Home | History | Annotate | Download | only in Scalar
      1 //===- Reassociate.cpp - Reassociate binary expressions -------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This pass reassociates commutative expressions in an order that is designed
     11 // to promote better constant propagation, GCSE, LICM, PRE, etc.
     12 //
     13 // For example: 4 + (x + 5) -> x + (4 + 5)
     14 //
     15 // In the implementation of this algorithm, constants are assigned rank = 0,
     16 // function arguments are rank = 1, and other values are assigned ranks
     17 // corresponding to the reverse post order traversal of current function
     18 // (starting at 2), which effectively gives values in deep loops higher rank
     19 // than values not in loops.
     20 //
     21 //===----------------------------------------------------------------------===//
     22 
     23 #include "llvm/Transforms/Scalar.h"
     24 #include "llvm/ADT/DenseMap.h"
     25 #include "llvm/ADT/PostOrderIterator.h"
     26 #include "llvm/ADT/STLExtras.h"
     27 #include "llvm/ADT/SetVector.h"
     28 #include "llvm/ADT/Statistic.h"
     29 #include "llvm/IR/CFG.h"
     30 #include "llvm/IR/Constants.h"
     31 #include "llvm/IR/DerivedTypes.h"
     32 #include "llvm/IR/Function.h"
     33 #include "llvm/IR/IRBuilder.h"
     34 #include "llvm/IR/Instructions.h"
     35 #include "llvm/IR/IntrinsicInst.h"
     36 #include "llvm/IR/ValueHandle.h"
     37 #include "llvm/Pass.h"
     38 #include "llvm/Support/Debug.h"
     39 #include "llvm/Support/raw_ostream.h"
     40 #include "llvm/Transforms/Utils/Local.h"
     41 #include <algorithm>
     42 using namespace llvm;
     43 
     44 #define DEBUG_TYPE "reassociate"
     45 
     46 STATISTIC(NumChanged, "Number of insts reassociated");
     47 STATISTIC(NumAnnihil, "Number of expr tree annihilated");
     48 STATISTIC(NumFactor , "Number of multiplies factored");
     49 
     50 namespace {
     51   struct ValueEntry {
     52     unsigned Rank;
     53     Value *Op;
     54     ValueEntry(unsigned R, Value *O) : Rank(R), Op(O) {}
     55   };
     56   inline bool operator<(const ValueEntry &LHS, const ValueEntry &RHS) {
     57     return LHS.Rank > RHS.Rank;   // Sort so that highest rank goes to start.
     58   }
     59 }
     60 
     61 #ifndef NDEBUG
     62 /// PrintOps - Print out the expression identified in the Ops list.
     63 ///
     64 static void PrintOps(Instruction *I, const SmallVectorImpl<ValueEntry> &Ops) {
     65   Module *M = I->getParent()->getParent()->getParent();
     66   dbgs() << Instruction::getOpcodeName(I->getOpcode()) << " "
     67        << *Ops[0].Op->getType() << '\t';
     68   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
     69     dbgs() << "[ ";
     70     Ops[i].Op->printAsOperand(dbgs(), false, M);
     71     dbgs() << ", #" << Ops[i].Rank << "] ";
     72   }
     73 }
     74 #endif
     75 
     76 namespace {
     77   /// \brief Utility class representing a base and exponent pair which form one
     78   /// factor of some product.
     79   struct Factor {
     80     Value *Base;
     81     unsigned Power;
     82 
     83     Factor(Value *Base, unsigned Power) : Base(Base), Power(Power) {}
     84 
     85     /// \brief Sort factors by their Base.
     86     struct BaseSorter {
     87       bool operator()(const Factor &LHS, const Factor &RHS) {
     88         return LHS.Base < RHS.Base;
     89       }
     90     };
     91 
     92     /// \brief Compare factors for equal bases.
     93     struct BaseEqual {
     94       bool operator()(const Factor &LHS, const Factor &RHS) {
     95         return LHS.Base == RHS.Base;
     96       }
     97     };
     98 
     99     /// \brief Sort factors in descending order by their power.
    100     struct PowerDescendingSorter {
    101       bool operator()(const Factor &LHS, const Factor &RHS) {
    102         return LHS.Power > RHS.Power;
    103       }
    104     };
    105 
    106     /// \brief Compare factors for equal powers.
    107     struct PowerEqual {
    108       bool operator()(const Factor &LHS, const Factor &RHS) {
    109         return LHS.Power == RHS.Power;
    110       }
    111     };
    112   };
    113 
    114   /// Utility class representing a non-constant Xor-operand. We classify
    115   /// non-constant Xor-Operands into two categories:
    116   ///  C1) The operand is in the form "X & C", where C is a constant and C != ~0
    117   ///  C2)
    118   ///    C2.1) The operand is in the form of "X | C", where C is a non-zero
    119   ///          constant.
    120   ///    C2.2) Any operand E which doesn't fall into C1 and C2.1, we view this
    121   ///          operand as "E | 0"
    122   class XorOpnd {
    123   public:
    124     XorOpnd(Value *V);
    125 
    126     bool isInvalid() const { return SymbolicPart == nullptr; }
    127     bool isOrExpr() const { return isOr; }
    128     Value *getValue() const { return OrigVal; }
    129     Value *getSymbolicPart() const { return SymbolicPart; }
    130     unsigned getSymbolicRank() const { return SymbolicRank; }
    131     const APInt &getConstPart() const { return ConstPart; }
    132 
    133     void Invalidate() { SymbolicPart = OrigVal = nullptr; }
    134     void setSymbolicRank(unsigned R) { SymbolicRank = R; }
    135 
    136     // Sort the XorOpnd-Pointer in ascending order of symbolic-value-rank.
    137     // The purpose is twofold:
    138     // 1) Cluster together the operands sharing the same symbolic-value.
    139     // 2) Operand having smaller symbolic-value-rank is permuted earlier, which
    140     //   could potentially shorten crital path, and expose more loop-invariants.
    141     //   Note that values' rank are basically defined in RPO order (FIXME).
    142     //   So, if Rank(X) < Rank(Y) < Rank(Z), it means X is defined earlier
    143     //   than Y which is defined earlier than Z. Permute "x | 1", "Y & 2",
    144     //   "z" in the order of X-Y-Z is better than any other orders.
    145     struct PtrSortFunctor {
    146       bool operator()(XorOpnd * const &LHS, XorOpnd * const &RHS) {
    147         return LHS->getSymbolicRank() < RHS->getSymbolicRank();
    148       }
    149     };
    150   private:
    151     Value *OrigVal;
    152     Value *SymbolicPart;
    153     APInt ConstPart;
    154     unsigned SymbolicRank;
    155     bool isOr;
    156   };
    157 }
    158 
    159 namespace {
    160   class Reassociate : public FunctionPass {
    161     DenseMap<BasicBlock*, unsigned> RankMap;
    162     DenseMap<AssertingVH<Value>, unsigned> ValueRankMap;
    163     SetVector<AssertingVH<Instruction> > RedoInsts;
    164     bool MadeChange;
    165   public:
    166     static char ID; // Pass identification, replacement for typeid
    167     Reassociate() : FunctionPass(ID) {
    168       initializeReassociatePass(*PassRegistry::getPassRegistry());
    169     }
    170 
    171     bool runOnFunction(Function &F) override;
    172 
    173     void getAnalysisUsage(AnalysisUsage &AU) const override {
    174       AU.setPreservesCFG();
    175     }
    176   private:
    177     void BuildRankMap(Function &F);
    178     unsigned getRank(Value *V);
    179     void canonicalizeOperands(Instruction *I);
    180     void ReassociateExpression(BinaryOperator *I);
    181     void RewriteExprTree(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops);
    182     Value *OptimizeExpression(BinaryOperator *I,
    183                               SmallVectorImpl<ValueEntry> &Ops);
    184     Value *OptimizeAdd(Instruction *I, SmallVectorImpl<ValueEntry> &Ops);
    185     Value *OptimizeXor(Instruction *I, SmallVectorImpl<ValueEntry> &Ops);
    186     bool CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, APInt &ConstOpnd,
    187                         Value *&Res);
    188     bool CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, XorOpnd *Opnd2,
    189                         APInt &ConstOpnd, Value *&Res);
    190     bool collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
    191                                 SmallVectorImpl<Factor> &Factors);
    192     Value *buildMinimalMultiplyDAG(IRBuilder<> &Builder,
    193                                    SmallVectorImpl<Factor> &Factors);
    194     Value *OptimizeMul(BinaryOperator *I, SmallVectorImpl<ValueEntry> &Ops);
    195     Value *RemoveFactorFromExpression(Value *V, Value *Factor);
    196     void EraseInst(Instruction *I);
    197     void OptimizeInst(Instruction *I);
    198     Instruction *canonicalizeNegConstExpr(Instruction *I);
    199   };
    200 }
    201 
    202 XorOpnd::XorOpnd(Value *V) {
    203   assert(!isa<ConstantInt>(V) && "No ConstantInt");
    204   OrigVal = V;
    205   Instruction *I = dyn_cast<Instruction>(V);
    206   SymbolicRank = 0;
    207 
    208   if (I && (I->getOpcode() == Instruction::Or ||
    209             I->getOpcode() == Instruction::And)) {
    210     Value *V0 = I->getOperand(0);
    211     Value *V1 = I->getOperand(1);
    212     if (isa<ConstantInt>(V0))
    213       std::swap(V0, V1);
    214 
    215     if (ConstantInt *C = dyn_cast<ConstantInt>(V1)) {
    216       ConstPart = C->getValue();
    217       SymbolicPart = V0;
    218       isOr = (I->getOpcode() == Instruction::Or);
    219       return;
    220     }
    221   }
    222 
    223   // view the operand as "V | 0"
    224   SymbolicPart = V;
    225   ConstPart = APInt::getNullValue(V->getType()->getIntegerBitWidth());
    226   isOr = true;
    227 }
    228 
    229 char Reassociate::ID = 0;
    230 INITIALIZE_PASS(Reassociate, "reassociate",
    231                 "Reassociate expressions", false, false)
    232 
    233 // Public interface to the Reassociate pass
    234 FunctionPass *llvm::createReassociatePass() { return new Reassociate(); }
    235 
    236 /// isReassociableOp - Return true if V is an instruction of the specified
    237 /// opcode and if it only has one use.
    238 static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
    239   if (V->hasOneUse() && isa<Instruction>(V) &&
    240       cast<Instruction>(V)->getOpcode() == Opcode &&
    241       (!isa<FPMathOperator>(V) ||
    242        cast<Instruction>(V)->hasUnsafeAlgebra()))
    243     return cast<BinaryOperator>(V);
    244   return nullptr;
    245 }
    246 
    247 static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode1,
    248                                         unsigned Opcode2) {
    249   if (V->hasOneUse() && isa<Instruction>(V) &&
    250       (cast<Instruction>(V)->getOpcode() == Opcode1 ||
    251        cast<Instruction>(V)->getOpcode() == Opcode2) &&
    252       (!isa<FPMathOperator>(V) ||
    253        cast<Instruction>(V)->hasUnsafeAlgebra()))
    254     return cast<BinaryOperator>(V);
    255   return nullptr;
    256 }
    257 
    258 static bool isUnmovableInstruction(Instruction *I) {
    259   switch (I->getOpcode()) {
    260   case Instruction::PHI:
    261   case Instruction::LandingPad:
    262   case Instruction::Alloca:
    263   case Instruction::Load:
    264   case Instruction::Invoke:
    265   case Instruction::UDiv:
    266   case Instruction::SDiv:
    267   case Instruction::FDiv:
    268   case Instruction::URem:
    269   case Instruction::SRem:
    270   case Instruction::FRem:
    271     return true;
    272   case Instruction::Call:
    273     return !isa<DbgInfoIntrinsic>(I);
    274   default:
    275     return false;
    276   }
    277 }
    278 
    279 void Reassociate::BuildRankMap(Function &F) {
    280   unsigned i = 2;
    281 
    282   // Assign distinct ranks to function arguments.
    283   for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) {
    284     ValueRankMap[&*I] = ++i;
    285     DEBUG(dbgs() << "Calculated Rank[" << I->getName() << "] = " << i << "\n");
    286   }
    287 
    288   ReversePostOrderTraversal<Function*> RPOT(&F);
    289   for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(),
    290          E = RPOT.end(); I != E; ++I) {
    291     BasicBlock *BB = *I;
    292     unsigned BBRank = RankMap[BB] = ++i << 16;
    293 
    294     // Walk the basic block, adding precomputed ranks for any instructions that
    295     // we cannot move.  This ensures that the ranks for these instructions are
    296     // all different in the block.
    297     for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
    298       if (isUnmovableInstruction(I))
    299         ValueRankMap[&*I] = ++BBRank;
    300   }
    301 }
    302 
    303 unsigned Reassociate::getRank(Value *V) {
    304   Instruction *I = dyn_cast<Instruction>(V);
    305   if (!I) {
    306     if (isa<Argument>(V)) return ValueRankMap[V];   // Function argument.
    307     return 0;  // Otherwise it's a global or constant, rank 0.
    308   }
    309 
    310   if (unsigned Rank = ValueRankMap[I])
    311     return Rank;    // Rank already known?
    312 
    313   // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
    314   // we can reassociate expressions for code motion!  Since we do not recurse
    315   // for PHI nodes, we cannot have infinite recursion here, because there
    316   // cannot be loops in the value graph that do not go through PHI nodes.
