInst>(CurInst))
   2503     if (CallI->isInlineAsm())
   2504       return false;
   2505 
   2506   uint32_t ValNo = VN.lookup(CurInst);
   2507 
   2508   // Look for the predecessors for PRE opportunities.  We're
   2509   // only trying to solve the basic diamond case, where
   2510   // a value is computed in the successor and one predecessor,
   2511   // but not the other.  We also explicitly disallow cases
   2512   // where the successor is its own predecessor, because they're
   2513   // more complicated to get right.
   2514   unsigned NumWith = 0;
   2515   unsigned NumWithout = 0;
   2516   BasicBlock *PREPred = nullptr;
   2517   BasicBlock *CurrentBlock = CurInst->getParent();
   2518   predMap.clear();
   2519 
   2520   for (pred_iterator PI = pred_begin(CurrentBlock), PE = pred_end(CurrentBlock);
   2521        PI != PE; ++PI) {
   2522     BasicBlock *P = *PI;
   2523     // We're not interested in PRE where the block is its
   2524     // own predecessor, or in blocks with predecessors
   2525     // that are not reachable.
   2526     if (P == CurrentBlock) {
   2527       NumWithout = 2;
   2528       break;
   2529     } else if (!DT->isReachableFromEntry(P)) {
   2530       NumWithout = 2;
   2531       break;
   2532     }
   2533 
   2534     Value *predV = findLeader(P, ValNo);
   2535     if (!predV) {
   2536       predMap.push_back(std::make_pair(static_cast<Value *>(nullptr), P));
   2537       PREPred = P;
   2538       ++NumWithout;
   2539     } else if (predV == CurInst) {
   2540       /* CurInst dominates this predecessor. */
   2541       NumWithout = 2;
   2542       break;
   2543     } else {
   2544       predMap.push_back(std::make_pair(predV, P));
   2545       ++NumWith;
   2546     }
   2547   }
   2548 
   2549   // Don't do PRE when it might increase code size, i.e. when
   2550   // we would need to insert instructions in more than one pred.
   2551   if (NumWithout > 1 || NumWith == 0)
   2552     return false;
   2553 
   2554   // We may have a case where all predecessors have the instruction,
   2555   // and we just need to insert a phi node. Otherwise, perform
   2556   // insertion.
   2557   Instruction *PREInstr = nullptr;
   2558 
   2559   if (NumWithout != 0) {
   2560     // Don't do PRE across indirect branch.
   2561     if (isa<IndirectBrInst>(PREPred->getTerminator()))
   2562       return false;
   2563 
   2564     // We can't do PRE safely on a critical edge, so instead we schedule
   2565     // the edge to be split and perform the PRE the next time we iterate
   2566     // on the function.
   2567     unsigned SuccNum = GetSuccessorNumber(PREPred, CurrentBlock);
   2568     if (isCriticalEdge(PREPred->getTerminator(), SuccNum)) {
   2569       toSplit.push_back(std::make_pair(PREPred->getTerminator(), SuccNum));
   2570       return false;
   2571     }
   2572     // We need to insert somewhere, so let's give it a shot
   2573     PREInstr = CurInst->clone();
   2574     if (!performScalarPREInsertion(PREInstr, PREPred, ValNo)) {
   2575       // If we failed insertion, make sure we remove the instruction.
   2576       DEBUG(verifyRemoved(PREInstr));
   2577       delete PREInstr;
   2578       return false;
   2579     }
   2580   }
   2581 
   2582   // Either we should have filled in the PRE instruction, or we should
   2583   // not have needed insertions.
   2584   assert (PREInstr != nullptr || NumWithout == 0);
   2585 
   2586   ++NumGVNPRE;
   2587 
   2588   // Create a PHI to make the value available in this block.
