1 //===- JumpThreading.cpp - Thread control through conditional blocks ------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Jump Threading pass. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Transforms/Scalar.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/DenseSet.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/CFG.h" 22 #include "llvm/Analysis/ConstantFolding.h" 23 #include "llvm/Analysis/InstructionSimplify.h" 24 #include "llvm/Analysis/LazyValueInfo.h" 25 #include "llvm/Analysis/Loads.h" 26 #include "llvm/Analysis/TargetLibraryInfo.h" 27 #include "llvm/IR/DataLayout.h" 28 #include "llvm/IR/IntrinsicInst.h" 29 #include "llvm/IR/LLVMContext.h" 30 #include "llvm/IR/Metadata.h" 31 #include "llvm/IR/ValueHandle.h" 32 #include "llvm/Pass.h" 33 #include "llvm/Support/CommandLine.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 37 #include "llvm/Transforms/Utils/Local.h" 38 #include "llvm/Transforms/Utils/SSAUpdater.h" 39 using namespace llvm; 40 41 #define DEBUG_TYPE "jump-threading" 42 43 STATISTIC(NumThreads, "Number of jumps threaded"); 44 STATISTIC(NumFolds, "Number of terminators folded"); 45 STATISTIC(NumDupes, "Number of branch blocks duplicated to eliminate phi"); 46 47 static cl::opt<unsigned> 48 BBDuplicateThreshold("jump-threading-threshold", 49 cl::desc("Max block size to duplicate for jump threading"), 50 cl::init(6), cl::Hidden); 51 52 namespace { 53 // These are at global scope so static functions can use them too. 54 typedef SmallVectorImpl<std::pair<Constant*, BasicBlock*> > PredValueInfo; 55 typedef SmallVector<std::pair<Constant*, BasicBlock*>, 8> PredValueInfoTy; 56 57 // This is used to keep track of what kind of constant we're currently hoping 58 // to find. 59 enum ConstantPreference { 60 WantInteger, 61 WantBlockAddress 62 }; 63 64 /// This pass performs 'jump threading', which looks at blocks that have 65 /// multiple predecessors and multiple successors. If one or more of the 66 /// predecessors of the block can be proven to always jump to one of the 67 /// successors, we forward the edge from the predecessor to the successor by 68 /// duplicating the contents of this block. 69 /// 70 /// An example of when this can occur is code like this: 71 /// 72 /// if () { ... 73 /// X = 4; 74 /// } 75 /// if (X < 3) { 76 /// 77 /// In this case, the unconditional branch at the end of the first if can be 78 /// revectored to the false side of the second if. 79 /// 80 class JumpThreading : public FunctionPass { 81 TargetLibraryInfo *TLI; 82 LazyValueInfo *LVI; 83 #ifdef NDEBUG 84 SmallPtrSet<BasicBlock*, 16> LoopHeaders; 85 #else 86 SmallSet<AssertingVH<BasicBlock>, 16> LoopHeaders; 87 #endif 88 DenseSet<std::pair<Value*, BasicBlock*> > RecursionSet; 89 90 unsigned BBDupThreshold; 91 92 // RAII helper for updating the recursion stack. 93 struct RecursionSetRemover { 94 DenseSet<std::pair<Value*, BasicBlock*> > &TheSet; 95 std::pair<Value*, BasicBlock*> ThePair; 96 97 RecursionSetRemover(DenseSet<std::pair<Value*, BasicBlock*> > &S, 98 std::pair<Value*, BasicBlock*> P) 99 : TheSet(S), ThePair(P) { } 100 101 ~RecursionSetRemover() { 102 TheSet.erase(ThePair); 103 } 104 }; 105 public: 106 static char ID; // Pass identification 107 JumpThreading(int T = -1) : FunctionPass(ID) { 108 BBDupThreshold = (T == -1) ? BBDuplicateThreshold : unsigned(T); 109 initializeJumpThreadingPass(*PassRegistry::getPassRegistry()); 110 } 111 112 bool runOnFunction(Function &F) override; 113 114 void getAnalysisUsage(AnalysisUsage &AU) const override { 115 AU.addRequired<LazyValueInfo>(); 116 AU.addPreserved<LazyValueInfo>(); 117 AU.addRequired<TargetLibraryInfoWrapperPass>(); 118 } 119 120 void FindLoopHeaders(Function &F); 121 bool ProcessBlock(BasicBlock *BB); 122 bool ThreadEdge(BasicBlock *BB, const SmallVectorImpl<BasicBlock*> &PredBBs, 123 BasicBlock *SuccBB); 124 bool DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB, 125 const SmallVectorImpl<BasicBlock *> &PredBBs); 126 127 bool ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, 128 PredValueInfo &Result, 129 ConstantPreference Preference, 130 Instruction *CxtI = nullptr); 131 bool ProcessThreadableEdges(Value *Cond, BasicBlock *BB, 132 ConstantPreference Preference, 133 Instruction *CxtI = nullptr); 134 135 bool ProcessBranchOnPHI(PHINode *PN); 136 bool ProcessBranchOnXOR(BinaryOperator *BO); 137 138 bool SimplifyPartiallyRedundantLoad(LoadInst *LI); 139 bool TryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB); 140 }; 141 } 142 143 char JumpThreading::ID = 0; 144 INITIALIZE_PASS_BEGIN(JumpThreading, "jump-threading", 145 "Jump Threading", false, false) 146 INITIALIZE_PASS_DEPENDENCY(LazyValueInfo) 147 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 148 INITIALIZE_PASS_END(JumpThreading, "jump-threading", 149 "Jump Threading", false, false) 150 151 // Public interface to the Jump Threading pass 152 FunctionPass *llvm::createJumpThreadingPass(int Threshold) { return new JumpThreading(Threshold); } 153 154 /// runOnFunction - Top level algorithm. 155 /// 156 bool JumpThreading::runOnFunction(Function &F) { 157 if (skipOptnoneFunction(F)) 158 return false; 159 160 DEBUG(dbgs() << "Jump threading on function '" << F.getName() << "'\n"); 161 TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); 162 LVI = &getAnalysis<LazyValueInfo>(); 163 164 // Remove unreachable blocks from function as they may result in infinite 165 // loop. We do threading if we found something profitable. Jump threading a 166 // branch can create other opportunities. If these opportunities form a cycle 167 // i.e. if any jump treading is undoing previous threading in the path, then 168 // we will loop forever. We take care of this issue by not jump threading for 169 // back edges. This works for normal cases but not for unreachable blocks as 170 // they may have cycle with no back edge. 171 removeUnreachableBlocks(F); 172 173 FindLoopHeaders(F); 174 175 bool Changed, EverChanged = false; 176 do { 177 Changed = false; 178 for (Function::iterator I = F.begin(), E = F.end(); I != E;) { 179 BasicBlock *BB = I; 180 // Thread all of the branches we can over this block. 181 while (ProcessBlock(BB)) 182 Changed = true; 183 184 ++I; 185 186 // If the block is trivially dead, zap it. This eliminates the successor 187 // edges which simplifies the CFG. 188 if (pred_empty(BB) && 189 BB != &BB->getParent()->getEntryBlock()) { 190 DEBUG(dbgs() << " JT: Deleting dead block '" << BB->getName() 191 << "' with terminator: " << *BB->getTerminator() << '\n'); 192 LoopHeaders.erase(BB); 193 LVI->eraseBlock(BB); 194 DeleteDeadBlock(BB); 195 Changed = true; 196 continue; 197 } 198 199 BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); 200 201 // Can't thread an unconditional jump, but if the block is "almost 202 // empty", we can replace uses of it with uses of the successor and make 203 // this dead. 204 if (BI && BI->isUnconditional() && 205 BB != &BB->getParent()->getEntryBlock() && 206 // If the terminator is the only non-phi instruction, try to nuke it. 207 BB->getFirstNonPHIOrDbg()->isTerminator()) { 208 // Since TryToSimplifyUncondBranchFromEmptyBlock may delete the 209 // block, we have to make sure it isn't in the LoopHeaders set. We 210 // reinsert afterward if needed. 211 bool ErasedFromLoopHeaders = LoopHeaders.erase(BB); 212 BasicBlock *Succ = BI->getSuccessor(0); 213 214 // FIXME: It is always conservatively correct to drop the info 215 // for a block even if it doesn't get erased. This isn't totally 216 // awesome, but it allows us to use AssertingVH to prevent nasty 217 // dangling pointer issues within LazyValueInfo. 218 LVI->eraseBlock(BB); 219 if (TryToSimplifyUncondBranchFromEmptyBlock(BB)) { 220 Changed = true; 221 // If we deleted BB and BB was the header of a loop, then the 222 // successor is now the header of the loop. 223 BB = Succ; 224 } 225 226 if (ErasedFromLoopHeaders) 227 LoopHeaders.insert(BB); 228 } 229 } 230 EverChanged |= Changed; 231 } while (Changed); 232 233 LoopHeaders.clear(); 234 return EverChanged; 235 } 236 237 /// getJumpThreadDuplicationCost - Return the cost of duplicating this block to 238 /// thread across it. Stop scanning the block when passing the threshold. 239 static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB, 240 unsigned Threshold) { 241 /// Ignore PHI nodes, these will be flattened when duplication happens. 