Home | History | Annotate | Download | only in AsmParser
      1 //===-- ARMAsmParser.cpp - Parse ARM assembly to MCInst instructions ------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 
     10 #include "ARMFPUName.h"
     11 #include "ARMFeatures.h"
     12 #include "MCTargetDesc/ARMAddressingModes.h"
     13 #include "MCTargetDesc/ARMArchName.h"
     14 #include "MCTargetDesc/ARMBaseInfo.h"
     15 #include "MCTargetDesc/ARMMCExpr.h"
     16 #include "llvm/ADT/STLExtras.h"
     17 #include "llvm/ADT/SmallVector.h"
     18 #include "llvm/ADT/StringExtras.h"
     19 #include "llvm/ADT/StringSwitch.h"
     20 #include "llvm/ADT/Twine.h"
     21 #include "llvm/MC/MCAsmInfo.h"
     22 #include "llvm/MC/MCAssembler.h"
     23 #include "llvm/MC/MCContext.h"
     24 #include "llvm/MC/MCDisassembler.h"
     25 #include "llvm/MC/MCELFStreamer.h"
     26 #include "llvm/MC/MCExpr.h"
     27 #include "llvm/MC/MCInst.h"
     28 #include "llvm/MC/MCInstrDesc.h"
     29 #include "llvm/MC/MCInstrInfo.h"
     30 #include "llvm/MC/MCObjectFileInfo.h"
     31 #include "llvm/MC/MCParser/MCAsmLexer.h"
     32 #include "llvm/MC/MCParser/MCAsmParser.h"
     33 #include "llvm/MC/MCParser/MCParsedAsmOperand.h"
     34 #include "llvm/MC/MCRegisterInfo.h"
     35 #include "llvm/MC/MCSection.h"
     36 #include "llvm/MC/MCStreamer.h"
     37 #include "llvm/MC/MCSubtargetInfo.h"
     38 #include "llvm/MC/MCSymbol.h"
     39 #include "llvm/MC/MCTargetAsmParser.h"
     40 #include "llvm/Support/ARMBuildAttributes.h"
     41 #include "llvm/Support/ARMEHABI.h"
     42 #include "llvm/Support/COFF.h"
     43 #include "llvm/Support/Debug.h"
     44 #include "llvm/Support/ELF.h"
     45 #include "llvm/Support/MathExtras.h"
     46 #include "llvm/Support/SourceMgr.h"
     47 #include "llvm/Support/TargetRegistry.h"
     48 #include "llvm/Support/raw_ostream.h"
     49 
     50 using namespace llvm;
     51 
     52 namespace {
     53 
     54 class ARMOperand;
     55 
     56 enum VectorLaneTy { NoLanes, AllLanes, IndexedLane };
     57 
     58 class UnwindContext {
     59   MCAsmParser &Parser;
     60 
     61   typedef SmallVector<SMLoc, 4> Locs;
     62 
     63   Locs FnStartLocs;
     64   Locs CantUnwindLocs;
     65   Locs PersonalityLocs;
     66   Locs PersonalityIndexLocs;
     67   Locs HandlerDataLocs;
     68   int FPReg;
     69 
     70 public:
     71   UnwindContext(MCAsmParser &P) : Parser(P), FPReg(ARM::SP) {}
     72 
     73   bool hasFnStart() const { return !FnStartLocs.empty(); }
     74   bool cantUnwind() const { return !CantUnwindLocs.empty(); }
     75   bool hasHandlerData() const { return !HandlerDataLocs.empty(); }
     76   bool hasPersonality() const {
     77     return !(PersonalityLocs.empty() && PersonalityIndexLocs.empty());
     78   }
     79 
     80   void recordFnStart(SMLoc L) { FnStartLocs.push_back(L); }
     81   void recordCantUnwind(SMLoc L) { CantUnwindLocs.push_back(L); }
     82   void recordPersonality(SMLoc L) { PersonalityLocs.push_back(L); }
     83   void recordHandlerData(SMLoc L) { HandlerDataLocs.push_back(L); }
     84   void recordPersonalityIndex(SMLoc L) { PersonalityIndexLocs.push_back(L); }
     85 
     86   void saveFPReg(int Reg) { FPReg = Reg; }
     87   int getFPReg() const { return FPReg; }
     88 
     89   void emitFnStartLocNotes() const {
     90     for (Locs::const_iterator FI = FnStartLocs.begin(), FE = FnStartLocs.end();
     91          FI != FE; ++FI)
     92       Parser.Note(*FI, ".fnstart was specified here");
     93   }
     94   void emitCantUnwindLocNotes() const {
     95     for (Locs::const_iterator UI = CantUnwindLocs.begin(),
     96                               UE = CantUnwindLocs.end(); UI != UE; ++UI)
     97       Parser.Note(*UI, ".cantunwind was specified here");
     98   }
     99   void emitHandlerDataLocNotes() const {
    100     for (Locs::const_iterator HI = HandlerDataLocs.begin(),
    101                               HE = HandlerDataLocs.end(); HI != HE; ++HI)
    102       Parser.Note(*HI, ".handlerdata was specified here");
    103   }
    104   void emitPersonalityLocNotes() const {
    105     for (Locs::const_iterator PI = PersonalityLocs.begin(),
    106                               PE = PersonalityLocs.end(),
    107                               PII = PersonalityIndexLocs.begin(),
    108                               PIE = PersonalityIndexLocs.end();
    109          PI != PE || PII != PIE;) {
    110       if (PI != PE && (PII == PIE || PI->getPointer() < PII->getPointer()))
    111         Parser.Note(*PI++, ".personality was specified here");
    112       else if (PII != PIE && (PI == PE || PII->getPointer() < PI->getPointer()))
    113         Parser.Note(*PII++, ".personalityindex was specified here");
    114       else
    115         llvm_unreachable(".personality and .personalityindex cannot be "
    116                          "at the same location");
    117     }
    118   }
    119 
    120   void reset() {
    121     FnStartLocs = Locs();
    122     CantUnwindLocs = Locs();
    123     PersonalityLocs = Locs();
    124     HandlerDataLocs = Locs();
    125     PersonalityIndexLocs = Locs();
    126     FPReg = ARM::SP;
    127   }
    128 };
    129 
    130 class ARMAsmParser : public MCTargetAsmParser {
    131   MCSubtargetInfo &STI;
    132   const MCInstrInfo &MII;
    133   const MCRegisterInfo *MRI;
    134   UnwindContext UC;
    135 
    136   ARMTargetStreamer &getTargetStreamer() {
    137     assert(getParser().getStreamer().getTargetStreamer() &&
    138            "do not have a target streamer");
    139     MCTargetStreamer &TS = *getParser().getStreamer().getTargetStreamer();
    140     return static_cast<ARMTargetStreamer &>(TS);
    141   }
    142 
    143   // Map of register aliases registers via the .req directive.
    144   StringMap<unsigned> RegisterReqs;
    145 
    146   bool NextSymbolIsThumb;
    147 
    148   struct {
    149     ARMCC::CondCodes Cond;    // Condition for IT block.
    150     unsigned Mask:4;          // Condition mask for instructions.
    151                               // Starting at first 1 (from lsb).
    152                               //   '1'  condition as indicated in IT.
    153                               //   '0'  inverse of condition (else).
    154                               // Count of instructions in IT block is
    155                               // 4 - trailingzeroes(mask)
    156 
    157     bool FirstCond;           // Explicit flag for when we're parsing the
    158                               // First instruction in the IT block. It's
    159                               // implied in the mask, so needs special
    160                               // handling.
    161 
    162     unsigned CurPosition;     // Current position in parsing of IT
    163                               // block. In range [0,3]. Initialized
    164                               // according to count of instructions in block.
    165                               // ~0U if no active IT block.
    166   } ITState;
    167   bool inITBlock() { return ITState.CurPosition != ~0U; }
    168   bool lastInITBlock() {
    169     return ITState.CurPosition == 4 - countTrailingZeros(ITState.Mask);
    170   }
    171   void forwardITPosition() {
    172     if (!inITBlock()) return;
    173     // Move to the next instruction in the IT block, if there is one. If not,
    174     // mark the block as done.
    175     unsigned TZ = countTrailingZeros(ITState.Mask);
    176     if (++ITState.CurPosition == 5 - TZ)
    177       ITState.CurPosition = ~0U; // Done with the IT block after this.
    178   }
    179 
    180   void Note(SMLoc L, const Twine &Msg, ArrayRef<SMRange> Ranges = None) {
    181     return getParser().Note(L, Msg, Ranges);
    182   }
    183   bool Warning(SMLoc L, const Twine &Msg,
    184                ArrayRef<SMRange> Ranges = None) {
    185     return getParser().Warning(L, Msg, Ranges);
    186   }
    187   bool Error(SMLoc L, const Twine &Msg,
    188              ArrayRef<SMRange> Ranges = None) {
    189     return getParser().Error(L, Msg, Ranges);
    190   }
    191 
    192   bool validatetLDMRegList(MCInst Inst, const OperandVector &Operands,
    193                            unsigned ListNo, bool IsARPop = false);
    194   bool validatetSTMRegList(MCInst Inst, const OperandVector &Operands,
    195                            unsigned ListNo);
    196 
    197   int tryParseRegister();
    198   bool tryParseRegisterWithWriteBack(OperandVector &);
    199   int tryParseShiftRegister(OperandVector &);
    200   bool parseRegisterList(OperandVector &);
    201   bool parseMemory(OperandVector &);
    202   bool parseOperand(OperandVector &, StringRef Mnemonic);
    203   bool parsePrefix(ARMMCExpr::VariantKind &RefKind);
    204   bool parseMemRegOffsetShift(ARM_AM::ShiftOpc &ShiftType,
    205                               unsigned &ShiftAmount);
    206   bool parseLiteralValues(unsigned Size, SMLoc L);
    207   bool parseDirectiveThumb(SMLoc L);
    208   bool parseDirectiveARM(SMLoc L);
    209   bool parseDirectiveThumbFunc(SMLoc L);
    210   bool parseDirectiveCode(SMLoc L);
    211   bool parseDirectiveSyntax(SMLoc L);
    212   bool parseDirectiveReq(StringRef Name, SMLoc L);
    213   bool parseDirectiveUnreq(SMLoc L);
    214   bool parseDirectiveArch(SMLoc L);
    215   bool parseDirectiveEabiAttr(SMLoc L);
    216   bool parseDirectiveCPU(SMLoc L);
    217   bool parseDirectiveFPU(SMLoc L);
    218   bool parseDirectiveFnStart(SMLoc L);
    219   bool parseDirectiveFnEnd(SMLoc L);
    220   bool parseDirectiveCantUnwind(SMLoc L);
    221   bool parseDirectivePersonality(SMLoc L);
    222   bool parseDirectiveHandlerData(SMLoc L);
    223   bool parseDirectiveSetFP(SMLoc L);
    224   bool parseDirectivePad(SMLoc L);
    225   bool parseDirectiveRegSave(SMLoc L, bool IsVector);
    226   bool parseDirectiveInst(SMLoc L, char Suffix = '\0');
    227   bool parseDirectiveLtorg(SMLoc L);
    228   bool parseDirectiveEven(SMLoc L);
    229   bool parseDirectivePersonalityIndex(SMLoc L);
    230   bool parseDirectiveUnwindRaw(SMLoc L);
    231   bool parseDirectiveTLSDescSeq(SMLoc L);
    232   bool parseDirectiveMovSP(SMLoc L);
    233   bool parseDirectiveObjectArch(SMLoc L);
    234   bool parseDirectiveArchExtension(SMLoc L);
    235   bool parseDirectiveAlign(SMLoc L);
    236   bool parseDirectiveThumbSet(SMLoc L);
    237 
    238   StringRef splitMnemonic(StringRef Mnemonic, unsigned &PredicationCode,
    239                           bool &CarrySetting, unsigned &ProcessorIMod,
    240                           StringRef &ITMask);
    241   void getMnemonicAcceptInfo(StringRef Mnemonic, StringRef FullInst,
    242                              bool &CanAcceptCarrySet,
    243                              bool &CanAcceptPredicationCode);
    244 
    245   bool isThumb() const {
    246     // FIXME: Can tablegen auto-generate this?
    247     return (STI.getFeatureBits() & ARM::ModeThumb) != 0;
    248   }
    249   bool isThumbOne() const {
    250     return isThumb() && (STI.getFeatureBits() & ARM::FeatureThumb2) == 0;
    251   }
    252   bool isThumbTwo() const {
    253     return isThumb() && (STI.getFeatureBits() & ARM::FeatureThumb2);
    254   }
    255   bool hasThumb() const {
    256     return STI.getFeatureBits() & ARM::HasV4TOps;
    257   }
    258   bool hasV6Ops() const {
    259     return STI.getFeatureBits() & ARM::HasV6Ops;
    260   }
    261   bool hasV6MOps() const {
    262     return STI.getFeatureBits() & ARM::HasV6MOps;
    263   }
    264   bool hasV7Ops() const {
    265     return STI.getFeatureBits() & ARM::HasV7Ops;
    266   }
    267   bool hasV8Ops() const {
    268     return STI.getFeatureBits() & ARM::HasV8Ops;
    269   }
    270   bool hasARM() const {
    271     return !(STI.getFeatureBits() & ARM::FeatureNoARM);
    272   }
    273   bool hasThumb2DSP() const {
    274     return STI.getFeatureBits() & ARM::FeatureDSPThumb2;
    275   }
    276   bool hasD16() const {
    277     return STI.getFeatureBits() & ARM::FeatureD16;
    278   }
    279   bool hasV8_1aOps() const {
    280     return STI.getFeatureBits() & ARM::HasV8_1aOps;
    281   }
    282 
    283   void SwitchMode() {
    284     uint64_t FB = ComputeAvailableFeatures(STI.ToggleFeature(ARM::ModeThumb));
    285     setAvailableFeatures(FB);
    286   }
    287   bool isMClass() const {
    288     return STI.getFeatureBits() & ARM::FeatureMClass;
    289   }
    290 
    291   /// @name Auto-generated Match Functions
    292   /// {
    293 
    294 #define GET_ASSEMBLER_HEADER
    295 #include "ARMGenAsmMatcher.inc"
    296 
    297   /// }
    298 
    299   OperandMatchResultTy parseITCondCode(OperandVector &);
    300   OperandMatchResultTy parseCoprocNumOperand(OperandVector &);
    301   OperandMatchResultTy parseCoprocRegOperand(OperandVector &);
    302   OperandMatchResultTy parseCoprocOptionOperand(OperandVector &);
    303   OperandMatchResultTy parseMemBarrierOptOperand(OperandVector &);
    304   OperandMatchResultTy parseInstSyncBarrierOptOperand(OperandVector &);
    305   OperandMatchResultTy parseProcIFlagsOperand(OperandVector &);
    306   OperandMatchResultTy parseMSRMaskOperand(OperandVector &);
    307   OperandMatchResultTy parseBankedRegOperand(OperandVector &);
    308   OperandMatchResultTy parsePKHImm(OperandVector &O, StringRef Op, int Low,
    309                                    int High);
    310   OperandMatchResultTy parsePKHLSLImm(OperandVector &O) {
    311     return parsePKHImm(O, "lsl", 0, 31);
    312   }
    313   OperandMatchResultTy parsePKHASRImm(OperandVector &O) {
    314     return parsePKHImm(O, "asr", 1, 32);
    315   }
    316   OperandMatchResultTy parseSetEndImm(OperandVector &);
    317   OperandMatchResultTy parseShifterImm(OperandVector &);
    318   OperandMatchResultTy parseRotImm(OperandVector &);
    319   OperandMatchResultTy parseModImm(OperandVector &);
    320   OperandMatchResultTy parseBitfield(OperandVector &);
    321   OperandMatchResultTy parsePostIdxReg(OperandVector &);
    322   OperandMatchResultTy parseAM3Offset(OperandVector &);
    323   OperandMatchResultTy parseFPImm(OperandVector &);
    324   OperandMatchResultTy parseVectorList(OperandVector &);
    325   OperandMatchResultTy parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index,
    326                                        SMLoc &EndLoc);
    327 
    328   // Asm Match Converter Methods
    329   void cvtThumbMultiply(MCInst &Inst, const OperandVector &);
    330   void cvtThumbBranches(MCInst &Inst, const OperandVector &);
    331 
    332   bool validateInstruction(MCInst &Inst, const OperandVector &Ops);
    333   bool processInstruction(MCInst &Inst, const OperandVector &Ops, MCStreamer &Out);
    334   bool shouldOmitCCOutOperand(StringRef Mnemonic, OperandVector &Operands);
    335   bool shouldOmitPredicateOperand(StringRef Mnemonic, OperandVector &Operands);
    336 
    337 public:
    338   enum ARMMatchResultTy {
    339     Match_RequiresITBlock = FIRST_TARGET_MATCH_RESULT_TY,
    340     Match_RequiresNotITBlock,
    341     Match_RequiresV6,
    342     Match_RequiresThumb2,
    343 #define GET_OPERAND_DIAGNOSTIC_TYPES
    344 #include "ARMGenAsmMatcher.inc"
    345 
    346   };
    347 
    348   ARMAsmParser(MCSubtargetInfo &STI, MCAsmParser &Parser,
    349                const MCInstrInfo &MII, const MCTargetOptions &Options)
    350       : STI(STI), MII(MII), UC(Parser) {
    351     MCAsmParserExtension::Initialize(Parser);
    352 
    353     // Cache the MCRegisterInfo.
    354     MRI = getContext().getRegisterInfo();
    355 
    356     // Initialize the set of available features.
    357     setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
    358 
    359     // Not in an ITBlock to start with.
    360     ITState.CurPosition = ~0U;
    361 
    362     NextSymbolIsThumb = false;
    363   }
    364 
    365   // Implementation of the MCTargetAsmParser interface:
    366   bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override;
    367   bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
    368                         SMLoc NameLoc, OperandVector &Operands) override;
    369   bool ParseDirective(AsmToken DirectiveID) override;
    370 
    371   unsigned validateTargetOperandClass(MCParsedAsmOperand &Op,
    372                                       unsigned Kind) override;
    373   unsigned checkTargetMatchPredicate(MCInst &Inst) override;
    374 
    375   bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
    376                                OperandVector &Operands, MCStreamer &Out,
    377                                uint64_t &ErrorInfo,
    378                                bool MatchingInlineAsm) override;
    379   void onLabelParsed(MCSymbol *Symbol) override;
    380 };
    381 } // end anonymous namespace
    382 
    383 namespace {
    384 
    385 /// ARMOperand - Instances of this class represent a parsed ARM machine
    386 /// operand.
    387 class ARMOperand : public MCParsedAsmOperand {
    388   enum KindTy {
    389     k_CondCode,
    390     k_CCOut,
    391     k_ITCondMask,
    392     k_CoprocNum,
    393     k_CoprocReg,
    394     k_CoprocOption,
    395     k_Immediate,
    396     k_MemBarrierOpt,
    397     k_InstSyncBarrierOpt,
    398     k_Memory,
    399     k_PostIndexRegister,
    400     k_MSRMask,
    401     k_BankedReg,
    402     k_ProcIFlags,
    403     k_VectorIndex,
    404     k_Register,
    405     k_RegisterList,
    406     k_DPRRegisterList,
    407     k_SPRRegisterList,
    408     k_VectorList,
    409     k_VectorListAllLanes,
    410     k_VectorListIndexed,
    411     k_ShiftedRegister,
    412     k_ShiftedImmediate,
    413     k_ShifterImmediate,
    414     k_RotateImmediate,
    415     k_ModifiedImmediate,
    416     k_BitfieldDescriptor,
    417     k_Token
    418   } Kind;
    419 
    420   SMLoc StartLoc, EndLoc, AlignmentLoc;
    421   SmallVector<unsigned, 8> Registers;
    422 
    423   struct CCOp {
    424     ARMCC::CondCodes Val;
    425   };
    426 
    427   struct CopOp {
    428     unsigned Val;
    429   };
    430 
    431   struct CoprocOptionOp {
    432     unsigned Val;
    433   };
    434 
    435   struct ITMaskOp {
    436     unsigned Mask:4;
    437   };
    438 
    439   struct MBOptOp {
    440     ARM_MB::MemBOpt Val;
    441   };
    442 
    443   struct ISBOptOp {
    444     ARM_ISB::InstSyncBOpt Val;
    445   };
    446 
    447   struct IFlagsOp {
    448     ARM_PROC::IFlags Val;
    449   };
    450 
    451   struct MMaskOp {
    452     unsigned Val;
    453   };
    454 
    455   struct BankedRegOp {
    456     unsigned Val;
    457   };
    458 
    459   struct TokOp {
    460     const char *Data;
    461     unsigned Length;
    462   };
    463 
    464   struct RegOp {
    465     unsigned RegNum;
    466   };
    467 
    468   // A vector register list is a sequential list of 1 to 4 registers.
    469   struct VectorListOp {
    470     unsigned RegNum;
    471     unsigned Count;
    472     unsigned LaneIndex;
    473     bool isDoubleSpaced;
    474   };
    475 
    476   struct VectorIndexOp {
    477     unsigned Val;
    478   };
    479 
    480   struct ImmOp {
    481     const MCExpr *Val;
    482   };
    483 
    484   /// Combined record for all forms of ARM address expressions.
    485   struct MemoryOp {
    486     unsigned BaseRegNum;
    487     // Offset is in OffsetReg or OffsetImm. If both are zero, no offset
    488     // was specified.
    489     const MCConstantExpr *OffsetImm;  // Offset immediate value
    490     unsigned OffsetRegNum;    // Offset register num, when OffsetImm == NULL
    491     ARM_AM::ShiftOpc ShiftType; // Shift type for OffsetReg
    492     unsigned ShiftImm;        // shift for OffsetReg.
    493     unsigned Alignment;       // 0 = no alignment specified
    494     // n = alignment in bytes (2, 4, 8, 16, or 32)
    495     unsigned isNegative : 1;  // Negated OffsetReg? (~'U' bit)
    496   };
    497 
    498   struct PostIdxRegOp {
    499     unsigned RegNum;
    500     bool isAdd;
    501     ARM_AM::ShiftOpc ShiftTy;
    502     unsigned ShiftImm;
    503   };
    504 
    505   struct ShifterImmOp {
    506     bool isASR;
    507     unsigned Imm;
    508   };
    509 
    510   struct RegShiftedRegOp {
    511     ARM_AM::ShiftOpc ShiftTy;
    512     unsigned SrcReg;
    513     unsigned ShiftReg;
    514     unsigned ShiftImm;
    515   };
    516 
    517   struct RegShiftedImmOp {
    518     ARM_AM::ShiftOpc ShiftTy;
    519     unsigned SrcReg;
    520     unsigned ShiftImm;
    521   };
    522 
    523   struct RotImmOp {
    524     unsigned Imm;
    525   };
    526 
    527   struct ModImmOp {
    528     unsigned Bits;
    529     unsigned Rot;
    530   };
    531 
    532   struct BitfieldOp {
    533     unsigned LSB;
    534     unsigned Width;
    535   };
    536 
    537   union {
    538     struct CCOp CC;
    539     struct CopOp Cop;
    540     struct CoprocOptionOp CoprocOption;
    541     struct MBOptOp MBOpt;
    542     struct ISBOptOp ISBOpt;
    543     struct ITMaskOp ITMask;
    544     struct IFlagsOp IFlags;
    545     struct MMaskOp MMask;
    546     struct BankedRegOp BankedReg;
    547     struct TokOp Tok;
    548     struct RegOp Reg;
    549     struct VectorListOp VectorList;
    550     struct VectorIndexOp VectorIndex;
    551     struct ImmOp Imm;
    552     struct MemoryOp Memory;
    553     struct PostIdxRegOp PostIdxReg;
    554     struct ShifterImmOp ShifterImm;
    555     struct RegShiftedRegOp RegShiftedReg;
    556     struct RegShiftedImmOp RegShiftedImm;
    557     struct RotImmOp RotImm;
    558     struct ModImmOp ModImm;
    559     struct BitfieldOp Bitfield;
    560   };
    561 
    562 public:
    563   ARMOperand(KindTy K) : MCParsedAsmOperand(), Kind(K) {}
    564   ARMOperand(const ARMOperand &o) : MCParsedAsmOperand() {
    565     Kind = o.Kind;
    566     StartLoc = o.StartLoc;
    567     EndLoc = o.EndLoc;
    568     switch (Kind) {
    569     case k_CondCode:
    570       CC = o.CC;
    571       break;
    572     case k_ITCondMask:
    573       ITMask = o.ITMask;
    574       break;
    575     case k_Token:
    576       Tok = o.Tok;
    577       break;
    578     case k_CCOut:
    579     case k_Register:
    580       Reg = o.Reg;
    581       break;
    582     case k_RegisterList:
    583     case k_DPRRegisterList:
    584     case k_SPRRegisterList:
    585       Registers = o.Registers;
    586       break;
    587     case k_VectorList:
    588     case k_VectorListAllLanes:
    589     case k_VectorListIndexed:
    590       VectorList = o.VectorList;
    591       break;
    592     case k_CoprocNum:
    593     case k_CoprocReg:
    594       Cop = o.Cop;
    595       break;
    596     case k_CoprocOption:
    597       CoprocOption = o.CoprocOption;
    598       break;
    599     case k_Immediate:
    600       Imm = o.Imm;
    601       break;
    602     case k_MemBarrierOpt:
    603       MBOpt = o.MBOpt;
    604       break;
    605     case k_InstSyncBarrierOpt:
    606       ISBOpt = o.ISBOpt;
    607     case k_Memory:
    608       Memory = o.Memory;
    609       break;
    610     case k_PostIndexRegister:
    611       PostIdxReg = o.PostIdxReg;
    612       break;
    613     case k_MSRMask:
    614       MMask = o.MMask;
    615       break;
    616     case k_BankedReg:
    617       BankedReg = o.BankedReg;
    618       break;
    619     case k_ProcIFlags:
    620       IFlags = o.IFlags;
    621       break;
    622     case k_ShifterImmediate:
    623       ShifterImm = o.ShifterImm;
    624       break;
    625     case k_ShiftedRegister:
    626       RegShiftedReg = o.RegShiftedReg;
    627       break;
    628     case k_ShiftedImmediate:
    629       RegShiftedImm = o.RegShiftedImm;
    630       break;
    631     case k_RotateImmediate:
    632       RotImm = o.RotImm;
    633       break;
    634     case k_ModifiedImmediate:
    635       ModImm = o.ModImm;
    636       break;
    637     case k_BitfieldDescriptor:
    638       Bitfield = o.Bitfield;
    639       break;
    640     case k_VectorIndex:
    641       VectorIndex = o.VectorIndex;
    642       break;
    643     }
    644   }
    645 
    646   /// getStartLoc - Get the location of the first token of this operand.
    647   SMLoc getStartLoc() const override { return StartLoc; }
    648   /// getEndLoc - Get the location of the last token of this operand.
    649   SMLoc getEndLoc() const override { return EndLoc; }
    650   /// getLocRange - Get the range between the first and last token of this
    651   /// operand.
    652   SMRange getLocRange() const { return SMRange(StartLoc, EndLoc); }
    653 
    654   /// getAlignmentLoc - Get the location of the Alignment token of this operand.
    655   SMLoc getAlignmentLoc() const {
    656     assert(Kind == k_Memory && "Invalid access!");
    657     return AlignmentLoc;
    658   }
    659 
    660   ARMCC::CondCodes getCondCode() const {
    661     assert(Kind == k_CondCode && "Invalid access!");
    662     return CC.Val;
    663   }
    664 
    665   unsigned getCoproc() const {
    666     assert((Kind == k_CoprocNum || Kind == k_CoprocReg) && "Invalid access!");
    667     return Cop.Val;
    668   }
    669 
    670   StringRef getToken() const {
    671     assert(Kind == k_Token && "Invalid access!");
    672     return StringRef(Tok.Data, Tok.Length);
    673   }
    674 
    675   unsigned getReg() const override {
    676     assert((Kind == k_Register || Kind == k_CCOut) && "Invalid access!");
    677     return Reg.RegNum;
    678   }
    679 
    680   const SmallVectorImpl<unsigned> &getRegList() const {
    681     assert((Kind == k_RegisterList || Kind == k_DPRRegisterList ||
    682             Kind == k_SPRRegisterList) && "Invalid access!");
    683     return Registers;
    684   }
    685 
    686   const MCExpr *getImm() const {
    687     assert(isImm() && "Invalid access!");
    688     return Imm.Val;
    689   }
    690 
    691   unsigned getVectorIndex() const {
    692     assert(Kind == k_VectorIndex && "Invalid access!");
    693     return VectorIndex.Val;
    694   }
    695 
    696   ARM_MB::MemBOpt getMemBarrierOpt() const {
    697     assert(Kind == k_MemBarrierOpt && "Invalid access!");
    698     return MBOpt.Val;
    699   }
    700 
    701   ARM_ISB::InstSyncBOpt getInstSyncBarrierOpt() const {
    702     assert(Kind == k_InstSyncBarrierOpt && "Invalid access!");
    703     return ISBOpt.Val;
    704   }
    705 
    706   ARM_PROC::IFlags getProcIFlags() const {
    707     assert(Kind == k_ProcIFlags && "Invalid access!");
    708     return IFlags.Val;
    709   }
    710 
    711   unsigned getMSRMask() const {
    712     assert(Kind == k_MSRMask && "Invalid access!");
    713     return MMask.Val;
    714   }
    715 
    716   unsigned getBankedReg() const {
    717     assert(Kind == k_BankedReg && "Invalid access!");
    718     return BankedReg.Val;
    719   }
    720 
    721   bool isCoprocNum() const { return Kind == k_CoprocNum; }
    722   bool isCoprocReg() const { return Kind == k_CoprocReg; }
    723   bool isCoprocOption() const { return Kind == k_CoprocOption; }
    724   bool isCondCode() const { return Kind == k_CondCode; }
    725   bool isCCOut() const { return Kind == k_CCOut; }
    726   bool isITMask() const { return Kind == k_ITCondMask; }
    727   bool isITCondCode() const { return Kind == k_CondCode; }
    728   bool isImm() const override { return Kind == k_Immediate; }
    729   // checks whether this operand is an unsigned offset which fits is a field
    730   // of specified width and scaled by a specific number of bits
    731   template<unsigned width, unsigned scale>
    732   bool isUnsignedOffset() const {
    733     if (!isImm()) return false;
    734     if (isa<MCSymbolRefExpr>(Imm.Val)) return true;
    735     if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) {
    736       int64_t Val = CE->getValue();
    737       int64_t Align = 1LL << scale;
    738       int64_t Max = Align * ((1LL << width) - 1);
    739       return ((Val % Align) == 0) && (Val >= 0) && (Val <= Max);
    740     }
    741     return false;
    742   }
    743   // checks whether this operand is an signed offset which fits is a field
    744   // of specified width and scaled by a specific number of bits
    745   template<unsigned width, unsigned scale>
    746   bool isSignedOffset() const {
    747     if (!isImm()) return false;
    748     if (isa<MCSymbolRefExpr>(Imm.Val)) return true;
    749     if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val)) {
    750       int64_t Val = CE->getValue();
    751       int64_t Align = 1LL << scale;
    752       int64_t Max = Align * ((1LL << (width-1)) - 1);
    753       int64_t Min = -Align * (1LL << (width-1));
    754       return ((Val % Align) == 0) && (Val >= Min) && (Val <= Max);
    755     }
    756     return false;
    757   }
    758 
    759   // checks whether this operand is a memory operand computed as an offset
    760   // applied to PC. the offset may have 8 bits of magnitude and is represented
    761   // with two bits of shift. textually it may be either [pc, #imm], #imm or
    762   // relocable expression...
    763   bool isThumbMemPC() const {
    764     int64_t Val = 0;
    765     if (isImm()) {
    766       if (isa<MCSymbolRefExpr>(Imm.Val)) return true;
    767       const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm.Val);
    768       if (!CE) return false;
    769       Val = CE->getValue();
    770     }
    771     else if (isMem()) {
    772       if(!Memory.OffsetImm || Memory.OffsetRegNum) return false;
    773       if(Memory.BaseRegNum != ARM::PC) return false;
    774       Val = Memory.OffsetImm->getValue();
    775     }
    776     else return false;
    777     return ((Val % 4) == 0) && (Val >= 0) && (Val <= 1020);
    778   }
    779   bool isFPImm() const {
    780     if (!isImm()) return false;
    781     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    782     if (!CE) return false;
    783     int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue()));
    784     return Val != -1;
    785   }
    786   bool isFBits16() const {
    787     if (!isImm()) return false;
    788     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    789     if (!CE) return false;
    790     int64_t Value = CE->getValue();
    791     return Value >= 0 && Value <= 16;
    792   }
    793   bool isFBits32() const {
    794     if (!isImm()) return false;
    795     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    796     if (!CE) return false;
    797     int64_t Value = CE->getValue();
    798     return Value >= 1 && Value <= 32;
    799   }
    800   bool isImm8s4() const {
    801     if (!isImm()) return false;
    802     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    803     if (!CE) return false;
    804     int64_t Value = CE->getValue();
    805     return ((Value & 3) == 0) && Value >= -1020 && Value <= 1020;
    806   }
    807   bool isImm0_1020s4() const {
    808     if (!isImm()) return false;
    809     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    810     if (!CE) return false;
    811     int64_t Value = CE->getValue();
    812     return ((Value & 3) == 0) && Value >= 0 && Value <= 1020;
    813   }
    814   bool isImm0_508s4() const {
    815     if (!isImm()) return false;
    816     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    817     if (!CE) return false;
    818     int64_t Value = CE->getValue();
    819     return ((Value & 3) == 0) && Value >= 0 && Value <= 508;
    820   }
    821   bool isImm0_508s4Neg() const {
    822     if (!isImm()) return false;
    823     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    824     if (!CE) return false;
    825     int64_t Value = -CE->getValue();
    826     // explicitly exclude zero. we want that to use the normal 0_508 version.
    827     return ((Value & 3) == 0) && Value > 0 && Value <= 508;
    828   }
    829   bool isImm0_239() const {
    830     if (!isImm()) return false;
    831     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    832     if (!CE) return false;
    833     int64_t Value = CE->getValue();
    834     return Value >= 0 && Value < 240;
    835   }
    836   bool isImm0_255() const {
    837     if (!isImm()) return false;
    838     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    839     if (!CE) return false;
    840     int64_t Value = CE->getValue();
    841     return Value >= 0 && Value < 256;
    842   }
    843   bool isImm0_4095() const {
    844     if (!isImm()) return false;
    845     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    846     if (!CE) return false;
    847     int64_t Value = CE->getValue();
    848     return Value >= 0 && Value < 4096;
    849   }
    850   bool isImm0_4095Neg() const {
    851     if (!isImm()) return false;
    852     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    853     if (!CE) return false;
    854     int64_t Value = -CE->getValue();
    855     return Value > 0 && Value < 4096;
    856   }
    857   bool isImm0_1() const {
    858     if (!isImm()) return false;
    859     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    860     if (!CE) return false;
    861     int64_t Value = CE->getValue();
    862     return Value >= 0 && Value < 2;
    863   }
    864   bool isImm0_3() const {
    865     if (!isImm()) return false;
    866     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    867     if (!CE) return false;
    868     int64_t Value = CE->getValue();
    869     return Value >= 0 && Value < 4;
    870   }
    871   bool isImm0_7() const {
    872     if (!isImm()) return false;
    873     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    874     if (!CE) return false;
    875     int64_t Value = CE->getValue();
    876     return Value >= 0 && Value < 8;
    877   }
    878   bool isImm0_15() const {
    879     if (!isImm()) return false;
    880     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    881     if (!CE) return false;
    882     int64_t Value = CE->getValue();
    883     return Value >= 0 && Value < 16;
    884   }
    885   bool isImm0_31() const {
    886     if (!isImm()) return false;
    887     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    888     if (!CE) return false;
    889     int64_t Value = CE->getValue();
    890     return Value >= 0 && Value < 32;
    891   }
    892   bool isImm0_63() const {
    893     if (!isImm()) return false;
    894     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    895     if (!CE) return false;
    896     int64_t Value = CE->getValue();
    897     return Value >= 0 && Value < 64;
    898   }
    899   bool isImm8() const {
    900     if (!isImm()) return false;
    901     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    902     if (!CE) return false;
    903     int64_t Value = CE->getValue();
    904     return Value == 8;
    905   }
    906   bool isImm16() const {
    907     if (!isImm()) return false;
    908     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    909     if (!CE) return false;
    910     int64_t Value = CE->getValue();
    911     return Value == 16;
    912   }
    913   bool isImm32() const {
    914     if (!isImm()) return false;
    915     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    916     if (!CE) return false;
    917     int64_t Value = CE->getValue();
    918     return Value == 32;
    919   }
    920   bool isShrImm8() const {
    921     if (!isImm()) return false;
    922     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    923     if (!CE) return false;
    924     int64_t Value = CE->getValue();
    925     return Value > 0 && Value <= 8;
    926   }
    927   bool isShrImm16() const {
    928     if (!isImm()) return false;
    929     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    930     if (!CE) return false;
    931     int64_t Value = CE->getValue();
    932     return Value > 0 && Value <= 16;
    933   }
    934   bool isShrImm32() const {
    935     if (!isImm()) return false;
    936     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    937     if (!CE) return false;
    938     int64_t Value = CE->getValue();
    939     return Value > 0 && Value <= 32;
    940   }
    941   bool isShrImm64() const {
    942     if (!isImm()) return false;
    943     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    944     if (!CE) return false;
    945     int64_t Value = CE->getValue();
    946     return Value > 0 && Value <= 64;
    947   }
    948   bool isImm1_7() const {
    949     if (!isImm()) return false;
    950     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    951     if (!CE) return false;
    952     int64_t Value = CE->getValue();
    953     return Value > 0 && Value < 8;
    954   }
    955   bool isImm1_15() const {
    956     if (!isImm()) return false;
    957     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    958     if (!CE) return false;
    959     int64_t Value = CE->getValue();
    960     return Value > 0 && Value < 16;
    961   }
    962   bool isImm1_31() const {
    963     if (!isImm()) return false;
    964     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    965     if (!CE) return false;
    966     int64_t Value = CE->getValue();
    967     return Value > 0 && Value < 32;
    968   }
    969   bool isImm1_16() const {
    970     if (!isImm()) return false;
    971     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    972     if (!CE) return false;
    973     int64_t Value = CE->getValue();
    974     return Value > 0 && Value < 17;
    975   }
    976   bool isImm1_32() const {
    977     if (!isImm()) return false;
    978     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    979     if (!CE) return false;
    980     int64_t Value = CE->getValue();
    981     return Value > 0 && Value < 33;
    982   }
    983   bool isImm0_32() const {
    984     if (!isImm()) return false;
    985     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    986     if (!CE) return false;
    987     int64_t Value = CE->getValue();
    988     return Value >= 0 && Value < 33;
    989   }
    990   bool isImm0_65535() const {
    991     if (!isImm()) return false;
    992     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
    993     if (!CE) return false;
    994     int64_t Value = CE->getValue();
    995     return Value >= 0 && Value < 65536;
    996   }
    997   bool isImm256_65535Expr() const {
    998     if (!isImm()) return false;
    999     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
   1000     // If it's not a constant expression, it'll generate a fixup and be
   1001     // handled later.
   1002     if (!CE) return true;
   1003     int64_t Value = CE->getValue();
   1004     return Value >= 256 && Value < 65536;
   1005   }
   1006   bool isImm0_65535Expr() const {
   1007     if (!isImm()) return false;
   1008     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
   1009     // If it's not a constant expression, it'll generate a fixup and be
   1010     // handled later.
   1011     if (!CE) return true;
   1012     int64_t Value = CE->getValue();
   1013     return Value >= 0 && Value < 65536;
   1014   }
   1015   bool isImm24bit() const {
   1016     if (!isImm()) return false;
   1017     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
   1018     if (!CE) return false;
   1019     int64_t Value = CE->getValue();
   1020     return Value >= 0 && Value <= 0xffffff;
   1021   }
   1022   bool isImmThumbSR() const {
   1023     if (!isImm()) return false;
   1024     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
   1025     if (!CE) return false;
   1026     int64_t Value = CE->getValue();
   1027     return Value > 0 && Value < 33;
   1028   }
   1029   bool isPKHLSLImm() const {
   1030     if (!isImm()) return false;
   1031     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
   1032     if (!CE) return false;
   1033     int64_t Value = CE->getValue();
   1034     return Value >= 0 && Value < 32;
   1035   }
   1036   bool isPKHASRImm() const {
   1037     if (!isImm()) return false;
   1038     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
   1039     if (!CE) return false;
   1040     int64_t Value = CE->getValue();
   1041     return Value > 0 && Value <= 32;
   1042   }
   1043   bool isAdrLabel() const {
   1044     // If we have an immediate that's not a constant, treat it as a label
   1045     // reference needing a fixup.
   1046     if (isImm() && !isa<MCConstantExpr>(getImm()))
   1047       return true;
   1048 
   1049     // If it is a constant, it must fit into a modified immediate encoding.
   1050     if (!isImm()) return false;
   1051     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
   1052     if (!CE) return false;
   1053     int64_t Value = CE->getValue();
   1054     return (ARM_AM::getSOImmVal(Value) != -1 ||
   1055             ARM_AM::getSOImmVal(-Value) != -1);;
   1056   }
   1057   bool isT2SOImm() const {
   1058     if (!isImm()) return false;
   1059     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
   1060     if (!CE) return false;
   1061     int64_t Value = CE->getValue();
   1062     return ARM_AM::getT2SOImmVal(Value) != -1;
   1063   }
   1064   bool isT2SOImmNot() const {
   1065     if (!isImm()) return false;
   1066     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
   1067     if (!CE) return false;
   1068     int64_t Value = CE->getValue();
   1069     return ARM_AM::getT2SOImmVal(Value) == -1 &&
   1070       ARM_AM::getT2SOImmVal(~Value) != -1;
   1071   }
   1072   bool isT2SOImmNeg() const {
   1073     if (!isImm()) return false;
   1074     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
   1075     if (!CE) return false;
   1076     int64_t Value = CE->getValue();
   1077     // Only use this when not representable as a plain so_imm.
   1078     return ARM_AM::getT2SOImmVal(Value) == -1 &&
   1079       ARM_AM::getT2SOImmVal(-Value) != -1;
   1080   }
   1081   bool isSetEndImm() const {
   1082     if (!isImm()) return false;
   1083     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
   1084     if (!CE) return false;
   1085     int64_t Value = CE->getValue();
   1086     return Value == 1 || Value == 0;
   1087   }
   1088   bool isReg() const override { return Kind == k_Register; }
   1089   bool isRegList() const { return Kind == k_RegisterList; }
   1090   bool isDPRRegList() const { return Kind == k_DPRRegisterList; }
   1091   bool isSPRRegList() const { return Kind == k_SPRRegisterList; }
   1092   bool isToken() const override { return Kind == k_Token; }
   1093   bool isMemBarrierOpt() const { return Kind == k_MemBarrierOpt; }
   1094   bool isInstSyncBarrierOpt() const { return Kind == k_InstSyncBarrierOpt; }
   1095   bool isMem() const override { return Kind == k_Memory; }
   1096   bool isShifterImm() const { return Kind == k_ShifterImmediate; }
   1097   bool isRegShiftedReg() const { return Kind == k_ShiftedRegister; }
   1098   bool isRegShiftedImm() const { return Kind == k_ShiftedImmediate; }
   1099   bool isRotImm() const { return Kind == k_RotateImmediate; }
   1100   bool isModImm() const { return Kind == k_ModifiedImmediate; }
   1101   bool isModImmNot() const {
   1102     if (!isImm()) return false;
   1103     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
   1104     if (!CE) return false;
   1105     int64_t Value = CE->getValue();
   1106     return ARM_AM::getSOImmVal(~Value) != -1;
   1107   }
   1108   bool isModImmNeg() const {
   1109     if (!isImm()) return false;
   1110     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
   1111     if (!CE) return false;
   1112     int64_t Value = CE->getValue();
   1113     return ARM_AM::getSOImmVal(Value) == -1 &&
   1114       ARM_AM::getSOImmVal(-Value) != -1;
   1115   }
   1116   bool isBitfield() const { return Kind == k_BitfieldDescriptor; }
   1117   bool isPostIdxRegShifted() const { return Kind == k_PostIndexRegister; }
   1118   bool isPostIdxReg() const {
   1119     return Kind == k_PostIndexRegister && PostIdxReg.ShiftTy ==ARM_AM::no_shift;
   1120   }
   1121   bool isMemNoOffset(bool alignOK = false, unsigned Alignment = 0) const {
   1122     if (!isMem())
   1123       return false;
   1124     // No offset of any kind.
   1125     return Memory.OffsetRegNum == 0 && Memory.OffsetImm == nullptr &&
   1126      (alignOK || Memory.Alignment == Alignment);
   1127   }
   1128   bool isMemPCRelImm12() const {
   1129     if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
   1130       return false;
   1131     // Base register must be PC.
   1132     if (Memory.BaseRegNum != ARM::PC)
   1133       return false;
   1134     // Immediate offset in range [-4095, 4095].
   1135     if (!Memory.OffsetImm) return true;
   1136     int64_t Val = Memory.OffsetImm->getValue();
   1137     return (Val > -4096 && Val < 4096) || (Val == INT32_MIN);
   1138   }
   1139   bool isAlignedMemory() const {
   1140     return isMemNoOffset(true);
   1141   }
   1142   bool isAlignedMemoryNone() const {
   1143     return isMemNoOffset(false, 0);
   1144   }
   1145   bool isDupAlignedMemoryNone() const {
   1146     return isMemNoOffset(false, 0);
   1147   }
   1148   bool isAlignedMemory16() const {
   1149     if (isMemNoOffset(false, 2)) // alignment in bytes for 16-bits is 2.
   1150       return true;
   1151     return isMemNoOffset(false, 0);
   1152   }
   1153   bool isDupAlignedMemory16() const {
   1154     if (isMemNoOffset(false, 2)) // alignment in bytes for 16-bits is 2.
   1155       return true;
   1156     return isMemNoOffset(false, 0);
   1157   }
   1158   bool isAlignedMemory32() const {
   1159     if (isMemNoOffset(false, 4)) // alignment in bytes for 32-bits is 4.
   1160       return true;
   1161     return isMemNoOffset(false, 0);
   1162   }
   1163   bool isDupAlignedMemory32() const {
   1164     if (isMemNoOffset(false, 4)) // alignment in bytes for 32-bits is 4.
   1165       return true;
   1166     return isMemNoOffset(false, 0);
   1167   }
   1168   bool isAlignedMemory64() const {
   1169     if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8.
   1170       return true;
   1171     return isMemNoOffset(false, 0);
   1172   }
   1173   bool isDupAlignedMemory64() const {
   1174     if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8.
   1175       return true;
   1176     return isMemNoOffset(false, 0);
   1177   }
   1178   bool isAlignedMemory64or128() const {
   1179     if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8.
   1180       return true;
   1181     if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16.
   1182       return true;
   1183     return isMemNoOffset(false, 0);
   1184   }
   1185   bool isDupAlignedMemory64or128() const {
   1186     if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8.
   1187       return true;
   1188     if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16.
   1189       return true;
   1190     return isMemNoOffset(false, 0);
   1191   }
   1192   bool isAlignedMemory64or128or256() const {
   1193     if (isMemNoOffset(false, 8)) // alignment in bytes for 64-bits is 8.
   1194       return true;
   1195     if (isMemNoOffset(false, 16)) // alignment in bytes for 128-bits is 16.
   1196       return true;
   1197     if (isMemNoOffset(false, 32)) // alignment in bytes for 256-bits is 32.
   1198       return true;
   1199     return isMemNoOffset(false, 0);
   1200   }
   1201   bool isAddrMode2() const {
   1202     if (!isMem() || Memory.Alignment != 0) return false;
   1203     // Check for register offset.
   1204     if (Memory.OffsetRegNum) return true;
   1205     // Immediate offset in range [-4095, 4095].
   1206     if (!Memory.OffsetImm) return true;
   1207     int64_t Val = Memory.OffsetImm->getValue();
   1208     return Val > -4096 && Val < 4096;
   1209   }
   1210   bool isAM2OffsetImm() const {
   1211     if (!isImm()) return false;
   1212     // Immediate offset in range [-4095, 4095].
   1213     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
   1214     if (!CE) return false;
   1215     int64_t Val = CE->getValue();
   1216     return (Val == INT32_MIN) || (Val > -4096 && Val < 4096);
   1217   }
   1218   bool isAddrMode3() const {
   1219     // If we have an immediate that's not a constant, treat it as a label
   1220     // reference needing a fixup. If it is a constant, it's something else
   1221     // and we reject it.
   1222     if (isImm() && !isa<MCConstantExpr>(getImm()))
   1223       return true;
   1224     if (!isMem() || Memory.Alignment != 0) return false;
   1225     // No shifts are legal for AM3.
   1226     if (Memory.ShiftType != ARM_AM::no_shift) return false;
   1227     // Check for register offset.
   1228     if (Memory.OffsetRegNum) return true;
   1229     // Immediate offset in range [-255, 255].
   1230     if (!Memory.OffsetImm) return true;
   1231     int64_t Val = Memory.OffsetImm->getValue();
   1232     // The #-0 offset is encoded as INT32_MIN, and we have to check
   1233     // for this too.
   1234     return (Val > -256 && Val < 256) || Val == INT32_MIN;
   1235   }
   1236   bool isAM3Offset() const {
   1237     if (Kind != k_Immediate && Kind != k_PostIndexRegister)
   1238       return false;
   1239     if (Kind == k_PostIndexRegister)
   1240       return PostIdxReg.ShiftTy == ARM_AM::no_shift;
   1241     // Immediate offset in range [-255, 255].
   1242     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
   1243     if (!CE) return false;
   1244     int64_t Val = CE->getValue();
   1245     // Special case, #-0 is INT32_MIN.
   1246     return (Val > -256 && Val < 256) || Val == INT32_MIN;
   1247   }
   1248   bool isAddrMode5() const {
   1249     // If we have an immediate that's not a constant, treat it as a label
   1250     // reference needing a fixup. If it is a constant, it's something else
   1251     // and we reject it.
   1252     if (isImm() && !isa<MCConstantExpr>(getImm()))
   1253       return true;
   1254     if (!isMem() || Memory.Alignment != 0) return false;
   1255     // Check for register offset.
   1256     if (Memory.OffsetRegNum) return false;
   1257     // Immediate offset in range [-1020, 1020] and a multiple of 4.
   1258     if (!Memory.OffsetImm) return true;
   1259     int64_t Val = Memory.OffsetImm->getValue();
   1260     return (Val >= -1020 && Val <= 1020 && ((Val & 3) == 0)) ||
   1261       Val == INT32_MIN;
   1262   }
   1263   bool isMemTBB() const {
   1264     if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative ||
   1265         Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0)
   1266       return false;
   1267     return true;
   1268   }
   1269   bool isMemTBH() const {
   1270     if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative ||
   1271         Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm != 1 ||
   1272         Memory.Alignment != 0 )
   1273       return false;
   1274     return true;
   1275   }
   1276   bool isMemRegOffset() const {
   1277     if (!isMem() || !Memory.OffsetRegNum || Memory.Alignment != 0)
   1278       return false;
   1279     return true;
   1280   }
   1281   bool isT2MemRegOffset() const {
   1282     if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative ||
   1283         Memory.Alignment != 0)
   1284       return false;
   1285     // Only lsl #{0, 1, 2, 3} allowed.
   1286     if (Memory.ShiftType == ARM_AM::no_shift)
   1287       return true;
   1288     if (Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm > 3)
   1289       return false;
   1290     return true;
   1291   }
   1292   bool isMemThumbRR() const {
   1293     // Thumb reg+reg addressing is simple. Just two registers, a base and
   1294     // an offset. No shifts, negations or any other complicating factors.
   1295     if (!isMem() || !Memory.OffsetRegNum || Memory.isNegative ||
   1296         Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0)
   1297       return false;
   1298     return isARMLowRegister(Memory.BaseRegNum) &&
   1299       (!Memory.OffsetRegNum || isARMLowRegister(Memory.OffsetRegNum));
   1300   }
   1301   bool isMemThumbRIs4() const {
   1302     if (!isMem() || Memory.OffsetRegNum != 0 ||
   1303         !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0)
   1304       return false;
   1305     // Immediate offset, multiple of 4 in range [0, 124].
   1306     if (!Memory.OffsetImm) return true;
   1307     int64_t Val = Memory.OffsetImm->getValue();
   1308     return Val >= 0 && Val <= 124 && (Val % 4) == 0;
   1309   }
   1310   bool isMemThumbRIs2() const {
   1311     if (!isMem() || Memory.OffsetRegNum != 0 ||
   1312         !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0)
   1313       return false;
   1314     // Immediate offset, multiple of 4 in range [0, 62].
   1315     if (!Memory.OffsetImm) return true;
   1316     int64_t Val = Memory.OffsetImm->getValue();
   1317     return Val >= 0 && Val <= 62 && (Val % 2) == 0;
   1318   }
   1319   bool isMemThumbRIs1() const {
   1320     if (!isMem() || Memory.OffsetRegNum != 0 ||
   1321         !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0)
   1322       return false;
   1323     // Immediate offset in range [0, 31].
   1324     if (!Memory.OffsetImm) return true;
   1325     int64_t Val = Memory.OffsetImm->getValue();
   1326     return Val >= 0 && Val <= 31;
   1327   }
   1328   bool isMemThumbSPI() const {
   1329     if (!isMem() || Memory.OffsetRegNum != 0 ||
   1330         Memory.BaseRegNum != ARM::SP || Memory.Alignment != 0)
   1331       return false;
   1332     // Immediate offset, multiple of 4 in range [0, 1020].
   1333     if (!Memory.OffsetImm) return true;
   1334     int64_t Val = Memory.OffsetImm->getValue();
   1335     return Val >= 0 && Val <= 1020 && (Val % 4) == 0;
   1336   }
   1337   bool isMemImm8s4Offset() const {
   1338     // If we have an immediate that's not a constant, treat it as a label
   1339     // reference needing a fixup. If it is a constant, it's something else
   1340     // and we reject it.
   1341     if (isImm() && !isa<MCConstantExpr>(getImm()))
   1342       return true;
   1343     if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
   1344       return false;
   1345     // Immediate offset a multiple of 4 in range [-1020, 1020].
   1346     if (!Memory.OffsetImm) return true;
   1347     int64_t Val = Memory.OffsetImm->getValue();
   1348     // Special case, #-0 is INT32_MIN.
   1349     return (Val >= -1020 && Val <= 1020 && (Val & 3) == 0) || Val == INT32_MIN;
   1350   }
   1351   bool isMemImm0_1020s4Offset() const {
   1352     if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
   1353       return false;
   1354     // Immediate offset a multiple of 4 in range [0, 1020].
   1355     if (!Memory.OffsetImm) return true;
   1356     int64_t Val = Memory.OffsetImm->getValue();
   1357     return Val >= 0 && Val <= 1020 && (Val & 3) == 0;
   1358   }
   1359   bool isMemImm8Offset() const {
   1360     if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
   1361       return false;
   1362     // Base reg of PC isn't allowed for these encodings.
   1363     if (Memory.BaseRegNum == ARM::PC) return false;
   1364     // Immediate offset in range [-255, 255].
   1365     if (!Memory.OffsetImm) return true;
   1366     int64_t Val = Memory.OffsetImm->getValue();
   1367     return (Val == INT32_MIN) || (Val > -256 && Val < 256);
   1368   }
   1369   bool isMemPosImm8Offset() const {
   1370     if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
   1371       return false;
   1372     // Immediate offset in range [0, 255].
   1373     if (!Memory.OffsetImm) return true;
   1374     int64_t Val = Memory.OffsetImm->getValue();
   1375     return Val >= 0 && Val < 256;
   1376   }
   1377   bool isMemNegImm8Offset() const {
   1378     if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
   1379       return false;
   1380     // Base reg of PC isn't allowed for these encodings.
   1381     if (Memory.BaseRegNum == ARM::PC) return false;
   1382     // Immediate offset in range [-255, -1].
   1383     if (!Memory.OffsetImm) return false;
   1384     int64_t Val = Memory.OffsetImm->getValue();
   1385     return (Val == INT32_MIN) || (Val > -256 && Val < 0);
   1386   }
   1387   bool isMemUImm12Offset() const {
   1388     if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
   1389       return false;
   1390     // Immediate offset in range [0, 4095].
   1391     if (!Memory.OffsetImm) return true;
   1392     int64_t Val = Memory.OffsetImm->getValue();
   1393     return (Val >= 0 && Val < 4096);
   1394   }
   1395   bool isMemImm12Offset() const {
   1396     // If we have an immediate that's not a constant, treat it as a label
   1397     // reference needing a fixup. If it is a constant, it's something else
   1398     // and we reject it.
   1399     if (isImm() && !isa<MCConstantExpr>(getImm()))
   1400       return true;
   1401 
   1402     if (!isMem() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
   1403       return false;
   1404     // Immediate offset in range [-4095, 4095].
   1405     if (!Memory.OffsetImm) return true;
   1406     int64_t Val = Memory.OffsetImm->getValue();
   1407     return (Val > -4096 && Val < 4096) || (Val == INT32_MIN);
   1408   }
   1409   bool isPostIdxImm8() const {
   1410     if (!isImm()) return false;
   1411     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
   1412     if (!CE) return false;
   1413     int64_t Val = CE->getValue();
   1414     return (Val > -256 && Val < 256) || (Val == INT32_MIN);
   1415   }
   1416   bool isPostIdxImm8s4() const {
   1417     if (!isImm()) return false;
   1418     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
   1419     if (!CE) return false;
   1420     int64_t Val = CE->getValue();
   1421     return ((Val & 3) == 0 && Val >= -1020 && Val <= 1020) ||
   1422       (Val == INT32_MIN);
   1423   }
   1424 
   1425   bool isMSRMask() const { return Kind == k_MSRMask; }
   1426   bool isBankedReg() const { return Kind == k_BankedReg; }
   1427   bool isProcIFlags() const { return Kind == k_ProcIFlags; }
   1428 
   1429   // NEON operands.