   2589   PHINode *Phi =
   2590       PHINode::Create(CurInst->getType(), predMap.size(),
   2591                       CurInst->getName() + ".pre-phi", CurrentBlock->begin());
   2592   for (unsigned i = 0, e = predMap.size(); i != e; ++i) {
   2593     if (Value *V = predMap[i].first)
   2594       Phi->addIncoming(V, predMap[i].second);
   2595     else
   2596       Phi->addIncoming(PREInstr, PREPred);
   2597   }
   2598 
   2599   VN.add(Phi, ValNo);
   2600   addToLeaderTable(ValNo, Phi, CurrentBlock);
   2601   Phi->setDebugLoc(CurInst->getDebugLoc());
   2602   CurInst->replaceAllUsesWith(Phi);
   2603   if (Phi->getType()->getScalarType()->isPointerTy()) {
   2604     // Because we have added a PHI-use of the pointer value, it has now
   2605     // "escaped" from alias analysis' perspective.  We need to inform
   2606     // AA of this.
   2607     for (unsigned ii = 0, ee = Phi->getNumIncomingValues(); ii != ee; ++ii) {
   2608       unsigned jj = PHINode::getOperandNumForIncomingValue(ii);
   2609       VN.getAliasAnalysis()->addEscapingUse(Phi->getOperandUse(jj));
   2610     }
   2611 
   2612     if (MD)
   2613       MD->invalidateCachedPointerInfo(Phi);
   2614   }
   2615   VN.erase(CurInst);
   2616   removeFromLeaderTable(ValNo, CurInst, CurrentBlock);
   2617 
   2618   DEBUG(dbgs() << "GVN PRE removed: " << *CurInst << '\n');
   2619   if (MD)
   2620     MD->removeInstruction(CurInst);
   2621   DEBUG(verifyRemoved(CurInst));
   2622   CurInst->eraseFromParent();
   2623   ++NumGVNInstr;
   2624 
   2625   return true;
   2626 }
   2627 
   2628 /// Perform a purely local form of PRE that looks for diamond
   2629 /// control flow patterns and attempts to perform simple PRE at the join point.
   2630 bool GVN::performPRE(Function &F) {
   2631   bool Changed = false;
   2632   for (BasicBlock *CurrentBlock : depth_first(&F.getEntryBlock())) {
   2633     // Nothing to PRE in the entry block.
   2634     if (CurrentBlock == &F.getEntryBlock())
   2635       continue;
   2636 
   2637     // Don't perform PRE on a landing pad.
   2638     if (CurrentBlock->isLandingPad())
   2639       continue;
   2640 
   2641     for (BasicBlock::iterator BI = CurrentBlock->begin(),
   2642                               BE = CurrentBlock->end();
   2643          BI != BE;) {
   2644       Instruction *CurInst = BI++;
   2645       Changed = performScalarPRE(CurInst);
   2646     }
   2647   }
   2648 
   2649   if (splitCriticalEdges())
   2650     Changed = true;
   2651 
   2652   return Changed;
   2653 }
   2654 
   2655 /// Split the critical edge connecting the given two blocks, and return
   2656 /// the block inserted to the critical edge.
   2657 BasicBlock *GVN::splitCriticalEdges(BasicBlock *Pred, BasicBlock *Succ) {
   2658   BasicBlock *BB = SplitCriticalEdge(
   2659       Pred, Succ, CriticalEdgeSplittingOptions(getAliasAnalysis(), DT));
   2660   if (MD)
   2661     MD->invalidateCachedPredecessors();
   2662   return BB;
   2663 }
   2664 
   2665 /// Split critical edges found during the previous
   2666 /// iteration that may enable further optimization.
   2667 bool GVN::splitCriticalEdges() {
   2668   if (toSplit.empty())
   2669     return false;
   2670   do {
   2671     std::pair<TerminatorInst*, unsigned> Edge = toSplit.pop_back_val();
   2672     SplitCriticalEdge(Edge.first, Edge.second,
   2673                       CriticalEdgeSplittingOptions(getAliasAnalysis(), DT));
   2674   } while (!toSplit.empty());
   2675   if (MD) MD->invalidateCachedPredecessors();
   2676   return true;
   2677 }
   2678 
   2679 /// Executes one iteration of GVN
   2680 bool GVN::iterateOnFunction(Function &F) {
   2681   cleanupGlobalSets();
   2682 
   2683   // Top-down walk of the dominator tree
   2684   bool Changed = false;
   2685   // Save the blocks this function have before transformation begins. GVN may
   2686   // split critical edge, and hence may invalidate the RPO/DT iterator.