242 BasicBlock::const_iterator I = BB->getFirstNonPHI(); 243 244 // FIXME: THREADING will delete values that are just used to compute the 245 // branch, so they shouldn't count against the duplication cost. 246 247 // Sum up the cost of each instruction until we get to the terminator. Don't 248 // include the terminator because the copy won't include it. 249 unsigned Size = 0; 250 for (; !isa<TerminatorInst>(I); ++I) { 251 252 // Stop scanning the block if we've reached the threshold. 253 if (Size > Threshold) 254 return Size; 255 256 // Debugger intrinsics don't incur code size. 257 if (isa<DbgInfoIntrinsic>(I)) continue; 258 259 // If this is a pointer->pointer bitcast, it is free. 260 if (isa<BitCastInst>(I) && I->getType()->isPointerTy()) 261 continue; 262 263 // All other instructions count for at least one unit. 264 ++Size; 265 266 // Calls are more expensive. If they are non-intrinsic calls, we model them 267 // as having cost of 4. If they are a non-vector intrinsic, we model them 268 // as having cost of 2 total, and if they are a vector intrinsic, we model 269 // them as having cost 1. 270 if (const CallInst *CI = dyn_cast<CallInst>(I)) { 271 if (CI->cannotDuplicate()) 272 // Blocks with NoDuplicate are modelled as having infinite cost, so they 273 // are never duplicated. 274 return ~0U; 275 else if (!isa<IntrinsicInst>(CI)) 276 Size += 3; 277 else if (!CI->getType()->isVectorTy()) 278 Size += 1; 279 } 280 } 281 282 // Threading through a switch statement is particularly profitable. If this 283 // block ends in a switch, decrease its cost to make it more likely to happen. 284 if (isa<SwitchInst>(I)) 285 Size = Size > 6 ? Size-6 : 0; 286 287 // The same holds for indirect branches, but slightly more so. 288 if (isa<IndirectBrInst>(I)) 289 Size = Size > 8 ? Size-8 : 0; 290 291 return Size; 292 } 293 294 /// FindLoopHeaders - We do not want jump threading to turn proper loop 295 /// structures into irreducible loops. Doing this breaks up the loop nesting 296 /// hierarchy and pessimizes later transformations. To prevent this from 297 /// happening, we first have to find the loop headers. Here we approximate this 298 /// by finding targets of backedges in the CFG. 299 /// 300 /// Note that there definitely are cases when we want to allow threading of 301 /// edges across a loop header. For example, threading a jump from outside the 302 /// loop (the preheader) to an exit block of the loop is definitely profitable. 303 /// It is also almost always profitable to thread backedges from within the loop 304 /// to exit blocks, and is often profitable to thread backedges to other blocks 305 /// within the loop (forming a nested loop). This simple analysis is not rich 306 /// enough to track all of these properties and keep it up-to-date as the CFG 307 /// mutates, so we don't allow any of these transformations. 308 /// 309 void JumpThreading::FindLoopHeaders(Function &F) { 310 SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges; 311 FindFunctionBackedges(F, Edges); 312 313 for (unsigned i = 0, e = Edges.size(); i != e; ++i) 314 LoopHeaders.insert(const_cast<BasicBlock*>(Edges[i].second)); 315 } 316 317 /// getKnownConstant - Helper method to determine if we can thread over a 318 /// terminator with the given value as its condition, and if so what value to 319 /// use for that. What kind of value this is depends on whether we want an 320 /// integer or a block address, but an undef is always accepted. 321 /// Returns null if Val is null or not an appropriate constant. 322 static Constant *getKnownConstant(Value *Val, ConstantPreference Preference) { 323 if (!Val) 324 return nullptr; 325 326 // Undef is "known" enough. 327 if (UndefValue *U = dyn_cast<UndefValue>(Val)) 328 return U; 329 330 if (Preference == WantBlockAddress) 331 return dyn_cast<BlockAddress>(Val->stripPointerCasts()); 332 333 return dyn_cast<ConstantInt>(Val); 334 } 335 336 /// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see 337 /// if we can infer that the value is a known ConstantInt/BlockAddress or undef 338 /// in any of our predecessors. If so, return the known list of value and pred 339 /// BB in the result vector. 340 /// 341 /// This returns true if there were any known values. 342 /// 343 bool JumpThreading:: 344 ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB, PredValueInfo &Result, 345 ConstantPreference Preference, 346 Instruction *CxtI) { 347 // This method walks up use-def chains recursively. Because of this, we could 348 // get into an infinite loop going around loops in the use-def chain. To 349 // prevent this, keep track of what (value, block) pairs we've already visited 350 // and terminate the search if we loop back to them 351 if (!RecursionSet.insert(std::make_pair(V, BB)).second) 352 return false; 353 354 // An RAII help to remove this pair from the recursion set once the recursion 355 // stack pops back out again. 356 RecursionSetRemover remover(RecursionSet, std::make_pair(V, BB)); 357 358 // If V is a constant, then it is known in all predecessors. 359 if (Constant *KC = getKnownConstant(V, Preference)) { 360 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 361 Result.push_back(std::make_pair(KC, *PI)); 362 363 return true; 364 } 365 366 // If V is a non-instruction value, or an instruction in a different block, 367 // then it can't be derived from a PHI. 368 Instruction *I = dyn_cast<Instruction>(V); 369 if (!I || I->getParent() != BB) { 370 371 // Okay, if this is a live-in value, see if it has a known value at the end 372 // of any of our predecessors. 373 // 374 // FIXME: This should be an edge property, not a block end property. 375 /// TODO: Per PR2563, we could infer value range information about a 376 /// predecessor based on its terminator. 377 // 378 // FIXME: change this to use the more-rich 'getPredicateOnEdge' method if 379 // "I" is a non-local compare-with-a-constant instruction. This would be 380 // able to handle value inequalities better, for example if the compare is 381 // "X < 4" and "X < 3" is known true but "X < 4" itself is not available. 382 // Perhaps getConstantOnEdge should be smart enough to do this? 383 384 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { 385 BasicBlock *P = *PI; 386 // If the value is known by LazyValueInfo to be a constant in a 387 // predecessor, use that information to try to thread this block. 388 Constant *PredCst = LVI->getConstantOnEdge(V, P, BB, CxtI); 389 if (Constant *KC = getKnownConstant(PredCst, Preference)) 390 Result.push_back(std::make_pair(KC, P)); 391 } 392 393 return !Result.empty(); 394 } 395 396 /// If I is a PHI node, then we know the incoming values for any constants. 397 if (PHINode *PN = dyn_cast<PHINode>(I)) { 398 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 399 Value *InVal = PN->getIncomingValue(i); 400 if (Constant *KC = getKnownConstant(InVal, Preference)) { 401 Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i))); 402 } else { 403 Constant *CI = LVI->getConstantOnEdge(InVal, 404 PN->getIncomingBlock(i), 405 BB, CxtI); 406 if (Constant *KC = getKnownConstant(CI, Preference)) 407 Result.push_back(std::make_pair(KC, PN->getIncomingBlock(i))); 408 } 409 } 410 411 return !Result.empty(); 412 } 413 414 PredValueInfoTy LHSVals, RHSVals; 415 416 // Handle some boolean conditions. 417 if (I->getType()->getPrimitiveSizeInBits() == 1) { 418 assert(Preference == WantInteger && "One-bit non-integer type?"); 419 // X | true -> true 420 // X & false -> false 421 if (I->getOpcode() == Instruction::Or || 422 I->getOpcode() == Instruction::And) { 423 ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals, 424 WantInteger, CxtI); 425 ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals, 426 WantInteger, CxtI); 427 428 if (LHSVals.empty() && RHSVals.empty()) 429 return false; 430 431 ConstantInt *InterestingVal; 432 if (I->getOpcode() == Instruction::Or) 433 InterestingVal = ConstantInt::getTrue(I->getContext()); 434 else 435 InterestingVal = ConstantInt::getFalse(I->getContext()); 436 437 SmallPtrSet<BasicBlock*, 4> LHSKnownBBs; 438 439 // Scan for the sentinel. If we find an undef, force it to the 440 // interesting value: x|undef -> true and x&undef -> false. 