Home | History | Annotate | Download | only in quick
      1 /*
      2  * Copyright (C) 2012 The Android Open Source Project
      3  *
      4  * Licensed under the Apache License, Version 2.0 (the "License");
      5  * you may not use this file except in compliance with the License.
      6  * You may obtain a copy of the License at
      7  *
      8  *      http://www.apache.org/licenses/LICENSE-2.0
      9  *
     10  * Unless required by applicable law or agreed to in writing, software
     11  * distributed under the License is distributed on an "AS IS" BASIS,
     12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
     13  * See the License for the specific language governing permissions and
     14  * limitations under the License.
     15  */
     16 
     17 #include "mir_to_lir-inl.h"
     18 
     19 #include "arm/codegen_arm.h"
     20 #include "dex/compiler_ir.h"
     21 #include "dex/dex_flags.h"
     22 #include "dex/mir_graph.h"
     23 #include "dex/quick/dex_file_method_inliner.h"
     24 #include "dex/quick/dex_file_to_method_inliner_map.h"
     25 #include "dex_file-inl.h"
     26 #include "driver/compiler_driver.h"
     27 #include "driver/compiler_options.h"
     28 #include "entrypoints/quick/quick_entrypoints.h"
     29 #include "invoke_type.h"
     30 #include "mirror/array.h"
     31 #include "mirror/class-inl.h"
     32 #include "mirror/dex_cache.h"
     33 #include "mirror/object_array-inl.h"
     34 #include "mirror/string.h"
     35 #include "scoped_thread_state_change.h"
     36 
     37 namespace art {
     38 
     39 // Shortcuts to repeatedly used long types.
     40 typedef mirror::ObjectArray<mirror::Object> ObjArray;
     41 
     42 /*
     43  * This source files contains "gen" codegen routines that should
     44  * be applicable to most targets.  Only mid-level support utilities
     45  * and "op" calls may be used here.
     46  */
     47 
     48 void Mir2Lir::AddIntrinsicSlowPath(CallInfo* info, LIR* branch, LIR* resume) {
     49   class IntrinsicSlowPathPath : public Mir2Lir::LIRSlowPath {
     50    public:
     51     IntrinsicSlowPathPath(Mir2Lir* m2l, CallInfo* info_in, LIR* branch_in, LIR* resume_in)
     52         : LIRSlowPath(m2l, branch_in, resume_in), info_(info_in) {
     53       DCHECK_EQ(info_in->offset, current_dex_pc_);
     54     }
     55 
     56     void Compile() {
     57       m2l_->ResetRegPool();
     58       m2l_->ResetDefTracking();
     59       GenerateTargetLabel(kPseudoIntrinsicRetry);
     60       // NOTE: GenInvokeNoInline() handles MarkSafepointPC.
     61       m2l_->GenInvokeNoInline(info_);
     62       if (cont_ != nullptr) {
     63         m2l_->OpUnconditionalBranch(cont_);
     64       }
     65     }
     66 
     67    private:
     68     CallInfo* const info_;
     69   };
     70 
     71   AddSlowPath(new (arena_) IntrinsicSlowPathPath(this, info, branch, resume));
     72 }
     73 
     74 /*
     75  * To save scheduling time, helper calls are broken into two parts: generation of
     76  * the helper target address, and the actual call to the helper.  Because x86
     77  * has a memory call operation, part 1 is a NOP for x86.  For other targets,
     78  * load arguments between the two parts.
     79  */
     80 // template <size_t pointer_size>
     81 RegStorage Mir2Lir::CallHelperSetup(QuickEntrypointEnum trampoline) {
     82   if (cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64) {
     83     return RegStorage::InvalidReg();
     84   } else {
     85     return LoadHelper(trampoline);
     86   }
     87 }
     88 
     89 LIR* Mir2Lir::CallHelper(RegStorage r_tgt, QuickEntrypointEnum trampoline, bool safepoint_pc,
     90                          bool use_link) {
     91   LIR* call_inst = InvokeTrampoline(use_link ? kOpBlx : kOpBx, r_tgt, trampoline);
     92 
     93   if (r_tgt.Valid()) {
     94     FreeTemp(r_tgt);
     95   }
     96 
     97   if (safepoint_pc) {
     98     MarkSafepointPC(call_inst);
     99   }
    100   return call_inst;
    101 }
    102 
    103 void Mir2Lir::CallRuntimeHelper(QuickEntrypointEnum trampoline, bool safepoint_pc) {
    104   RegStorage r_tgt = CallHelperSetup(trampoline);
    105   ClobberCallerSave();
    106   CallHelper(r_tgt, trampoline, safepoint_pc);
    107 }
    108 
    109 void Mir2Lir::CallRuntimeHelperImm(QuickEntrypointEnum trampoline, int arg0, bool safepoint_pc) {
    110   RegStorage r_tgt = CallHelperSetup(trampoline);
    111   LoadConstant(TargetReg(kArg0, kNotWide), arg0);
    112   ClobberCallerSave();
    113   CallHelper(r_tgt, trampoline, safepoint_pc);
    114 }
    115 
    116 void Mir2Lir::CallRuntimeHelperReg(QuickEntrypointEnum trampoline, RegStorage arg0,
    117                                    bool safepoint_pc) {
    118   RegStorage r_tgt = CallHelperSetup(trampoline);
    119   OpRegCopy(TargetReg(kArg0, arg0.GetWideKind()), arg0);
    120   ClobberCallerSave();
    121   CallHelper(r_tgt, trampoline, safepoint_pc);
    122 }
    123 
    124 void Mir2Lir::CallRuntimeHelperRegLocation(QuickEntrypointEnum trampoline, RegLocation arg0,
    125                                            bool safepoint_pc) {
    126   RegStorage r_tgt = CallHelperSetup(trampoline);
    127   if (arg0.wide == 0) {
    128     LoadValueDirectFixed(arg0, TargetReg(arg0.fp ? kFArg0 : kArg0, arg0));
    129   } else {
    130     LoadValueDirectWideFixed(arg0, TargetReg(arg0.fp ? kFArg0 : kArg0, kWide));
    131   }
    132   ClobberCallerSave();
    133   CallHelper(r_tgt, trampoline, safepoint_pc);
    134 }
    135 
    136 void Mir2Lir::CallRuntimeHelperImmImm(QuickEntrypointEnum trampoline, int arg0, int arg1,
    137                                       bool safepoint_pc) {
    138   RegStorage r_tgt = CallHelperSetup(trampoline);
    139   LoadConstant(TargetReg(kArg0, kNotWide), arg0);
    140   LoadConstant(TargetReg(kArg1, kNotWide), arg1);
    141   ClobberCallerSave();
    142   CallHelper(r_tgt, trampoline, safepoint_pc);
    143 }
    144 
    145 void Mir2Lir::CallRuntimeHelperImmRegLocation(QuickEntrypointEnum trampoline, int arg0,
    146                                               RegLocation arg1, bool safepoint_pc) {
    147   RegStorage r_tgt = CallHelperSetup(trampoline);
    148   if (arg1.wide == 0) {
    149     LoadValueDirectFixed(arg1, TargetReg(kArg1, arg1));
    150   } else {
    151     RegStorage r_tmp = TargetReg(cu_->instruction_set == kMips ? kArg2 : kArg1, kWide);
    152     LoadValueDirectWideFixed(arg1, r_tmp);
    153   }
    154   LoadConstant(TargetReg(kArg0, kNotWide), arg0);
    155   ClobberCallerSave();
    156   CallHelper(r_tgt, trampoline, safepoint_pc);
    157 }
    158 
    159 void Mir2Lir::CallRuntimeHelperRegLocationImm(QuickEntrypointEnum trampoline, RegLocation arg0,
    160                                               int arg1, bool safepoint_pc) {
    161   RegStorage r_tgt = CallHelperSetup(trampoline);
    162   DCHECK(!arg0.wide);
    163   LoadValueDirectFixed(arg0, TargetReg(kArg0, arg0));
    164   LoadConstant(TargetReg(kArg1, kNotWide), arg1);
    165   ClobberCallerSave();
    166   CallHelper(r_tgt, trampoline, safepoint_pc);
    167 }
    168 
    169 void Mir2Lir::CallRuntimeHelperImmReg(QuickEntrypointEnum trampoline, int arg0, RegStorage arg1,
    170                                       bool safepoint_pc) {
    171   RegStorage r_tgt = CallHelperSetup(trampoline);
    172   OpRegCopy(TargetReg(kArg1, arg1.GetWideKind()), arg1);
    173   LoadConstant(TargetReg(kArg0, kNotWide), arg0);
    174   ClobberCallerSave();
    175   CallHelper(r_tgt, trampoline, safepoint_pc);
    176 }
    177 
    178 void Mir2Lir::CallRuntimeHelperRegImm(QuickEntrypointEnum trampoline, RegStorage arg0, int arg1,
    179                                       bool safepoint_pc) {
    180   RegStorage r_tgt = CallHelperSetup(trampoline);
    181   OpRegCopy(TargetReg(kArg0, arg0.GetWideKind()), arg0);
    182   LoadConstant(TargetReg(kArg1, kNotWide), arg1);
    183   ClobberCallerSave();
    184   CallHelper(r_tgt, trampoline, safepoint_pc);
    185 }
    186 
    187 void Mir2Lir::CallRuntimeHelperImmMethod(QuickEntrypointEnum trampoline, int arg0,
    188                                          bool safepoint_pc) {
    189   RegStorage r_tgt = CallHelperSetup(trampoline);
    190   LoadCurrMethodDirect(TargetReg(kArg1, kRef));
    191   LoadConstant(TargetReg(kArg0, kNotWide), arg0);
    192   ClobberCallerSave();
    193   CallHelper(r_tgt, trampoline, safepoint_pc);
    194 }
    195 
    196 void Mir2Lir::CallRuntimeHelperRegMethod(QuickEntrypointEnum trampoline, RegStorage arg0,
    197                                          bool safepoint_pc) {
    198   RegStorage r_tgt = CallHelperSetup(trampoline);
    199   DCHECK(!IsSameReg(TargetReg(kArg1, arg0.GetWideKind()), arg0));
    200   RegStorage r_tmp = TargetReg(kArg0, arg0.GetWideKind());
    201   if (r_tmp.NotExactlyEquals(arg0)) {
    202     OpRegCopy(r_tmp, arg0);
    203   }
    204   LoadCurrMethodDirect(TargetReg(kArg1, kRef));
    205   ClobberCallerSave();
    206   CallHelper(r_tgt, trampoline, safepoint_pc);
    207 }
    208 
    209 void Mir2Lir::CallRuntimeHelperRegRegLocationMethod(QuickEntrypointEnum trampoline, RegStorage arg0,
    210                                                     RegLocation arg1, bool safepoint_pc) {
    211   RegStorage r_tgt = CallHelperSetup(trampoline);
    212   DCHECK(!IsSameReg(TargetReg(kArg2, arg0.GetWideKind()), arg0));
    213   RegStorage r_tmp = TargetReg(kArg0, arg0.GetWideKind());
    214   if (r_tmp.NotExactlyEquals(arg0)) {
    215     OpRegCopy(r_tmp, arg0);
    216   }
    217   LoadValueDirectFixed(arg1, TargetReg(kArg1, arg1));
    218   LoadCurrMethodDirect(TargetReg(kArg2, kRef));
    219   ClobberCallerSave();
    220   CallHelper(r_tgt, trampoline, safepoint_pc);
    221 }
    222 
    223 void Mir2Lir::CallRuntimeHelperRegLocationRegLocation(QuickEntrypointEnum trampoline,
    224                                                       RegLocation arg0, RegLocation arg1,
    225                                                       bool safepoint_pc) {
    226   RegStorage r_tgt = CallHelperSetup(trampoline);
    227   if (cu_->instruction_set == kArm64 || cu_->instruction_set == kMips64 ||
    228       cu_->instruction_set == kX86_64) {
    229     RegStorage arg0_reg = TargetReg((arg0.fp) ? kFArg0 : kArg0, arg0);
    230 
    231     RegStorage arg1_reg;
    232     if (arg1.fp == arg0.fp) {
    233       arg1_reg = TargetReg((arg1.fp) ? kFArg1 : kArg1, arg1);
    234     } else {
    235       arg1_reg = TargetReg((arg1.fp) ? kFArg0 : kArg0, arg1);
    236     }
    237 
    238     if (arg0.wide == 0) {
    239       LoadValueDirectFixed(arg0, arg0_reg);
    240     } else {
    241       LoadValueDirectWideFixed(arg0, arg0_reg);
    242     }
    243 
    244     if (arg1.wide == 0) {
    245       LoadValueDirectFixed(arg1, arg1_reg);
    246     } else {
    247       LoadValueDirectWideFixed(arg1, arg1_reg);
    248     }
    249   } else {
    250     DCHECK(!cu_->target64);
    251     if (arg0.wide == 0) {
    252       LoadValueDirectFixed(arg0, TargetReg(arg0.fp ? kFArg0 : kArg0, kNotWide));
    253       if (arg1.wide == 0) {
    254         // For Mips, when the 1st arg is integral, then remaining arg are passed in core reg.