   2687   //
   2688   std::vector<BasicBlock *> BBVect;
   2689   BBVect.reserve(256);
   2690   // Needed for value numbering with phi construction to work.
   2691   ReversePostOrderTraversal<Function *> RPOT(&F);
   2692   for (ReversePostOrderTraversal<Function *>::rpo_iterator RI = RPOT.begin(),
   2693                                                            RE = RPOT.end();
   2694        RI != RE; ++RI)
   2695     BBVect.push_back(*RI);
   2696 
   2697   for (std::vector<BasicBlock *>::iterator I = BBVect.begin(), E = BBVect.end();
   2698        I != E; I++)
   2699     Changed |= processBlock(*I);
   2700 
   2701   return Changed;
   2702 }
   2703 
   2704 void GVN::cleanupGlobalSets() {
   2705   VN.clear();
   2706   LeaderTable.clear();
   2707   TableAllocator.Reset();
   2708 }
   2709 
   2710 /// Verify that the specified instruction does not occur in our
   2711 /// internal data structures.
   2712 void GVN::verifyRemoved(const Instruction *Inst) const {
   2713   VN.verifyRemoved(Inst);
   2714 
   2715   // Walk through the value number scope to make sure the instruction isn't
   2716   // ferreted away in it.
   2717   for (DenseMap<uint32_t, LeaderTableEntry>::const_iterator
   2718        I = LeaderTable.begin(), E = LeaderTable.end(); I != E; ++I) {
   2719     const LeaderTableEntry *Node = &I->second;
   2720     assert(Node->Val != Inst && "Inst still in value numbering scope!");
   2721 
   2722     while (Node->Next) {
   2723       Node = Node->Next;
   2724       assert(Node->Val != Inst && "Inst still in value numbering scope!");
   2725     }
   2726   }
   2727 }
   2728 
   2729 /// BB is declared dead, which implied other blocks become dead as well. This
   2730 /// function is to add all these blocks to "DeadBlocks". For the dead blocks'
   2731 /// live successors, update their phi nodes by replacing the operands
   2732 /// corresponding to dead blocks with UndefVal.
   2733 void GVN::addDeadBlock(BasicBlock *BB) {
   2734   SmallVector<BasicBlock *, 4> NewDead;
   2735   SmallSetVector<BasicBlock *, 4> DF;
   2736 
   2737   NewDead.push_back(BB);
   2738   while (!NewDead.empty()) {
   2739     BasicBlock *D = NewDead.pop_back_val();
   2740     if (DeadBlocks.count(D))
   2741       continue;
   2742 
   2743     // All blocks dominated by D are dead.
   2744     SmallVector<BasicBlock *, 8> Dom;
   2745     DT->getDescendants(D, Dom);
   2746     DeadBlocks.insert(Dom.begin(), Dom.end());
   2747 
   2748     // Figure out the dominance-frontier(D).
   2749     for (SmallVectorImpl<BasicBlock *>::iterator I = Dom.begin(),
   2750            E = Dom.end(); I != E; I++) {
   2751       BasicBlock *B = *I;
   2752       for (succ_iterator SI = succ_begin(B), SE = succ_end(B); SI != SE; SI++) {
   2753         BasicBlock *S = *SI;
   2754         if (DeadBlocks.count(S))
   2755           continue;
   2756 
   2757         bool AllPredDead = true;
   2758         for (pred_iterator PI = pred_begin(S), PE = pred_end(S); PI != PE; PI++)
   2759           if (!DeadBlocks.count(*PI)) {
   2760             AllPredDead = false;
   2761             break;
   2762           }
   2763 
   2764         if (!AllPredDead) {
   2765           // S could be proved dead later on. That is why we don't update phi
   2766           // operands at this moment.
   2767           DF.insert(S);
   2768         } else {
   2769           // While S is not dominated by D, it is dead by now. This could take
   2770           // place if S already have a dead predecessor before D is declared
   2771           // dead.