441 for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) 442 if (LHSVals[i].first == InterestingVal || 443 isa<UndefValue>(LHSVals[i].first)) { 444 Result.push_back(LHSVals[i]); 445 Result.back().first = InterestingVal; 446 LHSKnownBBs.insert(LHSVals[i].second); 447 } 448 for (unsigned i = 0, e = RHSVals.size(); i != e; ++i) 449 if (RHSVals[i].first == InterestingVal || 450 isa<UndefValue>(RHSVals[i].first)) { 451 // If we already inferred a value for this block on the LHS, don't 452 // re-add it. 453 if (!LHSKnownBBs.count(RHSVals[i].second)) { 454 Result.push_back(RHSVals[i]); 455 Result.back().first = InterestingVal; 456 } 457 } 458 459 return !Result.empty(); 460 } 461 462 // Handle the NOT form of XOR. 463 if (I->getOpcode() == Instruction::Xor && 464 isa<ConstantInt>(I->getOperand(1)) && 465 cast<ConstantInt>(I->getOperand(1))->isOne()) { 466 ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result, 467 WantInteger, CxtI); 468 if (Result.empty()) 469 return false; 470 471 // Invert the known values. 472 for (unsigned i = 0, e = Result.size(); i != e; ++i) 473 Result[i].first = ConstantExpr::getNot(Result[i].first); 474 475 return true; 476 } 477 478 // Try to simplify some other binary operator values. 479 } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { 480 assert(Preference != WantBlockAddress 481 && "A binary operator creating a block address?"); 482 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) { 483 PredValueInfoTy LHSVals; 484 ComputeValueKnownInPredecessors(BO->getOperand(0), BB, LHSVals, 485 WantInteger, CxtI); 486 487 // Try to use constant folding to simplify the binary operator. 488 for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) { 489 Constant *V = LHSVals[i].first; 490 Constant *Folded = ConstantExpr::get(BO->getOpcode(), V, CI); 491 492 if (Constant *KC = getKnownConstant(Folded, WantInteger)) 493 Result.push_back(std::make_pair(KC, LHSVals[i].second)); 494 } 495 } 496 497 return !Result.empty(); 498 } 499 500 // Handle compare with phi operand, where the PHI is defined in this block. 501 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) { 502 assert(Preference == WantInteger && "Compares only produce integers"); 503 PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0)); 504 if (PN && PN->getParent() == BB) { 505 const DataLayout &DL = PN->getModule()->getDataLayout(); 506 // We can do this simplification if any comparisons fold to true or false. 507 // See if any do. 508 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 509 BasicBlock *PredBB = PN->getIncomingBlock(i); 510 Value *LHS = PN->getIncomingValue(i); 511 Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB); 512 513 Value *Res = SimplifyCmpInst(Cmp->getPredicate(), LHS, RHS, DL); 514 if (!Res) { 515 if (!isa<Constant>(RHS)) 516 continue; 517 518 LazyValueInfo::Tristate 519 ResT = LVI->getPredicateOnEdge(Cmp->getPredicate(), LHS, 520 cast<Constant>(RHS), PredBB, BB, 521 CxtI ? CxtI : Cmp); 522 if (ResT == LazyValueInfo::Unknown) 523 continue; 524 Res = ConstantInt::get(Type::getInt1Ty(LHS->getContext()), ResT); 525 } 526 527 if (Constant *KC = getKnownConstant(Res, WantInteger)) 528 Result.push_back(std::make_pair(KC, PredBB)); 529 } 530 531 return !Result.empty(); 532 } 533 534 // If comparing a live-in value against a constant, see if we know the 535 // live-in value on any predecessors. 536 if (isa<Constant>(Cmp->getOperand(1)) && Cmp->getType()->isIntegerTy()) { 537 if (!isa<Instruction>(Cmp->getOperand(0)) || 538 cast<Instruction>(Cmp->getOperand(0))->getParent() != BB) { 539 Constant *RHSCst = cast<Constant>(Cmp->getOperand(1)); 540 541 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB);PI != E; ++PI){ 542 BasicBlock *P = *PI; 543 // If the value is known by LazyValueInfo to be a constant in a 544 // predecessor, use that information to try to thread this block. 545 LazyValueInfo::Tristate Res = 546 LVI->getPredicateOnEdge(Cmp->getPredicate(), Cmp->getOperand(0), 547 RHSCst, P, BB, CxtI ? CxtI : Cmp); 548 if (Res == LazyValueInfo::Unknown) 549 continue; 550 551 Constant *ResC = ConstantInt::get(Cmp->getType(), Res); 552 Result.push_back(std::make_pair(ResC, P)); 553 } 554 555 return !Result.empty(); 556 } 557 558 // Try to find a constant value for the LHS of a comparison, 559 // and evaluate it statically if we can. 560 if (Constant *CmpConst = dyn_cast<Constant>(Cmp->getOperand(1))) { 561 PredValueInfoTy LHSVals; 562 ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals, 563 WantInteger, CxtI); 564 565 for (unsigned i = 0, e = LHSVals.size(); i != e; ++i) { 566 Constant *V = LHSVals[i].first; 567 Constant *Folded = ConstantExpr::getCompare(Cmp->getPredicate(), 568 V, CmpConst); 569 if (Constant *KC = getKnownConstant(Folded, WantInteger)) 570 Result.push_back(std::make_pair(KC, LHSVals[i].second)); 571 } 572 573 return !Result.empty(); 574 } 575 } 576 } 577 578 if (SelectInst *SI = dyn_cast<SelectInst>(I)) { 579 // Handle select instructions where at least one operand is a known constant 580 // and we can figure out the condition value for any predecessor block. 581 Constant *TrueVal = getKnownConstant(SI->getTrueValue(), Preference); 582 Constant *FalseVal = getKnownConstant(SI->getFalseValue(), Preference); 583 PredValueInfoTy Conds; 584 if ((TrueVal || FalseVal) && 585 ComputeValueKnownInPredecessors(SI->getCondition(), BB, Conds, 586 WantInteger, CxtI)) { 587 for (unsigned i = 0, e = Conds.size(); i != e; ++i) { 588 Constant *Cond = Conds[i].first; 589 590 // Figure out what value to use for the condition. 591 bool KnownCond; 592 if (ConstantInt *CI = dyn_cast<ConstantInt>(Cond)) { 593 // A known boolean. 594 KnownCond = CI->isOne(); 595 } else { 596 assert(isa<UndefValue>(Cond) && "Unexpected condition value"); 597 // Either operand will do, so be sure to pick the one that's a known 598 // constant. 599 // FIXME: Do this more cleverly if both values are known constants? 600 KnownCond = (TrueVal != nullptr); 601 } 602 603 // See if the select has a known constant value for this predecessor. 604 if (Constant *Val = KnownCond ? TrueVal : FalseVal) 605 Result.push_back(std::make_pair(Val, Conds[i].second)); 606 } 607 608 return !Result.empty(); 609 } 610 } 611 612 // If all else fails, see if LVI can figure out a constant value for us. 613 Constant *CI = LVI->getConstant(V, BB, CxtI); 614 if (Constant *KC = getKnownConstant(CI, Preference)) { 615 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) 616 Result.push_back(std::make_pair(KC, *PI)); 617 } 618 619 return !Result.empty(); 620 } 621 622 623 624 /// GetBestDestForBranchOnUndef - If we determine that the specified block ends 625 /// in an undefined jump, decide which block is best to revector to. 626 /// 627 /// Since we can pick an arbitrary destination, we pick the successor with the 628 /// fewest predecessors. This should reduce the in-degree of the others. 629 /// 630 static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) { 631 TerminatorInst *BBTerm = BB->getTerminator(); 632 unsigned MinSucc = 0; 633 BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc); 634 // Compute the successor with the minimum number of predecessors. 635 unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB)); 636 for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) { 637 TestBB = BBTerm->getSuccessor(i); 638 unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB)); 639 if (NumPreds < MinNumPreds) { 640 MinSucc = i; 641 MinNumPreds = NumPreds; 642 } 643 } 644 645 return MinSucc; 646 } 647 648 static bool hasAddressTakenAndUsed(BasicBlock *BB) { 649 if (!BB->hasAddressTaken()) return false; 650 651 // If the block has its address taken, it may be a tree of dead constants 652 // hanging off of it. These shouldn't keep the block alive. 653 BlockAddress *BA = BlockAddress::get(BB); 654 BA->removeDeadConstantUsers(); 655 return !BA->use_empty(); 656 } 657 658 /// ProcessBlock - If there are any predecessors whose control can be threaded 659 /// through to a successor, transform them now. 660 bool JumpThreading::ProcessBlock(BasicBlock *BB) { 661 // If the block is trivially dead, just return and let the caller nuke it. 662 // This simplifies other transformations. 663 if (pred_empty(BB) && 664 BB != &BB->getParent()->getEntryBlock()) 665 return false; 666 667 // If this block has a single predecessor, and if that pred has a single 668 // successor, merge the blocks. This encourages recursive jump threading 669 // because now the condition in this block can be threaded through 670 // predecessors of our predecessor block. 