    317   unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
    318   for (unsigned i = 0, e = I->getNumOperands();
    319        i != e && Rank != MaxRank; ++i)
    320     Rank = std::max(Rank, getRank(I->getOperand(i)));
    321 
    322   // If this is a not or neg instruction, do not count it for rank.  This
    323   // assures us that X and ~X will have the same rank.
    324   if  (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I) &&
    325        !BinaryOperator::isFNeg(I))
    326     ++Rank;
    327 
    328   DEBUG(dbgs() << "Calculated Rank[" << V->getName() << "] = " << Rank << "\n");
    329 
    330   return ValueRankMap[I] = Rank;
    331 }
    332 
    333 // Canonicalize constants to RHS.  Otherwise, sort the operands by rank.
    334 void Reassociate::canonicalizeOperands(Instruction *I) {
    335   assert(isa<BinaryOperator>(I) && "Expected binary operator.");
    336   assert(I->isCommutative() && "Expected commutative operator.");
    337 
    338   Value *LHS = I->getOperand(0);
    339   Value *RHS = I->getOperand(1);
    340   unsigned LHSRank = getRank(LHS);
    341   unsigned RHSRank = getRank(RHS);
    342 
    343   if (isa<Constant>(RHS))
    344     return;
    345 
    346   if (isa<Constant>(LHS) || RHSRank < LHSRank)
    347     cast<BinaryOperator>(I)->swapOperands();
    348 }
    349 
    350 static BinaryOperator *CreateAdd(Value *S1, Value *S2, const Twine &Name,
    351                                  Instruction *InsertBefore, Value *FlagsOp) {
    352   if (S1->getType()->isIntOrIntVectorTy())
    353     return BinaryOperator::CreateAdd(S1, S2, Name, InsertBefore);
    354   else {
    355     BinaryOperator *Res =
    356         BinaryOperator::CreateFAdd(S1, S2, Name, InsertBefore);
    357     Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
    358     return Res;
    359   }
    360 }
    361 
    362 static BinaryOperator *CreateMul(Value *S1, Value *S2, const Twine &Name,
    363                                  Instruction *InsertBefore, Value *FlagsOp) {
    364   if (S1->getType()->isIntOrIntVectorTy())
    365     return BinaryOperator::CreateMul(S1, S2, Name, InsertBefore);
    366   else {
    367     BinaryOperator *Res =
    368       BinaryOperator::CreateFMul(S1, S2, Name, InsertBefore);
    369     Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
    370     return Res;
    371   }
    372 }
    373 
    374 static BinaryOperator *CreateNeg(Value *S1, const Twine &Name,
    375                                  Instruction *InsertBefore, Value *FlagsOp) {
    376   if (S1->getType()->isIntOrIntVectorTy())
    377     return BinaryOperator::CreateNeg(S1, Name, InsertBefore);
    378   else {
    379     BinaryOperator *Res = BinaryOperator::CreateFNeg(S1, Name, InsertBefore);
    380     Res->setFastMathFlags(cast<FPMathOperator>(FlagsOp)->getFastMathFlags());
    381     return Res;
    382   }
    383 }
    384 
    385 /// LowerNegateToMultiply - Replace 0-X with X*-1.
    386 ///
    387 static BinaryOperator *LowerNegateToMultiply(Instruction *Neg) {
    388   Type *Ty = Neg->getType();
    389   Constant *NegOne = Ty->isIntOrIntVectorTy() ?
    390     ConstantInt::getAllOnesValue(Ty) : ConstantFP::get(Ty, -1.0);
    391 
    392   BinaryOperator *Res = CreateMul(Neg->getOperand(1), NegOne, "", Neg, Neg);
    393   Neg->setOperand(1, Constant::getNullValue(Ty)); // Drop use of op.
    394   Res->takeName(Neg);
    395   Neg->replaceAllUsesWith(Res);
    396   Res->setDebugLoc(Neg->getDebugLoc());
    397   return Res;
    398 }
    399 
    400 /// CarmichaelShift - Returns k such that lambda(2^Bitwidth) = 2^k, where lambda
    401 /// is the Carmichael function. This means that x^(2^k) === 1 mod 2^Bitwidth for
    402 /// every odd x, i.e. x^(2^k) = 1 for every odd x in Bitwidth-bit arithmetic.
    403 /// Note that 0 <= k < Bitwidth, and if Bitwidth > 3 then x^(2^k) = 0 for every
    404 /// even x in Bitwidth-bit arithmetic.
    405 static unsigned CarmichaelShift(unsigned Bitwidth) {
    406   if (Bitwidth < 3)
    407     return Bitwidth - 1;
    408   return Bitwidth - 2;
    409 }
    410 
    411 /// IncorporateWeight - Add the extra weight 'RHS' to the existing weight 'LHS',
    412 /// reducing the combined weight using any special properties of the operation.
    413 /// The existing weight LHS represents the computation X op X op ... op X where
    414 /// X occurs LHS times.  The combined weight represents  X op X op ... op X with
    415 /// X occurring LHS + RHS times.  If op is "Xor" for example then the combined
    416 /// operation is equivalent to X if LHS + RHS is odd, or 0 if LHS + RHS is even;
    417 /// the routine returns 1 in LHS in the first case, and 0 in LHS in the second.
    418 static void IncorporateWeight(APInt &LHS, const APInt &RHS, unsigned Opcode) {
    419   // If we were working with infinite precision arithmetic then the combined
    420   // weight would be LHS + RHS.  But we are using finite precision arithmetic,
    421   // and the APInt sum LHS + RHS may not be correct if it wraps (it is correct
    422   // for nilpotent operations and addition, but not for idempotent operations
    423   // and multiplication), so it is important to correctly reduce the combined
    424   // weight back into range if wrapping would be wrong.
    425 
    426   // If RHS is zero then the weight didn't change.
    427   if (RHS.isMinValue())
    428     return;
    429   // If LHS is zero then the combined weight is RHS.
    430   if (LHS.isMinValue()) {
    431     LHS = RHS;
    432     return;
    433   }
    434   // From this point on we know that neither LHS nor RHS is zero.
    435 
    436   if (Instruction::isIdempotent(Opcode)) {
    437     // Idempotent means X op X === X, so any non-zero weight is equivalent to a
    438     // weight of 1.  Keeping weights at zero or one also means that wrapping is
    439     // not a problem.
    440     assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
    441     return; // Return a weight of 1.
    442   }
    443   if (Instruction::isNilpotent(Opcode)) {
    444     // Nilpotent means X op X === 0, so reduce weights modulo 2.
    445     assert(LHS == 1 && RHS == 1 && "Weights not reduced!");
    446     LHS = 0; // 1 + 1 === 0 modulo 2.
    447     return;
    448   }
    449   if (Opcode == Instruction::Add || Opcode == Instruction::FAdd) {
    450     // TODO: Reduce the weight by exploiting nsw/nuw?
    451     LHS += RHS;
    452     return;
    453   }
    454 
    455   assert((Opcode == Instruction::Mul || Opcode == Instruction::FMul) &&
    456          "Unknown associative operation!");
    457   unsigned Bitwidth = LHS.getBitWidth();
    458   // If CM is the Carmichael number then a weight W satisfying W >= CM+Bitwidth
    459   // can be replaced with W-CM.  That's because x^W=x^(W-CM) for every Bitwidth
    460   // bit number x, since either x is odd in which case x^CM = 1, or x is even in
    461   // which case both x^W and x^(W - CM) are zero.  By subtracting off multiples
    462   // of CM like this weights can always be reduced to the range [0, CM+Bitwidth)
    463   // which by a happy accident means that they can always be represented using
    464   // Bitwidth bits.
    465   // TODO: Reduce the weight by exploiting nsw/nuw?  (Could do much better than
    466   // the Carmichael number).
    467   if (Bitwidth > 3) {
    468     /// CM - The value of Carmichael's lambda function.
    469     APInt CM = APInt::getOneBitSet(Bitwidth, CarmichaelShift(Bitwidth));
    470     // Any weight W >= Threshold can be replaced with W - CM.
    471     APInt Threshold = CM + Bitwidth;
    472     assert(LHS.ult(Threshold) && RHS.ult(Threshold) && "Weights not reduced!");
    473     // For Bitwidth 4 or more the following sum does not overflow.
    474     LHS += RHS;
    475     while (LHS.uge(Threshold))
    476       LHS -= CM;
    477   } else {
    478     // To avoid problems with overflow do everything the same as above but using
    479     // a larger type.
    480     unsigned CM = 1U << CarmichaelShift(Bitwidth);
    481     unsigned Threshold = CM + Bitwidth;
    482     assert(LHS.getZExtValue() < Threshold && RHS.getZExtValue() < Threshold &&
    483            "Weights not reduced!");
    484     unsigned Total = LHS.getZExtValue() + RHS.getZExtValue();
    485     while (Total >= Threshold)
    486       Total -= CM;
    487     LHS = Total;
    488   }
    489 }
    490 
    491 typedef std::pair<Value*, APInt> RepeatedValue;
    492 
    493 /// LinearizeExprTree - Given an associative binary expression, return the leaf
    494 /// nodes in Ops along with their weights (how many times the leaf occurs).  The
    495 /// original expression is the same as
    496 ///   (Ops[0].first op Ops[0].first op ... Ops[0].first)  <- Ops[0].second times
    497 /// op
    498 ///   (Ops[1].first op Ops[1].first op ... Ops[1].first)  <- Ops[1].second times
    499 /// op
    500 ///   ...
    501 /// op
    502 ///   (Ops[N].first op Ops[N].first op ... Ops[N].first)  <- Ops[N].second times
    503 ///
    504 /// Note that the values Ops[0].first, ..., Ops[N].first are all distinct.
    505 ///
    506 /// This routine may modify the function, in which case it returns 'true'.  The
    507 /// changes it makes may well be destructive, changing the value computed by 'I'
    508 /// to something completely different.  Thus if the routine returns 'true' then
    509 /// you MUST either replace I with a new expression computed from the Ops array,
    510 /// or use RewriteExprTree to put the values back in.
    511 ///
    512 /// A leaf node is either not a binary operation of the same kind as the root
    513 /// node 'I' (i.e. is not a binary operator at all, or is, but with a different
    514 /// opcode), or is the same kind of binary operator but has a use which either
    515 /// does not belong to the expression, or does belong to the expression but is
    516 /// a leaf node.  Every leaf node has at least one use that is a non-leaf node
    517 /// of the expression, while for non-leaf nodes (except for the root 'I') every
    518 /// use is a non-leaf node of the expression.
    519 ///
    520 /// For example:
    521 ///           expression graph        node names
    522 ///
    523 ///                     +        |        I
    524 ///                    / \       |
    525 ///                   +   +      |      A,  B
    526 ///                  / \ / \     |
    527 ///                 *   +   *    |    C,  D,  E
    528 ///                / \ / \ / \   |
    529 ///                   +   *      |      F,  G
    530 ///
    531 /// The leaf nodes are C, E, F and G.  The Ops array will contain (maybe not in
    532 /// that order) (C, 1), (E, 1), (F, 2), (G, 2).
    533 ///
    534 /// The expression is maximal: if some instruction is a binary operator of the
    535 /// same kind as 'I', and all of its uses are non-leaf nodes of the expression,
    536 /// then the instruction also belongs to the expression, is not a leaf node of
    537 /// it, and its operands also belong to the expression (but may be leaf nodes).
    538 ///
    539 /// NOTE: This routine will set operands of non-leaf non-root nodes to undef in
    540 /// order to ensure that every non-root node in the expression has *exactly one*
    541 /// use by a non-leaf node of the expression.  This destruction means that the
    542 /// caller MUST either replace 'I' with a new expression or use something like
    543 /// RewriteExprTree to put the values back in if the routine indicates that it
    544 /// made a change by returning 'true'.
    545 ///
    546 /// In the above example either the right operand of A or the left operand of B
    547 /// will be replaced by undef.  If it is B's operand then this gives:
    548 ///
    549 ///                     +        |        I
    550 ///                    / \       |
    551 ///                   +   +      |      A,  B - operand of B replaced with undef
    552 ///                  / \   \     |
    553 ///                 *   +   *    |    C,  D,  E
    554 ///                / \ / \ / \   |
    555 ///                   +   *      |      F,  G
    556 ///
    557 /// Note that such undef operands can only be reached by passing through 'I'.
    558 /// For example, if you visit operands recursively starting from a leaf node
    559 /// then you will never see such an undef operand unless you get back to 'I',
    560 /// which requires passing through a phi node.
    561 ///
    562 /// Note that this routine may also mutate binary operators of the wrong type
    563 /// that have all uses inside the expression (i.e. only used by non-leaf nodes
    564 /// of the expression) if it can turn them into binary operators of the right
    565 /// type and thus make the expression bigger.
    566 
    567 static bool LinearizeExprTree(BinaryOperator *I,
    568                               SmallVectorImpl<RepeatedValue> &Ops) {
    569   DEBUG(dbgs() << "LINEARIZE: " << *I << '\n');
    570   unsigned Bitwidth = I->getType()->getScalarType()->getPrimitiveSizeInBits();
    571   unsigned Opcode = I->getOpcode();
    572   assert(I->isAssociative() && I->isCommutative() &&
    573          "Expected an associative and commutative operation!");
    574 
    575   // Visit all operands of the expression, keeping track of their weight (the
    576   // number of paths from the expression root to the operand, or if you like
    577   // the number of times that operand occurs in the linearized expression).
    578   // For example, if I = X + A, where X = A + B, then I, X and B have weight 1
    579   // while A has weight two.