   2772           NewDead.push_back(S);
   2773         }
   2774       }
   2775     }
   2776   }
   2777 
   2778   // For the dead blocks' live successors, update their phi nodes by replacing
   2779   // the operands corresponding to dead blocks with UndefVal.
   2780   for(SmallSetVector<BasicBlock *, 4>::iterator I = DF.begin(), E = DF.end();
   2781         I != E; I++) {
   2782     BasicBlock *B = *I;
   2783     if (DeadBlocks.count(B))
   2784       continue;
   2785 
   2786     SmallVector<BasicBlock *, 4> Preds(pred_begin(B), pred_end(B));
   2787     for (SmallVectorImpl<BasicBlock *>::iterator PI = Preds.begin(),
   2788            PE = Preds.end(); PI != PE; PI++) {
   2789       BasicBlock *P = *PI;
   2790 
   2791       if (!DeadBlocks.count(P))
   2792         continue;
   2793 
   2794       if (isCriticalEdge(P->getTerminator(), GetSuccessorNumber(P, B))) {
   2795         if (BasicBlock *S = splitCriticalEdges(P, B))
   2796           DeadBlocks.insert(P = S);
   2797       }
   2798 
   2799       for (BasicBlock::iterator II = B->begin(); isa<PHINode>(II); ++II) {
   2800         PHINode &Phi = cast<PHINode>(*II);
   2801         Phi.setIncomingValue(Phi.getBasicBlockIndex(P),
   2802                              UndefValue::get(Phi.getType()));
   2803       }
   2804     }
   2805   }
   2806 }
   2807 
   2808 // If the given branch is recognized as a foldable branch (i.e. conditional
   2809 // branch with constant condition), it will perform following analyses and
   2810 // transformation.
   2811 //  1) If the dead out-coming edge is a critical-edge, split it. Let
   2812 //     R be the target of the dead out-coming edge.
   2813 //  1) Identify the set of dead blocks implied by the branch's dead outcoming
   2814 //     edge. The result of this step will be {X| X is dominated by R}
   2815 //  2) Identify those blocks which haves at least one dead prodecessor. The
   2816 //     result of this step will be dominance-frontier(R).
   2817 //  3) Update the PHIs in DF(R) by replacing the operands corresponding to
   2818 //     dead blocks with "UndefVal" in an hope these PHIs will optimized away.
   2819 //
   2820 // Return true iff *NEW* dead code are found.
   2821 bool GVN::processFoldableCondBr(BranchInst *BI) {
   2822   if (!BI || BI->isUnconditional())
   2823     return false;
   2824 
   2825   ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition());
   2826   if (!Cond)
   2827     return false;
   2828 
   2829   BasicBlock *DeadRoot = Cond->getZExtValue() ?
   2830                          BI->getSuccessor(1) : BI->getSuccessor(0);
   2831   if (DeadBlocks.count(DeadRoot))
   2832     return false;
   2833 
   2834   if (!DeadRoot->getSinglePredecessor())
   2835     DeadRoot = splitCriticalEdges(BI->getParent(), DeadRoot);
   2836 
   2837   addDeadBlock(DeadRoot);
   2838   return true;
   2839 }
   2840 
   2841 // performPRE() will trigger assert if it comes across an instruction without
   2842 // associated val-num. As it normally has far more live instructions than dead
   2843 // instructions, it makes more sense just to "fabricate" a val-number for the
   2844 // dead code than checking if instruction involved is dead or not.
   2845 void GVN::assignValNumForDeadCode() {
   2846   for (SetVector<BasicBlock *>::iterator I = DeadBlocks.begin(),
   2847         E = DeadBlocks.end(); I != E; I++) {
   2848     BasicBlock *BB = *I;
   2849     for (BasicBlock::iterator II = BB->begin(), EE = BB->end();
   2850           II != EE; II++) {
   2851       Instruction *Inst = &*II;
   2852       unsigned ValNum = VN.lookup_or_add(Inst);
   2853       addToLeaderTable(ValNum, Inst, BB);
   2854     }
   2855   }
   2856 }
   2857