671 if (BasicBlock *SinglePred = BB->getSinglePredecessor()) { 672 if (SinglePred->getTerminator()->getNumSuccessors() == 1 && 673 SinglePred != BB && !hasAddressTakenAndUsed(BB)) { 674 // If SinglePred was a loop header, BB becomes one. 675 if (LoopHeaders.erase(SinglePred)) 676 LoopHeaders.insert(BB); 677 678 LVI->eraseBlock(SinglePred); 679 MergeBasicBlockIntoOnlyPred(BB); 680 681 return true; 682 } 683 } 684 685 // What kind of constant we're looking for. 686 ConstantPreference Preference = WantInteger; 687 688 // Look to see if the terminator is a conditional branch, switch or indirect 689 // branch, if not we can't thread it. 690 Value *Condition; 691 Instruction *Terminator = BB->getTerminator(); 692 if (BranchInst *BI = dyn_cast<BranchInst>(Terminator)) { 693 // Can't thread an unconditional jump. 694 if (BI->isUnconditional()) return false; 695 Condition = BI->getCondition(); 696 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(Terminator)) { 697 Condition = SI->getCondition(); 698 } else if (IndirectBrInst *IB = dyn_cast<IndirectBrInst>(Terminator)) { 699 // Can't thread indirect branch with no successors. 700 if (IB->getNumSuccessors() == 0) return false; 701 Condition = IB->getAddress()->stripPointerCasts(); 702 Preference = WantBlockAddress; 703 } else { 704 return false; // Must be an invoke. 705 } 706 707 // Run constant folding to see if we can reduce the condition to a simple 708 // constant. 709 if (Instruction *I = dyn_cast<Instruction>(Condition)) { 710 Value *SimpleVal = 711 ConstantFoldInstruction(I, BB->getModule()->getDataLayout(), TLI); 712 if (SimpleVal) { 713 I->replaceAllUsesWith(SimpleVal); 714 I->eraseFromParent(); 715 Condition = SimpleVal; 716 } 717 } 718 719 // If the terminator is branching on an undef, we can pick any of the 720 // successors to branch to. Let GetBestDestForJumpOnUndef decide. 721 if (isa<UndefValue>(Condition)) { 722 unsigned BestSucc = GetBestDestForJumpOnUndef(BB); 723 724 // Fold the branch/switch. 725 TerminatorInst *BBTerm = BB->getTerminator(); 726 for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) { 727 if (i == BestSucc) continue; 728 BBTerm->getSuccessor(i)->removePredecessor(BB, true); 729 } 730 731 DEBUG(dbgs() << " In block '" << BB->getName() 732 << "' folding undef terminator: " << *BBTerm << '\n'); 733 BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm); 734 BBTerm->eraseFromParent(); 735 return true; 736 } 737 738 // If the terminator of this block is branching on a constant, simplify the 739 // terminator to an unconditional branch. This can occur due to threading in 740 // other blocks. 741 if (getKnownConstant(Condition, Preference)) { 742 DEBUG(dbgs() << " In block '" << BB->getName() 743 << "' folding terminator: " << *BB->getTerminator() << '\n'); 744 ++NumFolds; 745 ConstantFoldTerminator(BB, true); 746 return true; 747 } 748 749 Instruction *CondInst = dyn_cast<Instruction>(Condition); 750 751 // All the rest of our checks depend on the condition being an instruction. 752 if (!CondInst) { 753 // FIXME: Unify this with code below. 754 if (ProcessThreadableEdges(Condition, BB, Preference, Terminator)) 755 return true; 756 return false; 757 } 758 759 760 if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) { 761 // For a comparison where the LHS is outside this block, it's possible 762 // that we've branched on it before. Used LVI to see if we can simplify 763 // the branch based on that. 764 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 765 Constant *CondConst = dyn_cast<Constant>(CondCmp->getOperand(1)); 766 pred_iterator PI = pred_begin(BB), PE = pred_end(BB); 767 if (CondBr && CondConst && CondBr->isConditional() && PI != PE && 768 (!isa<Instruction>(CondCmp->getOperand(0)) || 769 cast<Instruction>(CondCmp->getOperand(0))->getParent() != BB)) { 770 // For predecessor edge, determine if the comparison is true or false 771 // on that edge. If they're all true or all false, we can simplify the 772 // branch. 773 // FIXME: We could handle mixed true/false by duplicating code. 774 LazyValueInfo::Tristate Baseline = 775 LVI->getPredicateOnEdge(CondCmp->getPredicate(), CondCmp->getOperand(0), 776 CondConst, *PI, BB, CondCmp); 777 if (Baseline != LazyValueInfo::Unknown) { 778 // Check that all remaining incoming values match the first one. 779 while (++PI != PE) { 780 LazyValueInfo::Tristate Ret = 781 LVI->getPredicateOnEdge(CondCmp->getPredicate(), 782 CondCmp->getOperand(0), CondConst, *PI, BB, 783 CondCmp); 784 if (Ret != Baseline) break; 785 } 786 787 // If we terminated early, then one of the values didn't match. 788 if (PI == PE) { 789 unsigned ToRemove = Baseline == LazyValueInfo::True ? 1 : 0; 790 unsigned ToKeep = Baseline == LazyValueInfo::True ? 0 : 1; 791 CondBr->getSuccessor(ToRemove)->removePredecessor(BB, true); 792 BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr); 793 CondBr->eraseFromParent(); 794 return true; 795 } 796 } 797 798 } else if (CondBr && CondConst && CondBr->isConditional()) { 799 // There might be an invariant in the same block with the conditional 800 // that can determine the predicate. 801 802 LazyValueInfo::Tristate Ret = 803 LVI->getPredicateAt(CondCmp->getPredicate(), CondCmp->getOperand(0), 804 CondConst, CondCmp); 805 if (Ret != LazyValueInfo::Unknown) { 806 unsigned ToRemove = Ret == LazyValueInfo::True ? 1 : 0; 807 unsigned ToKeep = Ret == LazyValueInfo::True ? 0 : 1; 808 CondBr->getSuccessor(ToRemove)->removePredecessor(BB, true); 809 BranchInst::Create(CondBr->getSuccessor(ToKeep), CondBr); 810 CondBr->eraseFromParent(); 811 return true; 812 } 813 } 814 815 if (CondBr && CondConst && TryToUnfoldSelect(CondCmp, BB)) 816 return true; 817 } 818 819 // Check for some cases that are worth simplifying. Right now we want to look 820 // for loads that are used by a switch or by the condition for the branch. If 821 // we see one, check to see if it's partially redundant. If so, insert a PHI 822 // which can then be used to thread the values. 823 // 824 Value *SimplifyValue = CondInst; 825 if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue)) 826 if (isa<Constant>(CondCmp->getOperand(1))) 827 SimplifyValue = CondCmp->getOperand(0); 828 829 // TODO: There are other places where load PRE would be profitable, such as 830 // more complex comparisons. 831 if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue)) 832 if (SimplifyPartiallyRedundantLoad(LI)) 833 return true; 834 835 836 // Handle a variety of cases where we are branching on something derived from 837 // a PHI node in the current block. If we can prove that any predecessors 838 // compute a predictable value based on a PHI node, thread those predecessors. 839 // 840 if (ProcessThreadableEdges(CondInst, BB, Preference, Terminator)) 841 return true; 842 843 // If this is an otherwise-unfoldable branch on a phi node in the current 844 // block, see if we can simplify. 845 if (PHINode *PN = dyn_cast<PHINode>(CondInst)) 846 if (PN->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 847 return ProcessBranchOnPHI(PN); 848 849 850 // If this is an otherwise-unfoldable branch on a XOR, see if we can simplify. 851 if (CondInst->getOpcode() == Instruction::Xor && 852 CondInst->getParent() == BB && isa<BranchInst>(BB->getTerminator())) 853 return ProcessBranchOnXOR(cast<BinaryOperator>(CondInst)); 854 855 856 // TODO: If we have: "br (X > 0)" and we have a predecessor where we know 857 // "(X == 4)", thread through this block. 858 859 return false; 860 } 861 862 /// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant 863 /// load instruction, eliminate it by replacing it with a PHI node. This is an 864 /// important optimization that encourages jump threading, and needs to be run 865 /// interlaced with other jump threading tasks. 866 bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) { 867 // Don't hack volatile/atomic loads. 868 if (!LI->isSimple()) return false; 869 870 // If the load is defined in a block with exactly one predecessor, it can't be 871 // partially redundant. 872 BasicBlock *LoadBB = LI->getParent(); 873 if (LoadBB->getSinglePredecessor()) 874 return false; 875 876 // If the load is defined in a landing pad, it can't be partially redundant, 877 // because the edges between the invoke and the landing pad cannot have other 878 // instructions between them. 879 if (LoadBB->isLandingPad()) 880 return false; 881 882 Value *LoadedPtr = LI->getOperand(0); 883 884 // If the loaded operand is defined in the LoadBB, it can't be available. 885 // TODO: Could do simple PHI translation, that would be fun :) 886 if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr)) 887 if (PtrOp->getParent() == LoadBB) 888 return false; 889 890 // Scan a few instructions up from the load, to see if it is obviously live at 891 // the entry to its block. 892 BasicBlock::iterator BBIt = LI; 893 894 if (Value *AvailableVal = 895 FindAvailableLoadedValue(LoadedPtr, LoadBB, BBIt, 6)) { 896 // If the value if the load is locally available within the block, just use 897 // it. This frequently occurs for reg2mem'd allocas. 