1 //===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 /// 10 /// \file 11 /// \brief Implements semantic analysis for C++ expressions. 12 /// 13 //===----------------------------------------------------------------------===// 14 15 #include "clang/Sema/SemaInternal.h" 16 #include "TreeTransform.h" 17 #include "TypeLocBuilder.h" 18 #include "clang/AST/ASTContext.h" 19 #include "clang/AST/ASTLambda.h" 20 #include "clang/AST/CXXInheritance.h" 21 #include "clang/AST/CharUnits.h" 22 #include "clang/AST/DeclObjC.h" 23 #include "clang/AST/EvaluatedExprVisitor.h" 24 #include "clang/AST/ExprCXX.h" 25 #include "clang/AST/ExprObjC.h" 26 #include "clang/AST/RecursiveASTVisitor.h" 27 #include "clang/AST/TypeLoc.h" 28 #include "clang/Basic/PartialDiagnostic.h" 29 #include "clang/Basic/TargetInfo.h" 30 #include "clang/Lex/Preprocessor.h" 31 #include "clang/Sema/DeclSpec.h" 32 #include "clang/Sema/Initialization.h" 33 #include "clang/Sema/Lookup.h" 34 #include "clang/Sema/ParsedTemplate.h" 35 #include "clang/Sema/Scope.h" 36 #include "clang/Sema/ScopeInfo.h" 37 #include "clang/Sema/SemaLambda.h" 38 #include "clang/Sema/TemplateDeduction.h" 39 #include "llvm/ADT/APInt.h" 40 #include "llvm/ADT/STLExtras.h" 41 #include "llvm/Support/ErrorHandling.h" 42 using namespace clang; 43 using namespace sema; 44 45 /// \brief Handle the result of the special case name lookup for inheriting 46 /// constructor declarations. 'NS::X::X' and 'NS::X<...>::X' are treated as 47 /// constructor names in member using declarations, even if 'X' is not the 48 /// name of the corresponding type. 49 ParsedType Sema::getInheritingConstructorName(CXXScopeSpec &SS, 50 SourceLocation NameLoc, 51 IdentifierInfo &Name) { 52 NestedNameSpecifier *NNS = SS.getScopeRep(); 53 54 // Convert the nested-name-specifier into a type. 55 QualType Type; 56 switch (NNS->getKind()) { 57 case NestedNameSpecifier::TypeSpec: 58 case NestedNameSpecifier::TypeSpecWithTemplate: 59 Type = QualType(NNS->getAsType(), 0); 60 break; 61 62 case NestedNameSpecifier::Identifier: 63 // Strip off the last layer of the nested-name-specifier and build a 64 // typename type for it. 65 assert(NNS->getAsIdentifier() == &Name && "not a constructor name"); 66 Type = Context.getDependentNameType(ETK_None, NNS->getPrefix(), 67 NNS->getAsIdentifier()); 68 break; 69 70 case NestedNameSpecifier::Global: 71 case NestedNameSpecifier::Super: 72 case NestedNameSpecifier::Namespace: 73 case NestedNameSpecifier::NamespaceAlias: 74 llvm_unreachable("Nested name specifier is not a type for inheriting ctor"); 75 } 76 77 // This reference to the type is located entirely at the location of the 78 // final identifier in the qualified-id. 79 return CreateParsedType(Type, 80 Context.getTrivialTypeSourceInfo(Type, NameLoc)); 81 } 82 83 ParsedType Sema::getDestructorName(SourceLocation TildeLoc, 84 IdentifierInfo &II, 85 SourceLocation NameLoc, 86 Scope *S, CXXScopeSpec &SS, 87 ParsedType ObjectTypePtr, 88 bool EnteringContext) { 89 // Determine where to perform name lookup. 90 91 // FIXME: This area of the standard is very messy, and the current 92 // wording is rather unclear about which scopes we search for the 93 // destructor name; see core issues 399 and 555. Issue 399 in 94 // particular shows where the current description of destructor name 95 // lookup is completely out of line with existing practice, e.g., 96 // this appears to be ill-formed: 97 // 98 // namespace N { 99 // template <typename T> struct S { 100 // ~S(); 101 // }; 102 // } 103 // 104 // void f(N::S<int>* s) { 105 // s->N::S<int>::~S(); 106 // } 107 // 108 // See also PR6358 and PR6359. 109 // For this reason, we're currently only doing the C++03 version of this 110 // code; the C++0x version has to wait until we get a proper spec. 111 QualType SearchType; 112 DeclContext *LookupCtx = nullptr; 113 bool isDependent = false; 114 bool LookInScope = false; 115 116 if (SS.isInvalid()) 117 return ParsedType(); 118 119 // If we have an object type, it's because we are in a 120 // pseudo-destructor-expression or a member access expression, and 121 // we know what type we're looking for. 122 if (ObjectTypePtr) 123 SearchType = GetTypeFromParser(ObjectTypePtr); 124 125 if (SS.isSet()) { 126 NestedNameSpecifier *NNS = SS.getScopeRep(); 127 128 bool AlreadySearched = false; 129 bool LookAtPrefix = true; 130 // C++11 [basic.lookup.qual]p6: 131 // If a pseudo-destructor-name (5.2.4) contains a nested-name-specifier, 132 // the type-names are looked up as types in the scope designated by the 133 // nested-name-specifier. Similarly, in a qualified-id of the form: 134 // 135 // nested-name-specifier[opt] class-name :: ~ class-name 136 // 137 // the second class-name is looked up in the same scope as the first. 138 // 139 // Here, we determine whether the code below is permitted to look at the 140 // prefix of the nested-name-specifier. 141 DeclContext *DC = computeDeclContext(SS, EnteringContext); 142 if (DC && DC->isFileContext()) { 143 AlreadySearched = true; 144 LookupCtx = DC; 145 isDependent = false; 146 } else if (DC && isa<CXXRecordDecl>(DC)) { 147 LookAtPrefix = false; 148 LookInScope = true; 149 } 150 151 // The second case from the C++03 rules quoted further above. 152 NestedNameSpecifier *Prefix = nullptr; 153 if (AlreadySearched) { 154 // Nothing left to do. 155 } else if (LookAtPrefix && (Prefix = NNS->getPrefix())) { 156 CXXScopeSpec PrefixSS; 157 PrefixSS.Adopt(NestedNameSpecifierLoc(Prefix, SS.location_data())); 158 LookupCtx = computeDeclContext(PrefixSS, EnteringContext); 159 isDependent = isDependentScopeSpecifier(PrefixSS); 160 } else if (ObjectTypePtr) { 161 LookupCtx = computeDeclContext(SearchType); 162 isDependent = SearchType->isDependentType(); 163 } else { 164 LookupCtx = computeDeclContext(SS, EnteringContext); 165 isDependent = LookupCtx && LookupCtx->isDependentContext(); 166 } 167 } else if (ObjectTypePtr) { 168 // C++ [basic.lookup.classref]p3: 169 // If the unqualified-id is ~type-name, the type-name is looked up 170 // in the context of the entire postfix-expression. If the type T 171 // of the object expression is of a class type C, the type-name is 172 // also looked up in the scope of class C. At least one of the 173 // lookups shall find a name that refers to (possibly 174 // cv-qualified) T. 175 LookupCtx = computeDeclContext(SearchType); 176 isDependent = SearchType->isDependentType(); 177 assert((isDependent || !SearchType->isIncompleteType()) && 178 "Caller should have completed object type"); 179 180 LookInScope = true; 181 } else { 182 // Perform lookup into the current scope (only). 183 LookInScope = true; 184 } 185 186 TypeDecl *NonMatchingTypeDecl = nullptr; 187 LookupResult Found(*this, &II, NameLoc, LookupOrdinaryName); 188 for (unsigned Step = 0; Step != 2; ++Step) { 189 // Look for the name first in the computed lookup context (if we 190 // have one) and, if that fails to find a match, in the scope (if 191 // we're allowed to look there). 192 Found.clear(); 193 if (Step == 0 && LookupCtx) 194 LookupQualifiedName(Found, LookupCtx); 195 else if (Step == 1 && LookInScope && S) 196 LookupName(Found, S); 197 else 198 continue; 199 200 // FIXME: Should we be suppressing ambiguities here? 201 if (Found.isAmbiguous()) 202 return ParsedType(); 203 204 if (TypeDecl *Type = Found.getAsSingle<TypeDecl>()) { 205 QualType T = Context.getTypeDeclType(Type); 206 MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false); 207 208 if (SearchType.isNull() || SearchType->isDependentType() || 209 Context.hasSameUnqualifiedType(T, SearchType)) { 210 // We found our type! 211 212 return CreateParsedType(T, 213 Context.getTrivialTypeSourceInfo(T, NameLoc)); 214 } 215 216 if (!SearchType.isNull()) 217 NonMatchingTypeDecl = Type; 218 } 219 220 // If the name that we found is a class template name, and it is 221 // the same name as the template name in the last part of the 222 // nested-name-specifier (if present) or the object type, then 223 // this is the destructor for that class. 224 // FIXME: This is a workaround until we get real drafting for core 225 // issue 399, for which there isn't even an obvious direction. 226 if (ClassTemplateDecl *Template = Found.getAsSingle<ClassTemplateDecl>()) { 227 QualType MemberOfType; 228 if (SS.isSet()) { 229 if (DeclContext *Ctx = computeDeclContext(SS, EnteringContext)) { 230 // Figure out the type of the context, if it has one. 231 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx)) 232 MemberOfType = Context.getTypeDeclType(Record); 233 } 234 } 235 if (MemberOfType.isNull()) 236 MemberOfType = SearchType; 237 238 if (MemberOfType.isNull()) 239 continue; 240 241 // We're referring into a class template specialization. If the 242 // class template we found is the same as the template being 243 // specialized, we found what we are looking for. 244 if (const RecordType *Record = MemberOfType->getAs<RecordType>()) { 245 if (ClassTemplateSpecializationDecl *Spec 246 = dyn_cast<ClassTemplateSpecializationDecl>(Record->getDecl())) { 247 if (Spec->getSpecializedTemplate()->getCanonicalDecl() == 248 Template->getCanonicalDecl()) 249 return CreateParsedType( 250 MemberOfType, 251 Context.getTrivialTypeSourceInfo(MemberOfType, NameLoc)); 252 } 253 254 continue; 255 } 256 257 // We're referring to an unresolved class template 258 // specialization. Determine whether we class template we found 259 // is the same as the template being specialized or, if we don't 260 // know which template is being specialized, that it at least 261 // has the same name. 262 if (const TemplateSpecializationType *SpecType 263 = MemberOfType->getAs<TemplateSpecializationType>()) { 264 TemplateName SpecName = SpecType->getTemplateName(); 265 266 // The class template we found is the same template being 267 // specialized. 268 if (TemplateDecl *SpecTemplate = SpecName.getAsTemplateDecl()) { 269 if (SpecTemplate->getCanonicalDecl() == Template->getCanonicalDecl()) 270 return CreateParsedType( 271 MemberOfType, 272 Context.getTrivialTypeSourceInfo(MemberOfType, NameLoc)); 273 274 continue; 275 } 276 277 // The class template we found has the same name as the 278 // (dependent) template name being specialized. 279 if (DependentTemplateName *DepTemplate 280 = SpecName.getAsDependentTemplateName()) { 281 if (DepTemplate->isIdentifier() && 282 DepTemplate->getIdentifier() == Template->getIdentifier()) 283 return CreateParsedType( 284 MemberOfType, 285 Context.getTrivialTypeSourceInfo(MemberOfType, NameLoc)); 286 287 continue; 288 } 289 } 290 } 291 } 292 293 if (isDependent) { 294 // We didn't find our type, but that's okay: it's dependent 295 // anyway. 296 297 // FIXME: What if we have no nested-name-specifier? 298 QualType T = CheckTypenameType(ETK_None, SourceLocation(), 299 SS.getWithLocInContext(Context), 300 II, NameLoc); 301 return ParsedType::make(T); 302 } 303 304 if (NonMatchingTypeDecl) { 305 QualType T = Context.getTypeDeclType(NonMatchingTypeDecl); 306 Diag(NameLoc, diag::err_destructor_expr_type_mismatch) 307 << T << SearchType; 308 Diag(NonMatchingTypeDecl->getLocation(), diag::note_destructor_type_here) 309 << T; 310 } else if (ObjectTypePtr) 311 Diag(NameLoc, diag::err_ident_in_dtor_not_a_type) 312 << &II; 313 else { 314 SemaDiagnosticBuilder DtorDiag = Diag(NameLoc, 315 diag::err_destructor_class_name); 316 if (S) { 317 const DeclContext *Ctx = S->getEntity(); 318 if (const CXXRecordDecl *Class = dyn_cast_or_null<CXXRecordDecl>(Ctx)) 319 DtorDiag << FixItHint::CreateReplacement(SourceRange(NameLoc), 320 Class->getNameAsString()); 321 } 322 } 323 324 return ParsedType(); 325 } 326 327 ParsedType Sema::getDestructorType(const DeclSpec& DS, ParsedType ObjectType) { 328 if (DS.getTypeSpecType() == DeclSpec::TST_error || !ObjectType) 329 return ParsedType(); 330 assert(DS.getTypeSpecType() == DeclSpec::TST_decltype 331 && "only get destructor types from declspecs"); 332 QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc()); 333 QualType SearchType = GetTypeFromParser(ObjectType); 334 if (SearchType->isDependentType() || Context.hasSameUnqualifiedType(SearchType, T)) { 335 return ParsedType::make(T); 336 } 337 338 Diag(DS.getTypeSpecTypeLoc(), diag::err_destructor_expr_type_mismatch) 339 << T << SearchType; 340 return ParsedType(); 341 } 342 343 bool Sema::checkLiteralOperatorId(const CXXScopeSpec &SS, 344 const UnqualifiedId &Name) { 345 assert(Name.getKind() == UnqualifiedId::IK_LiteralOperatorId); 346 347 if (!SS.isValid()) 348 return false; 349 350 switch (SS.getScopeRep()->getKind()) { 351 case NestedNameSpecifier::Identifier: 352 case NestedNameSpecifier::TypeSpec: 353 case NestedNameSpecifier::TypeSpecWithTemplate: 354 // Per C++11 [over.literal]p2, literal operators can only be declared at 355 // namespace scope. Therefore, this unqualified-id cannot name anything. 356 // Reject it early, because we have no AST representation for this in the 357 // case where the scope is dependent. 358 Diag(Name.getLocStart(), diag::err_literal_operator_id_outside_namespace) 359 << SS.getScopeRep(); 360 return true; 361 362 case NestedNameSpecifier::Global: 363 case NestedNameSpecifier::Super: 364 case NestedNameSpecifier::Namespace: 365 case NestedNameSpecifier::NamespaceAlias: 366 return false; 367 } 368 369 llvm_unreachable("unknown nested name specifier kind"); 370 } 371 372 /// \brief Build a C++ typeid expression with a type operand. 373 ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType, 374 SourceLocation TypeidLoc, 375 TypeSourceInfo *Operand, 376 SourceLocation RParenLoc) { 377 // C++ [expr.typeid]p4: 378 // The top-level cv-qualifiers of the lvalue expression or the type-id 379 // that is the operand of typeid are always ignored. 380 // If the type of the type-id is a class type or a reference to a class 381 // type, the class shall be completely-defined. 382 Qualifiers Quals; 383 QualType T 384 = Context.getUnqualifiedArrayType(Operand->getType().getNonReferenceType(), 385 Quals); 386 if (T->getAs<RecordType>() && 387 RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid)) 388 return ExprError(); 389 390 if (T->isVariablyModifiedType()) 391 return ExprError(Diag(TypeidLoc, diag::err_variably_modified_typeid) << T); 392 393 return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), Operand, 394 SourceRange(TypeidLoc, RParenLoc)); 395 } 396 397 /// \brief Build a C++ typeid expression with an expression operand. 398 ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType, 399 SourceLocation TypeidLoc, 400 Expr *E, 401 SourceLocation RParenLoc) { 402 bool WasEvaluated = false; 403 if (E && !E->isTypeDependent()) { 404 if (E->getType()->isPlaceholderType()) { 405 ExprResult result = CheckPlaceholderExpr(E); 406 if (result.isInvalid()) return ExprError(); 407 E = result.get(); 408 } 409 410 QualType T = E->getType(); 411 if (const RecordType *RecordT = T->getAs<RecordType>()) { 412 CXXRecordDecl *RecordD = cast<CXXRecordDecl>(RecordT->getDecl()); 413 // C++ [expr.typeid]p3: 414 // [...] If the type of the expression is a class type, the class 415 // shall be completely-defined. 416 if (RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid)) 417 return ExprError(); 418 419 // C++ [expr.typeid]p3: 420 // When typeid is applied to an expression other than an glvalue of a 421 // polymorphic class type [...] [the] expression is an unevaluated 422 // operand. [...] 423 if (RecordD->isPolymorphic() && E->isGLValue()) { 424 // The subexpression is potentially evaluated; switch the context 425 // and recheck the subexpression. 426 ExprResult Result = TransformToPotentiallyEvaluated(E); 427 if (Result.isInvalid()) return ExprError(); 428 E = Result.get(); 429 430 // We require a vtable to query the type at run time. 431 MarkVTableUsed(TypeidLoc, RecordD); 432 WasEvaluated = true; 433 } 434 } 435 436 // C++ [expr.typeid]p4: 437 // [...] If the type of the type-id is a reference to a possibly 438 // cv-qualified type, the result of the typeid expression refers to a 439 // std::type_info object representing the cv-unqualified referenced 440 // type. 441 Qualifiers Quals; 442 QualType UnqualT = Context.getUnqualifiedArrayType(T, Quals); 443 if (!Context.hasSameType(T, UnqualT)) { 444 T = UnqualT; 445 E = ImpCastExprToType(E, UnqualT, CK_NoOp, E->getValueKind()).get(); 446 } 447 } 448 449 if (E->getType()->isVariablyModifiedType()) 450 return ExprError(Diag(TypeidLoc, diag::err_variably_modified_typeid) 451 << E->getType()); 452 else if (ActiveTemplateInstantiations.empty() && 453 E->HasSideEffects(Context, WasEvaluated)) { 454 // The expression operand for typeid is in an unevaluated expression 455 // context, so side effects could result in unintended consequences. 456 Diag(E->getExprLoc(), WasEvaluated 457 ? diag::warn_side_effects_typeid 458 : diag::warn_side_effects_unevaluated_context); 459 } 460 461 return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), E, 462 SourceRange(TypeidLoc, RParenLoc)); 463 } 464 465 /// ActOnCXXTypeidOfType - Parse typeid( type-id ) or typeid (expression); 466 ExprResult 467 Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc, 468 bool isType, void *TyOrExpr, SourceLocation RParenLoc) { 469 // Find the std::type_info type. 470 if (!getStdNamespace()) 471 return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid)); 472 473 if (!CXXTypeInfoDecl) { 474 IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info"); 475 LookupResult R(*this, TypeInfoII, SourceLocation(), LookupTagName); 476 LookupQualifiedName(R, getStdNamespace()); 477 CXXTypeInfoDecl = R.getAsSingle<RecordDecl>(); 478 // Microsoft's typeinfo doesn't have type_info in std but in the global 479 // namespace if _HAS_EXCEPTIONS is defined to 0. See PR13153. 480 if (!CXXTypeInfoDecl && LangOpts.MSVCCompat) { 481 LookupQualifiedName(R, Context.getTranslationUnitDecl()); 482 CXXTypeInfoDecl = R.getAsSingle<RecordDecl>(); 483 } 484 if (!CXXTypeInfoDecl) 485 return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid)); 486 } 487 488 if (!getLangOpts().RTTI) { 489 return ExprError(Diag(OpLoc, diag::err_no_typeid_with_fno_rtti)); 490 } 491 492 QualType TypeInfoType = Context.getTypeDeclType(CXXTypeInfoDecl); 493 494 if (isType) { 495 // The operand is a type; handle it as such. 496 TypeSourceInfo *TInfo = nullptr; 497 QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr), 498 &TInfo); 499 if (T.isNull()) 500 return ExprError(); 501 502 if (!TInfo) 503 TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc); 504 505 return BuildCXXTypeId(TypeInfoType, OpLoc, TInfo, RParenLoc); 506 } 507 508 // The operand is an expression. 509 return BuildCXXTypeId(TypeInfoType, OpLoc, (Expr*)TyOrExpr, RParenLoc); 510 } 511 512 /// \brief Build a Microsoft __uuidof expression with a type operand. 513 ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType, 514 SourceLocation TypeidLoc, 515 TypeSourceInfo *Operand, 516 SourceLocation RParenLoc) { 517 if (!Operand->getType()->isDependentType()) { 518 bool HasMultipleGUIDs = false; 519 if (!CXXUuidofExpr::GetUuidAttrOfType(Operand->getType(), 520 &HasMultipleGUIDs)) { 521 if (HasMultipleGUIDs) 522 return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids)); 523 else 524 return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid)); 525 } 526 } 527 528 return new (Context) CXXUuidofExpr(TypeInfoType.withConst(), Operand, 529 SourceRange(TypeidLoc, RParenLoc)); 530 } 531 532 /// \brief Build a Microsoft __uuidof expression with an expression operand. 533 ExprResult Sema::BuildCXXUuidof(QualType TypeInfoType, 534 SourceLocation TypeidLoc, 535 Expr *E, 536 SourceLocation RParenLoc) { 537 if (!E->getType()->isDependentType()) { 538 bool HasMultipleGUIDs = false; 539 if (!CXXUuidofExpr::GetUuidAttrOfType(E->getType(), &HasMultipleGUIDs) && 540 !E->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) { 541 if (HasMultipleGUIDs) 542 return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids)); 543 else 544 return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid)); 545 } 546 } 547 548 return new (Context) CXXUuidofExpr(TypeInfoType.withConst(), E, 549 SourceRange(TypeidLoc, RParenLoc)); 550 } 551 552 /// ActOnCXXUuidof - Parse __uuidof( type-id ) or __uuidof (expression); 553 ExprResult 554 Sema::ActOnCXXUuidof(SourceLocation OpLoc, SourceLocation LParenLoc, 555 bool isType, void *TyOrExpr, SourceLocation RParenLoc) { 556 // If MSVCGuidDecl has not been cached, do the lookup. 557 if (!MSVCGuidDecl) { 558 IdentifierInfo *GuidII = &PP.getIdentifierTable().get("_GUID"); 559 LookupResult R(*this, GuidII, SourceLocation(), LookupTagName); 560 LookupQualifiedName(R, Context.getTranslationUnitDecl()); 561 MSVCGuidDecl = R.getAsSingle<RecordDecl>(); 562 if (!MSVCGuidDecl) 563 return ExprError(Diag(OpLoc, diag::err_need_header_before_ms_uuidof)); 564 } 565 566 QualType GuidType = Context.getTypeDeclType(MSVCGuidDecl); 567 568 if (isType) { 569 // The operand is a type; handle it as such. 570 TypeSourceInfo *TInfo = nullptr; 571 QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr), 572 &TInfo); 573 if (T.isNull()) 574 return ExprError(); 575 576 if (!TInfo) 577 TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc); 578 579 return BuildCXXUuidof(GuidType, OpLoc, TInfo, RParenLoc); 580 } 581 582 // The operand is an expression. 583 return BuildCXXUuidof(GuidType, OpLoc, (Expr*)TyOrExpr, RParenLoc); 584 } 585 586 /// ActOnCXXBoolLiteral - Parse {true,false} literals. 587 ExprResult 588 Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) { 589 assert((Kind == tok::kw_true || Kind == tok::kw_false) && 590 "Unknown C++ Boolean value!"); 591 return new (Context) 592 CXXBoolLiteralExpr(Kind == tok::kw_true, Context.BoolTy, OpLoc); 593 } 594 595 /// ActOnCXXNullPtrLiteral - Parse 'nullptr'. 596 ExprResult 597 Sema::ActOnCXXNullPtrLiteral(SourceLocation Loc) { 598 return new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc); 599 } 600 601 /// ActOnCXXThrow - Parse throw expressions. 602 ExprResult 603 Sema::ActOnCXXThrow(Scope *S, SourceLocation OpLoc, Expr *Ex) { 604 bool IsThrownVarInScope = false; 605 if (Ex) { 606 // C++0x [class.copymove]p31: 607 // When certain criteria are met, an implementation is allowed to omit the 608 // copy/move construction of a class object [...] 609 // 610 // - in a throw-expression, when the operand is the name of a 611 // non-volatile automatic object (other than a function or catch- 612 // clause parameter) whose scope does not extend beyond the end of the 613 // innermost enclosing try-block (if there is one), the copy/move 614 // operation from the operand to the exception object (15.1) can be 615 // omitted by constructing the automatic object directly into the 616 // exception object 617 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Ex->IgnoreParens())) 618 if (VarDecl *Var = dyn_cast<VarDecl>(DRE->getDecl())) { 619 if (Var->hasLocalStorage() && !Var->getType().isVolatileQualified()) { 620 for( ; S; S = S->getParent()) { 621 if (S->isDeclScope(Var)) { 622 IsThrownVarInScope = true; 623 break; 624 } 625 626 if (S->getFlags() & 627 (Scope::FnScope | Scope::ClassScope | Scope::BlockScope | 628 Scope::FunctionPrototypeScope | Scope::ObjCMethodScope | 629 Scope::TryScope)) 630 break; 631 } 632 } 633 } 634 } 635 636 return BuildCXXThrow(OpLoc, Ex, IsThrownVarInScope); 637 } 638 639 ExprResult Sema::BuildCXXThrow(SourceLocation OpLoc, Expr *Ex, 640 bool IsThrownVarInScope) { 641 // Don't report an error if 'throw' is used in system headers. 642 if (!getLangOpts().CXXExceptions && 643 !getSourceManager().isInSystemHeader(OpLoc)) 644 Diag(OpLoc, diag::err_exceptions_disabled) << "throw"; 645 646 if (getCurScope() && getCurScope()->isOpenMPSimdDirectiveScope()) 647 Diag(OpLoc, diag::err_omp_simd_region_cannot_use_stmt) << "throw"; 648 649 if (Ex && !Ex->isTypeDependent()) { 650 QualType ExceptionObjectTy = Context.getExceptionObjectType(Ex->getType()); 651 if (CheckCXXThrowOperand(OpLoc, ExceptionObjectTy, Ex)) 652 return ExprError(); 653 654 // Initialize the exception result. This implicitly weeds out 655 // abstract types or types with inaccessible copy constructors. 656 657 // C++0x [class.copymove]p31: 658 // When certain criteria are met, an implementation is allowed to omit the 659 // copy/move construction of a class object [...] 