   1430   bool isSingleSpacedVectorList() const {
   1431     return Kind == k_VectorList && !VectorList.isDoubleSpaced;
   1432   }
   1433   bool isDoubleSpacedVectorList() const {
   1434     return Kind == k_VectorList && VectorList.isDoubleSpaced;
   1435   }
   1436   bool isVecListOneD() const {
   1437     if (!isSingleSpacedVectorList()) return false;
   1438     return VectorList.Count == 1;
   1439   }
   1440 
   1441   bool isVecListDPair() const {
   1442     if (!isSingleSpacedVectorList()) return false;
   1443     return (ARMMCRegisterClasses[ARM::DPairRegClassID]
   1444               .contains(VectorList.RegNum));
   1445   }
   1446 
   1447   bool isVecListThreeD() const {
   1448     if (!isSingleSpacedVectorList()) return false;
   1449     return VectorList.Count == 3;
   1450   }
   1451 
   1452   bool isVecListFourD() const {
   1453     if (!isSingleSpacedVectorList()) return false;
   1454     return VectorList.Count == 4;
   1455   }
   1456 
   1457   bool isVecListDPairSpaced() const {
   1458     if (Kind != k_VectorList) return false;
   1459     if (isSingleSpacedVectorList()) return false;
   1460     return (ARMMCRegisterClasses[ARM::DPairSpcRegClassID]
   1461               .contains(VectorList.RegNum));
   1462   }
   1463 
   1464   bool isVecListThreeQ() const {
   1465     if (!isDoubleSpacedVectorList()) return false;
   1466     return VectorList.Count == 3;
   1467   }
   1468 
   1469   bool isVecListFourQ() const {
   1470     if (!isDoubleSpacedVectorList()) return false;
   1471     return VectorList.Count == 4;
   1472   }
   1473 
   1474   bool isSingleSpacedVectorAllLanes() const {
   1475     return Kind == k_VectorListAllLanes && !VectorList.isDoubleSpaced;
   1476   }
   1477   bool isDoubleSpacedVectorAllLanes() const {
   1478     return Kind == k_VectorListAllLanes && VectorList.isDoubleSpaced;
   1479   }
   1480   bool isVecListOneDAllLanes() const {
   1481     if (!isSingleSpacedVectorAllLanes()) return false;
   1482     return VectorList.Count == 1;
   1483   }
   1484 
   1485   bool isVecListDPairAllLanes() const {
   1486     if (!isSingleSpacedVectorAllLanes()) return false;
   1487     return (ARMMCRegisterClasses[ARM::DPairRegClassID]
   1488               .contains(VectorList.RegNum));
   1489   }
   1490 
   1491   bool isVecListDPairSpacedAllLanes() const {
   1492     if (!isDoubleSpacedVectorAllLanes()) return false;
   1493     return VectorList.Count == 2;
   1494   }
   1495 
   1496   bool isVecListThreeDAllLanes() const {
   1497     if (!isSingleSpacedVectorAllLanes()) return false;
   1498     return VectorList.Count == 3;
   1499   }
   1500 
   1501   bool isVecListThreeQAllLanes() const {
   1502     if (!isDoubleSpacedVectorAllLanes()) return false;
   1503     return VectorList.Count == 3;
   1504   }
   1505 
   1506   bool isVecListFourDAllLanes() const {
   1507     if (!isSingleSpacedVectorAllLanes()) return false;
   1508     return VectorList.Count == 4;
   1509   }
   1510 
   1511   bool isVecListFourQAllLanes() const {
   1512     if (!isDoubleSpacedVectorAllLanes()) return false;
   1513     return VectorList.Count == 4;
   1514   }
   1515 
   1516   bool isSingleSpacedVectorIndexed() const {
   1517     return Kind == k_VectorListIndexed && !VectorList.isDoubleSpaced;
   1518   }
   1519   bool isDoubleSpacedVectorIndexed() const {
   1520     return Kind == k_VectorListIndexed && VectorList.isDoubleSpaced;
   1521   }
   1522   bool isVecListOneDByteIndexed() const {
   1523     if (!isSingleSpacedVectorIndexed()) return false;
   1524     return VectorList.Count == 1 && VectorList.LaneIndex <= 7;
   1525   }
   1526 
   1527   bool isVecListOneDHWordIndexed() const {
   1528     if (!isSingleSpacedVectorIndexed()) return false;
   1529     return VectorList.Count == 1 && VectorList.LaneIndex <= 3;
   1530   }
   1531 
   1532   bool isVecListOneDWordIndexed() const {
   1533     if (!isSingleSpacedVectorIndexed()) return false;
   1534     return VectorList.Count == 1 && VectorList.LaneIndex <= 1;
   1535   }
   1536 
   1537   bool isVecListTwoDByteIndexed() const {
   1538     if (!isSingleSpacedVectorIndexed()) return false;
   1539     return VectorList.Count == 2 && VectorList.LaneIndex <= 7;
   1540   }
   1541 
   1542   bool isVecListTwoDHWordIndexed() const {
   1543     if (!isSingleSpacedVectorIndexed()) return false;
   1544     return VectorList.Count == 2 && VectorList.LaneIndex <= 3;
   1545   }
   1546 
   1547   bool isVecListTwoQWordIndexed() const {
   1548     if (!isDoubleSpacedVectorIndexed()) return false;
   1549     return VectorList.Count == 2 && VectorList.LaneIndex <= 1;
   1550   }
   1551 
   1552   bool isVecListTwoQHWordIndexed() const {
   1553     if (!isDoubleSpacedVectorIndexed()) return false;
   1554     return VectorList.Count == 2 && VectorList.LaneIndex <= 3;
   1555   }
   1556 
   1557   bool isVecListTwoDWordIndexed() const {
   1558     if (!isSingleSpacedVectorIndexed()) return false;
   1559     return VectorList.Count == 2 && VectorList.LaneIndex <= 1;
   1560   }
   1561 
   1562   bool isVecListThreeDByteIndexed() const {
   1563     if (!isSingleSpacedVectorIndexed()) return false;
   1564     return VectorList.Count == 3 && VectorList.LaneIndex <= 7;
   1565   }
   1566 
   1567   bool isVecListThreeDHWordIndexed() const {
   1568     if (!isSingleSpacedVectorIndexed()) return false;
   1569     return VectorList.Count == 3 && VectorList.LaneIndex <= 3;
   1570   }
   1571 
   1572   bool isVecListThreeQWordIndexed() const {
   1573     if (!isDoubleSpacedVectorIndexed()) return false;
   1574     return VectorList.Count == 3 && VectorList.LaneIndex <= 1;
   1575   }
   1576 
   1577   bool isVecListThreeQHWordIndexed() const {
   1578     if (!isDoubleSpacedVectorIndexed()) return false;
   1579     return VectorList.Count == 3 && VectorList.LaneIndex <= 3;
   1580   }
   1581 
   1582   bool isVecListThreeDWordIndexed() const {
   1583     if (!isSingleSpacedVectorIndexed()) return false;
   1584     return VectorList.Count == 3 && VectorList.LaneIndex <= 1;
   1585   }
   1586 
   1587   bool isVecListFourDByteIndexed() const {
   1588     if (!isSingleSpacedVectorIndexed()) return false;
   1589     return VectorList.Count == 4 && VectorList.LaneIndex <= 7;
   1590   }
   1591 
   1592   bool isVecListFourDHWordIndexed() const {
   1593     if (!isSingleSpacedVectorIndexed()) return false;
   1594     return VectorList.Count == 4 && VectorList.LaneIndex <= 3;
   1595   }
   1596 
   1597   bool isVecListFourQWordIndexed() const {
   1598     if (!isDoubleSpacedVectorIndexed()) return false;
   1599     return VectorList.Count == 4 && VectorList.LaneIndex <= 1;
   1600   }
   1601 
   1602   bool isVecListFourQHWordIndexed() const {
   1603     if (!isDoubleSpacedVectorIndexed()) return false;
   1604     return VectorList.Count == 4 && VectorList.LaneIndex <= 3;
   1605   }
   1606 
   1607   bool isVecListFourDWordIndexed() const {
   1608     if (!isSingleSpacedVectorIndexed()) return false;
   1609     return VectorList.Count == 4 && VectorList.LaneIndex <= 1;
   1610   }
   1611 
   1612   bool isVectorIndex8() const {
   1613     if (Kind != k_VectorIndex) return false;
   1614     return VectorIndex.Val < 8;
   1615   }
   1616   bool isVectorIndex16() const {
   1617     if (Kind != k_VectorIndex) return false;
   1618     return VectorIndex.Val < 4;
   1619   }
   1620   bool isVectorIndex32() const {
   1621     if (Kind != k_VectorIndex) return false;
   1622     return VectorIndex.Val < 2;
   1623   }
   1624 
   1625   bool isNEONi8splat() const {
   1626     if (!isImm()) return false;
   1627     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
   1628     // Must be a constant.
   1629     if (!CE) return false;
   1630     int64_t Value = CE->getValue();
   1631     // i8 value splatted across 8 bytes. The immediate is just the 8 byte
   1632     // value.
   1633     return Value >= 0 && Value < 256;
   1634   }
   1635 
   1636   bool isNEONi16splat() const {
   1637     if (isNEONByteReplicate(2))
   1638       return false; // Leave that for bytes replication and forbid by default.
   1639     if (!isImm())
   1640       return false;
   1641     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
   1642     // Must be a constant.
   1643     if (!CE) return false;
   1644     unsigned Value = CE->getValue();
   1645     return ARM_AM::isNEONi16splat(Value);
   1646   }
   1647 
   1648   bool isNEONi16splatNot() const {
   1649     if (!isImm())
   1650       return false;
   1651     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
   1652     // Must be a constant.
   1653     if (!CE) return false;
   1654     unsigned Value = CE->getValue();
   1655     return ARM_AM::isNEONi16splat(~Value & 0xffff);
   1656   }
   1657 
   1658   bool isNEONi32splat() const {
   1659     if (isNEONByteReplicate(4))
   1660       return false; // Leave that for bytes replication and forbid by default.
   1661     if (!isImm())
   1662       return false;
   1663     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
   1664     // Must be a constant.
   1665     if (!CE) return false;
   1666     unsigned Value = CE->getValue();
   1667     return ARM_AM::isNEONi32splat(Value);
   1668   }
   1669 
   1670   bool isNEONi32splatNot() const {
   1671     if (!isImm())
   1672       return false;
   1673     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
   1674     // Must be a constant.
   1675     if (!CE) return false;
   1676     unsigned Value = CE->getValue();
   1677     return ARM_AM::isNEONi32splat(~Value);
   1678   }
   1679 
   1680   bool isNEONByteReplicate(unsigned NumBytes) const {
   1681     if (!isImm())
   1682       return false;
   1683     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
   1684     // Must be a constant.
   1685     if (!CE)
   1686       return false;
   1687     int64_t Value = CE->getValue();
   1688     if (!Value)
   1689       return false; // Don't bother with zero.
   1690 
   1691     unsigned char B = Value & 0xff;
   1692     for (unsigned i = 1; i < NumBytes; ++i) {
   1693       Value >>= 8;
   1694       if ((Value & 0xff) != B)
   1695         return false;
   1696     }
   1697     return true;
   1698   }
   1699   bool isNEONi16ByteReplicate() const { return isNEONByteReplicate(2); }
   1700   bool isNEONi32ByteReplicate() const { return isNEONByteReplicate(4); }
   1701   bool isNEONi32vmov() const {
   1702     if (isNEONByteReplicate(4))
   1703       return false; // Let it to be classified as byte-replicate case.
   1704     if (!isImm())
   1705       return false;
   1706     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
   1707     // Must be a constant.
   1708     if (!CE)
   1709       return false;
   1710     int64_t Value = CE->getValue();
   1711     // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X,
   1712     // for VMOV/VMVN only, 00Xf or 0Xff are also accepted.
   1713     // FIXME: This is probably wrong and a copy and paste from previous example
   1714     return (Value >= 0 && Value < 256) ||
   1715       (Value >= 0x0100 && Value <= 0xff00) ||
   1716       (Value >= 0x010000 && Value <= 0xff0000) ||
   1717       (Value >= 0x01000000 && Value <= 0xff000000) ||
   1718       (Value >= 0x01ff && Value <= 0xffff && (Value & 0xff) == 0xff) ||
   1719       (Value >= 0x01ffff && Value <= 0xffffff && (Value & 0xffff) == 0xffff);
   1720   }
   1721   bool isNEONi32vmovNeg() const {
   1722     if (!isImm()) return false;
   1723     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
   1724     // Must be a constant.
   1725     if (!CE) return false;
   1726     int64_t Value = ~CE->getValue();
   1727     // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X,
   1728     // for VMOV/VMVN only, 00Xf or 0Xff are also accepted.
   1729     // FIXME: This is probably wrong and a copy and paste from previous example
   1730     return (Value >= 0 && Value < 256) ||
   1731       (Value >= 0x0100 && Value <= 0xff00) ||
   1732       (Value >= 0x010000 && Value <= 0xff0000) ||
   1733       (Value >= 0x01000000 && Value <= 0xff000000) ||
   1734       (Value >= 0x01ff && Value <= 0xffff && (Value & 0xff) == 0xff) ||
   1735       (Value >= 0x01ffff && Value <= 0xffffff && (Value & 0xffff) == 0xffff);
   1736   }
   1737 
   1738   bool isNEONi64splat() const {
   1739     if (!isImm()) return false;
   1740     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
   1741     // Must be a constant.
   1742     if (!CE) return false;
   1743     uint64_t Value = CE->getValue();
   1744     // i64 value with each byte being either 0 or 0xff.
   1745     for (unsigned i = 0; i < 8; ++i)
   1746       if ((Value & 0xff) != 0 && (Value & 0xff) != 0xff) return false;
   1747     return true;
   1748   }
   1749 
   1750   void addExpr(MCInst &Inst, const MCExpr *Expr) const {
   1751     // Add as immediates when possible.  Null MCExpr = 0.
   1752     if (!Expr)
   1753       Inst.addOperand(MCOperand::CreateImm(0));
   1754     else if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr))
   1755       Inst.addOperand(MCOperand::CreateImm(CE->getValue()));
   1756     else
   1757       Inst.addOperand(MCOperand::CreateExpr(Expr));
   1758   }
   1759 
   1760   void addCondCodeOperands(MCInst &Inst, unsigned N) const {
   1761     assert(N == 2 && "Invalid number of operands!");
   1762     Inst.addOperand(MCOperand::CreateImm(unsigned(getCondCode())));
   1763     unsigned RegNum = getCondCode() == ARMCC::AL ? 0: ARM::CPSR;
   1764     Inst.addOperand(MCOperand::CreateReg(RegNum));
   1765   }
   1766 
   1767   void addCoprocNumOperands(MCInst &Inst, unsigned N) const {
   1768     assert(N == 1 && "Invalid number of operands!");
   1769     Inst.addOperand(MCOperand::CreateImm(getCoproc()));
   1770   }
   1771 
   1772   void addCoprocRegOperands(MCInst &Inst, unsigned N) const {
   1773     assert(N == 1 && "Invalid number of operands!");
   1774     Inst.addOperand(MCOperand::CreateImm(getCoproc()));
   1775   }
   1776 
   1777   void addCoprocOptionOperands(MCInst &Inst, unsigned N) const {
   1778     assert(N == 1 && "Invalid number of operands!");
   1779     Inst.addOperand(MCOperand::CreateImm(CoprocOption.Val));
   1780   }
   1781 
   1782   void addITMaskOperands(MCInst &Inst, unsigned N) const {
   1783     assert(N == 1 && "Invalid number of operands!");
   1784     Inst.addOperand(MCOperand::CreateImm(ITMask.Mask));
   1785   }
   1786 
   1787   void addITCondCodeOperands(MCInst &Inst, unsigned N) const {
   1788     assert(N == 1 && "Invalid number of operands!");
   1789     Inst.addOperand(MCOperand::CreateImm(unsigned(getCondCode())));
   1790   }
   1791 
   1792   void addCCOutOperands(MCInst &Inst, unsigned N) const {
   1793     assert(N == 1 && "Invalid number of operands!");
   1794     Inst.addOperand(MCOperand::CreateReg(getReg()));
   1795   }
   1796 
   1797   void addRegOperands(MCInst &Inst, unsigned N) const {
   1798     assert(N == 1 && "Invalid number of operands!");
   1799     Inst.addOperand(MCOperand::CreateReg(getReg()));
   1800   }
   1801 
   1802   void addRegShiftedRegOperands(MCInst &Inst, unsigned N) const {
   1803     assert(N == 3 && "Invalid number of operands!");
   1804     assert(isRegShiftedReg() &&
   1805            "addRegShiftedRegOperands() on non-RegShiftedReg!");
   1806     Inst.addOperand(MCOperand::CreateReg(RegShiftedReg.SrcReg));
   1807     Inst.addOperand(MCOperand::CreateReg(RegShiftedReg.ShiftReg));
   1808     Inst.addOperand(MCOperand::CreateImm(
   1809       ARM_AM::getSORegOpc(RegShiftedReg.ShiftTy, RegShiftedReg.ShiftImm)));
   1810   }
   1811 
   1812   void addRegShiftedImmOperands(MCInst &Inst, unsigned N) const {
   1813     assert(N == 2 && "Invalid number of operands!");
   1814     assert(isRegShiftedImm() &&
   1815            "addRegShiftedImmOperands() on non-RegShiftedImm!");
   1816     Inst.addOperand(MCOperand::CreateReg(RegShiftedImm.SrcReg));
   1817     // Shift of #32 is encoded as 0 where permitted
   1818     unsigned Imm = (RegShiftedImm.ShiftImm == 32 ? 0 : RegShiftedImm.ShiftImm);
   1819     Inst.addOperand(MCOperand::CreateImm(
   1820       ARM_AM::getSORegOpc(RegShiftedImm.ShiftTy, Imm)));
   1821   }
   1822 
   1823   void addShifterImmOperands(MCInst &Inst, unsigned N) const {
   1824     assert(N == 1 && "Invalid number of operands!");
   1825     Inst.addOperand(MCOperand::CreateImm((ShifterImm.isASR << 5) |
   1826                                          ShifterImm.Imm));
   1827   }
   1828 
   1829   void addRegListOperands(MCInst &Inst, unsigned N) const {
   1830     assert(N == 1 && "Invalid number of operands!");
   1831     const SmallVectorImpl<unsigned> &RegList = getRegList();
   1832     for (SmallVectorImpl<unsigned>::const_iterator
   1833            I = RegList.begin(), E = RegList.end(); I != E; ++I)
   1834       Inst.addOperand(MCOperand::CreateReg(*I));
   1835   }
   1836 
   1837   void addDPRRegListOperands(MCInst &Inst, unsigned N) const {
   1838     addRegListOperands(Inst, N);
   1839   }
   1840 
   1841   void addSPRRegListOperands(MCInst &Inst, unsigned N) const {
   1842     addRegListOperands(Inst, N);
   1843   }
   1844 
   1845   void addRotImmOperands(MCInst &Inst, unsigned N) const {
   1846     assert(N == 1 && "Invalid number of operands!");
   1847     // Encoded as val>>3. The printer handles display as 8, 16, 24.
   1848     Inst.addOperand(MCOperand::CreateImm(RotImm.Imm >> 3));
   1849   }
   1850 
   1851   void addModImmOperands(MCInst &Inst, unsigned N) const {
   1852     assert(N == 1 && "Invalid number of operands!");
   1853 
   1854     // Support for fixups (MCFixup)
   1855     if (isImm())
   1856       return addImmOperands(Inst, N);
   1857 
   1858     Inst.addOperand(MCOperand::CreateImm(ModImm.Bits | (ModImm.Rot << 7)));
   1859   }
   1860 
   1861   void addModImmNotOperands(MCInst &Inst, unsigned N) const {
   1862     assert(N == 1 && "Invalid number of operands!");
   1863     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
   1864     uint32_t Enc = ARM_AM::getSOImmVal(~CE->getValue());
   1865     Inst.addOperand(MCOperand::CreateImm(Enc));
   1866   }
   1867 
   1868   void addModImmNegOperands(MCInst &Inst, unsigned N) const {
   1869     assert(N == 1 && "Invalid number of operands!");
   1870     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
   1871     uint32_t Enc = ARM_AM::getSOImmVal(-CE->getValue());
   1872     Inst.addOperand(MCOperand::CreateImm(Enc));
   1873   }
   1874 
   1875   void addBitfieldOperands(MCInst &Inst, unsigned N) const {
   1876     assert(N == 1 && "Invalid number of operands!");
   1877     // Munge the lsb/width into a bitfield mask.
   1878     unsigned lsb = Bitfield.LSB;
   1879     unsigned width = Bitfield.Width;
   1880     // Make a 32-bit mask w/ the referenced bits clear and all other bits set.
   1881     uint32_t Mask = ~(((uint32_t)0xffffffff >> lsb) << (32 - width) >>
   1882                       (32 - (lsb + width)));
   1883     Inst.addOperand(MCOperand::CreateImm(Mask));
   1884   }
   1885 
   1886   void addImmOperands(MCInst &Inst, unsigned N) const {
   1887     assert(N == 1 && "Invalid number of operands!");
   1888     addExpr(Inst, getImm());
   1889   }
   1890 
   1891   void addFBits16Operands(MCInst &Inst, unsigned N) const {
   1892     assert(N == 1 && "Invalid number of operands!");
   1893     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
   1894     Inst.addOperand(MCOperand::CreateImm(16 - CE->getValue()));
   1895   }
   1896 
   1897   void addFBits32Operands(MCInst &Inst, unsigned N) const {
   1898     assert(N == 1 && "Invalid number of operands!");
   1899     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
   1900     Inst.addOperand(MCOperand::CreateImm(32 - CE->getValue()));
   1901   }
   1902 
   1903   void addFPImmOperands(MCInst &Inst, unsigned N) const {
   1904     assert(N == 1 && "Invalid number of operands!");
   1905     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
   1906     int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue()));
   1907     Inst.addOperand(MCOperand::CreateImm(Val));
   1908   }
   1909 
   1910   void addImm8s4Operands(MCInst &Inst, unsigned N) const {
   1911     assert(N == 1 && "Invalid number of operands!");
   1912     // FIXME: We really want to scale the value here, but the LDRD/STRD
   1913     // instruction don't encode operands that way yet.
   1914     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
   1915     Inst.addOperand(MCOperand::CreateImm(CE->getValue()));
   1916   }
   1917 
   1918   void addImm0_1020s4Operands(MCInst &Inst, unsigned N) const {
   1919     assert(N == 1 && "Invalid number of operands!");
   1920     // The immediate is scaled by four in the encoding and is stored
   1921     // in the MCInst as such. Lop off the low two bits here.
   1922     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
   1923     Inst.addOperand(MCOperand::CreateImm(CE->getValue() / 4));
   1924   }
   1925 
   1926   void addImm0_508s4NegOperands(MCInst &Inst, unsigned N) const {
   1927     assert(N == 1 && "Invalid number of operands!");
   1928     // The immediate is scaled by four in the encoding and is stored
   1929     // in the MCInst as such. Lop off the low two bits here.
   1930     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
   1931     Inst.addOperand(MCOperand::CreateImm(-(CE->getValue() / 4)));
   1932   }
   1933 
   1934   void addImm0_508s4Operands(MCInst &Inst, unsigned N) const {
   1935     assert(N == 1 && "Invalid number of operands!");
   1936     // The immediate is scaled by four in the encoding and is stored
   1937     // in the MCInst as such. Lop off the low two bits here.
   1938     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
   1939     Inst.addOperand(MCOperand::CreateImm(CE->getValue() / 4));
   1940   }
   1941 
   1942   void addImm1_16Operands(MCInst &Inst, unsigned N) const {
   1943     assert(N == 1 && "Invalid number of operands!");
   1944     // The constant encodes as the immediate-1, and we store in the instruction
   1945     // the bits as encoded, so subtract off one here.
   1946     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
   1947     Inst.addOperand(MCOperand::CreateImm(CE->getValue() - 1));
   1948   }
   1949 
   1950   void addImm1_32Operands(MCInst &Inst, unsigned N) const {
   1951     assert(N == 1 && "Invalid number of operands!");
   1952     // The constant encodes as the immediate-1, and we store in the instruction
   1953     // the bits as encoded, so subtract off one here.
   1954     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
   1955     Inst.addOperand(MCOperand::CreateImm(CE->getValue() - 1));
   1956   }
   1957 
   1958   void addImmThumbSROperands(MCInst &Inst, unsigned N) const {
   1959     assert(N == 1 && "Invalid number of operands!");
   1960     // The constant encodes as the immediate, except for 32, which encodes as
   1961     // zero.
   1962     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
   1963     unsigned Imm = CE->getValue();
   1964     Inst.addOperand(MCOperand::CreateImm((Imm == 32 ? 0 : Imm)));
   1965   }
   1966 
   1967   void addPKHASRImmOperands(MCInst &Inst, unsigned N) const {
   1968     assert(N == 1 && "Invalid number of operands!");
   1969     // An ASR value of 32 encodes as 0, so that's how we want to add it to
   1970     // the instruction as well.
   1971     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
   1972     int Val = CE->getValue();
   1973     Inst.addOperand(MCOperand::CreateImm(Val == 32 ? 0 : Val));
   1974   }
   1975 
   1976   void addT2SOImmNotOperands(MCInst &Inst, unsigned N) const {
   1977     assert(N == 1 && "Invalid number of operands!");
   1978     // The operand is actually a t2_so_imm, but we have its bitwise
   1979     // negation in the assembly source, so twiddle it here.
   1980     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
   1981     Inst.addOperand(MCOperand::CreateImm(~CE->getValue()));
   1982   }
   1983 
   1984   void addT2SOImmNegOperands(MCInst &Inst, unsigned N) const {
   1985     assert(N == 1 && "Invalid number of operands!");
   1986     // The operand is actually a t2_so_imm, but we have its
   1987     // negation in the assembly source, so twiddle it here.
   1988     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
   1989     Inst.addOperand(MCOperand::CreateImm(-CE->getValue()));
   1990   }
   1991 
   1992   void addImm0_4095NegOperands(MCInst &Inst, unsigned N) const {
   1993     assert(N == 1 && "Invalid number of operands!");
   1994     // The operand is actually an imm0_4095, but we have its
   1995     // negation in the assembly source, so twiddle it here.
   1996     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
   1997     Inst.addOperand(MCOperand::CreateImm(-CE->getValue()));
   1998   }
   1999 
   2000   void addUnsignedOffset_b8s2Operands(MCInst &Inst, unsigned N) const {
   2001     if(const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm())) {
   2002       Inst.addOperand(MCOperand::CreateImm(CE->getValue() >> 2));
   2003       return;
   2004     }
   2005 
   2006     const MCSymbolRefExpr *SR = dyn_cast<MCSymbolRefExpr>(Imm.Val);
   2007     assert(SR && "Unknown value type!");
   2008     Inst.addOperand(MCOperand::CreateExpr(SR));
   2009   }
   2010 
   2011   void addThumbMemPCOperands(MCInst &Inst, unsigned N) const {
   2012     assert(N == 1 && "Invalid number of operands!");
   2013     if (isImm()) {
   2014       const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
   2015       if (CE) {
   2016         Inst.addOperand(MCOperand::CreateImm(CE->getValue()));
   2017         return;
   2018       }
   2019 
   2020       const MCSymbolRefExpr *SR = dyn_cast<MCSymbolRefExpr>(Imm.Val);
   2021       assert(SR && "Unknown value type!");
   2022       Inst.addOperand(MCOperand::CreateExpr(SR));
   2023       return;
   2024     }
   2025 
   2026     assert(isMem()  && "Unknown value type!");
   2027     assert(isa<MCConstantExpr>(Memory.OffsetImm) && "Unknown value type!");
   2028     Inst.addOperand(MCOperand::CreateImm(Memory.OffsetImm->getValue()));
   2029   }
   2030 
   2031   void addMemBarrierOptOperands(MCInst &Inst, unsigned N) const {
   2032     assert(N == 1 && "Invalid number of operands!");
   2033     Inst.addOperand(MCOperand::CreateImm(unsigned(getMemBarrierOpt())));
   2034   }
   2035 
   2036   void addInstSyncBarrierOptOperands(MCInst &Inst, unsigned N) const {
   2037     assert(N == 1 && "Invalid number of operands!");
   2038     Inst.addOperand(MCOperand::CreateImm(unsigned(getInstSyncBarrierOpt())));
   2039   }
   2040 
   2041   void addMemNoOffsetOperands(MCInst &Inst, unsigned N) const {
   2042     assert(N == 1 && "Invalid number of operands!");
   2043     Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
   2044   }
   2045 
   2046   void addMemPCRelImm12Operands(MCInst &Inst, unsigned N) const {
   2047     assert(N == 1 && "Invalid number of operands!");
   2048     int32_t Imm = Memory.OffsetImm->getValue();
   2049     Inst.addOperand(MCOperand::CreateImm(Imm));
   2050   }
   2051 
   2052   void addAdrLabelOperands(MCInst &Inst, unsigned N) const {
   2053     assert(N == 1 && "Invalid number of operands!");
   2054     assert(isImm() && "Not an immediate!");
   2055 
   2056     // If we have an immediate that's not a constant, treat it as a label
   2057     // reference needing a fixup.
   2058     if (!isa<MCConstantExpr>(getImm())) {
   2059       Inst.addOperand(MCOperand::CreateExpr(getImm()));
   2060       return;
   2061     }
   2062 
   2063     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
   2064     int Val = CE->getValue();
   2065     Inst.addOperand(MCOperand::CreateImm(Val));
   2066   }
   2067 
   2068   void addAlignedMemoryOperands(MCInst &Inst, unsigned N) const {
   2069     assert(N == 2 && "Invalid number of operands!");
   2070     Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
   2071     Inst.addOperand(MCOperand::CreateImm(Memory.Alignment));
   2072   }
   2073 
   2074   void addDupAlignedMemoryNoneOperands(MCInst &Inst, unsigned N) const {
   2075     addAlignedMemoryOperands(Inst, N);
   2076   }
   2077 
   2078   void addAlignedMemoryNoneOperands(MCInst &Inst, unsigned N) const {
   2079     addAlignedMemoryOperands(Inst, N);
   2080   }
   2081 
   2082   void addAlignedMemory16Operands(MCInst &Inst, unsigned N) const {
   2083     addAlignedMemoryOperands(Inst, N);
   2084   }
   2085 
   2086   void addDupAlignedMemory16Operands(MCInst &Inst, unsigned N) const {
   2087     addAlignedMemoryOperands(Inst, N);
   2088   }
   2089 
   2090   void addAlignedMemory32Operands(MCInst &Inst, unsigned N) const {
   2091     addAlignedMemoryOperands(Inst, N);
   2092   }
   2093 
   2094   void addDupAlignedMemory32Operands(MCInst &Inst, unsigned N) const {
   2095     addAlignedMemoryOperands(Inst, N);
   2096   }
   2097 
   2098   void addAlignedMemory64Operands(MCInst &Inst, unsigned N) const {
   2099     addAlignedMemoryOperands(Inst, N);
   2100   }
   2101 
   2102   void addDupAlignedMemory64Operands(MCInst &Inst, unsigned N) const {
   2103     addAlignedMemoryOperands(Inst, N);
   2104   }
   2105 
   2106   void addAlignedMemory64or128Operands(MCInst &Inst, unsigned N) const {
   2107     addAlignedMemoryOperands(Inst, N);
   2108   }
   2109 
   2110   void addDupAlignedMemory64or128Operands(MCInst &Inst, unsigned N) const {
   2111     addAlignedMemoryOperands(Inst, N);
   2112   }
   2113 
   2114   void addAlignedMemory64or128or256Operands(MCInst &Inst, unsigned N) const {
   2115     addAlignedMemoryOperands(Inst, N);
   2116   }
   2117 
   2118   void addAddrMode2Operands(MCInst &Inst, unsigned N) const {
   2119     assert(N == 3 && "Invalid number of operands!");
   2120     int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
   2121     if (!Memory.OffsetRegNum) {
   2122       ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
   2123       // Special case for #-0
   2124       if (Val == INT32_MIN) Val = 0;
   2125       if (Val < 0) Val = -Val;
   2126       Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift);
   2127     } else {
   2128       // For register offset, we encode the shift type and negation flag
   2129       // here.
   2130       Val = ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add,
   2131                               Memory.ShiftImm, Memory.ShiftType);
   2132     }
   2133     Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
   2134     Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum));
   2135     Inst.addOperand(MCOperand::CreateImm(Val));
   2136   }
   2137 
   2138   void addAM2OffsetImmOperands(MCInst &Inst, unsigned N) const {
   2139     assert(N == 2 && "Invalid number of operands!");
   2140     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
   2141     assert(CE && "non-constant AM2OffsetImm operand!");
   2142     int32_t Val = CE->getValue();
   2143     ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
   2144     // Special case for #-0
   2145     if (Val == INT32_MIN) Val = 0;
   2146     if (Val < 0) Val = -Val;
   2147     Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift);
   2148     Inst.addOperand(MCOperand::CreateReg(0));
   2149     Inst.addOperand(MCOperand::CreateImm(Val));
   2150   }
   2151 
   2152   void addAddrMode3Operands(MCInst &Inst, unsigned N) const {
   2153     assert(N == 3 && "Invalid number of operands!");
   2154     // If we have an immediate that's not a constant, treat it as a label
   2155     // reference needing a fixup. If it is a constant, it's something else
   2156     // and we reject it.
   2157     if (isImm()) {
   2158       Inst.addOperand(MCOperand::CreateExpr(getImm()));
   2159       Inst.addOperand(MCOperand::CreateReg(0));
   2160       Inst.addOperand(MCOperand::CreateImm(0));
   2161       return;
   2162     }
   2163 
   2164     int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
   2165     if (!Memory.OffsetRegNum) {
   2166       ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
   2167       // Special case for #-0
   2168       if (Val == INT32_MIN) Val = 0;
   2169       if (Val < 0) Val = -Val;
   2170       Val = ARM_AM::getAM3Opc(AddSub, Val);
   2171     } else {
   2172       // For register offset, we encode the shift type and negation flag
   2173       // here.
   2174       Val = ARM_AM::getAM3Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 0);
   2175     }
   2176     Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
   2177     Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum));
   2178     Inst.addOperand(MCOperand::CreateImm(Val));
   2179   }
   2180 
   2181   void addAM3OffsetOperands(MCInst &Inst, unsigned N) const {
   2182     assert(N == 2 && "Invalid number of operands!");
   2183     if (Kind == k_PostIndexRegister) {
   2184       int32_t Val =
   2185         ARM_AM::getAM3Opc(PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub, 0);
   2186       Inst.addOperand(MCOperand::CreateReg(PostIdxReg.RegNum));
   2187       Inst.addOperand(MCOperand::CreateImm(Val));
   2188       return;
   2189     }
   2190 
   2191     // Constant offset.
   2192     const MCConstantExpr *CE = static_cast<const MCConstantExpr*>(getImm());
   2193     int32_t Val = CE->getValue();
   2194     ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
   2195     // Special case for #-0
   2196     if (Val == INT32_MIN) Val = 0;
   2197     if (Val < 0) Val = -Val;
   2198     Val = ARM_AM::getAM3Opc(AddSub, Val);
   2199     Inst.addOperand(MCOperand::CreateReg(0));
   2200     Inst.addOperand(MCOperand::CreateImm(Val));
   2201   }
   2202 
   2203   void addAddrMode5Operands(MCInst &Inst, unsigned N) const {
   2204     assert(N == 2 && "Invalid number of operands!");
   2205     // If we have an immediate that's not a constant, treat it as a label
   2206     // reference needing a fixup. If it is a constant, it's something else
   2207     // and we reject it.
   2208     if (isImm()) {
   2209       Inst.addOperand(MCOperand::CreateExpr(getImm()));
   2210       Inst.addOperand(MCOperand::CreateImm(0));
   2211       return;
   2212     }
   2213 
   2214     // The lower two bits are always zero and as such are not encoded.
   2215     int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 4 : 0;
   2216     ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
   2217     // Special case for #-0
   2218     if (Val == INT32_MIN) Val = 0;
   2219     if (Val < 0) Val = -Val;
   2220     Val = ARM_AM::getAM5Opc(AddSub, Val);
   2221     Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
   2222     Inst.addOperand(MCOperand::CreateImm(Val));
   2223   }
   2224 
   2225   void addMemImm8s4OffsetOperands(MCInst &Inst, unsigned N) const {
   2226     assert(N == 2 && "Invalid number of operands!");
   2227     // If we have an immediate that's not a constant, treat it as a label
   2228     // reference needing a fixup. If it is a constant, it's something else
   2229     // and we reject it.
   2230     if (isImm()) {
   2231       Inst.addOperand(MCOperand::CreateExpr(getImm()));
   2232       Inst.addOperand(MCOperand::CreateImm(0));
   2233       return;
   2234     }
   2235 
   2236     int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
   2237     Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
   2238     Inst.addOperand(MCOperand::CreateImm(Val));
   2239   }
   2240 
   2241   void addMemImm0_1020s4OffsetOperands(MCInst &Inst, unsigned N) const {
   2242     assert(N == 2 && "Invalid number of operands!");
   2243     // The lower two bits are always zero and as such are not encoded.
   2244     int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 4 : 0;
   2245     Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
   2246     Inst.addOperand(MCOperand::CreateImm(Val));
   2247   }
   2248 
   2249   void addMemImm8OffsetOperands(MCInst &Inst, unsigned N) const {
   2250     assert(N == 2 && "Invalid number of operands!");
   2251     int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
   2252     Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
   2253     Inst.addOperand(MCOperand::CreateImm(Val));
   2254   }
   2255 
   2256   void addMemPosImm8OffsetOperands(MCInst &Inst, unsigned N) const {
   2257     addMemImm8OffsetOperands(Inst, N);
   2258   }
   2259 
   2260   void addMemNegImm8OffsetOperands(MCInst &Inst, unsigned N) const {
   2261     addMemImm8OffsetOperands(Inst, N);
   2262   }
   2263 
   2264   void addMemUImm12OffsetOperands(MCInst &Inst, unsigned N) const {
   2265     assert(N == 2 && "Invalid number of operands!");
   2266     // If this is an immediate, it's a label reference.
   2267     if (isImm()) {
   2268       addExpr(Inst, getImm());
   2269       Inst.addOperand(MCOperand::CreateImm(0));
   2270       return;
   2271     }
   2272 
   2273     // Otherwise, it's a normal memory reg+offset.
   2274     int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
   2275     Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
   2276     Inst.addOperand(MCOperand::CreateImm(Val));
   2277   }
   2278 
   2279   void addMemImm12OffsetOperands(MCInst &Inst, unsigned N) const {
   2280     assert(N == 2 && "Invalid number of operands!");
   2281     // If this is an immediate, it's a label reference.
   2282     if (isImm()) {
   2283       addExpr(Inst, getImm());
   2284       Inst.addOperand(MCOperand::CreateImm(0));
   2285       return;
   2286     }
   2287 
   2288     // Otherwise, it's a normal memory reg+offset.
   2289     int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
   2290     Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
   2291     Inst.addOperand(MCOperand::CreateImm(Val));
   2292   }
   2293 
   2294   void addMemTBBOperands(MCInst &Inst, unsigned N) const {
   2295     assert(N == 2 && "Invalid number of operands!");
   2296     Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
   2297     Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum));
   2298   }
   2299 
   2300   void addMemTBHOperands(MCInst &Inst, unsigned N) const {
   2301     assert(N == 2 && "Invalid number of operands!");
   2302     Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
   2303     Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum));
   2304   }
   2305 
   2306   void addMemRegOffsetOperands(MCInst &Inst, unsigned N) const {
   2307     assert(N == 3 && "Invalid number of operands!");
   2308     unsigned Val =
   2309       ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add,
   2310                         Memory.ShiftImm, Memory.ShiftType);
   2311     Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
   2312     Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum));
   2313     Inst.addOperand(MCOperand::CreateImm(Val));
   2314   }
   2315 
   2316   void addT2MemRegOffsetOperands(MCInst &Inst, unsigned N) const {
   2317     assert(N == 3 && "Invalid number of operands!");
   2318     Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
   2319     Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum));
   2320     Inst.addOperand(MCOperand::CreateImm(Memory.ShiftImm));
   2321   }
   2322 
   2323   void addMemThumbRROperands(MCInst &Inst, unsigned N) const {
   2324     assert(N == 2 && "Invalid number of operands!");
   2325     Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
   2326     Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum));
   2327   }
   2328 
   2329   void addMemThumbRIs4Operands(MCInst &Inst, unsigned N) const {
   2330     assert(N == 2 && "Invalid number of operands!");
   2331     int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 4) : 0;
   2332     Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
   2333     Inst.addOperand(MCOperand::CreateImm(Val));
   2334   }
   2335 
   2336   void addMemThumbRIs2Operands(MCInst &Inst, unsigned N) const {
   2337     assert(N == 2 && "Invalid number of operands!");
   2338     int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 2) : 0;
   2339     Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
   2340     Inst.addOperand(MCOperand::CreateImm(Val));
   2341   }
   2342 
   2343   void addMemThumbRIs1Operands(MCInst &Inst, unsigned N) const {
   2344     assert(N == 2 && "Invalid number of operands!");
   2345     int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue()) : 0;
   2346     Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
   2347     Inst.addOperand(MCOperand::CreateImm(Val));
   2348   }
   2349 
   2350   void addMemThumbSPIOperands(MCInst &Inst, unsigned N) const {
   2351     assert(N == 2 && "Invalid number of operands!");
   2352     int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 4) : 0;
   2353     Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
   2354     Inst.addOperand(MCOperand::CreateImm(Val));
   2355   }
   2356 
   2357   void addPostIdxImm8Operands(MCInst &Inst, unsigned N) const {
   2358     assert(N == 1 && "Invalid number of operands!");
   2359     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
   2360     assert(CE && "non-constant post-idx-imm8 operand!");
   2361     int Imm = CE->getValue();
   2362     bool isAdd = Imm >= 0;
   2363     if (Imm == INT32_MIN) Imm = 0;
   2364     Imm = (Imm < 0 ? -Imm : Imm) | (int)isAdd << 8;
   2365     Inst.addOperand(MCOperand::CreateImm(Imm));
   2366   }
   2367 
   2368   void addPostIdxImm8s4Operands(MCInst &Inst, unsigned N) const {
   2369     assert(N == 1 && "Invalid number of operands!");
   2370     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
   2371     assert(CE && "non-constant post-idx-imm8s4 operand!");
   2372     int Imm = CE->getValue();
   2373     bool isAdd = Imm >= 0;
   2374     if (Imm == INT32_MIN) Imm = 0;
   2375     // Immediate is scaled by 4.
   2376     Imm = ((Imm < 0 ? -Imm : Imm) / 4) | (int)isAdd << 8;
   2377     Inst.addOperand(MCOperand::CreateImm(Imm));
   2378   }
   2379 
   2380   void addPostIdxRegOperands(MCInst &Inst, unsigned N) const {
   2381     assert(N == 2 && "Invalid number of operands!");
   2382     Inst.addOperand(MCOperand::CreateReg(PostIdxReg.RegNum));
   2383     Inst.addOperand(MCOperand::CreateImm(PostIdxReg.isAdd));
   2384   }
   2385 
   2386   void addPostIdxRegShiftedOperands(MCInst &Inst, unsigned N) const {
   2387     assert(N == 2 && "Invalid number of operands!");
   2388     Inst.addOperand(MCOperand::CreateReg(PostIdxReg.RegNum));
   2389     // The sign, shift type, and shift amount are encoded in a single operand
   2390     // using the AM2 encoding helpers.
   2391     ARM_AM::AddrOpc opc = PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub;
   2392     unsigned Imm = ARM_AM::getAM2Opc(opc, PostIdxReg.ShiftImm,
   2393                                      PostIdxReg.ShiftTy);
   2394     Inst.addOperand(MCOperand::CreateImm(Imm));
   2395   }
   2396 
   2397   void addMSRMaskOperands(MCInst &Inst, unsigned N) const {
   2398     assert(N == 1 && "Invalid number of operands!");
   2399     Inst.addOperand(MCOperand::CreateImm(unsigned(getMSRMask())));
   2400   }
   2401 
   2402   void addBankedRegOperands(MCInst &Inst, unsigned N) const {
   2403     assert(N == 1 && "Invalid number of operands!");
   2404     Inst.addOperand(MCOperand::CreateImm(unsigned(getBankedReg())));
   2405   }
   2406 
   2407   void addProcIFlagsOperands(MCInst &Inst, unsigned N) const {
   2408     assert(N == 1 && "Invalid number of operands!");
   2409     Inst.addOperand(MCOperand::CreateImm(unsigned(getProcIFlags())));
   2410   }
   2411 
   2412   void addVecListOperands(MCInst &Inst, unsigned N) const {
   2413     assert(N == 1 && "Invalid number of operands!");
   2414     Inst.addOperand(MCOperand::CreateReg(VectorList.RegNum));
   2415   }
   2416 
   2417   void addVecListIndexedOperands(MCInst &Inst, unsigned N) const {
   2418     assert(N == 2 && "Invalid number of operands!");
   2419     Inst.addOperand(MCOperand::CreateReg(VectorList.RegNum));
   2420     Inst.addOperand(MCOperand::CreateImm(VectorList.LaneIndex));
   2421   }
   2422 
   2423   void addVectorIndex8Operands(MCInst &Inst, unsigned N) const {
   2424     assert(N == 1 && "Invalid number of operands!");
   2425     Inst.addOperand(MCOperand::CreateImm(getVectorIndex()));
   2426   }
   2427 
   2428   void addVectorIndex16Operands(MCInst &Inst, unsigned N) const {
   2429     assert(N == 1 && "Invalid number of operands!");
   2430     Inst.addOperand(MCOperand::CreateImm(getVectorIndex()));
   2431   }
   2432 
   2433   void addVectorIndex32Operands(MCInst &Inst, unsigned N) const {
   2434     assert(N == 1 && "Invalid number of operands!");
   2435     Inst.addOperand(MCOperand::CreateImm(getVectorIndex()));
   2436   }
   2437 
   2438   void addNEONi8splatOperands(MCInst &Inst, unsigned N) const {
   2439     assert(N == 1 && "Invalid number of operands!");
   2440     // The immediate encodes the type of constant as well as the value.
   2441     // Mask in that this is an i8 splat.
   2442     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
   2443     Inst.addOperand(MCOperand::CreateImm(CE->getValue() | 0xe00));
   2444   }
   2445 
   2446   void addNEONi16splatOperands(MCInst &Inst, unsigned N) const {
   2447     assert(N == 1 && "Invalid number of operands!");
   2448     // The immediate encodes the type of constant as well as the value.
   2449     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
   2450     unsigned Value = CE->getValue();
   2451     Value = ARM_AM::encodeNEONi16splat(Value);
   2452     Inst.addOperand(MCOperand::CreateImm(Value));
   2453   }
   2454 
   2455   void addNEONi16splatNotOperands(MCInst &Inst, unsigned N) const {
   2456     assert(N == 1 && "Invalid number of operands!");
   2457     // The immediate encodes the type of constant as well as the value.
   2458     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
   2459     unsigned Value = CE->getValue();
   2460     Value = ARM_AM::encodeNEONi16splat(~Value & 0xffff);
   2461     Inst.addOperand(MCOperand::CreateImm(Value));
   2462   }
   2463 
   2464   void addNEONi32splatOperands(MCInst &Inst, unsigned N) const {
   2465     assert(N == 1 && "Invalid number of operands!");
   2466     // The immediate encodes the type of constant as well as the value.
   2467     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
   2468     unsigned Value = CE->getValue();
   2469     Value = ARM_AM::encodeNEONi32splat(Value);
   2470     Inst.addOperand(MCOperand::CreateImm(Value));
   2471   }
   2472 
   2473   void addNEONi32splatNotOperands(MCInst &Inst, unsigned N) const {
   2474     assert(N == 1 && "Invalid number of operands!");
   2475     // The immediate encodes the type of constant as well as the value.
   2476     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
   2477     unsigned Value = CE->getValue();
   2478     Value = ARM_AM::encodeNEONi32splat(~Value);
   2479     Inst.addOperand(MCOperand::CreateImm(Value));
   2480   }
   2481 
   2482   void addNEONinvByteReplicateOperands(MCInst &Inst, unsigned N) const {
   2483     assert(N == 1 && "Invalid number of operands!");
   2484     // The immediate encodes the type of constant as well as the value.
   2485     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
   2486     unsigned Value = CE->getValue();
   2487     assert((Inst.getOpcode() == ARM::VMOVv8i8 ||
   2488             Inst.getOpcode() == ARM::VMOVv16i8) &&
   2489            "All vmvn instructions that wants to replicate non-zero byte "
   2490            "always must be replaced with VMOVv8i8 or VMOVv16i8.");
   2491     unsigned B = ((~Value) & 0xff);
   2492     B |= 0xe00; // cmode = 0b1110
   2493     Inst.addOperand(MCOperand::CreateImm(B));
   2494   }
   2495   void addNEONi32vmovOperands(MCInst &Inst, unsigned N) const {
   2496     assert(N == 1 && "Invalid number of operands!");
   2497     // The immediate encodes the type of constant as well as the value.
   2498     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
   2499     unsigned Value = CE->getValue();
   2500     if (Value >= 256 && Value <= 0xffff)
   2501       Value = (Value >> 8) | ((Value & 0xff) ? 0xc00 : 0x200);
   2502     else if (Value > 0xffff && Value <= 0xffffff)
   2503       Value = (Value >> 16) | ((Value & 0xff) ? 0xd00 : 0x400);
   2504     else if (Value > 0xffffff)
   2505       Value = (Value >> 24) | 0x600;
   2506     Inst.addOperand(MCOperand::CreateImm(Value));
   2507   }
   2508 
   2509   void addNEONvmovByteReplicateOperands(MCInst &Inst, unsigned N) const {
   2510     assert(N == 1 && "Invalid number of operands!");
   2511     // The immediate encodes the type of constant as well as the value.
   2512     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
   2513     unsigned Value = CE->getValue();
   2514     assert((Inst.getOpcode() == ARM::VMOVv8i8 ||
   2515             Inst.getOpcode() == ARM::VMOVv16i8) &&
   2516            "All instructions that wants to replicate non-zero byte "
   2517            "always must be replaced with VMOVv8i8 or VMOVv16i8.");
   2518     unsigned B = Value & 0xff;
   2519     B |= 0xe00; // cmode = 0b1110
   2520     Inst.addOperand(MCOperand::CreateImm(B));
   2521   }
   2522   void addNEONi32vmovNegOperands(MCInst &Inst, unsigned N) const {
   2523     assert(N == 1 && "Invalid number of operands!");
   2524     // The immediate encodes the type of constant as well as the value.
   2525     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
   2526     unsigned Value = ~CE->getValue();
   2527     if (Value >= 256 && Value <= 0xffff)
   2528       Value = (Value >> 8) | ((Value & 0xff) ? 0xc00 : 0x200);
   2529     else if (Value > 0xffff && Value <= 0xffffff)
   2530       Value = (Value >> 16) | ((Value & 0xff) ? 0xd00 : 0x400);
   2531     else if (Value > 0xffffff)
   2532       Value = (Value >> 24) | 0x600;
   2533     Inst.addOperand(MCOperand::CreateImm(Value));
   2534   }
   2535 
   2536   void addNEONi64splatOperands(MCInst &Inst, unsigned N) const {
   2537     assert(N == 1 && "Invalid number of operands!");
   2538     // The immediate encodes the type of constant as well as the value.
   2539     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
   2540     uint64_t Value = CE->getValue();
   2541     unsigned Imm = 0;
   2542     for (unsigned i = 0; i < 8; ++i, Value >>= 8) {
   2543       Imm |= (Value & 1) << i;
   2544     }
   2545     Inst.addOperand(MCOperand::CreateImm(Imm | 0x1e00));
   2546   }
   2547 
   2548   void print(raw_ostream &OS) const override;
   2549 
   2550   static std::unique_ptr<ARMOperand> CreateITMask(unsigned Mask, SMLoc S) {
   2551     auto Op = make_unique<ARMOperand>(k_ITCondMask);
   2552     Op->ITMask.Mask = Mask;
   2553     Op->StartLoc = S;
   2554     Op->EndLoc = S;
   2555     return Op;
   2556   }
   2557 
   2558   static std::unique_ptr<ARMOperand> CreateCondCode(ARMCC::CondCodes CC,
   2559                                                     SMLoc S) {
   2560     auto Op = make_unique<ARMOperand>(k_CondCode);
   2561     Op->CC.Val = CC;
   2562     Op->StartLoc = S;
   2563     Op->EndLoc = S;
   2564     return Op;
   2565   }
   2566 
   2567   static std::unique_ptr<ARMOperand> CreateCoprocNum(unsigned CopVal, SMLoc S) {
   2568     auto Op = make_unique<ARMOperand>(k_CoprocNum);
   2569     Op->Cop.Val = CopVal;
   2570     Op->StartLoc = S;
   2571     Op->EndLoc = S;
   2572     return Op;
   2573   }
   2574 
   2575   static std::unique_ptr<ARMOperand> CreateCoprocReg(unsigned CopVal, SMLoc S) {
   2576     auto Op = make_unique<ARMOperand>(k_CoprocReg);
   2577     Op->Cop.Val = CopVal;
   2578     Op->StartLoc = S;
   2579     Op->EndLoc = S;
   2580     return Op;
   2581   }
   2582 
   2583   static std::unique_ptr<ARMOperand> CreateCoprocOption(unsigned Val, SMLoc S,
   2584                                                         SMLoc E) {
   2585     auto Op = make_unique<ARMOperand>(k_CoprocOption);
   2586     Op->Cop.Val = Val;
   2587     Op->StartLoc = S;
   2588     Op->EndLoc = E;
   2589     return Op;
   2590   }
   2591 
   2592   static std::unique_ptr<ARMOperand> CreateCCOut(unsigned RegNum, SMLoc S) {
   2593     auto Op = make_unique<ARMOperand>(k_CCOut);
   2594     Op->Reg.RegNum = RegNum;
   2595     Op->StartLoc = S;
   2596     Op->EndLoc = S;
   2597     return Op;
   2598   }
   2599 
   2600   static std::unique_ptr<ARMOperand> CreateToken(StringRef Str, SMLoc S) {
   2601     auto Op = make_unique<ARMOperand>(k_Token);
   2602     Op->Tok.Data = Str.data();
   2603     Op->Tok.Length = Str.size();
   2604     Op->StartLoc = S;
   2605     Op->EndLoc = S;
   2606     return Op;
   2607   }
   2608 
   2609   static std::unique_ptr<ARMOperand> CreateReg(unsigned RegNum, SMLoc S,
   2610                                                SMLoc E) {
   2611     auto Op = make_unique<ARMOperand>(k_Register);
   2612     Op->Reg.RegNum = RegNum;
   2613     Op->StartLoc = S;
   2614     Op->EndLoc = E;
   2615     return Op;
   2616   }
   2617 
   2618   static std::unique_ptr<ARMOperand>
   2619   CreateShiftedRegister(ARM_AM::ShiftOpc ShTy, unsigned SrcReg,
   2620                         unsigned ShiftReg, unsigned ShiftImm, SMLoc S,
   2621                         SMLoc E) {
   2622     auto Op = make_unique<ARMOperand>(k_ShiftedRegister);
   2623     Op->RegShiftedReg.ShiftTy = ShTy;
   2624     Op->RegShiftedReg.SrcReg = SrcReg;
   2625     Op->RegShiftedReg.ShiftReg = ShiftReg;
   2626     Op->RegShiftedReg.ShiftImm = ShiftImm;
   2627     Op->StartLoc = S;
   2628     Op->EndLoc = E;
   2629     return Op;
   2630   }
   2631 
   2632   static std::unique_ptr<ARMOperand>
   2633   CreateShiftedImmediate(ARM_AM::ShiftOpc ShTy, unsigned SrcReg,
   2634                          unsigned ShiftImm, SMLoc S, SMLoc E) {
   2635     auto Op = make_unique<ARMOperand>(k_ShiftedImmediate);
   2636     Op->RegShiftedImm.ShiftTy = ShTy;
   2637     Op->RegShiftedImm.SrcReg = SrcReg;
   2638     Op->RegShiftedImm.ShiftImm = ShiftImm;
   2639     Op->StartLoc = S;
   2640     Op->EndLoc = E;
   2641     return Op;
   2642   }
   2643 
   2644   static std::unique_ptr<ARMOperand> CreateShifterImm(bool isASR, unsigned Imm,
   2645                                                       SMLoc S, SMLoc E) {
   2646     auto Op = make_unique<ARMOperand>(k_ShifterImmediate);
   2647     Op->ShifterImm.isASR = isASR;
   2648     Op->ShifterImm.Imm = Imm;
   2649     Op->StartLoc = S;
   2650     Op->EndLoc = E;
   2651     return Op;
   2652   }
   2653 
   2654   static std::unique_ptr<ARMOperand> CreateRotImm(unsigned Imm, SMLoc S,
   2655                                                   SMLoc E) {
   2656     auto Op = make_unique<ARMOperand>(k_RotateImmediate);
   2657     Op->RotImm.Imm = Imm;
   2658     Op->StartLoc = S;
   2659     Op->EndLoc = E;
   2660     return Op;
   2661   }
   2662 
   2663   static std::unique_ptr<ARMOperand> CreateModImm(unsigned Bits, unsigned Rot,
   2664                                                   SMLoc S, SMLoc E) {
   2665     auto Op = make_unique<ARMOperand>(k_ModifiedImmediate);
   2666     Op->ModImm.Bits = Bits;
   2667     Op->ModImm.Rot = Rot;
   2668     Op->StartLoc = S;
   2669     Op->EndLoc = E;
   2670     return Op;
   2671   }
   2672 
   2673   static std::unique_ptr<ARMOperand>
   2674   CreateBitfield(unsigned LSB, unsigned Width, SMLoc S, SMLoc E) {
   2675     auto Op = make_unique<ARMOperand>(k_BitfieldDescriptor);
   2676     Op->Bitfield.LSB = LSB;
   2677     Op->Bitfield.Width = Width;
   2678     Op->StartLoc = S;
   2679     Op->EndLoc = E;
   2680     return Op;
   2681   }
   2682 
   2683   static std::unique_ptr<ARMOperand>
   2684   CreateRegList(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs,
   2685                 SMLoc StartLoc, SMLoc EndLoc) {
   2686     assert (Regs.size() > 0 && "RegList contains no registers?");
   2687     KindTy Kind = k_RegisterList;
   2688 
   2689     if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Regs.front().second))
   2690       Kind = k_DPRRegisterList;
   2691     else if (ARMMCRegisterClasses[ARM::SPRRegClassID].
   2692              contains(Regs.front().second))
   2693       Kind = k_SPRRegisterList;
   2694 
   2695     // Sort based on the register encoding values.