    580 
    581   // Worklist of non-leaf nodes (their operands are in the expression too) along
    582   // with their weights, representing a certain number of paths to the operator.
    583   // If an operator occurs in the worklist multiple times then we found multiple
    584   // ways to get to it.
    585   SmallVector<std::pair<BinaryOperator*, APInt>, 8> Worklist; // (Op, Weight)
    586   Worklist.push_back(std::make_pair(I, APInt(Bitwidth, 1)));
    587   bool Changed = false;
    588 
    589   // Leaves of the expression are values that either aren't the right kind of
    590   // operation (eg: a constant, or a multiply in an add tree), or are, but have
    591   // some uses that are not inside the expression.  For example, in I = X + X,
    592   // X = A + B, the value X has two uses (by I) that are in the expression.  If
    593   // X has any other uses, for example in a return instruction, then we consider
    594   // X to be a leaf, and won't analyze it further.  When we first visit a value,
    595   // if it has more than one use then at first we conservatively consider it to
    596   // be a leaf.  Later, as the expression is explored, we may discover some more
    597   // uses of the value from inside the expression.  If all uses turn out to be
    598   // from within the expression (and the value is a binary operator of the right
    599   // kind) then the value is no longer considered to be a leaf, and its operands
    600   // are explored.
    601 
    602   // Leaves - Keeps track of the set of putative leaves as well as the number of
    603   // paths to each leaf seen so far.
    604   typedef DenseMap<Value*, APInt> LeafMap;
    605   LeafMap Leaves; // Leaf -> Total weight so far.
    606   SmallVector<Value*, 8> LeafOrder; // Ensure deterministic leaf output order.
    607 
    608 #ifndef NDEBUG
    609   SmallPtrSet<Value*, 8> Visited; // For sanity checking the iteration scheme.
    610 #endif
    611   while (!Worklist.empty()) {
    612     std::pair<BinaryOperator*, APInt> P = Worklist.pop_back_val();
    613     I = P.first; // We examine the operands of this binary operator.
    614 
    615     for (unsigned OpIdx = 0; OpIdx < 2; ++OpIdx) { // Visit operands.
    616       Value *Op = I->getOperand(OpIdx);
    617       APInt Weight = P.second; // Number of paths to this operand.
    618       DEBUG(dbgs() << "OPERAND: " << *Op << " (" << Weight << ")\n");
    619       assert(!Op->use_empty() && "No uses, so how did we get to it?!");
    620 
    621       // If this is a binary operation of the right kind with only one use then
    622       // add its operands to the expression.
    623       if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
    624         assert(Visited.insert(Op).second && "Not first visit!");
    625         DEBUG(dbgs() << "DIRECT ADD: " << *Op << " (" << Weight << ")\n");
    626         Worklist.push_back(std::make_pair(BO, Weight));
    627         continue;
    628       }
    629 
    630       // Appears to be a leaf.  Is the operand already in the set of leaves?
    631       LeafMap::iterator It = Leaves.find(Op);
    632       if (It == Leaves.end()) {
    633         // Not in the leaf map.  Must be the first time we saw this operand.
    634         assert(Visited.insert(Op).second && "Not first visit!");
    635         if (!Op->hasOneUse()) {
    636           // This value has uses not accounted for by the expression, so it is
    637           // not safe to modify.  Mark it as being a leaf.
    638           DEBUG(dbgs() << "ADD USES LEAF: " << *Op << " (" << Weight << ")\n");
    639           LeafOrder.push_back(Op);
    640           Leaves[Op] = Weight;
    641           continue;
    642         }
    643         // No uses outside the expression, try morphing it.
    644       } else if (It != Leaves.end()) {
    645         // Already in the leaf map.
    646         assert(Visited.count(Op) && "In leaf map but not visited!");
    647 
    648         // Update the number of paths to the leaf.
    649         IncorporateWeight(It->second, Weight, Opcode);
    650 
    651 #if 0   // TODO: Re-enable once PR13021 is fixed.
    652         // The leaf already has one use from inside the expression.  As we want
    653         // exactly one such use, drop this new use of the leaf.
    654         assert(!Op->hasOneUse() && "Only one use, but we got here twice!");
    655         I->setOperand(OpIdx, UndefValue::get(I->getType()));
    656         Changed = true;
    657 
    658         // If the leaf is a binary operation of the right kind and we now see
    659         // that its multiple original uses were in fact all by nodes belonging
    660         // to the expression, then no longer consider it to be a leaf and add
    661         // its operands to the expression.
    662         if (BinaryOperator *BO = isReassociableOp(Op, Opcode)) {
    663           DEBUG(dbgs() << "UNLEAF: " << *Op << " (" << It->second << ")\n");
    664           Worklist.push_back(std::make_pair(BO, It->second));
    665           Leaves.erase(It);
    666           continue;
    667         }
    668 #endif
    669 
    670         // If we still have uses that are not accounted for by the expression
    671         // then it is not safe to modify the value.
    672         if (!Op->hasOneUse())
    673           continue;
    674 
    675         // No uses outside the expression, try morphing it.
    676         Weight = It->second;
    677         Leaves.erase(It); // Since the value may be morphed below.
    678       }
    679 
    680       // At this point we have a value which, first of all, is not a binary
    681       // expression of the right kind, and secondly, is only used inside the
    682       // expression.  This means that it can safely be modified.  See if we
    683       // can usefully morph it into an expression of the right kind.
    684       assert((!isa<Instruction>(Op) ||
    685               cast<Instruction>(Op)->getOpcode() != Opcode
    686               || (isa<FPMathOperator>(Op) &&
    687                   !cast<Instruction>(Op)->hasUnsafeAlgebra())) &&
    688              "Should have been handled above!");
    689       assert(Op->hasOneUse() && "Has uses outside the expression tree!");
    690 
    691       // If this is a multiply expression, turn any internal negations into
    692       // multiplies by -1 so they can be reassociated.
    693       if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op))
    694         if ((Opcode == Instruction::Mul && BinaryOperator::isNeg(BO)) ||
    695             (Opcode == Instruction::FMul && BinaryOperator::isFNeg(BO))) {
    696           DEBUG(dbgs() << "MORPH LEAF: " << *Op << " (" << Weight << ") TO ");
    697           BO = LowerNegateToMultiply(BO);
    698           DEBUG(dbgs() << *BO << '\n');
    699           Worklist.push_back(std::make_pair(BO, Weight));
    700           Changed = true;
    701           continue;
    702         }
    703 
    704       // Failed to morph into an expression of the right type.  This really is
    705       // a leaf.
    706       DEBUG(dbgs() << "ADD LEAF: " << *Op << " (" << Weight << ")\n");
    707       assert(!isReassociableOp(Op, Opcode) && "Value was morphed?");
    708       LeafOrder.push_back(Op);
    709       Leaves[Op] = Weight;
    710     }
    711   }
    712 
    713   // The leaves, repeated according to their weights, represent the linearized
    714   // form of the expression.
    715   for (unsigned i = 0, e = LeafOrder.size(); i != e; ++i) {
    716     Value *V = LeafOrder[i];
    717     LeafMap::iterator It = Leaves.find(V);
    718     if (It == Leaves.end())
    719       // Node initially thought to be a leaf wasn't.
    720       continue;
    721     assert(!isReassociableOp(V, Opcode) && "Shouldn't be a leaf!");
    722     APInt Weight = It->second;
    723     if (Weight.isMinValue())
    724       // Leaf already output or weight reduction eliminated it.
    725       continue;
    726     // Ensure the leaf is only output once.
    727     It->second = 0;
    728     Ops.push_back(std::make_pair(V, Weight));
    729   }
    730 
    731   // For nilpotent operations or addition there may be no operands, for example
    732   // because the expression was "X xor X" or consisted of 2^Bitwidth additions:
    733   // in both cases the weight reduces to 0 causing the value to be skipped.
    734   if (Ops.empty()) {
    735     Constant *Identity = ConstantExpr::getBinOpIdentity(Opcode, I->getType());
    736     assert(Identity && "Associative operation without identity!");
    737     Ops.push_back(std::make_pair(Identity, APInt(Bitwidth, 1)));
    738   }
    739 
    740   return Changed;
    741 }
    742 
    743 // RewriteExprTree - Now that the operands for this expression tree are
    744 // linearized and optimized, emit them in-order.
    745 void Reassociate::RewriteExprTree(BinaryOperator *I,
    746                                   SmallVectorImpl<ValueEntry> &Ops) {
    747   assert(Ops.size() > 1 && "Single values should be used directly!");
    748 
    749   // Since our optimizations should never increase the number of operations, the
    750   // new expression can usually be written reusing the existing binary operators
    751   // from the original expression tree, without creating any new instructions,
    752   // though the rewritten expression may have a completely different topology.
    753   // We take care to not change anything if the new expression will be the same
    754   // as the original.  If more than trivial changes (like commuting operands)
    755   // were made then we are obliged to clear out any optional subclass data like
    756   // nsw flags.
    757 
    758   /// NodesToRewrite - Nodes from the original expression available for writing
    759   /// the new expression into.
    760   SmallVector<BinaryOperator*, 8> NodesToRewrite;
    761   unsigned Opcode = I->getOpcode();
    762   BinaryOperator *Op = I;
    763 
    764   /// NotRewritable - The operands being written will be the leaves of the new
    765   /// expression and must not be used as inner nodes (via NodesToRewrite) by
    766   /// mistake.  Inner nodes are always reassociable, and usually leaves are not
    767   /// (if they were they would have been incorporated into the expression and so
    768   /// would not be leaves), so most of the time there is no danger of this.  But
    769   /// in rare cases a leaf may become reassociable if an optimization kills uses
    770   /// of it, or it may momentarily become reassociable during rewriting (below)
    771   /// due it being removed as an operand of one of its uses.  Ensure that misuse
    772   /// of leaf nodes as inner nodes cannot occur by remembering all of the future
    773   /// leaves and refusing to reuse any of them as inner nodes.
    774   SmallPtrSet<Value*, 8> NotRewritable;
    775   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
    776     NotRewritable.insert(Ops[i].Op);
    777 
    778   // ExpressionChanged - Non-null if the rewritten expression differs from the
    779   // original in some non-trivial way, requiring the clearing of optional flags.
    780   // Flags are cleared from the operator in ExpressionChanged up to I inclusive.
    781   BinaryOperator *ExpressionChanged = nullptr;
    782   for (unsigned i = 0; ; ++i) {
    783     // The last operation (which comes earliest in the IR) is special as both
    784     // operands will come from Ops, rather than just one with the other being
    785     // a subexpression.
    786     if (i+2 == Ops.size()) {
    787       Value *NewLHS = Ops[i].Op;
    788       Value *NewRHS = Ops[i+1].Op;
    789       Value *OldLHS = Op->getOperand(0);
    790       Value *OldRHS = Op->getOperand(1);
    791 
    792       if (NewLHS == OldLHS && NewRHS == OldRHS)
    793         // Nothing changed, leave it alone.
    794         break;
    795 
    796       if (NewLHS == OldRHS && NewRHS == OldLHS) {
    797         // The order of the operands was reversed.  Swap them.
    798         DEBUG(dbgs() << "RA: " << *Op << '\n');
    799         Op->swapOperands();
    800         DEBUG(dbgs() << "TO: " << *Op << '\n');
    801         MadeChange = true;
    802         ++NumChanged;
    803         break;
    804       }
    805 
    806       // The new operation differs non-trivially from the original. Overwrite
    807       // the old operands with the new ones.
    808       DEBUG(dbgs() << "RA: " << *Op << '\n');
    809       if (NewLHS != OldLHS) {
    810         BinaryOperator *BO = isReassociableOp(OldLHS, Opcode);
    811         if (BO && !NotRewritable.count(BO))
    812           NodesToRewrite.push_back(BO);
    813         Op->setOperand(0, NewLHS);
    814       }
    815       if (NewRHS != OldRHS) {
    816         BinaryOperator *BO = isReassociableOp(OldRHS, Opcode);
    817         if (BO && !NotRewritable.count(BO))
    818           NodesToRewrite.push_back(BO);
    819         Op->setOperand(1, NewRHS);
    820       }
    821       DEBUG(dbgs() << "TO: " << *Op << '\n');
    822 
    823       ExpressionChanged = Op;
    824       MadeChange = true;
    825       ++NumChanged;
    826 
    827       break;
    828     }
    829 
    830     // Not the last operation.  The left-hand side will be a sub-expression
    831     // while the right-hand side will be the current element of Ops.
    832     Value *NewRHS = Ops[i].Op;
    833     if (NewRHS != Op->getOperand(1)) {
    834       DEBUG(dbgs() << "RA: " << *Op << '\n');
    835       if (NewRHS == Op->getOperand(0)) {
    836         // The new right-hand side was already present as the left operand.  If
    837         // we are lucky then swapping the operands will sort out both of them.
    838         Op->swapOperands();
    839       } else {
    840         // Overwrite with the new right-hand side.
    841         BinaryOperator *BO = isReassociableOp(Op->getOperand(1), Opcode);
    842         if (BO && !NotRewritable.count(BO))
    843           NodesToRewrite.push_back(BO);
    844         Op->setOperand(1, NewRHS);
    845         ExpressionChanged = Op;
    846       }
    847       DEBUG(dbgs() << "TO: " << *Op << '\n');
    848       MadeChange = true;
    849       ++NumChanged;
    850     }
    851 
    852     // Now deal with the left-hand side.  If this is already an operation node
    853     // from the original expression then just rewrite the rest of the expression
    854     // into it.