660 // 661 // - in a throw-expression, when the operand is the name of a 662 // non-volatile automatic object (other than a function or 663 // catch-clause 664 // parameter) whose scope does not extend beyond the end of the 665 // innermost enclosing try-block (if there is one), the copy/move 666 // operation from the operand to the exception object (15.1) can be 667 // omitted by constructing the automatic object directly into the 668 // exception object 669 const VarDecl *NRVOVariable = nullptr; 670 if (IsThrownVarInScope) 671 NRVOVariable = getCopyElisionCandidate(QualType(), Ex, false); 672 673 InitializedEntity Entity = InitializedEntity::InitializeException( 674 OpLoc, ExceptionObjectTy, 675 /*NRVO=*/NRVOVariable != nullptr); 676 ExprResult Res = PerformMoveOrCopyInitialization( 677 Entity, NRVOVariable, QualType(), Ex, IsThrownVarInScope); 678 if (Res.isInvalid()) 679 return ExprError(); 680 Ex = Res.get(); 681 } 682 683 return new (Context) 684 CXXThrowExpr(Ex, Context.VoidTy, OpLoc, IsThrownVarInScope); 685 } 686 687 static void 688 collectPublicBases(CXXRecordDecl *RD, 689 llvm::DenseMap<CXXRecordDecl *, unsigned> &SubobjectsSeen, 690 llvm::SmallPtrSetImpl<CXXRecordDecl *> &VBases, 691 llvm::SetVector<CXXRecordDecl *> &PublicSubobjectsSeen, 692 bool ParentIsPublic) { 693 for (const CXXBaseSpecifier &BS : RD->bases()) { 694 CXXRecordDecl *BaseDecl = BS.getType()->getAsCXXRecordDecl(); 695 bool NewSubobject; 696 // Virtual bases constitute the same subobject. Non-virtual bases are 697 // always distinct subobjects. 698 if (BS.isVirtual()) 699 NewSubobject = VBases.insert(BaseDecl).second; 700 else 701 NewSubobject = true; 702 703 if (NewSubobject) 704 ++SubobjectsSeen[BaseDecl]; 705 706 // Only add subobjects which have public access throughout the entire chain. 707 bool PublicPath = ParentIsPublic && BS.getAccessSpecifier() == AS_public; 708 if (PublicPath) 709 PublicSubobjectsSeen.insert(BaseDecl); 710 711 // Recurse on to each base subobject. 712 collectPublicBases(BaseDecl, SubobjectsSeen, VBases, PublicSubobjectsSeen, 713 PublicPath); 714 } 715 } 716 717 static void getUnambiguousPublicSubobjects( 718 CXXRecordDecl *RD, llvm::SmallVectorImpl<CXXRecordDecl *> &Objects) { 719 llvm::DenseMap<CXXRecordDecl *, unsigned> SubobjectsSeen; 720 llvm::SmallSet<CXXRecordDecl *, 2> VBases; 721 llvm::SetVector<CXXRecordDecl *> PublicSubobjectsSeen; 722 SubobjectsSeen[RD] = 1; 723 PublicSubobjectsSeen.insert(RD); 724 collectPublicBases(RD, SubobjectsSeen, VBases, PublicSubobjectsSeen, 725 /*ParentIsPublic=*/true); 726 727 for (CXXRecordDecl *PublicSubobject : PublicSubobjectsSeen) { 728 // Skip ambiguous objects. 729 if (SubobjectsSeen[PublicSubobject] > 1) 730 continue; 731 732 Objects.push_back(PublicSubobject); 733 } 734 } 735 736 /// CheckCXXThrowOperand - Validate the operand of a throw. 737 bool Sema::CheckCXXThrowOperand(SourceLocation ThrowLoc, 738 QualType ExceptionObjectTy, Expr *E) { 739 // If the type of the exception would be an incomplete type or a pointer 740 // to an incomplete type other than (cv) void the program is ill-formed. 741 QualType Ty = ExceptionObjectTy; 742 bool isPointer = false; 743 if (const PointerType* Ptr = Ty->getAs<PointerType>()) { 744 Ty = Ptr->getPointeeType(); 745 isPointer = true; 746 } 747 if (!isPointer || !Ty->isVoidType()) { 748 if (RequireCompleteType(ThrowLoc, Ty, 749 isPointer ? diag::err_throw_incomplete_ptr 750 : diag::err_throw_incomplete, 751 E->getSourceRange())) 752 return true; 753 754 if (RequireNonAbstractType(ThrowLoc, ExceptionObjectTy, 755 diag::err_throw_abstract_type, E)) 756 return true; 757 } 758 759 // If the exception has class type, we need additional handling. 760 CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); 761 if (!RD) 762 return false; 763 764 // If we are throwing a polymorphic class type or pointer thereof, 765 // exception handling will make use of the vtable. 766 MarkVTableUsed(ThrowLoc, RD); 767 768 // If a pointer is thrown, the referenced object will not be destroyed. 769 if (isPointer) 770 return false; 771 772 // If the class has a destructor, we must be able to call it. 773 if (!RD->hasIrrelevantDestructor()) { 774 if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) { 775 MarkFunctionReferenced(E->getExprLoc(), Destructor); 776 CheckDestructorAccess(E->getExprLoc(), Destructor, 777 PDiag(diag::err_access_dtor_exception) << Ty); 778 if (DiagnoseUseOfDecl(Destructor, E->getExprLoc())) 779 return true; 780 } 781 } 782 783 // The MSVC ABI creates a list of all types which can catch the exception 784 // object. This list also references the appropriate copy constructor to call 785 // if the object is caught by value and has a non-trivial copy constructor. 786 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 787 // We are only interested in the public, unambiguous bases contained within 788 // the exception object. Bases which are ambiguous or otherwise 789 // inaccessible are not catchable types. 790 llvm::SmallVector<CXXRecordDecl *, 2> UnambiguousPublicSubobjects; 791 getUnambiguousPublicSubobjects(RD, UnambiguousPublicSubobjects); 792 793 for (CXXRecordDecl *Subobject : UnambiguousPublicSubobjects) { 794 // Attempt to lookup the copy constructor. Various pieces of machinery 795 // will spring into action, like template instantiation, which means this 796 // cannot be a simple walk of the class's decls. Instead, we must perform 797 // lookup and overload resolution. 798 CXXConstructorDecl *CD = LookupCopyingConstructor(Subobject, 0); 799 if (!CD) 800 continue; 801 802 // Mark the constructor referenced as it is used by this throw expression. 803 MarkFunctionReferenced(E->getExprLoc(), CD); 804 805 // Skip this copy constructor if it is trivial, we don't need to record it 806 // in the catchable type data. 807 if (CD->isTrivial()) 808 continue; 809 810 // The copy constructor is non-trivial, create a mapping from this class 811 // type to this constructor. 812 // N.B. The selection of copy constructor is not sensitive to this 813 // particular throw-site. Lookup will be performed at the catch-site to 814 // ensure that the copy constructor is, in fact, accessible (via 815 // friendship or any other means). 816 Context.addCopyConstructorForExceptionObject(Subobject, CD); 817 818 // We don't keep the instantiated default argument expressions around so 819 // we must rebuild them here. 820 for (unsigned I = 1, E = CD->getNumParams(); I != E; ++I) { 821 // Skip any default arguments that we've already instantiated. 822 if (Context.getDefaultArgExprForConstructor(CD, I)) 823 continue; 824 825 Expr *DefaultArg = 826 BuildCXXDefaultArgExpr(ThrowLoc, CD, CD->getParamDecl(I)).get(); 827 Context.addDefaultArgExprForConstructor(CD, I, DefaultArg); 828 } 829 } 830 } 831 832 return false; 833 } 834 835 QualType Sema::getCurrentThisType() { 836 DeclContext *DC = getFunctionLevelDeclContext(); 837 QualType ThisTy = CXXThisTypeOverride; 838 if (CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(DC)) { 839 if (method && method->isInstance()) 840 ThisTy = method->getThisType(Context); 841 } 842 if (ThisTy.isNull()) { 843 if (isGenericLambdaCallOperatorSpecialization(CurContext) && 844 CurContext->getParent()->getParent()->isRecord()) { 845 // This is a generic lambda call operator that is being instantiated 846 // within a default initializer - so use the enclosing class as 'this'. 847 // There is no enclosing member function to retrieve the 'this' pointer 848 // from. 849 QualType ClassTy = Context.getTypeDeclType( 850 cast<CXXRecordDecl>(CurContext->getParent()->getParent())); 851 // There are no cv-qualifiers for 'this' within default initializers, 852 // per [expr.prim.general]p4. 853 return Context.getPointerType(ClassTy); 854 } 855 } 856 return ThisTy; 857 } 858 859 Sema::CXXThisScopeRAII::CXXThisScopeRAII(Sema &S, 860 Decl *ContextDecl, 861 unsigned CXXThisTypeQuals, 862 bool Enabled) 863 : S(S), OldCXXThisTypeOverride(S.CXXThisTypeOverride), Enabled(false) 864 { 865 if (!Enabled || !ContextDecl) 866 return; 867 868 CXXRecordDecl *Record = nullptr; 869 if (ClassTemplateDecl *Template = dyn_cast<ClassTemplateDecl>(ContextDecl)) 870 Record = Template->getTemplatedDecl(); 871 else 872 Record = cast<CXXRecordDecl>(ContextDecl); 873 874 S.CXXThisTypeOverride 875 = S.Context.getPointerType( 876 S.Context.getRecordType(Record).withCVRQualifiers(CXXThisTypeQuals)); 877 878 this->Enabled = true; 879 } 880 881 882 Sema::CXXThisScopeRAII::~CXXThisScopeRAII() { 883 if (Enabled) { 884 S.CXXThisTypeOverride = OldCXXThisTypeOverride; 885 } 886 } 887 888 static Expr *captureThis(ASTContext &Context, RecordDecl *RD, 889 QualType ThisTy, SourceLocation Loc) { 890 FieldDecl *Field 891 = FieldDecl::Create(Context, RD, Loc, Loc, nullptr, ThisTy, 892 Context.getTrivialTypeSourceInfo(ThisTy, Loc), 893 nullptr, false, ICIS_NoInit); 894 Field->setImplicit(true); 895 Field->setAccess(AS_private); 896 RD->addDecl(Field); 897 return new (Context) CXXThisExpr(Loc, ThisTy, /*isImplicit*/true); 898 } 899 900 bool Sema::CheckCXXThisCapture(SourceLocation Loc, bool Explicit, 901 bool BuildAndDiagnose, const unsigned *const FunctionScopeIndexToStopAt) { 902 // We don't need to capture this in an unevaluated context. 903 if (isUnevaluatedContext() && !Explicit) 904 return true; 905 906 const unsigned MaxFunctionScopesIndex = FunctionScopeIndexToStopAt ? 907 *FunctionScopeIndexToStopAt : FunctionScopes.size() - 1; 908 // Otherwise, check that we can capture 'this'. 909 unsigned NumClosures = 0; 910 for (unsigned idx = MaxFunctionScopesIndex; idx != 0; idx--) { 911 if (CapturingScopeInfo *CSI = 912 dyn_cast<CapturingScopeInfo>(FunctionScopes[idx])) { 913 if (CSI->CXXThisCaptureIndex != 0) { 914 // 'this' is already being captured; there isn't anything more to do. 915 break; 916 } 917 LambdaScopeInfo *LSI = dyn_cast<LambdaScopeInfo>(CSI); 918 if (LSI && isGenericLambdaCallOperatorSpecialization(LSI->CallOperator)) { 919 // This context can't implicitly capture 'this'; fail out. 920 if (BuildAndDiagnose) 921 Diag(Loc, diag::err_this_capture) << Explicit; 922 return true; 923 } 924 if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByref || 925 CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval || 926 CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_Block || 927 CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_CapturedRegion || 928 Explicit) { 929 // This closure can capture 'this'; continue looking upwards. 930 NumClosures++; 931 Explicit = false; 932 continue; 933 } 934 // This context can't implicitly capture 'this'; fail out. 935 if (BuildAndDiagnose) 936 Diag(Loc, diag::err_this_capture) << Explicit; 937 return true; 938 } 939 break; 940 } 941 if (!BuildAndDiagnose) return false; 942 // Mark that we're implicitly capturing 'this' in all the scopes we skipped. 943 // FIXME: We need to delay this marking in PotentiallyPotentiallyEvaluated 944 // contexts. 945 for (unsigned idx = MaxFunctionScopesIndex; NumClosures; 946 --idx, --NumClosures) { 947 CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[idx]); 948 Expr *ThisExpr = nullptr; 949 QualType ThisTy = getCurrentThisType(); 950 if (LambdaScopeInfo *LSI = dyn_cast<LambdaScopeInfo>(CSI)) 951 // For lambda expressions, build a field and an initializing expression. 952 ThisExpr = captureThis(Context, LSI->Lambda, ThisTy, Loc); 953 else if (CapturedRegionScopeInfo *RSI 954 = dyn_cast<CapturedRegionScopeInfo>(FunctionScopes[idx])) 955 ThisExpr = captureThis(Context, RSI->TheRecordDecl, ThisTy, Loc); 956 957 bool isNested = NumClosures > 1; 958 CSI->addThisCapture(isNested, Loc, ThisTy, ThisExpr); 959 } 960 return false; 961 } 962 963 ExprResult Sema::ActOnCXXThis(SourceLocation Loc) { 964 /// C++ 9.3.2: In the body of a non-static member function, the keyword this 965 /// is a non-lvalue expression whose value is the address of the object for 966 /// which the function is called. 967 968 QualType ThisTy = getCurrentThisType(); 969 if (ThisTy.isNull()) return Diag(Loc, diag::err_invalid_this_use); 970 971 CheckCXXThisCapture(Loc); 972 return new (Context) CXXThisExpr(Loc, ThisTy, /*isImplicit=*/false); 973 } 974 975 bool Sema::isThisOutsideMemberFunctionBody(QualType BaseType) { 976 // If we're outside the body of a member function, then we'll have a specified 977 // type for 'this'. 978 if (CXXThisTypeOverride.isNull()) 979 return false; 980 981 // Determine whether we're looking into a class that's currently being 982 // defined. 983 CXXRecordDecl *Class = BaseType->getAsCXXRecordDecl(); 984 return Class && Class->isBeingDefined(); 985 } 986 987 ExprResult 988 Sema::ActOnCXXTypeConstructExpr(ParsedType TypeRep, 989 SourceLocation LParenLoc, 990 MultiExprArg exprs, 991 SourceLocation RParenLoc) { 992 if (!TypeRep) 993 return ExprError(); 994 995 TypeSourceInfo *TInfo; 996 QualType Ty = GetTypeFromParser(TypeRep, &TInfo); 997 if (!TInfo) 998 TInfo = Context.getTrivialTypeSourceInfo(Ty, SourceLocation()); 999 1000 return BuildCXXTypeConstructExpr(TInfo, LParenLoc, exprs, RParenLoc); 1001 } 1002 1003 /// ActOnCXXTypeConstructExpr - Parse construction of a specified type. 1004 /// Can be interpreted either as function-style casting ("int(x)") 1005 /// or class type construction ("ClassType(x,y,z)") 1006 /// or creation of a value-initialized type ("int()"). 1007 ExprResult 1008 Sema::BuildCXXTypeConstructExpr(TypeSourceInfo *TInfo, 1009 SourceLocation LParenLoc, 1010 MultiExprArg Exprs, 1011 SourceLocation RParenLoc) { 1012 QualType Ty = TInfo->getType(); 1013 SourceLocation TyBeginLoc = TInfo->getTypeLoc().getBeginLoc(); 1014 1015 if (Ty->isDependentType() || CallExpr::hasAnyTypeDependentArguments(Exprs)) { 1016 return CXXUnresolvedConstructExpr::Create(Context, TInfo, LParenLoc, Exprs, 1017 RParenLoc); 1018 } 1019 1020 bool ListInitialization = LParenLoc.isInvalid(); 1021 assert((!ListInitialization || (Exprs.size() == 1 && isa<InitListExpr>(Exprs[0]))) 1022 && "List initialization must have initializer list as expression."); 1023 SourceRange FullRange = SourceRange(TyBeginLoc, 1024 ListInitialization ? Exprs[0]->getSourceRange().getEnd() : RParenLoc); 1025 1026 // C++ [expr.type.conv]p1: 1027 // If the expression list is a single expression, the type conversion 1028 // expression is equivalent (in definedness, and if defined in meaning) to the 1029 // corresponding cast expression. 1030 if (Exprs.size() == 1 && !ListInitialization) { 1031 Expr *Arg = Exprs[0]; 1032 return BuildCXXFunctionalCastExpr(TInfo, LParenLoc, Arg, RParenLoc); 1033 } 1034 1035 QualType ElemTy = Ty; 1036 if (Ty->isArrayType()) { 1037 if (!ListInitialization) 1038 return ExprError(Diag(TyBeginLoc, 1039 diag::err_value_init_for_array_type) << FullRange); 1040 ElemTy = Context.getBaseElementType(Ty); 1041 } 1042 1043 if (!Ty->isVoidType() && 1044 RequireCompleteType(TyBeginLoc, ElemTy, 1045 diag::err_invalid_incomplete_type_use, FullRange)) 1046 return ExprError(); 1047 1048 if (RequireNonAbstractType(TyBeginLoc, Ty, 1049 diag::err_allocation_of_abstract_type)) 1050 return ExprError(); 1051 1052 InitializedEntity Entity = InitializedEntity::InitializeTemporary(TInfo); 1053 InitializationKind Kind = 1054 Exprs.size() ? ListInitialization 1055 ? InitializationKind::CreateDirectList(TyBeginLoc) 1056 : InitializationKind::CreateDirect(TyBeginLoc, LParenLoc, RParenLoc) 1057 : InitializationKind::CreateValue(TyBeginLoc, LParenLoc, RParenLoc); 1058 InitializationSequence InitSeq(*this, Entity, Kind, Exprs); 1059 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Exprs); 1060 1061 if (Result.isInvalid() || !ListInitialization) 1062 return Result; 1063 1064 Expr *Inner = Result.get(); 1065 if (CXXBindTemporaryExpr *BTE = dyn_cast_or_null<CXXBindTemporaryExpr>(Inner)) 1066 Inner = BTE->getSubExpr(); 1067 if (!isa<CXXTemporaryObjectExpr>(Inner)) { 1068 // If we created a CXXTemporaryObjectExpr, that node also represents the 1069 // functional cast. Otherwise, create an explicit cast to represent 1070 // the syntactic form of a functional-style cast that was used here. 1071 // 1072 // FIXME: Creating a CXXFunctionalCastExpr around a CXXConstructExpr 1073 // would give a more consistent AST representation than using a 1074 // CXXTemporaryObjectExpr. It's also weird that the functional cast 1075 // is sometimes handled by initialization and sometimes not. 1076 QualType ResultType = Result.get()->getType(); 1077 Result = CXXFunctionalCastExpr::Create( 1078 Context, ResultType, Expr::getValueKindForType(TInfo->getType()), TInfo, 1079 CK_NoOp, Result.get(), /*Path=*/nullptr, LParenLoc, RParenLoc); 1080 } 1081 1082 return Result; 1083 } 1084 1085 /// doesUsualArrayDeleteWantSize - Answers whether the usual 1086 /// operator delete[] for the given type has a size_t parameter. 1087 static bool doesUsualArrayDeleteWantSize(Sema &S, SourceLocation loc, 1088 QualType allocType) { 1089 const RecordType *record = 1090 allocType->getBaseElementTypeUnsafe()->getAs<RecordType>(); 1091 if (!record) return false; 1092 1093 // Try to find an operator delete[] in class scope. 1094 1095 DeclarationName deleteName = 1096 S.Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete); 1097 LookupResult ops(S, deleteName, loc, Sema::LookupOrdinaryName); 1098 S.LookupQualifiedName(ops, record->getDecl()); 1099 1100 // We're just doing this for information. 1101 ops.suppressDiagnostics(); 1102 1103 // Very likely: there's no operator delete[]. 1104 if (ops.empty()) return false; 1105 1106 // If it's ambiguous, it should be illegal to call operator delete[] 1107 // on this thing, so it doesn't matter if we allocate extra space or not. 1108 if (ops.isAmbiguous()) return false; 1109 1110 LookupResult::Filter filter = ops.makeFilter(); 1111 while (filter.hasNext()) { 1112 NamedDecl *del = filter.next()->getUnderlyingDecl(); 1113 1114 // C++0x [basic.stc.dynamic.deallocation]p2: 1115 // A template instance is never a usual deallocation function, 1116 // regardless of its signature. 1117 if (isa<FunctionTemplateDecl>(del)) { 1118 filter.erase(); 1119 continue; 1120 } 1121 1122 // C++0x [basic.stc.dynamic.deallocation]p2: 1123 // If class T does not declare [an operator delete[] with one 1124 // parameter] but does declare a member deallocation function 1125 // named operator delete[] with exactly two parameters, the 1126 // second of which has type std::size_t, then this function 1127 // is a usual deallocation function. 1128 if (!cast<CXXMethodDecl>(del)->isUsualDeallocationFunction()) { 1129 filter.erase(); 1130 continue; 1131 } 1132 } 1133 filter.done(); 1134 1135 if (!ops.isSingleResult()) return false; 1136 1137 const FunctionDecl *del = cast<FunctionDecl>(ops.getFoundDecl()); 1138 return (del->getNumParams() == 2); 1139 } 1140 1141 /// \brief Parsed a C++ 'new' expression (C++ 5.3.4). 1142 /// 1143 /// E.g.: 1144 /// @code new (memory) int[size][4] @endcode 1145 /// or 1146 /// @code ::new Foo(23, "hello") @endcode 1147 /// 1148 /// \param StartLoc The first location of the expression. 1149 /// \param UseGlobal True if 'new' was prefixed with '::'. 1150 /// \param PlacementLParen Opening paren of the placement arguments. 1151 /// \param PlacementArgs Placement new arguments. 1152 /// \param PlacementRParen Closing paren of the placement arguments. 1153 /// \param TypeIdParens If the type is in parens, the source range. 1154 /// \param D The type to be allocated, as well as array dimensions. 1155 /// \param Initializer The initializing expression or initializer-list, or null 1156 /// if there is none. 1157 ExprResult 1158 Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal, 1159 SourceLocation PlacementLParen, MultiExprArg PlacementArgs, 1160 SourceLocation PlacementRParen, SourceRange TypeIdParens, 1161 Declarator &D, Expr *Initializer) { 1162 bool TypeContainsAuto = D.getDeclSpec().containsPlaceholderType(); 1163 1164 Expr *ArraySize = nullptr; 1165 // If the specified type is an array, unwrap it and save the expression. 1166 if (D.getNumTypeObjects() > 0 && 1167 D.getTypeObject(0).Kind == DeclaratorChunk::Array) { 1168 DeclaratorChunk &Chunk = D.getTypeObject(0); 1169 if (TypeContainsAuto) 1170 return ExprError(Diag(Chunk.Loc, diag::err_new_array_of_auto) 1171 << D.getSourceRange()); 1172 if (Chunk.Arr.hasStatic) 1173 return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new) 1174 << D.getSourceRange()); 1175 if (!Chunk.Arr.NumElts) 1176 return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size) 1177 << D.getSourceRange()); 1178 1179 ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts); 1180 D.DropFirstTypeObject(); 1181 } 1182 1183 // Every dimension shall be of constant size. 1184 if (ArraySize) { 1185 for (unsigned I = 0, N = D.getNumTypeObjects(); I < N; ++I) { 1186 if (D.getTypeObject(I).Kind != DeclaratorChunk::Array) 1187 break; 1188 1189 DeclaratorChunk::ArrayTypeInfo &Array = D.getTypeObject(I).Arr; 1190 if (Expr *NumElts = (Expr *)Array.NumElts) { 1191 if (!NumElts->isTypeDependent() && !NumElts->isValueDependent()) { 1192 if (getLangOpts().CPlusPlus14) { 1193 // C++1y [expr.new]p6: Every constant-expression in a noptr-new-declarator 1194 // shall be a converted constant expression (5.19) of type std::size_t 1195 // and shall evaluate to a strictly positive value. 1196 unsigned IntWidth = Context.getTargetInfo().getIntWidth(); 1197 assert(IntWidth && "Builtin type of size 0?"); 1198 llvm::APSInt Value(IntWidth); 1199 Array.NumElts 1200 = CheckConvertedConstantExpression(NumElts, Context.getSizeType(), Value, 1201 CCEK_NewExpr) 1202 .get(); 1203 } else { 1204 Array.NumElts 1205 = VerifyIntegerConstantExpression(NumElts, nullptr, 1206 diag::err_new_array_nonconst) 1207 .get(); 1208 } 1209 if (!Array.NumElts) 1210 return ExprError(); 1211 } 1212 } 1213 } 1214 } 1215 1216 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, /*Scope=*/nullptr); 1217 QualType AllocType = TInfo->getType(); 1218 if (D.isInvalidType()) 1219 return ExprError(); 1220 1221 SourceRange DirectInitRange; 1222 if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer)) 1223 DirectInitRange = List->getSourceRange(); 1224 1225 return BuildCXXNew(SourceRange(StartLoc, D.getLocEnd()), UseGlobal, 1226 PlacementLParen, 1227 PlacementArgs, 1228 PlacementRParen, 1229 TypeIdParens, 1230 AllocType, 1231 TInfo, 1232 ArraySize, 1233 DirectInitRange, 1234 Initializer, 1235 TypeContainsAuto); 1236 } 1237 1238 static bool isLegalArrayNewInitializer(CXXNewExpr::InitializationStyle Style, 1239 Expr *Init) { 1240 if (!Init) 1241 return true; 1242 if (ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init)) 1243 return PLE->getNumExprs() == 0; 1244 if (isa<ImplicitValueInitExpr>(Init)) 1245 return true; 1246 else if (CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) 1247 return !CCE->isListInitialization() && 1248 CCE->getConstructor()->isDefaultConstructor(); 1249 else if (Style == CXXNewExpr::ListInit) { 1250 assert(isa<InitListExpr>(Init) && 1251 "Shouldn't create list CXXConstructExprs for arrays."); 1252 return true; 1253 } 1254 return false; 1255 } 1256 1257 ExprResult 1258 Sema::BuildCXXNew(SourceRange Range, bool UseGlobal, 1259 SourceLocation PlacementLParen, 1260 MultiExprArg PlacementArgs, 1261 SourceLocation PlacementRParen, 1262 SourceRange TypeIdParens, 1263 QualType AllocType, 1264 TypeSourceInfo *AllocTypeInfo, 1265 Expr *ArraySize, 1266 SourceRange DirectInitRange, 1267 Expr *Initializer, 1268 bool TypeMayContainAuto) { 1269 SourceRange TypeRange = AllocTypeInfo->getTypeLoc().getSourceRange(); 1270 SourceLocation StartLoc = Range.getBegin(); 1271 1272 CXXNewExpr::InitializationStyle initStyle; 1273 if (DirectInitRange.isValid()) { 1274 assert(Initializer && "Have parens but no initializer."); 1275 initStyle = CXXNewExpr::CallInit; 1276 } else if (Initializer && isa<InitListExpr>(Initializer)) 1277 initStyle = CXXNewExpr::ListInit; 1278 else { 1279 assert((!Initializer || isa<ImplicitValueInitExpr>(Initializer) || 1280 isa<CXXConstructExpr>(Initializer)) && 1281 "Initializer expression that cannot have been implicitly created."); 1282 initStyle = CXXNewExpr::NoInit; 1283 } 1284 1285 Expr **Inits = &Initializer; 1286 unsigned NumInits = Initializer ? 