898 //cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n"; 899 900 // If the returned value is the load itself, replace with an undef. This can 901 // only happen in dead loops. 902 if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType()); 903 if (AvailableVal->getType() != LI->getType()) 904 AvailableVal = 905 CastInst::CreateBitOrPointerCast(AvailableVal, LI->getType(), "", LI); 906 LI->replaceAllUsesWith(AvailableVal); 907 LI->eraseFromParent(); 908 return true; 909 } 910 911 // Otherwise, if we scanned the whole block and got to the top of the block, 912 // we know the block is locally transparent to the load. If not, something 913 // might clobber its value. 914 if (BBIt != LoadBB->begin()) 915 return false; 916 917 // If all of the loads and stores that feed the value have the same AA tags, 918 // then we can propagate them onto any newly inserted loads. 919 AAMDNodes AATags; 920 LI->getAAMetadata(AATags); 921 922 SmallPtrSet<BasicBlock*, 8> PredsScanned; 923 typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy; 924 AvailablePredsTy AvailablePreds; 925 BasicBlock *OneUnavailablePred = nullptr; 926 927 // If we got here, the loaded value is transparent through to the start of the 928 // block. Check to see if it is available in any of the predecessor blocks. 929 for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB); 930 PI != PE; ++PI) { 931 BasicBlock *PredBB = *PI; 932 933 // If we already scanned this predecessor, skip it. 934 if (!PredsScanned.insert(PredBB).second) 935 continue; 936 937 // Scan the predecessor to see if the value is available in the pred. 938 BBIt = PredBB->end(); 939 AAMDNodes ThisAATags; 940 Value *PredAvailable = FindAvailableLoadedValue(LoadedPtr, PredBB, BBIt, 6, 941 nullptr, &ThisAATags); 942 if (!PredAvailable) { 943 OneUnavailablePred = PredBB; 944 continue; 945 } 946 947 // If AA tags disagree or are not present, forget about them. 948 if (AATags != ThisAATags) AATags = AAMDNodes(); 949 950 // If so, this load is partially redundant. Remember this info so that we 951 // can create a PHI node. 952 AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable)); 953 } 954 955 // If the loaded value isn't available in any predecessor, it isn't partially 956 // redundant. 957 if (AvailablePreds.empty()) return false; 958 959 // Okay, the loaded value is available in at least one (and maybe all!) 960 // predecessors. If the value is unavailable in more than one unique 961 // predecessor, we want to insert a merge block for those common predecessors. 962 // This ensures that we only have to insert one reload, thus not increasing 963 // code size. 964 BasicBlock *UnavailablePred = nullptr; 965 966 // If there is exactly one predecessor where the value is unavailable, the 967 // already computed 'OneUnavailablePred' block is it. If it ends in an 968 // unconditional branch, we know that it isn't a critical edge. 969 if (PredsScanned.size() == AvailablePreds.size()+1 && 970 OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) { 971 UnavailablePred = OneUnavailablePred; 972 } else if (PredsScanned.size() != AvailablePreds.size()) { 973 // Otherwise, we had multiple unavailable predecessors or we had a critical 974 // edge from the one. 975 SmallVector<BasicBlock*, 8> PredsToSplit; 976 SmallPtrSet<BasicBlock*, 8> AvailablePredSet; 977 978 for (unsigned i = 0, e = AvailablePreds.size(); i != e; ++i) 979 AvailablePredSet.insert(AvailablePreds[i].first); 980 981 // Add all the unavailable predecessors to the PredsToSplit list. 982 for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB); 983 PI != PE; ++PI) { 984 BasicBlock *P = *PI; 985 // If the predecessor is an indirect goto, we can't split the edge. 986 if (isa<IndirectBrInst>(P->getTerminator())) 987 return false; 988 989 if (!AvailablePredSet.count(P)) 990 PredsToSplit.push_back(P); 991 } 992 993 // Split them out to their own block. 994 UnavailablePred = 995 SplitBlockPredecessors(LoadBB, PredsToSplit, "thread-pre-split"); 996 } 997 998 // If the value isn't available in all predecessors, then there will be 999 // exactly one where it isn't available. Insert a load on that edge and add 1000 // it to the AvailablePreds list. 1001 if (UnavailablePred) { 1002 assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 && 1003 "Can't handle critical edge here!"); 1004 LoadInst *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr", false, 1005 LI->getAlignment(), 1006 UnavailablePred->getTerminator()); 1007 NewVal->setDebugLoc(LI->getDebugLoc()); 1008 if (AATags) 1009 NewVal->setAAMetadata(AATags); 1010 1011 AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal)); 1012 } 1013 1014 // Now we know that each predecessor of this block has a value in 1015 // AvailablePreds, sort them for efficient access as we're walking the preds. 1016 array_pod_sort(AvailablePreds.begin(), AvailablePreds.end()); 1017 1018 // Create a PHI node at the start of the block for the PRE'd load value. 1019 pred_iterator PB = pred_begin(LoadBB), PE = pred_end(LoadBB); 1020 PHINode *PN = PHINode::Create(LI->getType(), std::distance(PB, PE), "", 1021 LoadBB->begin()); 1022 PN->takeName(LI); 1023 PN->setDebugLoc(LI->getDebugLoc()); 1024 1025 // Insert new entries into the PHI for each predecessor. A single block may 1026 // have multiple entries here. 1027 for (pred_iterator PI = PB; PI != PE; ++PI) { 1028 BasicBlock *P = *PI; 1029 AvailablePredsTy::iterator I = 1030 std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(), 1031 std::make_pair(P, (Value*)nullptr)); 1032 1033 assert(I != AvailablePreds.end() && I->first == P && 1034 "Didn't find entry for predecessor!"); 1035 1036 // If we have an available predecessor but it requires casting, insert the 1037 // cast in the predecessor and use the cast. Note that we have to update the 1038 // AvailablePreds vector as we go so that all of the PHI entries for this 1039 // predecessor use the same bitcast. 1040 Value *&PredV = I->second; 1041 if (PredV->getType() != LI->getType()) 1042 PredV = CastInst::CreateBitOrPointerCast(PredV, LI->getType(), "", 1043 P->getTerminator()); 1044 1045 PN->addIncoming(PredV, I->first); 1046 } 1047 1048 //cerr << "PRE: " << *LI << *PN << "\n"; 1049 1050 LI->replaceAllUsesWith(PN); 1051 LI->eraseFromParent(); 1052 1053 return true; 1054 } 1055 1056 /// FindMostPopularDest - The specified list contains multiple possible 1057 /// threadable destinations. Pick the one that occurs the most frequently in 1058 /// the list. 1059 static BasicBlock * 1060 FindMostPopularDest(BasicBlock *BB, 1061 const SmallVectorImpl<std::pair<BasicBlock*, 1062 BasicBlock*> > &PredToDestList) { 1063 assert(!PredToDestList.empty()); 1064 1065 // Determine popularity. If there are multiple possible destinations, we 1066 // explicitly choose to ignore 'undef' destinations. We prefer to thread 1067 // blocks with known and real destinations to threading undef. We'll handle 1068 // them later if interesting. 1069 DenseMap<BasicBlock*, unsigned> DestPopularity; 1070 for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i) 1071 if (PredToDestList[i].second) 1072 DestPopularity[PredToDestList[i].second]++; 1073 1074 // Find the most popular dest. 1075 DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin(); 1076 BasicBlock *MostPopularDest = DPI->first; 1077 unsigned Popularity = DPI->second; 1078 SmallVector<BasicBlock*, 4> SamePopularity; 1079 1080 for (++DPI; DPI != DestPopularity.end(); ++DPI) { 1081 // If the popularity of this entry isn't higher than the popularity we've 1082 // seen so far, ignore it. 1083 if (DPI->second < Popularity) 1084 ; // ignore. 1085 else if (DPI->second == Popularity) { 1086 // If it is the same as what we've seen so far, keep track of it. 1087 SamePopularity.push_back(DPI->first); 1088 } else { 1089 // If it is more popular, remember it. 1090 SamePopularity.clear(); 1091 MostPopularDest = DPI->first; 1092 Popularity = DPI->second; 1093 } 1094 } 1095 1096 // Okay, now we know the most popular destination. If there is more than one 1097 // destination, we need to determine one. This is arbitrary, but we need 1098 // to make a deterministic decision. Pick the first one that appears in the 1099 // successor list. 1100 if (!SamePopularity.empty()) { 1101 SamePopularity.push_back(MostPopularDest); 1102 TerminatorInst *TI = BB->getTerminator(); 1103 for (unsigned i = 0; ; ++i) { 1104 assert(i != TI->getNumSuccessors() && "Didn't find any successor!"); 1105 1106 if (std::find(SamePopularity.begin(), SamePopularity.end(), 1107 TI->getSuccessor(i)) == SamePopularity.end()) 1108 continue; 1109 1110 MostPopularDest = TI->getSuccessor(i); 1111 break; 1112 } 1113 } 1114 1115 // Okay, we have finally picked the most popular destination. 