    855     BinaryOperator *BO = isReassociableOp(Op->getOperand(0), Opcode);
    856     if (BO && !NotRewritable.count(BO)) {
    857       Op = BO;
    858       continue;
    859     }
    860 
    861     // Otherwise, grab a spare node from the original expression and use that as
    862     // the left-hand side.  If there are no nodes left then the optimizers made
    863     // an expression with more nodes than the original!  This usually means that
    864     // they did something stupid but it might mean that the problem was just too
    865     // hard (finding the mimimal number of multiplications needed to realize a
    866     // multiplication expression is NP-complete).  Whatever the reason, smart or
    867     // stupid, create a new node if there are none left.
    868     BinaryOperator *NewOp;
    869     if (NodesToRewrite.empty()) {
    870       Constant *Undef = UndefValue::get(I->getType());
    871       NewOp = BinaryOperator::Create(Instruction::BinaryOps(Opcode),
    872                                      Undef, Undef, "", I);
    873       if (NewOp->getType()->isFPOrFPVectorTy())
    874         NewOp->setFastMathFlags(I->getFastMathFlags());
    875     } else {
    876       NewOp = NodesToRewrite.pop_back_val();
    877     }
    878 
    879     DEBUG(dbgs() << "RA: " << *Op << '\n');
    880     Op->setOperand(0, NewOp);
    881     DEBUG(dbgs() << "TO: " << *Op << '\n');
    882     ExpressionChanged = Op;
    883     MadeChange = true;
    884     ++NumChanged;
    885     Op = NewOp;
    886   }
    887 
    888   // If the expression changed non-trivially then clear out all subclass data
    889   // starting from the operator specified in ExpressionChanged, and compactify
    890   // the operators to just before the expression root to guarantee that the
    891   // expression tree is dominated by all of Ops.
    892   if (ExpressionChanged)
    893     do {
    894       // Preserve FastMathFlags.
    895       if (isa<FPMathOperator>(I)) {
    896         FastMathFlags Flags = I->getFastMathFlags();
    897         ExpressionChanged->clearSubclassOptionalData();
    898         ExpressionChanged->setFastMathFlags(Flags);
    899       } else
    900         ExpressionChanged->clearSubclassOptionalData();
    901 
    902       if (ExpressionChanged == I)
    903         break;
    904       ExpressionChanged->moveBefore(I);
    905       ExpressionChanged = cast<BinaryOperator>(*ExpressionChanged->user_begin());
    906     } while (1);
    907 
    908   // Throw away any left over nodes from the original expression.
    909   for (unsigned i = 0, e = NodesToRewrite.size(); i != e; ++i)
    910     RedoInsts.insert(NodesToRewrite[i]);
    911 }
    912 
    913 /// NegateValue - Insert instructions before the instruction pointed to by BI,
    914 /// that computes the negative version of the value specified.  The negative
    915 /// version of the value is returned, and BI is left pointing at the instruction
    916 /// that should be processed next by the reassociation pass.
    917 static Value *NegateValue(Value *V, Instruction *BI) {
    918   if (Constant *C = dyn_cast<Constant>(V)) {
    919     if (C->getType()->isFPOrFPVectorTy()) {
    920       return ConstantExpr::getFNeg(C);
    921     }
    922     return ConstantExpr::getNeg(C);
    923   }
    924 
    925 
    926   // We are trying to expose opportunity for reassociation.  One of the things
    927   // that we want to do to achieve this is to push a negation as deep into an
    928   // expression chain as possible, to expose the add instructions.  In practice,
    929   // this means that we turn this:
    930   //   X = -(A+12+C+D)   into    X = -A + -12 + -C + -D = -12 + -A + -C + -D
    931   // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
    932   // the constants.  We assume that instcombine will clean up the mess later if
    933   // we introduce tons of unnecessary negation instructions.
    934   //
    935   if (BinaryOperator *I =
    936           isReassociableOp(V, Instruction::Add, Instruction::FAdd)) {
    937     // Push the negates through the add.
    938     I->setOperand(0, NegateValue(I->getOperand(0), BI));
    939     I->setOperand(1, NegateValue(I->getOperand(1), BI));
    940 
    941     // We must move the add instruction here, because the neg instructions do
    942     // not dominate the old add instruction in general.  By moving it, we are
    943     // assured that the neg instructions we just inserted dominate the
    944     // instruction we are about to insert after them.
    945     //
    946     I->moveBefore(BI);
    947     I->setName(I->getName()+".neg");
    948     return I;
    949   }
    950 
    951   // Okay, we need to materialize a negated version of V with an instruction.
    952   // Scan the use lists of V to see if we have one already.
    953   for (User *U : V->users()) {
    954     if (!BinaryOperator::isNeg(U) && !BinaryOperator::isFNeg(U))
    955       continue;
    956 
    957     // We found one!  Now we have to make sure that the definition dominates
    958     // this use.  We do this by moving it to the entry block (if it is a
    959     // non-instruction value) or right after the definition.  These negates will
    960     // be zapped by reassociate later, so we don't need much finesse here.
    961     BinaryOperator *TheNeg = cast<BinaryOperator>(U);
    962 
    963     // Verify that the negate is in this function, V might be a constant expr.
    964     if (TheNeg->getParent()->getParent() != BI->getParent()->getParent())
    965       continue;
    966 
    967     BasicBlock::iterator InsertPt;
    968     if (Instruction *InstInput = dyn_cast<Instruction>(V)) {
    969       if (InvokeInst *II = dyn_cast<InvokeInst>(InstInput)) {
    970         InsertPt = II->getNormalDest()->begin();
    971       } else {
    972         InsertPt = InstInput;
    973         ++InsertPt;
    974       }
    975       while (isa<PHINode>(InsertPt)) ++InsertPt;
    976     } else {
    977       InsertPt = TheNeg->getParent()->getParent()->getEntryBlock().begin();
    978     }
    979     TheNeg->moveBefore(InsertPt);
    980     return TheNeg;
    981   }
    982 
    983   // Insert a 'neg' instruction that subtracts the value from zero to get the
    984   // negation.
    985   return CreateNeg(V, V->getName() + ".neg", BI, BI);
    986 }
    987 
    988 /// ShouldBreakUpSubtract - Return true if we should break up this subtract of
    989 /// X-Y into (X + -Y).
    990 static bool ShouldBreakUpSubtract(Instruction *Sub) {
    991   // If this is a negation, we can't split it up!
    992   if (BinaryOperator::isNeg(Sub) || BinaryOperator::isFNeg(Sub))
    993     return false;
    994 
    995   // Don't breakup X - undef.
    996   if (isa<UndefValue>(Sub->getOperand(1)))
    997     return false;
    998 
    999   // Don't bother to break this up unless either the LHS is an associable add or
   1000   // subtract or if this is only used by one.
   1001   Value *V0 = Sub->getOperand(0);
   1002   if (isReassociableOp(V0, Instruction::Add, Instruction::FAdd) ||
   1003       isReassociableOp(V0, Instruction::Sub, Instruction::FSub))
   1004     return true;
   1005   Value *V1 = Sub->getOperand(1);
   1006   if (isReassociableOp(V1, Instruction::Add, Instruction::FAdd) ||
   1007       isReassociableOp(V1, Instruction::Sub, Instruction::FSub))
   1008     return true;
   1009   Value *VB = Sub->user_back();
   1010   if (Sub->hasOneUse() &&
   1011       (isReassociableOp(VB, Instruction::Add, Instruction::FAdd) ||
   1012        isReassociableOp(VB, Instruction::Sub, Instruction::FSub)))
   1013     return true;
   1014 
   1015   return false;
   1016 }
   1017 
   1018 /// BreakUpSubtract - If we have (X-Y), and if either X is an add, or if this is
   1019 /// only used by an add, transform this into (X+(0-Y)) to promote better
   1020 /// reassociation.
   1021 static BinaryOperator *BreakUpSubtract(Instruction *Sub) {
   1022   // Convert a subtract into an add and a neg instruction. This allows sub
   1023   // instructions to be commuted with other add instructions.
   1024   //
   1025   // Calculate the negative value of Operand 1 of the sub instruction,
   1026   // and set it as the RHS of the add instruction we just made.
   1027   //
   1028   Value *NegVal = NegateValue(Sub->getOperand(1), Sub);
   1029   BinaryOperator *New = CreateAdd(Sub->getOperand(0), NegVal, "", Sub, Sub);
   1030   Sub->setOperand(0, Constant::getNullValue(Sub->getType())); // Drop use of op.
   1031   Sub->setOperand(1, Constant::getNullValue(Sub->getType())); // Drop use of op.
   1032   New->takeName(Sub);
   1033 
   1034   // Everyone now refers to the add instruction.
   1035   Sub->replaceAllUsesWith(New);
   1036   New->setDebugLoc(Sub->getDebugLoc());
   1037 
   1038   DEBUG(dbgs() << "Negated: " << *New << '\n');
   1039   return New;
   1040 }
   1041 
   1042 /// ConvertShiftToMul - If this is a shift of a reassociable multiply or is used
   1043 /// by one, change this into a multiply by a constant to assist with further
   1044 /// reassociation.
   1045 static BinaryOperator *ConvertShiftToMul(Instruction *Shl) {
   1046   Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
   1047   MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
   1048 
   1049   BinaryOperator *Mul =
   1050     BinaryOperator::CreateMul(Shl->getOperand(0), MulCst, "", Shl);
   1051   Shl->setOperand(0, UndefValue::get(Shl->getType())); // Drop use of op.
   1052   Mul->takeName(Shl);
   1053 
   1054   // Everyone now refers to the mul instruction.
   1055   Shl->replaceAllUsesWith(Mul);
   1056   Mul->setDebugLoc(Shl->getDebugLoc());
   1057 
   1058   // We can safely preserve the nuw flag in all cases.  It's also safe to turn a
   1059   // nuw nsw shl into a nuw nsw mul.  However, nsw in isolation requires special
   1060   // handling.
   1061   bool NSW = cast<BinaryOperator>(Shl)->hasNoSignedWrap();
   1062   bool NUW = cast<BinaryOperator>(Shl)->hasNoUnsignedWrap();
   1063   if (NSW && NUW)
   1064     Mul->setHasNoSignedWrap(true);
   1065   Mul->setHasNoUnsignedWrap(NUW);
   1066   return Mul;
   1067 }
   1068 
   1069 /// FindInOperandList - Scan backwards and forwards among values with the same
   1070 /// rank as element i to see if X exists.  If X does not exist, return i.  This
   1071 /// is useful when scanning for 'x' when we see '-x' because they both get the
   1072 /// same rank.
   1073 static unsigned FindInOperandList(SmallVectorImpl<ValueEntry> &Ops, unsigned i,
   1074                                   Value *X) {
   1075   unsigned XRank = Ops[i].Rank;
   1076   unsigned e = Ops.size();
   1077   for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j) {
   1078     if (Ops[j].Op == X)
   1079       return j;
   1080     if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op))
   1081       if (Instruction *I2 = dyn_cast<Instruction>(X))
   1082         if (I1->isIdenticalTo(I2))
   1083           return j;
   1084   }
   1085   // Scan backwards.
   1086   for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j) {
   1087     if (Ops[j].Op == X)
   1088       return j;
   1089     if (Instruction *I1 = dyn_cast<Instruction>(Ops[j].Op))
   1090       if (Instruction *I2 = dyn_cast<Instruction>(X))
   1091         if (I1->isIdenticalTo(I2))
   1092           return j;
   1093   }
   1094   return i;
   1095 }
   1096 
   1097 /// EmitAddTreeOfValues - Emit a tree of add instructions, summing Ops together
   1098 /// and returning the result.  Insert the tree before I.
   1099 static Value *EmitAddTreeOfValues(Instruction *I,
   1100                                   SmallVectorImpl<WeakVH> &Ops){
   1101   if (Ops.size() == 1) return Ops.back();
   1102 
   1103   Value *V1 = Ops.back();
   1104   Ops.pop_back();
   1105   Value *V2 = EmitAddTreeOfValues(I, Ops);
   1106   return CreateAdd(V2, V1, "tmp", I, I);
   1107 }
   1108 
   1109 /// RemoveFactorFromExpression - If V is an expression tree that is a
   1110 /// multiplication sequence, and if this sequence contains a multiply by Factor,
   1111 /// remove Factor from the tree and return the new tree.
   1112 Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) {
   1113   BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul);
   1114   if (!BO)
   1115     return nullptr;
   1116 
   1117   SmallVector<RepeatedValue, 8> Tree;
   1118   MadeChange |= LinearizeExprTree(BO, Tree);
   1119   SmallVector<ValueEntry, 8> Factors;
   1120   Factors.reserve(Tree.size());
   1121   for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
   1122     RepeatedValue E = Tree[i];
   1123     Factors.append(E.second.getZExtValue(),
   1124                    ValueEntry(getRank(E.first), E.first));
   1125   }
   1126 
   1127   bool FoundFactor = false;
   1128   bool NeedsNegate = false;
   1129   for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
   1130     if (Factors[i].Op == Factor) {
   1131       FoundFactor = true;
   1132       Factors.erase(Factors.begin()+i);
   1133       break;
   1134     }
   1135 
   1136     // If this is a negative version of this factor, remove it.