1 : 0; 1287 if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer)) { 1288 assert(initStyle == CXXNewExpr::CallInit && "paren init for non-call init"); 1289 Inits = List->getExprs(); 1290 NumInits = List->getNumExprs(); 1291 } 1292 1293 // C++11 [dcl.spec.auto]p6. Deduce the type which 'auto' stands in for. 1294 if (TypeMayContainAuto && AllocType->isUndeducedType()) { 1295 if (initStyle == CXXNewExpr::NoInit || NumInits == 0) 1296 return ExprError(Diag(StartLoc, diag::err_auto_new_requires_ctor_arg) 1297 << AllocType << TypeRange); 1298 if (initStyle == CXXNewExpr::ListInit || 1299 (NumInits == 1 && isa<InitListExpr>(Inits[0]))) 1300 return ExprError(Diag(Inits[0]->getLocStart(), 1301 diag::err_auto_new_list_init) 1302 << AllocType << TypeRange); 1303 if (NumInits > 1) { 1304 Expr *FirstBad = Inits[1]; 1305 return ExprError(Diag(FirstBad->getLocStart(), 1306 diag::err_auto_new_ctor_multiple_expressions) 1307 << AllocType << TypeRange); 1308 } 1309 Expr *Deduce = Inits[0]; 1310 QualType DeducedType; 1311 if (DeduceAutoType(AllocTypeInfo, Deduce, DeducedType) == DAR_Failed) 1312 return ExprError(Diag(StartLoc, diag::err_auto_new_deduction_failure) 1313 << AllocType << Deduce->getType() 1314 << TypeRange << Deduce->getSourceRange()); 1315 if (DeducedType.isNull()) 1316 return ExprError(); 1317 AllocType = DeducedType; 1318 } 1319 1320 // Per C++0x [expr.new]p5, the type being constructed may be a 1321 // typedef of an array type. 1322 if (!ArraySize) { 1323 if (const ConstantArrayType *Array 1324 = Context.getAsConstantArrayType(AllocType)) { 1325 ArraySize = IntegerLiteral::Create(Context, Array->getSize(), 1326 Context.getSizeType(), 1327 TypeRange.getEnd()); 1328 AllocType = Array->getElementType(); 1329 } 1330 } 1331 1332 if (CheckAllocatedType(AllocType, TypeRange.getBegin(), TypeRange)) 1333 return ExprError(); 1334 1335 if (initStyle == CXXNewExpr::ListInit && 1336 isStdInitializerList(AllocType, nullptr)) { 1337 Diag(AllocTypeInfo->getTypeLoc().getBeginLoc(), 1338 diag::warn_dangling_std_initializer_list) 1339 << /*at end of FE*/0 << Inits[0]->getSourceRange(); 1340 } 1341 1342 // In ARC, infer 'retaining' for the allocated 1343 if (getLangOpts().ObjCAutoRefCount && 1344 AllocType.getObjCLifetime() == Qualifiers::OCL_None && 1345 AllocType->isObjCLifetimeType()) { 1346 AllocType = Context.getLifetimeQualifiedType(AllocType, 1347 AllocType->getObjCARCImplicitLifetime()); 1348 } 1349 1350 QualType ResultType = Context.getPointerType(AllocType); 1351 1352 if (ArraySize && ArraySize->getType()->isNonOverloadPlaceholderType()) { 1353 ExprResult result = CheckPlaceholderExpr(ArraySize); 1354 if (result.isInvalid()) return ExprError(); 1355 ArraySize = result.get(); 1356 } 1357 // C++98 5.3.4p6: "The expression in a direct-new-declarator shall have 1358 // integral or enumeration type with a non-negative value." 1359 // C++11 [expr.new]p6: The expression [...] shall be of integral or unscoped 1360 // enumeration type, or a class type for which a single non-explicit 1361 // conversion function to integral or unscoped enumeration type exists. 1362 // C++1y [expr.new]p6: The expression [...] is implicitly converted to 1363 // std::size_t. 1364 if (ArraySize && !ArraySize->isTypeDependent()) { 1365 ExprResult ConvertedSize; 1366 if (getLangOpts().CPlusPlus14) { 1367 assert(Context.getTargetInfo().getIntWidth() && "Builtin type of size 0?"); 1368 1369 ConvertedSize = PerformImplicitConversion(ArraySize, Context.getSizeType(), 1370 AA_Converting); 1371 1372 if (!ConvertedSize.isInvalid() && 1373 ArraySize->getType()->getAs<RecordType>()) 1374 // Diagnose the compatibility of this conversion. 1375 Diag(StartLoc, diag::warn_cxx98_compat_array_size_conversion) 1376 << ArraySize->getType() << 0 << "'size_t'"; 1377 } else { 1378 class SizeConvertDiagnoser : public ICEConvertDiagnoser { 1379 protected: 1380 Expr *ArraySize; 1381 1382 public: 1383 SizeConvertDiagnoser(Expr *ArraySize) 1384 : ICEConvertDiagnoser(/*AllowScopedEnumerations*/false, false, false), 1385 ArraySize(ArraySize) {} 1386 1387 SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc, 1388 QualType T) override { 1389 return S.Diag(Loc, diag::err_array_size_not_integral) 1390 << S.getLangOpts().CPlusPlus11 << T; 1391 } 1392 1393 SemaDiagnosticBuilder diagnoseIncomplete( 1394 Sema &S, SourceLocation Loc, QualType T) override { 1395 return S.Diag(Loc, diag::err_array_size_incomplete_type) 1396 << T << ArraySize->getSourceRange(); 1397 } 1398 1399 SemaDiagnosticBuilder diagnoseExplicitConv( 1400 Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override { 1401 return S.Diag(Loc, diag::err_array_size_explicit_conversion) << T << ConvTy; 1402 } 1403 1404 SemaDiagnosticBuilder noteExplicitConv( 1405 Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override { 1406 return S.Diag(Conv->getLocation(), diag::note_array_size_conversion) 1407 << ConvTy->isEnumeralType() << ConvTy; 1408 } 1409 1410 SemaDiagnosticBuilder diagnoseAmbiguous( 1411 Sema &S, SourceLocation Loc, QualType T) override { 1412 return S.Diag(Loc, diag::err_array_size_ambiguous_conversion) << T; 1413 } 1414 1415 SemaDiagnosticBuilder noteAmbiguous( 1416 Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override { 1417 return S.Diag(Conv->getLocation(), diag::note_array_size_conversion) 1418 << ConvTy->isEnumeralType() << ConvTy; 1419 } 1420 1421 SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc, 1422 QualType T, 1423 QualType ConvTy) override { 1424 return S.Diag(Loc, 1425 S.getLangOpts().CPlusPlus11 1426 ? diag::warn_cxx98_compat_array_size_conversion 1427 : diag::ext_array_size_conversion) 1428 << T << ConvTy->isEnumeralType() << ConvTy; 1429 } 1430 } SizeDiagnoser(ArraySize); 1431 1432 ConvertedSize = PerformContextualImplicitConversion(StartLoc, ArraySize, 1433 SizeDiagnoser); 1434 } 1435 if (ConvertedSize.isInvalid()) 1436 return ExprError(); 1437 1438 ArraySize = ConvertedSize.get(); 1439 QualType SizeType = ArraySize->getType(); 1440 1441 if (!SizeType->isIntegralOrUnscopedEnumerationType()) 1442 return ExprError(); 1443 1444 // C++98 [expr.new]p7: 1445 // The expression in a direct-new-declarator shall have integral type 1446 // with a non-negative value. 1447 // 1448 // Let's see if this is a constant < 0. If so, we reject it out of 1449 // hand. Otherwise, if it's not a constant, we must have an unparenthesized 1450 // array type. 1451 // 1452 // Note: such a construct has well-defined semantics in C++11: it throws 1453 // std::bad_array_new_length. 1454 if (!ArraySize->isValueDependent()) { 1455 llvm::APSInt Value; 1456 // We've already performed any required implicit conversion to integer or 1457 // unscoped enumeration type. 1458 if (ArraySize->isIntegerConstantExpr(Value, Context)) { 1459 if (Value < llvm::APSInt( 1460 llvm::APInt::getNullValue(Value.getBitWidth()), 1461 Value.isUnsigned())) { 1462 if (getLangOpts().CPlusPlus11) 1463 Diag(ArraySize->getLocStart(), 1464 diag::warn_typecheck_negative_array_new_size) 1465 << ArraySize->getSourceRange(); 1466 else 1467 return ExprError(Diag(ArraySize->getLocStart(), 1468 diag::err_typecheck_negative_array_size) 1469 << ArraySize->getSourceRange()); 1470 } else if (!AllocType->isDependentType()) { 1471 unsigned ActiveSizeBits = 1472 ConstantArrayType::getNumAddressingBits(Context, AllocType, Value); 1473 if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) { 1474 if (getLangOpts().CPlusPlus11) 1475 Diag(ArraySize->getLocStart(), 1476 diag::warn_array_new_too_large) 1477 << Value.toString(10) 1478 << ArraySize->getSourceRange(); 1479 else 1480 return ExprError(Diag(ArraySize->getLocStart(), 1481 diag::err_array_too_large) 1482 << Value.toString(10) 1483 << ArraySize->getSourceRange()); 1484 } 1485 } 1486 } else if (TypeIdParens.isValid()) { 1487 // Can't have dynamic array size when the type-id is in parentheses. 1488 Diag(ArraySize->getLocStart(), diag::ext_new_paren_array_nonconst) 1489 << ArraySize->getSourceRange() 1490 << FixItHint::CreateRemoval(TypeIdParens.getBegin()) 1491 << FixItHint::CreateRemoval(TypeIdParens.getEnd()); 1492 1493 TypeIdParens = SourceRange(); 1494 } 1495 } 1496 1497 // Note that we do *not* convert the argument in any way. It can 1498 // be signed, larger than size_t, whatever. 1499 } 1500 1501 FunctionDecl *OperatorNew = nullptr; 1502 FunctionDecl *OperatorDelete = nullptr; 1503 1504 if (!AllocType->isDependentType() && 1505 !Expr::hasAnyTypeDependentArguments(PlacementArgs) && 1506 FindAllocationFunctions(StartLoc, 1507 SourceRange(PlacementLParen, PlacementRParen), 1508 UseGlobal, AllocType, ArraySize, PlacementArgs, 1509 OperatorNew, OperatorDelete)) 1510 return ExprError(); 1511 1512 // If this is an array allocation, compute whether the usual array 1513 // deallocation function for the type has a size_t parameter. 1514 bool UsualArrayDeleteWantsSize = false; 1515 if (ArraySize && !AllocType->isDependentType()) 1516 UsualArrayDeleteWantsSize 1517 = doesUsualArrayDeleteWantSize(*this, StartLoc, AllocType); 1518 1519 SmallVector<Expr *, 8> AllPlaceArgs; 1520 if (OperatorNew) { 1521 const FunctionProtoType *Proto = 1522 OperatorNew->getType()->getAs<FunctionProtoType>(); 1523 VariadicCallType CallType = Proto->isVariadic() ? VariadicFunction 1524 : VariadicDoesNotApply; 1525 1526 // We've already converted the placement args, just fill in any default 1527 // arguments. Skip the first parameter because we don't have a corresponding 1528 // argument. 1529 if (GatherArgumentsForCall(PlacementLParen, OperatorNew, Proto, 1, 1530 PlacementArgs, AllPlaceArgs, CallType)) 1531 return ExprError(); 1532 1533 if (!AllPlaceArgs.empty()) 1534 PlacementArgs = AllPlaceArgs; 1535 1536 // FIXME: This is wrong: PlacementArgs misses out the first (size) argument. 1537 DiagnoseSentinelCalls(OperatorNew, PlacementLParen, PlacementArgs); 1538 1539 // FIXME: Missing call to CheckFunctionCall or equivalent 1540 } 1541 1542 // Warn if the type is over-aligned and is being allocated by global operator 1543 // new. 1544 if (PlacementArgs.empty() && OperatorNew && 1545 (OperatorNew->isImplicit() || 1546 getSourceManager().isInSystemHeader(OperatorNew->getLocStart()))) { 1547 if (unsigned Align = Context.getPreferredTypeAlign(AllocType.getTypePtr())){ 1548 unsigned SuitableAlign = Context.getTargetInfo().getSuitableAlign(); 1549 if (Align > SuitableAlign) 1550 Diag(StartLoc, diag::warn_overaligned_type) 1551 << AllocType 1552 << unsigned(Align / Context.getCharWidth()) 1553 << unsigned(SuitableAlign / Context.getCharWidth()); 1554 } 1555 } 1556 1557 QualType InitType = AllocType; 1558 // Array 'new' can't have any initializers except empty parentheses. 1559 // Initializer lists are also allowed, in C++11. Rely on the parser for the 1560 // dialect distinction. 1561 if (ResultType->isArrayType() || ArraySize) { 1562 if (!isLegalArrayNewInitializer(initStyle, Initializer)) { 1563 SourceRange InitRange(Inits[0]->getLocStart(), 1564 Inits[NumInits - 1]->getLocEnd()); 1565 Diag(StartLoc, diag::err_new_array_init_args) << InitRange; 1566 return ExprError(); 1567 } 1568 if (InitListExpr *ILE = dyn_cast_or_null<InitListExpr>(Initializer)) { 1569 // We do the initialization typechecking against the array type 1570 // corresponding to the number of initializers + 1 (to also check 1571 // default-initialization). 1572 unsigned NumElements = ILE->getNumInits() + 1; 1573 InitType = Context.getConstantArrayType(AllocType, 1574 llvm::APInt(Context.getTypeSize(Context.getSizeType()), NumElements), 1575 ArrayType::Normal, 0); 1576 } 1577 } 1578 1579 // If we can perform the initialization, and we've not already done so, 1580 // do it now. 1581 if (!AllocType->isDependentType() && 1582 !Expr::hasAnyTypeDependentArguments( 1583 llvm::makeArrayRef(Inits, NumInits))) { 1584 // C++11 [expr.new]p15: 1585 // A new-expression that creates an object of type T initializes that 1586 // object as follows: 1587 InitializationKind Kind 1588 // - If the new-initializer is omitted, the object is default- 1589 // initialized (8.5); if no initialization is performed, 1590 // the object has indeterminate value 1591 = initStyle == CXXNewExpr::NoInit 1592 ? InitializationKind::CreateDefault(TypeRange.getBegin()) 1593 // - Otherwise, the new-initializer is interpreted according to the 1594 // initialization rules of 8.5 for direct-initialization. 1595 : initStyle == CXXNewExpr::ListInit 1596 ? InitializationKind::CreateDirectList(TypeRange.getBegin()) 1597 : InitializationKind::CreateDirect(TypeRange.getBegin(), 1598 DirectInitRange.getBegin(), 1599 DirectInitRange.getEnd()); 1600 1601 InitializedEntity Entity 1602 = InitializedEntity::InitializeNew(StartLoc, InitType); 1603 InitializationSequence InitSeq(*this, Entity, Kind, MultiExprArg(Inits, NumInits)); 1604 ExprResult FullInit = InitSeq.Perform(*this, Entity, Kind, 1605 MultiExprArg(Inits, NumInits)); 1606 if (FullInit.isInvalid()) 1607 return ExprError(); 1608 1609 // FullInit is our initializer; strip off CXXBindTemporaryExprs, because 1610 // we don't want the initialized object to be destructed. 1611 if (CXXBindTemporaryExpr *Binder = 1612 dyn_cast_or_null<CXXBindTemporaryExpr>(FullInit.get())) 1613 FullInit = Binder->getSubExpr(); 1614 1615 Initializer = FullInit.get(); 1616 } 1617 1618 // Mark the new and delete operators as referenced. 1619 if (OperatorNew) { 1620 if (DiagnoseUseOfDecl(OperatorNew, StartLoc)) 1621 return ExprError(); 1622 MarkFunctionReferenced(StartLoc, OperatorNew); 1623 } 1624 if (OperatorDelete) { 1625 if (DiagnoseUseOfDecl(OperatorDelete, StartLoc)) 1626 return ExprError(); 1627 MarkFunctionReferenced(StartLoc, OperatorDelete); 1628 } 1629 1630 // C++0x [expr.new]p17: 1631 // If the new expression creates an array of objects of class type, 1632 // access and ambiguity control are done for the destructor. 1633 QualType BaseAllocType = Context.getBaseElementType(AllocType); 1634 if (ArraySize && !BaseAllocType->isDependentType()) { 1635 if (const RecordType *BaseRecordType = BaseAllocType->getAs<RecordType>()) { 1636 if (CXXDestructorDecl *dtor = LookupDestructor( 1637 cast<CXXRecordDecl>(BaseRecordType->getDecl()))) { 1638 MarkFunctionReferenced(StartLoc, dtor); 1639 CheckDestructorAccess(StartLoc, dtor, 1640 PDiag(diag::err_access_dtor) 1641 << BaseAllocType); 1642 if (DiagnoseUseOfDecl(dtor, StartLoc)) 1643 return ExprError(); 1644 } 1645 } 1646 } 1647 1648 return new (Context) 1649 CXXNewExpr(Context, UseGlobal, OperatorNew, OperatorDelete, 1650 UsualArrayDeleteWantsSize, PlacementArgs, TypeIdParens, 1651 ArraySize, initStyle, Initializer, ResultType, AllocTypeInfo, 1652 Range, DirectInitRange); 1653 } 1654 1655 /// \brief Checks that a type is suitable as the allocated type 1656 /// in a new-expression. 1657 bool Sema::CheckAllocatedType(QualType AllocType, SourceLocation Loc, 1658 SourceRange R) { 1659 // C++ 5.3.4p1: "[The] type shall be a complete object type, but not an 1660 // abstract class type or array thereof. 1661 if (AllocType->isFunctionType()) 1662 return Diag(Loc, diag::err_bad_new_type) 1663 << AllocType << 0 << R; 1664 else if (AllocType->isReferenceType()) 1665 return Diag(Loc, diag::err_bad_new_type) 1666 << AllocType << 1 << R; 1667 else if (!AllocType->isDependentType() && 1668 RequireCompleteType(Loc, AllocType, diag::err_new_incomplete_type,R)) 1669 return true; 1670 else if (RequireNonAbstractType(Loc, AllocType, 1671 diag::err_allocation_of_abstract_type)) 1672 return true; 1673 else if (AllocType->isVariablyModifiedType()) 1674 return Diag(Loc, diag::err_variably_modified_new_type) 1675 << AllocType; 1676 else if (unsigned AddressSpace = AllocType.getAddressSpace()) 1677 return Diag(Loc, diag::err_address_space_qualified_new) 1678 << AllocType.getUnqualifiedType() << AddressSpace; 1679 else if (getLangOpts().ObjCAutoRefCount) { 1680 if (const ArrayType *AT = Context.getAsArrayType(AllocType)) { 1681 QualType BaseAllocType = Context.getBaseElementType(AT); 1682 if (BaseAllocType.getObjCLifetime() == Qualifiers::OCL_None && 1683 BaseAllocType->isObjCLifetimeType()) 1684 return Diag(Loc, diag::err_arc_new_array_without_ownership) 1685 << BaseAllocType; 1686 } 1687 } 1688 1689 return false; 1690 } 1691 1692 /// \brief Determine whether the given function is a non-placement 1693 /// deallocation function. 1694 static bool isNonPlacementDeallocationFunction(Sema &S, FunctionDecl *FD) { 1695 if (FD->isInvalidDecl()) 1696 return false; 1697 1698 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD)) 1699 return Method->isUsualDeallocationFunction(); 1700 1701 if (FD->getOverloadedOperator() != OO_Delete && 1702 FD->getOverloadedOperator() != OO_Array_Delete) 1703 return false; 1704 1705 if (FD->getNumParams() == 1) 1706 return true; 1707 1708 return S.getLangOpts().SizedDeallocation && FD->getNumParams() == 2 && 1709 S.Context.hasSameUnqualifiedType(FD->getParamDecl(1)->getType(), 1710 S.Context.getSizeType()); 1711 } 1712 1713 /// FindAllocationFunctions - Finds the overloads of operator new and delete 1714 /// that are appropriate for the allocation. 1715 bool Sema::FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range, 1716 bool UseGlobal, QualType AllocType, 1717 bool IsArray, MultiExprArg PlaceArgs, 1718 FunctionDecl *&OperatorNew, 1719 FunctionDecl *&OperatorDelete) { 1720 // --- Choosing an allocation function --- 1721 // C++ 5.3.4p8 - 14 & 18 1722 // 1) If UseGlobal is true, only look in the global scope. Else, also look 1723 // in the scope of the allocated class. 1724 // 2) If an array size is given, look for operator new[], else look for 1725 // operator new. 1726 // 3) The first argument is always size_t. Append the arguments from the 1727 // placement form. 1728 1729 SmallVector<Expr*, 8> AllocArgs(1 + PlaceArgs.size()); 1730 // We don't care about the actual value of this argument. 1731 // FIXME: Should the Sema create the expression and embed it in the syntax 1732 // tree? Or should the consumer just recalculate the value? 1733 IntegerLiteral Size(Context, llvm::APInt::getNullValue( 1734 Context.getTargetInfo().getPointerWidth(0)), 1735 Context.getSizeType(), 1736 SourceLocation()); 1737 AllocArgs[0] = &Size; 1738 std::copy(PlaceArgs.begin(), PlaceArgs.end(), AllocArgs.begin() + 1); 1739 1740 // C++ [expr.new]p8: 1741 // If the allocated type is a non-array type, the allocation 1742 // function's name is operator new and the deallocation function's 1743 // name is operator delete. If the allocated type is an array 1744 // type, the allocation function's name is operator new[] and the 1745 // deallocation function's name is operator delete[]. 1746 DeclarationName NewName = Context.DeclarationNames.getCXXOperatorName( 1747 IsArray ? OO_Array_New : OO_New); 1748 DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName( 1749 IsArray ? OO_Array_Delete : OO_Delete); 1750 1751 QualType AllocElemType = Context.getBaseElementType(AllocType); 1752 1753 if (AllocElemType->isRecordType() && !UseGlobal) { 1754 CXXRecordDecl *Record 1755 = cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl()); 1756 if (FindAllocationOverload(StartLoc, Range, NewName, AllocArgs, Record, 1757 /*AllowMissing=*/true, OperatorNew)) 1758 return true; 1759 } 1760 1761 if (!OperatorNew) { 1762 // Didn't find a member overload. Look for a global one. 1763 DeclareGlobalNewDelete(); 1764 DeclContext *TUDecl = Context.getTranslationUnitDecl(); 1765 bool FallbackEnabled = IsArray && Context.getLangOpts().MSVCCompat; 1766 if (FindAllocationOverload(StartLoc, Range, NewName, AllocArgs, TUDecl, 1767 /*AllowMissing=*/FallbackEnabled, OperatorNew, 1768 /*Diagnose=*/!FallbackEnabled)) { 1769 if (!FallbackEnabled) 1770 return true; 1771 1772 // MSVC will fall back on trying to find a matching global operator new 1773 // if operator new[] cannot be found. Also, MSVC will leak by not 1774 // generating a call to operator delete or operator delete[], but we 1775 // will not replicate that bug. 1776 NewName = Context.DeclarationNames.getCXXOperatorName(OO_New); 1777 DeleteName = Context.DeclarationNames.getCXXOperatorName(OO_Delete); 1778 if (FindAllocationOverload(StartLoc, Range, NewName, AllocArgs, TUDecl, 1779 /*AllowMissing=*/false, OperatorNew)) 1780 return true; 1781 } 1782 } 1783 1784 // We don't need an operator delete if we're running under 1785 // -fno-exceptions. 1786 if (!getLangOpts().Exceptions) { 1787 OperatorDelete = nullptr; 1788 return false; 1789 } 1790 1791 // C++ [expr.new]p19: 1792 // 1793 // If the new-expression begins with a unary :: operator, the 1794 // deallocation function's name is looked up in the global 1795 // scope. Otherwise, if the allocated type is a class type T or an 1796 // array thereof, the deallocation function's name is looked up in 1797 // the scope of T. If this lookup fails to find the name, or if 1798 // the allocated type is not a class type or array thereof, the 1799 // deallocation function's name is looked up in the global scope. 1800 LookupResult FoundDelete(*this, DeleteName, StartLoc, LookupOrdinaryName); 1801 if (AllocElemType->isRecordType() && !UseGlobal) { 1802 CXXRecordDecl *RD 1803 = cast<CXXRecordDecl>(AllocElemType->getAs<RecordType>()->getDecl()); 1804 LookupQualifiedName(FoundDelete, RD); 1805 } 1806 if (FoundDelete.isAmbiguous()) 1807 return true; // FIXME: clean up expressions? 1808 1809 if (FoundDelete.empty()) { 1810 DeclareGlobalNewDelete(); 1811 LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl()); 1812 } 1813 1814 FoundDelete.suppressDiagnostics(); 1815 1816 SmallVector<std::pair<DeclAccessPair,FunctionDecl*>, 2> Matches; 1817 1818 // Whether we're looking for a placement operator delete is dictated 1819 // by whether we selected a placement operator new, not by whether 1820 // we had explicit placement arguments. This matters for things like 1821 // struct A { void *operator new(size_t, int = 0); ... }; 1822 // A *a = new A() 1823 bool isPlacementNew = (!PlaceArgs.empty() || OperatorNew->param_size() != 1); 1824 1825 if (isPlacementNew) { 1826 // C++ [expr.new]p20: 1827 // A declaration of a placement deallocation function matches the 1828 // declaration of a placement allocation function if it has the 1829 // same number of parameters and, after parameter transformations 1830 // (8.3.5), all parameter types except the first are 1831 // identical. [...] 1832 // 1833 // To perform this comparison, we compute the function type that 1834 // the deallocation function should have, and use that type both 1835 // for template argument deduction and for comparison purposes. 1836 // 1837 // FIXME: this comparison should ignore CC and the like. 1838 QualType ExpectedFunctionType; 1839 { 1840 const FunctionProtoType *Proto 1841 = OperatorNew->getType()->getAs<FunctionProtoType>(); 1842 1843 SmallVector<QualType, 4> ArgTypes; 1844 ArgTypes.push_back(Context.VoidPtrTy); 1845 for (unsigned I = 1, N = Proto->getNumParams(); I < N; ++I) 1846 ArgTypes.push_back(Proto->getParamType(I)); 1847 1848 FunctionProtoType::ExtProtoInfo EPI; 1849 EPI.Variadic = Proto->isVariadic(); 1850 1851 ExpectedFunctionType 1852 = Context.getFunctionType(Context.VoidTy, ArgTypes, EPI); 1853 } 1854 1855 for (LookupResult::iterator D = FoundDelete.begin(), 1856 DEnd = FoundDelete.end(); 1857 D != DEnd; ++D) { 1858 FunctionDecl *Fn = nullptr; 1859 if (FunctionTemplateDecl *FnTmpl 1860 = dyn_cast<FunctionTemplateDecl>((*D)->getUnderlyingDecl())) { 1861 // Perform template argument deduction to try to match the 1862 // expected function type. 1863 TemplateDeductionInfo Info(StartLoc); 1864 if (DeduceTemplateArguments(FnTmpl, nullptr, ExpectedFunctionType, Fn, 1865 Info)) 1866 continue; 1867 } else 1868 Fn = cast<FunctionDecl>((*D)->getUnderlyingDecl()); 1869 1870 if (Context.hasSameType(Fn->getType(), ExpectedFunctionType)) 1871 Matches.push_back(std::make_pair(D.getPair(), Fn)); 1872 } 1873 } else { 1874 // C++ [expr.new]p20: 1875 // [...] Any non-placement deallocation function matches a 1876 // non-placement allocation function. [...] 1877 for (LookupResult::iterator D = FoundDelete.begin(), 1878 DEnd = FoundDelete.end(); 1879 D != DEnd; ++D) { 1880 if (FunctionDecl *Fn = dyn_cast<FunctionDecl>((*D)->getUnderlyingDecl())) 1881 if (isNonPlacementDeallocationFunction(*this, Fn)) 1882 Matches.push_back(std::make_pair(D.getPair(), Fn)); 1883 } 1884 1885 // C++1y [expr.new]p22: 1886 // For a non-placement allocation function, the normal deallocation 1887 // function lookup is used 1888 // C++1y [expr.delete]p?: 1889 // If [...] deallocation function lookup finds both a usual deallocation 1890 // function with only a pointer parameter and a usual deallocation 1891 // function with both a pointer parameter and a size parameter, then the 1892 // selected deallocation function shall be the one with two parameters. 1893 // Otherwise, the selected deallocation function shall be the function 1894 // with one parameter. 1895 if (getLangOpts().SizedDeallocation && Matches.size() == 2) { 1896 if (Matches[0].second->getNumParams() == 1) 1897 Matches.erase(Matches.begin()); 1898 else 1899 Matches.erase(Matches.begin() + 1); 1900 assert(Matches[0].second->getNumParams() == 2 && 1901 "found an unexpected usual deallocation function"); 1902 } 1903 } 1904 1905 // C++ [expr.new]p20: 1906 // [...] If the lookup finds a single matching deallocation 1907 // function, that function will be called; otherwise, no 1908 // deallocation function will be called. 1909 if (Matches.size() == 1) { 1910 OperatorDelete = Matches[0].second; 1911 1912 // C++0x [expr.new]p20: 1913 // If the lookup finds the two-parameter form of a usual 1914 // deallocation function (3.7.4.2) and that function, considered 1915 // as a placement deallocation function, would have been 1916 // selected as a match for the allocation function, the program 1917 // is ill-formed. 