1116 return MostPopularDest; 1117 } 1118 1119 bool JumpThreading::ProcessThreadableEdges(Value *Cond, BasicBlock *BB, 1120 ConstantPreference Preference, 1121 Instruction *CxtI) { 1122 // If threading this would thread across a loop header, don't even try to 1123 // thread the edge. 1124 if (LoopHeaders.count(BB)) 1125 return false; 1126 1127 PredValueInfoTy PredValues; 1128 if (!ComputeValueKnownInPredecessors(Cond, BB, PredValues, Preference, CxtI)) 1129 return false; 1130 1131 assert(!PredValues.empty() && 1132 "ComputeValueKnownInPredecessors returned true with no values"); 1133 1134 DEBUG(dbgs() << "IN BB: " << *BB; 1135 for (unsigned i = 0, e = PredValues.size(); i != e; ++i) { 1136 dbgs() << " BB '" << BB->getName() << "': FOUND condition = " 1137 << *PredValues[i].first 1138 << " for pred '" << PredValues[i].second->getName() << "'.\n"; 1139 }); 1140 1141 // Decide what we want to thread through. Convert our list of known values to 1142 // a list of known destinations for each pred. This also discards duplicate 1143 // predecessors and keeps track of the undefined inputs (which are represented 1144 // as a null dest in the PredToDestList). 1145 SmallPtrSet<BasicBlock*, 16> SeenPreds; 1146 SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList; 1147 1148 BasicBlock *OnlyDest = nullptr; 1149 BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL; 1150 1151 for (unsigned i = 0, e = PredValues.size(); i != e; ++i) { 1152 BasicBlock *Pred = PredValues[i].second; 1153 if (!SeenPreds.insert(Pred).second) 1154 continue; // Duplicate predecessor entry. 1155 1156 // If the predecessor ends with an indirect goto, we can't change its 1157 // destination. 1158 if (isa<IndirectBrInst>(Pred->getTerminator())) 1159 continue; 1160 1161 Constant *Val = PredValues[i].first; 1162 1163 BasicBlock *DestBB; 1164 if (isa<UndefValue>(Val)) 1165 DestBB = nullptr; 1166 else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) 1167 DestBB = BI->getSuccessor(cast<ConstantInt>(Val)->isZero()); 1168 else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) { 1169 DestBB = SI->findCaseValue(cast<ConstantInt>(Val)).getCaseSuccessor(); 1170 } else { 1171 assert(isa<IndirectBrInst>(BB->getTerminator()) 1172 && "Unexpected terminator"); 1173 DestBB = cast<BlockAddress>(Val)->getBasicBlock(); 1174 } 1175 1176 // If we have exactly one destination, remember it for efficiency below. 1177 if (PredToDestList.empty()) 1178 OnlyDest = DestBB; 1179 else if (OnlyDest != DestBB) 1180 OnlyDest = MultipleDestSentinel; 1181 1182 PredToDestList.push_back(std::make_pair(Pred, DestBB)); 1183 } 1184 1185 // If all edges were unthreadable, we fail. 1186 if (PredToDestList.empty()) 1187 return false; 1188 1189 // Determine which is the most common successor. If we have many inputs and 1190 // this block is a switch, we want to start by threading the batch that goes 1191 // to the most popular destination first. If we only know about one 1192 // threadable destination (the common case) we can avoid this. 1193 BasicBlock *MostPopularDest = OnlyDest; 1194 1195 if (MostPopularDest == MultipleDestSentinel) 1196 MostPopularDest = FindMostPopularDest(BB, PredToDestList); 1197 1198 // Now that we know what the most popular destination is, factor all 1199 // predecessors that will jump to it into a single predecessor. 1200 SmallVector<BasicBlock*, 16> PredsToFactor; 1201 for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i) 1202 if (PredToDestList[i].second == MostPopularDest) { 1203 BasicBlock *Pred = PredToDestList[i].first; 1204 1205 // This predecessor may be a switch or something else that has multiple 1206 // edges to the block. Factor each of these edges by listing them 1207 // according to # occurrences in PredsToFactor. 1208 TerminatorInst *PredTI = Pred->getTerminator(); 1209 for (unsigned i = 0, e = PredTI->getNumSuccessors(); i != e; ++i) 1210 if (PredTI->getSuccessor(i) == BB) 1211 PredsToFactor.push_back(Pred); 1212 } 1213 1214 // If the threadable edges are branching on an undefined value, we get to pick 1215 // the destination that these predecessors should get to. 1216 if (!MostPopularDest) 1217 MostPopularDest = BB->getTerminator()-> 1218 getSuccessor(GetBestDestForJumpOnUndef(BB)); 1219 1220 // Ok, try to thread it! 1221 return ThreadEdge(BB, PredsToFactor, MostPopularDest); 1222 } 1223 1224 /// ProcessBranchOnPHI - We have an otherwise unthreadable conditional branch on 1225 /// a PHI node in the current block. See if there are any simplifications we 1226 /// can do based on inputs to the phi node. 1227 /// 1228 bool JumpThreading::ProcessBranchOnPHI(PHINode *PN) { 1229 BasicBlock *BB = PN->getParent(); 1230 1231 // TODO: We could make use of this to do it once for blocks with common PHI 1232 // values. 1233 SmallVector<BasicBlock*, 1> PredBBs; 1234 PredBBs.resize(1); 1235 1236 // If any of the predecessor blocks end in an unconditional branch, we can 1237 // *duplicate* the conditional branch into that block in order to further 1238 // encourage jump threading and to eliminate cases where we have branch on a 1239 // phi of an icmp (branch on icmp is much better). 1240 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 1241 BasicBlock *PredBB = PN->getIncomingBlock(i); 1242 if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator())) 1243 if (PredBr->isUnconditional()) { 1244 PredBBs[0] = PredBB; 1245 // Try to duplicate BB into PredBB. 1246 if (DuplicateCondBranchOnPHIIntoPred(BB, PredBBs)) 1247 return true; 1248 } 1249 } 1250 1251 return false; 1252 } 1253 1254 /// ProcessBranchOnXOR - We have an otherwise unthreadable conditional branch on 1255 /// a xor instruction in the current block. See if there are any 1256 /// simplifications we can do based on inputs to the xor. 1257 /// 1258 bool JumpThreading::ProcessBranchOnXOR(BinaryOperator *BO) { 1259 BasicBlock *BB = BO->getParent(); 1260 1261 // If either the LHS or RHS of the xor is a constant, don't do this 1262 // optimization. 1263 if (isa<ConstantInt>(BO->getOperand(0)) || 1264 isa<ConstantInt>(BO->getOperand(1))) 1265 return false; 1266 1267 // If the first instruction in BB isn't a phi, we won't be able to infer 1268 // anything special about any particular predecessor. 1269 if (!isa<PHINode>(BB->front())) 1270 return false; 1271 1272 // If we have a xor as the branch input to this block, and we know that the 1273 // LHS or RHS of the xor in any predecessor is true/false, then we can clone 1274 // the condition into the predecessor and fix that value to true, saving some 1275 // logical ops on that path and encouraging other paths to simplify. 1276 // 1277 // This copies something like this: 1278 // 1279 // BB: 1280 // %X = phi i1 [1], [%X'] 1281 // %Y = icmp eq i32 %A, %B 1282 // %Z = xor i1 %X, %Y 1283 // br i1 %Z, ... 1284 // 1285 // Into: 1286 // BB': 1287 // %Y = icmp ne i32 %A, %B 1288 // br i1 %Z, ... 1289 1290 PredValueInfoTy XorOpValues; 1291 bool isLHS = true; 1292 if (!ComputeValueKnownInPredecessors(BO->getOperand(0), BB, XorOpValues, 1293 WantInteger, BO)) { 1294 assert(XorOpValues.empty()); 1295 if (!ComputeValueKnownInPredecessors(BO->getOperand(1), BB, XorOpValues, 1296 WantInteger, BO)) 1297 return false; 1298 isLHS = false; 1299 } 1300 1301 assert(!XorOpValues.empty() && 1302 "ComputeValueKnownInPredecessors returned true with no values"); 1303 1304 // Scan the information to see which is most popular: true or false. The 1305 // predecessors can be of the set true, false, or undef. 1306 unsigned NumTrue = 0, NumFalse = 0; 1307 for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) { 1308 if (isa<UndefValue>(XorOpValues[i].first)) 1309 // Ignore undefs for the count. 1310 continue; 1311 if (cast<ConstantInt>(XorOpValues[i].first)->isZero()) 1312 ++NumFalse; 1313 else 1314 ++NumTrue; 1315 } 1316 1317 // Determine which value to split on, true, false, or undef if neither. 