    255         if (cu_->instruction_set == kMips) {
    256           LoadValueDirectFixed(arg1, TargetReg((arg1.fp && arg0.fp) ? kFArg2 : kArg1, kNotWide));
    257         } else {
    258           LoadValueDirectFixed(arg1, TargetReg(arg1.fp ? kFArg1 : kArg1, kNotWide));
    259         }
    260       } else {
    261         // For Mips, when the 1st arg is integral, then remaining arg are passed in core reg.
    262         if (cu_->instruction_set == kMips) {
    263           LoadValueDirectWideFixed(arg1, TargetReg((arg1.fp && arg0.fp) ? kFArg2 : kArg2, kWide));
    264         } else {
    265           LoadValueDirectWideFixed(arg1, TargetReg(arg1.fp ? kFArg1 : kArg1, kWide));
    266         }
    267       }
    268     } else {
    269       LoadValueDirectWideFixed(arg0, TargetReg(arg0.fp ? kFArg0 : kArg0, kWide));
    270       if (arg1.wide == 0) {
    271         // For Mips, when the 1st arg is integral, then remaining arg are passed in core reg.
    272         if (cu_->instruction_set == kMips) {
    273           LoadValueDirectFixed(arg1, TargetReg((arg1.fp && arg0.fp) ? kFArg2 : kArg2, kNotWide));
    274         } else {
    275           LoadValueDirectFixed(arg1, TargetReg(arg1.fp ? kFArg2 : kArg2, kNotWide));
    276         }
    277       } else {
    278         // For Mips, when the 1st arg is integral, then remaining arg are passed in core reg.
    279         if (cu_->instruction_set == kMips) {
    280           LoadValueDirectWideFixed(arg1, TargetReg((arg1.fp && arg0.fp) ? kFArg2 : kArg2, kWide));
    281         } else {
    282           LoadValueDirectWideFixed(arg1, TargetReg(arg1.fp ? kFArg2 : kArg2, kWide));
    283         }
    284       }
    285     }
    286   }
    287   ClobberCallerSave();
    288   CallHelper(r_tgt, trampoline, safepoint_pc);
    289 }
    290 
    291 void Mir2Lir::CopyToArgumentRegs(RegStorage arg0, RegStorage arg1) {
    292   WideKind arg0_kind = arg0.GetWideKind();
    293   WideKind arg1_kind = arg1.GetWideKind();
    294   if (IsSameReg(arg1, TargetReg(kArg0, arg1_kind))) {
    295     if (IsSameReg(arg0, TargetReg(kArg1, arg0_kind))) {
    296       // Swap kArg0 and kArg1 with kArg2 as temp.
    297       OpRegCopy(TargetReg(kArg2, arg1_kind), arg1);
    298       OpRegCopy(TargetReg(kArg0, arg0_kind), arg0);
    299       OpRegCopy(TargetReg(kArg1, arg1_kind), TargetReg(kArg2, arg1_kind));
    300     } else {
    301       OpRegCopy(TargetReg(kArg1, arg1_kind), arg1);
    302       OpRegCopy(TargetReg(kArg0, arg0_kind), arg0);
    303     }
    304   } else {
    305     OpRegCopy(TargetReg(kArg0, arg0_kind), arg0);
    306     OpRegCopy(TargetReg(kArg1, arg1_kind), arg1);
    307   }
    308 }
    309 
    310 void Mir2Lir::CallRuntimeHelperRegReg(QuickEntrypointEnum trampoline, RegStorage arg0,
    311                                       RegStorage arg1, bool safepoint_pc) {
    312   RegStorage r_tgt = CallHelperSetup(trampoline);
    313   CopyToArgumentRegs(arg0, arg1);
    314   ClobberCallerSave();
    315   CallHelper(r_tgt, trampoline, safepoint_pc);
    316 }
    317 
    318 void Mir2Lir::CallRuntimeHelperRegRegImm(QuickEntrypointEnum trampoline, RegStorage arg0,
    319                                          RegStorage arg1, int arg2, bool safepoint_pc) {
    320   RegStorage r_tgt = CallHelperSetup(trampoline);
    321   CopyToArgumentRegs(arg0, arg1);
    322   LoadConstant(TargetReg(kArg2, kNotWide), arg2);
    323   ClobberCallerSave();
    324   CallHelper(r_tgt, trampoline, safepoint_pc);
    325 }
    326 
    327 void Mir2Lir::CallRuntimeHelperImmRegLocationMethod(QuickEntrypointEnum trampoline, int arg0,
    328                                                     RegLocation arg1, bool safepoint_pc) {
    329   RegStorage r_tgt = CallHelperSetup(trampoline);
    330   LoadValueDirectFixed(arg1, TargetReg(kArg1, arg1));
    331   LoadCurrMethodDirect(TargetReg(kArg2, kRef));
    332   LoadConstant(TargetReg(kArg0, kNotWide), arg0);
    333   ClobberCallerSave();
    334   CallHelper(r_tgt, trampoline, safepoint_pc);
    335 }
    336 
    337 void Mir2Lir::CallRuntimeHelperImmImmMethod(QuickEntrypointEnum trampoline, int arg0, int arg1,
    338                                             bool safepoint_pc) {
    339   RegStorage r_tgt = CallHelperSetup(trampoline);
    340   LoadCurrMethodDirect(TargetReg(kArg2, kRef));
    341   LoadConstant(TargetReg(kArg1, kNotWide), arg1);
    342   LoadConstant(TargetReg(kArg0, kNotWide), arg0);
    343   ClobberCallerSave();
    344   CallHelper(r_tgt, trampoline, safepoint_pc);
    345 }
    346 
    347 void Mir2Lir::CallRuntimeHelperImmRegLocationRegLocation(QuickEntrypointEnum trampoline, int arg0,
    348                                                          RegLocation arg1,
    349                                                          RegLocation arg2, bool safepoint_pc) {
    350   RegStorage r_tgt = CallHelperSetup(trampoline);
    351   DCHECK_EQ(static_cast<unsigned int>(arg1.wide), 0U);  // The static_cast works around an
    352                                                         // instantiation bug in GCC.
    353   LoadValueDirectFixed(arg1, TargetReg(kArg1, arg1));
    354   if (arg2.wide == 0) {
    355     LoadValueDirectFixed(arg2, TargetReg(kArg2, arg2));
    356   } else {
    357     LoadValueDirectWideFixed(arg2, TargetReg(kArg2, kWide));
    358   }
    359   LoadConstant(TargetReg(kArg0, kNotWide), arg0);
    360   ClobberCallerSave();
    361   CallHelper(r_tgt, trampoline, safepoint_pc);
    362 }
    363 
    364 void Mir2Lir::CallRuntimeHelperRegLocationRegLocationRegLocation(
    365     QuickEntrypointEnum trampoline,
    366     RegLocation arg0,
    367     RegLocation arg1,
    368     RegLocation arg2,
    369     bool safepoint_pc) {
    370   RegStorage r_tgt = CallHelperSetup(trampoline);
    371   LoadValueDirectFixed(arg0, TargetReg(kArg0, arg0));
    372   LoadValueDirectFixed(arg1, TargetReg(kArg1, arg1));
    373   LoadValueDirectFixed(arg2, TargetReg(kArg2, arg2));
    374   ClobberCallerSave();
    375   CallHelper(r_tgt, trampoline, safepoint_pc);
    376 }
    377 
    378 void Mir2Lir::CallRuntimeHelperRegLocationRegLocationRegLocationRegLocation(
    379     QuickEntrypointEnum trampoline, RegLocation arg0, RegLocation arg1, RegLocation arg2,
    380     RegLocation arg3, bool safepoint_pc) {
    381   RegStorage r_tgt = CallHelperSetup(trampoline);
    382   LoadValueDirectFixed(arg0, TargetReg(kArg0, arg0));
    383   LoadValueDirectFixed(arg1, TargetReg(kArg1, arg1));
    384   LoadValueDirectFixed(arg2, TargetReg(kArg2, arg2));
    385   LoadValueDirectFixed(arg3, TargetReg(kArg3, arg3));
    386   ClobberCallerSave();
    387   CallHelper(r_tgt, trampoline, safepoint_pc);
    388 }
    389 
    390 /*
    391  * If there are any ins passed in registers that have not been promoted
    392  * to a callee-save register, flush them to the frame.  Perform initial
    393  * assignment of promoted arguments.