1918 if (!PlaceArgs.empty() && getLangOpts().CPlusPlus11 && 1919 isNonPlacementDeallocationFunction(*this, OperatorDelete)) { 1920 Diag(StartLoc, diag::err_placement_new_non_placement_delete) 1921 << SourceRange(PlaceArgs.front()->getLocStart(), 1922 PlaceArgs.back()->getLocEnd()); 1923 if (!OperatorDelete->isImplicit()) 1924 Diag(OperatorDelete->getLocation(), diag::note_previous_decl) 1925 << DeleteName; 1926 } else { 1927 CheckAllocationAccess(StartLoc, Range, FoundDelete.getNamingClass(), 1928 Matches[0].first); 1929 } 1930 } 1931 1932 return false; 1933 } 1934 1935 /// \brief Find an fitting overload for the allocation function 1936 /// in the specified scope. 1937 /// 1938 /// \param StartLoc The location of the 'new' token. 1939 /// \param Range The range of the placement arguments. 1940 /// \param Name The name of the function ('operator new' or 'operator new[]'). 1941 /// \param Args The placement arguments specified. 1942 /// \param Ctx The scope in which we should search; either a class scope or the 1943 /// translation unit. 1944 /// \param AllowMissing If \c true, report an error if we can't find any 1945 /// allocation functions. Otherwise, succeed but don't fill in \p 1946 /// Operator. 1947 /// \param Operator Filled in with the found allocation function. Unchanged if 1948 /// no allocation function was found. 1949 /// \param Diagnose If \c true, issue errors if the allocation function is not 1950 /// usable. 1951 bool Sema::FindAllocationOverload(SourceLocation StartLoc, SourceRange Range, 1952 DeclarationName Name, MultiExprArg Args, 1953 DeclContext *Ctx, 1954 bool AllowMissing, FunctionDecl *&Operator, 1955 bool Diagnose) { 1956 LookupResult R(*this, Name, StartLoc, LookupOrdinaryName); 1957 LookupQualifiedName(R, Ctx); 1958 if (R.empty()) { 1959 if (AllowMissing || !Diagnose) 1960 return false; 1961 return Diag(StartLoc, diag::err_ovl_no_viable_function_in_call) 1962 << Name << Range; 1963 } 1964 1965 if (R.isAmbiguous()) 1966 return true; 1967 1968 R.suppressDiagnostics(); 1969 1970 OverloadCandidateSet Candidates(StartLoc, OverloadCandidateSet::CSK_Normal); 1971 for (LookupResult::iterator Alloc = R.begin(), AllocEnd = R.end(); 1972 Alloc != AllocEnd; ++Alloc) { 1973 // Even member operator new/delete are implicitly treated as 1974 // static, so don't use AddMemberCandidate. 1975 NamedDecl *D = (*Alloc)->getUnderlyingDecl(); 1976 1977 if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) { 1978 AddTemplateOverloadCandidate(FnTemplate, Alloc.getPair(), 1979 /*ExplicitTemplateArgs=*/nullptr, 1980 Args, Candidates, 1981 /*SuppressUserConversions=*/false); 1982 continue; 1983 } 1984 1985 FunctionDecl *Fn = cast<FunctionDecl>(D); 1986 AddOverloadCandidate(Fn, Alloc.getPair(), Args, Candidates, 1987 /*SuppressUserConversions=*/false); 1988 } 1989 1990 // Do the resolution. 1991 OverloadCandidateSet::iterator Best; 1992 switch (Candidates.BestViableFunction(*this, StartLoc, Best)) { 1993 case OR_Success: { 1994 // Got one! 1995 FunctionDecl *FnDecl = Best->Function; 1996 if (CheckAllocationAccess(StartLoc, Range, R.getNamingClass(), 1997 Best->FoundDecl, Diagnose) == AR_inaccessible) 1998 return true; 1999 2000 Operator = FnDecl; 2001 return false; 2002 } 2003 2004 case OR_No_Viable_Function: 2005 if (Diagnose) { 2006 Diag(StartLoc, diag::err_ovl_no_viable_function_in_call) 2007 << Name << Range; 2008 Candidates.NoteCandidates(*this, OCD_AllCandidates, Args); 2009 } 2010 return true; 2011 2012 case OR_Ambiguous: 2013 if (Diagnose) { 2014 Diag(StartLoc, diag::err_ovl_ambiguous_call) 2015 << Name << Range; 2016 Candidates.NoteCandidates(*this, OCD_ViableCandidates, Args); 2017 } 2018 return true; 2019 2020 case OR_Deleted: { 2021 if (Diagnose) { 2022 Diag(StartLoc, diag::err_ovl_deleted_call) 2023 << Best->Function->isDeleted() 2024 << Name 2025 << getDeletedOrUnavailableSuffix(Best->Function) 2026 << Range; 2027 Candidates.NoteCandidates(*this, OCD_AllCandidates, Args); 2028 } 2029 return true; 2030 } 2031 } 2032 llvm_unreachable("Unreachable, bad result from BestViableFunction"); 2033 } 2034 2035 2036 /// DeclareGlobalNewDelete - Declare the global forms of operator new and 2037 /// delete. These are: 2038 /// @code 2039 /// // C++03: 2040 /// void* operator new(std::size_t) throw(std::bad_alloc); 2041 /// void* operator new[](std::size_t) throw(std::bad_alloc); 2042 /// void operator delete(void *) throw(); 2043 /// void operator delete[](void *) throw(); 2044 /// // C++11: 2045 /// void* operator new(std::size_t); 2046 /// void* operator new[](std::size_t); 2047 /// void operator delete(void *) noexcept; 2048 /// void operator delete[](void *) noexcept; 2049 /// // C++1y: 2050 /// void* operator new(std::size_t); 2051 /// void* operator new[](std::size_t); 2052 /// void operator delete(void *) noexcept; 2053 /// void operator delete[](void *) noexcept; 2054 /// void operator delete(void *, std::size_t) noexcept; 2055 /// void operator delete[](void *, std::size_t) noexcept; 2056 /// @endcode 2057 /// Note that the placement and nothrow forms of new are *not* implicitly 2058 /// declared. Their use requires including \<new\>. 2059 void Sema::DeclareGlobalNewDelete() { 2060 if (GlobalNewDeleteDeclared) 2061 return; 2062 2063 // C++ [basic.std.dynamic]p2: 2064 // [...] The following allocation and deallocation functions (18.4) are 2065 // implicitly declared in global scope in each translation unit of a 2066 // program 2067 // 2068 // C++03: 2069 // void* operator new(std::size_t) throw(std::bad_alloc); 2070 // void* operator new[](std::size_t) throw(std::bad_alloc); 2071 // void operator delete(void*) throw(); 2072 // void operator delete[](void*) throw(); 2073 // C++11: 2074 // void* operator new(std::size_t); 2075 // void* operator new[](std::size_t); 2076 // void operator delete(void*) noexcept; 2077 // void operator delete[](void*) noexcept; 2078 // C++1y: 2079 // void* operator new(std::size_t); 2080 // void* operator new[](std::size_t); 2081 // void operator delete(void*) noexcept; 2082 // void operator delete[](void*) noexcept; 2083 // void operator delete(void*, std::size_t) noexcept; 2084 // void operator delete[](void*, std::size_t) noexcept; 2085 // 2086 // These implicit declarations introduce only the function names operator 2087 // new, operator new[], operator delete, operator delete[]. 2088 // 2089 // Here, we need to refer to std::bad_alloc, so we will implicitly declare 2090 // "std" or "bad_alloc" as necessary to form the exception specification. 2091 // However, we do not make these implicit declarations visible to name 2092 // lookup. 2093 if (!StdBadAlloc && !getLangOpts().CPlusPlus11) { 2094 // The "std::bad_alloc" class has not yet been declared, so build it 2095 // implicitly. 2096 StdBadAlloc = CXXRecordDecl::Create(Context, TTK_Class, 2097 getOrCreateStdNamespace(), 2098 SourceLocation(), SourceLocation(), 2099 &PP.getIdentifierTable().get("bad_alloc"), 2100 nullptr); 2101 getStdBadAlloc()->setImplicit(true); 2102 } 2103 2104 GlobalNewDeleteDeclared = true; 2105 2106 QualType VoidPtr = Context.getPointerType(Context.VoidTy); 2107 QualType SizeT = Context.getSizeType(); 2108 bool AssumeSaneOperatorNew = getLangOpts().AssumeSaneOperatorNew; 2109 2110 DeclareGlobalAllocationFunction( 2111 Context.DeclarationNames.getCXXOperatorName(OO_New), 2112 VoidPtr, SizeT, QualType(), AssumeSaneOperatorNew); 2113 DeclareGlobalAllocationFunction( 2114 Context.DeclarationNames.getCXXOperatorName(OO_Array_New), 2115 VoidPtr, SizeT, QualType(), AssumeSaneOperatorNew); 2116 DeclareGlobalAllocationFunction( 2117 Context.DeclarationNames.getCXXOperatorName(OO_Delete), 2118 Context.VoidTy, VoidPtr); 2119 DeclareGlobalAllocationFunction( 2120 Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete), 2121 Context.VoidTy, VoidPtr); 2122 if (getLangOpts().SizedDeallocation) { 2123 DeclareGlobalAllocationFunction( 2124 Context.DeclarationNames.getCXXOperatorName(OO_Delete), 2125 Context.VoidTy, VoidPtr, Context.getSizeType()); 2126 DeclareGlobalAllocationFunction( 2127 Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete), 2128 Context.VoidTy, VoidPtr, Context.getSizeType()); 2129 } 2130 } 2131 2132 /// DeclareGlobalAllocationFunction - Declares a single implicit global 2133 /// allocation function if it doesn't already exist. 2134 void Sema::DeclareGlobalAllocationFunction(DeclarationName Name, 2135 QualType Return, 2136 QualType Param1, QualType Param2, 2137 bool AddRestrictAttr) { 2138 DeclContext *GlobalCtx = Context.getTranslationUnitDecl(); 2139 unsigned NumParams = Param2.isNull() ? 1 : 2; 2140 2141 // Check if this function is already declared. 2142 DeclContext::lookup_result R = GlobalCtx->lookup(Name); 2143 for (DeclContext::lookup_iterator Alloc = R.begin(), AllocEnd = R.end(); 2144 Alloc != AllocEnd; ++Alloc) { 2145 // Only look at non-template functions, as it is the predefined, 2146 // non-templated allocation function we are trying to declare here. 2147 if (FunctionDecl *Func = dyn_cast<FunctionDecl>(*Alloc)) { 2148 if (Func->getNumParams() == NumParams) { 2149 QualType InitialParam1Type = 2150 Context.getCanonicalType(Func->getParamDecl(0) 2151 ->getType().getUnqualifiedType()); 2152 QualType InitialParam2Type = 2153 NumParams == 2 2154 ? Context.getCanonicalType(Func->getParamDecl(1) 2155 ->getType().getUnqualifiedType()) 2156 : QualType(); 2157 // FIXME: Do we need to check for default arguments here? 2158 if (InitialParam1Type == Param1 && 2159 (NumParams == 1 || InitialParam2Type == Param2)) { 2160 if (AddRestrictAttr && !Func->hasAttr<RestrictAttr>()) 2161 Func->addAttr(RestrictAttr::CreateImplicit( 2162 Context, RestrictAttr::GNU_malloc)); 2163 // Make the function visible to name lookup, even if we found it in 2164 // an unimported module. It either is an implicitly-declared global 2165 // allocation function, or is suppressing that function. 2166 Func->setHidden(false); 2167 return; 2168 } 2169 } 2170 } 2171 } 2172 2173 FunctionProtoType::ExtProtoInfo EPI; 2174 2175 QualType BadAllocType; 2176 bool HasBadAllocExceptionSpec 2177 = (Name.getCXXOverloadedOperator() == OO_New || 2178 Name.getCXXOverloadedOperator() == OO_Array_New); 2179 if (HasBadAllocExceptionSpec) { 2180 if (!getLangOpts().CPlusPlus11) { 2181 BadAllocType = Context.getTypeDeclType(getStdBadAlloc()); 2182 assert(StdBadAlloc && "Must have std::bad_alloc declared"); 2183 EPI.ExceptionSpec.Type = EST_Dynamic; 2184 EPI.ExceptionSpec.Exceptions = llvm::makeArrayRef(BadAllocType); 2185 } 2186 } else { 2187 EPI.ExceptionSpec = 2188 getLangOpts().CPlusPlus11 ? EST_BasicNoexcept : EST_DynamicNone; 2189 } 2190 2191 QualType Params[] = { Param1, Param2 }; 2192 2193 QualType FnType = Context.getFunctionType( 2194 Return, llvm::makeArrayRef(Params, NumParams), EPI); 2195 FunctionDecl *Alloc = 2196 FunctionDecl::Create(Context, GlobalCtx, SourceLocation(), 2197 SourceLocation(), Name, 2198 FnType, /*TInfo=*/nullptr, SC_None, false, true); 2199 Alloc->setImplicit(); 2200 2201 // Implicit sized deallocation functions always have default visibility. 2202 Alloc->addAttr(VisibilityAttr::CreateImplicit(Context, 2203 VisibilityAttr::Default)); 2204 2205 if (AddRestrictAttr) 2206 Alloc->addAttr( 2207 RestrictAttr::CreateImplicit(Context, RestrictAttr::GNU_malloc)); 2208 2209 ParmVarDecl *ParamDecls[2]; 2210 for (unsigned I = 0; I != NumParams; ++I) { 2211 ParamDecls[I] = ParmVarDecl::Create(Context, Alloc, SourceLocation(), 2212 SourceLocation(), nullptr, 2213 Params[I], /*TInfo=*/nullptr, 2214 SC_None, nullptr); 2215 ParamDecls[I]->setImplicit(); 2216 } 2217 Alloc->setParams(llvm::makeArrayRef(ParamDecls, NumParams)); 2218 2219 Context.getTranslationUnitDecl()->addDecl(Alloc); 2220 IdResolver.tryAddTopLevelDecl(Alloc, Name); 2221 } 2222 2223 FunctionDecl *Sema::FindUsualDeallocationFunction(SourceLocation StartLoc, 2224 bool CanProvideSize, 2225 DeclarationName Name) { 2226 DeclareGlobalNewDelete(); 2227 2228 LookupResult FoundDelete(*this, Name, StartLoc, LookupOrdinaryName); 2229 LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl()); 2230 2231 // C++ [expr.new]p20: 2232 // [...] Any non-placement deallocation function matches a 2233 // non-placement allocation function. [...] 2234 llvm::SmallVector<FunctionDecl*, 2> Matches; 2235 for (LookupResult::iterator D = FoundDelete.begin(), 2236 DEnd = FoundDelete.end(); 2237 D != DEnd; ++D) { 2238 if (FunctionDecl *Fn = dyn_cast<FunctionDecl>(*D)) 2239 if (isNonPlacementDeallocationFunction(*this, Fn)) 2240 Matches.push_back(Fn); 2241 } 2242 2243 // C++1y [expr.delete]p?: 2244 // If the type is complete and deallocation function lookup finds both a 2245 // usual deallocation function with only a pointer parameter and a usual 2246 // deallocation function with both a pointer parameter and a size 2247 // parameter, then the selected deallocation function shall be the one 2248 // with two parameters. Otherwise, the selected deallocation function 2249 // shall be the function with one parameter. 2250 if (getLangOpts().SizedDeallocation && Matches.size() == 2) { 2251 unsigned NumArgs = CanProvideSize ? 2 : 1; 2252 if (Matches[0]->getNumParams() != NumArgs) 2253 Matches.erase(Matches.begin()); 2254 else 2255 Matches.erase(Matches.begin() + 1); 2256 assert(Matches[0]->getNumParams() == NumArgs && 2257 "found an unexpected usual deallocation function"); 2258 } 2259 2260 assert(Matches.size() == 1 && 2261 "unexpectedly have multiple usual deallocation functions"); 2262 return Matches.front(); 2263 } 2264 2265 bool Sema::FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD, 2266 DeclarationName Name, 2267 FunctionDecl* &Operator, bool Diagnose) { 2268 LookupResult Found(*this, Name, StartLoc, LookupOrdinaryName); 2269 // Try to find operator delete/operator delete[] in class scope. 2270 LookupQualifiedName(Found, RD); 2271 2272 if (Found.isAmbiguous()) 2273 return true; 2274 2275 Found.suppressDiagnostics(); 2276 2277 SmallVector<DeclAccessPair,4> Matches; 2278 for (LookupResult::iterator F = Found.begin(), FEnd = Found.end(); 2279 F != FEnd; ++F) { 2280 NamedDecl *ND = (*F)->getUnderlyingDecl(); 2281 2282 // Ignore template operator delete members from the check for a usual 2283 // deallocation function. 2284 if (isa<FunctionTemplateDecl>(ND)) 2285 continue; 2286 2287 if (cast<CXXMethodDecl>(ND)->isUsualDeallocationFunction()) 2288 Matches.push_back(F.getPair()); 2289 } 2290 2291 // There's exactly one suitable operator; pick it. 2292 if (Matches.size() == 1) { 2293 Operator = cast<CXXMethodDecl>(Matches[0]->getUnderlyingDecl()); 2294 2295 if (Operator->isDeleted()) { 2296 if (Diagnose) { 2297 Diag(StartLoc, diag::err_deleted_function_use); 2298 NoteDeletedFunction(Operator); 2299 } 2300 return true; 2301 } 2302 2303 if (CheckAllocationAccess(StartLoc, SourceRange(), Found.getNamingClass(), 2304 Matches[0], Diagnose) == AR_inaccessible) 2305 return true; 2306 2307 return false; 2308 2309 // We found multiple suitable operators; complain about the ambiguity. 2310 } else if (!Matches.empty()) { 2311 if (Diagnose) { 2312 Diag(StartLoc, diag::err_ambiguous_suitable_delete_member_function_found) 2313 << Name << RD; 2314 2315 for (SmallVectorImpl<DeclAccessPair>::iterator 2316 F = Matches.begin(), FEnd = Matches.end(); F != FEnd; ++F) 2317 Diag((*F)->getUnderlyingDecl()->getLocation(), 2318 diag::note_member_declared_here) << Name; 2319 } 2320 return true; 2321 } 2322 2323 // We did find operator delete/operator delete[] declarations, but 2324 // none of them were suitable. 2325 if (!Found.empty()) { 2326 if (Diagnose) { 2327 Diag(StartLoc, diag::err_no_suitable_delete_member_function_found) 2328 << Name << RD; 2329 2330 for (LookupResult::iterator F = Found.begin(), FEnd = Found.end(); 2331 F != FEnd; ++F) 2332 Diag((*F)->getUnderlyingDecl()->getLocation(), 2333 diag::note_member_declared_here) << Name; 2334 } 2335 return true; 2336 } 2337 2338 Operator = nullptr; 2339 return false; 2340 } 2341 2342 /// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in: 2343 /// @code ::delete ptr; @endcode 2344 /// or 2345 /// @code delete [] ptr; @endcode 2346 ExprResult 2347 Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal, 2348 bool ArrayForm, Expr *ExE) { 2349 // C++ [expr.delete]p1: 2350 // The operand shall have a pointer type, or a class type having a single 2351 // non-explicit conversion function to a pointer type. The result has type 2352 // void. 2353 // 2354 // DR599 amends "pointer type" to "pointer to object type" in both cases. 2355 2356 ExprResult Ex = ExE; 2357 FunctionDecl *OperatorDelete = nullptr; 2358 bool ArrayFormAsWritten = ArrayForm; 2359 bool UsualArrayDeleteWantsSize = false; 2360 2361 if (!Ex.get()->isTypeDependent()) { 2362 // Perform lvalue-to-rvalue cast, if needed. 2363 Ex = DefaultLvalueConversion(Ex.get()); 2364 if (Ex.isInvalid()) 2365 return ExprError(); 2366 2367 QualType Type = Ex.get()->getType(); 2368 2369 class DeleteConverter : public ContextualImplicitConverter { 2370 public: 2371 DeleteConverter() : ContextualImplicitConverter(false, true) {} 2372 2373 bool match(QualType ConvType) override { 2374 // FIXME: If we have an operator T* and an operator void*, we must pick 2375 // the operator T*. 2376 if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>()) 2377 if (ConvPtrType->getPointeeType()->isIncompleteOrObjectType()) 2378 return true; 2379 return false; 2380 } 2381 2382 SemaDiagnosticBuilder diagnoseNoMatch(Sema &S, SourceLocation Loc, 2383 QualType T) override { 2384 return S.Diag(Loc, diag::err_delete_operand) << T; 2385 } 2386 2387 SemaDiagnosticBuilder diagnoseIncomplete(Sema &S, SourceLocation Loc, 2388 QualType T) override { 2389 return S.Diag(Loc, diag::err_delete_incomplete_class_type) << T; 2390 } 2391 2392 SemaDiagnosticBuilder diagnoseExplicitConv(Sema &S, SourceLocation Loc, 2393 QualType T, 2394 QualType ConvTy) override { 2395 return S.Diag(Loc, diag::err_delete_explicit_conversion) << T << ConvTy; 2396 } 2397 2398 SemaDiagnosticBuilder noteExplicitConv(Sema &S, CXXConversionDecl *Conv, 2399 QualType ConvTy) override { 2400 return S.Diag(Conv->getLocation(), diag::note_delete_conversion) 2401 << ConvTy; 2402 } 2403 2404 SemaDiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc, 2405 QualType T) override { 2406 return S.Diag(Loc, diag::err_ambiguous_delete_operand) << T; 2407 } 2408 2409 SemaDiagnosticBuilder noteAmbiguous(Sema &S, CXXConversionDecl *Conv, 2410 QualType ConvTy) override { 2411 return S.Diag(Conv->getLocation(), diag::note_delete_conversion) 2412 << ConvTy; 2413 } 2414 2415 SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc, 2416 QualType T, 2417 QualType ConvTy) override { 2418 llvm_unreachable("conversion functions are permitted"); 2419 } 2420 } Converter; 2421 2422 Ex = PerformContextualImplicitConversion(StartLoc, Ex.get(), Converter); 2423 if (Ex.isInvalid()) 2424 return ExprError(); 2425 Type = Ex.get()->getType(); 2426 if (!Converter.match(Type)) 2427 // FIXME: PerformContextualImplicitConversion should return ExprError 2428 // itself in this case. 2429 return ExprError(); 2430 2431 QualType Pointee = Type->getAs<PointerType>()->getPointeeType(); 2432 QualType PointeeElem = Context.getBaseElementType(Pointee); 2433 2434 if (unsigned AddressSpace = Pointee.getAddressSpace()) 2435 return Diag(Ex.get()->getLocStart(), 2436 diag::err_address_space_qualified_delete) 2437 << Pointee.getUnqualifiedType() << AddressSpace; 2438 2439 CXXRecordDecl *PointeeRD = nullptr; 2440 if (Pointee->isVoidType() && !isSFINAEContext()) { 2441 // The C++ standard bans deleting a pointer to a non-object type, which 2442 // effectively bans deletion of "void*". However, most compilers support 2443 // this, so we treat it as a warning unless we're in a SFINAE context. 2444 Diag(StartLoc, diag::ext_delete_void_ptr_operand) 2445 << Type << Ex.get()->getSourceRange(); 2446 } else if (Pointee->isFunctionType() || Pointee->isVoidType()) { 2447 return ExprError(Diag(StartLoc, diag::err_delete_operand) 2448 << Type << Ex.get()->getSourceRange()); 2449 } else if (!Pointee->isDependentType()) { 2450 if (!RequireCompleteType(StartLoc, Pointee, 2451 diag::warn_delete_incomplete, Ex.get())) { 2452 if (const RecordType *RT = PointeeElem->getAs<RecordType>()) 2453 PointeeRD = cast<CXXRecordDecl>(RT->getDecl()); 2454 } 2455 } 2456 2457 // C++ [expr.delete]p2: 2458 // [Note: a pointer to a const type can be the operand of a 2459 // delete-expression; it is not necessary to cast away the constness 2460 // (5.2.11) of the pointer expression before it is used as the operand 2461 // of the delete-expression. ] 2462 2463 if (Pointee->isArrayType() && !ArrayForm) { 2464 Diag(StartLoc, diag::warn_delete_array_type) 2465 << Type << Ex.get()->getSourceRange() 2466 << FixItHint::CreateInsertion(PP.getLocForEndOfToken(StartLoc), "[]"); 2467 ArrayForm = true; 2468 } 2469 2470 DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName( 2471 ArrayForm ? OO_Array_Delete : OO_Delete); 2472 2473 if (PointeeRD) { 2474 if (!UseGlobal && 2475 FindDeallocationFunction(StartLoc, PointeeRD, DeleteName, 2476 OperatorDelete)) 2477 return ExprError(); 2478 2479 // If we're allocating an array of records, check whether the 2480 // usual operator delete[] has a size_t parameter. 2481 if (ArrayForm) { 2482 // If the user specifically asked to use the global allocator, 2483 // we'll need to do the lookup into the class. 2484 if (UseGlobal) 2485 UsualArrayDeleteWantsSize = 2486 doesUsualArrayDeleteWantSize(*this, StartLoc, PointeeElem); 2487 2488 // Otherwise, the usual operator delete[] should be the 2489 // function we just found. 2490 else if (OperatorDelete && isa<CXXMethodDecl>(OperatorDelete)) 2491 UsualArrayDeleteWantsSize = (OperatorDelete->getNumParams() == 2); 2492 } 2493 2494 if (!PointeeRD->hasIrrelevantDestructor()) 2495 if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) { 2496 MarkFunctionReferenced(StartLoc, 2497 const_cast<CXXDestructorDecl*>(Dtor)); 2498 if (DiagnoseUseOfDecl(Dtor, StartLoc)) 2499 return ExprError(); 2500 } 2501 2502 // C++ [expr.delete]p3: 2503 // In the first alternative (delete object), if the static type of the 2504 // object to be deleted is different from its dynamic type, the static 2505 // type shall be a base class of the dynamic type of the object to be 2506 // deleted and the static type shall have a virtual destructor or the 2507 // behavior is undefined. 2508 // 2509 // Note: a final class cannot be derived from, no issue there 2510 if (PointeeRD->isPolymorphic() && !PointeeRD->hasAttr<FinalAttr>()) { 2511 CXXDestructorDecl *dtor = PointeeRD->getDestructor(); 2512 if (dtor && !dtor->isVirtual()) { 2513 if (PointeeRD->isAbstract()) { 2514 // If the class is abstract, we warn by default, because we're 2515 // sure the code has undefined behavior. 2516 Diag(StartLoc, diag::warn_delete_abstract_non_virtual_dtor) 2517 << PointeeElem; 2518 } else if (!ArrayForm) { 2519 // Otherwise, if this is not an array delete, it's a bit suspect, 2520 // but not necessarily wrong. 2521 Diag(StartLoc, diag::warn_delete_non_virtual_dtor) << PointeeElem; 2522 } 2523 } 2524 } 2525 2526 } 2527 2528 if (!OperatorDelete) 2529 // Look for a global declaration. 2530 OperatorDelete = FindUsualDeallocationFunction( 2531 StartLoc, !RequireCompleteType(StartLoc, Pointee, 0) && 2532 (!ArrayForm || UsualArrayDeleteWantsSize || 2533 Pointee.isDestructedType()), 2534 DeleteName); 2535 2536 MarkFunctionReferenced(StartLoc, OperatorDelete); 2537 2538 // Check access and ambiguity of operator delete and destructor. 2539 if (PointeeRD) { 2540 if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) { 2541 CheckDestructorAccess(Ex.get()->getExprLoc(), Dtor, 2542 PDiag(diag::err_access_dtor) << PointeeElem); 2543 } 2544 } 2545 } 2546 2547 return new (Context) CXXDeleteExpr( 2548 Context.VoidTy, UseGlobal, ArrayForm, ArrayFormAsWritten, 2549 UsualArrayDeleteWantsSize, OperatorDelete, Ex.get(), StartLoc); 2550 } 2551 2552 /// \brief Check the use of the given variable as a C++ condition in an if, 2553 /// while, do-while, or switch statement. 2554 ExprResult Sema::CheckConditionVariable(VarDecl *ConditionVar, 2555 SourceLocation StmtLoc, 2556 bool ConvertToBoolean) { 2557 if (ConditionVar->isInvalidDecl()) 2558 return ExprError(); 2559 2560 QualType T = ConditionVar->getType(); 2561 2562 // C++ [stmt.select]p2: 2563 // The declarator shall not specify a function or an array. 