   2696     array_pod_sort(Regs.begin(), Regs.end());
   2697 
   2698     auto Op = make_unique<ARMOperand>(Kind);
   2699     for (SmallVectorImpl<std::pair<unsigned, unsigned> >::const_iterator
   2700            I = Regs.begin(), E = Regs.end(); I != E; ++I)
   2701       Op->Registers.push_back(I->second);
   2702     Op->StartLoc = StartLoc;
   2703     Op->EndLoc = EndLoc;
   2704     return Op;
   2705   }
   2706 
   2707   static std::unique_ptr<ARMOperand> CreateVectorList(unsigned RegNum,
   2708                                                       unsigned Count,
   2709                                                       bool isDoubleSpaced,
   2710                                                       SMLoc S, SMLoc E) {
   2711     auto Op = make_unique<ARMOperand>(k_VectorList);
   2712     Op->VectorList.RegNum = RegNum;
   2713     Op->VectorList.Count = Count;
   2714     Op->VectorList.isDoubleSpaced = isDoubleSpaced;
   2715     Op->StartLoc = S;
   2716     Op->EndLoc = E;
   2717     return Op;
   2718   }
   2719 
   2720   static std::unique_ptr<ARMOperand>
   2721   CreateVectorListAllLanes(unsigned RegNum, unsigned Count, bool isDoubleSpaced,
   2722                            SMLoc S, SMLoc E) {
   2723     auto Op = make_unique<ARMOperand>(k_VectorListAllLanes);
   2724     Op->VectorList.RegNum = RegNum;
   2725     Op->VectorList.Count = Count;
   2726     Op->VectorList.isDoubleSpaced = isDoubleSpaced;
   2727     Op->StartLoc = S;
   2728     Op->EndLoc = E;
   2729     return Op;
   2730   }
   2731 
   2732   static std::unique_ptr<ARMOperand>
   2733   CreateVectorListIndexed(unsigned RegNum, unsigned Count, unsigned Index,
   2734                           bool isDoubleSpaced, SMLoc S, SMLoc E) {
   2735     auto Op = make_unique<ARMOperand>(k_VectorListIndexed);
   2736     Op->VectorList.RegNum = RegNum;
   2737     Op->VectorList.Count = Count;
   2738     Op->VectorList.LaneIndex = Index;
   2739     Op->VectorList.isDoubleSpaced = isDoubleSpaced;
   2740     Op->StartLoc = S;
   2741     Op->EndLoc = E;
   2742     return Op;
   2743   }
   2744 
   2745   static std::unique_ptr<ARMOperand>
   2746   CreateVectorIndex(unsigned Idx, SMLoc S, SMLoc E, MCContext &Ctx) {
   2747     auto Op = make_unique<ARMOperand>(k_VectorIndex);
   2748     Op->VectorIndex.Val = Idx;
   2749     Op->StartLoc = S;
   2750     Op->EndLoc = E;
   2751     return Op;
   2752   }
   2753 
   2754   static std::unique_ptr<ARMOperand> CreateImm(const MCExpr *Val, SMLoc S,
   2755                                                SMLoc E) {
   2756     auto Op = make_unique<ARMOperand>(k_Immediate);
   2757     Op->Imm.Val = Val;
   2758     Op->StartLoc = S;
   2759     Op->EndLoc = E;
   2760     return Op;
   2761   }
   2762 
   2763   static std::unique_ptr<ARMOperand>
   2764   CreateMem(unsigned BaseRegNum, const MCConstantExpr *OffsetImm,
   2765             unsigned OffsetRegNum, ARM_AM::ShiftOpc ShiftType,
   2766             unsigned ShiftImm, unsigned Alignment, bool isNegative, SMLoc S,
   2767             SMLoc E, SMLoc AlignmentLoc = SMLoc()) {
   2768     auto Op = make_unique<ARMOperand>(k_Memory);
   2769     Op->Memory.BaseRegNum = BaseRegNum;
   2770     Op->Memory.OffsetImm = OffsetImm;
   2771     Op->Memory.OffsetRegNum = OffsetRegNum;
   2772     Op->Memory.ShiftType = ShiftType;
   2773     Op->Memory.ShiftImm = ShiftImm;
   2774     Op->Memory.Alignment = Alignment;
   2775     Op->Memory.isNegative = isNegative;
   2776     Op->StartLoc = S;
   2777     Op->EndLoc = E;
   2778     Op->AlignmentLoc = AlignmentLoc;
   2779     return Op;
   2780   }
   2781 
   2782   static std::unique_ptr<ARMOperand>
   2783   CreatePostIdxReg(unsigned RegNum, bool isAdd, ARM_AM::ShiftOpc ShiftTy,
   2784                    unsigned ShiftImm, SMLoc S, SMLoc E) {
   2785     auto Op = make_unique<ARMOperand>(k_PostIndexRegister);
   2786     Op->PostIdxReg.RegNum = RegNum;
   2787     Op->PostIdxReg.isAdd = isAdd;
   2788     Op->PostIdxReg.ShiftTy = ShiftTy;
   2789     Op->PostIdxReg.ShiftImm = ShiftImm;
   2790     Op->StartLoc = S;
   2791     Op->EndLoc = E;
   2792     return Op;
   2793   }
   2794 
   2795   static std::unique_ptr<ARMOperand> CreateMemBarrierOpt(ARM_MB::MemBOpt Opt,
   2796                                                          SMLoc S) {
   2797     auto Op = make_unique<ARMOperand>(k_MemBarrierOpt);
   2798     Op->MBOpt.Val = Opt;
   2799     Op->StartLoc = S;
   2800     Op->EndLoc = S;
   2801     return Op;
   2802   }
   2803 
   2804   static std::unique_ptr<ARMOperand>
   2805   CreateInstSyncBarrierOpt(ARM_ISB::InstSyncBOpt Opt, SMLoc S) {
   2806     auto Op = make_unique<ARMOperand>(k_InstSyncBarrierOpt);
   2807     Op->ISBOpt.Val = Opt;
   2808     Op->StartLoc = S;
   2809     Op->EndLoc = S;
   2810     return Op;
   2811   }
   2812 
   2813   static std::unique_ptr<ARMOperand> CreateProcIFlags(ARM_PROC::IFlags IFlags,
   2814                                                       SMLoc S) {
   2815     auto Op = make_unique<ARMOperand>(k_ProcIFlags);
   2816     Op->IFlags.Val = IFlags;
   2817     Op->StartLoc = S;
   2818     Op->EndLoc = S;
   2819     return Op;
   2820   }
   2821 
   2822   static std::unique_ptr<ARMOperand> CreateMSRMask(unsigned MMask, SMLoc S) {
   2823     auto Op = make_unique<ARMOperand>(k_MSRMask);
   2824     Op->MMask.Val = MMask;
   2825     Op->StartLoc = S;
   2826     Op->EndLoc = S;
   2827     return Op;
   2828   }
   2829 
   2830   static std::unique_ptr<ARMOperand> CreateBankedReg(unsigned Reg, SMLoc S) {
   2831     auto Op = make_unique<ARMOperand>(k_BankedReg);
   2832     Op->BankedReg.Val = Reg;
   2833     Op->StartLoc = S;
   2834     Op->EndLoc = S;
   2835     return Op;
   2836   }
   2837 };
   2838 
   2839 } // end anonymous namespace.
   2840 
   2841 void ARMOperand::print(raw_ostream &OS) const {
   2842   switch (Kind) {
   2843   case k_CondCode:
   2844     OS << "<ARMCC::" << ARMCondCodeToString(getCondCode()) << ">";
   2845     break;
   2846   case k_CCOut:
   2847     OS << "<ccout " << getReg() << ">";
   2848     break;
   2849   case k_ITCondMask: {
   2850     static const char *const MaskStr[] = {
   2851       "()", "(t)", "(e)", "(tt)", "(et)", "(te)", "(ee)", "(ttt)", "(ett)",
   2852       "(tet)", "(eet)", "(tte)", "(ete)", "(tee)", "(eee)"
   2853     };
   2854     assert((ITMask.Mask & 0xf) == ITMask.Mask);
   2855     OS << "<it-mask " << MaskStr[ITMask.Mask] << ">";
   2856     break;
   2857   }
   2858   case k_CoprocNum:
   2859     OS << "<coprocessor number: " << getCoproc() << ">";
   2860     break;
   2861   case k_CoprocReg:
   2862     OS << "<coprocessor register: " << getCoproc() << ">";
   2863     break;
   2864   case k_CoprocOption:
   2865     OS << "<coprocessor option: " << CoprocOption.Val << ">";
   2866     break;
   2867   case k_MSRMask:
   2868     OS << "<mask: " << getMSRMask() << ">";
   2869     break;
   2870   case k_BankedReg:
   2871     OS << "<banked reg: " << getBankedReg() << ">";
   2872     break;
   2873   case k_Immediate:
   2874     getImm()->print(OS);
   2875     break;
   2876   case k_MemBarrierOpt:
   2877     OS << "<ARM_MB::" << MemBOptToString(getMemBarrierOpt(), false) << ">";
   2878     break;
   2879   case k_InstSyncBarrierOpt:
   2880     OS << "<ARM_ISB::" << InstSyncBOptToString(getInstSyncBarrierOpt()) << ">";
   2881     break;
   2882   case k_Memory:
   2883     OS << "<memory "
   2884        << " base:" << Memory.BaseRegNum;
   2885     OS << ">";
   2886     break;
   2887   case k_PostIndexRegister:
   2888     OS << "post-idx register " << (PostIdxReg.isAdd ? "" : "-")
   2889        << PostIdxReg.RegNum;
   2890     if (PostIdxReg.ShiftTy != ARM_AM::no_shift)
   2891       OS << ARM_AM::getShiftOpcStr(PostIdxReg.ShiftTy) << " "
   2892          << PostIdxReg.ShiftImm;
   2893     OS << ">";
   2894     break;
   2895   case k_ProcIFlags: {
   2896     OS << "<ARM_PROC::";
   2897     unsigned IFlags = getProcIFlags();
   2898     for (int i=2; i >= 0; --i)
   2899       if (IFlags & (1 << i))
   2900         OS << ARM_PROC::IFlagsToString(1 << i);
   2901     OS << ">";
   2902     break;
   2903   }
   2904   case k_Register:
   2905     OS << "<register " << getReg() << ">";
   2906     break;
   2907   case k_ShifterImmediate:
   2908     OS << "<shift " << (ShifterImm.isASR ? "asr" : "lsl")
   2909        << " #" << ShifterImm.Imm << ">";
   2910     break;
   2911   case k_ShiftedRegister:
   2912     OS << "<so_reg_reg "
   2913        << RegShiftedReg.SrcReg << " "
   2914        << ARM_AM::getShiftOpcStr(RegShiftedReg.ShiftTy)
   2915        << " " << RegShiftedReg.ShiftReg << ">";
   2916     break;
   2917   case k_ShiftedImmediate:
   2918     OS << "<so_reg_imm "
   2919        << RegShiftedImm.SrcReg << " "
   2920        << ARM_AM::getShiftOpcStr(RegShiftedImm.ShiftTy)
   2921        << " #" << RegShiftedImm.ShiftImm << ">";
   2922     break;
   2923   case k_RotateImmediate:
   2924     OS << "<ror " << " #" << (RotImm.Imm * 8) << ">";
   2925     break;
   2926   case k_ModifiedImmediate:
   2927     OS << "<mod_imm #" << ModImm.Bits << ", #"
   2928        <<  ModImm.Rot << ")>";
   2929     break;
   2930   case k_BitfieldDescriptor:
   2931     OS << "<bitfield " << "lsb: " << Bitfield.LSB
   2932        << ", width: " << Bitfield.Width << ">";
   2933     break;
   2934   case k_RegisterList:
   2935   case k_DPRRegisterList:
   2936   case k_SPRRegisterList: {
   2937     OS << "<register_list ";
   2938 
   2939     const SmallVectorImpl<unsigned> &RegList = getRegList();
   2940     for (SmallVectorImpl<unsigned>::const_iterator
   2941            I = RegList.begin(), E = RegList.end(); I != E; ) {
   2942       OS << *I;
   2943       if (++I < E) OS << ", ";
   2944     }
   2945 
   2946     OS << ">";
   2947     break;
   2948   }
   2949   case k_VectorList:
   2950     OS << "<vector_list " << VectorList.Count << " * "
   2951        << VectorList.RegNum << ">";
   2952     break;
   2953   case k_VectorListAllLanes:
   2954     OS << "<vector_list(all lanes) " << VectorList.Count << " * "
   2955        << VectorList.RegNum << ">";
   2956     break;
   2957   case k_VectorListIndexed:
   2958     OS << "<vector_list(lane " << VectorList.LaneIndex << ") "
   2959        << VectorList.Count << " * " << VectorList.RegNum << ">";
   2960     break;
   2961   case k_Token:
   2962     OS << "'" << getToken() << "'";
   2963     break;
   2964   case k_VectorIndex:
   2965     OS << "<vectorindex " << getVectorIndex() << ">";
   2966     break;
   2967   }
   2968 }
   2969 
   2970 /// @name Auto-generated Match Functions
   2971 /// {
   2972 
   2973 static unsigned MatchRegisterName(StringRef Name);
   2974 
   2975 /// }
   2976 
   2977 bool ARMAsmParser::ParseRegister(unsigned &RegNo,
   2978                                  SMLoc &StartLoc, SMLoc &EndLoc) {
   2979   const AsmToken &Tok = getParser().getTok();
   2980   StartLoc = Tok.getLoc();
   2981   EndLoc = Tok.getEndLoc();
   2982   RegNo = tryParseRegister();
   2983 
   2984   return (RegNo == (unsigned)-1);
   2985 }
   2986 
   2987 /// Try to parse a register name.  The token must be an Identifier when called,
   2988 /// and if it is a register name the token is eaten and the register number is
   2989 /// returned.  Otherwise return -1.
   2990 ///
   2991 int ARMAsmParser::tryParseRegister() {
   2992   MCAsmParser &Parser = getParser();
   2993   const AsmToken &Tok = Parser.getTok();
   2994   if (Tok.isNot(AsmToken::Identifier)) return -1;
   2995 
   2996   std::string lowerCase = Tok.getString().lower();
   2997   unsigned RegNum = MatchRegisterName(lowerCase);
   2998   if (!RegNum) {
   2999     RegNum = StringSwitch<unsigned>(lowerCase)
   3000       .Case("r13", ARM::SP)
   3001       .Case("r14", ARM::LR)
   3002       .Case("r15", ARM::PC)
   3003       .Case("ip", ARM::R12)
   3004       // Additional register name aliases for 'gas' compatibility.
   3005       .Case("a1", ARM::R0)
   3006       .Case("a2", ARM::R1)
   3007       .Case("a3", ARM::R2)
   3008       .Case("a4", ARM::R3)
   3009       .Case("v1", ARM::R4)
   3010       .Case("v2", ARM::R5)
   3011       .Case("v3", ARM::R6)
   3012       .Case("v4", ARM::R7)
   3013       .Case("v5", ARM::R8)
   3014       .Case("v6", ARM::R9)
   3015       .Case("v7", ARM::R10)
   3016       .Case("v8", ARM::R11)
   3017       .Case("sb", ARM::R9)
   3018       .Case("sl", ARM::R10)
   3019       .Case("fp", ARM::R11)
   3020       .Default(0);
   3021   }
   3022   if (!RegNum) {
   3023     // Check for aliases registered via .req. Canonicalize to lower case.
   3024     // That's more consistent since register names are case insensitive, and
   3025     // it's how the original entry was passed in from MC/MCParser/AsmParser.
   3026     StringMap<unsigned>::const_iterator Entry = RegisterReqs.find(lowerCase);
   3027     // If no match, return failure.
   3028     if (Entry == RegisterReqs.end())
   3029       return -1;
   3030     Parser.Lex(); // Eat identifier token.
   3031     return Entry->getValue();
   3032   }
   3033 
   3034   // Some FPUs only have 16 D registers, so D16-D31 are invalid
   3035   if (hasD16() && RegNum >= ARM::D16 && RegNum <= ARM::D31)
   3036     return -1;
   3037 
   3038   Parser.Lex(); // Eat identifier token.
   3039 
   3040   return RegNum;
   3041 }
   3042 
   3043 // Try to parse a shifter  (e.g., "lsl <amt>"). On success, return 0.
   3044 // If a recoverable error occurs, return 1. If an irrecoverable error
   3045 // occurs, return -1. An irrecoverable error is one where tokens have been
   3046 // consumed in the process of trying to parse the shifter (i.e., when it is
   3047 // indeed a shifter operand, but malformed).
   3048 int ARMAsmParser::tryParseShiftRegister(OperandVector &Operands) {
   3049   MCAsmParser &Parser = getParser();
   3050   SMLoc S = Parser.getTok().getLoc();
   3051   const AsmToken &Tok = Parser.getTok();
   3052   if (Tok.isNot(AsmToken::Identifier))
   3053     return -1;
   3054 
   3055   std::string lowerCase = Tok.getString().lower();
   3056   ARM_AM::ShiftOpc ShiftTy = StringSwitch<ARM_AM::ShiftOpc>(lowerCase)
   3057       .Case("asl", ARM_AM::lsl)
   3058       .Case("lsl", ARM_AM::lsl)
   3059       .Case("lsr", ARM_AM::lsr)
   3060       .Case("asr", ARM_AM::asr)
   3061       .Case("ror", ARM_AM::ror)
   3062       .Case("rrx", ARM_AM::rrx)
   3063       .Default(ARM_AM::no_shift);
   3064 
   3065   if (ShiftTy == ARM_AM::no_shift)
   3066     return 1;
   3067 
   3068   Parser.Lex(); // Eat the operator.
   3069 
   3070   // The source register for the shift has already been added to the
   3071   // operand list, so we need to pop it off and combine it into the shifted
   3072   // register operand instead.
   3073   std::unique_ptr<ARMOperand> PrevOp(
   3074       (ARMOperand *)Operands.pop_back_val().release());
   3075   if (!PrevOp->isReg())
   3076     return Error(PrevOp->getStartLoc(), "shift must be of a register");
   3077   int SrcReg = PrevOp->getReg();
   3078 
   3079   SMLoc EndLoc;
   3080   int64_t Imm = 0;
   3081   int ShiftReg = 0;
   3082   if (ShiftTy == ARM_AM::rrx) {
   3083     // RRX Doesn't have an explicit shift amount. The encoder expects
   3084     // the shift register to be the same as the source register. Seems odd,
   3085     // but OK.
   3086     ShiftReg = SrcReg;
   3087   } else {
   3088     // Figure out if this is shifted by a constant or a register (for non-RRX).
   3089     if (Parser.getTok().is(AsmToken::Hash) ||
   3090         Parser.getTok().is(AsmToken::Dollar)) {
   3091       Parser.Lex(); // Eat hash.
   3092       SMLoc ImmLoc = Parser.getTok().getLoc();
   3093       const MCExpr *ShiftExpr = nullptr;
   3094       if (getParser().parseExpression(ShiftExpr, EndLoc)) {
   3095         Error(ImmLoc, "invalid immediate shift value");
   3096         return -1;
   3097       }
   3098       // The expression must be evaluatable as an immediate.
   3099       const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftExpr);
   3100       if (!CE) {
   3101         Error(ImmLoc, "invalid immediate shift value");
   3102         return -1;
   3103       }
   3104       // Range check the immediate.
   3105       // lsl, ror: 0 <= imm <= 31
   3106       // lsr, asr: 0 <= imm <= 32
   3107       Imm = CE->getValue();
   3108       if (Imm < 0 ||
   3109           ((ShiftTy == ARM_AM::lsl || ShiftTy == ARM_AM::ror) && Imm > 31) ||
   3110           ((ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr) && Imm > 32)) {
   3111         Error(ImmLoc, "immediate shift value out of range");
   3112         return -1;
   3113       }
   3114       // shift by zero is a nop. Always send it through as lsl.
   3115       // ('as' compatibility)
   3116       if (Imm == 0)
   3117         ShiftTy = ARM_AM::lsl;
   3118     } else if (Parser.getTok().is(AsmToken::Identifier)) {
   3119       SMLoc L = Parser.getTok().getLoc();
   3120       EndLoc = Parser.getTok().getEndLoc();
   3121       ShiftReg = tryParseRegister();
   3122       if (ShiftReg == -1) {
   3123         Error(L, "expected immediate or register in shift operand");
   3124         return -1;
   3125       }
   3126     } else {
   3127       Error(Parser.getTok().getLoc(),
   3128             "expected immediate or register in shift operand");
   3129       return -1;
   3130     }
   3131   }
   3132 
   3133   if (ShiftReg && ShiftTy != ARM_AM::rrx)
   3134     Operands.push_back(ARMOperand::CreateShiftedRegister(ShiftTy, SrcReg,
   3135                                                          ShiftReg, Imm,
   3136                                                          S, EndLoc));
   3137   else
   3138     Operands.push_back(ARMOperand::CreateShiftedImmediate(ShiftTy, SrcReg, Imm,
   3139                                                           S, EndLoc));
   3140 
   3141   return 0;
   3142 }
   3143 
   3144 
   3145 /// Try to parse a register name.  The token must be an Identifier when called.
   3146 /// If it's a register, an AsmOperand is created. Another AsmOperand is created
   3147 /// if there is a "writeback". 'true' if it's not a register.
   3148 ///
   3149 /// TODO this is likely to change to allow different register types and or to
   3150 /// parse for a specific register type.
   3151 bool ARMAsmParser::tryParseRegisterWithWriteBack(OperandVector &Operands) {
   3152   MCAsmParser &Parser = getParser();
   3153   const AsmToken &RegTok = Parser.getTok();
   3154   int RegNo = tryParseRegister();
   3155   if (RegNo == -1)
   3156     return true;
   3157 
   3158   Operands.push_back(ARMOperand::CreateReg(RegNo, RegTok.getLoc(),
   3159                                            RegTok.getEndLoc()));
   3160 
   3161   const AsmToken &ExclaimTok = Parser.getTok();
   3162   if (ExclaimTok.is(AsmToken::Exclaim)) {
   3163     Operands.push_back(ARMOperand::CreateToken(ExclaimTok.getString(),
   3164                                                ExclaimTok.getLoc()));
   3165     Parser.Lex(); // Eat exclaim token
   3166     return false;
   3167   }
   3168 
   3169   // Also check for an index operand. This is only legal for vector registers,
   3170   // but that'll get caught OK in operand matching, so we don't need to
   3171   // explicitly filter everything else out here.
   3172   if (Parser.getTok().is(AsmToken::LBrac)) {
   3173     SMLoc SIdx = Parser.getTok().getLoc();
   3174     Parser.Lex(); // Eat left bracket token.
   3175 
   3176     const MCExpr *ImmVal;
   3177     if (getParser().parseExpression(ImmVal))
   3178       return true;
   3179     const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(ImmVal);
   3180     if (!MCE)
   3181       return TokError("immediate value expected for vector index");
   3182 
   3183     if (Parser.getTok().isNot(AsmToken::RBrac))
   3184       return Error(Parser.getTok().getLoc(), "']' expected");
   3185 
   3186     SMLoc E = Parser.getTok().getEndLoc();
   3187     Parser.Lex(); // Eat right bracket token.
   3188 
   3189     Operands.push_back(ARMOperand::CreateVectorIndex(MCE->getValue(),
   3190                                                      SIdx, E,
   3191                                                      getContext()));
   3192   }
   3193 
   3194   return false;
   3195 }
   3196 
   3197 /// MatchCoprocessorOperandName - Try to parse an coprocessor related
   3198 /// instruction with a symbolic operand name.
   3199 /// We accept "crN" syntax for GAS compatibility.
   3200 /// <operand-name> ::= <prefix><number>
   3201 /// If CoprocOp is 'c', then:
   3202 ///   <prefix> ::= c | cr
   3203 /// If CoprocOp is 'p', then :
   3204 ///   <prefix> ::= p
   3205 /// <number> ::= integer in range [0, 15]
   3206 static int MatchCoprocessorOperandName(StringRef Name, char CoprocOp) {
   3207   // Use the same layout as the tablegen'erated register name matcher. Ugly,
   3208   // but efficient.
   3209   if (Name.size() < 2 || Name[0] != CoprocOp)
   3210     return -1;
   3211   Name = (Name[1] == 'r') ? Name.drop_front(2) : Name.drop_front();
   3212 
   3213   switch (Name.size()) {
   3214   default: return -1;
   3215   case 1:
   3216     switch (Name[0]) {
   3217     default:  return -1;
   3218     case '0': return 0;
   3219     case '1': return 1;
   3220     case '2': return 2;
   3221     case '3': return 3;
   3222     case '4': return 4;
   3223     case '5': return 5;
   3224     case '6': return 6;
   3225     case '7': return 7;
   3226     case '8': return 8;
   3227     case '9': return 9;
   3228     }
   3229   case 2:
   3230     if (Name[0] != '1')
   3231       return -1;
   3232     switch (Name[1]) {
   3233     default:  return -1;
   3234     // CP10 and CP11 are VFP/NEON and so vector instructions should be used.
   3235     // However, old cores (v5/v6) did use them in that way.
   3236     case '0': return 10;
   3237     case '1': return 11;
   3238     case '2': return 12;
   3239     case '3': return 13;
   3240     case '4': return 14;
   3241     case '5': return 15;
   3242     }
   3243   }
   3244 }
   3245 
   3246 /// parseITCondCode - Try to parse a condition code for an IT instruction.
   3247 ARMAsmParser::OperandMatchResultTy
   3248 ARMAsmParser::parseITCondCode(OperandVector &Operands) {
   3249   MCAsmParser &Parser = getParser();
   3250   SMLoc S = Parser.getTok().getLoc();
   3251   const AsmToken &Tok = Parser.getTok();
   3252   if (!Tok.is(AsmToken::Identifier))
   3253     return MatchOperand_NoMatch;
   3254   unsigned CC = StringSwitch<unsigned>(Tok.getString().lower())
   3255     .Case("eq", ARMCC::EQ)
   3256     .Case("ne", ARMCC::NE)
   3257     .Case("hs", ARMCC::HS)
   3258     .Case("cs", ARMCC::HS)
   3259     .Case("lo", ARMCC::LO)
   3260     .Case("cc", ARMCC::LO)
   3261     .Case("mi", ARMCC::MI)
   3262     .Case("pl", ARMCC::PL)
   3263     .Case("vs", ARMCC::VS)
   3264     .Case("vc", ARMCC::VC)
   3265     .Case("hi", ARMCC::HI)
   3266     .Case("ls", ARMCC::LS)
   3267     .Case("ge", ARMCC::GE)
   3268     .Case("lt", ARMCC::LT)
   3269     .Case("gt", ARMCC::GT)
   3270     .Case("le", ARMCC::LE)
   3271     .Case("al", ARMCC::AL)
   3272     .Default(~0U);
   3273   if (CC == ~0U)
   3274     return MatchOperand_NoMatch;
   3275   Parser.Lex(); // Eat the token.
   3276 
   3277   Operands.push_back(ARMOperand::CreateCondCode(ARMCC::CondCodes(CC), S));
   3278 
   3279   return MatchOperand_Success;
   3280 }
   3281 
   3282 /// parseCoprocNumOperand - Try to parse an coprocessor number operand. The
   3283 /// token must be an Identifier when called, and if it is a coprocessor
   3284 /// number, the token is eaten and the operand is added to the operand list.
   3285 ARMAsmParser::OperandMatchResultTy
   3286 ARMAsmParser::parseCoprocNumOperand(OperandVector &Operands) {
   3287   MCAsmParser &Parser = getParser();
   3288   SMLoc S = Parser.getTok().getLoc();
   3289   const AsmToken &Tok = Parser.getTok();
   3290   if (Tok.isNot(AsmToken::Identifier))
   3291     return MatchOperand_NoMatch;
   3292 
   3293   int Num = MatchCoprocessorOperandName(Tok.getString(), 'p');
   3294   if (Num == -1)
   3295     return MatchOperand_NoMatch;
   3296   // ARMv7 and v8 don't allow cp10/cp11 due to VFP/NEON specific instructions
   3297   if ((hasV7Ops() || hasV8Ops()) && (Num == 10 || Num == 11))
   3298     return MatchOperand_NoMatch;
   3299 
   3300   Parser.Lex(); // Eat identifier token.
   3301   Operands.push_back(ARMOperand::CreateCoprocNum(Num, S));
   3302   return MatchOperand_Success;
   3303 }
   3304 
   3305 /// parseCoprocRegOperand - Try to parse an coprocessor register operand. The
   3306 /// token must be an Identifier when called, and if it is a coprocessor
   3307 /// number, the token is eaten and the operand is added to the operand list.
   3308 ARMAsmParser::OperandMatchResultTy
   3309 ARMAsmParser::parseCoprocRegOperand(OperandVector &Operands) {
   3310   MCAsmParser &Parser = getParser();
   3311   SMLoc S = Parser.getTok().getLoc();
   3312   const AsmToken &Tok = Parser.getTok();
   3313   if (Tok.isNot(AsmToken::Identifier))
   3314     return MatchOperand_NoMatch;
   3315 
   3316   int Reg = MatchCoprocessorOperandName(Tok.getString(), 'c');
   3317   if (Reg == -1)
   3318     return MatchOperand_NoMatch;
   3319 
   3320   Parser.Lex(); // Eat identifier token.
   3321   Operands.push_back(ARMOperand::CreateCoprocReg(Reg, S));
   3322   return MatchOperand_Success;
   3323 }
   3324 
   3325 /// parseCoprocOptionOperand - Try to parse an coprocessor option operand.
   3326 /// coproc_option : '{' imm0_255 '}'
   3327 ARMAsmParser::OperandMatchResultTy
   3328 ARMAsmParser::parseCoprocOptionOperand(OperandVector &Operands) {
   3329   MCAsmParser &Parser = getParser();
   3330   SMLoc S = Parser.getTok().getLoc();
   3331 
   3332   // If this isn't a '{', this isn't a coprocessor immediate operand.
   3333   if (Parser.getTok().isNot(AsmToken::LCurly))
   3334     return MatchOperand_NoMatch;
   3335   Parser.Lex(); // Eat the '{'
   3336 
   3337   const MCExpr *Expr;
   3338   SMLoc Loc = Parser.getTok().getLoc();
   3339   if (getParser().parseExpression(Expr)) {
   3340     Error(Loc, "illegal expression");
   3341     return MatchOperand_ParseFail;
   3342   }
   3343   const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr);
   3344   if (!CE || CE->getValue() < 0 || CE->getValue() > 255) {
   3345     Error(Loc, "coprocessor option must be an immediate in range [0, 255]");
   3346     return MatchOperand_ParseFail;
   3347   }
   3348   int Val = CE->getValue();
   3349 
   3350   // Check for and consume the closing '}'
   3351   if (Parser.getTok().isNot(AsmToken::RCurly))
   3352     return MatchOperand_ParseFail;
   3353   SMLoc E = Parser.getTok().getEndLoc();
   3354   Parser.Lex(); // Eat the '}'
   3355 
   3356   Operands.push_back(ARMOperand::CreateCoprocOption(Val, S, E));
   3357   return MatchOperand_Success;
   3358 }
   3359 
   3360 // For register list parsing, we need to map from raw GPR register numbering
   3361 // to the enumeration values. The enumeration values aren't sorted by
   3362 // register number due to our using "sp", "lr" and "pc" as canonical names.
   3363 static unsigned getNextRegister(unsigned Reg) {
   3364   // If this is a GPR, we need to do it manually, otherwise we can rely
   3365   // on the sort ordering of the enumeration since the other reg-classes
   3366   // are sane.
   3367   if (!ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg))
   3368     return Reg + 1;
   3369   switch(Reg) {
   3370   default: llvm_unreachable("Invalid GPR number!");
   3371   case ARM::R0:  return ARM::R1;  case ARM::R1:  return ARM::R2;
   3372   case ARM::R2:  return ARM::R3;  case ARM::R3:  return ARM::R4;
   3373   case ARM::R4:  return ARM::R5;  case ARM::R5:  return ARM::R6;
   3374   case ARM::R6:  return ARM::R7;  case ARM::R7:  return ARM::R8;
   3375   case ARM::R8:  return ARM::R9;  case ARM::R9:  return ARM::R10;
   3376   case ARM::R10: return ARM::R11; case ARM::R11: return ARM::R12;
   3377   case ARM::R12: return ARM::SP;  case ARM::SP:  return ARM::LR;
   3378   case ARM::LR:  return ARM::PC;  case ARM::PC:  return ARM::R0;
   3379   }
   3380 }
   3381 
   3382 // Return the low-subreg of a given Q register.
   3383 static unsigned getDRegFromQReg(unsigned QReg) {
   3384   switch (QReg) {
   3385   default: llvm_unreachable("expected a Q register!");
   3386   case ARM::Q0:  return ARM::D0;
   3387   case ARM::Q1:  return ARM::D2;
   3388   case ARM::Q2:  return ARM::D4;
   3389   case ARM::Q3:  return ARM::D6;
   3390   case ARM::Q4:  return ARM::D8;
   3391   case ARM::Q5:  return ARM::D10;
   3392   case ARM::Q6:  return ARM::D12;
   3393   case ARM::Q7:  return ARM::D14;
   3394   case ARM::Q8:  return ARM::D16;
   3395   case ARM::Q9:  return ARM::D18;
   3396   case ARM::Q10: return ARM::D20;
   3397   case ARM::Q11: return ARM::D22;
   3398   case ARM::Q12: return ARM::D24;
   3399   case ARM::Q13: return ARM::D26;
   3400   case ARM::Q14: return ARM::D28;
   3401   case ARM::Q15: return ARM::D30;
   3402   }
   3403 }
   3404 
   3405 /// Parse a register list.
   3406 bool ARMAsmParser::parseRegisterList(OperandVector &Operands) {
   3407   MCAsmParser &Parser = getParser();
   3408   assert(Parser.getTok().is(AsmToken::LCurly) &&
   3409          "Token is not a Left Curly Brace");
   3410   SMLoc S = Parser.getTok().getLoc();
   3411   Parser.Lex(); // Eat '{' token.
   3412   SMLoc RegLoc = Parser.getTok().getLoc();
   3413 
   3414   // Check the first register in the list to see what register class
   3415   // this is a list of.
   3416   int Reg = tryParseRegister();
   3417   if (Reg == -1)
   3418     return Error(RegLoc, "register expected");
   3419 
   3420   // The reglist instructions have at most 16 registers, so reserve
   3421   // space for that many.
   3422   int EReg = 0;
   3423   SmallVector<std::pair<unsigned, unsigned>, 16> Registers;
   3424 
   3425   // Allow Q regs and just interpret them as the two D sub-registers.
   3426   if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
   3427     Reg = getDRegFromQReg(Reg);
   3428     EReg = MRI->getEncodingValue(Reg);
   3429     Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg));
   3430     ++Reg;
   3431   }
   3432   const MCRegisterClass *RC;
   3433   if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg))
   3434     RC = &ARMMCRegisterClasses[ARM::GPRRegClassID];
   3435   else if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg))
   3436     RC = &ARMMCRegisterClasses[ARM::DPRRegClassID];
   3437   else if (ARMMCRegisterClasses[ARM::SPRRegClassID].contains(Reg))
   3438     RC = &ARMMCRegisterClasses[ARM::SPRRegClassID];
   3439   else
   3440     return Error(RegLoc, "invalid register in register list");
   3441 
   3442   // Store the register.
   3443   EReg = MRI->getEncodingValue(Reg);
   3444   Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg));
   3445 
   3446   // This starts immediately after the first register token in the list,
   3447   // so we can see either a comma or a minus (range separator) as a legal
   3448   // next token.
   3449   while (Parser.getTok().is(AsmToken::Comma) ||
   3450          Parser.getTok().is(AsmToken::Minus)) {
   3451     if (Parser.getTok().is(AsmToken::Minus)) {
   3452       Parser.Lex(); // Eat the minus.
   3453       SMLoc AfterMinusLoc = Parser.getTok().getLoc();
   3454       int EndReg = tryParseRegister();
   3455       if (EndReg == -1)
   3456         return Error(AfterMinusLoc, "register expected");
   3457       // Allow Q regs and just interpret them as the two D sub-registers.
   3458       if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg))
   3459         EndReg = getDRegFromQReg(EndReg) + 1;
   3460       // If the register is the same as the start reg, there's nothing
   3461       // more to do.
   3462       if (Reg == EndReg)
   3463         continue;
   3464       // The register must be in the same register class as the first.
   3465       if (!RC->contains(EndReg))
   3466         return Error(AfterMinusLoc, "invalid register in register list");
   3467       // Ranges must go from low to high.
   3468       if (MRI->getEncodingValue(Reg) > MRI->getEncodingValue(EndReg))
   3469         return Error(AfterMinusLoc, "bad range in register list");
   3470 
   3471       // Add all the registers in the range to the register list.
   3472       while (Reg != EndReg) {
   3473         Reg = getNextRegister(Reg);
   3474         EReg = MRI->getEncodingValue(Reg);
   3475         Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg));
   3476       }
   3477       continue;
   3478     }
   3479     Parser.Lex(); // Eat the comma.
   3480     RegLoc = Parser.getTok().getLoc();
   3481     int OldReg = Reg;
   3482     const AsmToken RegTok = Parser.getTok();
   3483     Reg = tryParseRegister();
   3484     if (Reg == -1)
   3485       return Error(RegLoc, "register expected");
   3486     // Allow Q regs and just interpret them as the two D sub-registers.
   3487     bool isQReg = false;
   3488     if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
   3489       Reg = getDRegFromQReg(Reg);
   3490       isQReg = true;
   3491     }
   3492     // The register must be in the same register class as the first.
   3493     if (!RC->contains(Reg))
   3494       return Error(RegLoc, "invalid register in register list");
   3495     // List must be monotonically increasing.
   3496     if (MRI->getEncodingValue(Reg) < MRI->getEncodingValue(OldReg)) {
   3497       if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg))
   3498         Warning(RegLoc, "register list not in ascending order");
   3499       else
   3500         return Error(RegLoc, "register list not in ascending order");
   3501     }
   3502     if (MRI->getEncodingValue(Reg) == MRI->getEncodingValue(OldReg)) {
   3503       Warning(RegLoc, "duplicated register (" + RegTok.getString() +
   3504               ") in register list");
   3505       continue;
   3506     }
   3507     // VFP register lists must also be contiguous.
   3508     if (RC != &ARMMCRegisterClasses[ARM::GPRRegClassID] &&
   3509         Reg != OldReg + 1)
   3510       return Error(RegLoc, "non-contiguous register range");
   3511     EReg = MRI->getEncodingValue(Reg);
   3512     Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg));
   3513     if (isQReg) {
   3514       EReg = MRI->getEncodingValue(++Reg);
   3515       Registers.push_back(std::pair<unsigned, unsigned>(EReg, Reg));
   3516     }
   3517   }
   3518 
   3519   if (Parser.getTok().isNot(AsmToken::RCurly))
   3520     return Error(Parser.getTok().getLoc(), "'}' expected");
   3521   SMLoc E = Parser.getTok().getEndLoc();
   3522   Parser.Lex(); // Eat '}' token.
   3523 
   3524   // Push the register list operand.
   3525   Operands.push_back(ARMOperand::CreateRegList(Registers, S, E));
   3526 
   3527   // The ARM system instruction variants for LDM/STM have a '^' token here.
   3528   if (Parser.getTok().is(AsmToken::Caret)) {
   3529     Operands.push_back(ARMOperand::CreateToken("^",Parser.getTok().getLoc()));
   3530     Parser.Lex(); // Eat '^' token.
   3531   }
   3532 
   3533   return false;
   3534 }
   3535 
   3536 // Helper function to parse the lane index for vector lists.
   3537 ARMAsmParser::OperandMatchResultTy ARMAsmParser::
   3538 parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index, SMLoc &EndLoc) {
   3539   MCAsmParser &Parser = getParser();
   3540   Index = 0; // Always return a defined index value.
   3541   if (Parser.getTok().is(AsmToken::LBrac)) {
   3542     Parser.Lex(); // Eat the '['.
   3543     if (Parser.getTok().is(AsmToken::RBrac)) {
   3544       // "Dn[]" is the 'all lanes' syntax.
   3545       LaneKind = AllLanes;
   3546       EndLoc = Parser.getTok().getEndLoc();
   3547       Parser.Lex(); // Eat the ']'.
   3548       return MatchOperand_Success;
   3549     }
   3550 
   3551     // There's an optional '#' token here. Normally there wouldn't be, but
   3552     // inline assemble puts one in, and it's friendly to accept that.
   3553     if (Parser.getTok().is(AsmToken::Hash))
   3554       Parser.Lex(); // Eat '#' or '$'.
   3555 
   3556     const MCExpr *LaneIndex;
   3557     SMLoc Loc = Parser.getTok().getLoc();
   3558     if (getParser().parseExpression(LaneIndex)) {
   3559       Error(Loc, "illegal expression");
   3560       return MatchOperand_ParseFail;
   3561     }
   3562     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LaneIndex);
   3563     if (!CE) {
   3564       Error(Loc, "lane index must be empty or an integer");
   3565       return MatchOperand_ParseFail;
   3566     }
   3567     if (Parser.getTok().isNot(AsmToken::RBrac)) {
   3568       Error(Parser.getTok().getLoc(), "']' expected");
   3569       return MatchOperand_ParseFail;
   3570     }
   3571     EndLoc = Parser.getTok().getEndLoc();
   3572     Parser.Lex(); // Eat the ']'.
   3573     int64_t Val = CE->getValue();
   3574 
   3575     // FIXME: Make this range check context sensitive for .8, .16, .32.
   3576     if (Val < 0 || Val > 7) {
   3577       Error(Parser.getTok().getLoc(), "lane index out of range");
   3578       return MatchOperand_ParseFail;
   3579     }
   3580     Index = Val;
   3581     LaneKind = IndexedLane;
   3582     return MatchOperand_Success;
   3583   }
   3584   LaneKind = NoLanes;
   3585   return MatchOperand_Success;
   3586 }
   3587 
   3588 // parse a vector register list
   3589 ARMAsmParser::OperandMatchResultTy
   3590 ARMAsmParser::parseVectorList(OperandVector &Operands) {
   3591   MCAsmParser &Parser = getParser();
   3592   VectorLaneTy LaneKind;
   3593   unsigned LaneIndex;
   3594   SMLoc S = Parser.getTok().getLoc();
   3595   // As an extension (to match gas), support a plain D register or Q register
   3596   // (without encosing curly braces) as a single or double entry list,
   3597   // respectively.
   3598   if (Parser.getTok().is(AsmToken::Identifier)) {
   3599     SMLoc E = Parser.getTok().getEndLoc();
   3600     int Reg = tryParseRegister();
   3601     if (Reg == -1)
   3602       return MatchOperand_NoMatch;
   3603     if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) {
   3604       OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E);
   3605       if (Res != MatchOperand_Success)
   3606         return Res;
   3607       switch (LaneKind) {
   3608       case NoLanes:
   3609         Operands.push_back(ARMOperand::CreateVectorList(Reg, 1, false, S, E));
   3610         break;
   3611       case AllLanes:
   3612         Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 1, false,
   3613                                                                 S, E));
   3614         break;
   3615       case IndexedLane:
   3616         Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 1,
   3617                                                                LaneIndex,
   3618                                                                false, S, E));
   3619         break;
   3620       }
   3621       return MatchOperand_Success;
   3622     }
   3623     if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
   3624       Reg = getDRegFromQReg(Reg);
   3625       OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex, E);
   3626       if (Res != MatchOperand_Success)
   3627         return Res;
   3628       switch (LaneKind) {
   3629       case NoLanes:
   3630         Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0,
   3631                                    &ARMMCRegisterClasses[ARM::DPairRegClassID]);
   3632         Operands.push_back(ARMOperand::CreateVectorList(Reg, 2, false, S, E));
   3633         break;
   3634       case AllLanes:
   3635         Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0,
   3636                                    &ARMMCRegisterClasses[ARM::DPairRegClassID]);
   3637         Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 2, false,
   3638                                                                 S, E));
   3639         break;
   3640       case IndexedLane:
   3641         Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 2,
   3642                                                                LaneIndex,
   3643                                                                false, S, E));
   3644         break;
   3645       }
   3646       return MatchOperand_Success;
   3647     }
   3648     Error(S, "vector register expected");
   3649     return MatchOperand_ParseFail;
   3650   }
   3651 
   3652   if (Parser.getTok().isNot(AsmToken::LCurly))
   3653     return MatchOperand_NoMatch;
   3654 
   3655   Parser.Lex(); // Eat '{' token.
   3656   SMLoc RegLoc = Parser.getTok().getLoc();
   3657 
   3658   int Reg = tryParseRegister();
   3659   if (Reg == -1) {
   3660     Error(RegLoc, "register expected");
   3661     return MatchOperand_ParseFail;
   3662   }
   3663   unsigned Count = 1;
   3664   int Spacing = 0;
   3665   unsigned FirstReg = Reg;
   3666   // The list is of D registers, but we also allow Q regs and just interpret
   3667   // them as the two D sub-registers.
   3668   if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
   3669     FirstReg = Reg = getDRegFromQReg(Reg);
   3670     Spacing = 1; // double-spacing requires explicit D registers, otherwise
   3671                  // it's ambiguous with four-register single spaced.
   3672     ++Reg;
   3673     ++Count;
   3674   }
   3675 
   3676   SMLoc E;
   3677   if (parseVectorLane(LaneKind, LaneIndex, E) != MatchOperand_Success)
   3678     return MatchOperand_ParseFail;
   3679 
   3680   while (Parser.getTok().is(AsmToken::Comma) ||
   3681          Parser.getTok().is(AsmToken::Minus)) {
   3682     if (Parser.getTok().is(AsmToken::Minus)) {
   3683       if (!Spacing)
   3684         Spacing = 1; // Register range implies a single spaced list.
   3685       else if (Spacing == 2) {
   3686         Error(Parser.getTok().getLoc(),
   3687               "sequential registers in double spaced list");
   3688         return MatchOperand_ParseFail;
   3689       }
   3690       Parser.Lex(); // Eat the minus.
   3691       SMLoc AfterMinusLoc = Parser.getTok().getLoc();
   3692       int EndReg = tryParseRegister();
   3693       if (EndReg == -1) {
   3694         Error(AfterMinusLoc, "register expected");
   3695         return MatchOperand_ParseFail;
   3696       }
   3697       // Allow Q regs and just interpret them as the two D sub-registers.
   3698       if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg))
   3699         EndReg = getDRegFromQReg(EndReg) + 1;
   3700       // If the register is the same as the start reg, there's nothing
   3701       // more to do.
   3702       if (Reg == EndReg)
   3703         continue;
   3704       // The register must be in the same register class as the first.
   3705       if (!ARMMCRegisterClasses[ARM::DPRRegClassID].contains(EndReg)) {
   3706         Error(AfterMinusLoc, "invalid register in register list");
   3707         return MatchOperand_ParseFail;
   3708       }
   3709       // Ranges must go from low to high.
   3710       if (Reg > EndReg) {
   3711         Error(AfterMinusLoc, "bad range in register list");
   3712         return MatchOperand_ParseFail;
   3713       }
   3714       // Parse the lane specifier if present.
   3715       VectorLaneTy NextLaneKind;
   3716       unsigned NextLaneIndex;
   3717       if (parseVectorLane(NextLaneKind, NextLaneIndex, E) !=
   3718           MatchOperand_Success)
   3719         return MatchOperand_ParseFail;
   3720       if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) {
   3721         Error(AfterMinusLoc, "mismatched lane index in register list");
   3722         return MatchOperand_ParseFail;
   3723       }
   3724 
   3725       // Add all the registers in the range to the register list.
   3726       Count += EndReg - Reg;
   3727       Reg = EndReg;
   3728       continue;
   3729     }
   3730     Parser.Lex(); // Eat the comma.
   3731     RegLoc = Parser.getTok().getLoc();
   3732     int OldReg = Reg;
   3733     Reg = tryParseRegister();
   3734     if (Reg == -1) {
   3735       Error(RegLoc, "register expected");
   3736       return MatchOperand_ParseFail;
   3737     }
   3738     // vector register lists must be contiguous.
   3739     // It's OK to use the enumeration values directly here rather, as the
   3740     // VFP register classes have the enum sorted properly.
   3741     //
   3742     // The list is of D registers, but we also allow Q regs and just interpret
   3743     // them as the two D sub-registers.
   3744     if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
   3745       if (!Spacing)
   3746         Spacing = 1; // Register range implies a single spaced list.
   3747       else if (Spacing == 2) {
   3748         Error(RegLoc,
   3749               "invalid register in double-spaced list (must be 'D' register')");
   3750         return MatchOperand_ParseFail;
   3751       }
   3752       Reg = getDRegFromQReg(Reg);
   3753       if (Reg != OldReg + 1) {
   3754         Error(RegLoc, "non-contiguous register range");
   3755         return MatchOperand_ParseFail;
   3756       }
   3757       ++Reg;
   3758       Count += 2;
   3759       // Parse the lane specifier if present.
   3760       VectorLaneTy NextLaneKind;
   3761       unsigned NextLaneIndex;
   3762       SMLoc LaneLoc = Parser.getTok().getLoc();
   3763       if (parseVectorLane(NextLaneKind, NextLaneIndex, E) !=
   3764           MatchOperand_Success)
   3765         return MatchOperand_ParseFail;
   3766       if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) {
   3767         Error(LaneLoc, "mismatched lane index in register list");
   3768         return MatchOperand_ParseFail;
   3769       }
   3770       continue;
   3771     }
   3772     // Normal D register.
   3773     // Figure out the register spacing (single or double) of the list if
   3774     // we don't know it already.
   3775     if (!Spacing)
   3776       Spacing = 1 + (Reg == OldReg + 2);
   3777 
   3778     // Just check that it's contiguous and keep going.
   3779     if (Reg != OldReg + Spacing) {
   3780       Error(RegLoc, "non-contiguous register range");
   3781       return MatchOperand_ParseFail;
   3782     }
   3783     ++Count;
   3784     // Parse the lane specifier if present.
   3785     VectorLaneTy NextLaneKind;
   3786     unsigned NextLaneIndex;
   3787     SMLoc EndLoc = Parser.getTok().getLoc();
   3788     if (parseVectorLane(NextLaneKind, NextLaneIndex, E) != MatchOperand_Success)
   3789       return MatchOperand_ParseFail;
   3790     if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) {
   3791       Error(EndLoc, "mismatched lane index in register list");
   3792       return MatchOperand_ParseFail;
   3793     }
   3794   }
   3795 
   3796   if (Parser.getTok().isNot(AsmToken::RCurly)) {
   3797     Error(Parser.getTok().getLoc(), "'}' expected");
   3798     return MatchOperand_ParseFail;
   3799   }
   3800   E = Parser.getTok().getEndLoc();
   3801   Parser.Lex(); // Eat '}' token.
   3802 
   3803   switch (LaneKind) {
   3804   case NoLanes:
   3805     // Two-register operands have been converted to the
   3806     // composite register classes.
   3807     if (Count == 2) {
   3808       const MCRegisterClass *RC = (Spacing == 1) ?
   3809         &ARMMCRegisterClasses[ARM::DPairRegClassID] :
   3810         &ARMMCRegisterClasses[ARM::DPairSpcRegClassID];
   3811       FirstReg = MRI->getMatchingSuperReg(FirstReg, ARM::dsub_0, RC);
   3812     }
   3813 
   3814     Operands.push_back(ARMOperand::CreateVectorList(FirstReg, Count,
   3815                                                     (Spacing == 2), S, E));
   3816     break;
   3817   case AllLanes:
   3818     // Two-register operands have been converted to the
   3819     // composite register classes.
   3820     if (Count == 2) {
   3821       const MCRegisterClass *RC = (Spacing == 1) ?
   3822         &ARMMCRegisterClasses[ARM::DPairRegClassID] :
   3823         &ARMMCRegisterClasses[ARM::DPairSpcRegClassID];
   3824       FirstReg = MRI->getMatchingSuperReg(FirstReg, ARM::dsub_0, RC);
   3825     }
   3826     Operands.push_back(ARMOperand::CreateVectorListAllLanes(FirstReg, Count,
   3827                                                             (Spacing == 2),
   3828                                                             S, E));
   3829     break;
   3830   case IndexedLane:
   3831     Operands.push_back(ARMOperand::CreateVectorListIndexed(FirstReg, Count,
   3832                                                            LaneIndex,
   3833                                                            (Spacing == 2),
   3834                                                            S, E));
   3835     break;
   3836   }
   3837   return MatchOperand_Success;
   3838 }
   3839 
   3840 /// parseMemBarrierOptOperand - Try to parse DSB/DMB data barrier options.
   3841 ARMAsmParser::OperandMatchResultTy
   3842 ARMAsmParser::parseMemBarrierOptOperand(OperandVector &Operands) {
   3843   MCAsmParser &Parser = getParser();
   3844   SMLoc S = Parser.getTok().getLoc();
   3845   const AsmToken &Tok = Parser.getTok();
   3846   unsigned Opt;
   3847 
   3848   if (Tok.is(AsmToken::Identifier)) {
   3849     StringRef OptStr = Tok.getString();
   3850 
   3851     Opt = StringSwitch<unsigned>(OptStr.slice(0, OptStr.size()).lower())
   3852       .Case("sy",    ARM_MB::SY)
   3853       .Case("st",    ARM_MB::ST)
   3854       .Case("ld",    ARM_MB::LD)
   3855       .Case("sh",    ARM_MB::ISH)
   3856       .Case("ish",   ARM_MB::ISH)
   3857       .Case("shst",  ARM_MB::ISHST)
   3858       .Case("ishst", ARM_MB::ISHST)
   3859       .Case("ishld", ARM_MB::ISHLD)
   3860       .Case("nsh",   ARM_MB::NSH)
   3861       .Case("un",    ARM_MB::NSH)
   3862       .Case("nshst", ARM_MB::NSHST)
   3863       .Case("nshld", ARM_MB::NSHLD)
   3864       .Case("unst",  ARM_MB::NSHST)
   3865       .Case("osh",   ARM_MB::OSH)
   3866       .Case("oshst", ARM_MB::OSHST)
   3867       .Case("oshld", ARM_MB::OSHLD)
   3868       .Default(~0U);
   3869 
   3870     // ishld, oshld, nshld and ld are only available from ARMv8.
   3871     if (!hasV8Ops() && (Opt == ARM_MB::ISHLD || Opt == ARM_MB::OSHLD ||
   3872                         Opt == ARM_MB::NSHLD || Opt == ARM_MB::LD))
   3873       Opt = ~0U;
   3874 
   3875     if (Opt == ~0U)
   3876       return MatchOperand_NoMatch;
   3877 
   3878     Parser.Lex(); // Eat identifier token.
   3879   } else if (Tok.is(AsmToken::Hash) ||
   3880              Tok.is(AsmToken::Dollar) ||
   3881              Tok.is(AsmToken::Integer)) {
   3882     if (Parser.getTok().isNot(AsmToken::Integer))
   3883       Parser.Lex(); // Eat '#' or '$'.
   3884     SMLoc Loc = Parser.getTok().getLoc();
   3885 
   3886     const MCExpr *MemBarrierID;
   3887     if (getParser().parseExpression(MemBarrierID)) {
   3888       Error(Loc, "illegal expression");
   3889       return MatchOperand_ParseFail;
   3890     }
   3891 
   3892     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(MemBarrierID);
   3893     if (!CE) {
   3894       Error(Loc, "constant expression expected");
   3895       return MatchOperand_ParseFail;
   3896     }
   3897 
   3898     int Val = CE->getValue();
   3899     if (Val & ~0xf) {
   3900       Error(Loc, "immediate value out of range");
   3901       return MatchOperand_ParseFail;
   3902     }
   3903 
   3904     Opt = ARM_MB::RESERVED_0 + Val;
   3905   } else
   3906     return MatchOperand_ParseFail;
   3907 
   3908   Operands.push_back(ARMOperand::CreateMemBarrierOpt((ARM_MB::MemBOpt)Opt, S));
   3909   return MatchOperand_Success;
   3910 }
   3911 
   3912 /// parseInstSyncBarrierOptOperand - Try to parse ISB inst sync barrier options.
   3913 ARMAsmParser::OperandMatchResultTy
   3914 ARMAsmParser::parseInstSyncBarrierOptOperand(OperandVector &Operands) {
   3915   MCAsmParser &Parser = getParser();
   3916   SMLoc S = Parser.getTok().getLoc();
   3917   const AsmToken &Tok = Parser.getTok();
   3918   unsigned Opt;
   3919 
   3920   if (Tok.is(AsmToken::Identifier)) {
   3921     StringRef OptStr = Tok.getString();
   3922 
   3923     if (OptStr.equals_lower("sy"))
   3924       Opt = ARM_ISB::SY;
   3925     else
   3926       return MatchOperand_NoMatch;
   3927 
   3928     Parser.Lex(); // Eat identifier token.
   3929   } else if (Tok.is(AsmToken::Hash) ||
   3930              Tok.is(AsmToken::Dollar) ||
   3931              Tok.is(AsmToken::Integer)) {
   3932     if (Parser.getTok().isNot(AsmToken::Integer))
   3933       Parser.Lex(); // Eat '#' or '$'.
   3934     SMLoc Loc = Parser.getTok().getLoc();
   3935 
   3936     const MCExpr *ISBarrierID;
   3937     if (getParser().parseExpression(ISBarrierID)) {
   3938       Error(Loc, "illegal expression");
   3939       return MatchOperand_ParseFail;
   3940     }
   3941 
   3942     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ISBarrierID);
   3943     if (!CE) {
   3944       Error(Loc, "constant expression expected");
   3945       return MatchOperand_ParseFail;
   3946     }
   3947 
   3948     int Val = CE->getValue();
   3949     if (Val & ~0xf) {
   3950       Error(Loc, "immediate value out of range");
   3951       return MatchOperand_ParseFail;
   3952     }
   3953 
   3954     Opt = ARM_ISB::RESERVED_0 + Val;
   3955   } else
   3956     return MatchOperand_ParseFail;
   3957 
   3958   Operands.push_back(ARMOperand::CreateInstSyncBarrierOpt(
   3959           (ARM_ISB::InstSyncBOpt)Opt, S));
   3960   return MatchOperand_Success;
   3961 }
   3962 
   3963 
   3964 /// parseProcIFlagsOperand - Try to parse iflags from CPS instruction.
   3965 ARMAsmParser::OperandMatchResultTy
   3966 ARMAsmParser::parseProcIFlagsOperand(OperandVector &Operands) {
   3967   MCAsmParser &Parser = getParser();
   3968   SMLoc S = Parser.getTok().getLoc();
   3969   const AsmToken &Tok = Parser.getTok();
   3970   if (!Tok.is(AsmToken::Identifier))
   3971     return MatchOperand_NoMatch;
   3972   StringRef IFlagsStr = Tok.getString();
   3973 
   3974   // An iflags string of "none" is interpreted to mean that none of the AIF
   3975   // bits are set.  Not a terribly useful instruction, but a valid encoding.
   3976   unsigned IFlags = 0;
   3977   if (IFlagsStr != "none") {
   3978         for (int i = 0, e = IFlagsStr.size(); i != e; ++i) {
   3979       unsigned Flag = StringSwitch<unsigned>(IFlagsStr.substr(i, 1))
   3980         .Case("a", ARM_PROC::A)
   3981         .Case("i", ARM_PROC::I)
   3982         .Case("f", ARM_PROC::F)
   3983         .Default(~0U);
   3984 
   3985       // If some specific iflag is already set, it means that some letter is
   3986       // present more than once, this is not acceptable.