    394  *
    395  * ArgLocs is an array of location records describing the incoming arguments
    396  * with one location record per word of argument.
    397  */
    398 // TODO: Support 64-bit argument registers.
    399 void Mir2Lir::FlushIns(RegLocation* ArgLocs, RegLocation rl_method) {
    400   /*
    401    * Dummy up a RegLocation for the incoming ArtMethod*
    402    * It will attempt to keep kArg0 live (or copy it to home location
    403    * if promoted).
    404    */
    405   RegLocation rl_src = rl_method;
    406   rl_src.location = kLocPhysReg;
    407   rl_src.reg = TargetReg(kArg0, kRef);
    408   rl_src.home = false;
    409   MarkLive(rl_src);
    410   if (cu_->target64) {
    411     DCHECK(rl_method.wide);
    412     StoreValueWide(rl_method, rl_src);
    413   } else {
    414     StoreValue(rl_method, rl_src);
    415   }
    416   // If Method* has been promoted, explicitly flush
    417   if (rl_method.location == kLocPhysReg) {
    418     StoreBaseDisp(TargetPtrReg(kSp), 0, rl_src.reg, kWord, kNotVolatile);
    419   }
    420 
    421   if (mir_graph_->GetNumOfInVRs() == 0) {
    422     return;
    423   }
    424 
    425   int start_vreg = mir_graph_->GetFirstInVR();
    426   /*
    427    * Copy incoming arguments to their proper home locations.
    428    * NOTE: an older version of dx had an issue in which
    429    * it would reuse static method argument registers.
    430    * This could result in the same Dalvik virtual register
    431    * being promoted to both core and fp regs. To account for this,
    432    * we only copy to the corresponding promoted physical register
    433    * if it matches the type of the SSA name for the incoming
    434    * argument.  It is also possible that long and double arguments
    435    * end up half-promoted.  In those cases, we must flush the promoted
    436    * half to memory as well.
    437    */
    438   ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
    439   RegLocation* t_loc = nullptr;
    440   EnsureInitializedArgMappingToPhysicalReg();
    441   for (uint32_t i = 0; i < mir_graph_->GetNumOfInVRs(); i += t_loc->wide ? 2 : 1) {
    442     // get reg corresponding to input
    443     RegStorage reg = in_to_reg_storage_mapping_.GetReg(i);
    444     t_loc = &ArgLocs[i];
    445 
    446     // If the wide input appeared as single, flush it and go
    447     // as it comes from memory.
    448     if (t_loc->wide && reg.Valid() && !reg.Is64Bit()) {
    449       // The memory already holds the half. Don't do anything.
    450       reg = RegStorage::InvalidReg();
    451     }
    452 
    453     if (reg.Valid()) {
    454       // If arriving in register.
    455 
    456       // We have already updated the arg location with promoted info
    457       // so we can be based on it.
    458       if (t_loc->location == kLocPhysReg) {
    459         // Just copy it.
    460         if (t_loc->wide) {
    461           OpRegCopyWide(t_loc->reg, reg);
    462         } else {
    463           OpRegCopy(t_loc->reg, reg);
    464         }
    465       } else {
    466         // Needs flush.
    467         int offset = SRegOffset(start_vreg + i);
    468         if (t_loc->ref) {
    469           StoreRefDisp(TargetPtrReg(kSp), offset, reg, kNotVolatile);
    470         } else {
    471           StoreBaseDisp(TargetPtrReg(kSp), offset, reg, t_loc->wide ? k64 : k32, kNotVolatile);
    472         }
    473       }
    474     } else {
    475       // If arriving in frame & promoted.
    476       if (t_loc->location == kLocPhysReg) {
    477         int offset = SRegOffset(start_vreg + i);
    478         if (t_loc->ref) {
    479           LoadRefDisp(TargetPtrReg(kSp), offset, t_loc->reg, kNotVolatile);
    480         } else {
    481           LoadBaseDisp(TargetPtrReg(kSp), offset, t_loc->reg, t_loc->wide ? k64 : k32,
    482                        kNotVolatile);
    483         }
    484       }
    485     }
    486   }
    487 }
    488 
    489 static void CommonCallCodeLoadThisIntoArg1(const CallInfo* info, Mir2Lir* cg) {
    490   RegLocation rl_arg = info->args[0];
    491   cg->LoadValueDirectFixed(rl_arg, cg->TargetReg(kArg1, kRef));
    492 }
    493 
    494 static void CommonCallCodeLoadClassIntoArg0(const CallInfo* info, Mir2Lir* cg) {
    495   cg->GenNullCheck(cg->TargetReg(kArg1, kRef), info->opt_flags);
    496   // get this->klass_ [use kArg1, set kArg0]
    497   cg->LoadRefDisp(cg->TargetReg(kArg1, kRef), mirror::Object::ClassOffset().Int32Value(),
    498                   cg->TargetReg(kArg0, kRef),
    499                   kNotVolatile);
    500   cg->MarkPossibleNullPointerException(info->opt_flags);
    501 }
    502 
    503 static bool CommonCallCodeLoadCodePointerIntoInvokeTgt(const RegStorage* alt_from,
    504                                                        const CompilationUnit* cu, Mir2Lir* cg) {
    505   if (cu->instruction_set != kX86 && cu->instruction_set != kX86_64) {
    506     int32_t offset = ArtMethod::EntryPointFromQuickCompiledCodeOffset(
    507         InstructionSetPointerSize(cu->instruction_set)).Int32Value();
    508     // Get the compiled code address [use *alt_from or kArg0, set kInvokeTgt]
    509     cg->LoadWordDisp(alt_from == nullptr ? cg->TargetReg(kArg0, kRef) : *alt_from, offset,
    510                      cg->TargetPtrReg(kInvokeTgt));
    511     return true;
    512   }
    513   return false;
    514 }
    515 
    516 /*
    517  * Bit of a hack here - in the absence of a real scheduling pass,
    518  * emit the next instruction in a virtual invoke sequence.
    519  * We can use kLr as a temp prior to target address loading
    520  * Note also that we'll load the first argument ("this") into
    521  * kArg1 here rather than the standard GenDalvikArgs.
    522  */
    523 static int NextVCallInsn(CompilationUnit* cu, CallInfo* info,
    524                          int state, const MethodReference& target_method,
    525                          uint32_t method_idx, uintptr_t, uintptr_t,
    526                          InvokeType) {
    527   UNUSED(target_method);
    528   Mir2Lir* cg = static_cast<Mir2Lir*>(cu->cg.get());
    529   /*
    530    * This is the fast path in which the target virtual method is
    531    * fully resolved at compile time.
    532    */
    533   switch (state) {
    534     case 0:
    535       CommonCallCodeLoadThisIntoArg1(info, cg);   // kArg1 := this
    536       break;
    537     case 1:
    538       CommonCallCodeLoadClassIntoArg0(info, cg);  // kArg0 := kArg1->class
    539                                                   // Includes a null-check.
    540       break;
    541     case 2: {
    542       // Get this->klass_.embedded_vtable[method_idx] [usr kArg0, set kArg0]
    543       const size_t pointer_size = InstructionSetPointerSize(
    544           cu->compiler_driver->GetInstructionSet());
    545       int32_t offset = mirror::Class::EmbeddedVTableEntryOffset(
    546           method_idx, pointer_size).Uint32Value();
    547       // Load target method from embedded vtable to kArg0 [use kArg0, set kArg0]
    548       cg->LoadWordDisp(cg->TargetPtrReg(kArg0), offset, cg->TargetPtrReg(kArg0));
    549       break;
    550     }
    551     case 3:
    552       if (CommonCallCodeLoadCodePointerIntoInvokeTgt(nullptr, cu, cg)) {
    553         break;                                    // kInvokeTgt := kArg0->entrypoint
    554       }
    555       DCHECK(cu->instruction_set == kX86 || cu->instruction_set == kX86_64);
    556       FALLTHROUGH_INTENDED;
    557     default:
    558       return -1;
    559   }
    560   return state + 1;
    561 }
    562 
    563 /*
    564  * Emit the next instruction in an invoke interface sequence. This will do a lookup in the
    565  * class's IMT, calling either the actual method or art_quick_imt_conflict_trampoline if
    566  * more than one interface method map to the same index. Note also that we'll load the first
    567  * argument ("this") into kArg1 here rather than the standard GenDalvikArgs.
    568  */
    569 static int NextInterfaceCallInsn(CompilationUnit* cu, CallInfo* info, int state,
    570                                  const MethodReference& target_method,
    571                                  uint32_t method_idx, uintptr_t, uintptr_t, InvokeType) {
    572   Mir2Lir* cg = static_cast<Mir2Lir*>(cu->cg.get());
    573 
    574   switch (state) {
    575     case 0:  // Set target method index in case of conflict [set kHiddenArg, kHiddenFpArg (x86)]
    576       CHECK_LT(target_method.dex_method_index, target_method.dex_file->NumMethodIds());
    577       cg->LoadConstant(cg->TargetReg(kHiddenArg, kNotWide), target_method.dex_method_index);
    578       if (cu->instruction_set == kX86) {
    579         cg->OpRegCopy(cg->TargetReg(kHiddenFpArg, kNotWide), cg->TargetReg(kHiddenArg, kNotWide));
    580       }
    581       break;
    582     case 1:
    583       CommonCallCodeLoadThisIntoArg1(info, cg);   // kArg1 := this
    584       break;
    585     case 2:
    586       CommonCallCodeLoadClassIntoArg0(info, cg);  // kArg0 := kArg1->class
    587                                                   // Includes a null-check.
    588       break;
    589     case 3: {  // Get target method [use kInvokeTgt, set kArg0]
    590       const size_t pointer_size = InstructionSetPointerSize(
    591           cu->compiler_driver->GetInstructionSet());
    592       int32_t offset = mirror::Class::EmbeddedImTableEntryOffset(
    593           method_idx % mirror::Class::kImtSize, pointer_size).Uint32Value();
    594       // Load target method from embedded imtable to kArg0 [use kArg0, set kArg0]
    595       cg->LoadWordDisp(cg->TargetPtrReg(kArg0), offset, cg->TargetPtrReg(kArg0));
    596       break;
    597     }
    598     case 4:
    599       if (CommonCallCodeLoadCodePointerIntoInvokeTgt(nullptr, cu, cg)) {
    600         break;                                    // kInvokeTgt := kArg0->entrypoint
    601       }
    602       DCHECK(cu->instruction_set == kX86 || cu->instruction_set == kX86_64);
    603       FALLTHROUGH_INTENDED;
    604     default:
    605       return -1;
    606   }
    607   return state + 1;
    608 }
    609 
    610 static int NextInvokeInsnSP(CompilationUnit* cu, CallInfo* info,
    611                             QuickEntrypointEnum trampoline, int state,
    612                             const MethodReference& target_method, uint32_t method_idx) {
    613   UNUSED(info, method_idx);
    614   Mir2Lir* cg = static_cast<Mir2Lir*>(cu->cg.get());
    615 
    616   /*
    617    * This handles the case in which the base method is not fully
    618    * resolved at compile time, we bail to a runtime helper.