2564 if (T->isFunctionType()) 2565 return ExprError(Diag(ConditionVar->getLocation(), 2566 diag::err_invalid_use_of_function_type) 2567 << ConditionVar->getSourceRange()); 2568 else if (T->isArrayType()) 2569 return ExprError(Diag(ConditionVar->getLocation(), 2570 diag::err_invalid_use_of_array_type) 2571 << ConditionVar->getSourceRange()); 2572 2573 ExprResult Condition = DeclRefExpr::Create( 2574 Context, NestedNameSpecifierLoc(), SourceLocation(), ConditionVar, 2575 /*enclosing*/ false, ConditionVar->getLocation(), 2576 ConditionVar->getType().getNonReferenceType(), VK_LValue); 2577 2578 MarkDeclRefReferenced(cast<DeclRefExpr>(Condition.get())); 2579 2580 if (ConvertToBoolean) { 2581 Condition = CheckBooleanCondition(Condition.get(), StmtLoc); 2582 if (Condition.isInvalid()) 2583 return ExprError(); 2584 } 2585 2586 return Condition; 2587 } 2588 2589 /// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid. 2590 ExprResult Sema::CheckCXXBooleanCondition(Expr *CondExpr) { 2591 // C++ 6.4p4: 2592 // The value of a condition that is an initialized declaration in a statement 2593 // other than a switch statement is the value of the declared variable 2594 // implicitly converted to type bool. If that conversion is ill-formed, the 2595 // program is ill-formed. 2596 // The value of a condition that is an expression is the value of the 2597 // expression, implicitly converted to bool. 2598 // 2599 return PerformContextuallyConvertToBool(CondExpr); 2600 } 2601 2602 /// Helper function to determine whether this is the (deprecated) C++ 2603 /// conversion from a string literal to a pointer to non-const char or 2604 /// non-const wchar_t (for narrow and wide string literals, 2605 /// respectively). 2606 bool 2607 Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) { 2608 // Look inside the implicit cast, if it exists. 2609 if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(From)) 2610 From = Cast->getSubExpr(); 2611 2612 // A string literal (2.13.4) that is not a wide string literal can 2613 // be converted to an rvalue of type "pointer to char"; a wide 2614 // string literal can be converted to an rvalue of type "pointer 2615 // to wchar_t" (C++ 4.2p2). 2616 if (StringLiteral *StrLit = dyn_cast<StringLiteral>(From->IgnoreParens())) 2617 if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) 2618 if (const BuiltinType *ToPointeeType 2619 = ToPtrType->getPointeeType()->getAs<BuiltinType>()) { 2620 // This conversion is considered only when there is an 2621 // explicit appropriate pointer target type (C++ 4.2p2). 2622 if (!ToPtrType->getPointeeType().hasQualifiers()) { 2623 switch (StrLit->getKind()) { 2624 case StringLiteral::UTF8: 2625 case StringLiteral::UTF16: 2626 case StringLiteral::UTF32: 2627 // We don't allow UTF literals to be implicitly converted 2628 break; 2629 case StringLiteral::Ascii: 2630 return (ToPointeeType->getKind() == BuiltinType::Char_U || 2631 ToPointeeType->getKind() == BuiltinType::Char_S); 2632 case StringLiteral::Wide: 2633 return ToPointeeType->isWideCharType(); 2634 } 2635 } 2636 } 2637 2638 return false; 2639 } 2640 2641 static ExprResult BuildCXXCastArgument(Sema &S, 2642 SourceLocation CastLoc, 2643 QualType Ty, 2644 CastKind Kind, 2645 CXXMethodDecl *Method, 2646 DeclAccessPair FoundDecl, 2647 bool HadMultipleCandidates, 2648 Expr *From) { 2649 switch (Kind) { 2650 default: llvm_unreachable("Unhandled cast kind!"); 2651 case CK_ConstructorConversion: { 2652 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Method); 2653 SmallVector<Expr*, 8> ConstructorArgs; 2654 2655 if (S.RequireNonAbstractType(CastLoc, Ty, 2656 diag::err_allocation_of_abstract_type)) 2657 return ExprError(); 2658 2659 if (S.CompleteConstructorCall(Constructor, From, CastLoc, ConstructorArgs)) 2660 return ExprError(); 2661 2662 S.CheckConstructorAccess(CastLoc, Constructor, 2663 InitializedEntity::InitializeTemporary(Ty), 2664 Constructor->getAccess()); 2665 if (S.DiagnoseUseOfDecl(Method, CastLoc)) 2666 return ExprError(); 2667 2668 ExprResult Result = S.BuildCXXConstructExpr( 2669 CastLoc, Ty, cast<CXXConstructorDecl>(Method), 2670 ConstructorArgs, HadMultipleCandidates, 2671 /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false, 2672 CXXConstructExpr::CK_Complete, SourceRange()); 2673 if (Result.isInvalid()) 2674 return ExprError(); 2675 2676 return S.MaybeBindToTemporary(Result.getAs<Expr>()); 2677 } 2678 2679 case CK_UserDefinedConversion: { 2680 assert(!From->getType()->isPointerType() && "Arg can't have pointer type!"); 2681 2682 S.CheckMemberOperatorAccess(CastLoc, From, /*arg*/ nullptr, FoundDecl); 2683 if (S.DiagnoseUseOfDecl(Method, CastLoc)) 2684 return ExprError(); 2685 2686 // Create an implicit call expr that calls it. 2687 CXXConversionDecl *Conv = cast<CXXConversionDecl>(Method); 2688 ExprResult Result = S.BuildCXXMemberCallExpr(From, FoundDecl, Conv, 2689 HadMultipleCandidates); 2690 if (Result.isInvalid()) 2691 return ExprError(); 2692 // Record usage of conversion in an implicit cast. 2693 Result = ImplicitCastExpr::Create(S.Context, Result.get()->getType(), 2694 CK_UserDefinedConversion, Result.get(), 2695 nullptr, Result.get()->getValueKind()); 2696 2697 return S.MaybeBindToTemporary(Result.get()); 2698 } 2699 } 2700 } 2701 2702 /// PerformImplicitConversion - Perform an implicit conversion of the 2703 /// expression From to the type ToType using the pre-computed implicit 2704 /// conversion sequence ICS. Returns the converted 2705 /// expression. Action is the kind of conversion we're performing, 2706 /// used in the error message. 2707 ExprResult 2708 Sema::PerformImplicitConversion(Expr *From, QualType ToType, 2709 const ImplicitConversionSequence &ICS, 2710 AssignmentAction Action, 2711 CheckedConversionKind CCK) { 2712 switch (ICS.getKind()) { 2713 case ImplicitConversionSequence::StandardConversion: { 2714 ExprResult Res = PerformImplicitConversion(From, ToType, ICS.Standard, 2715 Action, CCK); 2716 if (Res.isInvalid()) 2717 return ExprError(); 2718 From = Res.get(); 2719 break; 2720 } 2721 2722 case ImplicitConversionSequence::UserDefinedConversion: { 2723 2724 FunctionDecl *FD = ICS.UserDefined.ConversionFunction; 2725 CastKind CastKind; 2726 QualType BeforeToType; 2727 assert(FD && "no conversion function for user-defined conversion seq"); 2728 if (const CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(FD)) { 2729 CastKind = CK_UserDefinedConversion; 2730 2731 // If the user-defined conversion is specified by a conversion function, 2732 // the initial standard conversion sequence converts the source type to 2733 // the implicit object parameter of the conversion function. 2734 BeforeToType = Context.getTagDeclType(Conv->getParent()); 2735 } else { 2736 const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(FD); 2737 CastKind = CK_ConstructorConversion; 2738 // Do no conversion if dealing with ... for the first conversion. 2739 if (!ICS.UserDefined.EllipsisConversion) { 2740 // If the user-defined conversion is specified by a constructor, the 2741 // initial standard conversion sequence converts the source type to 2742 // the type required by the argument of the constructor 2743 BeforeToType = Ctor->getParamDecl(0)->getType().getNonReferenceType(); 2744 } 2745 } 2746 // Watch out for ellipsis conversion. 2747 if (!ICS.UserDefined.EllipsisConversion) { 2748 ExprResult Res = 2749 PerformImplicitConversion(From, BeforeToType, 2750 ICS.UserDefined.Before, AA_Converting, 2751 CCK); 2752 if (Res.isInvalid()) 2753 return ExprError(); 2754 From = Res.get(); 2755 } 2756 2757 ExprResult CastArg 2758 = BuildCXXCastArgument(*this, 2759 From->getLocStart(), 2760 ToType.getNonReferenceType(), 2761 CastKind, cast<CXXMethodDecl>(FD), 2762 ICS.UserDefined.FoundConversionFunction, 2763 ICS.UserDefined.HadMultipleCandidates, 2764 From); 2765 2766 if (CastArg.isInvalid()) 2767 return ExprError(); 2768 2769 From = CastArg.get(); 2770 2771 return PerformImplicitConversion(From, ToType, ICS.UserDefined.After, 2772 AA_Converting, CCK); 2773 } 2774 2775 case ImplicitConversionSequence::AmbiguousConversion: 2776 ICS.DiagnoseAmbiguousConversion(*this, From->getExprLoc(), 2777 PDiag(diag::err_typecheck_ambiguous_condition) 2778 << From->getSourceRange()); 2779 return ExprError(); 2780 2781 case ImplicitConversionSequence::EllipsisConversion: 2782 llvm_unreachable("Cannot perform an ellipsis conversion"); 2783 2784 case ImplicitConversionSequence::BadConversion: 2785 return ExprError(); 2786 } 2787 2788 // Everything went well. 2789 return From; 2790 } 2791 2792 /// PerformImplicitConversion - Perform an implicit conversion of the 2793 /// expression From to the type ToType by following the standard 2794 /// conversion sequence SCS. Returns the converted 2795 /// expression. Flavor is the context in which we're performing this 2796 /// conversion, for use in error messages. 2797 ExprResult 2798 Sema::PerformImplicitConversion(Expr *From, QualType ToType, 2799 const StandardConversionSequence& SCS, 2800 AssignmentAction Action, 2801 CheckedConversionKind CCK) { 2802 bool CStyle = (CCK == CCK_CStyleCast || CCK == CCK_FunctionalCast); 2803 2804 // Overall FIXME: we are recomputing too many types here and doing far too 2805 // much extra work. What this means is that we need to keep track of more 2806 // information that is computed when we try the implicit conversion initially, 2807 // so that we don't need to recompute anything here. 2808 QualType FromType = From->getType(); 2809 2810 if (SCS.CopyConstructor) { 2811 // FIXME: When can ToType be a reference type? 2812 assert(!ToType->isReferenceType()); 2813 if (SCS.Second == ICK_Derived_To_Base) { 2814 SmallVector<Expr*, 8> ConstructorArgs; 2815 if (CompleteConstructorCall(cast<CXXConstructorDecl>(SCS.CopyConstructor), 2816 From, /*FIXME:ConstructLoc*/SourceLocation(), 2817 ConstructorArgs)) 2818 return ExprError(); 2819 return BuildCXXConstructExpr( 2820 /*FIXME:ConstructLoc*/ SourceLocation(), ToType, SCS.CopyConstructor, 2821 ConstructorArgs, /*HadMultipleCandidates*/ false, 2822 /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false, 2823 CXXConstructExpr::CK_Complete, SourceRange()); 2824 } 2825 return BuildCXXConstructExpr( 2826 /*FIXME:ConstructLoc*/ SourceLocation(), ToType, SCS.CopyConstructor, 2827 From, /*HadMultipleCandidates*/ false, 2828 /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false, 2829 CXXConstructExpr::CK_Complete, SourceRange()); 2830 } 2831 2832 // Resolve overloaded function references. 2833 if (Context.hasSameType(FromType, Context.OverloadTy)) { 2834 DeclAccessPair Found; 2835 FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(From, ToType, 2836 true, Found); 2837 if (!Fn) 2838 return ExprError(); 2839 2840 if (DiagnoseUseOfDecl(Fn, From->getLocStart())) 2841 return ExprError(); 2842 2843 From = FixOverloadedFunctionReference(From, Found, Fn); 2844 FromType = From->getType(); 2845 } 2846 2847 // If we're converting to an atomic type, first convert to the corresponding 2848 // non-atomic type. 2849 QualType ToAtomicType; 2850 if (const AtomicType *ToAtomic = ToType->getAs<AtomicType>()) { 2851 ToAtomicType = ToType; 2852 ToType = ToAtomic->getValueType(); 2853 } 2854 2855 // Perform the first implicit conversion. 2856 switch (SCS.First) { 2857 case ICK_Identity: 2858 if (const AtomicType *FromAtomic = FromType->getAs<AtomicType>()) { 2859 FromType = FromAtomic->getValueType().getUnqualifiedType(); 2860 From = ImplicitCastExpr::Create(Context, FromType, CK_AtomicToNonAtomic, 2861 From, /*BasePath=*/nullptr, VK_RValue); 2862 } 2863 break; 2864 2865 case ICK_Lvalue_To_Rvalue: { 2866 assert(From->getObjectKind() != OK_ObjCProperty); 2867 ExprResult FromRes = DefaultLvalueConversion(From); 2868 assert(!FromRes.isInvalid() && "Can't perform deduced conversion?!"); 2869 From = FromRes.get(); 2870 FromType = From->getType(); 2871 break; 2872 } 2873 2874 case ICK_Array_To_Pointer: 2875 FromType = Context.getArrayDecayedType(FromType); 2876 From = ImpCastExprToType(From, FromType, CK_ArrayToPointerDecay, 2877 VK_RValue, /*BasePath=*/nullptr, CCK).get(); 2878 break; 2879 2880 case ICK_Function_To_Pointer: 2881 FromType = Context.getPointerType(FromType); 2882 From = ImpCastExprToType(From, FromType, CK_FunctionToPointerDecay, 2883 VK_RValue, /*BasePath=*/nullptr, CCK).get(); 2884 break; 2885 2886 default: 2887 llvm_unreachable("Improper first standard conversion"); 2888 } 2889 2890 // Perform the second implicit conversion 2891 switch (SCS.Second) { 2892 case ICK_Identity: 2893 // C++ [except.spec]p5: 2894 // [For] assignment to and initialization of pointers to functions, 2895 // pointers to member functions, and references to functions: the 2896 // target entity shall allow at least the exceptions allowed by the 2897 // source value in the assignment or initialization. 2898 switch (Action) { 2899 case AA_Assigning: 2900 case AA_Initializing: 2901 // Note, function argument passing and returning are initialization. 2902 case AA_Passing: 2903 case AA_Returning: 2904 case AA_Sending: 2905 case AA_Passing_CFAudited: 2906 if (CheckExceptionSpecCompatibility(From, ToType)) 2907 return ExprError(); 2908 break; 2909 2910 case AA_Casting: 2911 case AA_Converting: 2912 // Casts and implicit conversions are not initialization, so are not 2913 // checked for exception specification mismatches. 2914 break; 2915 } 2916 // Nothing else to do. 2917 break; 2918 2919 case ICK_NoReturn_Adjustment: 2920 // If both sides are functions (or pointers/references to them), there could 2921 // be incompatible exception declarations. 2922 if (CheckExceptionSpecCompatibility(From, ToType)) 2923 return ExprError(); 2924 2925 From = ImpCastExprToType(From, ToType, CK_NoOp, 2926 VK_RValue, /*BasePath=*/nullptr, CCK).get(); 2927 break; 2928 2929 case ICK_Integral_Promotion: 2930 case ICK_Integral_Conversion: 2931 if (ToType->isBooleanType()) { 2932 assert(FromType->castAs<EnumType>()->getDecl()->isFixed() && 2933 SCS.Second == ICK_Integral_Promotion && 2934 "only enums with fixed underlying type can promote to bool"); 2935 From = ImpCastExprToType(From, ToType, CK_IntegralToBoolean, 2936 VK_RValue, /*BasePath=*/nullptr, CCK).get(); 2937 } else { 2938 From = ImpCastExprToType(From, ToType, CK_IntegralCast, 2939 VK_RValue, /*BasePath=*/nullptr, CCK).get(); 2940 } 2941 break; 2942 2943 case ICK_Floating_Promotion: 2944 case ICK_Floating_Conversion: 2945 From = ImpCastExprToType(From, ToType, CK_FloatingCast, 2946 VK_RValue, /*BasePath=*/nullptr, CCK).get(); 2947 break; 2948 2949 case ICK_Complex_Promotion: 2950 case ICK_Complex_Conversion: { 2951 QualType FromEl = From->getType()->getAs<ComplexType>()->getElementType(); 2952 QualType ToEl = ToType->getAs<ComplexType>()->getElementType(); 2953 CastKind CK; 2954 if (FromEl->isRealFloatingType()) { 2955 if (ToEl->isRealFloatingType()) 2956 CK = CK_FloatingComplexCast; 2957 else 2958 CK = CK_FloatingComplexToIntegralComplex; 2959 } else if (ToEl->isRealFloatingType()) { 2960 CK = CK_IntegralComplexToFloatingComplex; 2961 } else { 2962 CK = CK_IntegralComplexCast; 2963 } 2964 From = ImpCastExprToType(From, ToType, CK, 2965 VK_RValue, /*BasePath=*/nullptr, CCK).get(); 2966 break; 2967 } 2968 2969 case ICK_Floating_Integral: 2970 if (ToType->isRealFloatingType()) 2971 From = ImpCastExprToType(From, ToType, CK_IntegralToFloating, 2972 VK_RValue, /*BasePath=*/nullptr, CCK).get(); 2973 else 2974 From = ImpCastExprToType(From, ToType, CK_FloatingToIntegral, 2975 VK_RValue, /*BasePath=*/nullptr, CCK).get(); 2976 break; 2977 2978 case ICK_Compatible_Conversion: 2979 From = ImpCastExprToType(From, ToType, CK_NoOp, 2980 VK_RValue, /*BasePath=*/nullptr, CCK).get(); 2981 break; 2982 2983 case ICK_Writeback_Conversion: 2984 case ICK_Pointer_Conversion: { 2985 if (SCS.IncompatibleObjC && Action != AA_Casting) { 2986 // Diagnose incompatible Objective-C conversions 2987 if (Action == AA_Initializing || Action == AA_Assigning) 2988 Diag(From->getLocStart(), 2989 diag::ext_typecheck_convert_incompatible_pointer) 2990 << ToType << From->getType() << Action 2991 << From->getSourceRange() << 0; 2992 else 2993 Diag(From->getLocStart(), 2994 diag::ext_typecheck_convert_incompatible_pointer) 2995 << From->getType() << ToType << Action 2996 << From->getSourceRange() << 0; 2997 2998 if (From->getType()->isObjCObjectPointerType() && 2999 ToType->isObjCObjectPointerType()) 3000 EmitRelatedResultTypeNote(From); 3001 } 3002 else if (getLangOpts().ObjCAutoRefCount && 3003 !CheckObjCARCUnavailableWeakConversion(ToType, 3004 From->getType())) { 3005 if (Action == AA_Initializing) 3006 Diag(From->getLocStart(), 3007 diag::err_arc_weak_unavailable_assign); 3008 else 3009 Diag(From->getLocStart(), 3010 diag::err_arc_convesion_of_weak_unavailable) 3011 << (Action == AA_Casting) << From->getType() << ToType 3012 << From->getSourceRange(); 3013 } 3014 3015 CastKind Kind = CK_Invalid; 3016 CXXCastPath BasePath; 3017 if (CheckPointerConversion(From, ToType, Kind, BasePath, CStyle)) 3018 return ExprError(); 3019 3020 // Make sure we extend blocks if necessary. 3021 // FIXME: doing this here is really ugly. 3022 if (Kind == CK_BlockPointerToObjCPointerCast) { 3023 ExprResult E = From; 3024 (void) PrepareCastToObjCObjectPointer(E); 3025 From = E.get(); 3026 } 3027 if (getLangOpts().ObjCAutoRefCount) 3028 CheckObjCARCConversion(SourceRange(), ToType, From, CCK); 3029 From = ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath, CCK) 3030 .get(); 3031 break; 3032 } 3033 3034 case ICK_Pointer_Member: { 3035 CastKind Kind = CK_Invalid; 3036 CXXCastPath BasePath; 3037 if (CheckMemberPointerConversion(From, ToType, Kind, BasePath, CStyle)) 3038 return ExprError(); 3039 if (CheckExceptionSpecCompatibility(From, ToType)) 3040 return ExprError(); 3041 3042 // We may not have been able to figure out what this member pointer resolved 3043 // to up until this exact point. Attempt to lock-in it's inheritance model. 3044 QualType FromType = From->getType(); 3045 if (FromType->isMemberPointerType()) 3046 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) 3047 RequireCompleteType(From->getExprLoc(), FromType, 0); 3048 3049 From = ImpCastExprToType(From, ToType, Kind, VK_RValue, &BasePath, CCK) 3050 .get(); 3051 break; 3052 } 3053 3054 case ICK_Boolean_Conversion: 3055 // Perform half-to-boolean conversion via float. 3056 if (From->getType()->isHalfType()) { 3057 From = ImpCastExprToType(From, Context.FloatTy, CK_FloatingCast).get(); 3058 FromType = Context.FloatTy; 3059 } 3060 3061 From = ImpCastExprToType(From, Context.BoolTy, 3062 ScalarTypeToBooleanCastKind(FromType), 3063 VK_RValue, /*BasePath=*/nullptr, CCK).get(); 3064 break; 3065 3066 case ICK_Derived_To_Base: { 3067 CXXCastPath BasePath; 3068 if (CheckDerivedToBaseConversion(From->getType(), 3069 ToType.getNonReferenceType(), 3070 From->getLocStart(), 3071 From->getSourceRange(), 3072 &BasePath, 3073 CStyle)) 3074 return ExprError(); 3075 3076 From = ImpCastExprToType(From, ToType.getNonReferenceType(), 3077 CK_DerivedToBase, From->getValueKind(), 3078 &BasePath, CCK).get(); 3079 break; 3080 } 3081 3082 case ICK_Vector_Conversion: 3083 From = ImpCastExprToType(From, ToType, CK_BitCast, 3084 VK_RValue, /*BasePath=*/nullptr, CCK).get(); 3085 break; 3086 3087 case ICK_Vector_Splat: 3088 // Vector splat from any arithmetic type to a vector. 3089 // Cast to the element type. 3090 { 3091 QualType elType = ToType->getAs<ExtVectorType>()->getElementType(); 3092 if (elType != From->getType()) { 3093 ExprResult E = From; 3094 From = ImpCastExprToType(From, elType, 3095 PrepareScalarCast(E, elType)).get(); 3096 } 3097 From = ImpCastExprToType(From, ToType, CK_VectorSplat, 3098 VK_RValue, /*BasePath=*/nullptr, CCK).get(); 3099 } 3100 break; 3101 3102 case ICK_Complex_Real: 3103 // Case 1. x -> _Complex y 3104 if (const ComplexType *ToComplex = ToType->getAs<ComplexType>()) { 3105 QualType ElType = ToComplex->getElementType(); 3106 bool isFloatingComplex = ElType->isRealFloatingType(); 3107 3108 // x -> y 3109 if (Context.hasSameUnqualifiedType(ElType, From->getType())) { 3110 // do nothing 3111 } else if (From->getType()->isRealFloatingType()) { 3112 From = ImpCastExprToType(From, ElType, 3113 isFloatingComplex ? CK_FloatingCast : CK_FloatingToIntegral).get(); 3114 } else { 3115 assert(From->getType()->isIntegerType()); 3116 From = ImpCastExprToType(From, ElType, 3117 isFloatingComplex ? CK_IntegralToFloating : CK_IntegralCast).get(); 3118 } 3119 // y -> _Complex y 3120 From = ImpCastExprToType(From, ToType, 3121 isFloatingComplex ? CK_FloatingRealToComplex 3122 : CK_IntegralRealToComplex).get(); 3123 3124 // Case 2. _Complex x -> y 3125 } else { 3126 const ComplexType *FromComplex = From->getType()->getAs<ComplexType>(); 3127 assert(FromComplex); 3128 3129 QualType ElType = FromComplex->getElementType(); 3130 bool isFloatingComplex = ElType->isRealFloatingType(); 3131 3132 // _Complex x -> x 3133 From = ImpCastExprToType(From, ElType, 3134 isFloatingComplex ? CK_FloatingComplexToReal 3135 : CK_IntegralComplexToReal, 3136 VK_RValue, /*BasePath=*/nullptr, CCK).get(); 3137 3138 // x -> y 3139 if (Context.hasSameUnqualifiedType(ElType, ToType)) { 3140 // do nothing 3141 } else if (ToType->isRealFloatingType()) { 3142 From = ImpCastExprToType(From, ToType, 3143 isFloatingComplex ? CK_FloatingCast : CK_IntegralToFloating, 3144 VK_RValue, /*BasePath=*/nullptr, CCK).get(); 3145 } else { 3146 assert(ToType->isIntegerType()); 3147 From = ImpCastExprToType(From, ToType, 3148 isFloatingComplex ? CK_FloatingToIntegral : CK_IntegralCast, 3149 VK_RValue, /*BasePath=*/nullptr, CCK).get(); 3150 } 3151 } 3152 break; 3153 3154 case ICK_Block_Pointer_Conversion: { 3155 From = ImpCastExprToType(From, ToType.getUnqualifiedType(), CK_BitCast, 3156 VK_RValue, /*BasePath=*/nullptr, CCK).get(); 3157 break; 3158 } 3159 3160 case ICK_TransparentUnionConversion: { 3161 ExprResult FromRes = From; 3162 Sema::AssignConvertType ConvTy = 3163 CheckTransparentUnionArgumentConstraints(ToType, FromRes); 3164 if (FromRes.isInvalid()) 3165 return ExprError(); 3166 From = FromRes.get(); 3167 assert ((ConvTy == Sema::Compatible) && 3168 "Improper transparent union conversion"); 3169 (void)ConvTy; 3170 break; 3171 } 3172 3173 case ICK_Zero_Event_Conversion: 3174 From = ImpCastExprToType(From, ToType, 3175 CK_ZeroToOCLEvent, 3176 From->getValueKind()).get(); 3177 break; 3178 3179 case ICK_Lvalue_To_Rvalue: 3180 case ICK_Array_To_Pointer: 3181 case ICK_Function_To_Pointer: 3182 case ICK_Qualification: 3183 case ICK_Num_Conversion_Kinds: 3184 llvm_unreachable("Improper second standard conversion"); 3185 } 3186 3187 switch (SCS.Third) { 3188 case ICK_Identity: 3189 // Nothing to do. 3190 break; 3191 3192 case ICK_Qualification: { 3193 // The qualification keeps the category of the inner expression, unless the 3194 // target type isn't a reference. 3195 ExprValueKind VK = ToType->isReferenceType() ? 3196 From->getValueKind() : VK_RValue; 3197 From = ImpCastExprToType(From, ToType.getNonLValueExprType(Context), 3198 CK_NoOp, VK, /*BasePath=*/nullptr, CCK).get(); 3199 3200 if (SCS.DeprecatedStringLiteralToCharPtr && 3201 !getLangOpts().WritableStrings) { 3202 Diag(From->getLocStart(), getLangOpts().CPlusPlus11 3203 ? diag::ext_deprecated_string_literal_conversion 3204 : diag::warn_deprecated_string_literal_conversion) 3205 << ToType.getNonReferenceType(); 3206 } 3207 3208 break; 3209 } 3210 3211 default: 3212 llvm_unreachable("Improper third standard conversion"); 3213 } 3214 3215 // If this conversion sequence involved a scalar -> atomic conversion, perform 3216 // that conversion now. 3217 if (!ToAtomicType.isNull()) { 3218 assert(Context.hasSameType( 3219 ToAtomicType->castAs<AtomicType>()->getValueType(), From->getType())); 3220 From = ImpCastExprToType(From, ToAtomicType, CK_NonAtomicToAtomic, 3221 VK_RValue, nullptr, CCK).get(); 3222 } 3223 3224 return From; 3225 } 3226 3227 /// \brief Check the completeness of a type in a unary type trait. 3228 /// 3229 /// If the particular type trait requires a complete type, tries to complete 3230 /// it. If completing the type fails, a diagnostic is emitted and false 3231 /// returned. If completing the type succeeds or no completion was required, 3232 /// returns true. 3233 static bool CheckUnaryTypeTraitTypeCompleteness(Sema &S, TypeTrait UTT, 3234 SourceLocation Loc, 3235 QualType ArgTy) { 3236 // C++0x [meta.unary.prop]p3: 3237 // For all of the class templates X declared in this Clause, instantiating 3238 // that template with a template argument that is a class template 3239 // specialization may result in the implicit instantiation of the template 3240 // argument if and only if the semantics of X require that the argument 3241 // must be a complete type. 3242 // We apply this rule to all the type trait expressions used to implement 3243 // these class templates. We also try to follow any GCC documented behavior 3244 // in these expressions to ensure portability of standard libraries. 