   3987       if (Flag == ~0U || (IFlags & Flag))
   3988         return MatchOperand_NoMatch;
   3989 
   3990       IFlags |= Flag;
   3991     }
   3992   }
   3993 
   3994   Parser.Lex(); // Eat identifier token.
   3995   Operands.push_back(ARMOperand::CreateProcIFlags((ARM_PROC::IFlags)IFlags, S));
   3996   return MatchOperand_Success;
   3997 }
   3998 
   3999 /// parseMSRMaskOperand - Try to parse mask flags from MSR instruction.
   4000 ARMAsmParser::OperandMatchResultTy
   4001 ARMAsmParser::parseMSRMaskOperand(OperandVector &Operands) {
   4002   MCAsmParser &Parser = getParser();
   4003   SMLoc S = Parser.getTok().getLoc();
   4004   const AsmToken &Tok = Parser.getTok();
   4005   if (!Tok.is(AsmToken::Identifier))
   4006     return MatchOperand_NoMatch;
   4007   StringRef Mask = Tok.getString();
   4008 
   4009   if (isMClass()) {
   4010     // See ARMv6-M 10.1.1
   4011     std::string Name = Mask.lower();
   4012     unsigned FlagsVal = StringSwitch<unsigned>(Name)
   4013       // Note: in the documentation:
   4014       //  ARM deprecates using MSR APSR without a _<bits> qualifier as an alias
   4015       //  for MSR APSR_nzcvq.
   4016       // but we do make it an alias here.  This is so to get the "mask encoding"
   4017       // bits correct on MSR APSR writes.
   4018       //
   4019       // FIXME: Note the 0xc00 "mask encoding" bits version of the registers
   4020       // should really only be allowed when writing a special register.  Note
   4021       // they get dropped in the MRS instruction reading a special register as
   4022       // the SYSm field is only 8 bits.
   4023       .Case("apsr", 0x800)
   4024       .Case("apsr_nzcvq", 0x800)
   4025       .Case("apsr_g", 0x400)
   4026       .Case("apsr_nzcvqg", 0xc00)
   4027       .Case("iapsr", 0x801)
   4028       .Case("iapsr_nzcvq", 0x801)
   4029       .Case("iapsr_g", 0x401)
   4030       .Case("iapsr_nzcvqg", 0xc01)
   4031       .Case("eapsr", 0x802)
   4032       .Case("eapsr_nzcvq", 0x802)
   4033       .Case("eapsr_g", 0x402)
   4034       .Case("eapsr_nzcvqg", 0xc02)
   4035       .Case("xpsr", 0x803)
   4036       .Case("xpsr_nzcvq", 0x803)
   4037       .Case("xpsr_g", 0x403)
   4038       .Case("xpsr_nzcvqg", 0xc03)
   4039       .Case("ipsr", 0x805)
   4040       .Case("epsr", 0x806)
   4041       .Case("iepsr", 0x807)
   4042       .Case("msp", 0x808)
   4043       .Case("psp", 0x809)
   4044       .Case("primask", 0x810)
   4045       .Case("basepri", 0x811)
   4046       .Case("basepri_max", 0x812)
   4047       .Case("faultmask", 0x813)
   4048       .Case("control", 0x814)
   4049       .Default(~0U);
   4050 
   4051     if (FlagsVal == ~0U)
   4052       return MatchOperand_NoMatch;
   4053 
   4054     if (!hasThumb2DSP() && (FlagsVal & 0x400))
   4055       // The _g and _nzcvqg versions are only valid if the DSP extension is
   4056       // available.
   4057       return MatchOperand_NoMatch;
   4058 
   4059     if (!hasV7Ops() && FlagsVal >= 0x811 && FlagsVal <= 0x813)
   4060       // basepri, basepri_max and faultmask only valid for V7m.
   4061       return MatchOperand_NoMatch;
   4062 
   4063     Parser.Lex(); // Eat identifier token.
   4064     Operands.push_back(ARMOperand::CreateMSRMask(FlagsVal, S));
   4065     return MatchOperand_Success;
   4066   }
   4067 
   4068   // Split spec_reg from flag, example: CPSR_sxf => "CPSR" and "sxf"
   4069   size_t Start = 0, Next = Mask.find('_');
   4070   StringRef Flags = "";
   4071   std::string SpecReg = Mask.slice(Start, Next).lower();
   4072   if (Next != StringRef::npos)
   4073     Flags = Mask.slice(Next+1, Mask.size());
   4074 
   4075   // FlagsVal contains the complete mask:
   4076   // 3-0: Mask
   4077   // 4: Special Reg (cpsr, apsr => 0; spsr => 1)
   4078   unsigned FlagsVal = 0;
   4079 
   4080   if (SpecReg == "apsr") {
   4081     FlagsVal = StringSwitch<unsigned>(Flags)
   4082     .Case("nzcvq",  0x8) // same as CPSR_f
   4083     .Case("g",      0x4) // same as CPSR_s
   4084     .Case("nzcvqg", 0xc) // same as CPSR_fs
   4085     .Default(~0U);
   4086 
   4087     if (FlagsVal == ~0U) {
   4088       if (!Flags.empty())
   4089         return MatchOperand_NoMatch;
   4090       else
   4091         FlagsVal = 8; // No flag
   4092     }
   4093   } else if (SpecReg == "cpsr" || SpecReg == "spsr") {
   4094     // cpsr_all is an alias for cpsr_fc, as is plain cpsr.
   4095     if (Flags == "all" || Flags == "")
   4096       Flags = "fc";
   4097     for (int i = 0, e = Flags.size(); i != e; ++i) {
   4098       unsigned Flag = StringSwitch<unsigned>(Flags.substr(i, 1))
   4099       .Case("c", 1)
   4100       .Case("x", 2)
   4101       .Case("s", 4)
   4102       .Case("f", 8)
   4103       .Default(~0U);
   4104 
   4105       // If some specific flag is already set, it means that some letter is
   4106       // present more than once, this is not acceptable.
   4107       if (FlagsVal == ~0U || (FlagsVal & Flag))
   4108         return MatchOperand_NoMatch;
   4109       FlagsVal |= Flag;
   4110     }
   4111   } else // No match for special register.
   4112     return MatchOperand_NoMatch;
   4113 
   4114   // Special register without flags is NOT equivalent to "fc" flags.
   4115   // NOTE: This is a divergence from gas' behavior.  Uncommenting the following
   4116   // two lines would enable gas compatibility at the expense of breaking
   4117   // round-tripping.
   4118   //
   4119   // if (!FlagsVal)
   4120   //  FlagsVal = 0x9;
   4121 
   4122   // Bit 4: Special Reg (cpsr, apsr => 0; spsr => 1)
   4123   if (SpecReg == "spsr")
   4124     FlagsVal |= 16;
   4125 
   4126   Parser.Lex(); // Eat identifier token.
   4127   Operands.push_back(ARMOperand::CreateMSRMask(FlagsVal, S));
   4128   return MatchOperand_Success;
   4129 }
   4130 
   4131 /// parseBankedRegOperand - Try to parse a banked register (e.g. "lr_irq") for
   4132 /// use in the MRS/MSR instructions added to support virtualization.
   4133 ARMAsmParser::OperandMatchResultTy
   4134 ARMAsmParser::parseBankedRegOperand(OperandVector &Operands) {
   4135   MCAsmParser &Parser = getParser();
   4136   SMLoc S = Parser.getTok().getLoc();
   4137   const AsmToken &Tok = Parser.getTok();
   4138   if (!Tok.is(AsmToken::Identifier))
   4139     return MatchOperand_NoMatch;
   4140   StringRef RegName = Tok.getString();
   4141 
   4142   // The values here come from B9.2.3 of the ARM ARM, where bits 4-0 are SysM
   4143   // and bit 5 is R.
   4144   unsigned Encoding = StringSwitch<unsigned>(RegName.lower())
   4145                           .Case("r8_usr", 0x00)
   4146                           .Case("r9_usr", 0x01)
   4147                           .Case("r10_usr", 0x02)
   4148                           .Case("r11_usr", 0x03)
   4149                           .Case("r12_usr", 0x04)
   4150                           .Case("sp_usr", 0x05)
   4151                           .Case("lr_usr", 0x06)
   4152                           .Case("r8_fiq", 0x08)
   4153                           .Case("r9_fiq", 0x09)
   4154                           .Case("r10_fiq", 0x0a)
   4155                           .Case("r11_fiq", 0x0b)
   4156                           .Case("r12_fiq", 0x0c)
   4157                           .Case("sp_fiq", 0x0d)
   4158                           .Case("lr_fiq", 0x0e)
   4159                           .Case("lr_irq", 0x10)
   4160                           .Case("sp_irq", 0x11)
   4161                           .Case("lr_svc", 0x12)
   4162                           .Case("sp_svc", 0x13)
   4163                           .Case("lr_abt", 0x14)
   4164                           .Case("sp_abt", 0x15)
   4165                           .Case("lr_und", 0x16)
   4166                           .Case("sp_und", 0x17)
   4167                           .Case("lr_mon", 0x1c)
   4168                           .Case("sp_mon", 0x1d)
   4169                           .Case("elr_hyp", 0x1e)
   4170                           .Case("sp_hyp", 0x1f)
   4171                           .Case("spsr_fiq", 0x2e)
   4172                           .Case("spsr_irq", 0x30)
   4173                           .Case("spsr_svc", 0x32)
   4174                           .Case("spsr_abt", 0x34)
   4175                           .Case("spsr_und", 0x36)
   4176                           .Case("spsr_mon", 0x3c)
   4177                           .Case("spsr_hyp", 0x3e)
   4178                           .Default(~0U);
   4179 
   4180   if (Encoding == ~0U)
   4181     return MatchOperand_NoMatch;
   4182 
   4183   Parser.Lex(); // Eat identifier token.
   4184   Operands.push_back(ARMOperand::CreateBankedReg(Encoding, S));
   4185   return MatchOperand_Success;
   4186 }
   4187 
   4188 ARMAsmParser::OperandMatchResultTy
   4189 ARMAsmParser::parsePKHImm(OperandVector &Operands, StringRef Op, int Low,
   4190                           int High) {
   4191   MCAsmParser &Parser = getParser();
   4192   const AsmToken &Tok = Parser.getTok();
   4193   if (Tok.isNot(AsmToken::Identifier)) {
   4194     Error(Parser.getTok().getLoc(), Op + " operand expected.");
   4195     return MatchOperand_ParseFail;
   4196   }
   4197   StringRef ShiftName = Tok.getString();
   4198   std::string LowerOp = Op.lower();
   4199   std::string UpperOp = Op.upper();
   4200   if (ShiftName != LowerOp && ShiftName != UpperOp) {
   4201     Error(Parser.getTok().getLoc(), Op + " operand expected.");
   4202     return MatchOperand_ParseFail;
   4203   }
   4204   Parser.Lex(); // Eat shift type token.
   4205 
   4206   // There must be a '#' and a shift amount.
   4207   if (Parser.getTok().isNot(AsmToken::Hash) &&
   4208       Parser.getTok().isNot(AsmToken::Dollar)) {
   4209     Error(Parser.getTok().getLoc(), "'#' expected");
   4210     return MatchOperand_ParseFail;
   4211   }
   4212   Parser.Lex(); // Eat hash token.
   4213 
   4214   const MCExpr *ShiftAmount;
   4215   SMLoc Loc = Parser.getTok().getLoc();
   4216   SMLoc EndLoc;
   4217   if (getParser().parseExpression(ShiftAmount, EndLoc)) {
   4218     Error(Loc, "illegal expression");
   4219     return MatchOperand_ParseFail;
   4220   }
   4221   const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount);
   4222   if (!CE) {
   4223     Error(Loc, "constant expression expected");
   4224     return MatchOperand_ParseFail;
   4225   }
   4226   int Val = CE->getValue();
   4227   if (Val < Low || Val > High) {
   4228     Error(Loc, "immediate value out of range");
   4229     return MatchOperand_ParseFail;
   4230   }
   4231 
   4232   Operands.push_back(ARMOperand::CreateImm(CE, Loc, EndLoc));
   4233 
   4234   return MatchOperand_Success;
   4235 }
   4236 
   4237 ARMAsmParser::OperandMatchResultTy
   4238 ARMAsmParser::parseSetEndImm(OperandVector &Operands) {
   4239   MCAsmParser &Parser = getParser();
   4240   const AsmToken &Tok = Parser.getTok();
   4241   SMLoc S = Tok.getLoc();
   4242   if (Tok.isNot(AsmToken::Identifier)) {
   4243     Error(S, "'be' or 'le' operand expected");
   4244     return MatchOperand_ParseFail;
   4245   }
   4246   int Val = StringSwitch<int>(Tok.getString().lower())
   4247     .Case("be", 1)
   4248     .Case("le", 0)
   4249     .Default(-1);
   4250   Parser.Lex(); // Eat the token.
   4251 
   4252   if (Val == -1) {
   4253     Error(S, "'be' or 'le' operand expected");
   4254     return MatchOperand_ParseFail;
   4255   }
   4256   Operands.push_back(ARMOperand::CreateImm(MCConstantExpr::Create(Val,
   4257                                                                   getContext()),
   4258                                            S, Tok.getEndLoc()));
   4259   return MatchOperand_Success;
   4260 }
   4261 
   4262 /// parseShifterImm - Parse the shifter immediate operand for SSAT/USAT
   4263 /// instructions. Legal values are:
   4264 ///     lsl #n  'n' in [0,31]
   4265 ///     asr #n  'n' in [1,32]
   4266 ///             n == 32 encoded as n == 0.
   4267 ARMAsmParser::OperandMatchResultTy
   4268 ARMAsmParser::parseShifterImm(OperandVector &Operands) {
   4269   MCAsmParser &Parser = getParser();
   4270   const AsmToken &Tok = Parser.getTok();
   4271   SMLoc S = Tok.getLoc();
   4272   if (Tok.isNot(AsmToken::Identifier)) {
   4273     Error(S, "shift operator 'asr' or 'lsl' expected");
   4274     return MatchOperand_ParseFail;
   4275   }
   4276   StringRef ShiftName = Tok.getString();
   4277   bool isASR;
   4278   if (ShiftName == "lsl" || ShiftName == "LSL")
   4279     isASR = false;
   4280   else if (ShiftName == "asr" || ShiftName == "ASR")
   4281     isASR = true;
   4282   else {
   4283     Error(S, "shift operator 'asr' or 'lsl' expected");
   4284     return MatchOperand_ParseFail;
   4285   }
   4286   Parser.Lex(); // Eat the operator.
   4287 
   4288   // A '#' and a shift amount.
   4289   if (Parser.getTok().isNot(AsmToken::Hash) &&
   4290       Parser.getTok().isNot(AsmToken::Dollar)) {
   4291     Error(Parser.getTok().getLoc(), "'#' expected");
   4292     return MatchOperand_ParseFail;
   4293   }
   4294   Parser.Lex(); // Eat hash token.
   4295   SMLoc ExLoc = Parser.getTok().getLoc();
   4296 
   4297   const MCExpr *ShiftAmount;
   4298   SMLoc EndLoc;
   4299   if (getParser().parseExpression(ShiftAmount, EndLoc)) {
   4300     Error(ExLoc, "malformed shift expression");
   4301     return MatchOperand_ParseFail;
   4302   }
   4303   const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount);
   4304   if (!CE) {
   4305     Error(ExLoc, "shift amount must be an immediate");
   4306     return MatchOperand_ParseFail;
   4307   }
   4308 
   4309   int64_t Val = CE->getValue();
   4310   if (isASR) {
   4311     // Shift amount must be in [1,32]
   4312     if (Val < 1 || Val > 32) {
   4313       Error(ExLoc, "'asr' shift amount must be in range [1,32]");
   4314       return MatchOperand_ParseFail;
   4315     }
   4316     // asr #32 encoded as asr #0, but is not allowed in Thumb2 mode.
   4317     if (isThumb() && Val == 32) {
   4318       Error(ExLoc, "'asr #32' shift amount not allowed in Thumb mode");
   4319       return MatchOperand_ParseFail;
   4320     }
   4321     if (Val == 32) Val = 0;
   4322   } else {
   4323     // Shift amount must be in [1,32]
   4324     if (Val < 0 || Val > 31) {
   4325       Error(ExLoc, "'lsr' shift amount must be in range [0,31]");
   4326       return MatchOperand_ParseFail;
   4327     }
   4328   }
   4329 
   4330   Operands.push_back(ARMOperand::CreateShifterImm(isASR, Val, S, EndLoc));
   4331 
   4332   return MatchOperand_Success;
   4333 }
   4334 
   4335 /// parseRotImm - Parse the shifter immediate operand for SXTB/UXTB family
   4336 /// of instructions. Legal values are:
   4337 ///     ror #n  'n' in {0, 8, 16, 24}
   4338 ARMAsmParser::OperandMatchResultTy
   4339 ARMAsmParser::parseRotImm(OperandVector &Operands) {
   4340   MCAsmParser &Parser = getParser();
   4341   const AsmToken &Tok = Parser.getTok();
   4342   SMLoc S = Tok.getLoc();
   4343   if (Tok.isNot(AsmToken::Identifier))
   4344     return MatchOperand_NoMatch;
   4345   StringRef ShiftName = Tok.getString();
   4346   if (ShiftName != "ror" && ShiftName != "ROR")
   4347     return MatchOperand_NoMatch;
   4348   Parser.Lex(); // Eat the operator.
   4349 
   4350   // A '#' and a rotate amount.
   4351   if (Parser.getTok().isNot(AsmToken::Hash) &&
   4352       Parser.getTok().isNot(AsmToken::Dollar)) {
   4353     Error(Parser.getTok().getLoc(), "'#' expected");
   4354     return MatchOperand_ParseFail;
   4355   }
   4356   Parser.Lex(); // Eat hash token.
   4357   SMLoc ExLoc = Parser.getTok().getLoc();
   4358 
   4359   const MCExpr *ShiftAmount;
   4360   SMLoc EndLoc;
   4361   if (getParser().parseExpression(ShiftAmount, EndLoc)) {
   4362     Error(ExLoc, "malformed rotate expression");
   4363     return MatchOperand_ParseFail;
   4364   }
   4365   const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount);
   4366   if (!CE) {
   4367     Error(ExLoc, "rotate amount must be an immediate");
   4368     return MatchOperand_ParseFail;
   4369   }
   4370 
   4371   int64_t Val = CE->getValue();
   4372   // Shift amount must be in {0, 8, 16, 24} (0 is undocumented extension)
   4373   // normally, zero is represented in asm by omitting the rotate operand
   4374   // entirely.
   4375   if (Val != 8 && Val != 16 && Val != 24 && Val != 0) {
   4376     Error(ExLoc, "'ror' rotate amount must be 8, 16, or 24");
   4377     return MatchOperand_ParseFail;
   4378   }
   4379 
   4380   Operands.push_back(ARMOperand::CreateRotImm(Val, S, EndLoc));
   4381 
   4382   return MatchOperand_Success;
   4383 }
   4384 
   4385 ARMAsmParser::OperandMatchResultTy
   4386 ARMAsmParser::parseModImm(OperandVector &Operands) {
   4387   MCAsmParser &Parser = getParser();
   4388   MCAsmLexer &Lexer = getLexer();
   4389   int64_t Imm1, Imm2;
   4390 
   4391   SMLoc S = Parser.getTok().getLoc();
   4392 
   4393   // 1) A mod_imm operand can appear in the place of a register name:
   4394   //   add r0, #mod_imm
   4395   //   add r0, r0, #mod_imm
   4396   // to correctly handle the latter, we bail out as soon as we see an
   4397   // identifier.
   4398   //
   4399   // 2) Similarly, we do not want to parse into complex operands:
   4400   //   mov r0, #mod_imm
   4401   //   mov r0, :lower16:(_foo)
   4402   if (Parser.getTok().is(AsmToken::Identifier) ||
   4403       Parser.getTok().is(AsmToken::Colon))
   4404     return MatchOperand_NoMatch;
   4405 
   4406   // Hash (dollar) is optional as per the ARMARM
   4407   if (Parser.getTok().is(AsmToken::Hash) ||
   4408       Parser.getTok().is(AsmToken::Dollar)) {
   4409     // Avoid parsing into complex operands (#:)
   4410     if (Lexer.peekTok().is(AsmToken::Colon))
   4411       return MatchOperand_NoMatch;
   4412 
   4413     // Eat the hash (dollar)
   4414     Parser.Lex();
   4415   }
   4416 
   4417   SMLoc Sx1, Ex1;
   4418   Sx1 = Parser.getTok().getLoc();
   4419   const MCExpr *Imm1Exp;
   4420   if (getParser().parseExpression(Imm1Exp, Ex1)) {
   4421     Error(Sx1, "malformed expression");
   4422     return MatchOperand_ParseFail;
   4423   }
   4424 
   4425   const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Imm1Exp);
   4426 
   4427   if (CE) {
   4428     // Immediate must fit within 32-bits
   4429     Imm1 = CE->getValue();
   4430     int Enc = ARM_AM::getSOImmVal(Imm1);
   4431     if (Enc != -1 && Parser.getTok().is(AsmToken::EndOfStatement)) {
   4432       // We have a match!
   4433       Operands.push_back(ARMOperand::CreateModImm((Enc & 0xFF),
   4434                                                   (Enc & 0xF00) >> 7,
   4435                                                   Sx1, Ex1));
   4436       return MatchOperand_Success;
   4437     }
   4438 
   4439     // We have parsed an immediate which is not for us, fallback to a plain
   4440     // immediate. This can happen for instruction aliases. For an example,
   4441     // ARMInstrInfo.td defines the alias [mov <-> mvn] which can transform
   4442     // a mov (mvn) with a mod_imm_neg/mod_imm_not operand into the opposite
   4443     // instruction with a mod_imm operand. The alias is defined such that the
   4444     // parser method is shared, that's why we have to do this here.
   4445     if (Parser.getTok().is(AsmToken::EndOfStatement)) {
   4446       Operands.push_back(ARMOperand::CreateImm(Imm1Exp, Sx1, Ex1));
   4447       return MatchOperand_Success;
   4448     }
   4449   } else {
   4450     // Operands like #(l1 - l2) can only be evaluated at a later stage (via an
   4451     // MCFixup). Fallback to a plain immediate.
   4452     Operands.push_back(ARMOperand::CreateImm(Imm1Exp, Sx1, Ex1));
   4453     return MatchOperand_Success;
   4454   }
   4455 
   4456   // From this point onward, we expect the input to be a (#bits, #rot) pair
   4457   if (Parser.getTok().isNot(AsmToken::Comma)) {
   4458     Error(Sx1, "expected modified immediate operand: #[0, 255], #even[0-30]");
   4459     return MatchOperand_ParseFail;
   4460   }
   4461 
   4462   if (Imm1 & ~0xFF) {
   4463     Error(Sx1, "immediate operand must a number in the range [0, 255]");
   4464     return MatchOperand_ParseFail;
   4465   }
   4466 
   4467   // Eat the comma
   4468   Parser.Lex();
   4469 
   4470   // Repeat for #rot
   4471   SMLoc Sx2, Ex2;
   4472   Sx2 = Parser.getTok().getLoc();
   4473 
   4474   // Eat the optional hash (dollar)
   4475   if (Parser.getTok().is(AsmToken::Hash) ||
   4476       Parser.getTok().is(AsmToken::Dollar))
   4477     Parser.Lex();
   4478 
   4479   const MCExpr *Imm2Exp;
   4480   if (getParser().parseExpression(Imm2Exp, Ex2)) {
   4481     Error(Sx2, "malformed expression");
   4482     return MatchOperand_ParseFail;
   4483   }
   4484 
   4485   CE = dyn_cast<MCConstantExpr>(Imm2Exp);
   4486 
   4487   if (CE) {
   4488     Imm2 = CE->getValue();
   4489     if (!(Imm2 & ~0x1E)) {
   4490       // We have a match!
   4491       Operands.push_back(ARMOperand::CreateModImm(Imm1, Imm2, S, Ex2));
   4492       return MatchOperand_Success;
   4493     }
   4494     Error(Sx2, "immediate operand must an even number in the range [0, 30]");
   4495     return MatchOperand_ParseFail;
   4496   } else {
   4497     Error(Sx2, "constant expression expected");
   4498     return MatchOperand_ParseFail;
   4499   }
   4500 }
   4501 
   4502 ARMAsmParser::OperandMatchResultTy
   4503 ARMAsmParser::parseBitfield(OperandVector &Operands) {
   4504   MCAsmParser &Parser = getParser();
   4505   SMLoc S = Parser.getTok().getLoc();
   4506   // The bitfield descriptor is really two operands, the LSB and the width.
   4507   if (Parser.getTok().isNot(AsmToken::Hash) &&
   4508       Parser.getTok().isNot(AsmToken::Dollar)) {
   4509     Error(Parser.getTok().getLoc(), "'#' expected");
   4510     return MatchOperand_ParseFail;
   4511   }
   4512   Parser.Lex(); // Eat hash token.
   4513 
   4514   const MCExpr *LSBExpr;
   4515   SMLoc E = Parser.getTok().getLoc();
   4516   if (getParser().parseExpression(LSBExpr)) {
   4517     Error(E, "malformed immediate expression");
   4518     return MatchOperand_ParseFail;
   4519   }
   4520   const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LSBExpr);
   4521   if (!CE) {
   4522     Error(E, "'lsb' operand must be an immediate");
   4523     return MatchOperand_ParseFail;
   4524   }
   4525 
   4526   int64_t LSB = CE->getValue();
   4527   // The LSB must be in the range [0,31]
   4528   if (LSB < 0 || LSB > 31) {
   4529     Error(E, "'lsb' operand must be in the range [0,31]");
   4530     return MatchOperand_ParseFail;
   4531   }
   4532   E = Parser.getTok().getLoc();
   4533 
   4534   // Expect another immediate operand.
   4535   if (Parser.getTok().isNot(AsmToken::Comma)) {
   4536     Error(Parser.getTok().getLoc(), "too few operands");
   4537     return MatchOperand_ParseFail;
   4538   }
   4539   Parser.Lex(); // Eat hash token.
   4540   if (Parser.getTok().isNot(AsmToken::Hash) &&
   4541       Parser.getTok().isNot(AsmToken::Dollar)) {
   4542     Error(Parser.getTok().getLoc(), "'#' expected");
   4543     return MatchOperand_ParseFail;
   4544   }
   4545   Parser.Lex(); // Eat hash token.
   4546 
   4547   const MCExpr *WidthExpr;
   4548   SMLoc EndLoc;
   4549   if (getParser().parseExpression(WidthExpr, EndLoc)) {
   4550     Error(E, "malformed immediate expression");
   4551     return MatchOperand_ParseFail;
   4552   }
   4553   CE = dyn_cast<MCConstantExpr>(WidthExpr);
   4554   if (!CE) {
   4555     Error(E, "'width' operand must be an immediate");
   4556     return MatchOperand_ParseFail;
   4557   }
   4558 
   4559   int64_t Width = CE->getValue();
   4560   // The LSB must be in the range [1,32-lsb]
   4561   if (Width < 1 || Width > 32 - LSB) {
   4562     Error(E, "'width' operand must be in the range [1,32-lsb]");
   4563     return MatchOperand_ParseFail;
   4564   }
   4565 
   4566   Operands.push_back(ARMOperand::CreateBitfield(LSB, Width, S, EndLoc));
   4567 
   4568   return MatchOperand_Success;
   4569 }
   4570 
   4571 ARMAsmParser::OperandMatchResultTy
   4572 ARMAsmParser::parsePostIdxReg(OperandVector &Operands) {
   4573   // Check for a post-index addressing register operand. Specifically:
   4574   // postidx_reg := '+' register {, shift}
   4575   //              | '-' register {, shift}
   4576   //              | register {, shift}
   4577 
   4578   // This method must return MatchOperand_NoMatch without consuming any tokens
   4579   // in the case where there is no match, as other alternatives take other
   4580   // parse methods.
   4581   MCAsmParser &Parser = getParser();
   4582   AsmToken Tok = Parser.getTok();
   4583   SMLoc S = Tok.getLoc();
   4584   bool haveEaten = false;
   4585   bool isAdd = true;
   4586   if (Tok.is(AsmToken::Plus)) {
   4587     Parser.Lex(); // Eat the '+' token.
   4588     haveEaten = true;
   4589   } else if (Tok.is(AsmToken::Minus)) {
   4590     Parser.Lex(); // Eat the '-' token.
   4591     isAdd = false;
   4592     haveEaten = true;
   4593   }
   4594 
   4595   SMLoc E = Parser.getTok().getEndLoc();
   4596   int Reg = tryParseRegister();
   4597   if (Reg == -1) {
   4598     if (!haveEaten)
   4599       return MatchOperand_NoMatch;
   4600     Error(Parser.getTok().getLoc(), "register expected");
   4601     return MatchOperand_ParseFail;
   4602   }
   4603 
   4604   ARM_AM::ShiftOpc ShiftTy = ARM_AM::no_shift;
   4605   unsigned ShiftImm = 0;
   4606   if (Parser.getTok().is(AsmToken::Comma)) {
   4607     Parser.Lex(); // Eat the ','.
   4608     if (parseMemRegOffsetShift(ShiftTy, ShiftImm))
   4609       return MatchOperand_ParseFail;
   4610 
   4611     // FIXME: Only approximates end...may include intervening whitespace.
   4612     E = Parser.getTok().getLoc();
   4613   }
   4614 
   4615   Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ShiftTy,
   4616                                                   ShiftImm, S, E));
   4617 
   4618   return MatchOperand_Success;
   4619 }
   4620 
   4621 ARMAsmParser::OperandMatchResultTy
   4622 ARMAsmParser::parseAM3Offset(OperandVector &Operands) {
   4623   // Check for a post-index addressing register operand. Specifically:
   4624   // am3offset := '+' register
   4625   //              | '-' register
   4626   //              | register
   4627   //              | # imm
   4628   //              | # + imm
   4629   //              | # - imm
   4630 
   4631   // This method must return MatchOperand_NoMatch without consuming any tokens
   4632   // in the case where there is no match, as other alternatives take other
   4633   // parse methods.
   4634   MCAsmParser &Parser = getParser();
   4635   AsmToken Tok = Parser.getTok();
   4636   SMLoc S = Tok.getLoc();
   4637 
   4638   // Do immediates first, as we always parse those if we have a '#'.
   4639   if (Parser.getTok().is(AsmToken::Hash) ||
   4640       Parser.getTok().is(AsmToken::Dollar)) {
   4641     Parser.Lex(); // Eat '#' or '$'.
   4642     // Explicitly look for a '-', as we need to encode negative zero
   4643     // differently.
   4644     bool isNegative = Parser.getTok().is(AsmToken::Minus);
   4645     const MCExpr *Offset;
   4646     SMLoc E;
   4647     if (getParser().parseExpression(Offset, E))
   4648       return MatchOperand_ParseFail;
   4649     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset);
   4650     if (!CE) {
   4651       Error(S, "constant expression expected");
   4652       return MatchOperand_ParseFail;
   4653     }
   4654     // Negative zero is encoded as the flag value INT32_MIN.
   4655     int32_t Val = CE->getValue();
   4656     if (isNegative && Val == 0)
   4657       Val = INT32_MIN;
   4658 
   4659     Operands.push_back(
   4660       ARMOperand::CreateImm(MCConstantExpr::Create(Val, getContext()), S, E));
   4661 
   4662     return MatchOperand_Success;
   4663   }
   4664 
   4665 
   4666   bool haveEaten = false;
   4667   bool isAdd = true;
   4668   if (Tok.is(AsmToken::Plus)) {
   4669     Parser.Lex(); // Eat the '+' token.
   4670     haveEaten = true;
   4671   } else if (Tok.is(AsmToken::Minus)) {
   4672     Parser.Lex(); // Eat the '-' token.
   4673     isAdd = false;
   4674     haveEaten = true;
   4675   }
   4676 
   4677   Tok = Parser.getTok();
   4678   int Reg = tryParseRegister();
   4679   if (Reg == -1) {
   4680     if (!haveEaten)
   4681       return MatchOperand_NoMatch;
   4682     Error(Tok.getLoc(), "register expected");
   4683     return MatchOperand_ParseFail;
   4684   }
   4685 
   4686   Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ARM_AM::no_shift,
   4687                                                   0, S, Tok.getEndLoc()));
   4688 
   4689   return MatchOperand_Success;
   4690 }
   4691 
   4692 /// Convert parsed operands to MCInst.  Needed here because this instruction
   4693 /// only has two register operands, but multiplication is commutative so
   4694 /// assemblers should accept both "mul rD, rN, rD" and "mul rD, rD, rN".
   4695 void ARMAsmParser::cvtThumbMultiply(MCInst &Inst,
   4696                                     const OperandVector &Operands) {
   4697   ((ARMOperand &)*Operands[3]).addRegOperands(Inst, 1);
   4698   ((ARMOperand &)*Operands[1]).addCCOutOperands(Inst, 1);
   4699   // If we have a three-operand form, make sure to set Rn to be the operand
   4700   // that isn't the same as Rd.
   4701   unsigned RegOp = 4;
   4702   if (Operands.size() == 6 &&
   4703       ((ARMOperand &)*Operands[4]).getReg() ==
   4704           ((ARMOperand &)*Operands[3]).getReg())
   4705     RegOp = 5;
   4706   ((ARMOperand &)*Operands[RegOp]).addRegOperands(Inst, 1);
   4707   Inst.addOperand(Inst.getOperand(0));
   4708   ((ARMOperand &)*Operands[2]).addCondCodeOperands(Inst, 2);
   4709 }
   4710 
   4711 void ARMAsmParser::cvtThumbBranches(MCInst &Inst,
   4712                                     const OperandVector &Operands) {
   4713   int CondOp = -1, ImmOp = -1;
   4714   switch(Inst.getOpcode()) {
   4715     case ARM::tB:
   4716     case ARM::tBcc:  CondOp = 1; ImmOp = 2; break;
   4717 
   4718     case ARM::t2B:
   4719     case ARM::t2Bcc: CondOp = 1; ImmOp = 3; break;
   4720 
   4721     default: llvm_unreachable("Unexpected instruction in cvtThumbBranches");
   4722   }
   4723   // first decide whether or not the branch should be conditional
   4724   // by looking at it's location relative to an IT block
   4725   if(inITBlock()) {
   4726     // inside an IT block we cannot have any conditional branches. any
   4727     // such instructions needs to be converted to unconditional form
   4728     switch(Inst.getOpcode()) {
   4729       case ARM::tBcc: Inst.setOpcode(ARM::tB); break;
   4730       case ARM::t2Bcc: Inst.setOpcode(ARM::t2B); break;
   4731     }
   4732   } else {
   4733     // outside IT blocks we can only have unconditional branches with AL
   4734     // condition code or conditional branches with non-AL condition code
   4735     unsigned Cond = static_cast<ARMOperand &>(*Operands[CondOp]).getCondCode();
   4736     switch(Inst.getOpcode()) {
   4737       case ARM::tB:
   4738       case ARM::tBcc:
   4739         Inst.setOpcode(Cond == ARMCC::AL ? ARM::tB : ARM::tBcc);
   4740         break;
   4741       case ARM::t2B:
   4742       case ARM::t2Bcc:
   4743         Inst.setOpcode(Cond == ARMCC::AL ? ARM::t2B : ARM::t2Bcc);
   4744         break;
   4745     }
   4746   }
   4747 
   4748   // now decide on encoding size based on branch target range
   4749   switch(Inst.getOpcode()) {
   4750     // classify tB as either t2B or t1B based on range of immediate operand
   4751     case ARM::tB: {
   4752       ARMOperand &op = static_cast<ARMOperand &>(*Operands[ImmOp]);
   4753       if (!op.isSignedOffset<11, 1>() && isThumbTwo())
   4754         Inst.setOpcode(ARM::t2B);
   4755       break;
   4756     }
   4757     // classify tBcc as either t2Bcc or t1Bcc based on range of immediate operand
   4758     case ARM::tBcc: {
   4759       ARMOperand &op = static_cast<ARMOperand &>(*Operands[ImmOp]);
   4760       if (!op.isSignedOffset<8, 1>() && isThumbTwo())
   4761         Inst.setOpcode(ARM::t2Bcc);
   4762       break;
   4763     }
   4764   }
   4765   ((ARMOperand &)*Operands[ImmOp]).addImmOperands(Inst, 1);
   4766   ((ARMOperand &)*Operands[CondOp]).addCondCodeOperands(Inst, 2);
   4767 }
   4768 
   4769 /// Parse an ARM memory expression, return false if successful else return true
   4770 /// or an error.  The first token must be a '[' when called.
   4771 bool ARMAsmParser::parseMemory(OperandVector &Operands) {
   4772   MCAsmParser &Parser = getParser();
   4773   SMLoc S, E;
   4774   assert(Parser.getTok().is(AsmToken::LBrac) &&
   4775          "Token is not a Left Bracket");
   4776   S = Parser.getTok().getLoc();
   4777   Parser.Lex(); // Eat left bracket token.
   4778 
   4779   const AsmToken &BaseRegTok = Parser.getTok();
   4780   int BaseRegNum = tryParseRegister();
   4781   if (BaseRegNum == -1)
   4782     return Error(BaseRegTok.getLoc(), "register expected");
   4783 
   4784   // The next token must either be a comma, a colon or a closing bracket.
   4785   const AsmToken &Tok = Parser.getTok();
   4786   if (!Tok.is(AsmToken::Colon) && !Tok.is(AsmToken::Comma) &&
   4787       !Tok.is(AsmToken::RBrac))
   4788     return Error(Tok.getLoc(), "malformed memory operand");
   4789 
   4790   if (Tok.is(AsmToken::RBrac)) {
   4791     E = Tok.getEndLoc();
   4792     Parser.Lex(); // Eat right bracket token.
   4793 
   4794     Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, 0,
   4795                                              ARM_AM::no_shift, 0, 0, false,
   4796                                              S, E));
   4797 
   4798     // If there's a pre-indexing writeback marker, '!', just add it as a token
   4799     // operand. It's rather odd, but syntactically valid.
   4800     if (Parser.getTok().is(AsmToken::Exclaim)) {
   4801       Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
   4802       Parser.Lex(); // Eat the '!'.
   4803     }
   4804 
   4805     return false;
   4806   }
   4807 
   4808   assert((Tok.is(AsmToken::Colon) || Tok.is(AsmToken::Comma)) &&
   4809          "Lost colon or comma in memory operand?!");
   4810   if (Tok.is(AsmToken::Comma)) {
   4811     Parser.Lex(); // Eat the comma.
   4812   }
   4813 
   4814   // If we have a ':', it's an alignment specifier.
   4815   if (Parser.getTok().is(AsmToken::Colon)) {
   4816     Parser.Lex(); // Eat the ':'.
   4817     E = Parser.getTok().getLoc();
   4818     SMLoc AlignmentLoc = Tok.getLoc();
   4819 
   4820     const MCExpr *Expr;
   4821     if (getParser().parseExpression(Expr))
   4822      return true;
   4823 
   4824     // The expression has to be a constant. Memory references with relocations
   4825     // don't come through here, as they use the <label> forms of the relevant
   4826     // instructions.
   4827     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr);
   4828     if (!CE)
   4829       return Error (E, "constant expression expected");
   4830 
   4831     unsigned Align = 0;
   4832     switch (CE->getValue()) {
   4833     default:
   4834       return Error(E,
   4835                    "alignment specifier must be 16, 32, 64, 128, or 256 bits");
   4836     case 16:  Align = 2; break;
   4837     case 32:  Align = 4; break;
   4838     case 64:  Align = 8; break;
   4839     case 128: Align = 16; break;
   4840     case 256: Align = 32; break;
   4841     }
   4842 
   4843     // Now we should have the closing ']'
   4844     if (Parser.getTok().isNot(AsmToken::RBrac))
   4845       return Error(Parser.getTok().getLoc(), "']' expected");
   4846     E = Parser.getTok().getEndLoc();
   4847     Parser.Lex(); // Eat right bracket token.
   4848 
   4849     // Don't worry about range checking the value here. That's handled by
   4850     // the is*() predicates.
   4851     Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, 0,
   4852                                              ARM_AM::no_shift, 0, Align,
   4853                                              false, S, E, AlignmentLoc));
   4854 
   4855     // If there's a pre-indexing writeback marker, '!', just add it as a token
   4856     // operand.
   4857     if (Parser.getTok().is(AsmToken::Exclaim)) {
   4858       Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
   4859       Parser.Lex(); // Eat the '!'.
   4860     }
   4861 
   4862     return false;
   4863   }
   4864 
   4865   // If we have a '#', it's an immediate offset, else assume it's a register
   4866   // offset. Be friendly and also accept a plain integer (without a leading
   4867   // hash) for gas compatibility.
   4868   if (Parser.getTok().is(AsmToken::Hash) ||
   4869       Parser.getTok().is(AsmToken::Dollar) ||
   4870       Parser.getTok().is(AsmToken::Integer)) {
   4871     if (Parser.getTok().isNot(AsmToken::Integer))
   4872       Parser.Lex(); // Eat '#' or '$'.
   4873     E = Parser.getTok().getLoc();
   4874 
   4875     bool isNegative = getParser().getTok().is(AsmToken::Minus);
   4876     const MCExpr *Offset;
   4877     if (getParser().parseExpression(Offset))
   4878      return true;
   4879 
   4880     // The expression has to be a constant. Memory references with relocations
   4881     // don't come through here, as they use the <label> forms of the relevant
   4882     // instructions.
   4883     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset);
   4884     if (!CE)
   4885       return Error (E, "constant expression expected");
   4886 
   4887     // If the constant was #-0, represent it as INT32_MIN.
   4888     int32_t Val = CE->getValue();
   4889     if (isNegative && Val == 0)
   4890       CE = MCConstantExpr::Create(INT32_MIN, getContext());
   4891 
   4892     // Now we should have the closing ']'
   4893     if (Parser.getTok().isNot(AsmToken::RBrac))
   4894       return Error(Parser.getTok().getLoc(), "']' expected");
   4895     E = Parser.getTok().getEndLoc();
   4896     Parser.Lex(); // Eat right bracket token.
   4897 
   4898     // Don't worry about range checking the value here. That's handled by
   4899     // the is*() predicates.
   4900     Operands.push_back(ARMOperand::CreateMem(BaseRegNum, CE, 0,
   4901                                              ARM_AM::no_shift, 0, 0,
   4902                                              false, S, E));
   4903 
   4904     // If there's a pre-indexing writeback marker, '!', just add it as a token
   4905     // operand.
   4906     if (Parser.getTok().is(AsmToken::Exclaim)) {
   4907       Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
   4908       Parser.Lex(); // Eat the '!'.
   4909     }
   4910 
   4911     return false;
   4912   }
   4913 
   4914   // The register offset is optionally preceded by a '+' or '-'
   4915   bool isNegative = false;
   4916   if (Parser.getTok().is(AsmToken::Minus)) {
   4917     isNegative = true;
   4918     Parser.Lex(); // Eat the '-'.
   4919   } else if (Parser.getTok().is(AsmToken::Plus)) {
   4920     // Nothing to do.
   4921     Parser.Lex(); // Eat the '+'.
   4922   }
   4923 
   4924   E = Parser.getTok().getLoc();
   4925   int OffsetRegNum = tryParseRegister();
   4926   if (OffsetRegNum == -1)
   4927     return Error(E, "register expected");
   4928 
   4929   // If there's a shift operator, handle it.
   4930   ARM_AM::ShiftOpc ShiftType = ARM_AM::no_shift;
   4931   unsigned ShiftImm = 0;
   4932   if (Parser.getTok().is(AsmToken::Comma)) {
   4933     Parser.Lex(); // Eat the ','.
   4934     if (parseMemRegOffsetShift(ShiftType, ShiftImm))
   4935       return true;
   4936   }
   4937 
   4938   // Now we should have the closing ']'
   4939   if (Parser.getTok().isNot(AsmToken::RBrac))
   4940     return Error(Parser.getTok().getLoc(), "']' expected");
   4941   E = Parser.getTok().getEndLoc();
   4942   Parser.Lex(); // Eat right bracket token.
   4943 
   4944   Operands.push_back(ARMOperand::CreateMem(BaseRegNum, nullptr, OffsetRegNum,
   4945                                            ShiftType, ShiftImm, 0, isNegative,
   4946                                            S, E));
   4947 
   4948   // If there's a pre-indexing writeback marker, '!', just add it as a token
   4949   // operand.
   4950   if (Parser.getTok().is(AsmToken::Exclaim)) {
   4951     Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
   4952     Parser.Lex(); // Eat the '!'.
   4953   }
   4954 
   4955   return false;
   4956 }
   4957 
   4958 /// parseMemRegOffsetShift - one of these two:
   4959 ///   ( lsl | lsr | asr | ror ) , # shift_amount
   4960 ///   rrx
   4961 /// return true if it parses a shift otherwise it returns false.
   4962 bool ARMAsmParser::parseMemRegOffsetShift(ARM_AM::ShiftOpc &St,
   4963                                           unsigned &Amount) {
   4964   MCAsmParser &Parser = getParser();
   4965   SMLoc Loc = Parser.getTok().getLoc();
   4966   const AsmToken &Tok = Parser.getTok();
   4967   if (Tok.isNot(AsmToken::Identifier))
   4968     return true;
   4969   StringRef ShiftName = Tok.getString();
   4970   if (ShiftName == "lsl" || ShiftName == "LSL" ||
   4971       ShiftName == "asl" || ShiftName == "ASL")
   4972     St = ARM_AM::lsl;
   4973   else if (ShiftName == "lsr" || ShiftName == "LSR")
   4974     St = ARM_AM::lsr;
   4975   else if (ShiftName == "asr" || ShiftName == "ASR")
   4976     St = ARM_AM::asr;
   4977   else if (ShiftName == "ror" || ShiftName == "ROR")
   4978     St = ARM_AM::ror;
   4979   else if (ShiftName == "rrx" || ShiftName == "RRX")
   4980     St = ARM_AM::rrx;
   4981   else
   4982     return Error(Loc, "illegal shift operator");
   4983   Parser.Lex(); // Eat shift type token.
   4984 
   4985   // rrx stands alone.
   4986   Amount = 0;
   4987   if (St != ARM_AM::rrx) {
   4988     Loc = Parser.getTok().getLoc();
   4989     // A '#' and a shift amount.
   4990     const AsmToken &HashTok = Parser.getTok();
   4991     if (HashTok.isNot(AsmToken::Hash) &&
   4992         HashTok.isNot(AsmToken::Dollar))
   4993       return Error(HashTok.getLoc(), "'#' expected");
   4994     Parser.Lex(); // Eat hash token.
   4995 
   4996     const MCExpr *Expr;
   4997     if (getParser().parseExpression(Expr))
   4998       return true;
   4999     // Range check the immediate.
   5000     // lsl, ror: 0 <= imm <= 31
   5001     // lsr, asr: 0 <= imm <= 32
   5002     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr);
   5003     if (!CE)
   5004       return Error(Loc, "shift amount must be an immediate");
   5005     int64_t Imm = CE->getValue();
   5006     if (Imm < 0 ||
   5007         ((St == ARM_AM::lsl || St == ARM_AM::ror) && Imm > 31) ||
   5008         ((St == ARM_AM::lsr || St == ARM_AM::asr) && Imm > 32))
   5009       return Error(Loc, "immediate shift value out of range");
   5010     // If <ShiftTy> #0, turn it into a no_shift.
   5011     if (Imm == 0)
   5012       St = ARM_AM::lsl;
   5013     // For consistency, treat lsr #32 and asr #32 as having immediate value 0.
   5014     if (Imm == 32)
   5015       Imm = 0;
   5016     Amount = Imm;
   5017   }
   5018 
   5019   return false;
   5020 }
   5021 
   5022 /// parseFPImm - A floating point immediate expression operand.
   5023 ARMAsmParser::OperandMatchResultTy
   5024 ARMAsmParser::parseFPImm(OperandVector &Operands) {
   5025   MCAsmParser &Parser = getParser();
   5026   // Anything that can accept a floating point constant as an operand
   5027   // needs to go through here, as the regular parseExpression is
   5028   // integer only.
   5029   //
   5030   // This routine still creates a generic Immediate operand, containing
   5031   // a bitcast of the 64-bit floating point value. The various operands
   5032   // that accept floats can check whether the value is valid for them
   5033   // via the standard is*() predicates.
   5034 
   5035   SMLoc S = Parser.getTok().getLoc();
   5036 
   5037   if (Parser.getTok().isNot(AsmToken::Hash) &&
   5038       Parser.getTok().isNot(AsmToken::Dollar))
   5039     return MatchOperand_NoMatch;
   5040 
   5041   // Disambiguate the VMOV forms that can accept an FP immediate.
   5042   // vmov.f32 <sreg>, #imm
   5043   // vmov.f64 <dreg>, #imm
   5044   // vmov.f32 <dreg>, #imm  @ vector f32x2
   5045   // vmov.f32 <qreg>, #imm  @ vector f32x4
   5046   //
   5047   // There are also the NEON VMOV instructions which expect an
   5048   // integer constant. Make sure we don't try to parse an FPImm
   5049   // for these:
   5050   // vmov.i{8|16|32|64} <dreg|qreg>, #imm
   5051   ARMOperand &TyOp = static_cast<ARMOperand &>(*Operands[2]);
   5052   bool isVmovf = TyOp.isToken() &&
   5053                  (TyOp.getToken() == ".f32" || TyOp.getToken() == ".f64");
   5054   ARMOperand &Mnemonic = static_cast<ARMOperand &>(*Operands[0]);
   5055   bool isFconst = Mnemonic.isToken() && (Mnemonic.getToken() == "fconstd" ||
   5056                                          Mnemonic.getToken() == "fconsts");
   5057   if (!(isVmovf || isFconst))
   5058     return MatchOperand_NoMatch;
   5059 
   5060   Parser.Lex(); // Eat '#' or '$'.
   5061 
   5062   // Handle negation, as that still comes through as a separate token.
   5063   bool isNegative = false;
   5064   if (Parser.getTok().is(AsmToken::Minus)) {
   5065     isNegative = true;
   5066     Parser.Lex();
   5067   }
   5068   const AsmToken &Tok = Parser.getTok();
   5069   SMLoc Loc = Tok.getLoc();
   5070   if (Tok.is(AsmToken::Real) && isVmovf) {
   5071     APFloat RealVal(APFloat::IEEEsingle, Tok.getString());
   5072     uint64_t IntVal = RealVal.bitcastToAPInt().getZExtValue();
   5073     // If we had a '-' in front, toggle the sign bit.
   5074     IntVal ^= (uint64_t)isNegative << 31;
   5075     Parser.Lex(); // Eat the token.
   5076     Operands.push_back(ARMOperand::CreateImm(
   5077           MCConstantExpr::Create(IntVal, getContext()),
   5078           S, Parser.getTok().getLoc()));
   5079     return MatchOperand_Success;
   5080   }
   5081   // Also handle plain integers. Instructions which allow floating point
   5082   // immediates also allow a raw encoded 8-bit value.
   5083   if (Tok.is(AsmToken::Integer) && isFconst) {
   5084     int64_t Val = Tok.getIntVal();
   5085     Parser.Lex(); // Eat the token.
   5086     if (Val > 255 || Val < 0) {
   5087       Error(Loc, "encoded floating point value out of range");
   5088       return MatchOperand_ParseFail;
   5089     }
   5090     float RealVal = ARM_AM::getFPImmFloat(Val);
   5091     Val = APFloat(RealVal).bitcastToAPInt().getZExtValue();
   5092 
   5093     Operands.push_back(ARMOperand::CreateImm(
   5094         MCConstantExpr::Create(Val, getContext()), S,
   5095         Parser.getTok().getLoc()));
   5096     return MatchOperand_Success;
   5097   }
   5098 
   5099   Error(Loc, "invalid floating point immediate");
   5100   return MatchOperand_ParseFail;
   5101 }
   5102 
   5103 /// Parse a arm instruction operand.  For now this parses the operand regardless
   5104 /// of the mnemonic.
   5105 bool ARMAsmParser::parseOperand(OperandVector &Operands, StringRef Mnemonic) {
   5106   MCAsmParser &Parser = getParser();
   5107   SMLoc S, E;
   5108 
   5109   // Check if the current operand has a custom associated parser, if so, try to
   5110   // custom parse the operand, or fallback to the general approach.
   5111   OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic);
   5112   if (ResTy == MatchOperand_Success)
   5113     return false;
   5114   // If there wasn't a custom match, try the generic matcher below. Otherwise,
   5115   // there was a match, but an error occurred, in which case, just return that
   5116   // the operand parsing failed.
   5117   if (ResTy == MatchOperand_ParseFail)
   5118     return true;
   5119 
   5120   switch (getLexer().getKind()) {
   5121   default:
   5122     Error(Parser.getTok().getLoc(), "unexpected token in operand");
   5123     return true;
   5124   case AsmToken::Identifier: {
   5125     // If we've seen a branch mnemonic, the next operand must be a label.  This
   5126     // is true even if the label is a register name.  So "br r1" means branch to
   5127     // label "r1".
   5128     bool ExpectLabel = Mnemonic == "b" || Mnemonic == "bl";
   5129     if (!ExpectLabel) {
   5130       if (!tryParseRegisterWithWriteBack(Operands))
   5131         return false;
   5132       int Res = tryParseShiftRegister(Operands);
   5133       if (Res == 0) // success
   5134         return false;
   5135       else if (Res == -1) // irrecoverable error
   5136         return true;
   5137       // If this is VMRS, check for the apsr_nzcv operand.
   5138       if (Mnemonic == "vmrs" &&
   5139           Parser.getTok().getString().equals_lower("apsr_nzcv")) {
   5140         S = Parser.getTok().getLoc();
   5141         Parser.Lex();
   5142         Operands.push_back(ARMOperand::CreateToken("APSR_nzcv", S));
   5143         return false;
   5144       }
   5145     }
   5146 
   5147     // Fall though for the Identifier case that is not a register or a
   5148     // special name.
   5149   }
   5150   case AsmToken::LParen:  // parenthesized expressions like (_strcmp-4)
   5151   case AsmToken::Integer: // things like 1f and 2b as a branch targets
   5152   case AsmToken::String:  // quoted label names.
   5153   case AsmToken::Dot: {   // . as a branch target
   5154     // This was not a register so parse other operands that start with an
   5155     // identifier (like labels) as expressions and create them as immediates.
   5156     const MCExpr *IdVal;
   5157     S = Parser.getTok().getLoc();
   5158     if (getParser().parseExpression(IdVal))
   5159       return true;
   5160     E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
   5161     Operands.push_back(ARMOperand::CreateImm(IdVal, S, E));
   5162     return false;
   5163   }
   5164   case AsmToken::LBrac:
   5165     return parseMemory(Operands);
   5166   case AsmToken::LCurly:
   5167     return parseRegisterList(Operands);
   5168   case AsmToken::Dollar:
   5169   case AsmToken::Hash: {
   5170     // #42 -> immediate.
   5171     S = Parser.getTok().getLoc();
   5172     Parser.Lex();
   5173 
   5174     if (Parser.getTok().isNot(AsmToken::Colon)) {
   5175       bool isNegative = Parser.getTok().is(AsmToken::Minus);
   5176       const MCExpr *ImmVal;
   5177       if (getParser().parseExpression(ImmVal))
   5178         return true;
   5179       const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ImmVal);
   5180       if (CE) {
   5181         int32_t Val = CE->getValue();
   5182         if (isNegative && Val == 0)
   5183           ImmVal = MCConstantExpr::Create(INT32_MIN, getContext());
   5184       }
   5185       E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
   5186       Operands.push_back(ARMOperand::CreateImm(ImmVal, S, E));
   5187 
   5188       // There can be a trailing '!' on operands that we want as a separate
   5189       // '!' Token operand. Handle that here. For example, the compatibility
   5190       // alias for 'srsdb sp!, #imm' is 'srsdb #imm!'.
   5191       if (Parser.getTok().is(AsmToken::Exclaim)) {
   5192         Operands.push_back(ARMOperand::CreateToken(Parser.getTok().getString(),
   5193                                                    Parser.getTok().getLoc()));
   5194         Parser.Lex(); // Eat exclaim token
   5195       }
   5196       return false;
   5197     }
   5198     // w/ a ':' after the '#', it's just like a plain ':'.
   5199     // FALLTHROUGH
   5200   }
   5201   case AsmToken::Colon: {
   5202     // ":lower16:" and ":upper16:" expression prefixes
   5203     // FIXME: Check it's an expression prefix,
   5204     // e.g. (FOO - :lower16:BAR) isn't legal.
   5205     ARMMCExpr::VariantKind RefKind;
   5206     if (parsePrefix(RefKind))
   5207       return true;
   5208 
   5209     const MCExpr *SubExprVal;
   5210     if (getParser().parseExpression(SubExprVal))
   5211       return true;
   5212 
   5213     const MCExpr *ExprVal = ARMMCExpr::Create(RefKind, SubExprVal,
   5214                                               getContext());
   5215     E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
   5216     Operands.push_back(ARMOperand::CreateImm(ExprVal, S, E));
   5217     return false;
   5218   }
   5219   case AsmToken::Equal: {
   5220     if (Mnemonic != "ldr") // only parse for ldr pseudo (e.g. ldr r0, =val)
   5221       return Error(Parser.getTok().getLoc(), "unexpected token in operand");
   5222 
   5223     Parser.Lex(); // Eat '='
   5224     const MCExpr *SubExprVal;
   5225     if (getParser().parseExpression(SubExprVal))
   5226       return true;
   5227     E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
   5228 
   5229     const MCExpr *CPLoc = getTargetStreamer().addConstantPoolEntry(SubExprVal);
   5230     Operands.push_back(ARMOperand::CreateImm(CPLoc, S, E));
   5231     return false;
   5232   }
   5233   }
   5234 }
   5235 
   5236 // parsePrefix - Parse ARM 16-bit relocations expression prefix, i.e.
   5237 //  :lower16: and :upper16:.