    619    */
    620   if (state == 0) {
    621     if (cu->instruction_set != kX86 && cu->instruction_set != kX86_64) {
    622       // Load trampoline target
    623       int32_t disp;
    624       if (cu->target64) {
    625         disp = GetThreadOffset<8>(trampoline).Int32Value();
    626       } else {
    627         disp = GetThreadOffset<4>(trampoline).Int32Value();
    628       }
    629       cg->LoadWordDisp(cg->TargetPtrReg(kSelf), disp, cg->TargetPtrReg(kInvokeTgt));
    630     }
    631     // Load kArg0 with method index
    632     CHECK_EQ(cu->dex_file, target_method.dex_file);
    633     cg->LoadConstant(cg->TargetReg(kArg0, kNotWide), target_method.dex_method_index);
    634     return 1;
    635   }
    636   return -1;
    637 }
    638 
    639 static int NextStaticCallInsnSP(CompilationUnit* cu, CallInfo* info,
    640                                 int state,
    641                                 const MethodReference& target_method,
    642                                 uint32_t, uintptr_t, uintptr_t, InvokeType) {
    643   return NextInvokeInsnSP(cu, info, kQuickInvokeStaticTrampolineWithAccessCheck, state,
    644                           target_method, 0);
    645 }
    646 
    647 static int NextDirectCallInsnSP(CompilationUnit* cu, CallInfo* info, int state,
    648                                 const MethodReference& target_method,
    649                                 uint32_t, uintptr_t, uintptr_t, InvokeType) {
    650   return NextInvokeInsnSP(cu, info, kQuickInvokeDirectTrampolineWithAccessCheck, state,
    651                           target_method, 0);
    652 }
    653 
    654 static int NextSuperCallInsnSP(CompilationUnit* cu, CallInfo* info, int state,
    655                                const MethodReference& target_method,
    656                                uint32_t, uintptr_t, uintptr_t, InvokeType) {
    657   return NextInvokeInsnSP(cu, info, kQuickInvokeSuperTrampolineWithAccessCheck, state,
    658                           target_method, 0);
    659 }
    660 
    661 static int NextVCallInsnSP(CompilationUnit* cu, CallInfo* info, int state,
    662                            const MethodReference& target_method,
    663                            uint32_t, uintptr_t, uintptr_t, InvokeType) {
    664   return NextInvokeInsnSP(cu, info, kQuickInvokeVirtualTrampolineWithAccessCheck, state,
    665                           target_method, 0);
    666 }
    667 
    668 static int NextInterfaceCallInsnWithAccessCheck(CompilationUnit* cu,
    669                                                 CallInfo* info, int state,
    670                                                 const MethodReference& target_method,
    671                                                 uint32_t, uintptr_t, uintptr_t, InvokeType) {
    672   return NextInvokeInsnSP(cu, info, kQuickInvokeInterfaceTrampolineWithAccessCheck, state,
    673                           target_method, 0);
    674 }
    675 
    676 // Default implementation of implicit null pointer check.
    677 // Overridden by arch specific as necessary.
    678 void Mir2Lir::GenImplicitNullCheck(RegStorage reg, int opt_flags) {
    679   if (!(cu_->disable_opt & (1 << kNullCheckElimination)) && (opt_flags & MIR_IGNORE_NULL_CHECK)) {
    680     return;
    681   }
    682   RegStorage tmp = AllocTemp();
    683   Load32Disp(reg, 0, tmp);
    684   MarkPossibleNullPointerException(opt_flags);
    685   FreeTemp(tmp);
    686 }
    687 
    688 /**
    689  * @brief Used to flush promoted registers if they are used as argument
    690  * in an invocation.
    691  * @param info the infromation about arguments for invocation.
    692  * @param start the first argument we should start to look from.
    693  */
    694 void Mir2Lir::GenDalvikArgsFlushPromoted(CallInfo* info, int start) {
    695   if (cu_->disable_opt & (1 << kPromoteRegs)) {
    696     // This make sense only if promotion is enabled.
    697     return;
    698   }
    699   ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
    700   // Scan the rest of the args - if in phys_reg flush to memory
    701   for (size_t next_arg = start; next_arg < info->num_arg_words;) {
    702     RegLocation loc = info->args[next_arg];
    703     if (loc.wide) {
    704       loc = UpdateLocWide(loc);
    705       if (loc.location == kLocPhysReg) {
    706         StoreBaseDisp(TargetPtrReg(kSp), SRegOffset(loc.s_reg_low), loc.reg, k64, kNotVolatile);
    707       }
    708       next_arg += 2;
    709     } else {
    710       loc = UpdateLoc(loc);
    711       if (loc.location == kLocPhysReg) {
    712         if (loc.ref) {
    713           StoreRefDisp(TargetPtrReg(kSp), SRegOffset(loc.s_reg_low), loc.reg, kNotVolatile);
    714         } else {
    715           StoreBaseDisp(TargetPtrReg(kSp), SRegOffset(loc.s_reg_low), loc.reg, k32,
    716                         kNotVolatile);
    717         }
    718       }
    719       next_arg++;
    720     }
    721   }
    722 }
    723 
    724 /**
    725  * @brief Used to optimize the copying of VRs which are arguments of invocation.
    726  * Please note that you should flush promoted registers first if you copy.
    727  * If implementation does copying it may skip several of the first VRs but must copy
    728  * till the end. Implementation must return the number of skipped VRs
    729  * (it might be all VRs).
    730  * @see GenDalvikArgsFlushPromoted
    731  * @param info the information about arguments for invocation.
    732  * @param first the first argument we should start to look from.
    733  * @param count the number of remaining arguments we can handle.
    734  * @return the number of arguments which we did not handle. Unhandled arguments
    735  * must be attached to the first one.
    736  */
    737 int Mir2Lir::GenDalvikArgsBulkCopy(CallInfo* info, int first, int count) {
    738   // call is pretty expensive, let's use it if count is big.
    739   if (count > 16) {
    740     GenDalvikArgsFlushPromoted(info, first);
    741     int start_offset = SRegOffset(info->args[first].s_reg_low);
    742     int outs_offset = StackVisitor::GetOutVROffset(first, cu_->instruction_set);
    743 
    744     OpRegRegImm(kOpAdd, TargetReg(kArg0, kRef), TargetPtrReg(kSp), outs_offset);
    745     OpRegRegImm(kOpAdd, TargetReg(kArg1, kRef), TargetPtrReg(kSp), start_offset);
    746     CallRuntimeHelperRegRegImm(kQuickMemcpy, TargetReg(kArg0, kRef), TargetReg(kArg1, kRef),
    747                                count * 4, false);
    748     count = 0;
    749   }
    750   return count;
    751 }
    752 
    753 int Mir2Lir::GenDalvikArgs(CallInfo* info, int call_state,
    754                            LIR** pcrLabel, NextCallInsn next_call_insn,
    755                            const MethodReference& target_method,
    756                            uint32_t vtable_idx, uintptr_t direct_code, uintptr_t direct_method,
    757                            InvokeType type, bool skip_this) {
    758   // If no arguments, just return.
    759   if (info->num_arg_words == 0u)
    760     return call_state;
    761 
    762   const size_t start_index = skip_this ? 1 : 0;
    763 
    764   // Get architecture dependent mapping between output VRs and physical registers
    765   // basing on shorty of method to call.
    766   InToRegStorageMapping in_to_reg_storage_mapping(arena_);
    767   {
    768     const char* target_shorty = mir_graph_->GetShortyFromMethodReference(target_method);
    769     ShortyIterator shorty_iterator(target_shorty, type == kStatic);
    770     in_to_reg_storage_mapping.Initialize(&shorty_iterator, GetResetedInToRegStorageMapper());
    771   }
    772 
    773   size_t stack_map_start = std::max(in_to_reg_storage_mapping.GetEndMappedIn(), start_index);
    774   if ((stack_map_start < info->num_arg_words) && info->args[stack_map_start].high_word) {
    775     // It is possible that the last mapped reg is 32 bit while arg is 64-bit.
    776     // It will be handled together with low part mapped to register.
    777     stack_map_start++;
    778   }
    779   size_t regs_left_to_pass_via_stack = info->num_arg_words - stack_map_start;
    780 
    781   // If it is a range case we can try to copy remaining VRs (not mapped to physical registers)
    782   // using more optimal algorithm.
    783   if (info->is_range && regs_left_to_pass_via_stack > 1) {
    784     regs_left_to_pass_via_stack = GenDalvikArgsBulkCopy(info, stack_map_start,
    785                                                         regs_left_to_pass_via_stack);
    786   }
    787 
    788   // Now handle any remaining VRs mapped to stack.
    789   if (in_to_reg_storage_mapping.HasArgumentsOnStack()) {
    790     // Two temps but do not use kArg1, it might be this which we can skip.
    791     // Separate single and wide - it can give some advantage.
    792     RegStorage regRef = TargetReg(kArg3, kRef);
    793     RegStorage regSingle = TargetReg(kArg3, kNotWide);
    794     RegStorage regWide = TargetReg(kArg2, kWide);
    795     for (size_t i = start_index; i < stack_map_start + regs_left_to_pass_via_stack; i++) {
    796       RegLocation rl_arg = info->args[i];
    797       rl_arg = UpdateRawLoc(rl_arg);
    798       RegStorage reg = in_to_reg_storage_mapping.GetReg(i);
    799       if (!reg.Valid()) {
    800         int out_offset = StackVisitor::GetOutVROffset(i, cu_->instruction_set);
    801         {
    802           ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
    803           if (rl_arg.wide) {
    804             if (rl_arg.location == kLocPhysReg) {
    805               StoreBaseDisp(TargetPtrReg(kSp), out_offset, rl_arg.reg, k64, kNotVolatile);
    806             } else {
    807               LoadValueDirectWideFixed(rl_arg, regWide);
    808               StoreBaseDisp(TargetPtrReg(kSp), out_offset, regWide, k64, kNotVolatile);
    809             }
    810           } else {
    811             if (rl_arg.location == kLocPhysReg) {
    812               if (rl_arg.ref) {
    813                 StoreRefDisp(TargetPtrReg(kSp), out_offset, rl_arg.reg, kNotVolatile);
    814               } else {
    815                 StoreBaseDisp(TargetPtrReg(kSp), out_offset, rl_arg.reg, k32, kNotVolatile);
    816               }
    817             } else {
    818               if (rl_arg.ref) {
    819                 LoadValueDirectFixed(rl_arg, regRef);
    820                 StoreRefDisp(TargetPtrReg(kSp), out_offset, regRef, kNotVolatile);
    821               } else {
    822                 LoadValueDirectFixed(rl_arg, regSingle);
    823                 StoreBaseDisp(TargetPtrReg(kSp), out_offset, regSingle, k32, kNotVolatile);
    824               }
    825             }
    826           }
    827         }
    828         call_state = next_call_insn(cu_, info, call_state, target_method,
    829                                     vtable_idx, direct_code, direct_method, type);
    830       }
    831       if (rl_arg.wide) {
    832         i++;
    833       }
    834     }
    835   }
    836 
    837   // Finish with VRs mapped to physical registers.