1318 ConstantInt *SplitVal = nullptr; 1319 if (NumTrue > NumFalse) 1320 SplitVal = ConstantInt::getTrue(BB->getContext()); 1321 else if (NumTrue != 0 || NumFalse != 0) 1322 SplitVal = ConstantInt::getFalse(BB->getContext()); 1323 1324 // Collect all of the blocks that this can be folded into so that we can 1325 // factor this once and clone it once. 1326 SmallVector<BasicBlock*, 8> BlocksToFoldInto; 1327 for (unsigned i = 0, e = XorOpValues.size(); i != e; ++i) { 1328 if (XorOpValues[i].first != SplitVal && 1329 !isa<UndefValue>(XorOpValues[i].first)) 1330 continue; 1331 1332 BlocksToFoldInto.push_back(XorOpValues[i].second); 1333 } 1334 1335 // If we inferred a value for all of the predecessors, then duplication won't 1336 // help us. However, we can just replace the LHS or RHS with the constant. 1337 if (BlocksToFoldInto.size() == 1338 cast<PHINode>(BB->front()).getNumIncomingValues()) { 1339 if (!SplitVal) { 1340 // If all preds provide undef, just nuke the xor, because it is undef too. 1341 BO->replaceAllUsesWith(UndefValue::get(BO->getType())); 1342 BO->eraseFromParent(); 1343 } else if (SplitVal->isZero()) { 1344 // If all preds provide 0, replace the xor with the other input. 1345 BO->replaceAllUsesWith(BO->getOperand(isLHS)); 1346 BO->eraseFromParent(); 1347 } else { 1348 // If all preds provide 1, set the computed value to 1. 1349 BO->setOperand(!isLHS, SplitVal); 1350 } 1351 1352 return true; 1353 } 1354 1355 // Try to duplicate BB into PredBB. 1356 return DuplicateCondBranchOnPHIIntoPred(BB, BlocksToFoldInto); 1357 } 1358 1359 1360 /// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new 1361 /// predecessor to the PHIBB block. If it has PHI nodes, add entries for 1362 /// NewPred using the entries from OldPred (suitably mapped). 1363 static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB, 1364 BasicBlock *OldPred, 1365 BasicBlock *NewPred, 1366 DenseMap<Instruction*, Value*> &ValueMap) { 1367 for (BasicBlock::iterator PNI = PHIBB->begin(); 1368 PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) { 1369 // Ok, we have a PHI node. Figure out what the incoming value was for the 1370 // DestBlock. 1371 Value *IV = PN->getIncomingValueForBlock(OldPred); 1372 1373 // Remap the value if necessary. 1374 if (Instruction *Inst = dyn_cast<Instruction>(IV)) { 1375 DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst); 1376 if (I != ValueMap.end()) 1377 IV = I->second; 1378 } 1379 1380 PN->addIncoming(IV, NewPred); 1381 } 1382 } 1383 1384 /// ThreadEdge - We have decided that it is safe and profitable to factor the 1385 /// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB 1386 /// across BB. Transform the IR to reflect this change. 1387 bool JumpThreading::ThreadEdge(BasicBlock *BB, 1388 const SmallVectorImpl<BasicBlock*> &PredBBs, 1389 BasicBlock *SuccBB) { 1390 // If threading to the same block as we come from, we would infinite loop. 1391 if (SuccBB == BB) { 1392 DEBUG(dbgs() << " Not threading across BB '" << BB->getName() 1393 << "' - would thread to self!\n"); 1394 return false; 1395 } 1396 1397 // If threading this would thread across a loop header, don't thread the edge. 1398 // See the comments above FindLoopHeaders for justifications and caveats. 1399 if (LoopHeaders.count(BB)) { 1400 DEBUG(dbgs() << " Not threading across loop header BB '" << BB->getName() 1401 << "' to dest BB '" << SuccBB->getName() 1402 << "' - it might create an irreducible loop!\n"); 1403 return false; 1404 } 1405 1406 unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB, BBDupThreshold); 1407 if (JumpThreadCost > BBDupThreshold) { 1408 DEBUG(dbgs() << " Not threading BB '" << BB->getName() 1409 << "' - Cost is too high: " << JumpThreadCost << "\n"); 1410 return false; 1411 } 1412 1413 // And finally, do it! Start by factoring the predecessors is needed. 1414 BasicBlock *PredBB; 1415 if (PredBBs.size() == 1) 1416 PredBB = PredBBs[0]; 1417 else { 1418 DEBUG(dbgs() << " Factoring out " << PredBBs.size() 1419 << " common predecessors.\n"); 1420 PredBB = SplitBlockPredecessors(BB, PredBBs, ".thr_comm"); 1421 } 1422 1423 // And finally, do it! 1424 DEBUG(dbgs() << " Threading edge from '" << PredBB->getName() << "' to '" 1425 << SuccBB->getName() << "' with cost: " << JumpThreadCost 1426 << ", across block:\n " 1427 << *BB << "\n"); 1428 1429 LVI->threadEdge(PredBB, BB, SuccBB); 1430 1431 // We are going to have to map operands from the original BB block to the new 1432 // copy of the block 'NewBB'. If there are PHI nodes in BB, evaluate them to 1433 // account for entry from PredBB. 1434 DenseMap<Instruction*, Value*> ValueMapping; 1435 1436 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), 1437 BB->getName()+".thread", 1438 BB->getParent(), BB); 1439 NewBB->moveAfter(PredBB); 1440 1441 BasicBlock::iterator BI = BB->begin(); 1442 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 1443 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 1444 1445 // Clone the non-phi instructions of BB into NewBB, keeping track of the 1446 // mapping and using it to remap operands in the cloned instructions. 1447 for (; !isa<TerminatorInst>(BI); ++BI) { 1448 Instruction *New = BI->clone(); 1449 New->setName(BI->getName()); 1450 NewBB->getInstList().push_back(New); 1451 ValueMapping[BI] = New; 1452 1453 // Remap operands to patch up intra-block references. 1454 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 1455 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 1456 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 1457 if (I != ValueMapping.end()) 1458 New->setOperand(i, I->second); 1459 } 1460 } 1461 1462 // We didn't copy the terminator from BB over to NewBB, because there is now 1463 // an unconditional jump to SuccBB. Insert the unconditional jump. 1464 BranchInst *NewBI =BranchInst::Create(SuccBB, NewBB); 1465 NewBI->setDebugLoc(BB->getTerminator()->getDebugLoc()); 1466 1467 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the 1468 // PHI nodes for NewBB now. 1469 AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping); 1470 1471 // If there were values defined in BB that are used outside the block, then we 1472 // now have to update all uses of the value to use either the original value, 1473 // the cloned value, or some PHI derived value. This can require arbitrary 1474 // PHI insertion, of which we are prepared to do, clean these up now. 1475 SSAUpdater SSAUpdate; 1476 SmallVector<Use*, 16> UsesToRename; 1477 for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) { 1478 // Scan all uses of this instruction to see if it is used outside of its 1479 // block, and if so, record them in UsesToRename. 1480 for (Use &U : I->uses()) { 1481 Instruction *User = cast<Instruction>(U.getUser()); 1482 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 1483 if (UserPN->getIncomingBlock(U) == BB) 1484 continue; 1485 } else if (User->getParent() == BB) 1486 continue; 1487 1488 UsesToRename.push_back(&U); 1489 } 1490 1491 // If there are no uses outside the block, we're done with this instruction. 1492 if (UsesToRename.empty()) 1493 continue; 1494 1495 DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n"); 1496 1497 // We found a use of I outside of BB. Rename all uses of I that are outside 1498 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 1499 // with the two values we know. 1500 SSAUpdate.Initialize(I->getType(), I->getName()); 1501 SSAUpdate.AddAvailableValue(BB, I); 1502 SSAUpdate.AddAvailableValue(NewBB, ValueMapping[I]); 1503 1504 while (!UsesToRename.empty()) 1505 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 1506 DEBUG(dbgs() << "\n"); 1507 } 1508 1509 1510 // Ok, NewBB is good to go. Update the terminator of PredBB to jump to 1511 // NewBB instead of BB. This eliminates predecessors from BB, which requires 1512 // us to simplify any PHI nodes in BB. 1513 TerminatorInst *PredTerm = PredBB->getTerminator(); 1514 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i) 1515 if (PredTerm->getSuccessor(i) == BB) { 1516 BB->removePredecessor(PredBB, true); 1517 PredTerm->setSuccessor(i, NewBB); 1518 } 1519 1520 // At this point, the IR is fully up to date and consistent. Do a quick scan 1521 // over the new instructions and zap any that are constants or dead. This 1522 // frequently happens because of phi translation. 1523 SimplifyInstructionsInBlock(NewBB, TLI); 1524 1525 // Threaded an edge! 1526 ++NumThreads; 1527 return true; 1528 } 1529 1530 /// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch 1531 /// to BB which contains an i1 PHI node and a conditional branch on that PHI. 1532 /// If we can duplicate the contents of BB up into PredBB do so now, this 1533 /// improves the odds that the branch will be on an analyzable instruction like 1534 /// a compare. 