   1137     if (ConstantInt *FC1 = dyn_cast<ConstantInt>(Factor)) {
   1138       if (ConstantInt *FC2 = dyn_cast<ConstantInt>(Factors[i].Op))
   1139         if (FC1->getValue() == -FC2->getValue()) {
   1140           FoundFactor = NeedsNegate = true;
   1141           Factors.erase(Factors.begin()+i);
   1142           break;
   1143         }
   1144     } else if (ConstantFP *FC1 = dyn_cast<ConstantFP>(Factor)) {
   1145       if (ConstantFP *FC2 = dyn_cast<ConstantFP>(Factors[i].Op)) {
   1146         APFloat F1(FC1->getValueAPF());
   1147         APFloat F2(FC2->getValueAPF());
   1148         F2.changeSign();
   1149         if (F1.compare(F2) == APFloat::cmpEqual) {
   1150           FoundFactor = NeedsNegate = true;
   1151           Factors.erase(Factors.begin() + i);
   1152           break;
   1153         }
   1154       }
   1155     }
   1156   }
   1157 
   1158   if (!FoundFactor) {
   1159     // Make sure to restore the operands to the expression tree.
   1160     RewriteExprTree(BO, Factors);
   1161     return nullptr;
   1162   }
   1163 
   1164   BasicBlock::iterator InsertPt = BO; ++InsertPt;
   1165 
   1166   // If this was just a single multiply, remove the multiply and return the only
   1167   // remaining operand.
   1168   if (Factors.size() == 1) {
   1169     RedoInsts.insert(BO);
   1170     V = Factors[0].Op;
   1171   } else {
   1172     RewriteExprTree(BO, Factors);
   1173     V = BO;
   1174   }
   1175 
   1176   if (NeedsNegate)
   1177     V = CreateNeg(V, "neg", InsertPt, BO);
   1178 
   1179   return V;
   1180 }
   1181 
   1182 /// FindSingleUseMultiplyFactors - If V is a single-use multiply, recursively
   1183 /// add its operands as factors, otherwise add V to the list of factors.
   1184 ///
   1185 /// Ops is the top-level list of add operands we're trying to factor.
   1186 static void FindSingleUseMultiplyFactors(Value *V,
   1187                                          SmallVectorImpl<Value*> &Factors,
   1188                                        const SmallVectorImpl<ValueEntry> &Ops) {
   1189   BinaryOperator *BO = isReassociableOp(V, Instruction::Mul, Instruction::FMul);
   1190   if (!BO) {
   1191     Factors.push_back(V);
   1192     return;
   1193   }
   1194 
   1195   // Otherwise, add the LHS and RHS to the list of factors.
   1196   FindSingleUseMultiplyFactors(BO->getOperand(1), Factors, Ops);
   1197   FindSingleUseMultiplyFactors(BO->getOperand(0), Factors, Ops);
   1198 }
   1199 
   1200 /// OptimizeAndOrXor - Optimize a series of operands to an 'and', 'or', or 'xor'
   1201 /// instruction.  This optimizes based on identities.  If it can be reduced to
   1202 /// a single Value, it is returned, otherwise the Ops list is mutated as
   1203 /// necessary.
   1204 static Value *OptimizeAndOrXor(unsigned Opcode,
   1205                                SmallVectorImpl<ValueEntry> &Ops) {
   1206   // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
   1207   // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
   1208   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
   1209     // First, check for X and ~X in the operand list.
   1210     assert(i < Ops.size());
   1211     if (BinaryOperator::isNot(Ops[i].Op)) {    // Cannot occur for ^.
   1212       Value *X = BinaryOperator::getNotArgument(Ops[i].Op);
   1213       unsigned FoundX = FindInOperandList(Ops, i, X);
   1214       if (FoundX != i) {
   1215         if (Opcode == Instruction::And)   // ...&X&~X = 0
   1216           return Constant::getNullValue(X->getType());
   1217 
   1218         if (Opcode == Instruction::Or)    // ...|X|~X = -1
   1219           return Constant::getAllOnesValue(X->getType());
   1220       }
   1221     }
   1222 
   1223     // Next, check for duplicate pairs of values, which we assume are next to
   1224     // each other, due to our sorting criteria.
   1225     assert(i < Ops.size());
   1226     if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
   1227       if (Opcode == Instruction::And || Opcode == Instruction::Or) {
   1228         // Drop duplicate values for And and Or.
   1229         Ops.erase(Ops.begin()+i);
   1230         --i; --e;
   1231         ++NumAnnihil;
   1232         continue;
   1233       }
   1234 
   1235       // Drop pairs of values for Xor.
   1236       assert(Opcode == Instruction::Xor);
   1237       if (e == 2)
   1238         return Constant::getNullValue(Ops[0].Op->getType());
   1239 
   1240       // Y ^ X^X -> Y
   1241       Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
   1242       i -= 1; e -= 2;
   1243       ++NumAnnihil;
   1244     }
   1245   }
   1246   return nullptr;
   1247 }
   1248 
   1249 /// Helper funciton of CombineXorOpnd(). It creates a bitwise-and
   1250 /// instruction with the given two operands, and return the resulting
   1251 /// instruction. There are two special cases: 1) if the constant operand is 0,
   1252 /// it will return NULL. 2) if the constant is ~0, the symbolic operand will
   1253 /// be returned.
   1254 static Value *createAndInstr(Instruction *InsertBefore, Value *Opnd,
   1255                              const APInt &ConstOpnd) {
   1256   if (ConstOpnd != 0) {
   1257     if (!ConstOpnd.isAllOnesValue()) {
   1258       LLVMContext &Ctx = Opnd->getType()->getContext();
   1259       Instruction *I;
   1260       I = BinaryOperator::CreateAnd(Opnd, ConstantInt::get(Ctx, ConstOpnd),
   1261                                     "and.ra", InsertBefore);
   1262       I->setDebugLoc(InsertBefore->getDebugLoc());
   1263       return I;
   1264     }
   1265     return Opnd;
   1266   }
   1267   return nullptr;
   1268 }
   1269 
   1270 // Helper function of OptimizeXor(). It tries to simplify "Opnd1 ^ ConstOpnd"
   1271 // into "R ^ C", where C would be 0, and R is a symbolic value.
   1272 //
   1273 // If it was successful, true is returned, and the "R" and "C" is returned
   1274 // via "Res" and "ConstOpnd", respectively; otherwise, false is returned,
   1275 // and both "Res" and "ConstOpnd" remain unchanged.
   1276 //
   1277 bool Reassociate::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1,
   1278                                  APInt &ConstOpnd, Value *&Res) {
   1279   // Xor-Rule 1: (x | c1) ^ c2 = (x | c1) ^ (c1 ^ c1) ^ c2
   1280   //                       = ((x | c1) ^ c1) ^ (c1 ^ c2)
   1281   //                       = (x & ~c1) ^ (c1 ^ c2)
   1282   // It is useful only when c1 == c2.
   1283   if (Opnd1->isOrExpr() && Opnd1->getConstPart() != 0) {
   1284     if (!Opnd1->getValue()->hasOneUse())
   1285       return false;
   1286 
   1287     const APInt &C1 = Opnd1->getConstPart();
   1288     if (C1 != ConstOpnd)
   1289       return false;
   1290 
   1291     Value *X = Opnd1->getSymbolicPart();
   1292     Res = createAndInstr(I, X, ~C1);
   1293     // ConstOpnd was C2, now C1 ^ C2.
   1294     ConstOpnd ^= C1;
   1295 
   1296     if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
   1297       RedoInsts.insert(T);
   1298     return true;
   1299   }
   1300   return false;
   1301 }
   1302 
   1303 
   1304 // Helper function of OptimizeXor(). It tries to simplify
   1305 // "Opnd1 ^ Opnd2 ^ ConstOpnd" into "R ^ C", where C would be 0, and R is a
   1306 // symbolic value.
   1307 //
   1308 // If it was successful, true is returned, and the "R" and "C" is returned
   1309 // via "Res" and "ConstOpnd", respectively (If the entire expression is
   1310 // evaluated to a constant, the Res is set to NULL); otherwise, false is
   1311 // returned, and both "Res" and "ConstOpnd" remain unchanged.
   1312 bool Reassociate::CombineXorOpnd(Instruction *I, XorOpnd *Opnd1, XorOpnd *Opnd2,
   1313                                  APInt &ConstOpnd, Value *&Res) {
   1314   Value *X = Opnd1->getSymbolicPart();
   1315   if (X != Opnd2->getSymbolicPart())
   1316     return false;
   1317 
   1318   // This many instruction become dead.(At least "Opnd1 ^ Opnd2" will die.)
   1319   int DeadInstNum = 1;
   1320   if (Opnd1->getValue()->hasOneUse())
   1321     DeadInstNum++;
   1322   if (Opnd2->getValue()->hasOneUse())
   1323     DeadInstNum++;
   1324 
   1325   // Xor-Rule 2:
   1326   //  (x | c1) ^ (x & c2)
   1327   //   = (x|c1) ^ (x&c2) ^ (c1 ^ c1) = ((x|c1) ^ c1) ^ (x & c2) ^ c1
   1328   //   = (x & ~c1) ^ (x & c2) ^ c1               // Xor-Rule 1
   1329   //   = (x & c3) ^ c1, where c3 = ~c1 ^ c2      // Xor-rule 3
   1330   //
   1331   if (Opnd1->isOrExpr() != Opnd2->isOrExpr()) {
   1332     if (Opnd2->isOrExpr())
   1333       std::swap(Opnd1, Opnd2);
   1334 
   1335     const APInt &C1 = Opnd1->getConstPart();
   1336     const APInt &C2 = Opnd2->getConstPart();
   1337     APInt C3((~C1) ^ C2);
   1338 
   1339     // Do not increase code size!
   1340     if (C3 != 0 && !C3.isAllOnesValue()) {
   1341       int NewInstNum = ConstOpnd != 0 ? 1 : 2;
   1342       if (NewInstNum > DeadInstNum)
   1343         return false;
   1344     }
   1345 
   1346     Res = createAndInstr(I, X, C3);
   1347     ConstOpnd ^= C1;
   1348 
   1349   } else if (Opnd1->isOrExpr()) {
   1350     // Xor-Rule 3: (x | c1) ^ (x | c2) = (x & c3) ^ c3 where c3 = c1 ^ c2
   1351     //
   1352     const APInt &C1 = Opnd1->getConstPart();
   1353     const APInt &C2 = Opnd2->getConstPart();
   1354     APInt C3 = C1 ^ C2;
   1355 
   1356     // Do not increase code size
   1357     if (C3 != 0 && !C3.isAllOnesValue()) {
   1358       int NewInstNum = ConstOpnd != 0 ? 1 : 2;
   1359       if (NewInstNum > DeadInstNum)
   1360         return false;
   1361     }
   1362 
   1363     Res = createAndInstr(I, X, C3);
   1364     ConstOpnd ^= C3;
   1365   } else {
   1366     // Xor-Rule 4: (x & c1) ^ (x & c2) = (x & (c1^c2))
   1367     //
   1368     const APInt &C1 = Opnd1->getConstPart();
   1369     const APInt &C2 = Opnd2->getConstPart();
   1370     APInt C3 = C1 ^ C2;
   1371     Res = createAndInstr(I, X, C3);
   1372   }
   1373 
   1374   // Put the original operands in the Redo list; hope they will be deleted
   1375   // as dead code.
   1376   if (Instruction *T = dyn_cast<Instruction>(Opnd1->getValue()))
   1377     RedoInsts.insert(T);
   1378   if (Instruction *T = dyn_cast<Instruction>(Opnd2->getValue()))
   1379     RedoInsts.insert(T);
   1380 
   1381   return true;
   1382 }
   1383 
   1384 /// Optimize a series of operands to an 'xor' instruction. If it can be reduced
   1385 /// to a single Value, it is returned, otherwise the Ops list is mutated as
   1386 /// necessary.
   1387 Value *Reassociate::OptimizeXor(Instruction *I,
   1388                                 SmallVectorImpl<ValueEntry> &Ops) {
   1389   if (Value *V = OptimizeAndOrXor(Instruction::Xor, Ops))
   1390     return V;
   1391 
   1392   if (Ops.size() == 1)
   1393     return nullptr;
   1394 
   1395   SmallVector<XorOpnd, 8> Opnds;
   1396   SmallVector<XorOpnd*, 8> OpndPtrs;
   1397   Type *Ty = Ops[0].Op->getType();
   1398   APInt ConstOpnd(Ty->getIntegerBitWidth(), 0);
   1399 
   1400   // Step 1: Convert ValueEntry to XorOpnd
   1401   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
   1402     Value *V = Ops[i].Op;
   1403     if (!isa<ConstantInt>(V)) {
   1404       XorOpnd O(V);
   1405       O.setSymbolicRank(getRank(O.getSymbolicPart()));
   1406       Opnds.push_back(O);
   1407     } else
   1408       ConstOpnd ^= cast<ConstantInt>(V)->getValue();
   1409   }
   1410 
   1411   // NOTE: From this point on, do *NOT* add/delete element to/from "Opnds".
   1412   //  It would otherwise invalidate the "Opnds"'s iterator, and hence invalidate
   1413   //  the "OpndPtrs" as well. For the similar reason, do not fuse this loop
   1414   //  with the previous loop --- the iterator of the "Opnds" may be invalidated
   1415   //  when new elements are added to the vector.
   1416   for (unsigned i = 0, e = Opnds.size(); i != e; ++i)
   1417     OpndPtrs.push_back(&Opnds[i]);
   1418 
   1419   // Step 2: Sort the Xor-Operands in a way such that the operands containing
   1420   //  the same symbolic value cluster together. For instance, the input operand
   1421   //  sequence ("x | 123", "y & 456", "x & 789") will be sorted into:
   1422   //  ("x | 123", "x & 789", "y & 456").