    838   for (size_t i = start_index; i < stack_map_start; i++) {
    839     RegLocation rl_arg = info->args[i];
    840     rl_arg = UpdateRawLoc(rl_arg);
    841     RegStorage reg = in_to_reg_storage_mapping.GetReg(i);
    842     if (reg.Valid()) {
    843       if (rl_arg.wide) {
    844         // if reg is not 64-bit (it is half of 64-bit) then handle it separately.
    845         if (!reg.Is64Bit()) {
    846           ScopedMemRefType mem_ref_type(this, ResourceMask::kDalvikReg);
    847           if (rl_arg.location == kLocPhysReg) {
    848             int out_offset = StackVisitor::GetOutVROffset(i, cu_->instruction_set);
    849             // Dump it to memory.
    850             StoreBaseDisp(TargetPtrReg(kSp), out_offset, rl_arg.reg, k64, kNotVolatile);
    851             LoadBaseDisp(TargetPtrReg(kSp), out_offset, reg, k32, kNotVolatile);
    852           } else {
    853             int high_offset = StackVisitor::GetOutVROffset(i + 1, cu_->instruction_set);
    854             // First, use target reg for high part.
    855             LoadBaseDisp(TargetPtrReg(kSp), SRegOffset(rl_arg.s_reg_low + 1), reg, k32,
    856                          kNotVolatile);
    857             StoreBaseDisp(TargetPtrReg(kSp), high_offset, reg, k32, kNotVolatile);
    858             // Now, use target reg for low part.
    859             LoadBaseDisp(TargetPtrReg(kSp), SRegOffset(rl_arg.s_reg_low), reg, k32, kNotVolatile);
    860             int low_offset = StackVisitor::GetOutVROffset(i, cu_->instruction_set);
    861             // And store it to the expected memory location.
    862             StoreBaseDisp(TargetPtrReg(kSp), low_offset, reg, k32, kNotVolatile);
    863           }
    864         } else {
    865           LoadValueDirectWideFixed(rl_arg, reg);
    866         }
    867       } else {
    868         LoadValueDirectFixed(rl_arg, reg);
    869       }
    870       call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
    871                                direct_code, direct_method, type);
    872     }
    873     if (rl_arg.wide) {
    874       i++;
    875     }
    876   }
    877 
    878   call_state = next_call_insn(cu_, info, call_state, target_method, vtable_idx,
    879                            direct_code, direct_method, type);
    880   if (pcrLabel) {
    881     if (!cu_->compiler_driver->GetCompilerOptions().GetImplicitNullChecks()) {
    882       *pcrLabel = GenExplicitNullCheck(TargetReg(kArg1, kRef), info->opt_flags);
    883     } else {
    884       *pcrLabel = nullptr;
    885       GenImplicitNullCheck(TargetReg(kArg1, kRef), info->opt_flags);
    886     }
    887   }
    888   return call_state;
    889 }
    890 
    891 void Mir2Lir::EnsureInitializedArgMappingToPhysicalReg() {
    892   if (!in_to_reg_storage_mapping_.IsInitialized()) {
    893     ShortyIterator shorty_iterator(cu_->shorty, cu_->invoke_type == kStatic);
    894     in_to_reg_storage_mapping_.Initialize(&shorty_iterator, GetResetedInToRegStorageMapper());
    895   }
    896 }
    897 
    898 RegLocation Mir2Lir::InlineTarget(CallInfo* info) {
    899   RegLocation res;
    900   if (info->result.location == kLocInvalid) {
    901     // If result is unused, return a sink target based on type of invoke target.
    902     res = GetReturn(
    903         ShortyToRegClass(mir_graph_->GetShortyFromMethodReference(info->method_ref)[0]));
    904   } else {
    905     res = info->result;
    906   }
    907   return res;
    908 }
    909 
    910 RegLocation Mir2Lir::InlineTargetWide(CallInfo* info) {
    911   RegLocation res;
    912   if (info->result.location == kLocInvalid) {
    913     // If result is unused, return a sink target based on type of invoke target.
    914     res = GetReturnWide(ShortyToRegClass(
    915         mir_graph_->GetShortyFromMethodReference(info->method_ref)[0]));
    916   } else {
    917     res = info->result;
    918   }
    919   return res;
    920 }
    921 
    922 bool Mir2Lir::GenInlinedReferenceGetReferent(CallInfo* info) {
    923   if (cu_->instruction_set == kMips || cu_->instruction_set == kMips64) {
    924     // TODO: add Mips and Mips64 implementations.
    925     return false;
    926   }
    927 
    928   bool use_direct_type_ptr;
    929   uintptr_t direct_type_ptr;
    930   ClassReference ref;
    931   if (!cu_->compiler_driver->CanEmbedReferenceTypeInCode(&ref,
    932         &use_direct_type_ptr, &direct_type_ptr)) {
    933     return false;
    934   }
    935 
    936   RegStorage reg_class = TargetReg(kArg1, kRef);
    937   Clobber(reg_class);
    938   LockTemp(reg_class);
    939   if (use_direct_type_ptr) {
    940     LoadConstant(reg_class, direct_type_ptr);
    941   } else {
    942     uint16_t type_idx = ref.first->GetClassDef(ref.second).class_idx_;
    943     LoadClassType(*ref.first, type_idx, kArg1);
    944   }
    945 
    946   uint32_t slow_path_flag_offset = cu_->compiler_driver->GetReferenceSlowFlagOffset();
    947   uint32_t disable_flag_offset = cu_->compiler_driver->GetReferenceDisableFlagOffset();
    948   CHECK(slow_path_flag_offset && disable_flag_offset &&
    949         (slow_path_flag_offset != disable_flag_offset));
    950 
    951   // intrinsic logic start.
    952   RegLocation rl_obj = info->args[0];
    953   rl_obj = LoadValue(rl_obj, kRefReg);
    954 
    955   RegStorage reg_slow_path = AllocTemp();
    956   RegStorage reg_disabled = AllocTemp();
    957   LoadBaseDisp(reg_class, slow_path_flag_offset, reg_slow_path, kSignedByte, kNotVolatile);
    958   LoadBaseDisp(reg_class, disable_flag_offset, reg_disabled, kSignedByte, kNotVolatile);
    959   FreeTemp(reg_class);
    960   LIR* or_inst = OpRegRegReg(kOpOr, reg_slow_path, reg_slow_path, reg_disabled);
    961   FreeTemp(reg_disabled);
    962 
    963   // if slow path, jump to JNI path target
    964   LIR* slow_path_branch;
    965   if (or_inst->u.m.def_mask->HasBit(ResourceMask::kCCode)) {
    966     // Generate conditional branch only, as the OR set a condition state (we are interested in a 'Z' flag).
    967     slow_path_branch = OpCondBranch(kCondNe, nullptr);
    968   } else {
    969     // Generate compare and branch.
    970     slow_path_branch = OpCmpImmBranch(kCondNe, reg_slow_path, 0, nullptr);
    971   }
    972   FreeTemp(reg_slow_path);
    973 
    974   // slow path not enabled, simply load the referent of the reference object
    975   RegLocation rl_dest = InlineTarget(info);
    976   RegLocation rl_result = EvalLoc(rl_dest, kRefReg, true);
    977   GenNullCheck(rl_obj.reg, info->opt_flags);
    978   LoadRefDisp(rl_obj.reg, mirror::Reference::ReferentOffset().Int32Value(), rl_result.reg,
    979               kNotVolatile);
    980   MarkPossibleNullPointerException(info->opt_flags);
    981   StoreValue(rl_dest, rl_result);
    982 
    983   LIR* intrinsic_finish = NewLIR0(kPseudoTargetLabel);
    984   AddIntrinsicSlowPath(info, slow_path_branch, intrinsic_finish);
    985   ClobberCallerSave();  // We must clobber everything because slow path will return here
    986   return true;
    987 }
    988 
    989 bool Mir2Lir::GenInlinedCharAt(CallInfo* info) {
    990   // Location of char array data
    991   int value_offset = mirror::String::ValueOffset().Int32Value();
    992   // Location of count
    993   int count_offset = mirror::String::CountOffset().Int32Value();
    994 
    995   RegLocation rl_obj = info->args[0];
    996   RegLocation rl_idx = info->args[1];
    997   rl_obj = LoadValue(rl_obj, kRefReg);
    998   rl_idx = LoadValue(rl_idx, kCoreReg);
    999   RegStorage reg_max;
   1000   GenNullCheck(rl_obj.reg, info->opt_flags);
   1001   bool range_check = (!(info->opt_flags & MIR_IGNORE_RANGE_CHECK));
   1002   LIR* range_check_branch = nullptr;
   1003   if (range_check) {
   1004     reg_max = AllocTemp();
   1005     Load32Disp(rl_obj.reg, count_offset, reg_max);
   1006     MarkPossibleNullPointerException(info->opt_flags);
   1007     // Set up a slow path to allow retry in case of bounds violation
   1008     OpRegReg(kOpCmp, rl_idx.reg, reg_max);
   1009     FreeTemp(reg_max);
   1010     range_check_branch = OpCondBranch(kCondUge, nullptr);
   1011   }
   1012   RegStorage reg_ptr = AllocTempRef();
   1013   OpRegRegImm(kOpAdd, reg_ptr, rl_obj.reg, value_offset);
   1014   FreeTemp(rl_obj.reg);
   1015   RegLocation rl_dest = InlineTarget(info);
   1016   RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
   1017   LoadBaseIndexed(reg_ptr, rl_idx.reg, rl_result.reg, 1, kUnsignedHalf);
   1018   FreeTemp(reg_ptr);
   1019   StoreValue(rl_dest, rl_result);
   1020   if (range_check) {
   1021     DCHECK(range_check_branch != nullptr);
   1022     info->opt_flags |= MIR_IGNORE_NULL_CHECK;  // Record that we've already null checked.