   5238 bool ARMAsmParser::parsePrefix(ARMMCExpr::VariantKind &RefKind) {
   5239   MCAsmParser &Parser = getParser();
   5240   RefKind = ARMMCExpr::VK_ARM_None;
   5241 
   5242   // consume an optional '#' (GNU compatibility)
   5243   if (getLexer().is(AsmToken::Hash))
   5244     Parser.Lex();
   5245 
   5246   // :lower16: and :upper16: modifiers
   5247   assert(getLexer().is(AsmToken::Colon) && "expected a :");
   5248   Parser.Lex(); // Eat ':'
   5249 
   5250   if (getLexer().isNot(AsmToken::Identifier)) {
   5251     Error(Parser.getTok().getLoc(), "expected prefix identifier in operand");
   5252     return true;
   5253   }
   5254 
   5255   enum {
   5256     COFF = (1 << MCObjectFileInfo::IsCOFF),
   5257     ELF = (1 << MCObjectFileInfo::IsELF),
   5258     MACHO = (1 << MCObjectFileInfo::IsMachO)
   5259   };
   5260   static const struct PrefixEntry {
   5261     const char *Spelling;
   5262     ARMMCExpr::VariantKind VariantKind;
   5263     uint8_t SupportedFormats;
   5264   } PrefixEntries[] = {
   5265     { "lower16", ARMMCExpr::VK_ARM_LO16, COFF | ELF | MACHO },
   5266     { "upper16", ARMMCExpr::VK_ARM_HI16, COFF | ELF | MACHO },
   5267   };
   5268 
   5269   StringRef IDVal = Parser.getTok().getIdentifier();
   5270 
   5271   const auto &Prefix =
   5272       std::find_if(std::begin(PrefixEntries), std::end(PrefixEntries),
   5273                    [&IDVal](const PrefixEntry &PE) {
   5274                       return PE.Spelling == IDVal;
   5275                    });
   5276   if (Prefix == std::end(PrefixEntries)) {
   5277     Error(Parser.getTok().getLoc(), "unexpected prefix in operand");
   5278     return true;
   5279   }
   5280 
   5281   uint8_t CurrentFormat;
   5282   switch (getContext().getObjectFileInfo()->getObjectFileType()) {
   5283   case MCObjectFileInfo::IsMachO:
   5284     CurrentFormat = MACHO;
   5285     break;
   5286   case MCObjectFileInfo::IsELF:
   5287     CurrentFormat = ELF;
   5288     break;
   5289   case MCObjectFileInfo::IsCOFF:
   5290     CurrentFormat = COFF;
   5291     break;
   5292   }
   5293 
   5294   if (~Prefix->SupportedFormats & CurrentFormat) {
   5295     Error(Parser.getTok().getLoc(),
   5296           "cannot represent relocation in the current file format");
   5297     return true;
   5298   }
   5299 
   5300   RefKind = Prefix->VariantKind;
   5301   Parser.Lex();
   5302 
   5303   if (getLexer().isNot(AsmToken::Colon)) {
   5304     Error(Parser.getTok().getLoc(), "unexpected token after prefix");
   5305     return true;
   5306   }
   5307   Parser.Lex(); // Eat the last ':'
   5308 
   5309   return false;
   5310 }
   5311 
   5312 /// \brief Given a mnemonic, split out possible predication code and carry
   5313 /// setting letters to form a canonical mnemonic and flags.
   5314 //
   5315 // FIXME: Would be nice to autogen this.
   5316 // FIXME: This is a bit of a maze of special cases.
   5317 StringRef ARMAsmParser::splitMnemonic(StringRef Mnemonic,
   5318                                       unsigned &PredicationCode,
   5319                                       bool &CarrySetting,
   5320                                       unsigned &ProcessorIMod,
   5321                                       StringRef &ITMask) {
   5322   PredicationCode = ARMCC::AL;
   5323   CarrySetting = false;
   5324   ProcessorIMod = 0;
   5325 
   5326   // Ignore some mnemonics we know aren't predicated forms.
   5327   //
   5328   // FIXME: Would be nice to autogen this.
   5329   if ((Mnemonic == "movs" && isThumb()) ||
   5330       Mnemonic == "teq"   || Mnemonic == "vceq"   || Mnemonic == "svc"   ||
   5331       Mnemonic == "mls"   || Mnemonic == "smmls"  || Mnemonic == "vcls"  ||
   5332       Mnemonic == "vmls"  || Mnemonic == "vnmls"  || Mnemonic == "vacge" ||
   5333       Mnemonic == "vcge"  || Mnemonic == "vclt"   || Mnemonic == "vacgt" ||
   5334       Mnemonic == "vaclt" || Mnemonic == "vacle"  || Mnemonic == "hlt" ||
   5335       Mnemonic == "vcgt"  || Mnemonic == "vcle"   || Mnemonic == "smlal" ||
   5336       Mnemonic == "umaal" || Mnemonic == "umlal"  || Mnemonic == "vabal" ||
   5337       Mnemonic == "vmlal" || Mnemonic == "vpadal" || Mnemonic == "vqdmlal" ||
   5338       Mnemonic == "fmuls" || Mnemonic == "vmaxnm" || Mnemonic == "vminnm" ||
   5339       Mnemonic == "vcvta" || Mnemonic == "vcvtn"  || Mnemonic == "vcvtp" ||
   5340       Mnemonic == "vcvtm" || Mnemonic == "vrinta" || Mnemonic == "vrintn" ||
   5341       Mnemonic == "vrintp" || Mnemonic == "vrintm" || Mnemonic == "hvc" ||
   5342       Mnemonic.startswith("vsel"))
   5343     return Mnemonic;
   5344 
   5345   // First, split out any predication code. Ignore mnemonics we know aren't
   5346   // predicated but do have a carry-set and so weren't caught above.
   5347   if (Mnemonic != "adcs" && Mnemonic != "bics" && Mnemonic != "movs" &&
   5348       Mnemonic != "muls" && Mnemonic != "smlals" && Mnemonic != "smulls" &&
   5349       Mnemonic != "umlals" && Mnemonic != "umulls" && Mnemonic != "lsls" &&
   5350       Mnemonic != "sbcs" && Mnemonic != "rscs") {
   5351     unsigned CC = StringSwitch<unsigned>(Mnemonic.substr(Mnemonic.size()-2))
   5352       .Case("eq", ARMCC::EQ)
   5353       .Case("ne", ARMCC::NE)
   5354       .Case("hs", ARMCC::HS)
   5355       .Case("cs", ARMCC::HS)
   5356       .Case("lo", ARMCC::LO)
   5357       .Case("cc", ARMCC::LO)
   5358       .Case("mi", ARMCC::MI)
   5359       .Case("pl", ARMCC::PL)
   5360       .Case("vs", ARMCC::VS)
   5361       .Case("vc", ARMCC::VC)
   5362       .Case("hi", ARMCC::HI)
   5363       .Case("ls", ARMCC::LS)
   5364       .Case("ge", ARMCC::GE)
   5365       .Case("lt", ARMCC::LT)
   5366       .Case("gt", ARMCC::GT)
   5367       .Case("le", ARMCC::LE)
   5368       .Case("al", ARMCC::AL)
   5369       .Default(~0U);
   5370     if (CC != ~0U) {
   5371       Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 2);
   5372       PredicationCode = CC;
   5373     }
   5374   }
   5375 
   5376   // Next, determine if we have a carry setting bit. We explicitly ignore all
   5377   // the instructions we know end in 's'.
   5378   if (Mnemonic.endswith("s") &&
   5379       !(Mnemonic == "cps" || Mnemonic == "mls" ||
   5380         Mnemonic == "mrs" || Mnemonic == "smmls" || Mnemonic == "vabs" ||
   5381         Mnemonic == "vcls" || Mnemonic == "vmls" || Mnemonic == "vmrs" ||
   5382         Mnemonic == "vnmls" || Mnemonic == "vqabs" || Mnemonic == "vrecps" ||
   5383         Mnemonic == "vrsqrts" || Mnemonic == "srs" || Mnemonic == "flds" ||
   5384         Mnemonic == "fmrs" || Mnemonic == "fsqrts" || Mnemonic == "fsubs" ||
   5385         Mnemonic == "fsts" || Mnemonic == "fcpys" || Mnemonic == "fdivs" ||
   5386         Mnemonic == "fmuls" || Mnemonic == "fcmps" || Mnemonic == "fcmpzs" ||
   5387         Mnemonic == "vfms" || Mnemonic == "vfnms" || Mnemonic == "fconsts" ||
   5388         (Mnemonic == "movs" && isThumb()))) {
   5389     Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 1);
   5390     CarrySetting = true;
   5391   }
   5392 
   5393   // The "cps" instruction can have a interrupt mode operand which is glued into
   5394   // the mnemonic. Check if this is the case, split it and parse the imod op
   5395   if (Mnemonic.startswith("cps")) {
   5396     // Split out any imod code.
   5397     unsigned IMod =
   5398       StringSwitch<unsigned>(Mnemonic.substr(Mnemonic.size()-2, 2))
   5399       .Case("ie", ARM_PROC::IE)
   5400       .Case("id", ARM_PROC::ID)
   5401       .Default(~0U);
   5402     if (IMod != ~0U) {
   5403       Mnemonic = Mnemonic.slice(0, Mnemonic.size()-2);
   5404       ProcessorIMod = IMod;
   5405     }
   5406   }
   5407 
   5408   // The "it" instruction has the condition mask on the end of the mnemonic.
   5409   if (Mnemonic.startswith("it")) {
   5410     ITMask = Mnemonic.slice(2, Mnemonic.size());
   5411     Mnemonic = Mnemonic.slice(0, 2);
   5412   }
   5413 
   5414   return Mnemonic;
   5415 }
   5416 
   5417 /// \brief Given a canonical mnemonic, determine if the instruction ever allows
   5418 /// inclusion of carry set or predication code operands.
   5419 //
   5420 // FIXME: It would be nice to autogen this.
   5421 void ARMAsmParser::getMnemonicAcceptInfo(StringRef Mnemonic, StringRef FullInst,
   5422                                          bool &CanAcceptCarrySet,
   5423                                          bool &CanAcceptPredicationCode) {
   5424   CanAcceptCarrySet =
   5425       Mnemonic == "and" || Mnemonic == "lsl" || Mnemonic == "lsr" ||
   5426       Mnemonic == "rrx" || Mnemonic == "ror" || Mnemonic == "sub" ||
   5427       Mnemonic == "add" || Mnemonic == "adc" || Mnemonic == "mul" ||
   5428       Mnemonic == "bic" || Mnemonic == "asr" || Mnemonic == "orr" ||
   5429       Mnemonic == "mvn" || Mnemonic == "rsb" || Mnemonic == "rsc" ||
   5430       Mnemonic == "orn" || Mnemonic == "sbc" || Mnemonic == "eor" ||
   5431       Mnemonic == "neg" || Mnemonic == "vfm" || Mnemonic == "vfnm" ||
   5432       (!isThumb() &&
   5433        (Mnemonic == "smull" || Mnemonic == "mov" || Mnemonic == "mla" ||
   5434         Mnemonic == "smlal" || Mnemonic == "umlal" || Mnemonic == "umull"));
   5435 
   5436   if (Mnemonic == "bkpt" || Mnemonic == "cbnz" || Mnemonic == "setend" ||
   5437       Mnemonic == "cps" || Mnemonic == "it" || Mnemonic == "cbz" ||
   5438       Mnemonic == "trap" || Mnemonic == "hlt" || Mnemonic == "udf" ||
   5439       Mnemonic.startswith("crc32") || Mnemonic.startswith("cps") ||
   5440       Mnemonic.startswith("vsel") || Mnemonic == "vmaxnm" ||
   5441       Mnemonic == "vminnm" || Mnemonic == "vcvta" || Mnemonic == "vcvtn" ||
   5442       Mnemonic == "vcvtp" || Mnemonic == "vcvtm" || Mnemonic == "vrinta" ||
   5443       Mnemonic == "vrintn" || Mnemonic == "vrintp" || Mnemonic == "vrintm" ||
   5444       Mnemonic.startswith("aes") || Mnemonic == "hvc" || Mnemonic == "setpan" ||
   5445       Mnemonic.startswith("sha1") || Mnemonic.startswith("sha256") ||
   5446       (FullInst.startswith("vmull") && FullInst.endswith(".p64"))) {
   5447     // These mnemonics are never predicable
   5448     CanAcceptPredicationCode = false;
   5449   } else if (!isThumb()) {
   5450     // Some instructions are only predicable in Thumb mode
   5451     CanAcceptPredicationCode =
   5452         Mnemonic != "cdp2" && Mnemonic != "clrex" && Mnemonic != "mcr2" &&
   5453         Mnemonic != "mcrr2" && Mnemonic != "mrc2" && Mnemonic != "mrrc2" &&
   5454         Mnemonic != "dmb" && Mnemonic != "dsb" && Mnemonic != "isb" &&
   5455         Mnemonic != "pld" && Mnemonic != "pli" && Mnemonic != "pldw" &&
   5456         Mnemonic != "ldc2" && Mnemonic != "ldc2l" && Mnemonic != "stc2" &&
   5457         Mnemonic != "stc2l" && !Mnemonic.startswith("rfe") &&
   5458         !Mnemonic.startswith("srs");
   5459   } else if (isThumbOne()) {
   5460     if (hasV6MOps())
   5461       CanAcceptPredicationCode = Mnemonic != "movs";
   5462     else
   5463       CanAcceptPredicationCode = Mnemonic != "nop" && Mnemonic != "movs";
   5464   } else
   5465     CanAcceptPredicationCode = true;
   5466 }
   5467 
   5468 bool ARMAsmParser::shouldOmitCCOutOperand(StringRef Mnemonic,
   5469                                           OperandVector &Operands) {
   5470   // FIXME: This is all horribly hacky. We really need a better way to deal
   5471   // with optional operands like this in the matcher table.
   5472 
   5473   // The 'mov' mnemonic is special. One variant has a cc_out operand, while
   5474   // another does not. Specifically, the MOVW instruction does not. So we
   5475   // special case it here and remove the defaulted (non-setting) cc_out
   5476   // operand if that's the instruction we're trying to match.
   5477   //
   5478   // We do this as post-processing of the explicit operands rather than just
   5479   // conditionally adding the cc_out in the first place because we need
   5480   // to check the type of the parsed immediate operand.
   5481   if (Mnemonic == "mov" && Operands.size() > 4 && !isThumb() &&
   5482       !static_cast<ARMOperand &>(*Operands[4]).isModImm() &&
   5483       static_cast<ARMOperand &>(*Operands[4]).isImm0_65535Expr() &&
   5484       static_cast<ARMOperand &>(*Operands[1]).getReg() == 0)
   5485     return true;
   5486 
   5487   // Register-register 'add' for thumb does not have a cc_out operand
   5488   // when there are only two register operands.
   5489   if (isThumb() && Mnemonic == "add" && Operands.size() == 5 &&
   5490       static_cast<ARMOperand &>(*Operands[3]).isReg() &&
   5491       static_cast<ARMOperand &>(*Operands[4]).isReg() &&
   5492       static_cast<ARMOperand &>(*Operands[1]).getReg() == 0)
   5493     return true;
   5494   // Register-register 'add' for thumb does not have a cc_out operand
   5495   // when it's an ADD Rdm, SP, {Rdm|#imm0_255} instruction. We do
   5496   // have to check the immediate range here since Thumb2 has a variant
   5497   // that can handle a different range and has a cc_out operand.
   5498   if (((isThumb() && Mnemonic == "add") ||
   5499        (isThumbTwo() && Mnemonic == "sub")) &&
   5500       Operands.size() == 6 && static_cast<ARMOperand &>(*Operands[3]).isReg() &&
   5501       static_cast<ARMOperand &>(*Operands[4]).isReg() &&
   5502       static_cast<ARMOperand &>(*Operands[4]).getReg() == ARM::SP &&
   5503       static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 &&
   5504       ((Mnemonic == "add" && static_cast<ARMOperand &>(*Operands[5]).isReg()) ||
   5505        static_cast<ARMOperand &>(*Operands[5]).isImm0_1020s4()))
   5506     return true;
   5507   // For Thumb2, add/sub immediate does not have a cc_out operand for the
   5508   // imm0_4095 variant. That's the least-preferred variant when
   5509   // selecting via the generic "add" mnemonic, so to know that we
   5510   // should remove the cc_out operand, we have to explicitly check that
   5511   // it's not one of the other variants. Ugh.
   5512   if (isThumbTwo() && (Mnemonic == "add" || Mnemonic == "sub") &&
   5513       Operands.size() == 6 && static_cast<ARMOperand &>(*Operands[3]).isReg() &&
   5514       static_cast<ARMOperand &>(*Operands[4]).isReg() &&
   5515       static_cast<ARMOperand &>(*Operands[5]).isImm()) {
   5516     // Nest conditions rather than one big 'if' statement for readability.
   5517     //
   5518     // If both registers are low, we're in an IT block, and the immediate is
   5519     // in range, we should use encoding T1 instead, which has a cc_out.
   5520     if (inITBlock() &&
   5521         isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) &&
   5522         isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) &&
   5523         static_cast<ARMOperand &>(*Operands[5]).isImm0_7())
   5524       return false;
   5525     // Check against T3. If the second register is the PC, this is an
   5526     // alternate form of ADR, which uses encoding T4, so check for that too.
   5527     if (static_cast<ARMOperand &>(*Operands[4]).getReg() != ARM::PC &&
   5528         static_cast<ARMOperand &>(*Operands[5]).isT2SOImm())
   5529       return false;
   5530 
   5531     // Otherwise, we use encoding T4, which does not have a cc_out
   5532     // operand.
   5533     return true;
   5534   }
   5535 
   5536   // The thumb2 multiply instruction doesn't have a CCOut register, so
   5537   // if we have a "mul" mnemonic in Thumb mode, check if we'll be able to
   5538   // use the 16-bit encoding or not.
   5539   if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 6 &&
   5540       static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 &&
   5541       static_cast<ARMOperand &>(*Operands[3]).isReg() &&
   5542       static_cast<ARMOperand &>(*Operands[4]).isReg() &&
   5543       static_cast<ARMOperand &>(*Operands[5]).isReg() &&
   5544       // If the registers aren't low regs, the destination reg isn't the
   5545       // same as one of the source regs, or the cc_out operand is zero
   5546       // outside of an IT block, we have to use the 32-bit encoding, so
   5547       // remove the cc_out operand.
   5548       (!isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) ||
   5549        !isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) ||
   5550        !isARMLowRegister(static_cast<ARMOperand &>(*Operands[5]).getReg()) ||
   5551        !inITBlock() || (static_cast<ARMOperand &>(*Operands[3]).getReg() !=
   5552                             static_cast<ARMOperand &>(*Operands[5]).getReg() &&
   5553                         static_cast<ARMOperand &>(*Operands[3]).getReg() !=
   5554                             static_cast<ARMOperand &>(*Operands[4]).getReg())))
   5555     return true;
   5556 
   5557   // Also check the 'mul' syntax variant that doesn't specify an explicit
   5558   // destination register.
   5559   if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 5 &&
   5560       static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 &&
   5561       static_cast<ARMOperand &>(*Operands[3]).isReg() &&
   5562       static_cast<ARMOperand &>(*Operands[4]).isReg() &&
   5563       // If the registers aren't low regs  or the cc_out operand is zero
   5564       // outside of an IT block, we have to use the 32-bit encoding, so
   5565       // remove the cc_out operand.
   5566       (!isARMLowRegister(static_cast<ARMOperand &>(*Operands[3]).getReg()) ||
   5567        !isARMLowRegister(static_cast<ARMOperand &>(*Operands[4]).getReg()) ||
   5568        !inITBlock()))
   5569     return true;
   5570 
   5571 
   5572 
   5573   // Register-register 'add/sub' for thumb does not have a cc_out operand
   5574   // when it's an ADD/SUB SP, #imm. Be lenient on count since there's also
   5575   // the "add/sub SP, SP, #imm" version. If the follow-up operands aren't
   5576   // right, this will result in better diagnostics (which operand is off)
   5577   // anyway.
   5578   if (isThumb() && (Mnemonic == "add" || Mnemonic == "sub") &&
   5579       (Operands.size() == 5 || Operands.size() == 6) &&
   5580       static_cast<ARMOperand &>(*Operands[3]).isReg() &&
   5581       static_cast<ARMOperand &>(*Operands[3]).getReg() == ARM::SP &&
   5582       static_cast<ARMOperand &>(*Operands[1]).getReg() == 0 &&
   5583       (static_cast<ARMOperand &>(*Operands[4]).isImm() ||
   5584        (Operands.size() == 6 &&
   5585         static_cast<ARMOperand &>(*Operands[5]).isImm())))
   5586     return true;
   5587 
   5588   return false;
   5589 }
   5590 
   5591 bool ARMAsmParser::shouldOmitPredicateOperand(StringRef Mnemonic,
   5592                                               OperandVector &Operands) {
   5593   // VRINT{Z, R, X} have a predicate operand in VFP, but not in NEON
   5594   unsigned RegIdx = 3;
   5595   if ((Mnemonic == "vrintz" || Mnemonic == "vrintx" || Mnemonic == "vrintr") &&
   5596       static_cast<ARMOperand &>(*Operands[2]).getToken() == ".f32") {
   5597     if (static_cast<ARMOperand &>(*Operands[3]).isToken() &&
   5598         static_cast<ARMOperand &>(*Operands[3]).getToken() == ".f32")
   5599       RegIdx = 4;
   5600 
   5601     if (static_cast<ARMOperand &>(*Operands[RegIdx]).isReg() &&
   5602         (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(
   5603              static_cast<ARMOperand &>(*Operands[RegIdx]).getReg()) ||
   5604          ARMMCRegisterClasses[ARM::QPRRegClassID].contains(
   5605              static_cast<ARMOperand &>(*Operands[RegIdx]).getReg())))
   5606       return true;
   5607   }
   5608   return false;
   5609 }
   5610 
   5611 static bool isDataTypeToken(StringRef Tok) {
   5612   return Tok == ".8" || Tok == ".16" || Tok == ".32" || Tok == ".64" ||
   5613     Tok == ".i8" || Tok == ".i16" || Tok == ".i32" || Tok == ".i64" ||
   5614     Tok == ".u8" || Tok == ".u16" || Tok == ".u32" || Tok == ".u64" ||
   5615     Tok == ".s8" || Tok == ".s16" || Tok == ".s32" || Tok == ".s64" ||
   5616     Tok == ".p8" || Tok == ".p16" || Tok == ".f32" || Tok == ".f64" ||
   5617     Tok == ".f" || Tok == ".d";
   5618 }
   5619 
   5620 // FIXME: This bit should probably be handled via an explicit match class
   5621 // in the .td files that matches the suffix instead of having it be
   5622 // a literal string token the way it is now.
   5623 static bool doesIgnoreDataTypeSuffix(StringRef Mnemonic, StringRef DT) {
   5624   return Mnemonic.startswith("vldm") || Mnemonic.startswith("vstm");
   5625 }
   5626 static void applyMnemonicAliases(StringRef &Mnemonic, uint64_t Features,
   5627                                  unsigned VariantID);
   5628 
   5629 static bool RequiresVFPRegListValidation(StringRef Inst,
   5630                                          bool &AcceptSinglePrecisionOnly,
   5631                                          bool &AcceptDoublePrecisionOnly) {
   5632   if (Inst.size() < 7)
   5633     return false;
   5634 
   5635   if (Inst.startswith("fldm") || Inst.startswith("fstm")) {
   5636     StringRef AddressingMode = Inst.substr(4, 2);
   5637     if (AddressingMode == "ia" || AddressingMode == "db" ||
   5638         AddressingMode == "ea" || AddressingMode == "fd") {
   5639       AcceptSinglePrecisionOnly = Inst[6] == 's';
   5640       AcceptDoublePrecisionOnly = Inst[6] == 'd' || Inst[6] == 'x';
   5641       return true;
   5642     }
   5643   }
   5644 
   5645   return false;
   5646 }
   5647 
   5648 /// Parse an arm instruction mnemonic followed by its operands.
   5649 bool ARMAsmParser::ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
   5650                                     SMLoc NameLoc, OperandVector &Operands) {
   5651   MCAsmParser &Parser = getParser();
   5652   // FIXME: Can this be done via tablegen in some fashion?
   5653   bool RequireVFPRegisterListCheck;
   5654   bool AcceptSinglePrecisionOnly;
   5655   bool AcceptDoublePrecisionOnly;
   5656   RequireVFPRegisterListCheck =
   5657     RequiresVFPRegListValidation(Name, AcceptSinglePrecisionOnly,
   5658                                  AcceptDoublePrecisionOnly);
   5659 
   5660   // Apply mnemonic aliases before doing anything else, as the destination
   5661   // mnemonic may include suffices and we want to handle them normally.
   5662   // The generic tblgen'erated code does this later, at the start of
   5663   // MatchInstructionImpl(), but that's too late for aliases that include
   5664   // any sort of suffix.
   5665   uint64_t AvailableFeatures = getAvailableFeatures();
   5666   unsigned AssemblerDialect = getParser().getAssemblerDialect();
   5667   applyMnemonicAliases(Name, AvailableFeatures, AssemblerDialect);
   5668 
   5669   // First check for the ARM-specific .req directive.
   5670   if (Parser.getTok().is(AsmToken::Identifier) &&
   5671       Parser.getTok().getIdentifier() == ".req") {
   5672     parseDirectiveReq(Name, NameLoc);
   5673     // We always return 'error' for this, as we're done with this
   5674     // statement and don't need to match the 'instruction."
   5675     return true;
   5676   }
   5677 
   5678   // Create the leading tokens for the mnemonic, split by '.' characters.
   5679   size_t Start = 0, Next = Name.find('.');
   5680   StringRef Mnemonic = Name.slice(Start, Next);
   5681 
   5682   // Split out the predication code and carry setting flag from the mnemonic.
   5683   unsigned PredicationCode;
   5684   unsigned ProcessorIMod;
   5685   bool CarrySetting;
   5686   StringRef ITMask;
   5687   Mnemonic = splitMnemonic(Mnemonic, PredicationCode, CarrySetting,
   5688                            ProcessorIMod, ITMask);
   5689 
   5690   // In Thumb1, only the branch (B) instruction can be predicated.
   5691   if (isThumbOne() && PredicationCode != ARMCC::AL && Mnemonic != "b") {
   5692     Parser.eatToEndOfStatement();
   5693     return Error(NameLoc, "conditional execution not supported in Thumb1");
   5694   }
   5695 
   5696   Operands.push_back(ARMOperand::CreateToken(Mnemonic, NameLoc));
   5697 
   5698   // Handle the IT instruction ITMask. Convert it to a bitmask. This
   5699   // is the mask as it will be for the IT encoding if the conditional
   5700   // encoding has a '1' as it's bit0 (i.e. 't' ==> '1'). In the case
   5701   // where the conditional bit0 is zero, the instruction post-processing
   5702   // will adjust the mask accordingly.
   5703   if (Mnemonic == "it") {
   5704     SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + 2);
   5705     if (ITMask.size() > 3) {
   5706       Parser.eatToEndOfStatement();
   5707       return Error(Loc, "too many conditions on IT instruction");
   5708     }
   5709     unsigned Mask = 8;
   5710     for (unsigned i = ITMask.size(); i != 0; --i) {
   5711       char pos = ITMask[i - 1];
   5712       if (pos != 't' && pos != 'e') {
   5713         Parser.eatToEndOfStatement();
   5714         return Error(Loc, "illegal IT block condition mask '" + ITMask + "'");
   5715       }
   5716       Mask >>= 1;
   5717       if (ITMask[i - 1] == 't')
   5718         Mask |= 8;
   5719     }
   5720     Operands.push_back(ARMOperand::CreateITMask(Mask, Loc));
   5721   }
   5722 
   5723   // FIXME: This is all a pretty gross hack. We should automatically handle
   5724   // optional operands like this via tblgen.
   5725 
   5726   // Next, add the CCOut and ConditionCode operands, if needed.
   5727   //
   5728   // For mnemonics which can ever incorporate a carry setting bit or predication
   5729   // code, our matching model involves us always generating CCOut and
   5730   // ConditionCode operands to match the mnemonic "as written" and then we let
   5731   // the matcher deal with finding the right instruction or generating an
   5732   // appropriate error.
   5733   bool CanAcceptCarrySet, CanAcceptPredicationCode;
   5734   getMnemonicAcceptInfo(Mnemonic, Name, CanAcceptCarrySet, CanAcceptPredicationCode);
   5735 
   5736   // If we had a carry-set on an instruction that can't do that, issue an
   5737   // error.
   5738   if (!CanAcceptCarrySet && CarrySetting) {
   5739     Parser.eatToEndOfStatement();
   5740     return Error(NameLoc, "instruction '" + Mnemonic +
   5741                  "' can not set flags, but 's' suffix specified");
   5742   }
   5743   // If we had a predication code on an instruction that can't do that, issue an
   5744   // error.
   5745   if (!CanAcceptPredicationCode && PredicationCode != ARMCC::AL) {
   5746     Parser.eatToEndOfStatement();
   5747     return Error(NameLoc, "instruction '" + Mnemonic +
   5748                  "' is not predicable, but condition code specified");
   5749   }
   5750 
   5751   // Add the carry setting operand, if necessary.
   5752   if (CanAcceptCarrySet) {
   5753     SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size());
   5754     Operands.push_back(ARMOperand::CreateCCOut(CarrySetting ? ARM::CPSR : 0,
   5755                                                Loc));
   5756   }
   5757 
   5758   // Add the predication code operand, if necessary.
   5759   if (CanAcceptPredicationCode) {
   5760     SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size() +
   5761                                       CarrySetting);
   5762     Operands.push_back(ARMOperand::CreateCondCode(
   5763                          ARMCC::CondCodes(PredicationCode), Loc));
   5764   }
   5765 
   5766   // Add the processor imod operand, if necessary.
   5767   if (ProcessorIMod) {
   5768     Operands.push_back(ARMOperand::CreateImm(
   5769           MCConstantExpr::Create(ProcessorIMod, getContext()),
   5770                                  NameLoc, NameLoc));
   5771   } else if (Mnemonic == "cps" && isMClass()) {
   5772     return Error(NameLoc, "instruction 'cps' requires effect for M-class");
   5773   }
   5774 
   5775   // Add the remaining tokens in the mnemonic.
   5776   while (Next != StringRef::npos) {
   5777     Start = Next;
   5778     Next = Name.find('.', Start + 1);
   5779     StringRef ExtraToken = Name.slice(Start, Next);
   5780 
   5781     // Some NEON instructions have an optional datatype suffix that is
   5782     // completely ignored. Check for that.
   5783     if (isDataTypeToken(ExtraToken) &&
   5784         doesIgnoreDataTypeSuffix(Mnemonic, ExtraToken))
   5785       continue;
   5786 
   5787     // For for ARM mode generate an error if the .n qualifier is used.
   5788     if (ExtraToken == ".n" && !isThumb()) {
   5789       SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start);
   5790       Parser.eatToEndOfStatement();
   5791       return Error(Loc, "instruction with .n (narrow) qualifier not allowed in "
   5792                    "arm mode");
   5793     }
   5794 
   5795     // The .n qualifier is always discarded as that is what the tables
   5796     // and matcher expect.  In ARM mode the .w qualifier has no effect,
   5797     // so discard it to avoid errors that can be caused by the matcher.
   5798     if (ExtraToken != ".n" && (isThumb() || ExtraToken != ".w")) {
   5799       SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start);
   5800       Operands.push_back(ARMOperand::CreateToken(ExtraToken, Loc));
   5801     }
   5802   }
   5803 
   5804   // Read the remaining operands.
   5805   if (getLexer().isNot(AsmToken::EndOfStatement)) {
   5806     // Read the first operand.
   5807     if (parseOperand(Operands, Mnemonic)) {
   5808       Parser.eatToEndOfStatement();
   5809       return true;
   5810     }
   5811 
   5812     while (getLexer().is(AsmToken::Comma)) {
   5813       Parser.Lex();  // Eat the comma.
   5814 
   5815       // Parse and remember the operand.
   5816       if (parseOperand(Operands, Mnemonic)) {
   5817         Parser.eatToEndOfStatement();
   5818         return true;
   5819       }
   5820     }
   5821   }
   5822 
   5823   if (getLexer().isNot(AsmToken::EndOfStatement)) {
   5824     SMLoc Loc = getLexer().getLoc();
   5825     Parser.eatToEndOfStatement();
   5826     return Error(Loc, "unexpected token in argument list");
   5827   }
   5828 
   5829   Parser.Lex(); // Consume the EndOfStatement
   5830 
   5831   if (RequireVFPRegisterListCheck) {
   5832     ARMOperand &Op = static_cast<ARMOperand &>(*Operands.back());
   5833     if (AcceptSinglePrecisionOnly && !Op.isSPRRegList())
   5834       return Error(Op.getStartLoc(),
   5835                    "VFP/Neon single precision register expected");
   5836     if (AcceptDoublePrecisionOnly && !Op.isDPRRegList())
   5837       return Error(Op.getStartLoc(),
   5838                    "VFP/Neon double precision register expected");
   5839   }
   5840 
   5841   // Some instructions, mostly Thumb, have forms for the same mnemonic that
   5842   // do and don't have a cc_out optional-def operand. With some spot-checks
   5843   // of the operand list, we can figure out which variant we're trying to
   5844   // parse and adjust accordingly before actually matching. We shouldn't ever
   5845   // try to remove a cc_out operand that was explicitly set on the the
   5846   // mnemonic, of course (CarrySetting == true). Reason number #317 the
   5847   // table driven matcher doesn't fit well with the ARM instruction set.
   5848   if (!CarrySetting && shouldOmitCCOutOperand(Mnemonic, Operands))
   5849     Operands.erase(Operands.begin() + 1);
   5850 
   5851   // Some instructions have the same mnemonic, but don't always
   5852   // have a predicate. Distinguish them here and delete the
   5853   // predicate if needed.
   5854   if (shouldOmitPredicateOperand(Mnemonic, Operands))
   5855     Operands.erase(Operands.begin() + 1);
   5856 
   5857   // ARM mode 'blx' need special handling, as the register operand version
   5858   // is predicable, but the label operand version is not. So, we can't rely
   5859   // on the Mnemonic based checking to correctly figure out when to put
   5860   // a k_CondCode operand in the list. If we're trying to match the label
   5861   // version, remove the k_CondCode operand here.
   5862   if (!isThumb() && Mnemonic == "blx" && Operands.size() == 3 &&
   5863       static_cast<ARMOperand &>(*Operands[2]).isImm())
   5864     Operands.erase(Operands.begin() + 1);
   5865 
   5866   // Adjust operands of ldrexd/strexd to MCK_GPRPair.
   5867   // ldrexd/strexd require even/odd GPR pair. To enforce this constraint,
   5868   // a single GPRPair reg operand is used in the .td file to replace the two
   5869   // GPRs. However, when parsing from asm, the two GRPs cannot be automatically
   5870   // expressed as a GPRPair, so we have to manually merge them.
   5871   // FIXME: We would really like to be able to tablegen'erate this.
   5872   if (!isThumb() && Operands.size() > 4 &&
   5873       (Mnemonic == "ldrexd" || Mnemonic == "strexd" || Mnemonic == "ldaexd" ||
   5874        Mnemonic == "stlexd")) {
   5875     bool isLoad = (Mnemonic == "ldrexd" || Mnemonic == "ldaexd");
   5876     unsigned Idx = isLoad ? 2 : 3;
   5877     ARMOperand &Op1 = static_cast<ARMOperand &>(*Operands[Idx]);
   5878     ARMOperand &Op2 = static_cast<ARMOperand &>(*Operands[Idx + 1]);
   5879 
   5880     const MCRegisterClass& MRC = MRI->getRegClass(ARM::GPRRegClassID);
   5881     // Adjust only if Op1 and Op2 are GPRs.
   5882     if (Op1.isReg() && Op2.isReg() && MRC.contains(Op1.getReg()) &&
   5883         MRC.contains(Op2.getReg())) {
   5884       unsigned Reg1 = Op1.getReg();
   5885       unsigned Reg2 = Op2.getReg();
   5886       unsigned Rt = MRI->getEncodingValue(Reg1);
   5887       unsigned Rt2 = MRI->getEncodingValue(Reg2);
   5888 
   5889       // Rt2 must be Rt + 1 and Rt must be even.
   5890       if (Rt + 1 != Rt2 || (Rt & 1)) {
   5891         Error(Op2.getStartLoc(), isLoad
   5892                                      ? "destination operands must be sequential"
   5893                                      : "source operands must be sequential");
   5894         return true;
   5895       }
   5896       unsigned NewReg = MRI->getMatchingSuperReg(Reg1, ARM::gsub_0,
   5897           &(MRI->getRegClass(ARM::GPRPairRegClassID)));
   5898       Operands[Idx] =
   5899           ARMOperand::CreateReg(NewReg, Op1.getStartLoc(), Op2.getEndLoc());
   5900       Operands.erase(Operands.begin() + Idx + 1);
   5901     }
   5902   }
   5903 
   5904   // If first 2 operands of a 3 operand instruction are the same
   5905   // then transform to 2 operand version of the same instruction
   5906   // e.g. 'adds r0, r0, #1' transforms to 'adds r0, #1'
   5907   // FIXME: We would really like to be able to tablegen'erate this.
   5908   if (isThumbOne() && Operands.size() == 6 &&
   5909        (Mnemonic == "add" || Mnemonic == "sub" || Mnemonic == "and" ||
   5910         Mnemonic == "eor" || Mnemonic == "lsl" || Mnemonic == "lsr" ||
   5911         Mnemonic == "asr" || Mnemonic == "adc" || Mnemonic == "sbc" ||
   5912         Mnemonic == "ror" || Mnemonic == "orr" || Mnemonic == "bic")) {
   5913       ARMOperand &Op3 = static_cast<ARMOperand &>(*Operands[3]);
   5914       ARMOperand &Op4 = static_cast<ARMOperand &>(*Operands[4]);
   5915       ARMOperand &Op5 = static_cast<ARMOperand &>(*Operands[5]);
   5916 
   5917       // If both registers are the same then remove one of them from
   5918       // the operand list.
   5919       if (Op3.isReg() && Op4.isReg() && Op3.getReg() == Op4.getReg()) {
   5920           // If 3rd operand (variable Op5) is a register and the instruction is adds/sub
   5921           // then do not transform as the backend already handles this instruction
   5922           // correctly.
   5923           if (!Op5.isReg() || !((Mnemonic == "add" && CarrySetting) || Mnemonic == "sub")) {
   5924               Operands.erase(Operands.begin() + 3);
   5925               if (Mnemonic == "add" && !CarrySetting) {
   5926                   // Special case for 'add' (not 'adds') instruction must
   5927                   // remove the CCOut operand as well.
   5928                   Operands.erase(Operands.begin() + 1);
   5929               }
   5930           }
   5931       }
   5932   }
   5933 
   5934   // If instruction is 'add' and first two register operands
   5935   // use SP register, then remove one of the SP registers from
   5936   // the instruction.
   5937   // FIXME: We would really like to be able to tablegen'erate this.
   5938   if (isThumbOne() && Operands.size() == 5 && Mnemonic == "add" && !CarrySetting) {
   5939       ARMOperand &Op2 = static_cast<ARMOperand &>(*Operands[2]);
   5940       ARMOperand &Op3 = static_cast<ARMOperand &>(*Operands[3]);
   5941       if (Op2.isReg() && Op3.isReg() && Op2.getReg() == ARM::SP && Op3.getReg() == ARM::SP) {
   5942           Operands.erase(Operands.begin() + 2);
   5943       }
   5944   }
   5945 
   5946   // GNU Assembler extension (compatibility)
   5947   if ((Mnemonic == "ldrd" || Mnemonic == "strd")) {
   5948     ARMOperand &Op2 = static_cast<ARMOperand &>(*Operands[2]);
   5949     ARMOperand &Op3 = static_cast<ARMOperand &>(*Operands[3]);
   5950     if (Op3.isMem()) {
   5951       assert(Op2.isReg() && "expected register argument");
   5952 
   5953       unsigned SuperReg = MRI->getMatchingSuperReg(
   5954           Op2.getReg(), ARM::gsub_0, &MRI->getRegClass(ARM::GPRPairRegClassID));
   5955 
   5956       assert(SuperReg && "expected register pair");
   5957 
   5958       unsigned PairedReg = MRI->getSubReg(SuperReg, ARM::gsub_1);
   5959 
   5960       Operands.insert(
   5961           Operands.begin() + 3,
   5962           ARMOperand::CreateReg(PairedReg, Op2.getStartLoc(), Op2.getEndLoc()));
   5963     }
   5964   }
   5965 
   5966   // FIXME: As said above, this is all a pretty gross hack.  This instruction
   5967   // does not fit with other "subs" and tblgen.
   5968   // Adjust operands of B9.3.19 SUBS PC, LR, #imm (Thumb2) system instruction
   5969   // so the Mnemonic is the original name "subs" and delete the predicate
   5970   // operand so it will match the table entry.
   5971   if (isThumbTwo() && Mnemonic == "sub" && Operands.size() == 6 &&
   5972       static_cast<ARMOperand &>(*Operands[3]).isReg() &&
   5973       static_cast<ARMOperand &>(*Operands[3]).getReg() == ARM::PC &&
   5974       static_cast<ARMOperand &>(*Operands[4]).isReg() &&
   5975       static_cast<ARMOperand &>(*Operands[4]).getReg() == ARM::LR &&
   5976       static_cast<ARMOperand &>(*Operands[5]).isImm()) {
   5977     Operands.front() = ARMOperand::CreateToken(Name, NameLoc);
   5978     Operands.erase(Operands.begin() + 1);
   5979   }
   5980   return false;
   5981 }
   5982 
   5983 // Validate context-sensitive operand constraints.
   5984 
   5985 // return 'true' if register list contains non-low GPR registers,
   5986 // 'false' otherwise. If Reg is in the register list or is HiReg, set
   5987 // 'containsReg' to true.
   5988 static bool checkLowRegisterList(MCInst Inst, unsigned OpNo, unsigned Reg,
   5989                                  unsigned HiReg, bool &containsReg) {
   5990   containsReg = false;
   5991   for (unsigned i = OpNo; i < Inst.getNumOperands(); ++i) {
   5992     unsigned OpReg = Inst.getOperand(i).getReg();
   5993     if (OpReg == Reg)
   5994       containsReg = true;
   5995     // Anything other than a low register isn't legal here.
   5996     if (!isARMLowRegister(OpReg) && (!HiReg || OpReg != HiReg))
   5997       return true;
   5998   }
   5999   return false;
   6000 }
   6001 
   6002 // Check if the specified regisgter is in the register list of the inst,
   6003 // starting at the indicated operand number.
   6004 static bool listContainsReg(MCInst &Inst, unsigned OpNo, unsigned Reg) {
   6005   for (unsigned i = OpNo; i < Inst.getNumOperands(); ++i) {
   6006     unsigned OpReg = Inst.getOperand(i).getReg();
   6007     if (OpReg == Reg)
   6008       return true;
   6009   }
   6010   return false;
   6011 }
   6012 
   6013 // Return true if instruction has the interesting property of being
   6014 // allowed in IT blocks, but not being predicable.
   6015 static bool instIsBreakpoint(const MCInst &Inst) {
   6016     return Inst.getOpcode() == ARM::tBKPT ||
   6017            Inst.getOpcode() == ARM::BKPT ||
   6018            Inst.getOpcode() == ARM::tHLT ||
   6019            Inst.getOpcode() == ARM::HLT;
   6020 
   6021 }
   6022 
   6023 bool ARMAsmParser::validatetLDMRegList(MCInst Inst,
   6024                                        const OperandVector &Operands,
   6025                                        unsigned ListNo, bool IsARPop) {
   6026   const ARMOperand &Op = static_cast<const ARMOperand &>(*Operands[ListNo]);
   6027   bool HasWritebackToken = Op.isToken() && Op.getToken() == "!";
   6028 
   6029   bool ListContainsSP = listContainsReg(Inst, ListNo, ARM::SP);
   6030   bool ListContainsLR = listContainsReg(Inst, ListNo, ARM::LR);
   6031   bool ListContainsPC = listContainsReg(Inst, ListNo, ARM::PC);
   6032 
   6033   if (!IsARPop && ListContainsSP)
   6034     return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(),
   6035                  "SP may not be in the register list");
   6036   else if (ListContainsPC && ListContainsLR)
   6037     return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(),
   6038                  "PC and LR may not be in the register list simultaneously");
   6039   else if (inITBlock() && !lastInITBlock() && ListContainsPC)
   6040     return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(),
   6041                  "instruction must be outside of IT block or the last "
   6042                  "instruction in an IT block");
   6043   return false;
   6044 }
   6045 
   6046 bool ARMAsmParser::validatetSTMRegList(MCInst Inst,
   6047                                        const OperandVector &Operands,
   6048                                        unsigned ListNo) {
   6049   const ARMOperand &Op = static_cast<const ARMOperand &>(*Operands[ListNo]);
   6050   bool HasWritebackToken = Op.isToken() && Op.getToken() == "!";
   6051 
   6052   bool ListContainsSP = listContainsReg(Inst, ListNo, ARM::SP);
   6053   bool ListContainsPC = listContainsReg(Inst, ListNo, ARM::PC);
   6054 
   6055   if (ListContainsSP && ListContainsPC)
   6056     return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(),
   6057                  "SP and PC may not be in the register list");
   6058   else if (ListContainsSP)
   6059     return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(),
   6060                  "SP may not be in the register list");
   6061   else if (ListContainsPC)
   6062     return Error(Operands[ListNo + HasWritebackToken]->getStartLoc(),
   6063                  "PC may not be in the register list");
   6064   return false;
   6065 }
   6066 
   6067 // FIXME: We would really like to be able to tablegen'erate this.
   6068 bool ARMAsmParser::validateInstruction(MCInst &Inst,
   6069                                        const OperandVector &Operands) {
   6070   const MCInstrDesc &MCID = MII.get(Inst.getOpcode());
   6071   SMLoc Loc = Operands[0]->getStartLoc();
   6072 
   6073   // Check the IT block state first.
   6074   // NOTE: BKPT and HLT instructions have the interesting property of being
   6075   // allowed in IT blocks, but not being predicable. They just always execute.
   6076   if (inITBlock() && !instIsBreakpoint(Inst)) {
   6077     unsigned Bit = 1;
   6078     if (ITState.FirstCond)
   6079       ITState.FirstCond = false;
   6080     else
   6081       Bit = (ITState.Mask >> (5 - ITState.CurPosition)) & 1;
   6082     // The instruction must be predicable.
   6083     if (!MCID.isPredicable())
   6084       return Error(Loc, "instructions in IT block must be predicable");
   6085     unsigned Cond = Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm();
   6086     unsigned ITCond = Bit ? ITState.Cond :
   6087       ARMCC::getOppositeCondition(ITState.Cond);
   6088     if (Cond != ITCond) {
   6089       // Find the condition code Operand to get its SMLoc information.
   6090       SMLoc CondLoc;
   6091       for (unsigned I = 1; I < Operands.size(); ++I)
   6092         if (static_cast<ARMOperand &>(*Operands[I]).isCondCode())
   6093           CondLoc = Operands[I]->getStartLoc();
   6094       return Error(CondLoc, "incorrect condition in IT block; got '" +
   6095                    StringRef(ARMCondCodeToString(ARMCC::CondCodes(Cond))) +
   6096                    "', but expected '" +
   6097                    ARMCondCodeToString(ARMCC::CondCodes(ITCond)) + "'");
   6098     }
   6099   // Check for non-'al' condition codes outside of the IT block.
   6100   } else if (isThumbTwo() && MCID.isPredicable() &&
   6101              Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm() !=
   6102              ARMCC::AL && Inst.getOpcode() != ARM::tBcc &&
   6103              Inst.getOpcode() != ARM::t2Bcc)
   6104     return Error(Loc, "predicated instructions must be in IT block");
   6105 
   6106   const unsigned Opcode = Inst.getOpcode();
   6107   switch (Opcode) {
   6108   case ARM::LDRD:
   6109   case ARM::LDRD_PRE:
   6110   case ARM::LDRD_POST: {
   6111     const unsigned RtReg = Inst.getOperand(0).getReg();
   6112 
   6113     // Rt can't be R14.
   6114     if (RtReg == ARM::LR)
   6115       return Error(Operands[3]->getStartLoc(),
   6116                    "Rt can't be R14");
   6117 
   6118     const unsigned Rt = MRI->getEncodingValue(RtReg);
   6119     // Rt must be even-numbered.
   6120     if ((Rt & 1) == 1)
   6121       return Error(Operands[3]->getStartLoc(),
   6122                    "Rt must be even-numbered");
   6123 
   6124     // Rt2 must be Rt + 1.
   6125     const unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(1).getReg());
   6126     if (Rt2 != Rt + 1)
   6127       return Error(Operands[3]->getStartLoc(),
   6128                    "destination operands must be sequential");
   6129 
   6130     if (Opcode == ARM::LDRD_PRE || Opcode == ARM::LDRD_POST) {
   6131       const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(3).getReg());
   6132       // For addressing modes with writeback, the base register needs to be
   6133       // different from the destination registers.
   6134       if (Rn == Rt || Rn == Rt2)
   6135         return Error(Operands[3]->getStartLoc(),
   6136                      "base register needs to be different from destination "
   6137                      "registers");
   6138     }
   6139 
   6140     return false;
   6141   }
   6142   case ARM::t2LDRDi8:
   6143   case ARM::t2LDRD_PRE:
   6144   case ARM::t2LDRD_POST: {
   6145     // Rt2 must be different from Rt.
   6146     unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg());
   6147     unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(1).getReg());
   6148     if (Rt2 == Rt)
   6149       return Error(Operands[3]->getStartLoc(),
   6150                    "destination operands can't be identical");
   6151     return false;
   6152   }
   6153   case ARM::t2BXJ: {
   6154     const unsigned RmReg = Inst.getOperand(0).getReg();
   6155     // Rm = SP is no longer unpredictable in v8-A
   6156     if (RmReg == ARM::SP && !hasV8Ops())
   6157       return Error(Operands[2]->getStartLoc(),
   6158                    "r13 (SP) is an unpredictable operand to BXJ");
   6159     return false;
   6160   }
   6161   case ARM::STRD: {
   6162     // Rt2 must be Rt + 1.
   6163     unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg());
   6164     unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(1).getReg());
   6165     if (Rt2 != Rt + 1)
   6166       return Error(Operands[3]->getStartLoc(),
   6167                    "source operands must be sequential");
   6168     return false;
   6169   }
   6170   case ARM::STRD_PRE:
   6171   case ARM::STRD_POST: {
   6172     // Rt2 must be Rt + 1.
   6173     unsigned Rt = MRI->getEncodingValue(Inst.getOperand(1).getReg());
   6174     unsigned Rt2 = MRI->getEncodingValue(Inst.getOperand(2).getReg());
   6175     if (Rt2 != Rt + 1)
   6176       return Error(Operands[3]->getStartLoc(),
   6177                    "source operands must be sequential");
   6178     return false;
   6179   }
   6180   case ARM::STR_PRE_IMM:
   6181   case ARM::STR_PRE_REG:
   6182   case ARM::STR_POST_IMM:
   6183   case ARM::STR_POST_REG:
   6184   case ARM::STRH_PRE:
   6185   case ARM::STRH_POST:
   6186   case ARM::STRB_PRE_IMM:
   6187   case ARM::STRB_PRE_REG:
   6188   case ARM::STRB_POST_IMM:
   6189   case ARM::STRB_POST_REG: {
   6190     // Rt must be different from Rn.
   6191     const unsigned Rt = MRI->getEncodingValue(Inst.getOperand(1).getReg());
   6192     const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(2).getReg());
   6193 
   6194     if (Rt == Rn)
   6195       return Error(Operands[3]->getStartLoc(),
   6196                    "source register and base register can't be identical");
   6197     return false;
   6198   }
   6199   case ARM::LDR_PRE_IMM:
   6200   case ARM::LDR_PRE_REG:
   6201   case ARM::LDR_POST_IMM:
   6202   case ARM::LDR_POST_REG:
   6203   case ARM::LDRH_PRE:
   6204   case ARM::LDRH_POST:
   6205   case ARM::LDRSH_PRE:
   6206   case ARM::LDRSH_POST:
   6207   case ARM::LDRB_PRE_IMM:
   6208   case ARM::LDRB_PRE_REG:
   6209   case ARM::LDRB_POST_IMM:
   6210   case ARM::LDRB_POST_REG:
   6211   case ARM::LDRSB_PRE:
   6212   case ARM::LDRSB_POST: {
   6213     // Rt must be different from Rn.
   6214     const unsigned Rt = MRI->getEncodingValue(Inst.getOperand(0).getReg());
   6215     const unsigned Rn = MRI->getEncodingValue(Inst.getOperand(2).getReg());
   6216 
   6217     if (Rt == Rn)
   6218       return Error(Operands[3]->getStartLoc(),
   6219                    "destination register and base register can't be identical");
   6220     return false;
   6221   }
   6222   case ARM::SBFX:
   6223   case ARM::UBFX: {
   6224     // Width must be in range [1, 32-lsb].
   6225     unsigned LSB = Inst.getOperand(2).getImm();
   6226     unsigned Widthm1 = Inst.getOperand(3).getImm();
   6227     if (Widthm1 >= 32 - LSB)
   6228       return Error(Operands[5]->getStartLoc(),
   6229                    "bitfield width must be in range [1,32-lsb]");
   6230     return false;
   6231   }
   6232   // Notionally handles ARM::tLDMIA_UPD too.
   6233   case ARM::tLDMIA: {
   6234     // If we're parsing Thumb2, the .w variant is available and handles
   6235     // most cases that are normally illegal for a Thumb1 LDM instruction.
   6236     // We'll make the transformation in processInstruction() if necessary.
   6237     //
   6238     // Thumb LDM instructions are writeback iff the base register is not
   6239     // in the register list.
   6240     unsigned Rn = Inst.getOperand(0).getReg();
   6241     bool HasWritebackToken =
   6242         (static_cast<ARMOperand &>(*Operands[3]).isToken() &&
   6243          static_cast<ARMOperand &>(*Operands[3]).getToken() == "!");
   6244     bool ListContainsBase;
   6245     if (checkLowRegisterList(Inst, 3, Rn, 0, ListContainsBase) && !isThumbTwo())
   6246       return Error(Operands[3 + HasWritebackToken]->getStartLoc(),
   6247                    "registers must be in range r0-r7");
   6248     // If we should have writeback, then there should be a '!' token.
   6249     if (!ListContainsBase && !HasWritebackToken && !isThumbTwo())
   6250       return Error(Operands[2]->getStartLoc(),
   6251                    "writeback operator '!' expected");
   6252     // If we should not have writeback, there must not be a '!'. This is
   6253     // true even for the 32-bit wide encodings.
   6254     if (ListContainsBase && HasWritebackToken)
   6255       return Error(Operands[3]->getStartLoc(),
   6256                    "writeback operator '!' not allowed when base register "
   6257                    "in register list");
   6258 
   6259     if (validatetLDMRegList(Inst, Operands, 3))
   6260       return true;
   6261     break;
   6262   }
   6263   case ARM::LDMIA_UPD:
   6264   case ARM::LDMDB_UPD:
   6265   case ARM::LDMIB_UPD:
   6266   case ARM::LDMDA_UPD:
   6267     // ARM variants loading and updating the same register are only officially
   6268     // UNPREDICTABLE on v7 upwards. Goodness knows what they did before.
   6269     if (!hasV7Ops())
   6270       break;
   6271     if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg()))
   6272       return Error(Operands.back()->getStartLoc(),
   6273                    "writeback register not allowed in register list");
   6274     break;
   6275   case ARM::t2LDMIA:
   6276   case ARM::t2LDMDB:
   6277     if (validatetLDMRegList(Inst, Operands, 3))
   6278       return true;
   6279     break;
   6280   case ARM::t2STMIA:
   6281   case ARM::t2STMDB:
   6282     if (validatetSTMRegList(Inst, Operands, 3))
   6283       return true;
   6284     break;
   6285   case ARM::t2LDMIA_UPD:
   6286   case ARM::t2LDMDB_UPD:
   6287   case ARM::t2STMIA_UPD:
   6288   case ARM::t2STMDB_UPD: {
   6289     if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg()))
   6290       return Error(Operands.back()->getStartLoc(),
   6291                    "writeback register not allowed in register list");
   6292 
   6293     if (Opcode == ARM::t2LDMIA_UPD || Opcode == ARM::t2LDMDB_UPD) {
   6294       if (validatetLDMRegList(Inst, Operands, 3))
   6295         return true;
   6296     } else {
   6297       if (validatetSTMRegList(Inst, Operands, 3))
   6298         return true;
   6299     }
   6300     break;
   6301   }
   6302   case ARM::sysLDMIA_UPD:
   6303   case ARM::sysLDMDA_UPD:
   6304   case ARM::sysLDMDB_UPD:
   6305   case ARM::sysLDMIB_UPD:
   6306     if (!listContainsReg(Inst, 3, ARM::PC))
   6307       return Error(Operands[4]->getStartLoc(),
   6308                    "writeback register only allowed on system LDM "
   6309                    "if PC in register-list");
   6310     break;
   6311   case ARM::sysSTMIA_UPD:
   6312   case ARM::sysSTMDA_UPD:
   6313   case ARM::sysSTMDB_UPD:
   6314   case ARM::sysSTMIB_UPD:
   6315     return Error(Operands[2]->getStartLoc(),
   6316                  "system STM cannot have writeback register");
   6317   case ARM::tMUL: {
   6318     // The second source operand must be the same register as the destination
   6319     // operand.
   6320     //
   6321     // In this case, we must directly check the parsed operands because the
   6322     // cvtThumbMultiply() function is written in such a way that it guarantees
   6323     // this first statement is always true for the new Inst.  Essentially, the
   6324     // destination is unconditionally copied into the second source operand
   6325     // without checking to see if it matches what we actually parsed.
   6326     if (Operands.size() == 6 && (((ARMOperand &)*Operands[3]).getReg() !=
   6327                                  ((ARMOperand &)*Operands[5]).getReg()) &&
   6328         (((ARMOperand &)*Operands[3]).getReg() !=
   6329          ((ARMOperand &)*Operands[4]).getReg())) {
   6330       return Error(Operands[3]->getStartLoc(),
   6331                    "destination register must match source register");
   6332     }
   6333     break;
   6334   }
   6335   // Like for ldm/stm, push and pop have hi-reg handling version in Thumb2,
   6336   // so only issue a diagnostic for thumb1. The instructions will be
   6337   // switched to the t2 encodings in processInstruction() if necessary.
   6338   case ARM::tPOP: {
   6339     bool ListContainsBase;
   6340     if (checkLowRegisterList(Inst, 2, 0, ARM::PC, ListContainsBase) &&
   6341         !isThumbTwo())
   6342       return Error(Operands[2]->getStartLoc(),
   6343                    "registers must be in range r0-r7 or pc");
   6344     if (validatetLDMRegList(Inst, Operands, 2, !isMClass()))
   6345       return true;
   6346     break;
   6347   }
   6348   case ARM::tPUSH: {
   6349     bool ListContainsBase;
   6350     if (checkLowRegisterList(Inst, 2, 0, ARM::LR, ListContainsBase) &&
   6351         !isThumbTwo())
   6352       return Error(Operands[2]->getStartLoc(),
   6353                    "registers must be in range r0-r7 or lr");
   6354     if (validatetSTMRegList(Inst, Operands, 2))
   6355       return true;
   6356     break;
   6357   }
   6358   case ARM::tSTMIA_UPD: {
   6359     bool ListContainsBase, InvalidLowList;
   6360     InvalidLowList = checkLowRegisterList(Inst, 4, Inst.getOperand(0).getReg(),
   6361                                           0, ListContainsBase);
   6362     if (InvalidLowList && !isThumbTwo())
   6363       return Error(Operands[4]->getStartLoc(),
   6364                    "registers must be in range r0-r7");
   6365 
   6366     // This would be converted to a 32-bit stm, but that's not valid if the
   6367     // writeback register is in the list.