3245 switch (UTT) { 3246 default: llvm_unreachable("not a UTT"); 3247 // is_complete_type somewhat obviously cannot require a complete type. 3248 case UTT_IsCompleteType: 3249 // Fall-through 3250 3251 // These traits are modeled on the type predicates in C++0x 3252 // [meta.unary.cat] and [meta.unary.comp]. They are not specified as 3253 // requiring a complete type, as whether or not they return true cannot be 3254 // impacted by the completeness of the type. 3255 case UTT_IsVoid: 3256 case UTT_IsIntegral: 3257 case UTT_IsFloatingPoint: 3258 case UTT_IsArray: 3259 case UTT_IsPointer: 3260 case UTT_IsLvalueReference: 3261 case UTT_IsRvalueReference: 3262 case UTT_IsMemberFunctionPointer: 3263 case UTT_IsMemberObjectPointer: 3264 case UTT_IsEnum: 3265 case UTT_IsUnion: 3266 case UTT_IsClass: 3267 case UTT_IsFunction: 3268 case UTT_IsReference: 3269 case UTT_IsArithmetic: 3270 case UTT_IsFundamental: 3271 case UTT_IsObject: 3272 case UTT_IsScalar: 3273 case UTT_IsCompound: 3274 case UTT_IsMemberPointer: 3275 // Fall-through 3276 3277 // These traits are modeled on type predicates in C++0x [meta.unary.prop] 3278 // which requires some of its traits to have the complete type. However, 3279 // the completeness of the type cannot impact these traits' semantics, and 3280 // so they don't require it. This matches the comments on these traits in 3281 // Table 49. 3282 case UTT_IsConst: 3283 case UTT_IsVolatile: 3284 case UTT_IsSigned: 3285 case UTT_IsUnsigned: 3286 return true; 3287 3288 // C++0x [meta.unary.prop] Table 49 requires the following traits to be 3289 // applied to a complete type. 3290 case UTT_IsTrivial: 3291 case UTT_IsTriviallyCopyable: 3292 case UTT_IsStandardLayout: 3293 case UTT_IsPOD: 3294 case UTT_IsLiteral: 3295 case UTT_IsEmpty: 3296 case UTT_IsPolymorphic: 3297 case UTT_IsAbstract: 3298 case UTT_IsInterfaceClass: 3299 case UTT_IsDestructible: 3300 case UTT_IsNothrowDestructible: 3301 // Fall-through 3302 3303 // These traits require a complete type. 3304 case UTT_IsFinal: 3305 case UTT_IsSealed: 3306 3307 // These trait expressions are designed to help implement predicates in 3308 // [meta.unary.prop] despite not being named the same. They are specified 3309 // by both GCC and the Embarcadero C++ compiler, and require the complete 3310 // type due to the overarching C++0x type predicates being implemented 3311 // requiring the complete type. 3312 case UTT_HasNothrowAssign: 3313 case UTT_HasNothrowMoveAssign: 3314 case UTT_HasNothrowConstructor: 3315 case UTT_HasNothrowCopy: 3316 case UTT_HasTrivialAssign: 3317 case UTT_HasTrivialMoveAssign: 3318 case UTT_HasTrivialDefaultConstructor: 3319 case UTT_HasTrivialMoveConstructor: 3320 case UTT_HasTrivialCopy: 3321 case UTT_HasTrivialDestructor: 3322 case UTT_HasVirtualDestructor: 3323 // Arrays of unknown bound are expressly allowed. 3324 QualType ElTy = ArgTy; 3325 if (ArgTy->isIncompleteArrayType()) 3326 ElTy = S.Context.getAsArrayType(ArgTy)->getElementType(); 3327 3328 // The void type is expressly allowed. 3329 if (ElTy->isVoidType()) 3330 return true; 3331 3332 return !S.RequireCompleteType( 3333 Loc, ElTy, diag::err_incomplete_type_used_in_type_trait_expr); 3334 } 3335 } 3336 3337 static bool HasNoThrowOperator(const RecordType *RT, OverloadedOperatorKind Op, 3338 Sema &Self, SourceLocation KeyLoc, ASTContext &C, 3339 bool (CXXRecordDecl::*HasTrivial)() const, 3340 bool (CXXRecordDecl::*HasNonTrivial)() const, 3341 bool (CXXMethodDecl::*IsDesiredOp)() const) 3342 { 3343 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 3344 if ((RD->*HasTrivial)() && !(RD->*HasNonTrivial)()) 3345 return true; 3346 3347 DeclarationName Name = C.DeclarationNames.getCXXOperatorName(Op); 3348 DeclarationNameInfo NameInfo(Name, KeyLoc); 3349 LookupResult Res(Self, NameInfo, Sema::LookupOrdinaryName); 3350 if (Self.LookupQualifiedName(Res, RD)) { 3351 bool FoundOperator = false; 3352 Res.suppressDiagnostics(); 3353 for (LookupResult::iterator Op = Res.begin(), OpEnd = Res.end(); 3354 Op != OpEnd; ++Op) { 3355 if (isa<FunctionTemplateDecl>(*Op)) 3356 continue; 3357 3358 CXXMethodDecl *Operator = cast<CXXMethodDecl>(*Op); 3359 if((Operator->*IsDesiredOp)()) { 3360 FoundOperator = true; 3361 const FunctionProtoType *CPT = 3362 Operator->getType()->getAs<FunctionProtoType>(); 3363 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT); 3364 if (!CPT || !CPT->isNothrow(C)) 3365 return false; 3366 } 3367 } 3368 return FoundOperator; 3369 } 3370 return false; 3371 } 3372 3373 static bool EvaluateUnaryTypeTrait(Sema &Self, TypeTrait UTT, 3374 SourceLocation KeyLoc, QualType T) { 3375 assert(!T->isDependentType() && "Cannot evaluate traits of dependent type"); 3376 3377 ASTContext &C = Self.Context; 3378 switch(UTT) { 3379 default: llvm_unreachable("not a UTT"); 3380 // Type trait expressions corresponding to the primary type category 3381 // predicates in C++0x [meta.unary.cat]. 3382 case UTT_IsVoid: 3383 return T->isVoidType(); 3384 case UTT_IsIntegral: 3385 return T->isIntegralType(C); 3386 case UTT_IsFloatingPoint: 3387 return T->isFloatingType(); 3388 case UTT_IsArray: 3389 return T->isArrayType(); 3390 case UTT_IsPointer: 3391 return T->isPointerType(); 3392 case UTT_IsLvalueReference: 3393 return T->isLValueReferenceType(); 3394 case UTT_IsRvalueReference: 3395 return T->isRValueReferenceType(); 3396 case UTT_IsMemberFunctionPointer: 3397 return T->isMemberFunctionPointerType(); 3398 case UTT_IsMemberObjectPointer: 3399 return T->isMemberDataPointerType(); 3400 case UTT_IsEnum: 3401 return T->isEnumeralType(); 3402 case UTT_IsUnion: 3403 return T->isUnionType(); 3404 case UTT_IsClass: 3405 return T->isClassType() || T->isStructureType() || T->isInterfaceType(); 3406 case UTT_IsFunction: 3407 return T->isFunctionType(); 3408 3409 // Type trait expressions which correspond to the convenient composition 3410 // predicates in C++0x [meta.unary.comp]. 3411 case UTT_IsReference: 3412 return T->isReferenceType(); 3413 case UTT_IsArithmetic: 3414 return T->isArithmeticType() && !T->isEnumeralType(); 3415 case UTT_IsFundamental: 3416 return T->isFundamentalType(); 3417 case UTT_IsObject: 3418 return T->isObjectType(); 3419 case UTT_IsScalar: 3420 // Note: semantic analysis depends on Objective-C lifetime types to be 3421 // considered scalar types. However, such types do not actually behave 3422 // like scalar types at run time (since they may require retain/release 3423 // operations), so we report them as non-scalar. 3424 if (T->isObjCLifetimeType()) { 3425 switch (T.getObjCLifetime()) { 3426 case Qualifiers::OCL_None: 3427 case Qualifiers::OCL_ExplicitNone: 3428 return true; 3429 3430 case Qualifiers::OCL_Strong: 3431 case Qualifiers::OCL_Weak: 3432 case Qualifiers::OCL_Autoreleasing: 3433 return false; 3434 } 3435 } 3436 3437 return T->isScalarType(); 3438 case UTT_IsCompound: 3439 return T->isCompoundType(); 3440 case UTT_IsMemberPointer: 3441 return T->isMemberPointerType(); 3442 3443 // Type trait expressions which correspond to the type property predicates 3444 // in C++0x [meta.unary.prop]. 3445 case UTT_IsConst: 3446 return T.isConstQualified(); 3447 case UTT_IsVolatile: 3448 return T.isVolatileQualified(); 3449 case UTT_IsTrivial: 3450 return T.isTrivialType(Self.Context); 3451 case UTT_IsTriviallyCopyable: 3452 return T.isTriviallyCopyableType(Self.Context); 3453 case UTT_IsStandardLayout: 3454 return T->isStandardLayoutType(); 3455 case UTT_IsPOD: 3456 return T.isPODType(Self.Context); 3457 case UTT_IsLiteral: 3458 return T->isLiteralType(Self.Context); 3459 case UTT_IsEmpty: 3460 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 3461 return !RD->isUnion() && RD->isEmpty(); 3462 return false; 3463 case UTT_IsPolymorphic: 3464 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 3465 return RD->isPolymorphic(); 3466 return false; 3467 case UTT_IsAbstract: 3468 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 3469 return RD->isAbstract(); 3470 return false; 3471 case UTT_IsInterfaceClass: 3472 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 3473 return RD->isInterface(); 3474 return false; 3475 case UTT_IsFinal: 3476 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 3477 return RD->hasAttr<FinalAttr>(); 3478 return false; 3479 case UTT_IsSealed: 3480 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 3481 if (FinalAttr *FA = RD->getAttr<FinalAttr>()) 3482 return FA->isSpelledAsSealed(); 3483 return false; 3484 case UTT_IsSigned: 3485 return T->isSignedIntegerType(); 3486 case UTT_IsUnsigned: 3487 return T->isUnsignedIntegerType(); 3488 3489 // Type trait expressions which query classes regarding their construction, 3490 // destruction, and copying. Rather than being based directly on the 3491 // related type predicates in the standard, they are specified by both 3492 // GCC[1] and the Embarcadero C++ compiler[2], and Clang implements those 3493 // specifications. 3494 // 3495 // 1: http://gcc.gnu/.org/onlinedocs/gcc/Type-Traits.html 3496 // 2: http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index 3497 // 3498 // Note that these builtins do not behave as documented in g++: if a class 3499 // has both a trivial and a non-trivial special member of a particular kind, 3500 // they return false! For now, we emulate this behavior. 3501 // FIXME: This appears to be a g++ bug: more complex cases reveal that it 3502 // does not correctly compute triviality in the presence of multiple special 3503 // members of the same kind. Revisit this once the g++ bug is fixed. 3504 case UTT_HasTrivialDefaultConstructor: 3505 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: 3506 // If __is_pod (type) is true then the trait is true, else if type is 3507 // a cv class or union type (or array thereof) with a trivial default 3508 // constructor ([class.ctor]) then the trait is true, else it is false. 3509 if (T.isPODType(Self.Context)) 3510 return true; 3511 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) 3512 return RD->hasTrivialDefaultConstructor() && 3513 !RD->hasNonTrivialDefaultConstructor(); 3514 return false; 3515 case UTT_HasTrivialMoveConstructor: 3516 // This trait is implemented by MSVC 2012 and needed to parse the 3517 // standard library headers. Specifically this is used as the logic 3518 // behind std::is_trivially_move_constructible (20.9.4.3). 3519 if (T.isPODType(Self.Context)) 3520 return true; 3521 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) 3522 return RD->hasTrivialMoveConstructor() && !RD->hasNonTrivialMoveConstructor(); 3523 return false; 3524 case UTT_HasTrivialCopy: 3525 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: 3526 // If __is_pod (type) is true or type is a reference type then 3527 // the trait is true, else if type is a cv class or union type 3528 // with a trivial copy constructor ([class.copy]) then the trait 3529 // is true, else it is false. 3530 if (T.isPODType(Self.Context) || T->isReferenceType()) 3531 return true; 3532 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 3533 return RD->hasTrivialCopyConstructor() && 3534 !RD->hasNonTrivialCopyConstructor(); 3535 return false; 3536 case UTT_HasTrivialMoveAssign: 3537 // This trait is implemented by MSVC 2012 and needed to parse the 3538 // standard library headers. Specifically it is used as the logic 3539 // behind std::is_trivially_move_assignable (20.9.4.3) 3540 if (T.isPODType(Self.Context)) 3541 return true; 3542 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) 3543 return RD->hasTrivialMoveAssignment() && !RD->hasNonTrivialMoveAssignment(); 3544 return false; 3545 case UTT_HasTrivialAssign: 3546 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: 3547 // If type is const qualified or is a reference type then the 3548 // trait is false. Otherwise if __is_pod (type) is true then the 3549 // trait is true, else if type is a cv class or union type with 3550 // a trivial copy assignment ([class.copy]) then the trait is 3551 // true, else it is false. 3552 // Note: the const and reference restrictions are interesting, 3553 // given that const and reference members don't prevent a class 3554 // from having a trivial copy assignment operator (but do cause 3555 // errors if the copy assignment operator is actually used, q.v. 3556 // [class.copy]p12). 3557 3558 if (T.isConstQualified()) 3559 return false; 3560 if (T.isPODType(Self.Context)) 3561 return true; 3562 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 3563 return RD->hasTrivialCopyAssignment() && 3564 !RD->hasNonTrivialCopyAssignment(); 3565 return false; 3566 case UTT_IsDestructible: 3567 case UTT_IsNothrowDestructible: 3568 // FIXME: Implement UTT_IsDestructible and UTT_IsNothrowDestructible. 3569 // For now, let's fall through. 3570 case UTT_HasTrivialDestructor: 3571 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html 3572 // If __is_pod (type) is true or type is a reference type 3573 // then the trait is true, else if type is a cv class or union 3574 // type (or array thereof) with a trivial destructor 3575 // ([class.dtor]) then the trait is true, else it is 3576 // false. 3577 if (T.isPODType(Self.Context) || T->isReferenceType()) 3578 return true; 3579 3580 // Objective-C++ ARC: autorelease types don't require destruction. 3581 if (T->isObjCLifetimeType() && 3582 T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) 3583 return true; 3584 3585 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) 3586 return RD->hasTrivialDestructor(); 3587 return false; 3588 // TODO: Propagate nothrowness for implicitly declared special members. 3589 case UTT_HasNothrowAssign: 3590 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: 3591 // If type is const qualified or is a reference type then the 3592 // trait is false. Otherwise if __has_trivial_assign (type) 3593 // is true then the trait is true, else if type is a cv class 3594 // or union type with copy assignment operators that are known 3595 // not to throw an exception then the trait is true, else it is 3596 // false. 3597 if (C.getBaseElementType(T).isConstQualified()) 3598 return false; 3599 if (T->isReferenceType()) 3600 return false; 3601 if (T.isPODType(Self.Context) || T->isObjCLifetimeType()) 3602 return true; 3603 3604 if (const RecordType *RT = T->getAs<RecordType>()) 3605 return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C, 3606 &CXXRecordDecl::hasTrivialCopyAssignment, 3607 &CXXRecordDecl::hasNonTrivialCopyAssignment, 3608 &CXXMethodDecl::isCopyAssignmentOperator); 3609 return false; 3610 case UTT_HasNothrowMoveAssign: 3611 // This trait is implemented by MSVC 2012 and needed to parse the 3612 // standard library headers. Specifically this is used as the logic 3613 // behind std::is_nothrow_move_assignable (20.9.4.3). 3614 if (T.isPODType(Self.Context)) 3615 return true; 3616 3617 if (const RecordType *RT = C.getBaseElementType(T)->getAs<RecordType>()) 3618 return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C, 3619 &CXXRecordDecl::hasTrivialMoveAssignment, 3620 &CXXRecordDecl::hasNonTrivialMoveAssignment, 3621 &CXXMethodDecl::isMoveAssignmentOperator); 3622 return false; 3623 case UTT_HasNothrowCopy: 3624 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: 3625 // If __has_trivial_copy (type) is true then the trait is true, else 3626 // if type is a cv class or union type with copy constructors that are 3627 // known not to throw an exception then the trait is true, else it is 3628 // false. 3629 if (T.isPODType(C) || T->isReferenceType() || T->isObjCLifetimeType()) 3630 return true; 3631 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) { 3632 if (RD->hasTrivialCopyConstructor() && 3633 !RD->hasNonTrivialCopyConstructor()) 3634 return true; 3635 3636 bool FoundConstructor = false; 3637 unsigned FoundTQs; 3638 DeclContext::lookup_result R = Self.LookupConstructors(RD); 3639 for (DeclContext::lookup_iterator Con = R.begin(), 3640 ConEnd = R.end(); Con != ConEnd; ++Con) { 3641 // A template constructor is never a copy constructor. 3642 // FIXME: However, it may actually be selected at the actual overload 3643 // resolution point. 3644 if (isa<FunctionTemplateDecl>(*Con)) 3645 continue; 3646 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con); 3647 if (Constructor->isCopyConstructor(FoundTQs)) { 3648 FoundConstructor = true; 3649 const FunctionProtoType *CPT 3650 = Constructor->getType()->getAs<FunctionProtoType>(); 3651 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT); 3652 if (!CPT) 3653 return false; 3654 // TODO: check whether evaluating default arguments can throw. 3655 // For now, we'll be conservative and assume that they can throw. 3656 if (!CPT->isNothrow(Self.Context) || CPT->getNumParams() > 1) 3657 return false; 3658 } 3659 } 3660 3661 return FoundConstructor; 3662 } 3663 return false; 3664 case UTT_HasNothrowConstructor: 3665 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html 3666 // If __has_trivial_constructor (type) is true then the trait is 3667 // true, else if type is a cv class or union type (or array 3668 // thereof) with a default constructor that is known not to 3669 // throw an exception then the trait is true, else it is false. 3670 if (T.isPODType(C) || T->isObjCLifetimeType()) 3671 return true; 3672 if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) { 3673 if (RD->hasTrivialDefaultConstructor() && 3674 !RD->hasNonTrivialDefaultConstructor()) 3675 return true; 3676 3677 bool FoundConstructor = false; 3678 DeclContext::lookup_result R = Self.LookupConstructors(RD); 3679 for (DeclContext::lookup_iterator Con = R.begin(), 3680 ConEnd = R.end(); Con != ConEnd; ++Con) { 3681 // FIXME: In C++0x, a constructor template can be a default constructor. 3682 if (isa<FunctionTemplateDecl>(*Con)) 3683 continue; 3684 CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con); 3685 if (Constructor->isDefaultConstructor()) { 3686 FoundConstructor = true; 3687 const FunctionProtoType *CPT 3688 = Constructor->getType()->getAs<FunctionProtoType>(); 3689 CPT = Self.ResolveExceptionSpec(KeyLoc, CPT); 3690 if (!CPT) 3691 return false; 3692 // FIXME: check whether evaluating default arguments can throw. 3693 // For now, we'll be conservative and assume that they can throw. 3694 if (!CPT->isNothrow(Self.Context) || CPT->getNumParams() > 0) 3695 return false; 3696 } 3697 } 3698 return FoundConstructor; 3699 } 3700 return false; 3701 case UTT_HasVirtualDestructor: 3702 // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: 3703 // If type is a class type with a virtual destructor ([class.dtor]) 3704 // then the trait is true, else it is false. 3705 if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) 3706 if (CXXDestructorDecl *Destructor = Self.LookupDestructor(RD)) 3707 return Destructor->isVirtual(); 3708 return false; 3709 3710 // These type trait expressions are modeled on the specifications for the 3711 // Embarcadero C++0x type trait functions: 3712 // http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index 3713 case UTT_IsCompleteType: 3714 // http://docwiki.embarcadero.com/RADStudio/XE/en/Is_complete_type_(typename_T_): 3715 // Returns True if and only if T is a complete type at the point of the 3716 // function call. 3717 return !T->isIncompleteType(); 3718 } 3719 } 3720 3721 /// \brief Determine whether T has a non-trivial Objective-C lifetime in 3722 /// ARC mode. 3723 static bool hasNontrivialObjCLifetime(QualType T) { 3724 switch (T.getObjCLifetime()) { 3725 case Qualifiers::OCL_ExplicitNone: 3726 return false; 3727 3728 case Qualifiers::OCL_Strong: 3729 case Qualifiers::OCL_Weak: 3730 case Qualifiers::OCL_Autoreleasing: 3731 return true; 3732 3733 case Qualifiers::OCL_None: 3734 return T->isObjCLifetimeType(); 3735 } 3736 3737 llvm_unreachable("Unknown ObjC lifetime qualifier"); 3738 } 3739 3740 static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, QualType LhsT, 3741 QualType RhsT, SourceLocation KeyLoc); 3742 3743 static bool evaluateTypeTrait(Sema &S, TypeTrait Kind, SourceLocation KWLoc, 3744 ArrayRef<TypeSourceInfo *> Args, 3745 SourceLocation RParenLoc) { 3746 if (Kind <= UTT_Last) 3747 return EvaluateUnaryTypeTrait(S, Kind, KWLoc, Args[0]->getType()); 3748 3749 if (Kind <= BTT_Last) 3750 return EvaluateBinaryTypeTrait(S, Kind, Args[0]->getType(), 3751 Args[1]->getType(), RParenLoc); 3752 3753 switch (Kind) { 3754 case clang::TT_IsConstructible: 3755 case clang::TT_IsNothrowConstructible: 3756 case clang::TT_IsTriviallyConstructible: { 3757 // C++11 [meta.unary.prop]: 3758 // is_trivially_constructible is defined as: 3759 // 3760 // is_constructible<T, Args...>::value is true and the variable 3761 // definition for is_constructible, as defined below, is known to call 3762 // no operation that is not trivial. 3763 // 3764 // The predicate condition for a template specialization 3765 // is_constructible<T, Args...> shall be satisfied if and only if the 3766 // following variable definition would be well-formed for some invented 3767 // variable t: 3768 // 3769 // T t(create<Args>()...); 3770 assert(!Args.empty()); 3771 3772 // Precondition: T and all types in the parameter pack Args shall be 3773 // complete types, (possibly cv-qualified) void, or arrays of 3774 // unknown bound. 3775 for (unsigned I = 0, N = Args.size(); I != N; ++I) { 3776 QualType ArgTy = Args[I]->getType(); 3777 if (ArgTy->isVoidType() || ArgTy->isIncompleteArrayType()) 3778 continue; 3779 3780 if (S.RequireCompleteType(KWLoc, ArgTy, 3781 diag::err_incomplete_type_used_in_type_trait_expr)) 3782 return false; 3783 } 3784 3785 // Make sure the first argument is a complete type. 3786 if (Args[0]->getType()->isIncompleteType()) 3787 return false; 3788 3789 // Make sure the first argument is not an abstract type. 3790 CXXRecordDecl *RD = Args[0]->getType()->getAsCXXRecordDecl(); 3791 if (RD && RD->isAbstract()) 3792 return false; 3793 3794 SmallVector<OpaqueValueExpr, 2> OpaqueArgExprs; 3795 SmallVector<Expr *, 2> ArgExprs; 3796 ArgExprs.reserve(Args.size() - 1); 3797 for (unsigned I = 1, N = Args.size(); I != N; ++I) { 3798 QualType T = Args[I]->getType(); 3799 if (T->isObjectType() || T->isFunctionType()) 3800 T = S.Context.getRValueReferenceType(T); 3801 OpaqueArgExprs.push_back( 3802 OpaqueValueExpr(Args[I]->getTypeLoc().getLocStart(), 3803 T.getNonLValueExprType(S.Context), 3804 Expr::getValueKindForType(T))); 3805 } 3806 for (Expr &E : OpaqueArgExprs) 3807 ArgExprs.push_back(&E); 3808 3809 // Perform the initialization in an unevaluated context within a SFINAE 3810 // trap at translation unit scope. 3811 EnterExpressionEvaluationContext Unevaluated(S, Sema::Unevaluated); 3812 Sema::SFINAETrap SFINAE(S, /*AccessCheckingSFINAE=*/true); 3813 Sema::ContextRAII TUContext(S, S.Context.getTranslationUnitDecl()); 3814 InitializedEntity To(InitializedEntity::InitializeTemporary(Args[0])); 3815 InitializationKind InitKind(InitializationKind::CreateDirect(KWLoc, KWLoc, 3816 RParenLoc)); 3817 InitializationSequence Init(S, To, InitKind, ArgExprs); 3818 if (Init.Failed()) 3819 return false; 3820 3821 ExprResult Result = Init.Perform(S, To, InitKind, ArgExprs); 3822 if (Result.isInvalid() || SFINAE.hasErrorOccurred()) 3823 return false; 3824 3825 if (Kind == clang::TT_IsConstructible) 3826 return true; 3827 3828 if (Kind == clang::TT_IsNothrowConstructible) 3829 return S.canThrow(Result.get()) == CT_Cannot; 3830 3831 if (Kind == clang::TT_IsTriviallyConstructible) { 3832 // Under Objective-C ARC, if the destination has non-trivial Objective-C 3833 // lifetime, this is a non-trivial construction. 3834 if (S.getLangOpts().ObjCAutoRefCount && 3835 hasNontrivialObjCLifetime(Args[0]->getType().getNonReferenceType())) 3836 return false; 3837 3838 // The initialization succeeded; now make sure there are no non-trivial 3839 // calls. 3840 return !Result.get()->hasNonTrivialCall(S.Context); 3841 } 3842 3843 llvm_unreachable("unhandled type trait"); 3844 return false; 3845 } 3846 default: llvm_unreachable("not a TT"); 3847 } 3848 3849 return false; 3850 } 3851 3852 ExprResult Sema::BuildTypeTrait(TypeTrait Kind, SourceLocation KWLoc, 3853 ArrayRef<TypeSourceInfo *> Args, 3854 SourceLocation RParenLoc) { 3855 QualType ResultType = Context.getLogicalOperationType(); 3856 3857 if (Kind <= UTT_Last && !CheckUnaryTypeTraitTypeCompleteness( 3858 *this, Kind, KWLoc, Args[0]->getType())) 3859 return ExprError(); 3860 3861 bool Dependent = false; 3862 for (unsigned I = 0, N = Args.size(); I != N; ++I) { 3863 if (Args[I]->getType()->isDependentType()) { 3864 Dependent = true; 3865 break; 3866 } 3867 } 3868 3869 bool Result = false; 3870 if (!Dependent) 3871 Result = evaluateTypeTrait(*this, Kind, KWLoc, Args, RParenLoc); 3872 3873 return TypeTraitExpr::Create(Context, ResultType, KWLoc, Kind, Args, 3874 RParenLoc, Result); 3875 } 3876 3877 ExprResult Sema::ActOnTypeTrait(TypeTrait Kind, SourceLocation KWLoc, 3878 ArrayRef<ParsedType> Args, 3879 SourceLocation RParenLoc) { 3880 SmallVector<TypeSourceInfo *, 4> ConvertedArgs; 3881 ConvertedArgs.reserve(Args.size()); 3882 3883 for (unsigned I = 0, N = Args.size(); I != N; ++I) { 3884 TypeSourceInfo *TInfo; 3885 QualType T = GetTypeFromParser(Args[I], &TInfo); 3886 if (!TInfo) 3887 TInfo = Context.getTrivialTypeSourceInfo(T, KWLoc); 3888 3889 ConvertedArgs.push_back(TInfo); 3890 } 3891 3892 return BuildTypeTrait(Kind, KWLoc, ConvertedArgs, RParenLoc); 3893 } 3894 3895 static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, QualType LhsT, 3896 QualType RhsT, SourceLocation KeyLoc) { 3897 assert(!LhsT->isDependentType() && !RhsT->isDependentType() && 3898 "Cannot evaluate traits of dependent types"); 3899 3900 switch(BTT) { 3901 case BTT_IsBaseOf: { 3902 // C++0x [meta.rel]p2 3903 // Base is a base class of Derived without regard to cv-qualifiers or 3904 // Base and Derived are not unions and name the same class type without 3905 // regard to cv-qualifiers. 