   1023     AddIntrinsicSlowPath(info, range_check_branch);
   1024   }
   1025   return true;
   1026 }
   1027 
   1028 bool Mir2Lir::GenInlinedStringGetCharsNoCheck(CallInfo* info) {
   1029   if (cu_->instruction_set == kMips) {
   1030     // TODO - add Mips implementation
   1031     return false;
   1032   }
   1033   size_t char_component_size = Primitive::ComponentSize(Primitive::kPrimChar);
   1034   // Location of data in char array buffer
   1035   int data_offset = mirror::Array::DataOffset(char_component_size).Int32Value();
   1036   // Location of char array data in string
   1037   int value_offset = mirror::String::ValueOffset().Int32Value();
   1038 
   1039   RegLocation rl_obj = info->args[0];
   1040   RegLocation rl_start = info->args[1];
   1041   RegLocation rl_end = info->args[2];
   1042   RegLocation rl_buffer = info->args[3];
   1043   RegLocation rl_index = info->args[4];
   1044 
   1045   ClobberCallerSave();
   1046   LockCallTemps();  // Using fixed registers
   1047   RegStorage reg_dst_ptr = TargetReg(kArg0, kRef);
   1048   RegStorage reg_src_ptr = TargetReg(kArg1, kRef);
   1049   RegStorage reg_length = TargetReg(kArg2, kNotWide);
   1050   RegStorage reg_tmp = TargetReg(kArg3, kNotWide);
   1051   RegStorage reg_tmp_ptr = RegStorage(RegStorage::k64BitSolo, reg_tmp.GetRawBits() & RegStorage::kRegTypeMask);
   1052 
   1053   LoadValueDirectFixed(rl_buffer, reg_dst_ptr);
   1054   OpRegImm(kOpAdd, reg_dst_ptr, data_offset);
   1055   LoadValueDirectFixed(rl_index, reg_tmp);
   1056   OpRegRegImm(kOpLsl, reg_tmp, reg_tmp, 1);
   1057   OpRegReg(kOpAdd, reg_dst_ptr, cu_->instruction_set == kArm64 ? reg_tmp_ptr : reg_tmp);
   1058 
   1059   LoadValueDirectFixed(rl_start, reg_tmp);
   1060   LoadValueDirectFixed(rl_end, reg_length);
   1061   OpRegReg(kOpSub, reg_length, reg_tmp);
   1062   OpRegRegImm(kOpLsl, reg_length, reg_length, 1);
   1063   LoadValueDirectFixed(rl_obj, reg_src_ptr);
   1064 
   1065   OpRegImm(kOpAdd, reg_src_ptr, value_offset);
   1066   OpRegRegImm(kOpLsl, reg_tmp, reg_tmp, 1);
   1067   OpRegReg(kOpAdd, reg_src_ptr, cu_->instruction_set == kArm64 ? reg_tmp_ptr : reg_tmp);
   1068 
   1069   RegStorage r_tgt;
   1070   if (cu_->instruction_set != kX86 && cu_->instruction_set != kX86_64) {
   1071     r_tgt = LoadHelper(kQuickMemcpy);
   1072   } else {
   1073     r_tgt = RegStorage::InvalidReg();
   1074   }
   1075   // NOTE: not a safepoint
   1076   CallHelper(r_tgt, kQuickMemcpy, false, true);
   1077 
   1078   return true;
   1079 }
   1080 
   1081 // Generates an inlined String.is_empty or String.length.
   1082 bool Mir2Lir::GenInlinedStringIsEmptyOrLength(CallInfo* info, bool is_empty) {
   1083   if (cu_->instruction_set == kMips || cu_->instruction_set == kMips64) {
   1084     // TODO: add Mips and Mips64 implementations.
   1085     return false;
   1086   }
   1087   // dst = src.length();
   1088   RegLocation rl_obj = info->args[0];
   1089   rl_obj = LoadValue(rl_obj, kRefReg);
   1090   RegLocation rl_dest = InlineTarget(info);
   1091   RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
   1092   GenNullCheck(rl_obj.reg, info->opt_flags);
   1093   Load32Disp(rl_obj.reg, mirror::String::CountOffset().Int32Value(), rl_result.reg);
   1094   MarkPossibleNullPointerException(info->opt_flags);
   1095   if (is_empty) {
   1096     // dst = (dst == 0);
   1097     if (cu_->instruction_set == kThumb2) {
   1098       RegStorage t_reg = AllocTemp();
   1099       OpRegReg(kOpNeg, t_reg, rl_result.reg);
   1100       OpRegRegReg(kOpAdc, rl_result.reg, rl_result.reg, t_reg);
   1101     } else if (cu_->instruction_set == kArm64) {
   1102       OpRegImm(kOpSub, rl_result.reg, 1);
   1103       OpRegRegImm(kOpLsr, rl_result.reg, rl_result.reg, 31);
   1104     } else {
   1105       DCHECK(cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64);
   1106       OpRegImm(kOpSub, rl_result.reg, 1);
   1107       OpRegImm(kOpLsr, rl_result.reg, 31);
   1108     }
   1109   }
   1110   StoreValue(rl_dest, rl_result);
   1111   return true;
   1112 }
   1113 
   1114 bool Mir2Lir::GenInlinedStringFactoryNewStringFromBytes(CallInfo* info) {
   1115   if (cu_->instruction_set == kMips) {
   1116     // TODO - add Mips implementation
   1117     return false;
   1118   }
   1119   RegLocation rl_data = info->args[0];
   1120   RegLocation rl_high = info->args[1];
   1121   RegLocation rl_offset = info->args[2];
   1122   RegLocation rl_count = info->args[3];
   1123   rl_data = LoadValue(rl_data, kRefReg);
   1124   LIR* data_null_check_branch = OpCmpImmBranch(kCondEq, rl_data.reg, 0, nullptr);
   1125   AddIntrinsicSlowPath(info, data_null_check_branch);
   1126   CallRuntimeHelperRegLocationRegLocationRegLocationRegLocation(
   1127       kQuickAllocStringFromBytes, rl_data, rl_high, rl_offset, rl_count, true);
   1128   RegLocation rl_return = GetReturn(kRefReg);
   1129   RegLocation rl_dest = InlineTarget(info);
   1130   StoreValue(rl_dest, rl_return);
   1131   return true;
   1132 }
   1133 
   1134 bool Mir2Lir::GenInlinedStringFactoryNewStringFromChars(CallInfo* info) {
   1135   if (cu_->instruction_set == kMips) {
   1136     // TODO - add Mips implementation
   1137     return false;
   1138   }
   1139   RegLocation rl_offset = info->args[0];
   1140   RegLocation rl_count = info->args[1];
   1141   RegLocation rl_data = info->args[2];
   1142   CallRuntimeHelperRegLocationRegLocationRegLocation(
   1143       kQuickAllocStringFromChars, rl_offset, rl_count, rl_data, true);
   1144   RegLocation rl_return = GetReturn(kRefReg);
   1145   RegLocation rl_dest = InlineTarget(info);
   1146   StoreValue(rl_dest, rl_return);
   1147   return true;
   1148 }
   1149 
   1150 bool Mir2Lir::GenInlinedStringFactoryNewStringFromString(CallInfo* info) {
   1151   if (cu_->instruction_set == kMips) {
   1152     // TODO - add Mips implementation
   1153     return false;
   1154   }
   1155   RegLocation rl_string = info->args[0];
   1156   rl_string = LoadValue(rl_string, kRefReg);
   1157   LIR* string_null_check_branch = OpCmpImmBranch(kCondEq, rl_string.reg, 0, nullptr);
   1158   AddIntrinsicSlowPath(info, string_null_check_branch);
   1159   CallRuntimeHelperRegLocation(kQuickAllocStringFromString, rl_string, true);
   1160   RegLocation rl_return = GetReturn(kRefReg);
   1161   RegLocation rl_dest = InlineTarget(info);
   1162   StoreValue(rl_dest, rl_return);
   1163   return true;
   1164 }
   1165 
   1166 bool Mir2Lir::GenInlinedReverseBytes(CallInfo* info, OpSize size) {
   1167   if (cu_->instruction_set == kMips || cu_->instruction_set == kMips64) {
   1168     // TODO: add Mips and Mips64 implementations.
   1169     return false;
   1170   }
   1171   RegLocation rl_dest = IsWide(size) ? InlineTargetWide(info) : InlineTarget(info);  // result reg
   1172   if (rl_dest.s_reg_low == INVALID_SREG) {
   1173     // Result is unused, the code is dead. Inlining successful, no code generated.
   1174     return true;
   1175   }
   1176   RegLocation rl_src_i = info->args[0];
   1177   RegLocation rl_i = IsWide(size) ? LoadValueWide(rl_src_i, kCoreReg) : LoadValue(rl_src_i, kCoreReg);
   1178   RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
   1179   if (IsWide(size)) {
   1180     if (cu_->instruction_set == kArm64 || cu_->instruction_set == kX86_64) {
   1181       OpRegReg(kOpRev, rl_result.reg, rl_i.reg);
   1182       StoreValueWide(rl_dest, rl_result);
   1183       return true;
   1184     }
   1185     RegStorage r_i_low = rl_i.reg.GetLow();
   1186     if (rl_i.reg.GetLowReg() == rl_result.reg.GetLowReg()) {
   1187       // First REV shall clobber rl_result.reg.GetReg(), save the value in a temp for the second REV.
   1188       r_i_low = AllocTemp();
   1189       OpRegCopy(r_i_low, rl_i.reg);
   1190     }
   1191     OpRegReg(kOpRev, rl_result.reg.GetLow(), rl_i.reg.GetHigh());
   1192     OpRegReg(kOpRev, rl_result.reg.GetHigh(), r_i_low);
   1193     if (rl_i.reg.GetLowReg() == rl_result.reg.GetLowReg()) {
   1194       FreeTemp(r_i_low);
   1195     }
   1196     StoreValueWide(rl_dest, rl_result);
   1197   } else {
   1198     DCHECK(size == k32 || size == kSignedHalf);
   1199     OpKind op = (size == k32) ? kOpRev : kOpRevsh;
   1200     OpRegReg(op, rl_result.reg, rl_i.reg);
   1201     StoreValue(rl_dest, rl_result);
   1202   }
   1203   return true;
   1204 }
   1205 
   1206 bool Mir2Lir::GenInlinedAbsInt(CallInfo* info) {
   1207   RegLocation rl_dest = InlineTarget(info);
   1208   if (rl_dest.s_reg_low == INVALID_SREG) {
   1209     // Result is unused, the code is dead. Inlining successful, no code generated.
   1210     return true;
   1211   }
   1212   RegLocation rl_src = info->args[0];
   1213   rl_src = LoadValue(rl_src, kCoreReg);
   1214   RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
   1215   RegStorage sign_reg = AllocTemp();
   1216   // abs(x) = y<=x>>31, (x+y)^y.