   6368     if (InvalidLowList && ListContainsBase)
   6369       return Error(Operands[4]->getStartLoc(),
   6370                    "writeback operator '!' not allowed when base register "
   6371                    "in register list");
   6372 
   6373     if (validatetSTMRegList(Inst, Operands, 4))
   6374       return true;
   6375     break;
   6376   }
   6377   case ARM::tADDrSP: {
   6378     // If the non-SP source operand and the destination operand are not the
   6379     // same, we need thumb2 (for the wide encoding), or we have an error.
   6380     if (!isThumbTwo() &&
   6381         Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) {
   6382       return Error(Operands[4]->getStartLoc(),
   6383                    "source register must be the same as destination");
   6384     }
   6385     break;
   6386   }
   6387   // Final range checking for Thumb unconditional branch instructions.
   6388   case ARM::tB:
   6389     if (!(static_cast<ARMOperand &>(*Operands[2])).isSignedOffset<11, 1>())
   6390       return Error(Operands[2]->getStartLoc(), "branch target out of range");
   6391     break;
   6392   case ARM::t2B: {
   6393     int op = (Operands[2]->isImm()) ? 2 : 3;
   6394     if (!static_cast<ARMOperand &>(*Operands[op]).isSignedOffset<24, 1>())
   6395       return Error(Operands[op]->getStartLoc(), "branch target out of range");
   6396     break;
   6397   }
   6398   // Final range checking for Thumb conditional branch instructions.
   6399   case ARM::tBcc:
   6400     if (!static_cast<ARMOperand &>(*Operands[2]).isSignedOffset<8, 1>())
   6401       return Error(Operands[2]->getStartLoc(), "branch target out of range");
   6402     break;
   6403   case ARM::t2Bcc: {
   6404     int Op = (Operands[2]->isImm()) ? 2 : 3;
   6405     if (!static_cast<ARMOperand &>(*Operands[Op]).isSignedOffset<20, 1>())
   6406       return Error(Operands[Op]->getStartLoc(), "branch target out of range");
   6407     break;
   6408   }
   6409   case ARM::MOVi16:
   6410   case ARM::t2MOVi16:
   6411   case ARM::t2MOVTi16:
   6412     {
   6413     // We want to avoid misleadingly allowing something like "mov r0, <symbol>"
   6414     // especially when we turn it into a movw and the expression <symbol> does
   6415     // not have a :lower16: or :upper16 as part of the expression.  We don't
   6416     // want the behavior of silently truncating, which can be unexpected and
   6417     // lead to bugs that are difficult to find since this is an easy mistake
   6418     // to make.
   6419     int i = (Operands[3]->isImm()) ? 3 : 4;
   6420     ARMOperand &Op = static_cast<ARMOperand &>(*Operands[i]);
   6421     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm());
   6422     if (CE) break;
   6423     const MCExpr *E = dyn_cast<MCExpr>(Op.getImm());
   6424     if (!E) break;
   6425     const ARMMCExpr *ARM16Expr = dyn_cast<ARMMCExpr>(E);
   6426     if (!ARM16Expr || (ARM16Expr->getKind() != ARMMCExpr::VK_ARM_HI16 &&
   6427                        ARM16Expr->getKind() != ARMMCExpr::VK_ARM_LO16))
   6428       return Error(
   6429           Op.getStartLoc(),
   6430           "immediate expression for mov requires :lower16: or :upper16");
   6431     break;
   6432   }
   6433   }
   6434 
   6435   return false;
   6436 }
   6437 
   6438 static unsigned getRealVSTOpcode(unsigned Opc, unsigned &Spacing) {
   6439   switch(Opc) {
   6440   default: llvm_unreachable("unexpected opcode!");
   6441   // VST1LN
   6442   case ARM::VST1LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VST1LNd8_UPD;
   6443   case ARM::VST1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD;
   6444   case ARM::VST1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD;
   6445   case ARM::VST1LNdWB_register_Asm_8:  Spacing = 1; return ARM::VST1LNd8_UPD;
   6446   case ARM::VST1LNdWB_register_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD;
   6447   case ARM::VST1LNdWB_register_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD;
   6448   case ARM::VST1LNdAsm_8:  Spacing = 1; return ARM::VST1LNd8;
   6449   case ARM::VST1LNdAsm_16: Spacing = 1; return ARM::VST1LNd16;
   6450   case ARM::VST1LNdAsm_32: Spacing = 1; return ARM::VST1LNd32;
   6451 
   6452   // VST2LN
   6453   case ARM::VST2LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VST2LNd8_UPD;
   6454   case ARM::VST2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD;
   6455   case ARM::VST2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD;
   6456   case ARM::VST2LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD;
   6457   case ARM::VST2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD;
   6458 
   6459   case ARM::VST2LNdWB_register_Asm_8:  Spacing = 1; return ARM::VST2LNd8_UPD;
   6460   case ARM::VST2LNdWB_register_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD;
   6461   case ARM::VST2LNdWB_register_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD;
   6462   case ARM::VST2LNqWB_register_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD;
   6463   case ARM::VST2LNqWB_register_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD;
   6464 
   6465   case ARM::VST2LNdAsm_8:  Spacing = 1; return ARM::VST2LNd8;
   6466   case ARM::VST2LNdAsm_16: Spacing = 1; return ARM::VST2LNd16;
   6467   case ARM::VST2LNdAsm_32: Spacing = 1; return ARM::VST2LNd32;
   6468   case ARM::VST2LNqAsm_16: Spacing = 2; return ARM::VST2LNq16;
   6469   case ARM::VST2LNqAsm_32: Spacing = 2; return ARM::VST2LNq32;
   6470 
   6471   // VST3LN
   6472   case ARM::VST3LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VST3LNd8_UPD;
   6473   case ARM::VST3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD;
   6474   case ARM::VST3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD;
   6475   case ARM::VST3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNq16_UPD;
   6476   case ARM::VST3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD;
   6477   case ARM::VST3LNdWB_register_Asm_8:  Spacing = 1; return ARM::VST3LNd8_UPD;
   6478   case ARM::VST3LNdWB_register_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD;
   6479   case ARM::VST3LNdWB_register_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD;
   6480   case ARM::VST3LNqWB_register_Asm_16: Spacing = 2; return ARM::VST3LNq16_UPD;
   6481   case ARM::VST3LNqWB_register_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD;
   6482   case ARM::VST3LNdAsm_8:  Spacing = 1; return ARM::VST3LNd8;
   6483   case ARM::VST3LNdAsm_16: Spacing = 1; return ARM::VST3LNd16;
   6484   case ARM::VST3LNdAsm_32: Spacing = 1; return ARM::VST3LNd32;
   6485   case ARM::VST3LNqAsm_16: Spacing = 2; return ARM::VST3LNq16;
   6486   case ARM::VST3LNqAsm_32: Spacing = 2; return ARM::VST3LNq32;
   6487 
   6488   // VST3
   6489   case ARM::VST3dWB_fixed_Asm_8:  Spacing = 1; return ARM::VST3d8_UPD;
   6490   case ARM::VST3dWB_fixed_Asm_16: Spacing = 1; return ARM::VST3d16_UPD;
   6491   case ARM::VST3dWB_fixed_Asm_32: Spacing = 1; return ARM::VST3d32_UPD;
   6492   case ARM::VST3qWB_fixed_Asm_8:  Spacing = 2; return ARM::VST3q8_UPD;
   6493   case ARM::VST3qWB_fixed_Asm_16: Spacing = 2; return ARM::VST3q16_UPD;
   6494   case ARM::VST3qWB_fixed_Asm_32: Spacing = 2; return ARM::VST3q32_UPD;
   6495   case ARM::VST3dWB_register_Asm_8:  Spacing = 1; return ARM::VST3d8_UPD;
   6496   case ARM::VST3dWB_register_Asm_16: Spacing = 1; return ARM::VST3d16_UPD;
   6497   case ARM::VST3dWB_register_Asm_32: Spacing = 1; return ARM::VST3d32_UPD;
   6498   case ARM::VST3qWB_register_Asm_8:  Spacing = 2; return ARM::VST3q8_UPD;
   6499   case ARM::VST3qWB_register_Asm_16: Spacing = 2; return ARM::VST3q16_UPD;
   6500   case ARM::VST3qWB_register_Asm_32: Spacing = 2; return ARM::VST3q32_UPD;
   6501   case ARM::VST3dAsm_8:  Spacing = 1; return ARM::VST3d8;
   6502   case ARM::VST3dAsm_16: Spacing = 1; return ARM::VST3d16;
   6503   case ARM::VST3dAsm_32: Spacing = 1; return ARM::VST3d32;
   6504   case ARM::VST3qAsm_8:  Spacing = 2; return ARM::VST3q8;
   6505   case ARM::VST3qAsm_16: Spacing = 2; return ARM::VST3q16;
   6506   case ARM::VST3qAsm_32: Spacing = 2; return ARM::VST3q32;
   6507 
   6508   // VST4LN
   6509   case ARM::VST4LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VST4LNd8_UPD;
   6510   case ARM::VST4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD;
   6511   case ARM::VST4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD;
   6512   case ARM::VST4LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNq16_UPD;
   6513   case ARM::VST4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD;
   6514   case ARM::VST4LNdWB_register_Asm_8:  Spacing = 1; return ARM::VST4LNd8_UPD;
   6515   case ARM::VST4LNdWB_register_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD;
   6516   case ARM::VST4LNdWB_register_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD;
   6517   case ARM::VST4LNqWB_register_Asm_16: Spacing = 2; return ARM::VST4LNq16_UPD;
   6518   case ARM::VST4LNqWB_register_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD;
   6519   case ARM::VST4LNdAsm_8:  Spacing = 1; return ARM::VST4LNd8;
   6520   case ARM::VST4LNdAsm_16: Spacing = 1; return ARM::VST4LNd16;
   6521   case ARM::VST4LNdAsm_32: Spacing = 1; return ARM::VST4LNd32;
   6522   case ARM::VST4LNqAsm_16: Spacing = 2; return ARM::VST4LNq16;
   6523   case ARM::VST4LNqAsm_32: Spacing = 2; return ARM::VST4LNq32;
   6524 
   6525   // VST4
   6526   case ARM::VST4dWB_fixed_Asm_8:  Spacing = 1; return ARM::VST4d8_UPD;
   6527   case ARM::VST4dWB_fixed_Asm_16: Spacing = 1; return ARM::VST4d16_UPD;
   6528   case ARM::VST4dWB_fixed_Asm_32: Spacing = 1; return ARM::VST4d32_UPD;
   6529   case ARM::VST4qWB_fixed_Asm_8:  Spacing = 2; return ARM::VST4q8_UPD;
   6530   case ARM::VST4qWB_fixed_Asm_16: Spacing = 2; return ARM::VST4q16_UPD;
   6531   case ARM::VST4qWB_fixed_Asm_32: Spacing = 2; return ARM::VST4q32_UPD;
   6532   case ARM::VST4dWB_register_Asm_8:  Spacing = 1; return ARM::VST4d8_UPD;
   6533   case ARM::VST4dWB_register_Asm_16: Spacing = 1; return ARM::VST4d16_UPD;
   6534   case ARM::VST4dWB_register_Asm_32: Spacing = 1; return ARM::VST4d32_UPD;
   6535   case ARM::VST4qWB_register_Asm_8:  Spacing = 2; return ARM::VST4q8_UPD;
   6536   case ARM::VST4qWB_register_Asm_16: Spacing = 2; return ARM::VST4q16_UPD;
   6537   case ARM::VST4qWB_register_Asm_32: Spacing = 2; return ARM::VST4q32_UPD;
   6538   case ARM::VST4dAsm_8:  Spacing = 1; return ARM::VST4d8;
   6539   case ARM::VST4dAsm_16: Spacing = 1; return ARM::VST4d16;
   6540   case ARM::VST4dAsm_32: Spacing = 1; return ARM::VST4d32;
   6541   case ARM::VST4qAsm_8:  Spacing = 2; return ARM::VST4q8;
   6542   case ARM::VST4qAsm_16: Spacing = 2; return ARM::VST4q16;
   6543   case ARM::VST4qAsm_32: Spacing = 2; return ARM::VST4q32;
   6544   }
   6545 }
   6546 
   6547 static unsigned getRealVLDOpcode(unsigned Opc, unsigned &Spacing) {
   6548   switch(Opc) {
   6549   default: llvm_unreachable("unexpected opcode!");
   6550   // VLD1LN
   6551   case ARM::VLD1LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD1LNd8_UPD;
   6552   case ARM::VLD1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD;
   6553   case ARM::VLD1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD;
   6554   case ARM::VLD1LNdWB_register_Asm_8:  Spacing = 1; return ARM::VLD1LNd8_UPD;
   6555   case ARM::VLD1LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD;
   6556   case ARM::VLD1LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD;
   6557   case ARM::VLD1LNdAsm_8:  Spacing = 1; return ARM::VLD1LNd8;
   6558   case ARM::VLD1LNdAsm_16: Spacing = 1; return ARM::VLD1LNd16;
   6559   case ARM::VLD1LNdAsm_32: Spacing = 1; return ARM::VLD1LNd32;
   6560 
   6561   // VLD2LN
   6562   case ARM::VLD2LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD2LNd8_UPD;
   6563   case ARM::VLD2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD;
   6564   case ARM::VLD2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD;
   6565   case ARM::VLD2LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNq16_UPD;
   6566   case ARM::VLD2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD;
   6567   case ARM::VLD2LNdWB_register_Asm_8:  Spacing = 1; return ARM::VLD2LNd8_UPD;
   6568   case ARM::VLD2LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD;
   6569   case ARM::VLD2LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD;
   6570   case ARM::VLD2LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD2LNq16_UPD;
   6571   case ARM::VLD2LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD;
   6572   case ARM::VLD2LNdAsm_8:  Spacing = 1; return ARM::VLD2LNd8;
   6573   case ARM::VLD2LNdAsm_16: Spacing = 1; return ARM::VLD2LNd16;
   6574   case ARM::VLD2LNdAsm_32: Spacing = 1; return ARM::VLD2LNd32;
   6575   case ARM::VLD2LNqAsm_16: Spacing = 2; return ARM::VLD2LNq16;
   6576   case ARM::VLD2LNqAsm_32: Spacing = 2; return ARM::VLD2LNq32;
   6577 
   6578   // VLD3DUP
   6579   case ARM::VLD3DUPdWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD3DUPd8_UPD;
   6580   case ARM::VLD3DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD;
   6581   case ARM::VLD3DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD;
   6582   case ARM::VLD3DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3DUPq8_UPD;
   6583   case ARM::VLD3DUPqWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD;
   6584   case ARM::VLD3DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD;
   6585   case ARM::VLD3DUPdWB_register_Asm_8:  Spacing = 1; return ARM::VLD3DUPd8_UPD;
   6586   case ARM::VLD3DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD;
   6587   case ARM::VLD3DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD;
   6588   case ARM::VLD3DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD3DUPq8_UPD;
   6589   case ARM::VLD3DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD;
   6590   case ARM::VLD3DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD;
   6591   case ARM::VLD3DUPdAsm_8:  Spacing = 1; return ARM::VLD3DUPd8;
   6592   case ARM::VLD3DUPdAsm_16: Spacing = 1; return ARM::VLD3DUPd16;
   6593   case ARM::VLD3DUPdAsm_32: Spacing = 1; return ARM::VLD3DUPd32;
   6594   case ARM::VLD3DUPqAsm_8: Spacing = 2; return ARM::VLD3DUPq8;
   6595   case ARM::VLD3DUPqAsm_16: Spacing = 2; return ARM::VLD3DUPq16;
   6596   case ARM::VLD3DUPqAsm_32: Spacing = 2; return ARM::VLD3DUPq32;
   6597 
   6598   // VLD3LN
   6599   case ARM::VLD3LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD3LNd8_UPD;
   6600   case ARM::VLD3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD;
   6601   case ARM::VLD3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD;
   6602   case ARM::VLD3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNq16_UPD;
   6603   case ARM::VLD3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD;
   6604   case ARM::VLD3LNdWB_register_Asm_8:  Spacing = 1; return ARM::VLD3LNd8_UPD;
   6605   case ARM::VLD3LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD;
   6606   case ARM::VLD3LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD;
   6607   case ARM::VLD3LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD3LNq16_UPD;
   6608   case ARM::VLD3LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD;
   6609   case ARM::VLD3LNdAsm_8:  Spacing = 1; return ARM::VLD3LNd8;
   6610   case ARM::VLD3LNdAsm_16: Spacing = 1; return ARM::VLD3LNd16;
   6611   case ARM::VLD3LNdAsm_32: Spacing = 1; return ARM::VLD3LNd32;
   6612   case ARM::VLD3LNqAsm_16: Spacing = 2; return ARM::VLD3LNq16;
   6613   case ARM::VLD3LNqAsm_32: Spacing = 2; return ARM::VLD3LNq32;
   6614 
   6615   // VLD3
   6616   case ARM::VLD3dWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD3d8_UPD;
   6617   case ARM::VLD3dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD;
   6618   case ARM::VLD3dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD;
   6619   case ARM::VLD3qWB_fixed_Asm_8:  Spacing = 2; return ARM::VLD3q8_UPD;
   6620   case ARM::VLD3qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD;
   6621   case ARM::VLD3qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD;
   6622   case ARM::VLD3dWB_register_Asm_8:  Spacing = 1; return ARM::VLD3d8_UPD;
   6623   case ARM::VLD3dWB_register_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD;
   6624   case ARM::VLD3dWB_register_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD;
   6625   case ARM::VLD3qWB_register_Asm_8:  Spacing = 2; return ARM::VLD3q8_UPD;
   6626   case ARM::VLD3qWB_register_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD;
   6627   case ARM::VLD3qWB_register_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD;
   6628   case ARM::VLD3dAsm_8:  Spacing = 1; return ARM::VLD3d8;
   6629   case ARM::VLD3dAsm_16: Spacing = 1; return ARM::VLD3d16;
   6630   case ARM::VLD3dAsm_32: Spacing = 1; return ARM::VLD3d32;
   6631   case ARM::VLD3qAsm_8:  Spacing = 2; return ARM::VLD3q8;
   6632   case ARM::VLD3qAsm_16: Spacing = 2; return ARM::VLD3q16;
   6633   case ARM::VLD3qAsm_32: Spacing = 2; return ARM::VLD3q32;
   6634 
   6635   // VLD4LN
   6636   case ARM::VLD4LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD4LNd8_UPD;
   6637   case ARM::VLD4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD;
   6638   case ARM::VLD4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD;
   6639   case ARM::VLD4LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD;
   6640   case ARM::VLD4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD;
   6641   case ARM::VLD4LNdWB_register_Asm_8:  Spacing = 1; return ARM::VLD4LNd8_UPD;
   6642   case ARM::VLD4LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD;
   6643   case ARM::VLD4LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD;
   6644   case ARM::VLD4LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD;
   6645   case ARM::VLD4LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD;
   6646   case ARM::VLD4LNdAsm_8:  Spacing = 1; return ARM::VLD4LNd8;
   6647   case ARM::VLD4LNdAsm_16: Spacing = 1; return ARM::VLD4LNd16;
   6648   case ARM::VLD4LNdAsm_32: Spacing = 1; return ARM::VLD4LNd32;
   6649   case ARM::VLD4LNqAsm_16: Spacing = 2; return ARM::VLD4LNq16;
   6650   case ARM::VLD4LNqAsm_32: Spacing = 2; return ARM::VLD4LNq32;
   6651 
   6652   // VLD4DUP
   6653   case ARM::VLD4DUPdWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD4DUPd8_UPD;
   6654   case ARM::VLD4DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD;
   6655   case ARM::VLD4DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD;
   6656   case ARM::VLD4DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4DUPq8_UPD;
   6657   case ARM::VLD4DUPqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPq16_UPD;
   6658   case ARM::VLD4DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD;
   6659   case ARM::VLD4DUPdWB_register_Asm_8:  Spacing = 1; return ARM::VLD4DUPd8_UPD;
   6660   case ARM::VLD4DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD;
   6661   case ARM::VLD4DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD;
   6662   case ARM::VLD4DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD4DUPq8_UPD;
   6663   case ARM::VLD4DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD4DUPq16_UPD;
   6664   case ARM::VLD4DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD;
   6665   case ARM::VLD4DUPdAsm_8:  Spacing = 1; return ARM::VLD4DUPd8;
   6666   case ARM::VLD4DUPdAsm_16: Spacing = 1; return ARM::VLD4DUPd16;
   6667   case ARM::VLD4DUPdAsm_32: Spacing = 1; return ARM::VLD4DUPd32;
   6668   case ARM::VLD4DUPqAsm_8: Spacing = 2; return ARM::VLD4DUPq8;
   6669   case ARM::VLD4DUPqAsm_16: Spacing = 2; return ARM::VLD4DUPq16;
   6670   case ARM::VLD4DUPqAsm_32: Spacing = 2; return ARM::VLD4DUPq32;
   6671 
   6672   // VLD4
   6673   case ARM::VLD4dWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD4d8_UPD;
   6674   case ARM::VLD4dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD;
   6675   case ARM::VLD4dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD;
   6676   case ARM::VLD4qWB_fixed_Asm_8:  Spacing = 2; return ARM::VLD4q8_UPD;
   6677   case ARM::VLD4qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD;
   6678   case ARM::VLD4qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD;
   6679   case ARM::VLD4dWB_register_Asm_8:  Spacing = 1; return ARM::VLD4d8_UPD;
   6680   case ARM::VLD4dWB_register_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD;
   6681   case ARM::VLD4dWB_register_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD;
   6682   case ARM::VLD4qWB_register_Asm_8:  Spacing = 2; return ARM::VLD4q8_UPD;
   6683   case ARM::VLD4qWB_register_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD;
   6684   case ARM::VLD4qWB_register_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD;
   6685   case ARM::VLD4dAsm_8:  Spacing = 1; return ARM::VLD4d8;
   6686   case ARM::VLD4dAsm_16: Spacing = 1; return ARM::VLD4d16;
   6687   case ARM::VLD4dAsm_32: Spacing = 1; return ARM::VLD4d32;
   6688   case ARM::VLD4qAsm_8:  Spacing = 2; return ARM::VLD4q8;
   6689   case ARM::VLD4qAsm_16: Spacing = 2; return ARM::VLD4q16;
   6690   case ARM::VLD4qAsm_32: Spacing = 2; return ARM::VLD4q32;
   6691   }
   6692 }
   6693 
   6694 bool ARMAsmParser::processInstruction(MCInst &Inst,
   6695                                       const OperandVector &Operands,
   6696                                       MCStreamer &Out) {
   6697   switch (Inst.getOpcode()) {
   6698   // Alias for alternate form of 'ldr{,b}t Rt, [Rn], #imm' instruction.
   6699   case ARM::LDRT_POST:
   6700   case ARM::LDRBT_POST: {
   6701     const unsigned Opcode =
   6702       (Inst.getOpcode() == ARM::LDRT_POST) ? ARM::LDRT_POST_IMM
   6703                                            : ARM::LDRBT_POST_IMM;
   6704     MCInst TmpInst;
   6705     TmpInst.setOpcode(Opcode);
   6706     TmpInst.addOperand(Inst.getOperand(0));
   6707     TmpInst.addOperand(Inst.getOperand(1));
   6708     TmpInst.addOperand(Inst.getOperand(1));
   6709     TmpInst.addOperand(MCOperand::CreateReg(0));
   6710     TmpInst.addOperand(MCOperand::CreateImm(0));
   6711     TmpInst.addOperand(Inst.getOperand(2));
   6712     TmpInst.addOperand(Inst.getOperand(3));
   6713     Inst = TmpInst;
   6714     return true;
   6715   }
   6716   // Alias for alternate form of 'str{,b}t Rt, [Rn], #imm' instruction.
   6717   case ARM::STRT_POST:
   6718   case ARM::STRBT_POST: {
   6719     const unsigned Opcode =
   6720       (Inst.getOpcode() == ARM::STRT_POST) ? ARM::STRT_POST_IMM
   6721                                            : ARM::STRBT_POST_IMM;
   6722     MCInst TmpInst;
   6723     TmpInst.setOpcode(Opcode);
   6724     TmpInst.addOperand(Inst.getOperand(1));
   6725     TmpInst.addOperand(Inst.getOperand(0));
   6726     TmpInst.addOperand(Inst.getOperand(1));
   6727     TmpInst.addOperand(MCOperand::CreateReg(0));
   6728     TmpInst.addOperand(MCOperand::CreateImm(0));
   6729     TmpInst.addOperand(Inst.getOperand(2));
   6730     TmpInst.addOperand(Inst.getOperand(3));
   6731     Inst = TmpInst;
   6732     return true;
   6733   }
   6734   // Alias for alternate form of 'ADR Rd, #imm' instruction.
   6735   case ARM::ADDri: {
   6736     if (Inst.getOperand(1).getReg() != ARM::PC ||
   6737         Inst.getOperand(5).getReg() != 0 ||
   6738         !(Inst.getOperand(2).isExpr() || Inst.getOperand(2).isImm()))
   6739       return false;
   6740     MCInst TmpInst;
   6741     TmpInst.setOpcode(ARM::ADR);
   6742     TmpInst.addOperand(Inst.getOperand(0));
   6743     if (Inst.getOperand(2).isImm()) {
   6744       // Immediate (mod_imm) will be in its encoded form, we must unencode it
   6745       // before passing it to the ADR instruction.
   6746       unsigned Enc = Inst.getOperand(2).getImm();
   6747       TmpInst.addOperand(MCOperand::CreateImm(
   6748         ARM_AM::rotr32(Enc & 0xFF, (Enc & 0xF00) >> 7)));
   6749     } else {
   6750       // Turn PC-relative expression into absolute expression.
   6751       // Reading PC provides the start of the current instruction + 8 and
   6752       // the transform to adr is biased by that.
   6753       MCSymbol *Dot = getContext().CreateTempSymbol();
   6754       Out.EmitLabel(Dot);
   6755       const MCExpr *OpExpr = Inst.getOperand(2).getExpr();
   6756       const MCExpr *InstPC = MCSymbolRefExpr::Create(Dot,
   6757                                                      MCSymbolRefExpr::VK_None,
   6758                                                      getContext());
   6759       const MCExpr *Const8 = MCConstantExpr::Create(8, getContext());
   6760       const MCExpr *ReadPC = MCBinaryExpr::CreateAdd(InstPC, Const8,
   6761                                                      getContext());
   6762       const MCExpr *FixupAddr = MCBinaryExpr::CreateAdd(ReadPC, OpExpr,
   6763                                                         getContext());
   6764       TmpInst.addOperand(MCOperand::CreateExpr(FixupAddr));
   6765     }
   6766     TmpInst.addOperand(Inst.getOperand(3));
   6767     TmpInst.addOperand(Inst.getOperand(4));
   6768     Inst = TmpInst;
   6769     return true;
   6770   }
   6771   // Aliases for alternate PC+imm syntax of LDR instructions.
   6772   case ARM::t2LDRpcrel:
   6773     // Select the narrow version if the immediate will fit.
   6774     if (Inst.getOperand(1).getImm() > 0 &&
   6775         Inst.getOperand(1).getImm() <= 0xff &&
   6776         !(static_cast<ARMOperand &>(*Operands[2]).isToken() &&
   6777           static_cast<ARMOperand &>(*Operands[2]).getToken() == ".w"))
   6778       Inst.setOpcode(ARM::tLDRpci);
   6779     else
   6780       Inst.setOpcode(ARM::t2LDRpci);
   6781     return true;
   6782   case ARM::t2LDRBpcrel:
   6783     Inst.setOpcode(ARM::t2LDRBpci);
   6784     return true;
   6785   case ARM::t2LDRHpcrel:
   6786     Inst.setOpcode(ARM::t2LDRHpci);
   6787     return true;
   6788   case ARM::t2LDRSBpcrel:
   6789     Inst.setOpcode(ARM::t2LDRSBpci);
   6790     return true;
   6791   case ARM::t2LDRSHpcrel:
   6792     Inst.setOpcode(ARM::t2LDRSHpci);
   6793     return true;
   6794   // Handle NEON VST complex aliases.
   6795   case ARM::VST1LNdWB_register_Asm_8:
   6796   case ARM::VST1LNdWB_register_Asm_16:
   6797   case ARM::VST1LNdWB_register_Asm_32: {
   6798     MCInst TmpInst;
   6799     // Shuffle the operands around so the lane index operand is in the
   6800     // right place.
   6801     unsigned Spacing;
   6802     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
   6803     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
   6804     TmpInst.addOperand(Inst.getOperand(2)); // Rn
   6805     TmpInst.addOperand(Inst.getOperand(3)); // alignment
   6806     TmpInst.addOperand(Inst.getOperand(4)); // Rm
   6807     TmpInst.addOperand(Inst.getOperand(0)); // Vd
   6808     TmpInst.addOperand(Inst.getOperand(1)); // lane
   6809     TmpInst.addOperand(Inst.getOperand(5)); // CondCode
   6810     TmpInst.addOperand(Inst.getOperand(6));
   6811     Inst = TmpInst;
   6812     return true;
   6813   }
   6814 
   6815   case ARM::VST2LNdWB_register_Asm_8:
   6816   case ARM::VST2LNdWB_register_Asm_16:
   6817   case ARM::VST2LNdWB_register_Asm_32:
   6818   case ARM::VST2LNqWB_register_Asm_16:
   6819   case ARM::VST2LNqWB_register_Asm_32: {
   6820     MCInst TmpInst;
   6821     // Shuffle the operands around so the lane index operand is in the
   6822     // right place.
   6823     unsigned Spacing;
   6824     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
   6825     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
   6826     TmpInst.addOperand(Inst.getOperand(2)); // Rn
   6827     TmpInst.addOperand(Inst.getOperand(3)); // alignment
   6828     TmpInst.addOperand(Inst.getOperand(4)); // Rm
   6829     TmpInst.addOperand(Inst.getOperand(0)); // Vd
   6830     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   6831                                             Spacing));
   6832     TmpInst.addOperand(Inst.getOperand(1)); // lane
   6833     TmpInst.addOperand(Inst.getOperand(5)); // CondCode
   6834     TmpInst.addOperand(Inst.getOperand(6));
   6835     Inst = TmpInst;
   6836     return true;
   6837   }
   6838 
   6839   case ARM::VST3LNdWB_register_Asm_8:
   6840   case ARM::VST3LNdWB_register_Asm_16:
   6841   case ARM::VST3LNdWB_register_Asm_32:
   6842   case ARM::VST3LNqWB_register_Asm_16:
   6843   case ARM::VST3LNqWB_register_Asm_32: {
   6844     MCInst TmpInst;
   6845     // Shuffle the operands around so the lane index operand is in the
   6846     // right place.
   6847     unsigned Spacing;
   6848     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
   6849     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
   6850     TmpInst.addOperand(Inst.getOperand(2)); // Rn
   6851     TmpInst.addOperand(Inst.getOperand(3)); // alignment
   6852     TmpInst.addOperand(Inst.getOperand(4)); // Rm
   6853     TmpInst.addOperand(Inst.getOperand(0)); // Vd
   6854     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   6855                                             Spacing));
   6856     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   6857                                             Spacing * 2));
   6858     TmpInst.addOperand(Inst.getOperand(1)); // lane
   6859     TmpInst.addOperand(Inst.getOperand(5)); // CondCode
   6860     TmpInst.addOperand(Inst.getOperand(6));
   6861     Inst = TmpInst;
   6862     return true;
   6863   }
   6864 
   6865   case ARM::VST4LNdWB_register_Asm_8:
   6866   case ARM::VST4LNdWB_register_Asm_16:
   6867   case ARM::VST4LNdWB_register_Asm_32:
   6868   case ARM::VST4LNqWB_register_Asm_16:
   6869   case ARM::VST4LNqWB_register_Asm_32: {
   6870     MCInst TmpInst;
   6871     // Shuffle the operands around so the lane index operand is in the
   6872     // right place.
   6873     unsigned Spacing;
   6874     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
   6875     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
   6876     TmpInst.addOperand(Inst.getOperand(2)); // Rn
   6877     TmpInst.addOperand(Inst.getOperand(3)); // alignment
   6878     TmpInst.addOperand(Inst.getOperand(4)); // Rm
   6879     TmpInst.addOperand(Inst.getOperand(0)); // Vd
   6880     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   6881                                             Spacing));
   6882     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   6883                                             Spacing * 2));
   6884     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   6885                                             Spacing * 3));
   6886     TmpInst.addOperand(Inst.getOperand(1)); // lane
   6887     TmpInst.addOperand(Inst.getOperand(5)); // CondCode
   6888     TmpInst.addOperand(Inst.getOperand(6));
   6889     Inst = TmpInst;
   6890     return true;
   6891   }
   6892 
   6893   case ARM::VST1LNdWB_fixed_Asm_8:
   6894   case ARM::VST1LNdWB_fixed_Asm_16:
   6895   case ARM::VST1LNdWB_fixed_Asm_32: {
   6896     MCInst TmpInst;
   6897     // Shuffle the operands around so the lane index operand is in the
   6898     // right place.
   6899     unsigned Spacing;
   6900     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
   6901     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
   6902     TmpInst.addOperand(Inst.getOperand(2)); // Rn
   6903     TmpInst.addOperand(Inst.getOperand(3)); // alignment
   6904     TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
   6905     TmpInst.addOperand(Inst.getOperand(0)); // Vd
   6906     TmpInst.addOperand(Inst.getOperand(1)); // lane
   6907     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
   6908     TmpInst.addOperand(Inst.getOperand(5));
   6909     Inst = TmpInst;
   6910     return true;
   6911   }
   6912 
   6913   case ARM::VST2LNdWB_fixed_Asm_8:
   6914   case ARM::VST2LNdWB_fixed_Asm_16:
   6915   case ARM::VST2LNdWB_fixed_Asm_32:
   6916   case ARM::VST2LNqWB_fixed_Asm_16:
   6917   case ARM::VST2LNqWB_fixed_Asm_32: {
   6918     MCInst TmpInst;
   6919     // Shuffle the operands around so the lane index operand is in the
   6920     // right place.
   6921     unsigned Spacing;
   6922     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
   6923     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
   6924     TmpInst.addOperand(Inst.getOperand(2)); // Rn
   6925     TmpInst.addOperand(Inst.getOperand(3)); // alignment
   6926     TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
   6927     TmpInst.addOperand(Inst.getOperand(0)); // Vd
   6928     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   6929                                             Spacing));
   6930     TmpInst.addOperand(Inst.getOperand(1)); // lane
   6931     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
   6932     TmpInst.addOperand(Inst.getOperand(5));
   6933     Inst = TmpInst;
   6934     return true;
   6935   }
   6936 
   6937   case ARM::VST3LNdWB_fixed_Asm_8:
   6938   case ARM::VST3LNdWB_fixed_Asm_16:
   6939   case ARM::VST3LNdWB_fixed_Asm_32:
   6940   case ARM::VST3LNqWB_fixed_Asm_16:
   6941   case ARM::VST3LNqWB_fixed_Asm_32: {
   6942     MCInst TmpInst;
   6943     // Shuffle the operands around so the lane index operand is in the
   6944     // right place.
   6945     unsigned Spacing;
   6946     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
   6947     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
   6948     TmpInst.addOperand(Inst.getOperand(2)); // Rn
   6949     TmpInst.addOperand(Inst.getOperand(3)); // alignment
   6950     TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
   6951     TmpInst.addOperand(Inst.getOperand(0)); // Vd
   6952     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   6953                                             Spacing));
   6954     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   6955                                             Spacing * 2));
   6956     TmpInst.addOperand(Inst.getOperand(1)); // lane
   6957     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
   6958     TmpInst.addOperand(Inst.getOperand(5));
   6959     Inst = TmpInst;
   6960     return true;
   6961   }
   6962 
   6963   case ARM::VST4LNdWB_fixed_Asm_8:
   6964   case ARM::VST4LNdWB_fixed_Asm_16:
   6965   case ARM::VST4LNdWB_fixed_Asm_32:
   6966   case ARM::VST4LNqWB_fixed_Asm_16:
   6967   case ARM::VST4LNqWB_fixed_Asm_32: {
   6968     MCInst TmpInst;
   6969     // Shuffle the operands around so the lane index operand is in the
   6970     // right place.
   6971     unsigned Spacing;
   6972     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
   6973     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
   6974     TmpInst.addOperand(Inst.getOperand(2)); // Rn
   6975     TmpInst.addOperand(Inst.getOperand(3)); // alignment
   6976     TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
   6977     TmpInst.addOperand(Inst.getOperand(0)); // Vd
   6978     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   6979                                             Spacing));
   6980     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   6981                                             Spacing * 2));
   6982     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   6983                                             Spacing * 3));
   6984     TmpInst.addOperand(Inst.getOperand(1)); // lane
   6985     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
   6986     TmpInst.addOperand(Inst.getOperand(5));
   6987     Inst = TmpInst;
   6988     return true;
   6989   }
   6990 
   6991   case ARM::VST1LNdAsm_8:
   6992   case ARM::VST1LNdAsm_16:
   6993   case ARM::VST1LNdAsm_32: {
   6994     MCInst TmpInst;
   6995     // Shuffle the operands around so the lane index operand is in the
   6996     // right place.
   6997     unsigned Spacing;
   6998     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
   6999     TmpInst.addOperand(Inst.getOperand(2)); // Rn
   7000     TmpInst.addOperand(Inst.getOperand(3)); // alignment
   7001     TmpInst.addOperand(Inst.getOperand(0)); // Vd
   7002     TmpInst.addOperand(Inst.getOperand(1)); // lane
   7003     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
   7004     TmpInst.addOperand(Inst.getOperand(5));
   7005     Inst = TmpInst;
   7006     return true;
   7007   }
   7008 
   7009   case ARM::VST2LNdAsm_8:
   7010   case ARM::VST2LNdAsm_16:
   7011   case ARM::VST2LNdAsm_32:
   7012   case ARM::VST2LNqAsm_16:
   7013   case ARM::VST2LNqAsm_32: {
   7014     MCInst TmpInst;
   7015     // Shuffle the operands around so the lane index operand is in the
   7016     // right place.
   7017     unsigned Spacing;
   7018     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
   7019     TmpInst.addOperand(Inst.getOperand(2)); // Rn
   7020     TmpInst.addOperand(Inst.getOperand(3)); // alignment
   7021     TmpInst.addOperand(Inst.getOperand(0)); // Vd
   7022     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   7023                                             Spacing));
   7024     TmpInst.addOperand(Inst.getOperand(1)); // lane
   7025     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
   7026     TmpInst.addOperand(Inst.getOperand(5));
   7027     Inst = TmpInst;
   7028     return true;
   7029   }
   7030 
   7031   case ARM::VST3LNdAsm_8:
   7032   case ARM::VST3LNdAsm_16:
   7033   case ARM::VST3LNdAsm_32:
   7034   case ARM::VST3LNqAsm_16:
   7035   case ARM::VST3LNqAsm_32: {
   7036     MCInst TmpInst;
   7037     // Shuffle the operands around so the lane index operand is in the
   7038     // right place.
   7039     unsigned Spacing;
   7040     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
   7041     TmpInst.addOperand(Inst.getOperand(2)); // Rn
   7042     TmpInst.addOperand(Inst.getOperand(3)); // alignment
   7043     TmpInst.addOperand(Inst.getOperand(0)); // Vd
   7044     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   7045                                             Spacing));
   7046     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   7047                                             Spacing * 2));
   7048     TmpInst.addOperand(Inst.getOperand(1)); // lane
   7049     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
   7050     TmpInst.addOperand(Inst.getOperand(5));
   7051     Inst = TmpInst;
   7052     return true;
   7053   }
   7054 
   7055   case ARM::VST4LNdAsm_8:
   7056   case ARM::VST4LNdAsm_16:
   7057   case ARM::VST4LNdAsm_32:
   7058   case ARM::VST4LNqAsm_16:
   7059   case ARM::VST4LNqAsm_32: {
   7060     MCInst TmpInst;
   7061     // Shuffle the operands around so the lane index operand is in the
   7062     // right place.
   7063     unsigned Spacing;
   7064     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
   7065     TmpInst.addOperand(Inst.getOperand(2)); // Rn
   7066     TmpInst.addOperand(Inst.getOperand(3)); // alignment
   7067     TmpInst.addOperand(Inst.getOperand(0)); // Vd
   7068     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   7069                                             Spacing));
   7070     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   7071                                             Spacing * 2));
   7072     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   7073                                             Spacing * 3));
   7074     TmpInst.addOperand(Inst.getOperand(1)); // lane
   7075     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
   7076     TmpInst.addOperand(Inst.getOperand(5));
   7077     Inst = TmpInst;
   7078     return true;
   7079   }
   7080 
   7081   // Handle NEON VLD complex aliases.
   7082   case ARM::VLD1LNdWB_register_Asm_8:
   7083   case ARM::VLD1LNdWB_register_Asm_16:
   7084   case ARM::VLD1LNdWB_register_Asm_32: {
   7085     MCInst TmpInst;
   7086     // Shuffle the operands around so the lane index operand is in the
   7087     // right place.
   7088     unsigned Spacing;
   7089     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
   7090     TmpInst.addOperand(Inst.getOperand(0)); // Vd
   7091     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
   7092     TmpInst.addOperand(Inst.getOperand(2)); // Rn
   7093     TmpInst.addOperand(Inst.getOperand(3)); // alignment
   7094     TmpInst.addOperand(Inst.getOperand(4)); // Rm
   7095     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
   7096     TmpInst.addOperand(Inst.getOperand(1)); // lane
   7097     TmpInst.addOperand(Inst.getOperand(5)); // CondCode
   7098     TmpInst.addOperand(Inst.getOperand(6));
   7099     Inst = TmpInst;
   7100     return true;
   7101   }
   7102 
   7103   case ARM::VLD2LNdWB_register_Asm_8:
   7104   case ARM::VLD2LNdWB_register_Asm_16:
   7105   case ARM::VLD2LNdWB_register_Asm_32:
   7106   case ARM::VLD2LNqWB_register_Asm_16:
   7107   case ARM::VLD2LNqWB_register_Asm_32: {
   7108     MCInst TmpInst;
   7109     // Shuffle the operands around so the lane index operand is in the
   7110     // right place.
   7111     unsigned Spacing;
   7112     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
   7113     TmpInst.addOperand(Inst.getOperand(0)); // Vd
   7114     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   7115                                             Spacing));
   7116     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
   7117     TmpInst.addOperand(Inst.getOperand(2)); // Rn
   7118     TmpInst.addOperand(Inst.getOperand(3)); // alignment
   7119     TmpInst.addOperand(Inst.getOperand(4)); // Rm
   7120     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
   7121     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   7122                                             Spacing));
   7123     TmpInst.addOperand(Inst.getOperand(1)); // lane
   7124     TmpInst.addOperand(Inst.getOperand(5)); // CondCode
   7125     TmpInst.addOperand(Inst.getOperand(6));
   7126     Inst = TmpInst;
   7127     return true;
   7128   }
   7129 
   7130   case ARM::VLD3LNdWB_register_Asm_8:
   7131   case ARM::VLD3LNdWB_register_Asm_16:
   7132   case ARM::VLD3LNdWB_register_Asm_32:
   7133   case ARM::VLD3LNqWB_register_Asm_16:
   7134   case ARM::VLD3LNqWB_register_Asm_32: {
   7135     MCInst TmpInst;
   7136     // Shuffle the operands around so the lane index operand is in the
   7137     // right place.
   7138     unsigned Spacing;
   7139     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
   7140     TmpInst.addOperand(Inst.getOperand(0)); // Vd
   7141     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   7142                                             Spacing));
   7143     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   7144                                             Spacing * 2));
   7145     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
   7146     TmpInst.addOperand(Inst.getOperand(2)); // Rn
   7147     TmpInst.addOperand(Inst.getOperand(3)); // alignment
   7148     TmpInst.addOperand(Inst.getOperand(4)); // Rm
   7149     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
   7150     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   7151                                             Spacing));
   7152     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   7153                                             Spacing * 2));
   7154     TmpInst.addOperand(Inst.getOperand(1)); // lane
   7155     TmpInst.addOperand(Inst.getOperand(5)); // CondCode
   7156     TmpInst.addOperand(Inst.getOperand(6));
   7157     Inst = TmpInst;
   7158     return true;
   7159   }
   7160 
   7161   case ARM::VLD4LNdWB_register_Asm_8:
   7162   case ARM::VLD4LNdWB_register_Asm_16:
   7163   case ARM::VLD4LNdWB_register_Asm_32:
   7164   case ARM::VLD4LNqWB_register_Asm_16:
   7165   case ARM::VLD4LNqWB_register_Asm_32: {
   7166     MCInst TmpInst;
   7167     // Shuffle the operands around so the lane index operand is in the
   7168     // right place.
   7169     unsigned Spacing;
   7170     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
   7171     TmpInst.addOperand(Inst.getOperand(0)); // Vd
   7172     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   7173                                             Spacing));
   7174     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   7175                                             Spacing * 2));
   7176     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   7177                                             Spacing * 3));
   7178     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
   7179     TmpInst.addOperand(Inst.getOperand(2)); // Rn
   7180     TmpInst.addOperand(Inst.getOperand(3)); // alignment
   7181     TmpInst.addOperand(Inst.getOperand(4)); // Rm
   7182     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
   7183     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   7184                                             Spacing));
   7185     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   7186                                             Spacing * 2));
   7187     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   7188                                             Spacing * 3));
   7189     TmpInst.addOperand(Inst.getOperand(1)); // lane
   7190     TmpInst.addOperand(Inst.getOperand(5)); // CondCode
   7191     TmpInst.addOperand(Inst.getOperand(6));
   7192     Inst = TmpInst;
   7193     return true;
   7194   }
   7195 
   7196   case ARM::VLD1LNdWB_fixed_Asm_8:
   7197   case ARM::VLD1LNdWB_fixed_Asm_16:
   7198   case ARM::VLD1LNdWB_fixed_Asm_32: {
   7199     MCInst TmpInst;
   7200     // Shuffle the operands around so the lane index operand is in the
   7201     // right place.
   7202     unsigned Spacing;
   7203     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
   7204     TmpInst.addOperand(Inst.getOperand(0)); // Vd
   7205     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
   7206     TmpInst.addOperand(Inst.getOperand(2)); // Rn
   7207     TmpInst.addOperand(Inst.getOperand(3)); // alignment
   7208     TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
   7209     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
   7210     TmpInst.addOperand(Inst.getOperand(1)); // lane
   7211     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
   7212     TmpInst.addOperand(Inst.getOperand(5));
   7213     Inst = TmpInst;
   7214     return true;
   7215   }
   7216 
   7217   case ARM::VLD2LNdWB_fixed_Asm_8:
   7218   case ARM::VLD2LNdWB_fixed_Asm_16:
   7219   case ARM::VLD2LNdWB_fixed_Asm_32:
   7220   case ARM::VLD2LNqWB_fixed_Asm_16:
   7221   case ARM::VLD2LNqWB_fixed_Asm_32: {
   7222     MCInst TmpInst;
   7223     // Shuffle the operands around so the lane index operand is in the
   7224     // right place.
   7225     unsigned Spacing;
   7226     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
   7227     TmpInst.addOperand(Inst.getOperand(0)); // Vd
   7228     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   7229                                             Spacing));
   7230     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
   7231     TmpInst.addOperand(Inst.getOperand(2)); // Rn
   7232     TmpInst.addOperand(Inst.getOperand(3)); // alignment
   7233     TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
   7234     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
   7235     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   7236                                             Spacing));
   7237     TmpInst.addOperand(Inst.getOperand(1)); // lane
   7238     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
   7239     TmpInst.addOperand(Inst.getOperand(5));
   7240     Inst = TmpInst;
   7241     return true;
   7242   }
   7243 
   7244   case ARM::VLD3LNdWB_fixed_Asm_8:
   7245   case ARM::VLD3LNdWB_fixed_Asm_16:
   7246   case ARM::VLD3LNdWB_fixed_Asm_32:
   7247   case ARM::VLD3LNqWB_fixed_Asm_16:
   7248   case ARM::VLD3LNqWB_fixed_Asm_32: {
   7249     MCInst TmpInst;
   7250     // Shuffle the operands around so the lane index operand is in the
   7251     // right place.
   7252     unsigned Spacing;
   7253     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
   7254     TmpInst.addOperand(Inst.getOperand(0)); // Vd
   7255     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   7256                                             Spacing));
   7257     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   7258                                             Spacing * 2));
   7259     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
   7260     TmpInst.addOperand(Inst.getOperand(2)); // Rn
   7261     TmpInst.addOperand(Inst.getOperand(3)); // alignment
   7262     TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
   7263     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
   7264     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   7265                                             Spacing));
   7266     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   7267                                             Spacing * 2));
   7268     TmpInst.addOperand(Inst.getOperand(1)); // lane
   7269     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
   7270     TmpInst.addOperand(Inst.getOperand(5));
   7271     Inst = TmpInst;
   7272     return true;
   7273   }
   7274 
   7275   case ARM::VLD4LNdWB_fixed_Asm_8:
   7276   case ARM::VLD4LNdWB_fixed_Asm_16:
   7277   case ARM::VLD4LNdWB_fixed_Asm_32:
   7278   case ARM::VLD4LNqWB_fixed_Asm_16:
   7279   case ARM::VLD4LNqWB_fixed_Asm_32: {
   7280     MCInst TmpInst;
   7281     // Shuffle the operands around so the lane index operand is in the
   7282     // right place.
   7283     unsigned Spacing;
   7284     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
   7285     TmpInst.addOperand(Inst.getOperand(0)); // Vd
   7286     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   7287                                             Spacing));
   7288     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   7289                                             Spacing * 2));
   7290     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   7291                                             Spacing * 3));
   7292     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
   7293     TmpInst.addOperand(Inst.getOperand(2)); // Rn
   7294     TmpInst.addOperand(Inst.getOperand(3)); // alignment
   7295     TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
   7296     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
   7297     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   7298                                             Spacing));
   7299     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   7300                                             Spacing * 2));
   7301     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   7302                                             Spacing * 3));
   7303     TmpInst.addOperand(Inst.getOperand(1)); // lane
   7304     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
   7305     TmpInst.addOperand(Inst.getOperand(5));
   7306     Inst = TmpInst;
   7307     return true;
   7308   }
   7309 
   7310   case ARM::VLD1LNdAsm_8:
   7311   case ARM::VLD1LNdAsm_16:
   7312   case ARM::VLD1LNdAsm_32: {
   7313     MCInst TmpInst;
   7314     // Shuffle the operands around so the lane index operand is in the
   7315     // right place.
   7316     unsigned Spacing;
   7317     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
   7318     TmpInst.addOperand(Inst.getOperand(0)); // Vd
   7319     TmpInst.addOperand(Inst.getOperand(2)); // Rn
   7320     TmpInst.addOperand(Inst.getOperand(3)); // alignment
   7321     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
   7322     TmpInst.addOperand(Inst.getOperand(1)); // lane
   7323     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
   7324     TmpInst.addOperand(Inst.getOperand(5));
   7325     Inst = TmpInst;
   7326     return true;
   7327   }
   7328 
   7329   case ARM::VLD2LNdAsm_8:
   7330   case ARM::VLD2LNdAsm_16:
   7331   case ARM::VLD2LNdAsm_32:
   7332   case ARM::VLD2LNqAsm_16:
   7333   case ARM::VLD2LNqAsm_32: {
   7334     MCInst TmpInst;
   7335     // Shuffle the operands around so the lane index operand is in the
   7336     // right place.
   7337     unsigned Spacing;
   7338     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
   7339     TmpInst.addOperand(Inst.getOperand(0)); // Vd
   7340     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   7341                                             Spacing));
   7342     TmpInst.addOperand(Inst.getOperand(2)); // Rn
   7343     TmpInst.addOperand(Inst.getOperand(3)); // alignment
   7344     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
   7345     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   7346                                             Spacing));
   7347     TmpInst.addOperand(Inst.getOperand(1)); // lane
   7348     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
   7349     TmpInst.addOperand(Inst.getOperand(5));
   7350     Inst = TmpInst;
   7351     return true;
   7352   }
   7353 
   7354   case ARM::VLD3LNdAsm_8:
   7355   case ARM::VLD3LNdAsm_16:
   7356   case ARM::VLD3LNdAsm_32:
   7357   case ARM::VLD3LNqAsm_16:
   7358   case ARM::VLD3LNqAsm_32: {
   7359     MCInst TmpInst;
   7360     // Shuffle the operands around so the lane index operand is in the
   7361     // right place.
   7362     unsigned Spacing;
   7363     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
   7364     TmpInst.addOperand(Inst.getOperand(0)); // Vd
   7365     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   7366                                             Spacing));
   7367     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   7368                                             Spacing * 2));
   7369     TmpInst.addOperand(Inst.getOperand(2)); // Rn
   7370     TmpInst.addOperand(Inst.getOperand(3)); // alignment
   7371     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
   7372     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   7373                                             Spacing));
   7374     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   7375                                             Spacing * 2));
   7376     TmpInst.addOperand(Inst.getOperand(1)); // lane
   7377     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
   7378     TmpInst.addOperand(Inst.getOperand(5));
   7379     Inst = TmpInst;
   7380     return true;
   7381   }
   7382 
   7383   case ARM::VLD4LNdAsm_8:
   7384   case ARM::VLD4LNdAsm_16:
   7385   case ARM::VLD4LNdAsm_32:
   7386   case ARM::VLD4LNqAsm_16:
   7387   case ARM::VLD4LNqAsm_32: {
   7388     MCInst TmpInst;
   7389     // Shuffle the operands around so the lane index operand is in the
   7390     // right place.
   7391     unsigned Spacing;
   7392     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
   7393     TmpInst.addOperand(Inst.getOperand(0)); // Vd
   7394     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   7395                                             Spacing));
   7396     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   7397                                             Spacing * 2));
   7398     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   7399                                             Spacing * 3));
   7400     TmpInst.addOperand(Inst.getOperand(2)); // Rn
   7401     TmpInst.addOperand(Inst.getOperand(3)); // alignment
   7402     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
   7403     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   7404                                             Spacing));
   7405     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   7406                                             Spacing * 2));
   7407     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   7408                                             Spacing * 3));
   7409     TmpInst.addOperand(Inst.getOperand(1)); // lane
   7410     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
   7411     TmpInst.addOperand(Inst.getOperand(5));
   7412     Inst = TmpInst;
   7413     return true;
   7414   }
   7415 
   7416   // VLD3DUP single 3-element structure to all lanes instructions.
   7417   case ARM::VLD3DUPdAsm_8:
   7418   case ARM::VLD3DUPdAsm_16:
   7419   case ARM::VLD3DUPdAsm_32:
   7420   case ARM::VLD3DUPqAsm_8:
   7421   case ARM::VLD3DUPqAsm_16:
   7422   case ARM::VLD3DUPqAsm_32: {
   7423     MCInst TmpInst;
   7424     unsigned Spacing;
   7425     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
   7426     TmpInst.addOperand(Inst.getOperand(0)); // Vd
   7427     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   7428                                             Spacing));
   7429     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   7430                                             Spacing * 2));
   7431     TmpInst.addOperand(Inst.getOperand(1)); // Rn
   7432     TmpInst.addOperand(Inst.getOperand(2)); // alignment
   7433     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
   7434     TmpInst.addOperand(Inst.getOperand(4));
   7435     Inst = TmpInst;
   7436     return true;
   7437   }
   7438 
   7439   case ARM::VLD3DUPdWB_fixed_Asm_8:
   7440   case ARM::VLD3DUPdWB_fixed_Asm_16:
   7441   case ARM::VLD3DUPdWB_fixed_Asm_32:
   7442   case ARM::VLD3DUPqWB_fixed_Asm_8:
   7443   case ARM::VLD3DUPqWB_fixed_Asm_16:
   7444   case ARM::VLD3DUPqWB_fixed_Asm_32: {
   7445     MCInst TmpInst;
   7446     unsigned Spacing;
   7447     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
   7448     TmpInst.addOperand(Inst.getOperand(0)); // Vd
   7449     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   7450                                             Spacing));
   7451     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   7452                                             Spacing * 2));
   7453     TmpInst.addOperand(Inst.getOperand(1)); // Rn
   7454     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
   7455     TmpInst.addOperand(Inst.getOperand(2)); // alignment
   7456     TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
   7457     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
   7458     TmpInst.addOperand(Inst.getOperand(4));
   7459     Inst = TmpInst;
   7460     return true;
   7461   }
   7462 
   7463   case ARM::VLD3DUPdWB_register_Asm_8:
   7464   case ARM::VLD3DUPdWB_register_Asm_16:
   7465   case ARM::VLD3DUPdWB_register_Asm_32:
   7466   case ARM::VLD3DUPqWB_register_Asm_8:
   7467   case ARM::VLD3DUPqWB_register_Asm_16:
   7468   case ARM::VLD3DUPqWB_register_Asm_32: {
   7469     MCInst TmpInst;
   7470     unsigned Spacing;
   7471     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
   7472     TmpInst.addOperand(Inst.getOperand(0)); // Vd
   7473     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   7474                                             Spacing));
   7475     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   7476                                             Spacing * 2));
   7477     TmpInst.addOperand(Inst.getOperand(1)); // Rn
   7478     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
   7479     TmpInst.addOperand(Inst.getOperand(2)); // alignment
   7480     TmpInst.addOperand(Inst.getOperand(3)); // Rm
   7481     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
   7482     TmpInst.addOperand(Inst.getOperand(5));
   7483     Inst = TmpInst;
   7484     return true;
   7485   }
   7486 
   7487   // VLD3 multiple 3-element structure instructions.