   1423   std::stable_sort(OpndPtrs.begin(), OpndPtrs.end(), XorOpnd::PtrSortFunctor());
   1424 
   1425   // Step 3: Combine adjacent operands
   1426   XorOpnd *PrevOpnd = nullptr;
   1427   bool Changed = false;
   1428   for (unsigned i = 0, e = Opnds.size(); i < e; i++) {
   1429     XorOpnd *CurrOpnd = OpndPtrs[i];
   1430     // The combined value
   1431     Value *CV;
   1432 
   1433     // Step 3.1: Try simplifying "CurrOpnd ^ ConstOpnd"
   1434     if (ConstOpnd != 0 && CombineXorOpnd(I, CurrOpnd, ConstOpnd, CV)) {
   1435       Changed = true;
   1436       if (CV)
   1437         *CurrOpnd = XorOpnd(CV);
   1438       else {
   1439         CurrOpnd->Invalidate();
   1440         continue;
   1441       }
   1442     }
   1443 
   1444     if (!PrevOpnd || CurrOpnd->getSymbolicPart() != PrevOpnd->getSymbolicPart()) {
   1445       PrevOpnd = CurrOpnd;
   1446       continue;
   1447     }
   1448 
   1449     // step 3.2: When previous and current operands share the same symbolic
   1450     //  value, try to simplify "PrevOpnd ^ CurrOpnd ^ ConstOpnd"
   1451     //
   1452     if (CombineXorOpnd(I, CurrOpnd, PrevOpnd, ConstOpnd, CV)) {
   1453       // Remove previous operand
   1454       PrevOpnd->Invalidate();
   1455       if (CV) {
   1456         *CurrOpnd = XorOpnd(CV);
   1457         PrevOpnd = CurrOpnd;
   1458       } else {
   1459         CurrOpnd->Invalidate();
   1460         PrevOpnd = nullptr;
   1461       }
   1462       Changed = true;
   1463     }
   1464   }
   1465 
   1466   // Step 4: Reassemble the Ops
   1467   if (Changed) {
   1468     Ops.clear();
   1469     for (unsigned int i = 0, e = Opnds.size(); i < e; i++) {
   1470       XorOpnd &O = Opnds[i];
   1471       if (O.isInvalid())
   1472         continue;
   1473       ValueEntry VE(getRank(O.getValue()), O.getValue());
   1474       Ops.push_back(VE);
   1475     }
   1476     if (ConstOpnd != 0) {
   1477       Value *C = ConstantInt::get(Ty->getContext(), ConstOpnd);
   1478       ValueEntry VE(getRank(C), C);
   1479       Ops.push_back(VE);
   1480     }
   1481     int Sz = Ops.size();
   1482     if (Sz == 1)
   1483       return Ops.back().Op;
   1484     else if (Sz == 0) {
   1485       assert(ConstOpnd == 0);
   1486       return ConstantInt::get(Ty->getContext(), ConstOpnd);
   1487     }
   1488   }
   1489 
   1490   return nullptr;
   1491 }
   1492 
   1493 /// OptimizeAdd - Optimize a series of operands to an 'add' instruction.  This
   1494 /// optimizes based on identities.  If it can be reduced to a single Value, it
   1495 /// is returned, otherwise the Ops list is mutated as necessary.
   1496 Value *Reassociate::OptimizeAdd(Instruction *I,
   1497                                 SmallVectorImpl<ValueEntry> &Ops) {
   1498   // Scan the operand lists looking for X and -X pairs.  If we find any, we
   1499   // can simplify expressions like X+-X == 0 and X+~X ==-1.  While we're at it,
   1500   // scan for any
   1501   // duplicates.  We want to canonicalize Y+Y+Y+Z -> 3*Y+Z.
   1502 
   1503   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
   1504     Value *TheOp = Ops[i].Op;
   1505     // Check to see if we've seen this operand before.  If so, we factor all
   1506     // instances of the operand together.  Due to our sorting criteria, we know
   1507     // that these need to be next to each other in the vector.
   1508     if (i+1 != Ops.size() && Ops[i+1].Op == TheOp) {
   1509       // Rescan the list, remove all instances of this operand from the expr.
   1510       unsigned NumFound = 0;
   1511       do {
   1512         Ops.erase(Ops.begin()+i);
   1513         ++NumFound;
   1514       } while (i != Ops.size() && Ops[i].Op == TheOp);
   1515 
   1516       DEBUG(dbgs() << "\nFACTORING [" << NumFound << "]: " << *TheOp << '\n');
   1517       ++NumFactor;
   1518 
   1519       // Insert a new multiply.
   1520       Type *Ty = TheOp->getType();
   1521       Constant *C = Ty->isIntOrIntVectorTy() ?
   1522         ConstantInt::get(Ty, NumFound) : ConstantFP::get(Ty, NumFound);
   1523       Instruction *Mul = CreateMul(TheOp, C, "factor", I, I);
   1524 
   1525       // Now that we have inserted a multiply, optimize it. This allows us to
   1526       // handle cases that require multiple factoring steps, such as this:
   1527       // (X*2) + (X*2) + (X*2) -> (X*2)*3 -> X*6
   1528       RedoInsts.insert(Mul);
   1529 
   1530       // If every add operand was a duplicate, return the multiply.
   1531       if (Ops.empty())
   1532         return Mul;
   1533 
   1534       // Otherwise, we had some input that didn't have the dupe, such as
   1535       // "A + A + B" -> "A*2 + B".  Add the new multiply to the list of
   1536       // things being added by this operation.
   1537       Ops.insert(Ops.begin(), ValueEntry(getRank(Mul), Mul));
   1538 
   1539       --i;
   1540       e = Ops.size();
   1541       continue;
   1542     }
   1543 
   1544     // Check for X and -X or X and ~X in the operand list.
   1545     if (!BinaryOperator::isNeg(TheOp) && !BinaryOperator::isFNeg(TheOp) &&
   1546         !BinaryOperator::isNot(TheOp))
   1547       continue;
   1548 
   1549     Value *X = nullptr;
   1550     if (BinaryOperator::isNeg(TheOp) || BinaryOperator::isFNeg(TheOp))
   1551       X = BinaryOperator::getNegArgument(TheOp);
   1552     else if (BinaryOperator::isNot(TheOp))
   1553       X = BinaryOperator::getNotArgument(TheOp);
   1554 
   1555     unsigned FoundX = FindInOperandList(Ops, i, X);
   1556     if (FoundX == i)
   1557       continue;
   1558 
   1559     // Remove X and -X from the operand list.
   1560     if (Ops.size() == 2 &&
   1561         (BinaryOperator::isNeg(TheOp) || BinaryOperator::isFNeg(TheOp)))
   1562       return Constant::getNullValue(X->getType());
   1563 
   1564     // Remove X and ~X from the operand list.
   1565     if (Ops.size() == 2 && BinaryOperator::isNot(TheOp))
   1566       return Constant::getAllOnesValue(X->getType());
   1567 
   1568     Ops.erase(Ops.begin()+i);
   1569     if (i < FoundX)
   1570       --FoundX;
   1571     else
   1572       --i;   // Need to back up an extra one.
   1573     Ops.erase(Ops.begin()+FoundX);
   1574     ++NumAnnihil;
   1575     --i;     // Revisit element.
   1576     e -= 2;  // Removed two elements.
   1577 
   1578     // if X and ~X we append -1 to the operand list.
   1579     if (BinaryOperator::isNot(TheOp)) {
   1580       Value *V = Constant::getAllOnesValue(X->getType());
   1581       Ops.insert(Ops.end(), ValueEntry(getRank(V), V));
   1582       e += 1;
   1583     }
   1584   }
   1585 
   1586   // Scan the operand list, checking to see if there are any common factors
   1587   // between operands.  Consider something like A*A+A*B*C+D.  We would like to
   1588   // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
   1589   // To efficiently find this, we count the number of times a factor occurs
   1590   // for any ADD operands that are MULs.
   1591   DenseMap<Value*, unsigned> FactorOccurrences;
   1592 
   1593   // Keep track of each multiply we see, to avoid triggering on (X*4)+(X*4)
   1594   // where they are actually the same multiply.
   1595   unsigned MaxOcc = 0;
   1596   Value *MaxOccVal = nullptr;
   1597   for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
   1598     BinaryOperator *BOp =
   1599         isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul);
   1600     if (!BOp)
   1601       continue;
   1602 
   1603     // Compute all of the factors of this added value.
   1604     SmallVector<Value*, 8> Factors;
   1605     FindSingleUseMultiplyFactors(BOp, Factors, Ops);
   1606     assert(Factors.size() > 1 && "Bad linearize!");
   1607 
   1608     // Add one to FactorOccurrences for each unique factor in this op.
   1609     SmallPtrSet<Value*, 8> Duplicates;
   1610     for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
   1611       Value *Factor = Factors[i];
   1612       if (!Duplicates.insert(Factor).second)
   1613         continue;
   1614 
   1615       unsigned Occ = ++FactorOccurrences[Factor];
   1616       if (Occ > MaxOcc) {
   1617         MaxOcc = Occ;
   1618         MaxOccVal = Factor;
   1619       }
   1620 
   1621       // If Factor is a negative constant, add the negated value as a factor
   1622       // because we can percolate the negate out.  Watch for minint, which
   1623       // cannot be positivified.
   1624       if (ConstantInt *CI = dyn_cast<ConstantInt>(Factor)) {
   1625         if (CI->isNegative() && !CI->isMinValue(true)) {
   1626           Factor = ConstantInt::get(CI->getContext(), -CI->getValue());
   1627           assert(!Duplicates.count(Factor) &&
   1628                  "Shouldn't have two constant factors, missed a canonicalize");
   1629           unsigned Occ = ++FactorOccurrences[Factor];
   1630           if (Occ > MaxOcc) {
   1631             MaxOcc = Occ;
   1632             MaxOccVal = Factor;
   1633           }
   1634         }
   1635       } else if (ConstantFP *CF = dyn_cast<ConstantFP>(Factor)) {
   1636         if (CF->isNegative()) {
   1637           APFloat F(CF->getValueAPF());
   1638           F.changeSign();
   1639           Factor = ConstantFP::get(CF->getContext(), F);
   1640           assert(!Duplicates.count(Factor) &&
   1641                  "Shouldn't have two constant factors, missed a canonicalize");
   1642           unsigned Occ = ++FactorOccurrences[Factor];
   1643           if (Occ > MaxOcc) {
   1644             MaxOcc = Occ;
   1645             MaxOccVal = Factor;
   1646           }
   1647         }
   1648       }
   1649     }
   1650   }
   1651 
   1652   // If any factor occurred more than one time, we can pull it out.
   1653   if (MaxOcc > 1) {
   1654     DEBUG(dbgs() << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << '\n');
   1655     ++NumFactor;
   1656 
   1657     // Create a new instruction that uses the MaxOccVal twice.  If we don't do
   1658     // this, we could otherwise run into situations where removing a factor
   1659     // from an expression will drop a use of maxocc, and this can cause
   1660     // RemoveFactorFromExpression on successive values to behave differently.
   1661     Instruction *DummyInst =
   1662         I->getType()->isIntOrIntVectorTy()
   1663             ? BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal)
   1664             : BinaryOperator::CreateFAdd(MaxOccVal, MaxOccVal);
   1665 
   1666     SmallVector<WeakVH, 4> NewMulOps;
   1667     for (unsigned i = 0; i != Ops.size(); ++i) {
   1668       // Only try to remove factors from expressions we're allowed to.
   1669       BinaryOperator *BOp =
   1670           isReassociableOp(Ops[i].Op, Instruction::Mul, Instruction::FMul);
   1671       if (!BOp)
   1672         continue;
   1673 
   1674       if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
   1675         // The factorized operand may occur several times.  Convert them all in
   1676         // one fell swoop.
   1677         for (unsigned j = Ops.size(); j != i;) {
   1678           --j;
   1679           if (Ops[j].Op == Ops[i].Op) {
   1680             NewMulOps.push_back(V);
   1681             Ops.erase(Ops.begin()+j);
   1682           }
   1683         }
   1684         --i;
   1685       }
   1686     }
   1687 
   1688     // No need for extra uses anymore.
   1689     delete DummyInst;
   1690 
   1691     unsigned NumAddedValues = NewMulOps.size();
   1692     Value *V = EmitAddTreeOfValues(I, NewMulOps);
   1693 
   1694     // Now that we have inserted the add tree, optimize it. This allows us to
   1695     // handle cases that require multiple factoring steps, such as this:
   1696     // A*A*B + A*A*C   -->   A*(A*B+A*C)   -->   A*(A*(B+C))
   1697     assert(NumAddedValues > 1 && "Each occurrence should contribute a value");
   1698     (void)NumAddedValues;
   1699     if (Instruction *VI = dyn_cast<Instruction>(V))
   1700       RedoInsts.insert(VI);
   1701 
   1702     // Create the multiply.
   1703     Instruction *V2 = CreateMul(V, MaxOccVal, "tmp", I, I);
   1704 
   1705     // Rerun associate on the multiply in case the inner expression turned into
   1706     // a multiply.  We want to make sure that we keep things in canonical form.
   1707     RedoInsts.insert(V2);
   1708 
   1709     // If every add operand included the factor (e.g. "A*B + A*C"), then the
   1710     // entire result expression is just the multiply "A*(B+C)".