   1217   OpRegRegImm(kOpAsr, sign_reg, rl_src.reg, 31);
   1218   OpRegRegReg(kOpAdd, rl_result.reg, rl_src.reg, sign_reg);
   1219   OpRegReg(kOpXor, rl_result.reg, sign_reg);
   1220   StoreValue(rl_dest, rl_result);
   1221   return true;
   1222 }
   1223 
   1224 bool Mir2Lir::GenInlinedAbsLong(CallInfo* info) {
   1225   RegLocation rl_dest = InlineTargetWide(info);
   1226   if (rl_dest.s_reg_low == INVALID_SREG) {
   1227     // Result is unused, the code is dead. Inlining successful, no code generated.
   1228     return true;
   1229   }
   1230   RegLocation rl_src = info->args[0];
   1231   rl_src = LoadValueWide(rl_src, kCoreReg);
   1232   RegLocation rl_result = EvalLoc(rl_dest, kCoreReg, true);
   1233 
   1234   // If on x86 or if we would clobber a register needed later, just copy the source first.
   1235   if (cu_->instruction_set != kX86_64 &&
   1236       (cu_->instruction_set == kX86 ||
   1237        rl_result.reg.GetLowReg() == rl_src.reg.GetHighReg())) {
   1238     OpRegCopyWide(rl_result.reg, rl_src.reg);
   1239     if (rl_result.reg.GetLowReg() != rl_src.reg.GetLowReg() &&
   1240         rl_result.reg.GetLowReg() != rl_src.reg.GetHighReg() &&
   1241         rl_result.reg.GetHighReg() != rl_src.reg.GetLowReg() &&
   1242         rl_result.reg.GetHighReg() != rl_src.reg.GetHighReg()) {
   1243       // Reuse source registers to avoid running out of temps.
   1244       FreeTemp(rl_src.reg);
   1245     }
   1246     rl_src = rl_result;
   1247   }
   1248 
   1249   // abs(x) = y<=x>>31, (x+y)^y.
   1250   RegStorage sign_reg;
   1251   if (cu_->instruction_set == kX86_64) {
   1252     sign_reg = AllocTempWide();
   1253     OpRegRegImm(kOpAsr, sign_reg, rl_src.reg, 63);
   1254     OpRegRegReg(kOpAdd, rl_result.reg, rl_src.reg, sign_reg);
   1255     OpRegReg(kOpXor, rl_result.reg, sign_reg);
   1256   } else {
   1257     sign_reg = AllocTemp();
   1258     OpRegRegImm(kOpAsr, sign_reg, rl_src.reg.GetHigh(), 31);
   1259     OpRegRegReg(kOpAdd, rl_result.reg.GetLow(), rl_src.reg.GetLow(), sign_reg);
   1260     OpRegRegReg(kOpAdc, rl_result.reg.GetHigh(), rl_src.reg.GetHigh(), sign_reg);
   1261     OpRegReg(kOpXor, rl_result.reg.GetLow(), sign_reg);
   1262     OpRegReg(kOpXor, rl_result.reg.GetHigh(), sign_reg);
   1263   }
   1264   FreeTemp(sign_reg);
   1265   StoreValueWide(rl_dest, rl_result);
   1266   return true;
   1267 }
   1268 
   1269 bool Mir2Lir::GenInlinedReverseBits(CallInfo* info, OpSize size) {
   1270   // Currently implemented only for ARM64.
   1271   UNUSED(info, size);
   1272   return false;
   1273 }
   1274 
   1275 bool Mir2Lir::GenInlinedMinMaxFP(CallInfo* info, bool is_min, bool is_double) {
   1276   // Currently implemented only for ARM64.
   1277   UNUSED(info, is_min, is_double);
   1278   return false;
   1279 }
   1280 
   1281 bool Mir2Lir::GenInlinedCeil(CallInfo* info) {
   1282   UNUSED(info);
   1283   return false;
   1284 }
   1285 
   1286 bool Mir2Lir::GenInlinedFloor(CallInfo* info) {
   1287   UNUSED(info);
   1288   return false;
   1289 }
   1290 
   1291 bool Mir2Lir::GenInlinedRint(CallInfo* info) {
   1292   UNUSED(info);
   1293   return false;
   1294 }
   1295 
   1296 bool Mir2Lir::GenInlinedRound(CallInfo* info, bool is_double) {
   1297   UNUSED(info, is_double);
   1298   return false;
   1299 }
   1300 
   1301 bool Mir2Lir::GenInlinedFloatCvt(CallInfo* info) {
   1302   if (cu_->instruction_set == kMips || cu_->instruction_set == kMips64) {
   1303     // TODO: add Mips and Mips64 implementations.
   1304     return false;
   1305   }
   1306   RegLocation rl_dest = InlineTarget(info);
   1307   if (rl_dest.s_reg_low == INVALID_SREG) {
   1308     // Result is unused, the code is dead. Inlining successful, no code generated.
   1309     return true;
   1310   }
   1311   RegLocation rl_src = info->args[0];
   1312   StoreValue(rl_dest, rl_src);
   1313   return true;
   1314 }
   1315 
   1316 bool Mir2Lir::GenInlinedDoubleCvt(CallInfo* info) {
   1317   if (cu_->instruction_set == kMips || cu_->instruction_set == kMips64) {
   1318     // TODO: add Mips and Mips64 implementations.
   1319     return false;
   1320   }
   1321   RegLocation rl_dest = InlineTargetWide(info);
   1322   if (rl_dest.s_reg_low == INVALID_SREG) {
   1323     // Result is unused, the code is dead. Inlining successful, no code generated.
   1324     return true;
   1325   }
   1326   RegLocation rl_src = info->args[0];
   1327   StoreValueWide(rl_dest, rl_src);
   1328   return true;
   1329 }
   1330 
   1331 bool Mir2Lir::GenInlinedArrayCopyCharArray(CallInfo* info) {
   1332   UNUSED(info);
   1333   return false;
   1334 }
   1335 
   1336 
   1337 /*
   1338  * Fast String.indexOf(I) & (II).  Tests for simple case of char <= 0xFFFF,
   1339  * otherwise bails to standard library code.
   1340  */
   1341 bool Mir2Lir::GenInlinedIndexOf(CallInfo* info, bool zero_based) {
   1342   RegLocation rl_obj = info->args[0];
   1343   RegLocation rl_char = info->args[1];
   1344   if (rl_char.is_const && (mir_graph_->ConstantValue(rl_char) & ~0xFFFF) != 0) {
   1345     // Code point beyond 0xFFFF. Punt to the real String.indexOf().
   1346     return false;
   1347   }
   1348 
   1349   ClobberCallerSave();
   1350   LockCallTemps();  // Using fixed registers
   1351   RegStorage reg_ptr = TargetReg(kArg0, kRef);
   1352   RegStorage reg_char = TargetReg(kArg1, kNotWide);
   1353   RegStorage reg_start = TargetReg(kArg2, kNotWide);
   1354 
   1355   LoadValueDirectFixed(rl_obj, reg_ptr);
   1356   LoadValueDirectFixed(rl_char, reg_char);
   1357   if (zero_based) {
   1358     LoadConstant(reg_start, 0);
   1359   } else {
   1360     RegLocation rl_start = info->args[2];     // 3rd arg only present in III flavor of IndexOf.
   1361     LoadValueDirectFixed(rl_start, reg_start);
   1362   }
   1363   RegStorage r_tgt = LoadHelper(kQuickIndexOf);
   1364   GenExplicitNullCheck(reg_ptr, info->opt_flags);
   1365   LIR* high_code_point_branch =
   1366       rl_char.is_const ? nullptr : OpCmpImmBranch(kCondGt, reg_char, 0xFFFF, nullptr);
   1367   // NOTE: not a safepoint
   1368   OpReg(kOpBlx, r_tgt);
   1369   if (!rl_char.is_const) {
   1370     // Add the slow path for code points beyond 0xFFFF.
   1371     DCHECK(high_code_point_branch != nullptr);
   1372     LIR* resume_tgt = NewLIR0(kPseudoTargetLabel);
   1373     info->opt_flags |= MIR_IGNORE_NULL_CHECK;  // Record that we've null checked.
   1374     AddIntrinsicSlowPath(info, high_code_point_branch, resume_tgt);
   1375     ClobberCallerSave();  // We must clobber everything because slow path will return here
   1376   } else {
   1377     DCHECK_EQ(mir_graph_->ConstantValue(rl_char) & ~0xFFFF, 0);
   1378     DCHECK(high_code_point_branch == nullptr);
   1379   }
   1380   RegLocation rl_return = GetReturn(kCoreReg);
   1381   RegLocation rl_dest = InlineTarget(info);
   1382   StoreValue(rl_dest, rl_return);
   1383   return true;
   1384 }
   1385 
   1386 /* Fast string.compareTo(Ljava/lang/string;)I. */
   1387 bool Mir2Lir::GenInlinedStringCompareTo(CallInfo* info) {
   1388   if (cu_->instruction_set == kMips || cu_->instruction_set == kMips64) {
   1389     // TODO: add Mips and Mips64 implementations.
   1390     return false;
   1391   }
   1392   ClobberCallerSave();
   1393   LockCallTemps();  // Using fixed registers
   1394   RegStorage reg_this = TargetReg(kArg0, kRef);
   1395   RegStorage reg_cmp = TargetReg(kArg1, kRef);
   1396 
   1397   RegLocation rl_this = info->args[0];
   1398   RegLocation rl_cmp = info->args[1];
   1399   LoadValueDirectFixed(rl_this, reg_this);
   1400   LoadValueDirectFixed(rl_cmp, reg_cmp);
   1401   RegStorage r_tgt;
   1402   if (cu_->instruction_set != kX86 && cu_->instruction_set != kX86_64) {
   1403     r_tgt = LoadHelper(kQuickStringCompareTo);
   1404   } else {
   1405     r_tgt = RegStorage::InvalidReg();
   1406   }
   1407   GenExplicitNullCheck(reg_this, info->opt_flags);
   1408   info->opt_flags |= MIR_IGNORE_NULL_CHECK;  // Record that we've null checked.
   1409   // TUNING: check if rl_cmp.s_reg_low is already null checked
   1410   LIR* cmp_null_check_branch = OpCmpImmBranch(kCondEq, reg_cmp, 0, nullptr);
   1411   AddIntrinsicSlowPath(info, cmp_null_check_branch);
   1412   // NOTE: not a safepoint
   1413   CallHelper(r_tgt, kQuickStringCompareTo, false, true);
   1414   RegLocation rl_return = GetReturn(kCoreReg);
   1415   RegLocation rl_dest = InlineTarget(info);
   1416   StoreValue(rl_dest, rl_return);
   1417   return true;
   1418 }
   1419 
   1420 bool Mir2Lir::GenInlinedCurrentThread(CallInfo* info) {
   1421   RegLocation rl_dest = InlineTarget(info);
   1422 
   1423   // Early exit if the result is unused.