   7488   case ARM::VLD3dAsm_8:
   7489   case ARM::VLD3dAsm_16:
   7490   case ARM::VLD3dAsm_32:
   7491   case ARM::VLD3qAsm_8:
   7492   case ARM::VLD3qAsm_16:
   7493   case ARM::VLD3qAsm_32: {
   7494     MCInst TmpInst;
   7495     unsigned Spacing;
   7496     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
   7497     TmpInst.addOperand(Inst.getOperand(0)); // Vd
   7498     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   7499                                             Spacing));
   7500     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   7501                                             Spacing * 2));
   7502     TmpInst.addOperand(Inst.getOperand(1)); // Rn
   7503     TmpInst.addOperand(Inst.getOperand(2)); // alignment
   7504     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
   7505     TmpInst.addOperand(Inst.getOperand(4));
   7506     Inst = TmpInst;
   7507     return true;
   7508   }
   7509 
   7510   case ARM::VLD3dWB_fixed_Asm_8:
   7511   case ARM::VLD3dWB_fixed_Asm_16:
   7512   case ARM::VLD3dWB_fixed_Asm_32:
   7513   case ARM::VLD3qWB_fixed_Asm_8:
   7514   case ARM::VLD3qWB_fixed_Asm_16:
   7515   case ARM::VLD3qWB_fixed_Asm_32: {
   7516     MCInst TmpInst;
   7517     unsigned Spacing;
   7518     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
   7519     TmpInst.addOperand(Inst.getOperand(0)); // Vd
   7520     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   7521                                             Spacing));
   7522     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   7523                                             Spacing * 2));
   7524     TmpInst.addOperand(Inst.getOperand(1)); // Rn
   7525     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
   7526     TmpInst.addOperand(Inst.getOperand(2)); // alignment
   7527     TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
   7528     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
   7529     TmpInst.addOperand(Inst.getOperand(4));
   7530     Inst = TmpInst;
   7531     return true;
   7532   }
   7533 
   7534   case ARM::VLD3dWB_register_Asm_8:
   7535   case ARM::VLD3dWB_register_Asm_16:
   7536   case ARM::VLD3dWB_register_Asm_32:
   7537   case ARM::VLD3qWB_register_Asm_8:
   7538   case ARM::VLD3qWB_register_Asm_16:
   7539   case ARM::VLD3qWB_register_Asm_32: {
   7540     MCInst TmpInst;
   7541     unsigned Spacing;
   7542     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
   7543     TmpInst.addOperand(Inst.getOperand(0)); // Vd
   7544     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   7545                                             Spacing));
   7546     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   7547                                             Spacing * 2));
   7548     TmpInst.addOperand(Inst.getOperand(1)); // Rn
   7549     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
   7550     TmpInst.addOperand(Inst.getOperand(2)); // alignment
   7551     TmpInst.addOperand(Inst.getOperand(3)); // Rm
   7552     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
   7553     TmpInst.addOperand(Inst.getOperand(5));
   7554     Inst = TmpInst;
   7555     return true;
   7556   }
   7557 
   7558   // VLD4DUP single 3-element structure to all lanes instructions.
   7559   case ARM::VLD4DUPdAsm_8:
   7560   case ARM::VLD4DUPdAsm_16:
   7561   case ARM::VLD4DUPdAsm_32:
   7562   case ARM::VLD4DUPqAsm_8:
   7563   case ARM::VLD4DUPqAsm_16:
   7564   case ARM::VLD4DUPqAsm_32: {
   7565     MCInst TmpInst;
   7566     unsigned Spacing;
   7567     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
   7568     TmpInst.addOperand(Inst.getOperand(0)); // Vd
   7569     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   7570                                             Spacing));
   7571     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   7572                                             Spacing * 2));
   7573     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   7574                                             Spacing * 3));
   7575     TmpInst.addOperand(Inst.getOperand(1)); // Rn
   7576     TmpInst.addOperand(Inst.getOperand(2)); // alignment
   7577     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
   7578     TmpInst.addOperand(Inst.getOperand(4));
   7579     Inst = TmpInst;
   7580     return true;
   7581   }
   7582 
   7583   case ARM::VLD4DUPdWB_fixed_Asm_8:
   7584   case ARM::VLD4DUPdWB_fixed_Asm_16:
   7585   case ARM::VLD4DUPdWB_fixed_Asm_32:
   7586   case ARM::VLD4DUPqWB_fixed_Asm_8:
   7587   case ARM::VLD4DUPqWB_fixed_Asm_16:
   7588   case ARM::VLD4DUPqWB_fixed_Asm_32: {
   7589     MCInst TmpInst;
   7590     unsigned Spacing;
   7591     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
   7592     TmpInst.addOperand(Inst.getOperand(0)); // Vd
   7593     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   7594                                             Spacing));
   7595     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   7596                                             Spacing * 2));
   7597     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   7598                                             Spacing * 3));
   7599     TmpInst.addOperand(Inst.getOperand(1)); // Rn
   7600     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
   7601     TmpInst.addOperand(Inst.getOperand(2)); // alignment
   7602     TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
   7603     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
   7604     TmpInst.addOperand(Inst.getOperand(4));
   7605     Inst = TmpInst;
   7606     return true;
   7607   }
   7608 
   7609   case ARM::VLD4DUPdWB_register_Asm_8:
   7610   case ARM::VLD4DUPdWB_register_Asm_16:
   7611   case ARM::VLD4DUPdWB_register_Asm_32:
   7612   case ARM::VLD4DUPqWB_register_Asm_8:
   7613   case ARM::VLD4DUPqWB_register_Asm_16:
   7614   case ARM::VLD4DUPqWB_register_Asm_32: {
   7615     MCInst TmpInst;
   7616     unsigned Spacing;
   7617     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
   7618     TmpInst.addOperand(Inst.getOperand(0)); // Vd
   7619     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   7620                                             Spacing));
   7621     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   7622                                             Spacing * 2));
   7623     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   7624                                             Spacing * 3));
   7625     TmpInst.addOperand(Inst.getOperand(1)); // Rn
   7626     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
   7627     TmpInst.addOperand(Inst.getOperand(2)); // alignment
   7628     TmpInst.addOperand(Inst.getOperand(3)); // Rm
   7629     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
   7630     TmpInst.addOperand(Inst.getOperand(5));
   7631     Inst = TmpInst;
   7632     return true;
   7633   }
   7634 
   7635   // VLD4 multiple 4-element structure instructions.
   7636   case ARM::VLD4dAsm_8:
   7637   case ARM::VLD4dAsm_16:
   7638   case ARM::VLD4dAsm_32:
   7639   case ARM::VLD4qAsm_8:
   7640   case ARM::VLD4qAsm_16:
   7641   case ARM::VLD4qAsm_32: {
   7642     MCInst TmpInst;
   7643     unsigned Spacing;
   7644     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
   7645     TmpInst.addOperand(Inst.getOperand(0)); // Vd
   7646     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   7647                                             Spacing));
   7648     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   7649                                             Spacing * 2));
   7650     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   7651                                             Spacing * 3));
   7652     TmpInst.addOperand(Inst.getOperand(1)); // Rn
   7653     TmpInst.addOperand(Inst.getOperand(2)); // alignment
   7654     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
   7655     TmpInst.addOperand(Inst.getOperand(4));
   7656     Inst = TmpInst;
   7657     return true;
   7658   }
   7659 
   7660   case ARM::VLD4dWB_fixed_Asm_8:
   7661   case ARM::VLD4dWB_fixed_Asm_16:
   7662   case ARM::VLD4dWB_fixed_Asm_32:
   7663   case ARM::VLD4qWB_fixed_Asm_8:
   7664   case ARM::VLD4qWB_fixed_Asm_16:
   7665   case ARM::VLD4qWB_fixed_Asm_32: {
   7666     MCInst TmpInst;
   7667     unsigned Spacing;
   7668     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
   7669     TmpInst.addOperand(Inst.getOperand(0)); // Vd
   7670     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   7671                                             Spacing));
   7672     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   7673                                             Spacing * 2));
   7674     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   7675                                             Spacing * 3));
   7676     TmpInst.addOperand(Inst.getOperand(1)); // Rn
   7677     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
   7678     TmpInst.addOperand(Inst.getOperand(2)); // alignment
   7679     TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
   7680     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
   7681     TmpInst.addOperand(Inst.getOperand(4));
   7682     Inst = TmpInst;
   7683     return true;
   7684   }
   7685 
   7686   case ARM::VLD4dWB_register_Asm_8:
   7687   case ARM::VLD4dWB_register_Asm_16:
   7688   case ARM::VLD4dWB_register_Asm_32:
   7689   case ARM::VLD4qWB_register_Asm_8:
   7690   case ARM::VLD4qWB_register_Asm_16:
   7691   case ARM::VLD4qWB_register_Asm_32: {
   7692     MCInst TmpInst;
   7693     unsigned Spacing;
   7694     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
   7695     TmpInst.addOperand(Inst.getOperand(0)); // Vd
   7696     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   7697                                             Spacing));
   7698     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   7699                                             Spacing * 2));
   7700     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   7701                                             Spacing * 3));
   7702     TmpInst.addOperand(Inst.getOperand(1)); // Rn
   7703     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
   7704     TmpInst.addOperand(Inst.getOperand(2)); // alignment
   7705     TmpInst.addOperand(Inst.getOperand(3)); // Rm
   7706     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
   7707     TmpInst.addOperand(Inst.getOperand(5));
   7708     Inst = TmpInst;
   7709     return true;
   7710   }
   7711 
   7712   // VST3 multiple 3-element structure instructions.
   7713   case ARM::VST3dAsm_8:
   7714   case ARM::VST3dAsm_16:
   7715   case ARM::VST3dAsm_32:
   7716   case ARM::VST3qAsm_8:
   7717   case ARM::VST3qAsm_16:
   7718   case ARM::VST3qAsm_32: {
   7719     MCInst TmpInst;
   7720     unsigned Spacing;
   7721     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
   7722     TmpInst.addOperand(Inst.getOperand(1)); // Rn
   7723     TmpInst.addOperand(Inst.getOperand(2)); // alignment
   7724     TmpInst.addOperand(Inst.getOperand(0)); // Vd
   7725     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   7726                                             Spacing));
   7727     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   7728                                             Spacing * 2));
   7729     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
   7730     TmpInst.addOperand(Inst.getOperand(4));
   7731     Inst = TmpInst;
   7732     return true;
   7733   }
   7734 
   7735   case ARM::VST3dWB_fixed_Asm_8:
   7736   case ARM::VST3dWB_fixed_Asm_16:
   7737   case ARM::VST3dWB_fixed_Asm_32:
   7738   case ARM::VST3qWB_fixed_Asm_8:
   7739   case ARM::VST3qWB_fixed_Asm_16:
   7740   case ARM::VST3qWB_fixed_Asm_32: {
   7741     MCInst TmpInst;
   7742     unsigned Spacing;
   7743     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
   7744     TmpInst.addOperand(Inst.getOperand(1)); // Rn
   7745     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
   7746     TmpInst.addOperand(Inst.getOperand(2)); // alignment
   7747     TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
   7748     TmpInst.addOperand(Inst.getOperand(0)); // Vd
   7749     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   7750                                             Spacing));
   7751     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   7752                                             Spacing * 2));
   7753     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
   7754     TmpInst.addOperand(Inst.getOperand(4));
   7755     Inst = TmpInst;
   7756     return true;
   7757   }
   7758 
   7759   case ARM::VST3dWB_register_Asm_8:
   7760   case ARM::VST3dWB_register_Asm_16:
   7761   case ARM::VST3dWB_register_Asm_32:
   7762   case ARM::VST3qWB_register_Asm_8:
   7763   case ARM::VST3qWB_register_Asm_16:
   7764   case ARM::VST3qWB_register_Asm_32: {
   7765     MCInst TmpInst;
   7766     unsigned Spacing;
   7767     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
   7768     TmpInst.addOperand(Inst.getOperand(1)); // Rn
   7769     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
   7770     TmpInst.addOperand(Inst.getOperand(2)); // alignment
   7771     TmpInst.addOperand(Inst.getOperand(3)); // Rm
   7772     TmpInst.addOperand(Inst.getOperand(0)); // Vd
   7773     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   7774                                             Spacing));
   7775     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   7776                                             Spacing * 2));
   7777     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
   7778     TmpInst.addOperand(Inst.getOperand(5));
   7779     Inst = TmpInst;
   7780     return true;
   7781   }
   7782 
   7783   // VST4 multiple 3-element structure instructions.
   7784   case ARM::VST4dAsm_8:
   7785   case ARM::VST4dAsm_16:
   7786   case ARM::VST4dAsm_32:
   7787   case ARM::VST4qAsm_8:
   7788   case ARM::VST4qAsm_16:
   7789   case ARM::VST4qAsm_32: {
   7790     MCInst TmpInst;
   7791     unsigned Spacing;
   7792     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
   7793     TmpInst.addOperand(Inst.getOperand(1)); // Rn
   7794     TmpInst.addOperand(Inst.getOperand(2)); // alignment
   7795     TmpInst.addOperand(Inst.getOperand(0)); // Vd
   7796     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   7797                                             Spacing));
   7798     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   7799                                             Spacing * 2));
   7800     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   7801                                             Spacing * 3));
   7802     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
   7803     TmpInst.addOperand(Inst.getOperand(4));
   7804     Inst = TmpInst;
   7805     return true;
   7806   }
   7807 
   7808   case ARM::VST4dWB_fixed_Asm_8:
   7809   case ARM::VST4dWB_fixed_Asm_16:
   7810   case ARM::VST4dWB_fixed_Asm_32:
   7811   case ARM::VST4qWB_fixed_Asm_8:
   7812   case ARM::VST4qWB_fixed_Asm_16:
   7813   case ARM::VST4qWB_fixed_Asm_32: {
   7814     MCInst TmpInst;
   7815     unsigned Spacing;
   7816     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
   7817     TmpInst.addOperand(Inst.getOperand(1)); // Rn
   7818     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
   7819     TmpInst.addOperand(Inst.getOperand(2)); // alignment
   7820     TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
   7821     TmpInst.addOperand(Inst.getOperand(0)); // Vd
   7822     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   7823                                             Spacing));
   7824     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   7825                                             Spacing * 2));
   7826     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   7827                                             Spacing * 3));
   7828     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
   7829     TmpInst.addOperand(Inst.getOperand(4));
   7830     Inst = TmpInst;
   7831     return true;
   7832   }
   7833 
   7834   case ARM::VST4dWB_register_Asm_8:
   7835   case ARM::VST4dWB_register_Asm_16:
   7836   case ARM::VST4dWB_register_Asm_32:
   7837   case ARM::VST4qWB_register_Asm_8:
   7838   case ARM::VST4qWB_register_Asm_16:
   7839   case ARM::VST4qWB_register_Asm_32: {
   7840     MCInst TmpInst;
   7841     unsigned Spacing;
   7842     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
   7843     TmpInst.addOperand(Inst.getOperand(1)); // Rn
   7844     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
   7845     TmpInst.addOperand(Inst.getOperand(2)); // alignment
   7846     TmpInst.addOperand(Inst.getOperand(3)); // Rm
   7847     TmpInst.addOperand(Inst.getOperand(0)); // Vd
   7848     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   7849                                             Spacing));
   7850     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   7851                                             Spacing * 2));
   7852     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
   7853                                             Spacing * 3));
   7854     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
   7855     TmpInst.addOperand(Inst.getOperand(5));
   7856     Inst = TmpInst;
   7857     return true;
   7858   }
   7859 
   7860   // Handle encoding choice for the shift-immediate instructions.
   7861   case ARM::t2LSLri:
   7862   case ARM::t2LSRri:
   7863   case ARM::t2ASRri: {
   7864     if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
   7865         Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() &&
   7866         Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) &&
   7867         !(static_cast<ARMOperand &>(*Operands[3]).isToken() &&
   7868           static_cast<ARMOperand &>(*Operands[3]).getToken() == ".w")) {
   7869       unsigned NewOpc;
   7870       switch (Inst.getOpcode()) {
   7871       default: llvm_unreachable("unexpected opcode");
   7872       case ARM::t2LSLri: NewOpc = ARM::tLSLri; break;
   7873       case ARM::t2LSRri: NewOpc = ARM::tLSRri; break;
   7874       case ARM::t2ASRri: NewOpc = ARM::tASRri; break;
   7875       }
   7876       // The Thumb1 operands aren't in the same order. Awesome, eh?
   7877       MCInst TmpInst;
   7878       TmpInst.setOpcode(NewOpc);
   7879       TmpInst.addOperand(Inst.getOperand(0));
   7880       TmpInst.addOperand(Inst.getOperand(5));
   7881       TmpInst.addOperand(Inst.getOperand(1));
   7882       TmpInst.addOperand(Inst.getOperand(2));
   7883       TmpInst.addOperand(Inst.getOperand(3));
   7884       TmpInst.addOperand(Inst.getOperand(4));
   7885       Inst = TmpInst;
   7886       return true;
   7887     }
   7888     return false;
   7889   }
   7890 
   7891   // Handle the Thumb2 mode MOV complex aliases.
   7892   case ARM::t2MOVsr:
   7893   case ARM::t2MOVSsr: {
   7894     // Which instruction to expand to depends on the CCOut operand and
   7895     // whether we're in an IT block if the register operands are low
   7896     // registers.
   7897     bool isNarrow = false;
   7898     if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
   7899         isARMLowRegister(Inst.getOperand(1).getReg()) &&
   7900         isARMLowRegister(Inst.getOperand(2).getReg()) &&
   7901         Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() &&
   7902         inITBlock() == (Inst.getOpcode() == ARM::t2MOVsr))
   7903       isNarrow = true;
   7904     MCInst TmpInst;
   7905     unsigned newOpc;
   7906     switch(ARM_AM::getSORegShOp(Inst.getOperand(3).getImm())) {
   7907     default: llvm_unreachable("unexpected opcode!");
   7908     case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRrr : ARM::t2ASRrr; break;
   7909     case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRrr : ARM::t2LSRrr; break;
   7910     case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLrr : ARM::t2LSLrr; break;
   7911     case ARM_AM::ror: newOpc = isNarrow ? ARM::tROR   : ARM::t2RORrr; break;
   7912     }
   7913     TmpInst.setOpcode(newOpc);
   7914     TmpInst.addOperand(Inst.getOperand(0)); // Rd
   7915     if (isNarrow)
   7916       TmpInst.addOperand(MCOperand::CreateReg(
   7917           Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0));
   7918     TmpInst.addOperand(Inst.getOperand(1)); // Rn
   7919     TmpInst.addOperand(Inst.getOperand(2)); // Rm
   7920     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
   7921     TmpInst.addOperand(Inst.getOperand(5));
   7922     if (!isNarrow)
   7923       TmpInst.addOperand(MCOperand::CreateReg(
   7924           Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0));
   7925     Inst = TmpInst;
   7926     return true;
   7927   }
   7928   case ARM::t2MOVsi:
   7929   case ARM::t2MOVSsi: {
   7930     // Which instruction to expand to depends on the CCOut operand and
   7931     // whether we're in an IT block if the register operands are low
   7932     // registers.
   7933     bool isNarrow = false;
   7934     if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
   7935         isARMLowRegister(Inst.getOperand(1).getReg()) &&
   7936         inITBlock() == (Inst.getOpcode() == ARM::t2MOVsi))
   7937       isNarrow = true;
   7938     MCInst TmpInst;
   7939     unsigned newOpc;
   7940     switch(ARM_AM::getSORegShOp(Inst.getOperand(2).getImm())) {
   7941     default: llvm_unreachable("unexpected opcode!");
   7942     case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRri : ARM::t2ASRri; break;
   7943     case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRri : ARM::t2LSRri; break;
   7944     case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLri : ARM::t2LSLri; break;
   7945     case ARM_AM::ror: newOpc = ARM::t2RORri; isNarrow = false; break;
   7946     case ARM_AM::rrx: isNarrow = false; newOpc = ARM::t2RRX; break;
   7947     }
   7948     unsigned Amount = ARM_AM::getSORegOffset(Inst.getOperand(2).getImm());
   7949     if (Amount == 32) Amount = 0;
   7950     TmpInst.setOpcode(newOpc);
   7951     TmpInst.addOperand(Inst.getOperand(0)); // Rd
   7952     if (isNarrow)
   7953       TmpInst.addOperand(MCOperand::CreateReg(
   7954           Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0));
   7955     TmpInst.addOperand(Inst.getOperand(1)); // Rn
   7956     if (newOpc != ARM::t2RRX)
   7957       TmpInst.addOperand(MCOperand::CreateImm(Amount));
   7958     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
   7959     TmpInst.addOperand(Inst.getOperand(4));
   7960     if (!isNarrow)
   7961       TmpInst.addOperand(MCOperand::CreateReg(
   7962           Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0));
   7963     Inst = TmpInst;
   7964     return true;
   7965   }
   7966   // Handle the ARM mode MOV complex aliases.
   7967   case ARM::ASRr:
   7968   case ARM::LSRr:
   7969   case ARM::LSLr:
   7970   case ARM::RORr: {
   7971     ARM_AM::ShiftOpc ShiftTy;
   7972     switch(Inst.getOpcode()) {
   7973     default: llvm_unreachable("unexpected opcode!");
   7974     case ARM::ASRr: ShiftTy = ARM_AM::asr; break;
   7975     case ARM::LSRr: ShiftTy = ARM_AM::lsr; break;
   7976     case ARM::LSLr: ShiftTy = ARM_AM::lsl; break;
   7977     case ARM::RORr: ShiftTy = ARM_AM::ror; break;
   7978     }
   7979     unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, 0);
   7980     MCInst TmpInst;
   7981     TmpInst.setOpcode(ARM::MOVsr);
   7982     TmpInst.addOperand(Inst.getOperand(0)); // Rd
   7983     TmpInst.addOperand(Inst.getOperand(1)); // Rn
   7984     TmpInst.addOperand(Inst.getOperand(2)); // Rm
   7985     TmpInst.addOperand(MCOperand::CreateImm(Shifter)); // Shift value and ty
   7986     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
   7987     TmpInst.addOperand(Inst.getOperand(4));
   7988     TmpInst.addOperand(Inst.getOperand(5)); // cc_out
   7989     Inst = TmpInst;
   7990     return true;
   7991   }
   7992   case ARM::ASRi:
   7993   case ARM::LSRi:
   7994   case ARM::LSLi:
   7995   case ARM::RORi: {
   7996     ARM_AM::ShiftOpc ShiftTy;
   7997     switch(Inst.getOpcode()) {
   7998     default: llvm_unreachable("unexpected opcode!");
   7999     case ARM::ASRi: ShiftTy = ARM_AM::asr; break;
   8000     case ARM::LSRi: ShiftTy = ARM_AM::lsr; break;
   8001     case ARM::LSLi: ShiftTy = ARM_AM::lsl; break;
   8002     case ARM::RORi: ShiftTy = ARM_AM::ror; break;
   8003     }
   8004     // A shift by zero is a plain MOVr, not a MOVsi.
   8005     unsigned Amt = Inst.getOperand(2).getImm();
   8006     unsigned Opc = Amt == 0 ? ARM::MOVr : ARM::MOVsi;
   8007     // A shift by 32 should be encoded as 0 when permitted
   8008     if (Amt == 32 && (ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr))
   8009       Amt = 0;
   8010     unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, Amt);
   8011     MCInst TmpInst;
   8012     TmpInst.setOpcode(Opc);
   8013     TmpInst.addOperand(Inst.getOperand(0)); // Rd
   8014     TmpInst.addOperand(Inst.getOperand(1)); // Rn
   8015     if (Opc == ARM::MOVsi)
   8016       TmpInst.addOperand(MCOperand::CreateImm(Shifter)); // Shift value and ty
   8017     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
   8018     TmpInst.addOperand(Inst.getOperand(4));
   8019     TmpInst.addOperand(Inst.getOperand(5)); // cc_out
   8020     Inst = TmpInst;
   8021     return true;
   8022   }
   8023   case ARM::RRXi: {
   8024     unsigned Shifter = ARM_AM::getSORegOpc(ARM_AM::rrx, 0);
   8025     MCInst TmpInst;
   8026     TmpInst.setOpcode(ARM::MOVsi);
   8027     TmpInst.addOperand(Inst.getOperand(0)); // Rd
   8028     TmpInst.addOperand(Inst.getOperand(1)); // Rn
   8029     TmpInst.addOperand(MCOperand::CreateImm(Shifter)); // Shift value and ty
   8030     TmpInst.addOperand(Inst.getOperand(2)); // CondCode
   8031     TmpInst.addOperand(Inst.getOperand(3));
   8032     TmpInst.addOperand(Inst.getOperand(4)); // cc_out
   8033     Inst = TmpInst;
   8034     return true;
   8035   }
   8036   case ARM::t2LDMIA_UPD: {
   8037     // If this is a load of a single register, then we should use
   8038     // a post-indexed LDR instruction instead, per the ARM ARM.
   8039     if (Inst.getNumOperands() != 5)
   8040       return false;
   8041     MCInst TmpInst;
   8042     TmpInst.setOpcode(ARM::t2LDR_POST);
   8043     TmpInst.addOperand(Inst.getOperand(4)); // Rt
   8044     TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb
   8045     TmpInst.addOperand(Inst.getOperand(1)); // Rn
   8046     TmpInst.addOperand(MCOperand::CreateImm(4));
   8047     TmpInst.addOperand(Inst.getOperand(2)); // CondCode
   8048     TmpInst.addOperand(Inst.getOperand(3));
   8049     Inst = TmpInst;
   8050     return true;
   8051   }
   8052   case ARM::t2STMDB_UPD: {
   8053     // If this is a store of a single register, then we should use
   8054     // a pre-indexed STR instruction instead, per the ARM ARM.
   8055     if (Inst.getNumOperands() != 5)
   8056       return false;
   8057     MCInst TmpInst;
   8058     TmpInst.setOpcode(ARM::t2STR_PRE);
   8059     TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb
   8060     TmpInst.addOperand(Inst.getOperand(4)); // Rt
   8061     TmpInst.addOperand(Inst.getOperand(1)); // Rn
   8062     TmpInst.addOperand(MCOperand::CreateImm(-4));
   8063     TmpInst.addOperand(Inst.getOperand(2)); // CondCode
   8064     TmpInst.addOperand(Inst.getOperand(3));
   8065     Inst = TmpInst;
   8066     return true;
   8067   }
   8068   case ARM::LDMIA_UPD:
   8069     // If this is a load of a single register via a 'pop', then we should use
   8070     // a post-indexed LDR instruction instead, per the ARM ARM.
   8071     if (static_cast<ARMOperand &>(*Operands[0]).getToken() == "pop" &&
   8072         Inst.getNumOperands() == 5) {
   8073       MCInst TmpInst;
   8074       TmpInst.setOpcode(ARM::LDR_POST_IMM);
   8075       TmpInst.addOperand(Inst.getOperand(4)); // Rt
   8076       TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb
   8077       TmpInst.addOperand(Inst.getOperand(1)); // Rn
   8078       TmpInst.addOperand(MCOperand::CreateReg(0));  // am2offset
   8079       TmpInst.addOperand(MCOperand::CreateImm(4));
   8080       TmpInst.addOperand(Inst.getOperand(2)); // CondCode
   8081       TmpInst.addOperand(Inst.getOperand(3));
   8082       Inst = TmpInst;
   8083       return true;
   8084     }
   8085     break;
   8086   case ARM::STMDB_UPD:
   8087     // If this is a store of a single register via a 'push', then we should use
   8088     // a pre-indexed STR instruction instead, per the ARM ARM.
   8089     if (static_cast<ARMOperand &>(*Operands[0]).getToken() == "push" &&
   8090         Inst.getNumOperands() == 5) {
   8091       MCInst TmpInst;
   8092       TmpInst.setOpcode(ARM::STR_PRE_IMM);
   8093       TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb
   8094       TmpInst.addOperand(Inst.getOperand(4)); // Rt
   8095       TmpInst.addOperand(Inst.getOperand(1)); // addrmode_imm12
   8096       TmpInst.addOperand(MCOperand::CreateImm(-4));
   8097       TmpInst.addOperand(Inst.getOperand(2)); // CondCode
   8098       TmpInst.addOperand(Inst.getOperand(3));
   8099       Inst = TmpInst;
   8100     }
   8101     break;
   8102   case ARM::t2ADDri12:
   8103     // If the immediate fits for encoding T3 (t2ADDri) and the generic "add"
   8104     // mnemonic was used (not "addw"), encoding T3 is preferred.
   8105     if (static_cast<ARMOperand &>(*Operands[0]).getToken() != "add" ||
   8106         ARM_AM::getT2SOImmVal(Inst.getOperand(2).getImm()) == -1)
   8107       break;
   8108     Inst.setOpcode(ARM::t2ADDri);
   8109     Inst.addOperand(MCOperand::CreateReg(0)); // cc_out
   8110     break;
   8111   case ARM::t2SUBri12:
   8112     // If the immediate fits for encoding T3 (t2SUBri) and the generic "sub"
   8113     // mnemonic was used (not "subw"), encoding T3 is preferred.
   8114     if (static_cast<ARMOperand &>(*Operands[0]).getToken() != "sub" ||
   8115         ARM_AM::getT2SOImmVal(Inst.getOperand(2).getImm()) == -1)
   8116       break;
   8117     Inst.setOpcode(ARM::t2SUBri);
   8118     Inst.addOperand(MCOperand::CreateReg(0)); // cc_out
   8119     break;
   8120   case ARM::tADDi8:
   8121     // If the immediate is in the range 0-7, we want tADDi3 iff Rd was
   8122     // explicitly specified. From the ARM ARM: "Encoding T1 is preferred
   8123     // to encoding T2 if <Rd> is specified and encoding T2 is preferred
   8124     // to encoding T1 if <Rd> is omitted."
   8125     if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) {
   8126       Inst.setOpcode(ARM::tADDi3);
   8127       return true;
   8128     }
   8129     break;
   8130   case ARM::tSUBi8:
   8131     // If the immediate is in the range 0-7, we want tADDi3 iff Rd was
   8132     // explicitly specified. From the ARM ARM: "Encoding T1 is preferred
   8133     // to encoding T2 if <Rd> is specified and encoding T2 is preferred
   8134     // to encoding T1 if <Rd> is omitted."
   8135     if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) {
   8136       Inst.setOpcode(ARM::tSUBi3);
   8137       return true;
   8138     }
   8139     break;
   8140   case ARM::t2ADDri:
   8141   case ARM::t2SUBri: {
   8142     // If the destination and first source operand are the same, and
   8143     // the flags are compatible with the current IT status, use encoding T2
   8144     // instead of T3. For compatibility with the system 'as'. Make sure the
   8145     // wide encoding wasn't explicit.
   8146     if (Inst.getOperand(0).getReg() != Inst.getOperand(1).getReg() ||
   8147         !isARMLowRegister(Inst.getOperand(0).getReg()) ||
   8148         (unsigned)Inst.getOperand(2).getImm() > 255 ||
   8149         ((!inITBlock() && Inst.getOperand(5).getReg() != ARM::CPSR) ||
   8150          (inITBlock() && Inst.getOperand(5).getReg() != 0)) ||
   8151         (static_cast<ARMOperand &>(*Operands[3]).isToken() &&
   8152          static_cast<ARMOperand &>(*Operands[3]).getToken() == ".w"))
   8153       break;
   8154     MCInst TmpInst;
   8155     TmpInst.setOpcode(Inst.getOpcode() == ARM::t2ADDri ?
   8156                       ARM::tADDi8 : ARM::tSUBi8);
   8157     TmpInst.addOperand(Inst.getOperand(0));
   8158     TmpInst.addOperand(Inst.getOperand(5));
   8159     TmpInst.addOperand(Inst.getOperand(0));
   8160     TmpInst.addOperand(Inst.getOperand(2));
   8161     TmpInst.addOperand(Inst.getOperand(3));
   8162     TmpInst.addOperand(Inst.getOperand(4));
   8163     Inst = TmpInst;
   8164     return true;
   8165   }
   8166   case ARM::t2ADDrr: {
   8167     // If the destination and first source operand are the same, and
   8168     // there's no setting of the flags, use encoding T2 instead of T3.
   8169     // Note that this is only for ADD, not SUB. This mirrors the system
   8170     // 'as' behaviour. Make sure the wide encoding wasn't explicit.
   8171     if (Inst.getOperand(0).getReg() != Inst.getOperand(1).getReg() ||
   8172         Inst.getOperand(5).getReg() != 0 ||
   8173         (static_cast<ARMOperand &>(*Operands[3]).isToken() &&
   8174          static_cast<ARMOperand &>(*Operands[3]).getToken() == ".w"))
   8175       break;
   8176     MCInst TmpInst;
   8177     TmpInst.setOpcode(ARM::tADDhirr);
   8178     TmpInst.addOperand(Inst.getOperand(0));
   8179     TmpInst.addOperand(Inst.getOperand(0));
   8180     TmpInst.addOperand(Inst.getOperand(2));
   8181     TmpInst.addOperand(Inst.getOperand(3));
   8182     TmpInst.addOperand(Inst.getOperand(4));
   8183     Inst = TmpInst;
   8184     return true;
   8185   }
   8186   case ARM::tADDrSP: {
   8187     // If the non-SP source operand and the destination operand are not the
   8188     // same, we need to use the 32-bit encoding if it's available.
   8189     if (Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) {
   8190       Inst.setOpcode(ARM::t2ADDrr);
   8191       Inst.addOperand(MCOperand::CreateReg(0)); // cc_out
   8192       return true;
   8193     }
   8194     break;
   8195   }
   8196   case ARM::tB:
   8197     // A Thumb conditional branch outside of an IT block is a tBcc.
   8198     if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()) {
   8199       Inst.setOpcode(ARM::tBcc);
   8200       return true;
   8201     }
   8202     break;
   8203   case ARM::t2B:
   8204     // A Thumb2 conditional branch outside of an IT block is a t2Bcc.
   8205     if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()){
   8206       Inst.setOpcode(ARM::t2Bcc);
   8207       return true;
   8208     }
   8209     break;
   8210   case ARM::t2Bcc:
   8211     // If the conditional is AL or we're in an IT block, we really want t2B.
   8212     if (Inst.getOperand(1).getImm() == ARMCC::AL || inITBlock()) {
   8213       Inst.setOpcode(ARM::t2B);
   8214       return true;
   8215     }
   8216     break;
   8217   case ARM::tBcc:
   8218     // If the conditional is AL, we really want tB.
   8219     if (Inst.getOperand(1).getImm() == ARMCC::AL) {
   8220       Inst.setOpcode(ARM::tB);
   8221       return true;
   8222     }
   8223     break;
   8224   case ARM::tLDMIA: {
   8225     // If the register list contains any high registers, or if the writeback
   8226     // doesn't match what tLDMIA can do, we need to use the 32-bit encoding
   8227     // instead if we're in Thumb2. Otherwise, this should have generated
   8228     // an error in validateInstruction().
   8229     unsigned Rn = Inst.getOperand(0).getReg();
   8230     bool hasWritebackToken =
   8231         (static_cast<ARMOperand &>(*Operands[3]).isToken() &&
   8232          static_cast<ARMOperand &>(*Operands[3]).getToken() == "!");
   8233     bool listContainsBase;
   8234     if (checkLowRegisterList(Inst, 3, Rn, 0, listContainsBase) ||
   8235         (!listContainsBase && !hasWritebackToken) ||
   8236         (listContainsBase && hasWritebackToken)) {
   8237       // 16-bit encoding isn't sufficient. Switch to the 32-bit version.
   8238       assert (isThumbTwo());
   8239       Inst.setOpcode(hasWritebackToken ? ARM::t2LDMIA_UPD : ARM::t2LDMIA);
   8240       // If we're switching to the updating version, we need to insert
   8241       // the writeback tied operand.
   8242       if (hasWritebackToken)
   8243         Inst.insert(Inst.begin(),
   8244                     MCOperand::CreateReg(Inst.getOperand(0).getReg()));
   8245       return true;
   8246     }
   8247     break;
   8248   }
   8249   case ARM::tSTMIA_UPD: {
   8250     // If the register list contains any high registers, we need to use
   8251     // the 32-bit encoding instead if we're in Thumb2. Otherwise, this
   8252     // should have generated an error in validateInstruction().
   8253     unsigned Rn = Inst.getOperand(0).getReg();
   8254     bool listContainsBase;
   8255     if (checkLowRegisterList(Inst, 4, Rn, 0, listContainsBase)) {
   8256       // 16-bit encoding isn't sufficient. Switch to the 32-bit version.
   8257       assert (isThumbTwo());
   8258       Inst.setOpcode(ARM::t2STMIA_UPD);
   8259       return true;
   8260     }
   8261     break;
   8262   }
   8263   case ARM::tPOP: {
   8264     bool listContainsBase;
   8265     // If the register list contains any high registers, we need to use
   8266     // the 32-bit encoding instead if we're in Thumb2. Otherwise, this
   8267     // should have generated an error in validateInstruction().
   8268     if (!checkLowRegisterList(Inst, 2, 0, ARM::PC, listContainsBase))
   8269       return false;
   8270     assert (isThumbTwo());
   8271     Inst.setOpcode(ARM::t2LDMIA_UPD);
   8272     // Add the base register and writeback operands.
   8273     Inst.insert(Inst.begin(), MCOperand::CreateReg(ARM::SP));
   8274     Inst.insert(Inst.begin(), MCOperand::CreateReg(ARM::SP));
   8275     return true;
   8276   }
   8277   case ARM::tPUSH: {
   8278     bool listContainsBase;
   8279     if (!checkLowRegisterList(Inst, 2, 0, ARM::LR, listContainsBase))
   8280       return false;
   8281     assert (isThumbTwo());
   8282     Inst.setOpcode(ARM::t2STMDB_UPD);
   8283     // Add the base register and writeback operands.
   8284     Inst.insert(Inst.begin(), MCOperand::CreateReg(ARM::SP));
   8285     Inst.insert(Inst.begin(), MCOperand::CreateReg(ARM::SP));
   8286     return true;
   8287   }
   8288   case ARM::t2MOVi: {
   8289     // If we can use the 16-bit encoding and the user didn't explicitly
   8290     // request the 32-bit variant, transform it here.
   8291     if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
   8292         (unsigned)Inst.getOperand(1).getImm() <= 255 &&
   8293         ((!inITBlock() && Inst.getOperand(2).getImm() == ARMCC::AL &&
   8294           Inst.getOperand(4).getReg() == ARM::CPSR) ||
   8295          (inITBlock() && Inst.getOperand(4).getReg() == 0)) &&
   8296         (!static_cast<ARMOperand &>(*Operands[2]).isToken() ||
   8297          static_cast<ARMOperand &>(*Operands[2]).getToken() != ".w")) {
   8298       // The operands aren't in the same order for tMOVi8...
   8299       MCInst TmpInst;
   8300       TmpInst.setOpcode(ARM::tMOVi8);
   8301       TmpInst.addOperand(Inst.getOperand(0));
   8302       TmpInst.addOperand(Inst.getOperand(4));
   8303       TmpInst.addOperand(Inst.getOperand(1));
   8304       TmpInst.addOperand(Inst.getOperand(2));
   8305       TmpInst.addOperand(Inst.getOperand(3));
   8306       Inst = TmpInst;
   8307       return true;
   8308     }
   8309     break;
   8310   }
   8311   case ARM::t2MOVr: {
   8312     // If we can use the 16-bit encoding and the user didn't explicitly
   8313     // request the 32-bit variant, transform it here.
   8314     if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
   8315         isARMLowRegister(Inst.getOperand(1).getReg()) &&
   8316         Inst.getOperand(2).getImm() == ARMCC::AL &&
   8317         Inst.getOperand(4).getReg() == ARM::CPSR &&
   8318         (!static_cast<ARMOperand &>(*Operands[2]).isToken() ||
   8319          static_cast<ARMOperand &>(*Operands[2]).getToken() != ".w")) {
   8320       // The operands aren't the same for tMOV[S]r... (no cc_out)
   8321       MCInst TmpInst;
   8322       TmpInst.setOpcode(Inst.getOperand(4).getReg() ? ARM::tMOVSr : ARM::tMOVr);
   8323       TmpInst.addOperand(Inst.getOperand(0));
   8324       TmpInst.addOperand(Inst.getOperand(1));
   8325       TmpInst.addOperand(Inst.getOperand(2));
   8326       TmpInst.addOperand(Inst.getOperand(3));
   8327       Inst = TmpInst;
   8328       return true;
   8329     }
   8330     break;
   8331   }
   8332   case ARM::t2SXTH:
   8333   case ARM::t2SXTB:
   8334   case ARM::t2UXTH:
   8335   case ARM::t2UXTB: {
   8336     // If we can use the 16-bit encoding and the user didn't explicitly
   8337     // request the 32-bit variant, transform it here.
   8338     if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
   8339         isARMLowRegister(Inst.getOperand(1).getReg()) &&
   8340         Inst.getOperand(2).getImm() == 0 &&
   8341         (!static_cast<ARMOperand &>(*Operands[2]).isToken() ||
   8342          static_cast<ARMOperand &>(*Operands[2]).getToken() != ".w")) {
   8343       unsigned NewOpc;
   8344       switch (Inst.getOpcode()) {
   8345       default: llvm_unreachable("Illegal opcode!");
   8346       case ARM::t2SXTH: NewOpc = ARM::tSXTH; break;
   8347       case ARM::t2SXTB: NewOpc = ARM::tSXTB; break;
   8348       case ARM::t2UXTH: NewOpc = ARM::tUXTH; break;
   8349       case ARM::t2UXTB: NewOpc = ARM::tUXTB; break;
   8350       }
   8351       // The operands aren't the same for thumb1 (no rotate operand).
   8352       MCInst TmpInst;
   8353       TmpInst.setOpcode(NewOpc);
   8354       TmpInst.addOperand(Inst.getOperand(0));
   8355       TmpInst.addOperand(Inst.getOperand(1));
   8356       TmpInst.addOperand(Inst.getOperand(3));
   8357       TmpInst.addOperand(Inst.getOperand(4));
   8358       Inst = TmpInst;
   8359       return true;
   8360     }
   8361     break;
   8362   }
   8363   case ARM::MOVsi: {
   8364     ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(2).getImm());
   8365     // rrx shifts and asr/lsr of #32 is encoded as 0
   8366     if (SOpc == ARM_AM::rrx || SOpc == ARM_AM::asr || SOpc == ARM_AM::lsr)
   8367       return false;
   8368     if (ARM_AM::getSORegOffset(Inst.getOperand(2).getImm()) == 0) {
   8369       // Shifting by zero is accepted as a vanilla 'MOVr'
   8370       MCInst TmpInst;
   8371       TmpInst.setOpcode(ARM::MOVr);
   8372       TmpInst.addOperand(Inst.getOperand(0));
   8373       TmpInst.addOperand(Inst.getOperand(1));
   8374       TmpInst.addOperand(Inst.getOperand(3));
   8375       TmpInst.addOperand(Inst.getOperand(4));
   8376       TmpInst.addOperand(Inst.getOperand(5));
   8377       Inst = TmpInst;
   8378       return true;
   8379     }
   8380     return false;
   8381   }
   8382   case ARM::ANDrsi:
   8383   case ARM::ORRrsi:
   8384   case ARM::EORrsi:
   8385   case ARM::BICrsi:
   8386   case ARM::SUBrsi:
   8387   case ARM::ADDrsi: {
   8388     unsigned newOpc;
   8389     ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(3).getImm());
   8390     if (SOpc == ARM_AM::rrx) return false;
   8391     switch (Inst.getOpcode()) {
   8392     default: llvm_unreachable("unexpected opcode!");
   8393     case ARM::ANDrsi: newOpc = ARM::ANDrr; break;
   8394     case ARM::ORRrsi: newOpc = ARM::ORRrr; break;
   8395     case ARM::EORrsi: newOpc = ARM::EORrr; break;
   8396     case ARM::BICrsi: newOpc = ARM::BICrr; break;
   8397     case ARM::SUBrsi: newOpc = ARM::SUBrr; break;
   8398     case ARM::ADDrsi: newOpc = ARM::ADDrr; break;
   8399     }
   8400     // If the shift is by zero, use the non-shifted instruction definition.
   8401     // The exception is for right shifts, where 0 == 32
   8402     if (ARM_AM::getSORegOffset(Inst.getOperand(3).getImm()) == 0 &&
   8403         !(SOpc == ARM_AM::lsr || SOpc == ARM_AM::asr)) {
   8404       MCInst TmpInst;
   8405       TmpInst.setOpcode(newOpc);
   8406       TmpInst.addOperand(Inst.getOperand(0));
   8407       TmpInst.addOperand(Inst.getOperand(1));
   8408       TmpInst.addOperand(Inst.getOperand(2));
   8409       TmpInst.addOperand(Inst.getOperand(4));
   8410       TmpInst.addOperand(Inst.getOperand(5));
   8411       TmpInst.addOperand(Inst.getOperand(6));
   8412       Inst = TmpInst;
   8413       return true;
   8414     }
   8415     return false;
   8416   }
   8417   case ARM::ITasm:
   8418   case ARM::t2IT: {
   8419     // The mask bits for all but the first condition are represented as
   8420     // the low bit of the condition code value implies 't'. We currently
   8421     // always have 1 implies 't', so XOR toggle the bits if the low bit
   8422     // of the condition code is zero.
   8423     MCOperand &MO = Inst.getOperand(1);
   8424     unsigned Mask = MO.getImm();
   8425     unsigned OrigMask = Mask;
   8426     unsigned TZ = countTrailingZeros(Mask);
   8427     if ((Inst.getOperand(0).getImm() & 1) == 0) {
   8428       assert(Mask && TZ <= 3 && "illegal IT mask value!");
   8429       Mask ^= (0xE << TZ) & 0xF;
   8430     }
   8431     MO.setImm(Mask);
   8432 
   8433     // Set up the IT block state according to the IT instruction we just
   8434     // matched.
   8435     assert(!inITBlock() && "nested IT blocks?!");
   8436     ITState.Cond = ARMCC::CondCodes(Inst.getOperand(0).getImm());
   8437     ITState.Mask = OrigMask; // Use the original mask, not the updated one.
   8438     ITState.CurPosition = 0;
   8439     ITState.FirstCond = true;
   8440     break;
   8441   }
   8442   case ARM::t2LSLrr:
   8443   case ARM::t2LSRrr:
   8444   case ARM::t2ASRrr:
   8445   case ARM::t2SBCrr:
   8446   case ARM::t2RORrr:
   8447   case ARM::t2BICrr:
   8448   {
   8449     // Assemblers should use the narrow encodings of these instructions when permissible.
   8450     if ((isARMLowRegister(Inst.getOperand(1).getReg()) &&
   8451          isARMLowRegister(Inst.getOperand(2).getReg())) &&
   8452         Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() &&
   8453         ((!inITBlock() && Inst.getOperand(5).getReg() == ARM::CPSR) ||
   8454          (inITBlock() && Inst.getOperand(5).getReg() != ARM::CPSR)) &&
   8455         (!static_cast<ARMOperand &>(*Operands[3]).isToken() ||
   8456          !static_cast<ARMOperand &>(*Operands[3]).getToken().equals_lower(
   8457              ".w"))) {
   8458       unsigned NewOpc;
   8459       switch (Inst.getOpcode()) {
   8460         default: llvm_unreachable("unexpected opcode");
   8461         case ARM::t2LSLrr: NewOpc = ARM::tLSLrr; break;
   8462         case ARM::t2LSRrr: NewOpc = ARM::tLSRrr; break;
   8463         case ARM::t2ASRrr: NewOpc = ARM::tASRrr; break;
   8464         case ARM::t2SBCrr: NewOpc = ARM::tSBC; break;
   8465         case ARM::t2RORrr: NewOpc = ARM::tROR; break;
   8466         case ARM::t2BICrr: NewOpc = ARM::tBIC; break;
   8467       }
   8468       MCInst TmpInst;
   8469       TmpInst.setOpcode(NewOpc);
   8470       TmpInst.addOperand(Inst.getOperand(0));
   8471       TmpInst.addOperand(Inst.getOperand(5));
   8472       TmpInst.addOperand(Inst.getOperand(1));
   8473       TmpInst.addOperand(Inst.getOperand(2));
   8474       TmpInst.addOperand(Inst.getOperand(3));
   8475       TmpInst.addOperand(Inst.getOperand(4));
   8476       Inst = TmpInst;
   8477       return true;
   8478     }
   8479     return false;
   8480   }
   8481   case ARM::t2ANDrr:
   8482   case ARM::t2EORrr:
   8483   case ARM::t2ADCrr:
   8484   case ARM::t2ORRrr:
   8485   {
   8486     // Assemblers should use the narrow encodings of these instructions when permissible.
   8487     // These instructions are special in that they are commutable, so shorter encodings
   8488     // are available more often.
   8489     if ((isARMLowRegister(Inst.getOperand(1).getReg()) &&
   8490          isARMLowRegister(Inst.getOperand(2).getReg())) &&
   8491         (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() ||
   8492          Inst.getOperand(0).getReg() == Inst.getOperand(2).getReg()) &&
   8493         ((!inITBlock() && Inst.getOperand(5).getReg() == ARM::CPSR) ||
   8494          (inITBlock() && Inst.getOperand(5).getReg() != ARM::CPSR)) &&
   8495         (!static_cast<ARMOperand &>(*Operands[3]).isToken() ||
   8496          !static_cast<ARMOperand &>(*Operands[3]).getToken().equals_lower(
   8497              ".w"))) {
   8498       unsigned NewOpc;
   8499       switch (Inst.getOpcode()) {
   8500         default: llvm_unreachable("unexpected opcode");
   8501         case ARM::t2ADCrr: NewOpc = ARM::tADC; break;
   8502         case ARM::t2ANDrr: NewOpc = ARM::tAND; break;
   8503         case ARM::t2EORrr: NewOpc = ARM::tEOR; break;
   8504         case ARM::t2ORRrr: NewOpc = ARM::tORR; break;
   8505       }
   8506       MCInst TmpInst;
   8507       TmpInst.setOpcode(NewOpc);
   8508       TmpInst.addOperand(Inst.getOperand(0));
   8509       TmpInst.addOperand(Inst.getOperand(5));
   8510       if (Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg()) {
   8511         TmpInst.addOperand(Inst.getOperand(1));
   8512         TmpInst.addOperand(Inst.getOperand(2));
   8513       } else {
   8514         TmpInst.addOperand(Inst.getOperand(2));
   8515         TmpInst.addOperand(Inst.getOperand(1));
   8516       }
   8517       TmpInst.addOperand(Inst.getOperand(3));
   8518       TmpInst.addOperand(Inst.getOperand(4));
   8519       Inst = TmpInst;
   8520       return true;
   8521     }
   8522     return false;
   8523   }
   8524   }
   8525   return false;
   8526 }
   8527 
   8528 unsigned ARMAsmParser::checkTargetMatchPredicate(MCInst &Inst) {
   8529   // 16-bit thumb arithmetic instructions either require or preclude the 'S'
   8530   // suffix depending on whether they're in an IT block or not.
   8531   unsigned Opc = Inst.getOpcode();
   8532   const MCInstrDesc &MCID = MII.get(Opc);
   8533   if (MCID.TSFlags & ARMII::ThumbArithFlagSetting) {
   8534     assert(MCID.hasOptionalDef() &&
   8535            "optionally flag setting instruction missing optional def operand");
   8536     assert(MCID.NumOperands == Inst.getNumOperands() &&
   8537            "operand count mismatch!");
   8538     // Find the optional-def operand (cc_out).
   8539     unsigned OpNo;
   8540     for (OpNo = 0;
   8541          !MCID.OpInfo[OpNo].isOptionalDef() && OpNo < MCID.NumOperands;
   8542          ++OpNo)
   8543       ;
   8544     // If we're parsing Thumb1, reject it completely.
   8545     if (isThumbOne() && Inst.getOperand(OpNo).getReg() != ARM::CPSR)
   8546       return Match_MnemonicFail;
   8547     // If we're parsing Thumb2, which form is legal depends on whether we're
   8548     // in an IT block.
   8549     if (isThumbTwo() && Inst.getOperand(OpNo).getReg() != ARM::CPSR &&
   8550         !inITBlock())
   8551       return Match_RequiresITBlock;
   8552     if (isThumbTwo() && Inst.getOperand(OpNo).getReg() == ARM::CPSR &&
   8553         inITBlock())
   8554       return Match_RequiresNotITBlock;
   8555   }
   8556   // Some high-register supporting Thumb1 encodings only allow both registers
   8557   // to be from r0-r7 when in Thumb2.
   8558   else if (Opc == ARM::tADDhirr && isThumbOne() && !hasV6MOps() &&
   8559            isARMLowRegister(Inst.getOperand(1).getReg()) &&
   8560            isARMLowRegister(Inst.getOperand(2).getReg()))
   8561     return Match_RequiresThumb2;
   8562   // Others only require ARMv6 or later.
   8563   else if (Opc == ARM::tMOVr && isThumbOne() && !hasV6Ops() &&
   8564            isARMLowRegister(Inst.getOperand(0).getReg()) &&
   8565            isARMLowRegister(Inst.getOperand(1).getReg()))
   8566     return Match_RequiresV6;
   8567   return Match_Success;
   8568 }
   8569 
   8570 namespace llvm {
   8571 template <> inline bool IsCPSRDead<MCInst>(MCInst *Instr) {
   8572   return true; // In an assembly source, no need to second-guess
   8573 }
   8574 }
   8575 
   8576 static const char *getSubtargetFeatureName(uint64_t Val);
   8577 bool ARMAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
   8578                                            OperandVector &Operands,
   8579                                            MCStreamer &Out, uint64_t &ErrorInfo,
   8580                                            bool MatchingInlineAsm) {
   8581   MCInst Inst;
   8582   unsigned MatchResult;
   8583 
   8584   MatchResult = MatchInstructionImpl(Operands, Inst, ErrorInfo,
   8585                                      MatchingInlineAsm);
   8586   switch (MatchResult) {
   8587   case Match_Success:
   8588     // Context sensitive operand constraints aren't handled by the matcher,
   8589     // so check them here.
   8590     if (validateInstruction(Inst, Operands)) {
   8591       // Still progress the IT block, otherwise one wrong condition causes
   8592       // nasty cascading errors.
   8593       forwardITPosition();
   8594       return true;
   8595     }
   8596 
   8597     { // processInstruction() updates inITBlock state, we need to save it away
   8598       bool wasInITBlock = inITBlock();
   8599 
   8600       // Some instructions need post-processing to, for example, tweak which
   8601       // encoding is selected. Loop on it while changes happen so the
   8602       // individual transformations can chain off each other. E.g.,
   8603       // tPOP(r8)->t2LDMIA_UPD(sp,r8)->t2STR_POST(sp,r8)
   8604       while (processInstruction(Inst, Operands, Out))
   8605         ;
   8606 
   8607       // Only after the instruction is fully processed, we can validate it
   8608       if (wasInITBlock && hasV8Ops() && isThumb() &&
   8609           !isV8EligibleForIT(&Inst)) {
   8610         Warning(IDLoc, "deprecated instruction in IT block");
   8611       }
   8612     }
   8613 
   8614     // Only move forward at the very end so that everything in validate
   8615     // and process gets a consistent answer about whether we're in an IT
   8616     // block.
   8617     forwardITPosition();
   8618 
   8619     // ITasm is an ARM mode pseudo-instruction that just sets the ITblock and
   8620     // doesn't actually encode.
   8621     if (Inst.getOpcode() == ARM::ITasm)
   8622       return false;
   8623 
   8624     Inst.setLoc(IDLoc);
   8625     Out.EmitInstruction(Inst, STI);
   8626     return false;
   8627   case Match_MissingFeature: {
   8628     assert(ErrorInfo && "Unknown missing feature!");
   8629     // Special case the error message for the very common case where only
   8630     // a single subtarget feature is missing (Thumb vs. ARM, e.g.).