3906 3907 const RecordType *lhsRecord = LhsT->getAs<RecordType>(); 3908 if (!lhsRecord) return false; 3909 3910 const RecordType *rhsRecord = RhsT->getAs<RecordType>(); 3911 if (!rhsRecord) return false; 3912 3913 assert(Self.Context.hasSameUnqualifiedType(LhsT, RhsT) 3914 == (lhsRecord == rhsRecord)); 3915 3916 if (lhsRecord == rhsRecord) 3917 return !lhsRecord->getDecl()->isUnion(); 3918 3919 // C++0x [meta.rel]p2: 3920 // If Base and Derived are class types and are different types 3921 // (ignoring possible cv-qualifiers) then Derived shall be a 3922 // complete type. 3923 if (Self.RequireCompleteType(KeyLoc, RhsT, 3924 diag::err_incomplete_type_used_in_type_trait_expr)) 3925 return false; 3926 3927 return cast<CXXRecordDecl>(rhsRecord->getDecl()) 3928 ->isDerivedFrom(cast<CXXRecordDecl>(lhsRecord->getDecl())); 3929 } 3930 case BTT_IsSame: 3931 return Self.Context.hasSameType(LhsT, RhsT); 3932 case BTT_TypeCompatible: 3933 return Self.Context.typesAreCompatible(LhsT.getUnqualifiedType(), 3934 RhsT.getUnqualifiedType()); 3935 case BTT_IsConvertible: 3936 case BTT_IsConvertibleTo: { 3937 // C++0x [meta.rel]p4: 3938 // Given the following function prototype: 3939 // 3940 // template <class T> 3941 // typename add_rvalue_reference<T>::type create(); 3942 // 3943 // the predicate condition for a template specialization 3944 // is_convertible<From, To> shall be satisfied if and only if 3945 // the return expression in the following code would be 3946 // well-formed, including any implicit conversions to the return 3947 // type of the function: 3948 // 3949 // To test() { 3950 // return create<From>(); 3951 // } 3952 // 3953 // Access checking is performed as if in a context unrelated to To and 3954 // From. Only the validity of the immediate context of the expression 3955 // of the return-statement (including conversions to the return type) 3956 // is considered. 3957 // 3958 // We model the initialization as a copy-initialization of a temporary 3959 // of the appropriate type, which for this expression is identical to the 3960 // return statement (since NRVO doesn't apply). 3961 3962 // Functions aren't allowed to return function or array types. 3963 if (RhsT->isFunctionType() || RhsT->isArrayType()) 3964 return false; 3965 3966 // A return statement in a void function must have void type. 3967 if (RhsT->isVoidType()) 3968 return LhsT->isVoidType(); 3969 3970 // A function definition requires a complete, non-abstract return type. 3971 if (Self.RequireCompleteType(KeyLoc, RhsT, 0) || 3972 Self.RequireNonAbstractType(KeyLoc, RhsT, 0)) 3973 return false; 3974 3975 // Compute the result of add_rvalue_reference. 3976 if (LhsT->isObjectType() || LhsT->isFunctionType()) 3977 LhsT = Self.Context.getRValueReferenceType(LhsT); 3978 3979 // Build a fake source and destination for initialization. 3980 InitializedEntity To(InitializedEntity::InitializeTemporary(RhsT)); 3981 OpaqueValueExpr From(KeyLoc, LhsT.getNonLValueExprType(Self.Context), 3982 Expr::getValueKindForType(LhsT)); 3983 Expr *FromPtr = &From; 3984 InitializationKind Kind(InitializationKind::CreateCopy(KeyLoc, 3985 SourceLocation())); 3986 3987 // Perform the initialization in an unevaluated context within a SFINAE 3988 // trap at translation unit scope. 3989 EnterExpressionEvaluationContext Unevaluated(Self, Sema::Unevaluated); 3990 Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true); 3991 Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl()); 3992 InitializationSequence Init(Self, To, Kind, FromPtr); 3993 if (Init.Failed()) 3994 return false; 3995 3996 ExprResult Result = Init.Perform(Self, To, Kind, FromPtr); 3997 return !Result.isInvalid() && !SFINAE.hasErrorOccurred(); 3998 } 3999 4000 case BTT_IsNothrowAssignable: 4001 case BTT_IsTriviallyAssignable: { 4002 // C++11 [meta.unary.prop]p3: 4003 // is_trivially_assignable is defined as: 4004 // is_assignable<T, U>::value is true and the assignment, as defined by 4005 // is_assignable, is known to call no operation that is not trivial 4006 // 4007 // is_assignable is defined as: 4008 // The expression declval<T>() = declval<U>() is well-formed when 4009 // treated as an unevaluated operand (Clause 5). 4010 // 4011 // For both, T and U shall be complete types, (possibly cv-qualified) 4012 // void, or arrays of unknown bound. 4013 if (!LhsT->isVoidType() && !LhsT->isIncompleteArrayType() && 4014 Self.RequireCompleteType(KeyLoc, LhsT, 4015 diag::err_incomplete_type_used_in_type_trait_expr)) 4016 return false; 4017 if (!RhsT->isVoidType() && !RhsT->isIncompleteArrayType() && 4018 Self.RequireCompleteType(KeyLoc, RhsT, 4019 diag::err_incomplete_type_used_in_type_trait_expr)) 4020 return false; 4021 4022 // cv void is never assignable. 4023 if (LhsT->isVoidType() || RhsT->isVoidType()) 4024 return false; 4025 4026 // Build expressions that emulate the effect of declval<T>() and 4027 // declval<U>(). 4028 if (LhsT->isObjectType() || LhsT->isFunctionType()) 4029 LhsT = Self.Context.getRValueReferenceType(LhsT); 4030 if (RhsT->isObjectType() || RhsT->isFunctionType()) 4031 RhsT = Self.Context.getRValueReferenceType(RhsT); 4032 OpaqueValueExpr Lhs(KeyLoc, LhsT.getNonLValueExprType(Self.Context), 4033 Expr::getValueKindForType(LhsT)); 4034 OpaqueValueExpr Rhs(KeyLoc, RhsT.getNonLValueExprType(Self.Context), 4035 Expr::getValueKindForType(RhsT)); 4036 4037 // Attempt the assignment in an unevaluated context within a SFINAE 4038 // trap at translation unit scope. 4039 EnterExpressionEvaluationContext Unevaluated(Self, Sema::Unevaluated); 4040 Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true); 4041 Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl()); 4042 ExprResult Result = Self.BuildBinOp(/*S=*/nullptr, KeyLoc, BO_Assign, &Lhs, 4043 &Rhs); 4044 if (Result.isInvalid() || SFINAE.hasErrorOccurred()) 4045 return false; 4046 4047 if (BTT == BTT_IsNothrowAssignable) 4048 return Self.canThrow(Result.get()) == CT_Cannot; 4049 4050 if (BTT == BTT_IsTriviallyAssignable) { 4051 // Under Objective-C ARC, if the destination has non-trivial Objective-C 4052 // lifetime, this is a non-trivial assignment. 4053 if (Self.getLangOpts().ObjCAutoRefCount && 4054 hasNontrivialObjCLifetime(LhsT.getNonReferenceType())) 4055 return false; 4056 4057 return !Result.get()->hasNonTrivialCall(Self.Context); 4058 } 4059 4060 llvm_unreachable("unhandled type trait"); 4061 return false; 4062 } 4063 default: llvm_unreachable("not a BTT"); 4064 } 4065 llvm_unreachable("Unknown type trait or not implemented"); 4066 } 4067 4068 ExprResult Sema::ActOnArrayTypeTrait(ArrayTypeTrait ATT, 4069 SourceLocation KWLoc, 4070 ParsedType Ty, 4071 Expr* DimExpr, 4072 SourceLocation RParen) { 4073 TypeSourceInfo *TSInfo; 4074 QualType T = GetTypeFromParser(Ty, &TSInfo); 4075 if (!TSInfo) 4076 TSInfo = Context.getTrivialTypeSourceInfo(T); 4077 4078 return BuildArrayTypeTrait(ATT, KWLoc, TSInfo, DimExpr, RParen); 4079 } 4080 4081 static uint64_t EvaluateArrayTypeTrait(Sema &Self, ArrayTypeTrait ATT, 4082 QualType T, Expr *DimExpr, 4083 SourceLocation KeyLoc) { 4084 assert(!T->isDependentType() && "Cannot evaluate traits of dependent type"); 4085 4086 switch(ATT) { 4087 case ATT_ArrayRank: 4088 if (T->isArrayType()) { 4089 unsigned Dim = 0; 4090 while (const ArrayType *AT = Self.Context.getAsArrayType(T)) { 4091 ++Dim; 4092 T = AT->getElementType(); 4093 } 4094 return Dim; 4095 } 4096 return 0; 4097 4098 case ATT_ArrayExtent: { 4099 llvm::APSInt Value; 4100 uint64_t Dim; 4101 if (Self.VerifyIntegerConstantExpression(DimExpr, &Value, 4102 diag::err_dimension_expr_not_constant_integer, 4103 false).isInvalid()) 4104 return 0; 4105 if (Value.isSigned() && Value.isNegative()) { 4106 Self.Diag(KeyLoc, diag::err_dimension_expr_not_constant_integer) 4107 << DimExpr->getSourceRange(); 4108 return 0; 4109 } 4110 Dim = Value.getLimitedValue(); 4111 4112 if (T->isArrayType()) { 4113 unsigned D = 0; 4114 bool Matched = false; 4115 while (const ArrayType *AT = Self.Context.getAsArrayType(T)) { 4116 if (Dim == D) { 4117 Matched = true; 4118 break; 4119 } 4120 ++D; 4121 T = AT->getElementType(); 4122 } 4123 4124 if (Matched && T->isArrayType()) { 4125 if (const ConstantArrayType *CAT = Self.Context.getAsConstantArrayType(T)) 4126 return CAT->getSize().getLimitedValue(); 4127 } 4128 } 4129 return 0; 4130 } 4131 } 4132 llvm_unreachable("Unknown type trait or not implemented"); 4133 } 4134 4135 ExprResult Sema::BuildArrayTypeTrait(ArrayTypeTrait ATT, 4136 SourceLocation KWLoc, 4137 TypeSourceInfo *TSInfo, 4138 Expr* DimExpr, 4139 SourceLocation RParen) { 4140 QualType T = TSInfo->getType(); 4141 4142 // FIXME: This should likely be tracked as an APInt to remove any host 4143 // assumptions about the width of size_t on the target. 4144 uint64_t Value = 0; 4145 if (!T->isDependentType()) 4146 Value = EvaluateArrayTypeTrait(*this, ATT, T, DimExpr, KWLoc); 4147 4148 // While the specification for these traits from the Embarcadero C++ 4149 // compiler's documentation says the return type is 'unsigned int', Clang 4150 // returns 'size_t'. On Windows, the primary platform for the Embarcadero 4151 // compiler, there is no difference. On several other platforms this is an 4152 // important distinction. 4153 return new (Context) ArrayTypeTraitExpr(KWLoc, ATT, TSInfo, Value, DimExpr, 4154 RParen, Context.getSizeType()); 4155 } 4156 4157 ExprResult Sema::ActOnExpressionTrait(ExpressionTrait ET, 4158 SourceLocation KWLoc, 4159 Expr *Queried, 4160 SourceLocation RParen) { 4161 // If error parsing the expression, ignore. 4162 if (!Queried) 4163 return ExprError(); 4164 4165 ExprResult Result = BuildExpressionTrait(ET, KWLoc, Queried, RParen); 4166 4167 return Result; 4168 } 4169 4170 static bool EvaluateExpressionTrait(ExpressionTrait ET, Expr *E) { 4171 switch (ET) { 4172 case ET_IsLValueExpr: return E->isLValue(); 4173 case ET_IsRValueExpr: return E->isRValue(); 4174 } 4175 llvm_unreachable("Expression trait not covered by switch"); 4176 } 4177 4178 ExprResult Sema::BuildExpressionTrait(ExpressionTrait ET, 4179 SourceLocation KWLoc, 4180 Expr *Queried, 4181 SourceLocation RParen) { 4182 if (Queried->isTypeDependent()) { 4183 // Delay type-checking for type-dependent expressions. 4184 } else if (Queried->getType()->isPlaceholderType()) { 4185 ExprResult PE = CheckPlaceholderExpr(Queried); 4186 if (PE.isInvalid()) return ExprError(); 4187 return BuildExpressionTrait(ET, KWLoc, PE.get(), RParen); 4188 } 4189 4190 bool Value = EvaluateExpressionTrait(ET, Queried); 4191 4192 return new (Context) 4193 ExpressionTraitExpr(KWLoc, ET, Queried, Value, RParen, Context.BoolTy); 4194 } 4195 4196 QualType Sema::CheckPointerToMemberOperands(ExprResult &LHS, ExprResult &RHS, 4197 ExprValueKind &VK, 4198 SourceLocation Loc, 4199 bool isIndirect) { 4200 assert(!LHS.get()->getType()->isPlaceholderType() && 4201 !RHS.get()->getType()->isPlaceholderType() && 4202 "placeholders should have been weeded out by now"); 4203 4204 // The LHS undergoes lvalue conversions if this is ->*. 4205 if (isIndirect) { 4206 LHS = DefaultLvalueConversion(LHS.get()); 4207 if (LHS.isInvalid()) return QualType(); 4208 } 4209 4210 // The RHS always undergoes lvalue conversions. 4211 RHS = DefaultLvalueConversion(RHS.get()); 4212 if (RHS.isInvalid()) return QualType(); 4213 4214 const char *OpSpelling = isIndirect ? "->*" : ".*"; 4215 // C++ 5.5p2 4216 // The binary operator .* [p3: ->*] binds its second operand, which shall 4217 // be of type "pointer to member of T" (where T is a completely-defined 4218 // class type) [...] 4219 QualType RHSType = RHS.get()->getType(); 4220 const MemberPointerType *MemPtr = RHSType->getAs<MemberPointerType>(); 4221 if (!MemPtr) { 4222 Diag(Loc, diag::err_bad_memptr_rhs) 4223 << OpSpelling << RHSType << RHS.get()->getSourceRange(); 4224 return QualType(); 4225 } 4226 4227 QualType Class(MemPtr->getClass(), 0); 4228 4229 // Note: C++ [expr.mptr.oper]p2-3 says that the class type into which the 4230 // member pointer points must be completely-defined. However, there is no 4231 // reason for this semantic distinction, and the rule is not enforced by 4232 // other compilers. Therefore, we do not check this property, as it is 4233 // likely to be considered a defect. 4234 4235 // C++ 5.5p2 4236 // [...] to its first operand, which shall be of class T or of a class of 4237 // which T is an unambiguous and accessible base class. [p3: a pointer to 4238 // such a class] 4239 QualType LHSType = LHS.get()->getType(); 4240 if (isIndirect) { 4241 if (const PointerType *Ptr = LHSType->getAs<PointerType>()) 4242 LHSType = Ptr->getPointeeType(); 4243 else { 4244 Diag(Loc, diag::err_bad_memptr_lhs) 4245 << OpSpelling << 1 << LHSType 4246 << FixItHint::CreateReplacement(SourceRange(Loc), ".*"); 4247 return QualType(); 4248 } 4249 } 4250 4251 if (!Context.hasSameUnqualifiedType(Class, LHSType)) { 4252 // If we want to check the hierarchy, we need a complete type. 4253 if (RequireCompleteType(Loc, LHSType, diag::err_bad_memptr_lhs, 4254 OpSpelling, (int)isIndirect)) { 4255 return QualType(); 4256 } 4257 4258 if (!IsDerivedFrom(LHSType, Class)) { 4259 Diag(Loc, diag::err_bad_memptr_lhs) << OpSpelling 4260 << (int)isIndirect << LHS.get()->getType(); 4261 return QualType(); 4262 } 4263 4264 CXXCastPath BasePath; 4265 if (CheckDerivedToBaseConversion(LHSType, Class, Loc, 4266 SourceRange(LHS.get()->getLocStart(), 4267 RHS.get()->getLocEnd()), 4268 &BasePath)) 4269 return QualType(); 4270 4271 // Cast LHS to type of use. 4272 QualType UseType = isIndirect ? Context.getPointerType(Class) : Class; 4273 ExprValueKind VK = isIndirect ? VK_RValue : LHS.get()->getValueKind(); 4274 LHS = ImpCastExprToType(LHS.get(), UseType, CK_DerivedToBase, VK, 4275 &BasePath); 4276 } 4277 4278 if (isa<CXXScalarValueInitExpr>(RHS.get()->IgnoreParens())) { 4279 // Diagnose use of pointer-to-member type which when used as 4280 // the functional cast in a pointer-to-member expression. 4281 Diag(Loc, diag::err_pointer_to_member_type) << isIndirect; 4282 return QualType(); 4283 } 4284 4285 // C++ 5.5p2 4286 // The result is an object or a function of the type specified by the 4287 // second operand. 4288 // The cv qualifiers are the union of those in the pointer and the left side, 4289 // in accordance with 5.5p5 and 5.2.5. 4290 QualType Result = MemPtr->getPointeeType(); 4291 Result = Context.getCVRQualifiedType(Result, LHSType.getCVRQualifiers()); 4292 4293 // C++0x [expr.mptr.oper]p6: 4294 // In a .* expression whose object expression is an rvalue, the program is 4295 // ill-formed if the second operand is a pointer to member function with 4296 // ref-qualifier &. In a ->* expression or in a .* expression whose object 4297 // expression is an lvalue, the program is ill-formed if the second operand 4298 // is a pointer to member function with ref-qualifier &&. 4299 if (const FunctionProtoType *Proto = Result->getAs<FunctionProtoType>()) { 4300 switch (Proto->getRefQualifier()) { 4301 case RQ_None: 4302 // Do nothing 4303 break; 4304 4305 case RQ_LValue: 4306 if (!isIndirect && !LHS.get()->Classify(Context).isLValue()) 4307 Diag(Loc, diag::err_pointer_to_member_oper_value_classify) 4308 << RHSType << 1 << LHS.get()->getSourceRange(); 4309 break; 4310 4311 case RQ_RValue: 4312 if (isIndirect || !LHS.get()->Classify(Context).isRValue()) 4313 Diag(Loc, diag::err_pointer_to_member_oper_value_classify) 4314 << RHSType << 0 << LHS.get()->getSourceRange(); 4315 break; 4316 } 4317 } 4318 4319 // C++ [expr.mptr.oper]p6: 4320 // The result of a .* expression whose second operand is a pointer 4321 // to a data member is of the same value category as its 4322 // first operand. The result of a .* expression whose second 4323 // operand is a pointer to a member function is a prvalue. The 4324 // result of an ->* expression is an lvalue if its second operand 4325 // is a pointer to data member and a prvalue otherwise. 4326 if (Result->isFunctionType()) { 4327 VK = VK_RValue; 4328 return Context.BoundMemberTy; 4329 } else if (isIndirect) { 4330 VK = VK_LValue; 4331 } else { 4332 VK = LHS.get()->getValueKind(); 4333 } 4334 4335 return Result; 4336 } 4337 4338 /// \brief Try to convert a type to another according to C++0x 5.16p3. 4339 /// 4340 /// This is part of the parameter validation for the ? operator. If either 4341 /// value operand is a class type, the two operands are attempted to be 4342 /// converted to each other. This function does the conversion in one direction. 4343 /// It returns true if the program is ill-formed and has already been diagnosed 4344 /// as such. 4345 static bool TryClassUnification(Sema &Self, Expr *From, Expr *To, 4346 SourceLocation QuestionLoc, 4347 bool &HaveConversion, 4348 QualType &ToType) { 4349 HaveConversion = false; 4350 ToType = To->getType(); 4351 4352 InitializationKind Kind = InitializationKind::CreateCopy(To->getLocStart(), 4353 SourceLocation()); 4354 // C++0x 5.16p3 4355 // The process for determining whether an operand expression E1 of type T1 4356 // can be converted to match an operand expression E2 of type T2 is defined 4357 // as follows: 4358 // -- If E2 is an lvalue: 4359 bool ToIsLvalue = To->isLValue(); 4360 if (ToIsLvalue) { 4361 // E1 can be converted to match E2 if E1 can be implicitly converted to 4362 // type "lvalue reference to T2", subject to the constraint that in the 4363 // conversion the reference must bind directly to E1. 4364 QualType T = Self.Context.getLValueReferenceType(ToType); 4365 InitializedEntity Entity = InitializedEntity::InitializeTemporary(T); 4366 4367 InitializationSequence InitSeq(Self, Entity, Kind, From); 4368 if (InitSeq.isDirectReferenceBinding()) { 4369 ToType = T; 4370 HaveConversion = true; 4371 return false; 4372 } 4373 4374 if (InitSeq.isAmbiguous()) 4375 return InitSeq.Diagnose(Self, Entity, Kind, From); 4376 } 4377 4378 // -- If E2 is an rvalue, or if the conversion above cannot be done: 4379 // -- if E1 and E2 have class type, and the underlying class types are 4380 // the same or one is a base class of the other: 4381 QualType FTy = From->getType(); 4382 QualType TTy = To->getType(); 4383 const RecordType *FRec = FTy->getAs<RecordType>(); 4384 const RecordType *TRec = TTy->getAs<RecordType>(); 4385 bool FDerivedFromT = FRec && TRec && FRec != TRec && 4386 Self.IsDerivedFrom(FTy, TTy); 4387 if (FRec && TRec && 4388 (FRec == TRec || FDerivedFromT || Self.IsDerivedFrom(TTy, FTy))) { 4389 // E1 can be converted to match E2 if the class of T2 is the 4390 // same type as, or a base class of, the class of T1, and 4391 // [cv2 > cv1]. 4392 if (FRec == TRec || FDerivedFromT) { 4393 if (TTy.isAtLeastAsQualifiedAs(FTy)) { 4394 InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy); 4395 InitializationSequence InitSeq(Self, Entity, Kind, From); 4396 if (InitSeq) { 4397 HaveConversion = true; 4398 return false; 4399 } 4400 4401 if (InitSeq.isAmbiguous()) 4402 return InitSeq.Diagnose(Self, Entity, Kind, From); 4403 } 4404 } 4405 4406 return false; 4407 } 4408 4409 // -- Otherwise: E1 can be converted to match E2 if E1 can be 4410 // implicitly converted to the type that expression E2 would have 4411 // if E2 were converted to an rvalue (or the type it has, if E2 is 4412 // an rvalue). 4413 // 4414 // This actually refers very narrowly to the lvalue-to-rvalue conversion, not 4415 // to the array-to-pointer or function-to-pointer conversions. 4416 if (!TTy->getAs<TagType>()) 4417 TTy = TTy.getUnqualifiedType(); 4418 4419 InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy); 4420 InitializationSequence InitSeq(Self, Entity, Kind, From); 4421 HaveConversion = !InitSeq.Failed(); 4422 ToType = TTy; 4423 if (InitSeq.isAmbiguous()) 4424 return InitSeq.Diagnose(Self, Entity, Kind, From); 4425 4426 return false; 4427 } 4428 4429 /// \brief Try to find a common type for two according to C++0x 5.16p5. 4430 /// 4431 /// This is part of the parameter validation for the ? operator. If either 4432 /// value operand is a class type, overload resolution is used to find a 4433 /// conversion to a common type. 4434 static bool FindConditionalOverload(Sema &Self, ExprResult &LHS, ExprResult &RHS, 4435 SourceLocation QuestionLoc) { 4436 Expr *Args[2] = { LHS.get(), RHS.get() }; 4437 OverloadCandidateSet CandidateSet(QuestionLoc, 4438 OverloadCandidateSet::CSK_Operator); 4439 Self.AddBuiltinOperatorCandidates(OO_Conditional, QuestionLoc, Args, 4440 CandidateSet); 4441 4442 OverloadCandidateSet::iterator Best; 4443 switch (CandidateSet.BestViableFunction(Self, QuestionLoc, Best)) { 4444 case OR_Success: { 4445 // We found a match. Perform the conversions on the arguments and move on. 4446 ExprResult LHSRes = 4447 Self.PerformImplicitConversion(LHS.get(), Best->BuiltinTypes.ParamTypes[0], 4448 Best->Conversions[0], Sema::AA_Converting); 4449 if (LHSRes.isInvalid()) 4450 break; 4451 LHS = LHSRes; 4452 4453 ExprResult RHSRes = 4454 Self.PerformImplicitConversion(RHS.get(), Best->BuiltinTypes.ParamTypes[1], 4455 Best->Conversions[1], Sema::AA_Converting); 4456 if (RHSRes.isInvalid()) 4457 break; 4458 RHS = RHSRes; 4459 if (Best->Function) 4460 Self.MarkFunctionReferenced(QuestionLoc, Best->Function); 4461 return false; 4462 } 4463 4464 case OR_No_Viable_Function: 4465 4466 // Emit a better diagnostic if one of the expressions is a null pointer 4467 // constant and the other is a pointer type. In this case, the user most 4468 // likely forgot to take the address of the other expression. 4469 if (Self.DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc)) 4470 return true; 4471 4472 Self.Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands) 4473 << LHS.get()->getType() << RHS.get()->getType() 4474 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); 4475 return true; 4476 4477 case OR_Ambiguous: 4478 Self.Diag(QuestionLoc, diag::err_conditional_ambiguous_ovl) 4479 << LHS.get()->getType() << RHS.get()->getType() 4480 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); 4481 // FIXME: Print the possible common types by printing the return types of 4482 // the viable candidates. 4483 break; 4484 4485 case OR_Deleted: 4486 llvm_unreachable("Conditional operator has only built-in overloads"); 4487 } 4488 return true; 4489 } 4490 4491 /// \brief Perform an "extended" implicit conversion as returned by 4492 /// TryClassUnification. 4493 static bool ConvertForConditional(Sema &Self, ExprResult &E, QualType T) { 4494 InitializedEntity Entity = InitializedEntity::InitializeTemporary(T); 4495 InitializationKind Kind = InitializationKind::CreateCopy(E.get()->getLocStart(), 4496 SourceLocation()); 4497 Expr *Arg = E.get(); 4498 InitializationSequence InitSeq(Self, Entity, Kind, Arg); 4499 ExprResult Result = InitSeq.Perform(Self, Entity, Kind, Arg); 4500 if (Result.isInvalid()) 4501 return true; 4502 4503 E = Result; 4504 return false; 4505 } 4506 4507 /// \brief Check the operands of ?: under C++ semantics. 4508 /// 4509 /// See C++ [expr.cond]. Note that LHS is never null, even for the GNU x ?: y 4510 /// extension. In this case, LHS == Cond. (But they're not aliases.) 4511 QualType Sema::CXXCheckConditionalOperands(ExprResult &Cond, ExprResult &LHS, 4512 ExprResult &RHS, ExprValueKind &VK, 4513 ExprObjectKind &OK, 4514 SourceLocation QuestionLoc) { 4515 // FIXME: Handle C99's complex types, vector types, block pointers and Obj-C++ 4516 // interface pointers. 4517 4518 // C++11 [expr.cond]p1 4519 // The first expression is contextually converted to bool. 4520 if (!Cond.get()->isTypeDependent()) { 4521 ExprResult CondRes = CheckCXXBooleanCondition(Cond.get()); 4522 if (CondRes.isInvalid()) 4523 return QualType(); 4524 Cond = CondRes; 4525 } 4526 4527 // Assume r-value. 4528 VK = VK_RValue; 4529 OK = OK_Ordinary; 4530 4531 // Either of the arguments dependent? 4532 if (LHS.get()->isTypeDependent() || RHS.get()->isTypeDependent()) 4533 return Context.DependentTy; 4534 4535 // C++11 [expr.cond]p2 4536 // If either the second or the third operand has type (cv) void, ... 