   1711     if (Ops.empty())
   1712       return V2;
   1713 
   1714     // Otherwise, we had some input that didn't have the factor, such as
   1715     // "A*B + A*C + D" -> "A*(B+C) + D".  Add the new multiply to the list of
   1716     // things being added by this operation.
   1717     Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
   1718   }
   1719 
   1720   return nullptr;
   1721 }
   1722 
   1723 /// \brief Build up a vector of value/power pairs factoring a product.
   1724 ///
   1725 /// Given a series of multiplication operands, build a vector of factors and
   1726 /// the powers each is raised to when forming the final product. Sort them in
   1727 /// the order of descending power.
   1728 ///
   1729 ///      (x*x)          -> [(x, 2)]
   1730 ///     ((x*x)*x)       -> [(x, 3)]
   1731 ///   ((((x*y)*x)*y)*x) -> [(x, 3), (y, 2)]
   1732 ///
   1733 /// \returns Whether any factors have a power greater than one.
   1734 bool Reassociate::collectMultiplyFactors(SmallVectorImpl<ValueEntry> &Ops,
   1735                                          SmallVectorImpl<Factor> &Factors) {
   1736   // FIXME: Have Ops be (ValueEntry, Multiplicity) pairs, simplifying this.
   1737   // Compute the sum of powers of simplifiable factors.
   1738   unsigned FactorPowerSum = 0;
   1739   for (unsigned Idx = 1, Size = Ops.size(); Idx < Size; ++Idx) {
   1740     Value *Op = Ops[Idx-1].Op;
   1741 
   1742     // Count the number of occurrences of this value.
   1743     unsigned Count = 1;
   1744     for (; Idx < Size && Ops[Idx].Op == Op; ++Idx)
   1745       ++Count;
   1746     // Track for simplification all factors which occur 2 or more times.
   1747     if (Count > 1)
   1748       FactorPowerSum += Count;
   1749   }
   1750 
   1751   // We can only simplify factors if the sum of the powers of our simplifiable
   1752   // factors is 4 or higher. When that is the case, we will *always* have
   1753   // a simplification. This is an important invariant to prevent cyclicly
   1754   // trying to simplify already minimal formations.
   1755   if (FactorPowerSum < 4)
   1756     return false;
   1757 
   1758   // Now gather the simplifiable factors, removing them from Ops.
   1759   FactorPowerSum = 0;
   1760   for (unsigned Idx = 1; Idx < Ops.size(); ++Idx) {
   1761     Value *Op = Ops[Idx-1].Op;
   1762 
   1763     // Count the number of occurrences of this value.
   1764     unsigned Count = 1;
   1765     for (; Idx < Ops.size() && Ops[Idx].Op == Op; ++Idx)
   1766       ++Count;
   1767     if (Count == 1)
   1768       continue;
   1769     // Move an even number of occurrences to Factors.
   1770     Count &= ~1U;
   1771     Idx -= Count;
   1772     FactorPowerSum += Count;
   1773     Factors.push_back(Factor(Op, Count));
   1774     Ops.erase(Ops.begin()+Idx, Ops.begin()+Idx+Count);
   1775   }
   1776 
   1777   // None of the adjustments above should have reduced the sum of factor powers
   1778   // below our mininum of '4'.
   1779   assert(FactorPowerSum >= 4);
   1780 
   1781   std::stable_sort(Factors.begin(), Factors.end(), Factor::PowerDescendingSorter());
   1782   return true;
   1783 }
   1784 
   1785 /// \brief Build a tree of multiplies, computing the product of Ops.
   1786 static Value *buildMultiplyTree(IRBuilder<> &Builder,
   1787                                 SmallVectorImpl<Value*> &Ops) {
   1788   if (Ops.size() == 1)
   1789     return Ops.back();
   1790 
   1791   Value *LHS = Ops.pop_back_val();
   1792   do {
   1793     if (LHS->getType()->isIntOrIntVectorTy())
   1794       LHS = Builder.CreateMul(LHS, Ops.pop_back_val());
   1795     else
   1796       LHS = Builder.CreateFMul(LHS, Ops.pop_back_val());
   1797   } while (!Ops.empty());
   1798 
   1799   return LHS;
   1800 }
   1801 
   1802 /// \brief Build a minimal multiplication DAG for (a^x)*(b^y)*(c^z)*...
   1803 ///
   1804 /// Given a vector of values raised to various powers, where no two values are
   1805 /// equal and the powers are sorted in decreasing order, compute the minimal
   1806 /// DAG of multiplies to compute the final product, and return that product
   1807 /// value.
   1808 Value *Reassociate::buildMinimalMultiplyDAG(IRBuilder<> &Builder,
   1809                                             SmallVectorImpl<Factor> &Factors) {
   1810   assert(Factors[0].Power);
   1811   SmallVector<Value *, 4> OuterProduct;
   1812   for (unsigned LastIdx = 0, Idx = 1, Size = Factors.size();
   1813        Idx < Size && Factors[Idx].Power > 0; ++Idx) {
   1814     if (Factors[Idx].Power != Factors[LastIdx].Power) {
   1815       LastIdx = Idx;
   1816       continue;
   1817     }
   1818 
   1819     // We want to multiply across all the factors with the same power so that
   1820     // we can raise them to that power as a single entity. Build a mini tree
   1821     // for that.
   1822     SmallVector<Value *, 4> InnerProduct;
   1823     InnerProduct.push_back(Factors[LastIdx].Base);
   1824     do {
   1825       InnerProduct.push_back(Factors[Idx].Base);
   1826       ++Idx;
   1827     } while (Idx < Size && Factors[Idx].Power == Factors[LastIdx].Power);
   1828 
   1829     // Reset the base value of the first factor to the new expression tree.
   1830     // We'll remove all the factors with the same power in a second pass.
   1831     Value *M = Factors[LastIdx].Base = buildMultiplyTree(Builder, InnerProduct);
   1832     if (Instruction *MI = dyn_cast<Instruction>(M))
   1833       RedoInsts.insert(MI);
   1834 
   1835     LastIdx = Idx;
   1836   }
   1837   // Unique factors with equal powers -- we've folded them into the first one's
   1838   // base.
   1839   Factors.erase(std::unique(Factors.begin(), Factors.end(),
   1840                             Factor::PowerEqual()),
   1841                 Factors.end());
   1842 
   1843   // Iteratively collect the base of each factor with an add power into the
   1844   // outer product, and halve each power in preparation for squaring the
   1845   // expression.
   1846   for (unsigned Idx = 0, Size = Factors.size(); Idx != Size; ++Idx) {
   1847     if (Factors[Idx].Power & 1)
   1848       OuterProduct.push_back(Factors[Idx].Base);
   1849     Factors[Idx].Power >>= 1;
   1850   }
   1851   if (Factors[0].Power) {
   1852     Value *SquareRoot = buildMinimalMultiplyDAG(Builder, Factors);
   1853     OuterProduct.push_back(SquareRoot);
   1854     OuterProduct.push_back(SquareRoot);
   1855   }
   1856   if (OuterProduct.size() == 1)
   1857     return OuterProduct.front();
   1858 
   1859   Value *V = buildMultiplyTree(Builder, OuterProduct);
   1860   return V;
   1861 }
   1862 
   1863 Value *Reassociate::OptimizeMul(BinaryOperator *I,
   1864                                 SmallVectorImpl<ValueEntry> &Ops) {
   1865   // We can only optimize the multiplies when there is a chain of more than
   1866   // three, such that a balanced tree might require fewer total multiplies.
   1867   if (Ops.size() < 4)
   1868     return nullptr;
   1869 
   1870   // Try to turn linear trees of multiplies without other uses of the
   1871   // intermediate stages into minimal multiply DAGs with perfect sub-expression
   1872   // re-use.
   1873   SmallVector<Factor, 4> Factors;
   1874   if (!collectMultiplyFactors(Ops, Factors))
   1875     return nullptr; // All distinct factors, so nothing left for us to do.
   1876 
   1877   IRBuilder<> Builder(I);
   1878   Value *V = buildMinimalMultiplyDAG(Builder, Factors);
   1879   if (Ops.empty())
   1880     return V;
   1881 
   1882   ValueEntry NewEntry = ValueEntry(getRank(V), V);
   1883   Ops.insert(std::lower_bound(Ops.begin(), Ops.end(), NewEntry), NewEntry);
   1884   return nullptr;
   1885 }
   1886 
   1887 Value *Reassociate::OptimizeExpression(BinaryOperator *I,
   1888                                        SmallVectorImpl<ValueEntry> &Ops) {
   1889   // Now that we have the linearized expression tree, try to optimize it.
   1890   // Start by folding any constants that we found.
   1891   Constant *Cst = nullptr;
   1892   unsigned Opcode = I->getOpcode();
   1893   while (!Ops.empty() && isa<Constant>(Ops.back().Op)) {
   1894     Constant *C = cast<Constant>(Ops.pop_back_val().Op);
   1895     Cst = Cst ? ConstantExpr::get(Opcode, C, Cst) : C;
   1896   }
   1897   // If there was nothing but constants then we are done.
   1898   if (Ops.empty())
   1899     return Cst;
   1900 
   1901   // Put the combined constant back at the end of the operand list, except if
   1902   // there is no point.  For example, an add of 0 gets dropped here, while a
   1903   // multiplication by zero turns the whole expression into zero.
   1904   if (Cst && Cst != ConstantExpr::getBinOpIdentity(Opcode, I->getType())) {
   1905     if (Cst == ConstantExpr::getBinOpAbsorber(Opcode, I->getType()))
   1906       return Cst;
   1907     Ops.push_back(ValueEntry(0, Cst));
   1908   }
   1909 
   1910   if (Ops.size() == 1) return Ops[0].Op;
   1911 
   1912   // Handle destructive annihilation due to identities between elements in the
   1913   // argument list here.
   1914   unsigned NumOps = Ops.size();
   1915   switch (Opcode) {
   1916   default: break;
   1917   case Instruction::And:
   1918   case Instruction::Or:
   1919     if (Value *Result = OptimizeAndOrXor(Opcode, Ops))
   1920       return Result;
   1921     break;
   1922 
   1923   case Instruction::Xor:
   1924     if (Value *Result = OptimizeXor(I, Ops))
   1925       return Result;
   1926     break;
   1927 
   1928   case Instruction::Add:
   1929   case Instruction::FAdd:
   1930     if (Value *Result = OptimizeAdd(I, Ops))
   1931       return Result;
   1932     break;
   1933 
   1934   case Instruction::Mul:
   1935   case Instruction::FMul:
   1936     if (Value *Result = OptimizeMul(I, Ops))
   1937       return Result;
   1938     break;
   1939   }
   1940 
   1941   if (Ops.size() != NumOps)
   1942     return OptimizeExpression(I, Ops);
   1943   return nullptr;
   1944 }
   1945 
   1946 /// EraseInst - Zap the given instruction, adding interesting operands to the
   1947 /// work list.
   1948 void Reassociate::EraseInst(Instruction *I) {
   1949   assert(isInstructionTriviallyDead(I) && "Trivially dead instructions only!");
   1950   SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end());
   1951   // Erase the dead instruction.
   1952   ValueRankMap.erase(I);
   1953   RedoInsts.remove(I);
   1954   I->eraseFromParent();
   1955   // Optimize its operands.
   1956   SmallPtrSet<Instruction *, 8> Visited; // Detect self-referential nodes.
   1957   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
   1958     if (Instruction *Op = dyn_cast<Instruction>(Ops[i])) {
   1959       // If this is a node in an expression tree, climb to the expression root
   1960       // and add that since that's where optimization actually happens.
   1961       unsigned Opcode = Op->getOpcode();
   1962       while (Op->hasOneUse() && Op->user_back()->getOpcode() == Opcode &&
   1963              Visited.insert(Op).second)
   1964         Op = Op->user_back();
   1965       RedoInsts.insert(Op);
   1966     }
   1967 }
   1968 
   1969 // Canonicalize expressions of the following form:
   1970 //  x + (-Constant * y) -> x - (Constant * y)
   1971 //  x - (-Constant * y) -> x + (Constant * y)
   1972 Instruction *Reassociate::canonicalizeNegConstExpr(Instruction *I) {
   1973   if (!I->hasOneUse() || I->getType()->isVectorTy())
   1974     return nullptr;
   1975 
   1976   // Must be a mul, fmul, or fdiv instruction.
   1977   unsigned Opcode = I->getOpcode();
   1978   if (Opcode != Instruction::Mul && Opcode != Instruction::FMul &&
   1979       Opcode != Instruction::FDiv)
   1980     return nullptr;
   1981 
   1982   // Must have at least one constant operand.
   1983   Constant *C0 = dyn_cast<Constant>(I->getOperand(0));
   1984   Constant *C1 = dyn_cast<Constant>(I->getOperand(1));
   1985   if (!C0 && !C1)
   1986     return nullptr;
   1987 
   1988   // Must be a negative ConstantInt or ConstantFP.
   1989   Constant *C = C0 ? C0 : C1;
   1990   unsigned ConstIdx = C0 ? 0 : 1;
   1991   if (auto *CI = dyn_cast<ConstantInt>(C)) {
   1992     if (!CI->isNegative() || CI->isMinValue(true))
   1993       return nullptr;
   1994   } else if (auto *CF = dyn_cast<ConstantFP>(C)) {
   1995     if (!CF->isNegative())
   1996       return nullptr;
   1997   } else
   1998     return nullptr;
   1999 
   2000   // User must be a binary operator with one or more uses.