1535 bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB, 1536 const SmallVectorImpl<BasicBlock *> &PredBBs) { 1537 assert(!PredBBs.empty() && "Can't handle an empty set"); 1538 1539 // If BB is a loop header, then duplicating this block outside the loop would 1540 // cause us to transform this into an irreducible loop, don't do this. 1541 // See the comments above FindLoopHeaders for justifications and caveats. 1542 if (LoopHeaders.count(BB)) { 1543 DEBUG(dbgs() << " Not duplicating loop header '" << BB->getName() 1544 << "' into predecessor block '" << PredBBs[0]->getName() 1545 << "' - it might create an irreducible loop!\n"); 1546 return false; 1547 } 1548 1549 unsigned DuplicationCost = getJumpThreadDuplicationCost(BB, BBDupThreshold); 1550 if (DuplicationCost > BBDupThreshold) { 1551 DEBUG(dbgs() << " Not duplicating BB '" << BB->getName() 1552 << "' - Cost is too high: " << DuplicationCost << "\n"); 1553 return false; 1554 } 1555 1556 // And finally, do it! Start by factoring the predecessors is needed. 1557 BasicBlock *PredBB; 1558 if (PredBBs.size() == 1) 1559 PredBB = PredBBs[0]; 1560 else { 1561 DEBUG(dbgs() << " Factoring out " << PredBBs.size() 1562 << " common predecessors.\n"); 1563 PredBB = SplitBlockPredecessors(BB, PredBBs, ".thr_comm"); 1564 } 1565 1566 // Okay, we decided to do this! Clone all the instructions in BB onto the end 1567 // of PredBB. 1568 DEBUG(dbgs() << " Duplicating block '" << BB->getName() << "' into end of '" 1569 << PredBB->getName() << "' to eliminate branch on phi. Cost: " 1570 << DuplicationCost << " block is:" << *BB << "\n"); 1571 1572 // Unless PredBB ends with an unconditional branch, split the edge so that we 1573 // can just clone the bits from BB into the end of the new PredBB. 1574 BranchInst *OldPredBranch = dyn_cast<BranchInst>(PredBB->getTerminator()); 1575 1576 if (!OldPredBranch || !OldPredBranch->isUnconditional()) { 1577 PredBB = SplitEdge(PredBB, BB); 1578 OldPredBranch = cast<BranchInst>(PredBB->getTerminator()); 1579 } 1580 1581 // We are going to have to map operands from the original BB block into the 1582 // PredBB block. Evaluate PHI nodes in BB. 1583 DenseMap<Instruction*, Value*> ValueMapping; 1584 1585 BasicBlock::iterator BI = BB->begin(); 1586 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) 1587 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); 1588 // Clone the non-phi instructions of BB into PredBB, keeping track of the 1589 // mapping and using it to remap operands in the cloned instructions. 1590 for (; BI != BB->end(); ++BI) { 1591 Instruction *New = BI->clone(); 1592 1593 // Remap operands to patch up intra-block references. 1594 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) 1595 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { 1596 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst); 1597 if (I != ValueMapping.end()) 1598 New->setOperand(i, I->second); 1599 } 1600 1601 // If this instruction can be simplified after the operands are updated, 1602 // just use the simplified value instead. This frequently happens due to 1603 // phi translation. 1604 if (Value *IV = 1605 SimplifyInstruction(New, BB->getModule()->getDataLayout())) { 1606 delete New; 1607 ValueMapping[BI] = IV; 1608 } else { 1609 // Otherwise, insert the new instruction into the block. 1610 New->setName(BI->getName()); 1611 PredBB->getInstList().insert(OldPredBranch, New); 1612 ValueMapping[BI] = New; 1613 } 1614 } 1615 1616 // Check to see if the targets of the branch had PHI nodes. If so, we need to 1617 // add entries to the PHI nodes for branch from PredBB now. 1618 BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator()); 1619 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB, 1620 ValueMapping); 1621 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB, 1622 ValueMapping); 1623 1624 // If there were values defined in BB that are used outside the block, then we 1625 // now have to update all uses of the value to use either the original value, 1626 // the cloned value, or some PHI derived value. This can require arbitrary 1627 // PHI insertion, of which we are prepared to do, clean these up now. 1628 SSAUpdater SSAUpdate; 1629 SmallVector<Use*, 16> UsesToRename; 1630 for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) { 1631 // Scan all uses of this instruction to see if it is used outside of its 1632 // block, and if so, record them in UsesToRename. 1633 for (Use &U : I->uses()) { 1634 Instruction *User = cast<Instruction>(U.getUser()); 1635 if (PHINode *UserPN = dyn_cast<PHINode>(User)) { 1636 if (UserPN->getIncomingBlock(U) == BB) 1637 continue; 1638 } else if (User->getParent() == BB) 1639 continue; 1640 1641 UsesToRename.push_back(&U); 1642 } 1643 1644 // If there are no uses outside the block, we're done with this instruction. 1645 if (UsesToRename.empty()) 1646 continue; 1647 1648 DEBUG(dbgs() << "JT: Renaming non-local uses of: " << *I << "\n"); 1649 1650 // We found a use of I outside of BB. Rename all uses of I that are outside 1651 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks 1652 // with the two values we know. 1653 SSAUpdate.Initialize(I->getType(), I->getName()); 1654 SSAUpdate.AddAvailableValue(BB, I); 1655 SSAUpdate.AddAvailableValue(PredBB, ValueMapping[I]); 1656 1657 while (!UsesToRename.empty()) 1658 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val()); 1659 DEBUG(dbgs() << "\n"); 1660 } 1661 1662 // PredBB no longer jumps to BB, remove entries in the PHI node for the edge 1663 // that we nuked. 1664 BB->removePredecessor(PredBB, true); 1665 1666 // Remove the unconditional branch at the end of the PredBB block. 1667 OldPredBranch->eraseFromParent(); 1668 1669 ++NumDupes; 1670 return true; 1671 } 1672 1673 /// TryToUnfoldSelect - Look for blocks of the form 1674 /// bb1: 1675 /// %a = select 1676 /// br bb 1677 /// 1678 /// bb2: 1679 /// %p = phi [%a, %bb] ... 1680 /// %c = icmp %p 1681 /// br i1 %c 1682 /// 1683 /// And expand the select into a branch structure if one of its arms allows %c 1684 /// to be folded. This later enables threading from bb1 over bb2. 1685 bool JumpThreading::TryToUnfoldSelect(CmpInst *CondCmp, BasicBlock *BB) { 1686 BranchInst *CondBr = dyn_cast<BranchInst>(BB->getTerminator()); 1687 PHINode *CondLHS = dyn_cast<PHINode>(CondCmp->getOperand(0)); 1688 Constant *CondRHS = cast<Constant>(CondCmp->getOperand(1)); 1689 1690 if (!CondBr || !CondBr->isConditional() || !CondLHS || 1691 CondLHS->getParent() != BB) 1692 return false; 1693 1694 for (unsigned I = 0, E = CondLHS->getNumIncomingValues(); I != E; ++I) { 1695 BasicBlock *Pred = CondLHS->getIncomingBlock(I); 1696 SelectInst *SI = dyn_cast<SelectInst>(CondLHS->getIncomingValue(I)); 1697 1698 // Look if one of the incoming values is a select in the corresponding 1699 // predecessor. 1700 if (!SI || SI->getParent() != Pred || !SI->hasOneUse()) 1701 continue; 1702 1703 BranchInst *PredTerm = dyn_cast<BranchInst>(Pred->getTerminator()); 1704 if (!PredTerm || !PredTerm->isUnconditional()) 1705 continue; 1706 1707 // Now check if one of the select values would allow us to constant fold the 1708 // terminator in BB. We don't do the transform if both sides fold, those 1709 // cases will be threaded in any case. 1710 LazyValueInfo::Tristate LHSFolds = 1711 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(1), 1712 CondRHS, Pred, BB, CondCmp); 1713 LazyValueInfo::Tristate RHSFolds = 1714 LVI->getPredicateOnEdge(CondCmp->getPredicate(), SI->getOperand(2), 1715 CondRHS, Pred, BB, CondCmp); 1716 if ((LHSFolds != LazyValueInfo::Unknown || 1717 RHSFolds != LazyValueInfo::Unknown) && 1718 LHSFolds != RHSFolds) { 1719 // Expand the select. 1720 // 1721 // Pred -- 1722 // | v 1723 // | NewBB 1724 // | | 1725 // |----- 1726 // v 1727 // BB 1728 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "select.unfold", 1729 BB->getParent(), BB); 1730 // Move the unconditional branch to NewBB. 1731 PredTerm->removeFromParent(); 1732 NewBB->getInstList().insert(NewBB->end(), PredTerm); 1733 // Create a conditional branch and update PHI nodes. 1734 BranchInst::Create(NewBB, BB, SI->getCondition(), Pred); 1735 CondLHS->setIncomingValue(I, SI->getFalseValue()); 1736 CondLHS->addIncoming(SI->getTrueValue(), NewBB); 1737 // The select is now dead. 1738 SI->eraseFromParent(); 1739 1740 // Update any other PHI nodes in BB. 1741 for (BasicBlock::iterator BI = BB->begin(); 1742 PHINode *Phi = dyn_cast<PHINode>(BI); ++BI) 1743 if (Phi != CondLHS) 1744 Phi->addIncoming(Phi->getIncomingValueForBlock(Pred), NewBB); 1745 return true; 1746 } 1747 } 1748 return false; 1749 } 1750