   1424   if (rl_dest.orig_sreg < 0) {
   1425     return true;
   1426   }
   1427 
   1428   RegLocation rl_result = EvalLoc(rl_dest, kRefReg, true);
   1429 
   1430   if (cu_->target64) {
   1431     LoadRefDisp(TargetPtrReg(kSelf), Thread::PeerOffset<8>().Int32Value(), rl_result.reg,
   1432                 kNotVolatile);
   1433   } else {
   1434     Load32Disp(TargetPtrReg(kSelf), Thread::PeerOffset<4>().Int32Value(), rl_result.reg);
   1435   }
   1436 
   1437   StoreValue(rl_dest, rl_result);
   1438   return true;
   1439 }
   1440 
   1441 bool Mir2Lir::GenInlinedUnsafeGet(CallInfo* info,
   1442                                   bool is_long, bool is_object, bool is_volatile) {
   1443   if (cu_->instruction_set == kMips || cu_->instruction_set == kMips64) {
   1444     // TODO: add Mips and Mips64 implementations.
   1445     return false;
   1446   }
   1447   // Unused - RegLocation rl_src_unsafe = info->args[0];
   1448   RegLocation rl_src_obj = info->args[1];  // Object
   1449   RegLocation rl_src_offset = info->args[2];  // long low
   1450   rl_src_offset = NarrowRegLoc(rl_src_offset);  // ignore high half in info->args[3]
   1451   RegLocation rl_dest = is_long ? InlineTargetWide(info) : InlineTarget(info);  // result reg
   1452 
   1453   RegLocation rl_object = LoadValue(rl_src_obj, kRefReg);
   1454   RegLocation rl_offset = LoadValue(rl_src_offset, kCoreReg);
   1455   RegLocation rl_result = EvalLoc(rl_dest, is_object ? kRefReg : kCoreReg, true);
   1456   if (is_long) {
   1457     if (cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64
   1458         || cu_->instruction_set == kArm64) {
   1459       LoadBaseIndexed(rl_object.reg, rl_offset.reg, rl_result.reg, 0, k64);
   1460     } else {
   1461       RegStorage rl_temp_offset = AllocTemp();
   1462       OpRegRegReg(kOpAdd, rl_temp_offset, rl_object.reg, rl_offset.reg);
   1463       LoadBaseDisp(rl_temp_offset, 0, rl_result.reg, k64, kNotVolatile);
   1464       FreeTemp(rl_temp_offset);
   1465     }
   1466   } else {
   1467     if (rl_result.ref) {
   1468       LoadRefIndexed(rl_object.reg, rl_offset.reg, rl_result.reg, 0);
   1469     } else {
   1470       LoadBaseIndexed(rl_object.reg, rl_offset.reg, rl_result.reg, 0, k32);
   1471     }
   1472   }
   1473 
   1474   if (is_volatile) {
   1475     GenMemBarrier(kLoadAny);
   1476   }
   1477 
   1478   if (is_long) {
   1479     StoreValueWide(rl_dest, rl_result);
   1480   } else {
   1481     StoreValue(rl_dest, rl_result);
   1482   }
   1483   return true;
   1484 }
   1485 
   1486 bool Mir2Lir::GenInlinedUnsafePut(CallInfo* info, bool is_long,
   1487                                   bool is_object, bool is_volatile, bool is_ordered) {
   1488   if (cu_->instruction_set == kMips || cu_->instruction_set == kMips64) {
   1489     // TODO: add Mips and Mips64 implementations.
   1490     return false;
   1491   }
   1492   // Unused - RegLocation rl_src_unsafe = info->args[0];
   1493   RegLocation rl_src_obj = info->args[1];  // Object
   1494   RegLocation rl_src_offset = info->args[2];  // long low
   1495   rl_src_offset = NarrowRegLoc(rl_src_offset);  // ignore high half in info->args[3]
   1496   RegLocation rl_src_value = info->args[4];  // value to store
   1497   if (is_volatile || is_ordered) {
   1498     GenMemBarrier(kAnyStore);
   1499   }
   1500   RegLocation rl_object = LoadValue(rl_src_obj, kRefReg);
   1501   RegLocation rl_offset = LoadValue(rl_src_offset, kCoreReg);
   1502   RegLocation rl_value;
   1503   if (is_long) {
   1504     rl_value = LoadValueWide(rl_src_value, kCoreReg);
   1505     if (cu_->instruction_set == kX86 || cu_->instruction_set == kX86_64
   1506         || cu_->instruction_set == kArm64) {
   1507       StoreBaseIndexed(rl_object.reg, rl_offset.reg, rl_value.reg, 0, k64);
   1508     } else {
   1509       RegStorage rl_temp_offset = AllocTemp();
   1510       OpRegRegReg(kOpAdd, rl_temp_offset, rl_object.reg, rl_offset.reg);
   1511       StoreBaseDisp(rl_temp_offset, 0, rl_value.reg, k64, kNotVolatile);
   1512       FreeTemp(rl_temp_offset);
   1513     }
   1514   } else {
   1515     rl_value = LoadValue(rl_src_value, is_object ? kRefReg : kCoreReg);
   1516     if (rl_value.ref) {
   1517       StoreRefIndexed(rl_object.reg, rl_offset.reg, rl_value.reg, 0);
   1518     } else {
   1519       StoreBaseIndexed(rl_object.reg, rl_offset.reg, rl_value.reg, 0, k32);
   1520     }
   1521   }
   1522 
   1523   // Free up the temp early, to ensure x86 doesn't run out of temporaries in MarkGCCard.
   1524   FreeTemp(rl_offset.reg);
   1525 
   1526   if (is_volatile) {
   1527     // Prevent reordering with a subsequent volatile load.
   1528     // May also be needed to address store atomicity issues.
   1529     GenMemBarrier(kAnyAny);
   1530   }
   1531   if (is_object) {
   1532     MarkGCCard(0, rl_value.reg, rl_object.reg);
   1533   }
   1534   return true;
   1535 }
   1536 
   1537 void Mir2Lir::GenInvoke(CallInfo* info) {
   1538   DCHECK(cu_->compiler_driver->GetMethodInlinerMap() != nullptr);
   1539   if (mir_graph_->GetMethodLoweringInfo(info->mir).IsIntrinsic()) {
   1540     const DexFile* dex_file = info->method_ref.dex_file;
   1541     auto* inliner = cu_->compiler_driver->GetMethodInlinerMap()->GetMethodInliner(dex_file);
   1542     if (inliner->GenIntrinsic(this, info)) {
   1543       return;
   1544     }
   1545   }
   1546   GenInvokeNoInline(info);
   1547 }
   1548 
   1549 void Mir2Lir::GenInvokeNoInline(CallInfo* info) {
   1550   int call_state = 0;
   1551   LIR* null_ck;
   1552   LIR** p_null_ck = nullptr;
   1553   NextCallInsn next_call_insn;
   1554   FlushAllRegs();  /* Everything to home location */
   1555   // Explicit register usage
   1556   LockCallTemps();
   1557 
   1558   const MirMethodLoweringInfo& method_info = mir_graph_->GetMethodLoweringInfo(info->mir);
   1559   MethodReference target_method = method_info.GetTargetMethod();
   1560   cu_->compiler_driver->ProcessedInvoke(method_info.GetInvokeType(), method_info.StatsFlags());
   1561   InvokeType original_type = static_cast<InvokeType>(method_info.GetInvokeType());
   1562   info->type = method_info.GetSharpType();
   1563   bool is_string_init = false;
   1564   if (method_info.IsSpecial()) {
   1565     DexFileMethodInliner* inliner = cu_->compiler_driver->GetMethodInlinerMap()->GetMethodInliner(
   1566         target_method.dex_file);
   1567     if (inliner->IsStringInitMethodIndex(target_method.dex_method_index)) {
   1568       is_string_init = true;
   1569       size_t pointer_size = GetInstructionSetPointerSize(cu_->instruction_set);
   1570       info->string_init_offset = inliner->GetOffsetForStringInit(target_method.dex_method_index,
   1571                                                                  pointer_size);
   1572       info->type = kStatic;
   1573     }
   1574   }
   1575   bool fast_path = method_info.FastPath();
   1576   bool skip_this;
   1577 
   1578   if (info->type == kInterface) {
   1579     next_call_insn = fast_path ? NextInterfaceCallInsn : NextInterfaceCallInsnWithAccessCheck;
   1580     skip_this = fast_path;
   1581   } else if (info->type == kDirect) {
   1582     if (fast_path) {
   1583       p_null_ck = &null_ck;
   1584     }
   1585     next_call_insn = fast_path ? GetNextSDCallInsn() : NextDirectCallInsnSP;
   1586     skip_this = false;
   1587   } else if (info->type == kStatic) {
   1588     next_call_insn = fast_path ? GetNextSDCallInsn() : NextStaticCallInsnSP;
   1589     skip_this = false;
   1590   } else if (info->type == kSuper) {
   1591     DCHECK(!fast_path);  // Fast path is a direct call.
   1592     next_call_insn = NextSuperCallInsnSP;
   1593     skip_this = false;
   1594   } else {
   1595     DCHECK_EQ(info->type, kVirtual);
   1596     next_call_insn = fast_path ? NextVCallInsn : NextVCallInsnSP;
   1597     skip_this = fast_path;
   1598   }
   1599   call_state = GenDalvikArgs(info, call_state, p_null_ck,
   1600                              next_call_insn, target_method, method_info.VTableIndex(),
   1601                              method_info.DirectCode(), method_info.DirectMethod(),
   1602                              original_type, skip_this);
   1603   // Finish up any of the call sequence not interleaved in arg loading
   1604   while (call_state >= 0) {
   1605     call_state = next_call_insn(cu_, info, call_state, target_method, method_info.VTableIndex(),
   1606                                 method_info.DirectCode(), method_info.DirectMethod(),
   1607                                 original_type);
   1608   }
   1609   LIR* call_insn = GenCallInsn(method_info);
   1610   MarkSafepointPC(call_insn);
   1611 
   1612   FreeCallTemps();
   1613   if (info->result.location != kLocInvalid) {
   1614     // We have a following MOVE_RESULT - do it now.
   1615     RegisterClass reg_class = is_string_init ? kRefReg :
   1616         ShortyToRegClass(mir_graph_->GetShortyFromMethodReference(info->method_ref)[0]);
   1617     if (info->result.wide) {
   1618       RegLocation ret_loc = GetReturnWide(reg_class);
   1619       StoreValueWide(info->result, ret_loc);
   1620     } else {
   1621       RegLocation ret_loc = GetReturn(reg_class);
   1622       StoreValue(info->result, ret_loc);
   1623     }
   1624   }
   1625 }
   1626 
   1627 }  // namespace art
   1628