   2001   Instruction *User = I->user_back();
   2002   if (!isa<BinaryOperator>(User) || !User->getNumUses())
   2003     return nullptr;
   2004 
   2005   unsigned UserOpcode = User->getOpcode();
   2006   if (UserOpcode != Instruction::Add && UserOpcode != Instruction::FAdd &&
   2007       UserOpcode != Instruction::Sub && UserOpcode != Instruction::FSub)
   2008     return nullptr;
   2009 
   2010   // Subtraction is not commutative. Explicitly, the following transform is
   2011   // not valid: (-Constant * y) - x  -> x + (Constant * y)
   2012   if (!User->isCommutative() && User->getOperand(1) != I)
   2013     return nullptr;
   2014 
   2015   // Change the sign of the constant.
   2016   if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
   2017     I->setOperand(ConstIdx, ConstantInt::get(CI->getContext(), -CI->getValue()));
   2018   else {
   2019     ConstantFP *CF = cast<ConstantFP>(C);
   2020     APFloat Val = CF->getValueAPF();
   2021     Val.changeSign();
   2022     I->setOperand(ConstIdx, ConstantFP::get(CF->getContext(), Val));
   2023   }
   2024 
   2025   // Canonicalize I to RHS to simplify the next bit of logic. E.g.,
   2026   // ((-Const*y) + x) -> (x + (-Const*y)).
   2027   if (User->getOperand(0) == I && User->isCommutative())
   2028     cast<BinaryOperator>(User)->swapOperands();
   2029 
   2030   Value *Op0 = User->getOperand(0);
   2031   Value *Op1 = User->getOperand(1);
   2032   BinaryOperator *NI;
   2033   switch(UserOpcode) {
   2034   default:
   2035     llvm_unreachable("Unexpected Opcode!");
   2036   case Instruction::Add:
   2037     NI = BinaryOperator::CreateSub(Op0, Op1);
   2038     break;
   2039   case Instruction::Sub:
   2040     NI = BinaryOperator::CreateAdd(Op0, Op1);
   2041     break;
   2042   case Instruction::FAdd:
   2043     NI = BinaryOperator::CreateFSub(Op0, Op1);
   2044     NI->setFastMathFlags(cast<FPMathOperator>(User)->getFastMathFlags());
   2045     break;
   2046   case Instruction::FSub:
   2047     NI = BinaryOperator::CreateFAdd(Op0, Op1);
   2048     NI->setFastMathFlags(cast<FPMathOperator>(User)->getFastMathFlags());
   2049     break;
   2050   }
   2051 
   2052   NI->insertBefore(User);
   2053   NI->setName(User->getName());
   2054   User->replaceAllUsesWith(NI);
   2055   NI->setDebugLoc(I->getDebugLoc());
   2056   RedoInsts.insert(I);
   2057   MadeChange = true;
   2058   return NI;
   2059 }
   2060 
   2061 /// OptimizeInst - Inspect and optimize the given instruction. Note that erasing
   2062 /// instructions is not allowed.
   2063 void Reassociate::OptimizeInst(Instruction *I) {
   2064   // Only consider operations that we understand.
   2065   if (!isa<BinaryOperator>(I))
   2066     return;
   2067 
   2068   if (I->getOpcode() == Instruction::Shl && isa<ConstantInt>(I->getOperand(1)))
   2069     // If an operand of this shift is a reassociable multiply, or if the shift
   2070     // is used by a reassociable multiply or add, turn into a multiply.
   2071     if (isReassociableOp(I->getOperand(0), Instruction::Mul) ||
   2072         (I->hasOneUse() &&
   2073          (isReassociableOp(I->user_back(), Instruction::Mul) ||
   2074           isReassociableOp(I->user_back(), Instruction::Add)))) {
   2075       Instruction *NI = ConvertShiftToMul(I);
   2076       RedoInsts.insert(I);
   2077       MadeChange = true;
   2078       I = NI;
   2079     }
   2080 
   2081   // Canonicalize negative constants out of expressions.
   2082   if (Instruction *Res = canonicalizeNegConstExpr(I))
   2083     I = Res;
   2084 
   2085   // Commute binary operators, to canonicalize the order of their operands.
   2086   // This can potentially expose more CSE opportunities, and makes writing other
   2087   // transformations simpler.
   2088   if (I->isCommutative())
   2089     canonicalizeOperands(I);
   2090 
   2091   // TODO: We should optimize vector Xor instructions, but they are
   2092   // currently unsupported.
   2093   if (I->getType()->isVectorTy() && I->getOpcode() == Instruction::Xor)
   2094     return;
   2095 
   2096   // Don't optimize floating point instructions that don't have unsafe algebra.
   2097   if (I->getType()->isFloatingPointTy() && !I->hasUnsafeAlgebra())
   2098     return;
   2099 
   2100   // Do not reassociate boolean (i1) expressions.  We want to preserve the
   2101   // original order of evaluation for short-circuited comparisons that
   2102   // SimplifyCFG has folded to AND/OR expressions.  If the expression
   2103   // is not further optimized, it is likely to be transformed back to a
   2104   // short-circuited form for code gen, and the source order may have been
   2105   // optimized for the most likely conditions.
   2106   if (I->getType()->isIntegerTy(1))
   2107     return;
   2108 
   2109   // If this is a subtract instruction which is not already in negate form,
   2110   // see if we can convert it to X+-Y.
   2111   if (I->getOpcode() == Instruction::Sub) {
   2112     if (ShouldBreakUpSubtract(I)) {
   2113       Instruction *NI = BreakUpSubtract(I);
   2114       RedoInsts.insert(I);
   2115       MadeChange = true;
   2116       I = NI;
   2117     } else if (BinaryOperator::isNeg(I)) {
   2118       // Otherwise, this is a negation.  See if the operand is a multiply tree
   2119       // and if this is not an inner node of a multiply tree.
   2120       if (isReassociableOp(I->getOperand(1), Instruction::Mul) &&
   2121           (!I->hasOneUse() ||
   2122            !isReassociableOp(I->user_back(), Instruction::Mul))) {
   2123         Instruction *NI = LowerNegateToMultiply(I);
   2124         RedoInsts.insert(I);
   2125         MadeChange = true;
   2126         I = NI;
   2127       }
   2128     }
   2129   } else if (I->getOpcode() == Instruction::FSub) {
   2130     if (ShouldBreakUpSubtract(I)) {
   2131       Instruction *NI = BreakUpSubtract(I);
   2132       RedoInsts.insert(I);
   2133       MadeChange = true;
   2134       I = NI;
   2135     } else if (BinaryOperator::isFNeg(I)) {
   2136       // Otherwise, this is a negation.  See if the operand is a multiply tree
   2137       // and if this is not an inner node of a multiply tree.
   2138       if (isReassociableOp(I->getOperand(1), Instruction::FMul) &&
   2139           (!I->hasOneUse() ||
   2140            !isReassociableOp(I->user_back(), Instruction::FMul))) {
   2141         Instruction *NI = LowerNegateToMultiply(I);
   2142         RedoInsts.insert(I);
   2143         MadeChange = true;
   2144         I = NI;
   2145       }
   2146     }
   2147   }
   2148 
   2149   // If this instruction is an associative binary operator, process it.
   2150   if (!I->isAssociative()) return;
   2151   BinaryOperator *BO = cast<BinaryOperator>(I);
   2152 
   2153   // If this is an interior node of a reassociable tree, ignore it until we
   2154   // get to the root of the tree, to avoid N^2 analysis.
   2155   unsigned Opcode = BO->getOpcode();
   2156   if (BO->hasOneUse() && BO->user_back()->getOpcode() == Opcode)
   2157     return;
   2158 
   2159   // If this is an add tree that is used by a sub instruction, ignore it
   2160   // until we process the subtract.
   2161   if (BO->hasOneUse() && BO->getOpcode() == Instruction::Add &&
   2162       cast<Instruction>(BO->user_back())->getOpcode() == Instruction::Sub)
   2163     return;
   2164   if (BO->hasOneUse() && BO->getOpcode() == Instruction::FAdd &&
   2165       cast<Instruction>(BO->user_back())->getOpcode() == Instruction::FSub)
   2166     return;
   2167 
   2168   ReassociateExpression(BO);
   2169 }
   2170 
   2171 void Reassociate::ReassociateExpression(BinaryOperator *I) {
   2172   // First, walk the expression tree, linearizing the tree, collecting the
   2173   // operand information.
   2174   SmallVector<RepeatedValue, 8> Tree;
   2175   MadeChange |= LinearizeExprTree(I, Tree);
   2176   SmallVector<ValueEntry, 8> Ops;
   2177   Ops.reserve(Tree.size());
   2178   for (unsigned i = 0, e = Tree.size(); i != e; ++i) {
   2179     RepeatedValue E = Tree[i];
   2180     Ops.append(E.second.getZExtValue(),
   2181                ValueEntry(getRank(E.first), E.first));
   2182   }
   2183 
   2184   DEBUG(dbgs() << "RAIn:\t"; PrintOps(I, Ops); dbgs() << '\n');
   2185 
   2186   // Now that we have linearized the tree to a list and have gathered all of
   2187   // the operands and their ranks, sort the operands by their rank.  Use a
   2188   // stable_sort so that values with equal ranks will have their relative
   2189   // positions maintained (and so the compiler is deterministic).  Note that
   2190   // this sorts so that the highest ranking values end up at the beginning of
   2191   // the vector.
   2192   std::stable_sort(Ops.begin(), Ops.end());
   2193 
   2194   // OptimizeExpression - Now that we have the expression tree in a convenient
   2195   // sorted form, optimize it globally if possible.
   2196   if (Value *V = OptimizeExpression(I, Ops)) {
   2197     if (V == I)
   2198       // Self-referential expression in unreachable code.
   2199       return;
   2200     // This expression tree simplified to something that isn't a tree,
   2201     // eliminate it.
   2202     DEBUG(dbgs() << "Reassoc to scalar: " << *V << '\n');
   2203     I->replaceAllUsesWith(V);
   2204     if (Instruction *VI = dyn_cast<Instruction>(V))
   2205       VI->setDebugLoc(I->getDebugLoc());
   2206     RedoInsts.insert(I);
   2207     ++NumAnnihil;
   2208     return;
   2209   }
   2210 
   2211   // We want to sink immediates as deeply as possible except in the case where
   2212   // this is a multiply tree used only by an add, and the immediate is a -1.
   2213   // In this case we reassociate to put the negation on the outside so that we
   2214   // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
   2215   if (I->hasOneUse()) {
   2216     if (I->getOpcode() == Instruction::Mul &&
   2217         cast<Instruction>(I->user_back())->getOpcode() == Instruction::Add &&
   2218         isa<ConstantInt>(Ops.back().Op) &&
   2219         cast<ConstantInt>(Ops.back().Op)->isAllOnesValue()) {
   2220       ValueEntry Tmp = Ops.pop_back_val();
   2221       Ops.insert(Ops.begin(), Tmp);
   2222     } else if (I->getOpcode() == Instruction::FMul &&
   2223                cast<Instruction>(I->user_back())->getOpcode() ==
   2224                    Instruction::FAdd &&
   2225                isa<ConstantFP>(Ops.back().Op) &&
   2226                cast<ConstantFP>(Ops.back().Op)->isExactlyValue(-1.0)) {
   2227       ValueEntry Tmp = Ops.pop_back_val();
   2228       Ops.insert(Ops.begin(), Tmp);
   2229     }
   2230   }
   2231 
   2232   DEBUG(dbgs() << "RAOut:\t"; PrintOps(I, Ops); dbgs() << '\n');
   2233 
   2234   if (Ops.size() == 1) {
   2235     if (Ops[0].Op == I)
   2236       // Self-referential expression in unreachable code.
   2237       return;
   2238 
   2239     // This expression tree simplified to something that isn't a tree,
   2240     // eliminate it.
   2241     I->replaceAllUsesWith(Ops[0].Op);
   2242     if (Instruction *OI = dyn_cast<Instruction>(Ops[0].Op))
   2243       OI->setDebugLoc(I->getDebugLoc());
   2244     RedoInsts.insert(I);
   2245     return;
   2246   }
   2247 
   2248   // Now that we ordered and optimized the expressions, splat them back into
   2249   // the expression tree, removing any unneeded nodes.
   2250   RewriteExprTree(I, Ops);
   2251 }
   2252 
   2253 bool Reassociate::runOnFunction(Function &F) {
   2254   if (skipOptnoneFunction(F))
   2255     return false;
   2256 
   2257   // Calculate the rank map for F
   2258   BuildRankMap(F);
   2259 
   2260   MadeChange = false;
   2261   for (Function::iterator BI = F.begin(), BE = F.end(); BI != BE; ++BI) {
   2262     // Optimize every instruction in the basic block.
   2263     for (BasicBlock::iterator II = BI->begin(), IE = BI->end(); II != IE; )
   2264       if (isInstructionTriviallyDead(II)) {
   2265         EraseInst(II++);
   2266       } else {
   2267         OptimizeInst(II);
   2268         assert(II->getParent() == BI && "Moved to a different block!");
   2269         ++II;
   2270       }
   2271 
   2272     // If this produced extra instructions to optimize, handle them now.
   2273     while (!RedoInsts.empty()) {
   2274       Instruction *I = RedoInsts.pop_back_val();
   2275       if (isInstructionTriviallyDead(I))
   2276         EraseInst(I);
   2277       else
   2278         OptimizeInst(I);
   2279     }
   2280   }
   2281 
   2282   // We are done with the rank map.
   2283   RankMap.clear();
   2284   ValueRankMap.clear();
   2285 
   2286   return MadeChange;
   2287 }
   2288