   8631     std::string Msg = "instruction requires:";
   8632     uint64_t Mask = 1;
   8633     for (unsigned i = 0; i < (sizeof(ErrorInfo)*8-1); ++i) {
   8634       if (ErrorInfo & Mask) {
   8635         Msg += " ";
   8636         Msg += getSubtargetFeatureName(ErrorInfo & Mask);
   8637       }
   8638       Mask <<= 1;
   8639     }
   8640     return Error(IDLoc, Msg);
   8641   }
   8642   case Match_InvalidOperand: {
   8643     SMLoc ErrorLoc = IDLoc;
   8644     if (ErrorInfo != ~0ULL) {
   8645       if (ErrorInfo >= Operands.size())
   8646         return Error(IDLoc, "too few operands for instruction");
   8647 
   8648       ErrorLoc = ((ARMOperand &)*Operands[ErrorInfo]).getStartLoc();
   8649       if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc;
   8650     }
   8651 
   8652     return Error(ErrorLoc, "invalid operand for instruction");
   8653   }
   8654   case Match_MnemonicFail:
   8655     return Error(IDLoc, "invalid instruction",
   8656                  ((ARMOperand &)*Operands[0]).getLocRange());
   8657   case Match_RequiresNotITBlock:
   8658     return Error(IDLoc, "flag setting instruction only valid outside IT block");
   8659   case Match_RequiresITBlock:
   8660     return Error(IDLoc, "instruction only valid inside IT block");
   8661   case Match_RequiresV6:
   8662     return Error(IDLoc, "instruction variant requires ARMv6 or later");
   8663   case Match_RequiresThumb2:
   8664     return Error(IDLoc, "instruction variant requires Thumb2");
   8665   case Match_ImmRange0_15: {
   8666     SMLoc ErrorLoc = ((ARMOperand &)*Operands[ErrorInfo]).getStartLoc();
   8667     if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc;
   8668     return Error(ErrorLoc, "immediate operand must be in the range [0,15]");
   8669   }
   8670   case Match_ImmRange0_239: {
   8671     SMLoc ErrorLoc = ((ARMOperand &)*Operands[ErrorInfo]).getStartLoc();
   8672     if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc;
   8673     return Error(ErrorLoc, "immediate operand must be in the range [0,239]");
   8674   }
   8675   case Match_AlignedMemoryRequiresNone:
   8676   case Match_DupAlignedMemoryRequiresNone:
   8677   case Match_AlignedMemoryRequires16:
   8678   case Match_DupAlignedMemoryRequires16:
   8679   case Match_AlignedMemoryRequires32:
   8680   case Match_DupAlignedMemoryRequires32:
   8681   case Match_AlignedMemoryRequires64:
   8682   case Match_DupAlignedMemoryRequires64:
   8683   case Match_AlignedMemoryRequires64or128:
   8684   case Match_DupAlignedMemoryRequires64or128:
   8685   case Match_AlignedMemoryRequires64or128or256:
   8686   {
   8687     SMLoc ErrorLoc = ((ARMOperand &)*Operands[ErrorInfo]).getAlignmentLoc();
   8688     if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc;
   8689     switch (MatchResult) {
   8690       default:
   8691         llvm_unreachable("Missing Match_Aligned type");
   8692       case Match_AlignedMemoryRequiresNone:
   8693       case Match_DupAlignedMemoryRequiresNone:
   8694         return Error(ErrorLoc, "alignment must be omitted");
   8695       case Match_AlignedMemoryRequires16:
   8696       case Match_DupAlignedMemoryRequires16:
   8697         return Error(ErrorLoc, "alignment must be 16 or omitted");
   8698       case Match_AlignedMemoryRequires32:
   8699       case Match_DupAlignedMemoryRequires32:
   8700         return Error(ErrorLoc, "alignment must be 32 or omitted");
   8701       case Match_AlignedMemoryRequires64:
   8702       case Match_DupAlignedMemoryRequires64:
   8703         return Error(ErrorLoc, "alignment must be 64 or omitted");
   8704       case Match_AlignedMemoryRequires64or128:
   8705       case Match_DupAlignedMemoryRequires64or128:
   8706         return Error(ErrorLoc, "alignment must be 64, 128 or omitted");
   8707       case Match_AlignedMemoryRequires64or128or256:
   8708         return Error(ErrorLoc, "alignment must be 64, 128, 256 or omitted");
   8709     }
   8710   }
   8711   }
   8712 
   8713   llvm_unreachable("Implement any new match types added!");
   8714 }
   8715 
   8716 /// parseDirective parses the arm specific directives
   8717 bool ARMAsmParser::ParseDirective(AsmToken DirectiveID) {
   8718   const MCObjectFileInfo::Environment Format =
   8719     getContext().getObjectFileInfo()->getObjectFileType();
   8720   bool IsMachO = Format == MCObjectFileInfo::IsMachO;
   8721   bool IsCOFF = Format == MCObjectFileInfo::IsCOFF;
   8722 
   8723   StringRef IDVal = DirectiveID.getIdentifier();
   8724   if (IDVal == ".word")
   8725     return parseLiteralValues(4, DirectiveID.getLoc());
   8726   else if (IDVal == ".short" || IDVal == ".hword")
   8727     return parseLiteralValues(2, DirectiveID.getLoc());
   8728   else if (IDVal == ".thumb")
   8729     return parseDirectiveThumb(DirectiveID.getLoc());
   8730   else if (IDVal == ".arm")
   8731     return parseDirectiveARM(DirectiveID.getLoc());
   8732   else if (IDVal == ".thumb_func")
   8733     return parseDirectiveThumbFunc(DirectiveID.getLoc());
   8734   else if (IDVal == ".code")
   8735     return parseDirectiveCode(DirectiveID.getLoc());
   8736   else if (IDVal == ".syntax")
   8737     return parseDirectiveSyntax(DirectiveID.getLoc());
   8738   else if (IDVal == ".unreq")
   8739     return parseDirectiveUnreq(DirectiveID.getLoc());
   8740   else if (IDVal == ".fnend")
   8741     return parseDirectiveFnEnd(DirectiveID.getLoc());
   8742   else if (IDVal == ".cantunwind")
   8743     return parseDirectiveCantUnwind(DirectiveID.getLoc());
   8744   else if (IDVal == ".personality")
   8745     return parseDirectivePersonality(DirectiveID.getLoc());
   8746   else if (IDVal == ".handlerdata")
   8747     return parseDirectiveHandlerData(DirectiveID.getLoc());
   8748   else if (IDVal == ".setfp")
   8749     return parseDirectiveSetFP(DirectiveID.getLoc());
   8750   else if (IDVal == ".pad")
   8751     return parseDirectivePad(DirectiveID.getLoc());
   8752   else if (IDVal == ".save")
   8753     return parseDirectiveRegSave(DirectiveID.getLoc(), false);
   8754   else if (IDVal == ".vsave")
   8755     return parseDirectiveRegSave(DirectiveID.getLoc(), true);
   8756   else if (IDVal == ".ltorg" || IDVal == ".pool")
   8757     return parseDirectiveLtorg(DirectiveID.getLoc());
   8758   else if (IDVal == ".even")
   8759     return parseDirectiveEven(DirectiveID.getLoc());
   8760   else if (IDVal == ".personalityindex")
   8761     return parseDirectivePersonalityIndex(DirectiveID.getLoc());
   8762   else if (IDVal == ".unwind_raw")
   8763     return parseDirectiveUnwindRaw(DirectiveID.getLoc());
   8764   else if (IDVal == ".movsp")
   8765     return parseDirectiveMovSP(DirectiveID.getLoc());
   8766   else if (IDVal == ".arch_extension")
   8767     return parseDirectiveArchExtension(DirectiveID.getLoc());
   8768   else if (IDVal == ".align")
   8769     return parseDirectiveAlign(DirectiveID.getLoc());
   8770   else if (IDVal == ".thumb_set")
   8771     return parseDirectiveThumbSet(DirectiveID.getLoc());
   8772 
   8773   if (!IsMachO && !IsCOFF) {
   8774     if (IDVal == ".arch")
   8775       return parseDirectiveArch(DirectiveID.getLoc());
   8776     else if (IDVal == ".cpu")
   8777       return parseDirectiveCPU(DirectiveID.getLoc());
   8778     else if (IDVal == ".eabi_attribute")
   8779       return parseDirectiveEabiAttr(DirectiveID.getLoc());
   8780     else if (IDVal == ".fpu")
   8781       return parseDirectiveFPU(DirectiveID.getLoc());
   8782     else if (IDVal == ".fnstart")
   8783       return parseDirectiveFnStart(DirectiveID.getLoc());
   8784     else if (IDVal == ".inst")
   8785       return parseDirectiveInst(DirectiveID.getLoc());
   8786     else if (IDVal == ".inst.n")
   8787       return parseDirectiveInst(DirectiveID.getLoc(), 'n');
   8788     else if (IDVal == ".inst.w")
   8789       return parseDirectiveInst(DirectiveID.getLoc(), 'w');
   8790     else if (IDVal == ".object_arch")
   8791       return parseDirectiveObjectArch(DirectiveID.getLoc());
   8792     else if (IDVal == ".tlsdescseq")
   8793       return parseDirectiveTLSDescSeq(DirectiveID.getLoc());
   8794   }
   8795 
   8796   return true;
   8797 }
   8798 
   8799 /// parseLiteralValues
   8800 ///  ::= .hword expression [, expression]*
   8801 ///  ::= .short expression [, expression]*
   8802 ///  ::= .word expression [, expression]*
   8803 bool ARMAsmParser::parseLiteralValues(unsigned Size, SMLoc L) {
   8804   MCAsmParser &Parser = getParser();
   8805   if (getLexer().isNot(AsmToken::EndOfStatement)) {
   8806     for (;;) {
   8807       const MCExpr *Value;
   8808       if (getParser().parseExpression(Value)) {
   8809         Parser.eatToEndOfStatement();
   8810         return false;
   8811       }
   8812 
   8813       getParser().getStreamer().EmitValue(Value, Size);
   8814 
   8815       if (getLexer().is(AsmToken::EndOfStatement))
   8816         break;
   8817 
   8818       // FIXME: Improve diagnostic.
   8819       if (getLexer().isNot(AsmToken::Comma)) {
   8820         Error(L, "unexpected token in directive");
   8821         return false;
   8822       }
   8823       Parser.Lex();
   8824     }
   8825   }
   8826 
   8827   Parser.Lex();
   8828   return false;
   8829 }
   8830 
   8831 /// parseDirectiveThumb
   8832 ///  ::= .thumb
   8833 bool ARMAsmParser::parseDirectiveThumb(SMLoc L) {
   8834   MCAsmParser &Parser = getParser();
   8835   if (getLexer().isNot(AsmToken::EndOfStatement)) {
   8836     Error(L, "unexpected token in directive");
   8837     return false;
   8838   }
   8839   Parser.Lex();
   8840 
   8841   if (!hasThumb()) {
   8842     Error(L, "target does not support Thumb mode");
   8843     return false;
   8844   }
   8845 
   8846   if (!isThumb())
   8847     SwitchMode();
   8848 
   8849   getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16);
   8850   return false;
   8851 }
   8852 
   8853 /// parseDirectiveARM
   8854 ///  ::= .arm
   8855 bool ARMAsmParser::parseDirectiveARM(SMLoc L) {
   8856   MCAsmParser &Parser = getParser();
   8857   if (getLexer().isNot(AsmToken::EndOfStatement)) {
   8858     Error(L, "unexpected token in directive");
   8859     return false;
   8860   }
   8861   Parser.Lex();
   8862 
   8863   if (!hasARM()) {
   8864     Error(L, "target does not support ARM mode");
   8865     return false;
   8866   }
   8867 
   8868   if (isThumb())
   8869     SwitchMode();
   8870 
   8871   getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32);
   8872   return false;
   8873 }
   8874 
   8875 void ARMAsmParser::onLabelParsed(MCSymbol *Symbol) {
   8876   if (NextSymbolIsThumb) {
   8877     getParser().getStreamer().EmitThumbFunc(Symbol);
   8878     NextSymbolIsThumb = false;
   8879   }
   8880 }
   8881 
   8882 /// parseDirectiveThumbFunc
   8883 ///  ::= .thumbfunc symbol_name
   8884 bool ARMAsmParser::parseDirectiveThumbFunc(SMLoc L) {
   8885   MCAsmParser &Parser = getParser();
   8886   const auto Format = getContext().getObjectFileInfo()->getObjectFileType();
   8887   bool IsMachO = Format == MCObjectFileInfo::IsMachO;
   8888 
   8889   // Darwin asm has (optionally) function name after .thumb_func direction
   8890   // ELF doesn't
   8891   if (IsMachO) {
   8892     const AsmToken &Tok = Parser.getTok();
   8893     if (Tok.isNot(AsmToken::EndOfStatement)) {
   8894       if (Tok.isNot(AsmToken::Identifier) && Tok.isNot(AsmToken::String)) {
   8895         Error(L, "unexpected token in .thumb_func directive");
   8896         return false;
   8897       }
   8898 
   8899       MCSymbol *Func =
   8900           getParser().getContext().GetOrCreateSymbol(Tok.getIdentifier());
   8901       getParser().getStreamer().EmitThumbFunc(Func);
   8902       Parser.Lex(); // Consume the identifier token.
   8903       return false;
   8904     }
   8905   }
   8906 
   8907   if (getLexer().isNot(AsmToken::EndOfStatement)) {
   8908     Error(Parser.getTok().getLoc(), "unexpected token in directive");
   8909     Parser.eatToEndOfStatement();
   8910     return false;
   8911   }
   8912 
   8913   NextSymbolIsThumb = true;
   8914   return false;
   8915 }
   8916 
   8917 /// parseDirectiveSyntax
   8918 ///  ::= .syntax unified | divided
   8919 bool ARMAsmParser::parseDirectiveSyntax(SMLoc L) {
   8920   MCAsmParser &Parser = getParser();
   8921   const AsmToken &Tok = Parser.getTok();
   8922   if (Tok.isNot(AsmToken::Identifier)) {
   8923     Error(L, "unexpected token in .syntax directive");
   8924     return false;
   8925   }
   8926 
   8927   StringRef Mode = Tok.getString();
   8928   if (Mode == "unified" || Mode == "UNIFIED") {
   8929     Parser.Lex();
   8930   } else if (Mode == "divided" || Mode == "DIVIDED") {
   8931     Error(L, "'.syntax divided' arm asssembly not supported");
   8932     return false;
   8933   } else {
   8934     Error(L, "unrecognized syntax mode in .syntax directive");
   8935     return false;
   8936   }
   8937 
   8938   if (getLexer().isNot(AsmToken::EndOfStatement)) {
   8939     Error(Parser.getTok().getLoc(), "unexpected token in directive");
   8940     return false;
   8941   }
   8942   Parser.Lex();
   8943 
   8944   // TODO tell the MC streamer the mode
   8945   // getParser().getStreamer().Emit???();
   8946   return false;
   8947 }
   8948 
   8949 /// parseDirectiveCode
   8950 ///  ::= .code 16 | 32
   8951 bool ARMAsmParser::parseDirectiveCode(SMLoc L) {
   8952   MCAsmParser &Parser = getParser();
   8953   const AsmToken &Tok = Parser.getTok();
   8954   if (Tok.isNot(AsmToken::Integer)) {
   8955     Error(L, "unexpected token in .code directive");
   8956     return false;
   8957   }
   8958   int64_t Val = Parser.getTok().getIntVal();
   8959   if (Val != 16 && Val != 32) {
   8960     Error(L, "invalid operand to .code directive");
   8961     return false;
   8962   }
   8963   Parser.Lex();
   8964 
   8965   if (getLexer().isNot(AsmToken::EndOfStatement)) {
   8966     Error(Parser.getTok().getLoc(), "unexpected token in directive");
   8967     return false;
   8968   }
   8969   Parser.Lex();
   8970 
   8971   if (Val == 16) {
   8972     if (!hasThumb()) {
   8973       Error(L, "target does not support Thumb mode");
   8974       return false;
   8975     }
   8976 
   8977     if (!isThumb())
   8978       SwitchMode();
   8979     getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16);
   8980   } else {
   8981     if (!hasARM()) {
   8982       Error(L, "target does not support ARM mode");
   8983       return false;
   8984     }
   8985 
   8986     if (isThumb())
   8987       SwitchMode();
   8988     getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32);
   8989   }
   8990 
   8991   return false;
   8992 }
   8993 
   8994 /// parseDirectiveReq
   8995 ///  ::= name .req registername
   8996 bool ARMAsmParser::parseDirectiveReq(StringRef Name, SMLoc L) {
   8997   MCAsmParser &Parser = getParser();
   8998   Parser.Lex(); // Eat the '.req' token.
   8999   unsigned Reg;
   9000   SMLoc SRegLoc, ERegLoc;
   9001   if (ParseRegister(Reg, SRegLoc, ERegLoc)) {
   9002     Parser.eatToEndOfStatement();
   9003     Error(SRegLoc, "register name expected");
   9004     return false;
   9005   }
   9006 
   9007   // Shouldn't be anything else.
   9008   if (Parser.getTok().isNot(AsmToken::EndOfStatement)) {
   9009     Parser.eatToEndOfStatement();
   9010     Error(Parser.getTok().getLoc(), "unexpected input in .req directive.");
   9011     return false;
   9012   }
   9013 
   9014   Parser.Lex(); // Consume the EndOfStatement
   9015 
   9016   if (RegisterReqs.insert(std::make_pair(Name, Reg)).first->second != Reg) {
   9017     Error(SRegLoc, "redefinition of '" + Name + "' does not match original.");
   9018     return false;
   9019   }
   9020 
   9021   return false;
   9022 }
   9023 
   9024 /// parseDirectiveUneq
   9025 ///  ::= .unreq registername
   9026 bool ARMAsmParser::parseDirectiveUnreq(SMLoc L) {
   9027   MCAsmParser &Parser = getParser();
   9028   if (Parser.getTok().isNot(AsmToken::Identifier)) {
   9029     Parser.eatToEndOfStatement();
   9030     Error(L, "unexpected input in .unreq directive.");
   9031     return false;
   9032   }
   9033   RegisterReqs.erase(Parser.getTok().getIdentifier().lower());
   9034   Parser.Lex(); // Eat the identifier.
   9035   return false;
   9036 }
   9037 
   9038 /// parseDirectiveArch
   9039 ///  ::= .arch token
   9040 bool ARMAsmParser::parseDirectiveArch(SMLoc L) {
   9041   StringRef Arch = getParser().parseStringToEndOfStatement().trim();
   9042 
   9043   unsigned ID = StringSwitch<unsigned>(Arch)
   9044 #define ARM_ARCH_NAME(NAME, ID, DEFAULT_CPU_NAME, DEFAULT_CPU_ARCH) \
   9045     .Case(NAME, ARM::ID)
   9046 #define ARM_ARCH_ALIAS(NAME, ID) \
   9047     .Case(NAME, ARM::ID)
   9048 #include "MCTargetDesc/ARMArchName.def"
   9049     .Default(ARM::INVALID_ARCH);
   9050 
   9051   if (ID == ARM::INVALID_ARCH) {
   9052     Error(L, "Unknown arch name");
   9053     return false;
   9054   }
   9055 
   9056   getTargetStreamer().emitArch(ID);
   9057   return false;
   9058 }
   9059 
   9060 /// parseDirectiveEabiAttr
   9061 ///  ::= .eabi_attribute int, int [, "str"]
   9062 ///  ::= .eabi_attribute Tag_name, int [, "str"]
   9063 bool ARMAsmParser::parseDirectiveEabiAttr(SMLoc L) {
   9064   MCAsmParser &Parser = getParser();
   9065   int64_t Tag;
   9066   SMLoc TagLoc;
   9067   TagLoc = Parser.getTok().getLoc();
   9068   if (Parser.getTok().is(AsmToken::Identifier)) {
   9069     StringRef Name = Parser.getTok().getIdentifier();
   9070     Tag = ARMBuildAttrs::AttrTypeFromString(Name);
   9071     if (Tag == -1) {
   9072       Error(TagLoc, "attribute name not recognised: " + Name);
   9073       Parser.eatToEndOfStatement();
   9074       return false;
   9075     }
   9076     Parser.Lex();
   9077   } else {
   9078     const MCExpr *AttrExpr;
   9079 
   9080     TagLoc = Parser.getTok().getLoc();
   9081     if (Parser.parseExpression(AttrExpr)) {
   9082       Parser.eatToEndOfStatement();
   9083       return false;
   9084     }
   9085 
   9086     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(AttrExpr);
   9087     if (!CE) {
   9088       Error(TagLoc, "expected numeric constant");
   9089       Parser.eatToEndOfStatement();
   9090       return false;
   9091     }
   9092 
   9093     Tag = CE->getValue();
   9094   }
   9095 
   9096   if (Parser.getTok().isNot(AsmToken::Comma)) {
   9097     Error(Parser.getTok().getLoc(), "comma expected");
   9098     Parser.eatToEndOfStatement();
   9099     return false;
   9100   }
   9101   Parser.Lex(); // skip comma
   9102 
   9103   StringRef StringValue = "";
   9104   bool IsStringValue = false;
   9105 
   9106   int64_t IntegerValue = 0;
   9107   bool IsIntegerValue = false;
   9108 
   9109   if (Tag == ARMBuildAttrs::CPU_raw_name || Tag == ARMBuildAttrs::CPU_name)
   9110     IsStringValue = true;
   9111   else if (Tag == ARMBuildAttrs::compatibility) {
   9112     IsStringValue = true;
   9113     IsIntegerValue = true;
   9114   } else if (Tag < 32 || Tag % 2 == 0)
   9115     IsIntegerValue = true;
   9116   else if (Tag % 2 == 1)
   9117     IsStringValue = true;
   9118   else
   9119     llvm_unreachable("invalid tag type");
   9120 
   9121   if (IsIntegerValue) {
   9122     const MCExpr *ValueExpr;
   9123     SMLoc ValueExprLoc = Parser.getTok().getLoc();
   9124     if (Parser.parseExpression(ValueExpr)) {
   9125       Parser.eatToEndOfStatement();
   9126       return false;
   9127     }
   9128 
   9129     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ValueExpr);
   9130     if (!CE) {
   9131       Error(ValueExprLoc, "expected numeric constant");
   9132       Parser.eatToEndOfStatement();
   9133       return false;
   9134     }
   9135 
   9136     IntegerValue = CE->getValue();
   9137   }
   9138 
   9139   if (Tag == ARMBuildAttrs::compatibility) {
   9140     if (Parser.getTok().isNot(AsmToken::Comma))
   9141       IsStringValue = false;
   9142     if (Parser.getTok().isNot(AsmToken::Comma)) {
   9143       Error(Parser.getTok().getLoc(), "comma expected");
   9144       Parser.eatToEndOfStatement();
   9145       return false;
   9146     } else {
   9147        Parser.Lex();
   9148     }
   9149   }
   9150 
   9151   if (IsStringValue) {
   9152     if (Parser.getTok().isNot(AsmToken::String)) {
   9153       Error(Parser.getTok().getLoc(), "bad string constant");
   9154       Parser.eatToEndOfStatement();
   9155       return false;
   9156     }
   9157 
   9158     StringValue = Parser.getTok().getStringContents();
   9159     Parser.Lex();
   9160   }
   9161 
   9162   if (IsIntegerValue && IsStringValue) {
   9163     assert(Tag == ARMBuildAttrs::compatibility);
   9164     getTargetStreamer().emitIntTextAttribute(Tag, IntegerValue, StringValue);
   9165   } else if (IsIntegerValue)
   9166     getTargetStreamer().emitAttribute(Tag, IntegerValue);
   9167   else if (IsStringValue)
   9168     getTargetStreamer().emitTextAttribute(Tag, StringValue);
   9169   return false;
   9170 }
   9171 
   9172 /// parseDirectiveCPU
   9173 ///  ::= .cpu str
   9174 bool ARMAsmParser::parseDirectiveCPU(SMLoc L) {
   9175   StringRef CPU = getParser().parseStringToEndOfStatement().trim();
   9176   getTargetStreamer().emitTextAttribute(ARMBuildAttrs::CPU_name, CPU);
   9177 
   9178   if (!STI.isCPUStringValid(CPU)) {
   9179     Error(L, "Unknown CPU name");
   9180     return false;
   9181   }
   9182 
   9183   // FIXME: This switches the CPU features globally, therefore it might
   9184   // happen that code you would not expect to assemble will. For details
   9185   // see: http://llvm.org/bugs/show_bug.cgi?id=20757
   9186   STI.InitMCProcessorInfo(CPU, "");
   9187   STI.InitCPUSchedModel(CPU);
   9188   setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
   9189 
   9190   return false;
   9191 }
   9192 
   9193 // FIXME: This is duplicated in getARMFPUFeatures() in
   9194 // tools/clang/lib/Driver/Tools.cpp
   9195 static const struct {
   9196   const unsigned ID;
   9197   const uint64_t Enabled;
   9198   const uint64_t Disabled;
   9199 } FPUs[] = {
   9200     {/* ID */ ARM::VFP,
   9201      /* Enabled */ ARM::FeatureVFP2,
   9202      /* Disabled */ ARM::FeatureNEON},
   9203     {/* ID */ ARM::VFPV2,
   9204      /* Enabled */ ARM::FeatureVFP2,
   9205      /* Disabled */ ARM::FeatureNEON},
   9206     {/* ID */ ARM::VFPV3,
   9207      /* Enabled */ ARM::FeatureVFP2 | ARM::FeatureVFP3,
   9208      /* Disabled */ ARM::FeatureNEON | ARM::FeatureD16},
   9209     {/* ID */ ARM::VFPV3_D16,
   9210      /* Enable */ ARM::FeatureVFP2 | ARM::FeatureVFP3 | ARM::FeatureD16,
   9211      /* Disabled */ ARM::FeatureNEON},
   9212     {/* ID */ ARM::VFPV4,
   9213      /* Enabled */ ARM::FeatureVFP2 | ARM::FeatureVFP3 | ARM::FeatureVFP4,
   9214      /* Disabled */ ARM::FeatureNEON | ARM::FeatureD16},
   9215     {/* ID */ ARM::VFPV4_D16,
   9216      /* Enabled */ ARM::FeatureVFP2 | ARM::FeatureVFP3 | ARM::FeatureVFP4 |
   9217          ARM::FeatureD16,
   9218      /* Disabled */ ARM::FeatureNEON},
   9219     {/* ID */ ARM::FPV5_D16,
   9220      /* Enabled */ ARM::FeatureVFP2 | ARM::FeatureVFP3 | ARM::FeatureVFP4 |
   9221          ARM::FeatureFPARMv8 | ARM::FeatureD16,
   9222      /* Disabled */ ARM::FeatureNEON | ARM::FeatureCrypto},
   9223     {/* ID */ ARM::FP_ARMV8,
   9224      /* Enabled */ ARM::FeatureVFP2 | ARM::FeatureVFP3 | ARM::FeatureVFP4 |
   9225          ARM::FeatureFPARMv8,
   9226      /* Disabled */ ARM::FeatureNEON | ARM::FeatureCrypto | ARM::FeatureD16},
   9227     {/* ID */ ARM::NEON,
   9228      /* Enabled */ ARM::FeatureVFP2 | ARM::FeatureVFP3 | ARM::FeatureNEON,
   9229      /* Disabled */ ARM::FeatureD16},
   9230     {/* ID */ ARM::NEON_VFPV4,
   9231      /* Enabled */ ARM::FeatureVFP2 | ARM::FeatureVFP3 | ARM::FeatureVFP4 |
   9232          ARM::FeatureNEON,
   9233      /* Disabled */ ARM::FeatureD16},
   9234     {/* ID */ ARM::NEON_FP_ARMV8,
   9235      /* Enabled */ ARM::FeatureVFP2 | ARM::FeatureVFP3 | ARM::FeatureVFP4 |
   9236          ARM::FeatureFPARMv8 | ARM::FeatureNEON,
   9237      /* Disabled */ ARM::FeatureCrypto | ARM::FeatureD16},
   9238     {/* ID */ ARM::CRYPTO_NEON_FP_ARMV8,
   9239      /* Enabled */ ARM::FeatureVFP2 | ARM::FeatureVFP3 | ARM::FeatureVFP4 |
   9240          ARM::FeatureFPARMv8 | ARM::FeatureNEON | ARM::FeatureCrypto,
   9241      /* Disabled */ ARM::FeatureD16},
   9242     {ARM::SOFTVFP, 0, 0},
   9243 };
   9244 
   9245 /// parseDirectiveFPU
   9246 ///  ::= .fpu str
   9247 bool ARMAsmParser::parseDirectiveFPU(SMLoc L) {
   9248   SMLoc FPUNameLoc = getTok().getLoc();
   9249   StringRef FPU = getParser().parseStringToEndOfStatement().trim();
   9250 
   9251   unsigned ID = StringSwitch<unsigned>(FPU)
   9252 #define ARM_FPU_NAME(NAME, ID) .Case(NAME, ARM::ID)
   9253 #include "ARMFPUName.def"
   9254     .Default(ARM::INVALID_FPU);
   9255 
   9256   if (ID == ARM::INVALID_FPU) {
   9257     Error(FPUNameLoc, "Unknown FPU name");
   9258     return false;
   9259   }
   9260 
   9261   for (const auto &Entry : FPUs) {
   9262     if (Entry.ID != ID)
   9263       continue;
   9264 
   9265     // Need to toggle features that should be on but are off and that
   9266     // should off but are on.
   9267     uint64_t Toggle = (Entry.Enabled & ~STI.getFeatureBits()) |
   9268                       (Entry.Disabled & STI.getFeatureBits());
   9269     setAvailableFeatures(ComputeAvailableFeatures(STI.ToggleFeature(Toggle)));
   9270     break;
   9271   }
   9272 
   9273   getTargetStreamer().emitFPU(ID);
   9274   return false;
   9275 }
   9276 
   9277 /// parseDirectiveFnStart
   9278 ///  ::= .fnstart
   9279 bool ARMAsmParser::parseDirectiveFnStart(SMLoc L) {
   9280   if (UC.hasFnStart()) {
   9281     Error(L, ".fnstart starts before the end of previous one");
   9282     UC.emitFnStartLocNotes();
   9283     return false;
   9284   }
   9285 
   9286   // Reset the unwind directives parser state
   9287   UC.reset();
   9288 
   9289   getTargetStreamer().emitFnStart();
   9290 
   9291   UC.recordFnStart(L);
   9292   return false;
   9293 }
   9294 
   9295 /// parseDirectiveFnEnd
   9296 ///  ::= .fnend
   9297 bool ARMAsmParser::parseDirectiveFnEnd(SMLoc L) {
   9298   // Check the ordering of unwind directives
   9299   if (!UC.hasFnStart()) {
   9300     Error(L, ".fnstart must precede .fnend directive");
   9301     return false;
   9302   }
   9303 
   9304   // Reset the unwind directives parser state
   9305   getTargetStreamer().emitFnEnd();
   9306 
   9307   UC.reset();
   9308   return false;
   9309 }
   9310 
   9311 /// parseDirectiveCantUnwind
   9312 ///  ::= .cantunwind
   9313 bool ARMAsmParser::parseDirectiveCantUnwind(SMLoc L) {
   9314   UC.recordCantUnwind(L);
   9315 
   9316   // Check the ordering of unwind directives
   9317   if (!UC.hasFnStart()) {
   9318     Error(L, ".fnstart must precede .cantunwind directive");
   9319     return false;
   9320   }
   9321   if (UC.hasHandlerData()) {
   9322     Error(L, ".cantunwind can't be used with .handlerdata directive");
   9323     UC.emitHandlerDataLocNotes();
   9324     return false;
   9325   }
   9326   if (UC.hasPersonality()) {
   9327     Error(L, ".cantunwind can't be used with .personality directive");
   9328     UC.emitPersonalityLocNotes();
   9329     return false;
   9330   }
   9331 
   9332   getTargetStreamer().emitCantUnwind();
   9333   return false;
   9334 }
   9335 
   9336 /// parseDirectivePersonality
   9337 ///  ::= .personality name
   9338 bool ARMAsmParser::parseDirectivePersonality(SMLoc L) {
   9339   MCAsmParser &Parser = getParser();
   9340   bool HasExistingPersonality = UC.hasPersonality();
   9341 
   9342   UC.recordPersonality(L);
   9343 
   9344   // Check the ordering of unwind directives
   9345   if (!UC.hasFnStart()) {
   9346     Error(L, ".fnstart must precede .personality directive");
   9347     return false;
   9348   }
   9349   if (UC.cantUnwind()) {
   9350     Error(L, ".personality can't be used with .cantunwind directive");
   9351     UC.emitCantUnwindLocNotes();
   9352     return false;
   9353   }
   9354   if (UC.hasHandlerData()) {
   9355     Error(L, ".personality must precede .handlerdata directive");
   9356     UC.emitHandlerDataLocNotes();
   9357     return false;
   9358   }
   9359   if (HasExistingPersonality) {
   9360     Parser.eatToEndOfStatement();
   9361     Error(L, "multiple personality directives");
   9362     UC.emitPersonalityLocNotes();
   9363     return false;
   9364   }
   9365 
   9366   // Parse the name of the personality routine
   9367   if (Parser.getTok().isNot(AsmToken::Identifier)) {
   9368     Parser.eatToEndOfStatement();
   9369     Error(L, "unexpected input in .personality directive.");
   9370     return false;
   9371   }
   9372   StringRef Name(Parser.getTok().getIdentifier());
   9373   Parser.Lex();
   9374 
   9375   MCSymbol *PR = getParser().getContext().GetOrCreateSymbol(Name);
   9376   getTargetStreamer().emitPersonality(PR);
   9377   return false;
   9378 }
   9379 
   9380 /// parseDirectiveHandlerData
   9381 ///  ::= .handlerdata
   9382 bool ARMAsmParser::parseDirectiveHandlerData(SMLoc L) {
   9383   UC.recordHandlerData(L);
   9384 
   9385   // Check the ordering of unwind directives
   9386   if (!UC.hasFnStart()) {
   9387     Error(L, ".fnstart must precede .personality directive");
   9388     return false;
   9389   }
   9390   if (UC.cantUnwind()) {
   9391     Error(L, ".handlerdata can't be used with .cantunwind directive");
   9392     UC.emitCantUnwindLocNotes();
   9393     return false;
   9394   }
   9395 
   9396   getTargetStreamer().emitHandlerData();
   9397   return false;
   9398 }
   9399 
   9400 /// parseDirectiveSetFP
   9401 ///  ::= .setfp fpreg, spreg [, offset]
   9402 bool ARMAsmParser::parseDirectiveSetFP(SMLoc L) {
   9403   MCAsmParser &Parser = getParser();
   9404   // Check the ordering of unwind directives
   9405   if (!UC.hasFnStart()) {
   9406     Error(L, ".fnstart must precede .setfp directive");
   9407     return false;
   9408   }
   9409   if (UC.hasHandlerData()) {
   9410     Error(L, ".setfp must precede .handlerdata directive");
   9411     return false;
   9412   }
   9413 
   9414   // Parse fpreg
   9415   SMLoc FPRegLoc = Parser.getTok().getLoc();
   9416   int FPReg = tryParseRegister();
   9417   if (FPReg == -1) {
   9418     Error(FPRegLoc, "frame pointer register expected");
   9419     return false;
   9420   }
   9421 
   9422   // Consume comma
   9423   if (Parser.getTok().isNot(AsmToken::Comma)) {
   9424     Error(Parser.getTok().getLoc(), "comma expected");
   9425     return false;
   9426   }
   9427   Parser.Lex(); // skip comma
   9428 
   9429   // Parse spreg
   9430   SMLoc SPRegLoc = Parser.getTok().getLoc();
   9431   int SPReg = tryParseRegister();
   9432   if (SPReg == -1) {
   9433     Error(SPRegLoc, "stack pointer register expected");
   9434     return false;
   9435   }
   9436 
   9437   if (SPReg != ARM::SP && SPReg != UC.getFPReg()) {
   9438     Error(SPRegLoc, "register should be either $sp or the latest fp register");
   9439     return false;
   9440   }
   9441 
   9442   // Update the frame pointer register
   9443   UC.saveFPReg(FPReg);
   9444 
   9445   // Parse offset
   9446   int64_t Offset = 0;
   9447   if (Parser.getTok().is(AsmToken::Comma)) {
   9448     Parser.Lex(); // skip comma
   9449 
   9450     if (Parser.getTok().isNot(AsmToken::Hash) &&
   9451         Parser.getTok().isNot(AsmToken::Dollar)) {
   9452       Error(Parser.getTok().getLoc(), "'#' expected");
   9453       return false;
   9454     }
   9455     Parser.Lex(); // skip hash token.
   9456 
   9457     const MCExpr *OffsetExpr;
   9458     SMLoc ExLoc = Parser.getTok().getLoc();
   9459     SMLoc EndLoc;
   9460     if (getParser().parseExpression(OffsetExpr, EndLoc)) {
   9461       Error(ExLoc, "malformed setfp offset");
   9462       return false;
   9463     }
   9464     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr);
   9465     if (!CE) {
   9466       Error(ExLoc, "setfp offset must be an immediate");
   9467       return false;
   9468     }
   9469 
   9470     Offset = CE->getValue();
   9471   }
   9472 
   9473   getTargetStreamer().emitSetFP(static_cast<unsigned>(FPReg),
   9474                                 static_cast<unsigned>(SPReg), Offset);
   9475   return false;
   9476 }
   9477 
   9478 /// parseDirective
   9479 ///  ::= .pad offset
   9480 bool ARMAsmParser::parseDirectivePad(SMLoc L) {
   9481   MCAsmParser &Parser = getParser();
   9482   // Check the ordering of unwind directives
   9483   if (!UC.hasFnStart()) {
   9484     Error(L, ".fnstart must precede .pad directive");
   9485     return false;
   9486   }
   9487   if (UC.hasHandlerData()) {
   9488     Error(L, ".pad must precede .handlerdata directive");
   9489     return false;
   9490   }
   9491 
   9492   // Parse the offset
   9493   if (Parser.getTok().isNot(AsmToken::Hash) &&
   9494       Parser.getTok().isNot(AsmToken::Dollar)) {
   9495     Error(Parser.getTok().getLoc(), "'#' expected");
   9496     return false;
   9497   }
   9498   Parser.Lex(); // skip hash token.
   9499 
   9500   const MCExpr *OffsetExpr;
   9501   SMLoc ExLoc = Parser.getTok().getLoc();
   9502   SMLoc EndLoc;
   9503   if (getParser().parseExpression(OffsetExpr, EndLoc)) {
   9504     Error(ExLoc, "malformed pad offset");
   9505     return false;
   9506   }
   9507   const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr);
   9508   if (!CE) {
   9509     Error(ExLoc, "pad offset must be an immediate");
   9510     return false;
   9511   }
   9512 
   9513   getTargetStreamer().emitPad(CE->getValue());
   9514   return false;
   9515 }
   9516 
   9517 /// parseDirectiveRegSave
   9518 ///  ::= .save  { registers }
   9519 ///  ::= .vsave { registers }
   9520 bool ARMAsmParser::parseDirectiveRegSave(SMLoc L, bool IsVector) {
   9521   // Check the ordering of unwind directives
   9522   if (!UC.hasFnStart()) {
   9523     Error(L, ".fnstart must precede .save or .vsave directives");
   9524     return false;
   9525   }
   9526   if (UC.hasHandlerData()) {
   9527     Error(L, ".save or .vsave must precede .handlerdata directive");
   9528     return false;
   9529   }
   9530 
   9531   // RAII object to make sure parsed operands are deleted.
   9532   SmallVector<std::unique_ptr<MCParsedAsmOperand>, 1> Operands;
   9533 
   9534   // Parse the register list
   9535   if (parseRegisterList(Operands))
   9536     return false;
   9537   ARMOperand &Op = (ARMOperand &)*Operands[0];
   9538   if (!IsVector && !Op.isRegList()) {
   9539     Error(L, ".save expects GPR registers");
   9540     return false;
   9541   }
   9542   if (IsVector && !Op.isDPRRegList()) {
   9543     Error(L, ".vsave expects DPR registers");
   9544     return false;
   9545   }
   9546 
   9547   getTargetStreamer().emitRegSave(Op.getRegList(), IsVector);
   9548   return false;
   9549 }
   9550 
   9551 /// parseDirectiveInst
   9552 ///  ::= .inst opcode [, ...]
   9553 ///  ::= .inst.n opcode [, ...]
   9554 ///  ::= .inst.w opcode [, ...]
   9555 bool ARMAsmParser::parseDirectiveInst(SMLoc Loc, char Suffix) {
   9556   MCAsmParser &Parser = getParser();
   9557   int Width;
   9558 
   9559   if (isThumb()) {
   9560     switch (Suffix) {
   9561     case 'n':
   9562       Width = 2;
   9563       break;
   9564     case 'w':
   9565       Width = 4;
   9566       break;
   9567     default:
   9568       Parser.eatToEndOfStatement();
   9569       Error(Loc, "cannot determine Thumb instruction size, "
   9570                  "use inst.n/inst.w instead");
   9571       return false;
   9572     }
   9573   } else {
   9574     if (Suffix) {
   9575       Parser.eatToEndOfStatement();
   9576       Error(Loc, "width suffixes are invalid in ARM mode");
   9577       return false;
   9578     }
   9579     Width = 4;
   9580   }
   9581 
   9582   if (getLexer().is(AsmToken::EndOfStatement)) {
   9583     Parser.eatToEndOfStatement();
   9584     Error(Loc, "expected expression following directive");
   9585     return false;
   9586   }
   9587 
   9588   for (;;) {
   9589     const MCExpr *Expr;
   9590 
   9591     if (getParser().parseExpression(Expr)) {
   9592       Error(Loc, "expected expression");
   9593       return false;
   9594     }
   9595 
   9596     const MCConstantExpr *Value = dyn_cast_or_null<MCConstantExpr>(Expr);
   9597     if (!Value) {
   9598       Error(Loc, "expected constant expression");
   9599       return false;
   9600     }
   9601 
   9602     switch (Width) {
   9603     case 2:
   9604       if (Value->getValue() > 0xffff) {
   9605         Error(Loc, "inst.n operand is too big, use inst.w instead");
   9606         return false;
   9607       }
   9608       break;
   9609     case 4:
   9610       if (Value->getValue() > 0xffffffff) {
   9611         Error(Loc,
   9612               StringRef(Suffix ? "inst.w" : "inst") + " operand is too big");
   9613         return false;
   9614       }
   9615       break;
   9616     default:
   9617       llvm_unreachable("only supported widths are 2 and 4");
   9618     }
   9619 
   9620     getTargetStreamer().emitInst(Value->getValue(), Suffix);
   9621 
   9622     if (getLexer().is(AsmToken::EndOfStatement))
   9623       break;
   9624 
   9625     if (getLexer().isNot(AsmToken::Comma)) {
   9626       Error(Loc, "unexpected token in directive");
   9627       return false;
   9628     }
   9629 
   9630     Parser.Lex();
   9631   }
   9632 
   9633   Parser.Lex();
   9634   return false;
   9635 }
   9636 
   9637 /// parseDirectiveLtorg
   9638 ///  ::= .ltorg | .pool
   9639 bool ARMAsmParser::parseDirectiveLtorg(SMLoc L) {
   9640   getTargetStreamer().emitCurrentConstantPool();
   9641   return false;
   9642 }
   9643 
   9644 bool ARMAsmParser::parseDirectiveEven(SMLoc L) {
   9645   const MCSection *Section = getStreamer().getCurrentSection().first;
   9646 
   9647   if (getLexer().isNot(AsmToken::EndOfStatement)) {
   9648     TokError("unexpected token in directive");
   9649     return false;
   9650   }
   9651 
   9652   if (!Section) {
   9653     getStreamer().InitSections(false);
   9654     Section = getStreamer().getCurrentSection().first;
   9655   }
   9656 
   9657   assert(Section && "must have section to emit alignment");
   9658   if (Section->UseCodeAlign())
   9659     getStreamer().EmitCodeAlignment(2);
   9660   else
   9661     getStreamer().EmitValueToAlignment(2);
   9662 
   9663   return false;
   9664 }
   9665 
   9666 /// parseDirectivePersonalityIndex
   9667 ///   ::= .personalityindex index
   9668 bool ARMAsmParser::parseDirectivePersonalityIndex(SMLoc L) {
   9669   MCAsmParser &Parser = getParser();
   9670   bool HasExistingPersonality = UC.hasPersonality();
   9671 
   9672   UC.recordPersonalityIndex(L);
   9673 
   9674   if (!UC.hasFnStart()) {
   9675     Parser.eatToEndOfStatement();
   9676     Error(L, ".fnstart must precede .personalityindex directive");
   9677     return false;
   9678   }
   9679   if (UC.cantUnwind()) {
   9680     Parser.eatToEndOfStatement();
   9681     Error(L, ".personalityindex cannot be used with .cantunwind");
   9682     UC.emitCantUnwindLocNotes();
   9683     return false;
   9684   }
   9685   if (UC.hasHandlerData()) {
   9686     Parser.eatToEndOfStatement();
   9687     Error(L, ".personalityindex must precede .handlerdata directive");
   9688     UC.emitHandlerDataLocNotes();
   9689     return false;
   9690   }
   9691   if (HasExistingPersonality) {
   9692     Parser.eatToEndOfStatement();
   9693     Error(L, "multiple personality directives");
   9694     UC.emitPersonalityLocNotes();
   9695     return false;
   9696   }
   9697 
   9698   const MCExpr *IndexExpression;
   9699   SMLoc IndexLoc = Parser.getTok().getLoc();
   9700   if (Parser.parseExpression(IndexExpression)) {
   9701     Parser.eatToEndOfStatement();
   9702     return false;
   9703   }
   9704 
   9705   const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(IndexExpression);
   9706   if (!CE) {
   9707     Parser.eatToEndOfStatement();
   9708     Error(IndexLoc, "index must be a constant number");
   9709     return false;
   9710   }
   9711   if (CE->getValue() < 0 ||
   9712       CE->getValue() >= ARM::EHABI::NUM_PERSONALITY_INDEX) {
   9713     Parser.eatToEndOfStatement();
   9714     Error(IndexLoc, "personality routine index should be in range [0-3]");
   9715     return false;
   9716   }
   9717 
   9718   getTargetStreamer().emitPersonalityIndex(CE->getValue());
   9719   return false;
   9720 }
   9721 
   9722 /// parseDirectiveUnwindRaw
   9723 ///   ::= .unwind_raw offset, opcode [, opcode...]
   9724 bool ARMAsmParser::parseDirectiveUnwindRaw(SMLoc L) {
   9725   MCAsmParser &Parser = getParser();
   9726   if (!UC.hasFnStart()) {
   9727     Parser.eatToEndOfStatement();
   9728     Error(L, ".fnstart must precede .unwind_raw directives");
   9729     return false;
   9730   }
   9731 
   9732   int64_t StackOffset;
   9733 
   9734   const MCExpr *OffsetExpr;
   9735   SMLoc OffsetLoc = getLexer().getLoc();
   9736   if (getLexer().is(AsmToken::EndOfStatement) ||
   9737       getParser().parseExpression(OffsetExpr)) {
   9738     Error(OffsetLoc, "expected expression");
   9739     Parser.eatToEndOfStatement();
   9740     return false;
   9741   }
   9742 
   9743   const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr);
   9744   if (!CE) {
   9745     Error(OffsetLoc, "offset must be a constant");
   9746     Parser.eatToEndOfStatement();
   9747     return false;
   9748   }
   9749 
   9750   StackOffset = CE->getValue();
   9751 
   9752   if (getLexer().isNot(AsmToken::Comma)) {
   9753     Error(getLexer().getLoc(), "expected comma");
   9754     Parser.eatToEndOfStatement();
   9755     return false;
   9756   }
   9757   Parser.Lex();
   9758 
   9759   SmallVector<uint8_t, 16> Opcodes;
   9760   for (;;) {
   9761     const MCExpr *OE;
   9762 
   9763     SMLoc OpcodeLoc = getLexer().getLoc();
   9764     if (getLexer().is(AsmToken::EndOfStatement) || Parser.parseExpression(OE)) {
   9765       Error(OpcodeLoc, "expected opcode expression");
   9766       Parser.eatToEndOfStatement();
   9767       return false;
   9768     }
   9769 
   9770     const MCConstantExpr *OC = dyn_cast<MCConstantExpr>(OE);
   9771     if (!OC) {
   9772       Error(OpcodeLoc, "opcode value must be a constant");
   9773       Parser.eatToEndOfStatement();
   9774       return false;
   9775     }
   9776 
   9777     const int64_t Opcode = OC->getValue();
   9778     if (Opcode & ~0xff) {
   9779       Error(OpcodeLoc, "invalid opcode");
   9780       Parser.eatToEndOfStatement();
   9781       return false;
   9782     }
   9783 
   9784     Opcodes.push_back(uint8_t(Opcode));
   9785 
   9786     if (getLexer().is(AsmToken::EndOfStatement))
   9787       break;
   9788 
   9789     if (getLexer().isNot(AsmToken::Comma)) {
   9790       Error(getLexer().getLoc(), "unexpected token in directive");
   9791       Parser.eatToEndOfStatement();
   9792       return false;
   9793     }
   9794 
   9795     Parser.Lex();
   9796   }
   9797 
   9798   getTargetStreamer().emitUnwindRaw(StackOffset, Opcodes);
   9799 
   9800   Parser.Lex();
   9801   return false;
   9802 }
   9803 
   9804 /// parseDirectiveTLSDescSeq
   9805 ///   ::= .tlsdescseq tls-variable
   9806 bool ARMAsmParser::parseDirectiveTLSDescSeq(SMLoc L) {
   9807   MCAsmParser &Parser = getParser();
   9808 
   9809   if (getLexer().isNot(AsmToken::Identifier)) {
   9810     TokError("expected variable after '.tlsdescseq' directive");
   9811     Parser.eatToEndOfStatement();
   9812     return false;
   9813   }
   9814 
   9815   const MCSymbolRefExpr *SRE =
   9816     MCSymbolRefExpr::Create(Parser.getTok().getIdentifier(),
   9817                             MCSymbolRefExpr::VK_ARM_TLSDESCSEQ, getContext());
   9818   Lex();
   9819 
   9820   if (getLexer().isNot(AsmToken::EndOfStatement)) {
   9821     Error(Parser.getTok().getLoc(), "unexpected token");
   9822     Parser.eatToEndOfStatement();
   9823     return false;
   9824   }
   9825 
   9826   getTargetStreamer().AnnotateTLSDescriptorSequence(SRE);
   9827   return false;
   9828 }
   9829 
   9830 /// parseDirectiveMovSP
   9831 ///  ::= .movsp reg [, #offset]
   9832 bool ARMAsmParser::parseDirectiveMovSP(SMLoc L) {
   9833   MCAsmParser &Parser = getParser();
   9834   if (!UC.hasFnStart()) {
   9835     Parser.eatToEndOfStatement();
   9836     Error(L, ".fnstart must precede .movsp directives");
   9837     return false;
   9838   }
   9839   if (UC.getFPReg() != ARM::SP) {
   9840     Parser.eatToEndOfStatement();
   9841     Error(L, "unexpected .movsp directive");
   9842     return false;
   9843   }
   9844 
   9845   SMLoc SPRegLoc = Parser.getTok().getLoc();
   9846   int SPReg = tryParseRegister();
   9847   if (SPReg == -1) {
   9848     Parser.eatToEndOfStatement();
   9849     Error(SPRegLoc, "register expected");
   9850     return false;
   9851   }
   9852 
   9853   if (SPReg == ARM::SP || SPReg == ARM::PC) {
   9854     Parser.eatToEndOfStatement();
   9855     Error(SPRegLoc, "sp and pc are not permitted in .movsp directive");
   9856     return false;
   9857   }
   9858 
   9859   int64_t Offset = 0;
   9860   if (Parser.getTok().is(AsmToken::Comma)) {
   9861     Parser.Lex();
   9862 
   9863     if (Parser.getTok().isNot(AsmToken::Hash)) {
   9864       Error(Parser.getTok().getLoc(), "expected #constant");
   9865       Parser.eatToEndOfStatement();
   9866       return false;
   9867     }
   9868     Parser.Lex();
   9869 
   9870     const MCExpr *OffsetExpr;
   9871     SMLoc OffsetLoc = Parser.getTok().getLoc();
   9872     if (Parser.parseExpression(OffsetExpr)) {
   9873       Parser.eatToEndOfStatement();
   9874       Error(OffsetLoc, "malformed offset expression");
   9875       return false;
   9876     }
   9877 
   9878     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(OffsetExpr);
   9879     if (!CE) {
   9880       Parser.eatToEndOfStatement();
   9881       Error(OffsetLoc, "offset must be an immediate constant");
   9882       return false;
   9883     }
   9884 
   9885     Offset = CE->getValue();
   9886   }
   9887 
   9888   getTargetStreamer().emitMovSP(SPReg, Offset);
   9889   UC.saveFPReg(SPReg);
   9890 
   9891   return false;
   9892 }
   9893 
   9894 /// parseDirectiveObjectArch
   9895 ///   ::= .object_arch name
   9896 bool ARMAsmParser::parseDirectiveObjectArch(SMLoc L) {
   9897   MCAsmParser &Parser = getParser();
   9898   if (getLexer().isNot(AsmToken::Identifier)) {
   9899     Error(getLexer().getLoc(), "unexpected token");
   9900     Parser.eatToEndOfStatement();
   9901     return false;
   9902   }
   9903 
   9904   StringRef Arch = Parser.getTok().getString();
   9905   SMLoc ArchLoc = Parser.getTok().getLoc();
   9906   getLexer().Lex();
   9907 
   9908   unsigned ID = StringSwitch<unsigned>(Arch)
   9909 #define ARM_ARCH_NAME(NAME, ID, DEFAULT_CPU_NAME, DEFAULT_CPU_ARCH) \
   9910     .Case(NAME, ARM::ID)
   9911 #define ARM_ARCH_ALIAS(NAME, ID) \
   9912     .Case(NAME, ARM::ID)
   9913 #include "MCTargetDesc/ARMArchName.def"
   9914 #undef ARM_ARCH_NAME
   9915 #undef ARM_ARCH_ALIAS
   9916     .Default(ARM::INVALID_ARCH);
   9917 
   9918   if (ID == ARM::INVALID_ARCH) {
   9919     Error(ArchLoc, "unknown architecture '" + Arch + "'");
   9920     Parser.eatToEndOfStatement();
   9921     return false;
   9922   }
   9923 
   9924   getTargetStreamer().emitObjectArch(ID);
   9925 
   9926   if (getLexer().isNot(AsmToken::EndOfStatement)) {
   9927     Error(getLexer().getLoc(), "unexpected token");
   9928     Parser.eatToEndOfStatement();
   9929   }
   9930 
   9931   return false;
   9932 }
   9933 
   9934 /// parseDirectiveAlign
   9935 ///   ::= .align
   9936 bool ARMAsmParser::parseDirectiveAlign(SMLoc L) {
   9937   // NOTE: if this is not the end of the statement, fall back to the target
   9938   // agnostic handling for this directive which will correctly handle this.
   9939   if (getLexer().isNot(AsmToken::EndOfStatement))
   9940     return true;
   9941 
   9942   // '.align' is target specifically handled to mean 2**2 byte alignment.
   9943   if (getStreamer().getCurrentSection().first->UseCodeAlign())
   9944     getStreamer().EmitCodeAlignment(4, 0);
   9945   else
   9946     getStreamer().EmitValueToAlignment(4, 0, 1, 0);
   9947 
   9948   return false;
   9949 }
   9950 
   9951 /// parseDirectiveThumbSet
   9952 ///  ::= .thumb_set name, value
   9953 bool ARMAsmParser::parseDirectiveThumbSet(SMLoc L) {
   9954   MCAsmParser &Parser = getParser();
   9955 
   9956   StringRef Name;
   9957   if (Parser.parseIdentifier(Name)) {
   9958     TokError("expected identifier after '.thumb_set'");
   9959     Parser.eatToEndOfStatement();
   9960     return false;
   9961   }
   9962 
   9963   if (getLexer().isNot(AsmToken::Comma)) {
   9964     TokError("expected comma after name '" + Name + "'");
   9965     Parser.eatToEndOfStatement();
   9966     return false;
   9967   }
   9968   Lex();
   9969 
   9970   const MCExpr *Value;
   9971   if (Parser.parseExpression(Value)) {
   9972     TokError("missing expression");
   9973     Parser.eatToEndOfStatement();
   9974     return false;
   9975   }
   9976 
   9977   if (getLexer().isNot(AsmToken::EndOfStatement)) {
   9978     TokError("unexpected token");
   9979     Parser.eatToEndOfStatement();
   9980     return false;
   9981   }
   9982   Lex();
   9983 
   9984   MCSymbol *Alias = getContext().GetOrCreateSymbol(Name);
   9985   getTargetStreamer().emitThumbSet(Alias, Value);
   9986   return false;
   9987 }
   9988 
   9989 /// Force static initialization.
   9990 extern "C" void LLVMInitializeARMAsmParser() {
   9991   RegisterMCAsmParser<ARMAsmParser> X(TheARMLETarget);
   9992   RegisterMCAsmParser<ARMAsmParser> Y(TheARMBETarget);
   9993   RegisterMCAsmParser<ARMAsmParser> A(TheThumbLETarget);
   9994   RegisterMCAsmParser<ARMAsmParser> B(TheThumbBETarget);
   9995 }
   9996 
   9997 #define GET_REGISTER_MATCHER
   9998 #define GET_SUBTARGET_FEATURE_NAME
   9999 #define GET_MATCHER_IMPLEMENTATION
   10000 #include "ARMGenAsmMatcher.inc"
   10001 
   10002 static const struct {
   10003   const char *Name;
   10004   const unsigned ArchCheck;
   10005   const uint64_t Features;
   10006 } Extensions[] = {
   10007   { "crc", Feature_HasV8, ARM::FeatureCRC },
   10008   { "crypto",  Feature_HasV8,
   10009     ARM::FeatureCrypto | ARM::FeatureNEON | ARM::FeatureFPARMv8 },
   10010   { "fp", Feature_HasV8, ARM::FeatureFPARMv8 },
   10011   { "idiv", Feature_HasV7 | Feature_IsNotMClass,
   10012     ARM::FeatureHWDiv | ARM::FeatureHWDivARM },
   10013   // FIXME: iWMMXT not supported
   10014   { "iwmmxt", Feature_None, 0 },
   10015   // FIXME: iWMMXT2 not supported
   10016   { "iwmmxt2", Feature_None, 0 },
   10017   // FIXME: Maverick not supported
   10018   { "maverick", Feature_None, 0 },
   10019   { "mp", Feature_HasV7 | Feature_IsNotMClass, ARM::FeatureMP },
   10020   // FIXME: ARMv6-m OS Extensions feature not checked
   10021   { "os", Feature_None, 0 },
   10022   // FIXME: Also available in ARMv6-K
   10023   { "sec", Feature_HasV7, ARM::FeatureTrustZone },
   10024   { "simd", Feature_HasV8, ARM::FeatureNEON | ARM::FeatureFPARMv8 },
   10025   // FIXME: Only available in A-class, isel not predicated
   10026   { "virt", Feature_HasV7, ARM::FeatureVirtualization },
   10027   // FIXME: xscale not supported
   10028   { "xscale", Feature_None, 0 },
   10029 };
   10030 
   10031 /// parseDirectiveArchExtension
   10032 ///   ::= .arch_extension [no]feature
   10033 bool ARMAsmParser::parseDirectiveArchExtension(SMLoc L) {
   10034   MCAsmParser &Parser = getParser();
   10035 
   10036   if (getLexer().isNot(AsmToken::Identifier)) {
   10037     Error(getLexer().getLoc(), "unexpected token");
   10038     Parser.eatToEndOfStatement();
   10039     return false;
   10040   }
   10041 
   10042   StringRef Name = Parser.getTok().getString();
   10043   SMLoc ExtLoc = Parser.getTok().getLoc();
   10044   getLexer().Lex();
   10045 
   10046   bool EnableFeature = true;
   10047   if (Name.startswith_lower("no")) {
   10048     EnableFeature = false;
   10049     Name = Name.substr(2);
   10050   }
   10051 
   10052   for (const auto &Extension : Extensions) {
   10053     if (Extension.Name != Name)
   10054       continue;
   10055 
   10056     if (!Extension.Features)
   10057       report_fatal_error("unsupported architectural extension: " + Name);
   10058 
   10059     if ((getAvailableFeatures() & Extension.ArchCheck) != Extension.ArchCheck) {
   10060       Error(ExtLoc, "architectural extension '" + Name + "' is not "
   10061             "allowed for the current base architecture");
   10062       return false;
   10063     }
   10064 
   10065     uint64_t ToggleFeatures = EnableFeature
   10066                                   ? (~STI.getFeatureBits() & Extension.Features)
   10067                                   : ( STI.getFeatureBits() & Extension.Features);
   10068     uint64_t Features =
   10069         ComputeAvailableFeatures(STI.ToggleFeature(ToggleFeatures));
   10070     setAvailableFeatures(Features);
   10071     return false;
   10072   }
   10073 
   10074   Error(ExtLoc, "unknown architectural extension: " + Name);
   10075   Parser.eatToEndOfStatement();
   10076   return false;
   10077 }
   10078 
   10079 // Define this matcher function after the auto-generated include so we
   10080 // have the match class enum definitions.
   10081 unsigned ARMAsmParser::validateTargetOperandClass(MCParsedAsmOperand &AsmOp,
   10082                                                   unsigned Kind) {
   10083   ARMOperand &Op = static_cast<ARMOperand &>(AsmOp);
   10084   // If the kind is a token for a literal immediate, check if our asm
   10085   // operand matches. This is for InstAliases which have a fixed-value
   10086   // immediate in the syntax.
   10087   switch (Kind) {
   10088   default: break;
   10089   case MCK__35_0:
   10090     if (Op.isImm())
   10091       if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op.getImm()))
   10092         if (CE->getValue() == 0)
   10093           return Match_Success;
   10094     break;
   10095   case MCK_ModImm:
   10096     if (Op.isImm()) {
   10097       const MCExpr *SOExpr = Op.getImm();
   10098       int64_t Value;
   10099       if (!SOExpr->EvaluateAsAbsolute(Value))
   10100         return Match_Success;
   10101       assert((Value >= INT32_MIN && Value <= UINT32_MAX) &&
   10102              "expression value must be representable in 32 bits");
   10103     }
   10104     break;
   10105   case MCK_GPRPair:
   10106     if (Op.isReg() &&
   10107         MRI->getRegClass(ARM::GPRRegClassID).contains(Op.getReg()))
   10108       return Match_Success;
   10109     break;
   10110   }
   10111   return Match_InvalidOperand;
   10112 }
   10113