4537 QualType LTy = LHS.get()->getType(); 4538 QualType RTy = RHS.get()->getType(); 4539 bool LVoid = LTy->isVoidType(); 4540 bool RVoid = RTy->isVoidType(); 4541 if (LVoid || RVoid) { 4542 // ... one of the following shall hold: 4543 // -- The second or the third operand (but not both) is a (possibly 4544 // parenthesized) throw-expression; the result is of the type 4545 // and value category of the other. 4546 bool LThrow = isa<CXXThrowExpr>(LHS.get()->IgnoreParenImpCasts()); 4547 bool RThrow = isa<CXXThrowExpr>(RHS.get()->IgnoreParenImpCasts()); 4548 if (LThrow != RThrow) { 4549 Expr *NonThrow = LThrow ? RHS.get() : LHS.get(); 4550 VK = NonThrow->getValueKind(); 4551 // DR (no number yet): the result is a bit-field if the 4552 // non-throw-expression operand is a bit-field. 4553 OK = NonThrow->getObjectKind(); 4554 return NonThrow->getType(); 4555 } 4556 4557 // -- Both the second and third operands have type void; the result is of 4558 // type void and is a prvalue. 4559 if (LVoid && RVoid) 4560 return Context.VoidTy; 4561 4562 // Neither holds, error. 4563 Diag(QuestionLoc, diag::err_conditional_void_nonvoid) 4564 << (LVoid ? RTy : LTy) << (LVoid ? 0 : 1) 4565 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); 4566 return QualType(); 4567 } 4568 4569 // Neither is void. 4570 4571 // C++11 [expr.cond]p3 4572 // Otherwise, if the second and third operand have different types, and 4573 // either has (cv) class type [...] an attempt is made to convert each of 4574 // those operands to the type of the other. 4575 if (!Context.hasSameType(LTy, RTy) && 4576 (LTy->isRecordType() || RTy->isRecordType())) { 4577 // These return true if a single direction is already ambiguous. 4578 QualType L2RType, R2LType; 4579 bool HaveL2R, HaveR2L; 4580 if (TryClassUnification(*this, LHS.get(), RHS.get(), QuestionLoc, HaveL2R, L2RType)) 4581 return QualType(); 4582 if (TryClassUnification(*this, RHS.get(), LHS.get(), QuestionLoc, HaveR2L, R2LType)) 4583 return QualType(); 4584 4585 // If both can be converted, [...] the program is ill-formed. 4586 if (HaveL2R && HaveR2L) { 4587 Diag(QuestionLoc, diag::err_conditional_ambiguous) 4588 << LTy << RTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); 4589 return QualType(); 4590 } 4591 4592 // If exactly one conversion is possible, that conversion is applied to 4593 // the chosen operand and the converted operands are used in place of the 4594 // original operands for the remainder of this section. 4595 if (HaveL2R) { 4596 if (ConvertForConditional(*this, LHS, L2RType) || LHS.isInvalid()) 4597 return QualType(); 4598 LTy = LHS.get()->getType(); 4599 } else if (HaveR2L) { 4600 if (ConvertForConditional(*this, RHS, R2LType) || RHS.isInvalid()) 4601 return QualType(); 4602 RTy = RHS.get()->getType(); 4603 } 4604 } 4605 4606 // C++11 [expr.cond]p3 4607 // if both are glvalues of the same value category and the same type except 4608 // for cv-qualification, an attempt is made to convert each of those 4609 // operands to the type of the other. 4610 ExprValueKind LVK = LHS.get()->getValueKind(); 4611 ExprValueKind RVK = RHS.get()->getValueKind(); 4612 if (!Context.hasSameType(LTy, RTy) && 4613 Context.hasSameUnqualifiedType(LTy, RTy) && 4614 LVK == RVK && LVK != VK_RValue) { 4615 // Since the unqualified types are reference-related and we require the 4616 // result to be as if a reference bound directly, the only conversion 4617 // we can perform is to add cv-qualifiers. 4618 Qualifiers LCVR = Qualifiers::fromCVRMask(LTy.getCVRQualifiers()); 4619 Qualifiers RCVR = Qualifiers::fromCVRMask(RTy.getCVRQualifiers()); 4620 if (RCVR.isStrictSupersetOf(LCVR)) { 4621 LHS = ImpCastExprToType(LHS.get(), RTy, CK_NoOp, LVK); 4622 LTy = LHS.get()->getType(); 4623 } 4624 else if (LCVR.isStrictSupersetOf(RCVR)) { 4625 RHS = ImpCastExprToType(RHS.get(), LTy, CK_NoOp, RVK); 4626 RTy = RHS.get()->getType(); 4627 } 4628 } 4629 4630 // C++11 [expr.cond]p4 4631 // If the second and third operands are glvalues of the same value 4632 // category and have the same type, the result is of that type and 4633 // value category and it is a bit-field if the second or the third 4634 // operand is a bit-field, or if both are bit-fields. 4635 // We only extend this to bitfields, not to the crazy other kinds of 4636 // l-values. 4637 bool Same = Context.hasSameType(LTy, RTy); 4638 if (Same && LVK == RVK && LVK != VK_RValue && 4639 LHS.get()->isOrdinaryOrBitFieldObject() && 4640 RHS.get()->isOrdinaryOrBitFieldObject()) { 4641 VK = LHS.get()->getValueKind(); 4642 if (LHS.get()->getObjectKind() == OK_BitField || 4643 RHS.get()->getObjectKind() == OK_BitField) 4644 OK = OK_BitField; 4645 return LTy; 4646 } 4647 4648 // C++11 [expr.cond]p5 4649 // Otherwise, the result is a prvalue. If the second and third operands 4650 // do not have the same type, and either has (cv) class type, ... 4651 if (!Same && (LTy->isRecordType() || RTy->isRecordType())) { 4652 // ... overload resolution is used to determine the conversions (if any) 4653 // to be applied to the operands. If the overload resolution fails, the 4654 // program is ill-formed. 4655 if (FindConditionalOverload(*this, LHS, RHS, QuestionLoc)) 4656 return QualType(); 4657 } 4658 4659 // C++11 [expr.cond]p6 4660 // Lvalue-to-rvalue, array-to-pointer, and function-to-pointer standard 4661 // conversions are performed on the second and third operands. 4662 LHS = DefaultFunctionArrayLvalueConversion(LHS.get()); 4663 RHS = DefaultFunctionArrayLvalueConversion(RHS.get()); 4664 if (LHS.isInvalid() || RHS.isInvalid()) 4665 return QualType(); 4666 LTy = LHS.get()->getType(); 4667 RTy = RHS.get()->getType(); 4668 4669 // After those conversions, one of the following shall hold: 4670 // -- The second and third operands have the same type; the result 4671 // is of that type. If the operands have class type, the result 4672 // is a prvalue temporary of the result type, which is 4673 // copy-initialized from either the second operand or the third 4674 // operand depending on the value of the first operand. 4675 if (Context.getCanonicalType(LTy) == Context.getCanonicalType(RTy)) { 4676 if (LTy->isRecordType()) { 4677 // The operands have class type. Make a temporary copy. 4678 if (RequireNonAbstractType(QuestionLoc, LTy, 4679 diag::err_allocation_of_abstract_type)) 4680 return QualType(); 4681 InitializedEntity Entity = InitializedEntity::InitializeTemporary(LTy); 4682 4683 ExprResult LHSCopy = PerformCopyInitialization(Entity, 4684 SourceLocation(), 4685 LHS); 4686 if (LHSCopy.isInvalid()) 4687 return QualType(); 4688 4689 ExprResult RHSCopy = PerformCopyInitialization(Entity, 4690 SourceLocation(), 4691 RHS); 4692 if (RHSCopy.isInvalid()) 4693 return QualType(); 4694 4695 LHS = LHSCopy; 4696 RHS = RHSCopy; 4697 } 4698 4699 return LTy; 4700 } 4701 4702 // Extension: conditional operator involving vector types. 4703 if (LTy->isVectorType() || RTy->isVectorType()) 4704 return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/false); 4705 4706 // -- The second and third operands have arithmetic or enumeration type; 4707 // the usual arithmetic conversions are performed to bring them to a 4708 // common type, and the result is of that type. 4709 if (LTy->isArithmeticType() && RTy->isArithmeticType()) { 4710 QualType ResTy = UsualArithmeticConversions(LHS, RHS); 4711 if (LHS.isInvalid() || RHS.isInvalid()) 4712 return QualType(); 4713 4714 LHS = ImpCastExprToType(LHS.get(), ResTy, PrepareScalarCast(LHS, ResTy)); 4715 RHS = ImpCastExprToType(RHS.get(), ResTy, PrepareScalarCast(RHS, ResTy)); 4716 4717 return ResTy; 4718 } 4719 4720 // -- The second and third operands have pointer type, or one has pointer 4721 // type and the other is a null pointer constant, or both are null 4722 // pointer constants, at least one of which is non-integral; pointer 4723 // conversions and qualification conversions are performed to bring them 4724 // to their composite pointer type. The result is of the composite 4725 // pointer type. 4726 // -- The second and third operands have pointer to member type, or one has 4727 // pointer to member type and the other is a null pointer constant; 4728 // pointer to member conversions and qualification conversions are 4729 // performed to bring them to a common type, whose cv-qualification 4730 // shall match the cv-qualification of either the second or the third 4731 // operand. The result is of the common type. 4732 bool NonStandardCompositeType = false; 4733 QualType Composite = FindCompositePointerType(QuestionLoc, LHS, RHS, 4734 isSFINAEContext() ? nullptr 4735 : &NonStandardCompositeType); 4736 if (!Composite.isNull()) { 4737 if (NonStandardCompositeType) 4738 Diag(QuestionLoc, 4739 diag::ext_typecheck_cond_incompatible_operands_nonstandard) 4740 << LTy << RTy << Composite 4741 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); 4742 4743 return Composite; 4744 } 4745 4746 // Similarly, attempt to find composite type of two objective-c pointers. 4747 Composite = FindCompositeObjCPointerType(LHS, RHS, QuestionLoc); 4748 if (!Composite.isNull()) 4749 return Composite; 4750 4751 // Check if we are using a null with a non-pointer type. 4752 if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc)) 4753 return QualType(); 4754 4755 Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands) 4756 << LHS.get()->getType() << RHS.get()->getType() 4757 << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); 4758 return QualType(); 4759 } 4760 4761 /// \brief Find a merged pointer type and convert the two expressions to it. 4762 /// 4763 /// This finds the composite pointer type (or member pointer type) for @p E1 4764 /// and @p E2 according to C++11 5.9p2. It converts both expressions to this 4765 /// type and returns it. 4766 /// It does not emit diagnostics. 4767 /// 4768 /// \param Loc The location of the operator requiring these two expressions to 4769 /// be converted to the composite pointer type. 4770 /// 4771 /// If \p NonStandardCompositeType is non-NULL, then we are permitted to find 4772 /// a non-standard (but still sane) composite type to which both expressions 4773 /// can be converted. When such a type is chosen, \c *NonStandardCompositeType 4774 /// will be set true. 4775 QualType Sema::FindCompositePointerType(SourceLocation Loc, 4776 Expr *&E1, Expr *&E2, 4777 bool *NonStandardCompositeType) { 4778 if (NonStandardCompositeType) 4779 *NonStandardCompositeType = false; 4780 4781 assert(getLangOpts().CPlusPlus && "This function assumes C++"); 4782 QualType T1 = E1->getType(), T2 = E2->getType(); 4783 4784 // C++11 5.9p2 4785 // Pointer conversions and qualification conversions are performed on 4786 // pointer operands to bring them to their composite pointer type. If 4787 // one operand is a null pointer constant, the composite pointer type is 4788 // std::nullptr_t if the other operand is also a null pointer constant or, 4789 // if the other operand is a pointer, the type of the other operand. 4790 if (!T1->isAnyPointerType() && !T1->isMemberPointerType() && 4791 !T2->isAnyPointerType() && !T2->isMemberPointerType()) { 4792 if (T1->isNullPtrType() && 4793 E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) { 4794 E2 = ImpCastExprToType(E2, T1, CK_NullToPointer).get(); 4795 return T1; 4796 } 4797 if (T2->isNullPtrType() && 4798 E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) { 4799 E1 = ImpCastExprToType(E1, T2, CK_NullToPointer).get(); 4800 return T2; 4801 } 4802 return QualType(); 4803 } 4804 4805 if (E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) { 4806 if (T2->isMemberPointerType()) 4807 E1 = ImpCastExprToType(E1, T2, CK_NullToMemberPointer).get(); 4808 else 4809 E1 = ImpCastExprToType(E1, T2, CK_NullToPointer).get(); 4810 return T2; 4811 } 4812 if (E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) { 4813 if (T1->isMemberPointerType()) 4814 E2 = ImpCastExprToType(E2, T1, CK_NullToMemberPointer).get(); 4815 else 4816 E2 = ImpCastExprToType(E2, T1, CK_NullToPointer).get(); 4817 return T1; 4818 } 4819 4820 // Now both have to be pointers or member pointers. 4821 if ((!T1->isPointerType() && !T1->isMemberPointerType()) || 4822 (!T2->isPointerType() && !T2->isMemberPointerType())) 4823 return QualType(); 4824 4825 // Otherwise, of one of the operands has type "pointer to cv1 void," then 4826 // the other has type "pointer to cv2 T" and the composite pointer type is 4827 // "pointer to cv12 void," where cv12 is the union of cv1 and cv2. 4828 // Otherwise, the composite pointer type is a pointer type similar to the 4829 // type of one of the operands, with a cv-qualification signature that is 4830 // the union of the cv-qualification signatures of the operand types. 4831 // In practice, the first part here is redundant; it's subsumed by the second. 4832 // What we do here is, we build the two possible composite types, and try the 4833 // conversions in both directions. If only one works, or if the two composite 4834 // types are the same, we have succeeded. 4835 // FIXME: extended qualifiers? 4836 typedef SmallVector<unsigned, 4> QualifierVector; 4837 QualifierVector QualifierUnion; 4838 typedef SmallVector<std::pair<const Type *, const Type *>, 4> 4839 ContainingClassVector; 4840 ContainingClassVector MemberOfClass; 4841 QualType Composite1 = Context.getCanonicalType(T1), 4842 Composite2 = Context.getCanonicalType(T2); 4843 unsigned NeedConstBefore = 0; 4844 do { 4845 const PointerType *Ptr1, *Ptr2; 4846 if ((Ptr1 = Composite1->getAs<PointerType>()) && 4847 (Ptr2 = Composite2->getAs<PointerType>())) { 4848 Composite1 = Ptr1->getPointeeType(); 4849 Composite2 = Ptr2->getPointeeType(); 4850 4851 // If we're allowed to create a non-standard composite type, keep track 4852 // of where we need to fill in additional 'const' qualifiers. 4853 if (NonStandardCompositeType && 4854 Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers()) 4855 NeedConstBefore = QualifierUnion.size(); 4856 4857 QualifierUnion.push_back( 4858 Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers()); 4859 MemberOfClass.push_back(std::make_pair(nullptr, nullptr)); 4860 continue; 4861 } 4862 4863 const MemberPointerType *MemPtr1, *MemPtr2; 4864 if ((MemPtr1 = Composite1->getAs<MemberPointerType>()) && 4865 (MemPtr2 = Composite2->getAs<MemberPointerType>())) { 4866 Composite1 = MemPtr1->getPointeeType(); 4867 Composite2 = MemPtr2->getPointeeType(); 4868 4869 // If we're allowed to create a non-standard composite type, keep track 4870 // of where we need to fill in additional 'const' qualifiers. 4871 if (NonStandardCompositeType && 4872 Composite1.getCVRQualifiers() != Composite2.getCVRQualifiers()) 4873 NeedConstBefore = QualifierUnion.size(); 4874 4875 QualifierUnion.push_back( 4876 Composite1.getCVRQualifiers() | Composite2.getCVRQualifiers()); 4877 MemberOfClass.push_back(std::make_pair(MemPtr1->getClass(), 4878 MemPtr2->getClass())); 4879 continue; 4880 } 4881 4882 // FIXME: block pointer types? 4883 4884 // Cannot unwrap any more types. 4885 break; 4886 } while (true); 4887 4888 if (NeedConstBefore && NonStandardCompositeType) { 4889 // Extension: Add 'const' to qualifiers that come before the first qualifier 4890 // mismatch, so that our (non-standard!) composite type meets the 4891 // requirements of C++ [conv.qual]p4 bullet 3. 4892 for (unsigned I = 0; I != NeedConstBefore; ++I) { 4893 if ((QualifierUnion[I] & Qualifiers::Const) == 0) { 4894 QualifierUnion[I] = QualifierUnion[I] | Qualifiers::Const; 4895 *NonStandardCompositeType = true; 4896 } 4897 } 4898 } 4899 4900 // Rewrap the composites as pointers or member pointers with the union CVRs. 4901 ContainingClassVector::reverse_iterator MOC 4902 = MemberOfClass.rbegin(); 4903 for (QualifierVector::reverse_iterator 4904 I = QualifierUnion.rbegin(), 4905 E = QualifierUnion.rend(); 4906 I != E; (void)++I, ++MOC) { 4907 Qualifiers Quals = Qualifiers::fromCVRMask(*I); 4908 if (MOC->first && MOC->second) { 4909 // Rebuild member pointer type 4910 Composite1 = Context.getMemberPointerType( 4911 Context.getQualifiedType(Composite1, Quals), 4912 MOC->first); 4913 Composite2 = Context.getMemberPointerType( 4914 Context.getQualifiedType(Composite2, Quals), 4915 MOC->second); 4916 } else { 4917 // Rebuild pointer type 4918 Composite1 4919 = Context.getPointerType(Context.getQualifiedType(Composite1, Quals)); 4920 Composite2 4921 = Context.getPointerType(Context.getQualifiedType(Composite2, Quals)); 4922 } 4923 } 4924 4925 // Try to convert to the first composite pointer type. 4926 InitializedEntity Entity1 4927 = InitializedEntity::InitializeTemporary(Composite1); 4928 InitializationKind Kind 4929 = InitializationKind::CreateCopy(Loc, SourceLocation()); 4930 InitializationSequence E1ToC1(*this, Entity1, Kind, E1); 4931 InitializationSequence E2ToC1(*this, Entity1, Kind, E2); 4932 4933 if (E1ToC1 && E2ToC1) { 4934 // Conversion to Composite1 is viable. 4935 if (!Context.hasSameType(Composite1, Composite2)) { 4936 // Composite2 is a different type from Composite1. Check whether 4937 // Composite2 is also viable. 4938 InitializedEntity Entity2 4939 = InitializedEntity::InitializeTemporary(Composite2); 4940 InitializationSequence E1ToC2(*this, Entity2, Kind, E1); 4941 InitializationSequence E2ToC2(*this, Entity2, Kind, E2); 4942 if (E1ToC2 && E2ToC2) { 4943 // Both Composite1 and Composite2 are viable and are different; 4944 // this is an ambiguity. 4945 return QualType(); 4946 } 4947 } 4948 4949 // Convert E1 to Composite1 4950 ExprResult E1Result 4951 = E1ToC1.Perform(*this, Entity1, Kind, E1); 4952 if (E1Result.isInvalid()) 4953 return QualType(); 4954 E1 = E1Result.getAs<Expr>(); 4955 4956 // Convert E2 to Composite1 4957 ExprResult E2Result 4958 = E2ToC1.Perform(*this, Entity1, Kind, E2); 4959 if (E2Result.isInvalid()) 4960 return QualType(); 4961 E2 = E2Result.getAs<Expr>(); 4962 4963 return Composite1; 4964 } 4965 4966 // Check whether Composite2 is viable. 4967 InitializedEntity Entity2 4968 = InitializedEntity::InitializeTemporary(Composite2); 4969 InitializationSequence E1ToC2(*this, Entity2, Kind, E1); 4970 InitializationSequence E2ToC2(*this, Entity2, Kind, E2); 4971 if (!E1ToC2 || !E2ToC2) 4972 return QualType(); 4973 4974 // Convert E1 to Composite2 4975 ExprResult E1Result 4976 = E1ToC2.Perform(*this, Entity2, Kind, E1); 4977 if (E1Result.isInvalid()) 4978 return QualType(); 4979 E1 = E1Result.getAs<Expr>(); 4980 4981 // Convert E2 to Composite2 4982 ExprResult E2Result 4983 = E2ToC2.Perform(*this, Entity2, Kind, E2); 4984 if (E2Result.isInvalid()) 4985 return QualType(); 4986 E2 = E2Result.getAs<Expr>(); 4987 4988 return Composite2; 4989 } 4990 4991 ExprResult Sema::MaybeBindToTemporary(Expr *E) { 4992 if (!E) 4993 return ExprError(); 4994 4995 assert(!isa<CXXBindTemporaryExpr>(E) && "Double-bound temporary?"); 4996 4997 // If the result is a glvalue, we shouldn't bind it. 4998 if (!E->isRValue()) 4999 return E; 5000 5001 // In ARC, calls that return a retainable type can return retained, 5002 // in which case we have to insert a consuming cast. 5003 if (getLangOpts().ObjCAutoRefCount && 5004 E->getType()->isObjCRetainableType()) { 5005 5006 bool ReturnsRetained; 5007 5008 // For actual calls, we compute this by examining the type of the 5009 // called value. 5010 if (CallExpr *Call = dyn_cast<CallExpr>(E)) { 5011 Expr *Callee = Call->getCallee()->IgnoreParens(); 5012 QualType T = Callee->getType(); 5013 5014 if (T == Context.BoundMemberTy) { 5015 // Handle pointer-to-members. 5016 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Callee)) 5017 T = BinOp->getRHS()->getType(); 5018 else if (MemberExpr *Mem = dyn_cast<MemberExpr>(Callee)) 5019 T = Mem->getMemberDecl()->getType(); 5020 } 5021 5022 if (const PointerType *Ptr = T->getAs<PointerType>()) 5023 T = Ptr->getPointeeType(); 5024 else if (const BlockPointerType *Ptr = T->getAs<BlockPointerType>()) 5025 T = Ptr->getPointeeType(); 5026 else if (const MemberPointerType *MemPtr = T->getAs<MemberPointerType>()) 5027 T = MemPtr->getPointeeType(); 5028 5029 const FunctionType *FTy = T->getAs<FunctionType>(); 5030 assert(FTy && "call to value not of function type?"); 5031 ReturnsRetained = FTy->getExtInfo().getProducesResult(); 5032 5033 // ActOnStmtExpr arranges things so that StmtExprs of retainable 5034 // type always produce a +1 object. 5035 } else if (isa<StmtExpr>(E)) { 5036 ReturnsRetained = true; 5037 5038 // We hit this case with the lambda conversion-to-block optimization; 5039 // we don't want any extra casts here. 5040 } else if (isa<CastExpr>(E) && 5041 isa<BlockExpr>(cast<CastExpr>(E)->getSubExpr())) { 5042 return E; 5043 5044 // For message sends and property references, we try to find an 5045 // actual method. FIXME: we should infer retention by selector in 5046 // cases where we don't have an actual method. 5047 } else { 5048 ObjCMethodDecl *D = nullptr; 5049 if (ObjCMessageExpr *Send = dyn_cast<ObjCMessageExpr>(E)) { 5050 D = Send->getMethodDecl(); 5051 } else if (ObjCBoxedExpr *BoxedExpr = dyn_cast<ObjCBoxedExpr>(E)) { 5052 D = BoxedExpr->getBoxingMethod(); 5053 } else if (ObjCArrayLiteral *ArrayLit = dyn_cast<ObjCArrayLiteral>(E)) { 5054 D = ArrayLit->getArrayWithObjectsMethod(); 5055 } else if (ObjCDictionaryLiteral *DictLit 5056 = dyn_cast<ObjCDictionaryLiteral>(E)) { 5057 D = DictLit->getDictWithObjectsMethod(); 5058 } 5059 5060 ReturnsRetained = (D && D->hasAttr<NSReturnsRetainedAttr>()); 5061 5062 // Don't do reclaims on performSelector calls; despite their 5063 // return type, the invoked method doesn't necessarily actually 5064 // return an object. 5065 if (!ReturnsRetained && 5066 D && D->getMethodFamily() == OMF_performSelector) 5067 return E; 5068 } 5069 5070 // Don't reclaim an object of Class type. 5071 if (!ReturnsRetained && E->getType()->isObjCARCImplicitlyUnretainedType()) 5072 return E; 5073 5074 ExprNeedsCleanups = true; 5075 5076 CastKind ck = (ReturnsRetained ? CK_ARCConsumeObject 5077 : CK_ARCReclaimReturnedObject); 5078 return ImplicitCastExpr::Create(Context, E->getType(), ck, E, nullptr, 5079 VK_RValue); 5080 } 5081 5082 if (!getLangOpts().CPlusPlus) 5083 return E; 5084 5085 // Search for the base element type (cf. ASTContext::getBaseElementType) with 5086 // a fast path for the common case that the type is directly a RecordType. 5087 const Type *T = Context.getCanonicalType(E->getType().getTypePtr()); 5088 const RecordType *RT = nullptr; 5089 while (!RT) { 5090 switch (T->getTypeClass()) { 5091 case Type::Record: 5092 RT = cast<RecordType>(T); 5093 break; 5094 case Type::ConstantArray: 5095 case Type::IncompleteArray: 5096 case Type::VariableArray: 5097 case Type::DependentSizedArray: 5098 T = cast<ArrayType>(T)->getElementType().getTypePtr(); 5099 break; 5100 default: 5101 return E; 5102 } 5103 } 5104 5105 // That should be enough to guarantee that this type is complete, if we're 5106 // not processing a decltype expression. 5107 CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 5108 if (RD->isInvalidDecl() || RD->isDependentContext()) 5109 return E; 5110 5111 bool IsDecltype = ExprEvalContexts.back().IsDecltype; 5112 CXXDestructorDecl *Destructor = IsDecltype ? nullptr : LookupDestructor(RD); 5113 5114 if (Destructor) { 5115 MarkFunctionReferenced(E->getExprLoc(), Destructor); 5116 CheckDestructorAccess(E->getExprLoc(), Destructor, 5117 PDiag(diag::err_access_dtor_temp) 5118 << E->getType()); 5119 if (DiagnoseUseOfDecl(Destructor, E->getExprLoc())) 5120 return ExprError(); 5121 5122 // If destructor is trivial, we can avoid the extra copy. 5123 if (Destructor->isTrivial()) 5124 return E; 5125 5126 // We need a cleanup, but we don't need to remember the temporary. 5127 ExprNeedsCleanups = true; 5128 } 5129 5130 CXXTemporary *Temp = CXXTemporary::Create(Context, Destructor); 5131 CXXBindTemporaryExpr *Bind = CXXBindTemporaryExpr::Create(Context, Temp, E); 5132 5133 if (IsDecltype) 5134 ExprEvalContexts.back().DelayedDecltypeBinds.push_back(Bind); 5135 5136 return Bind; 5137 } 5138 5139 ExprResult 5140 Sema::MaybeCreateExprWithCleanups(ExprResult SubExpr) { 5141 if (SubExpr.isInvalid()) 5142 return ExprError(); 5143 5144 return MaybeCreateExprWithCleanups(SubExpr.get()); 5145 } 5146 5147 Expr *Sema::MaybeCreateExprWithCleanups(Expr *SubExpr) { 5148 assert(SubExpr && "subexpression can't be null!"); 5149 5150 CleanupVarDeclMarking(); 5151 5152 unsigned FirstCleanup = ExprEvalContexts.back().NumCleanupObjects; 5153 assert(ExprCleanupObjects.size() >= FirstCleanup); 5154 assert(ExprNeedsCleanups || ExprCleanupObjects.size() == FirstCleanup); 5155 if (!ExprNeedsCleanups) 5156 return SubExpr; 5157 5158 auto Cleanups = llvm::makeArrayRef(ExprCleanupObjects.begin() + FirstCleanup, 5159 ExprCleanupObjects.size() - FirstCleanup); 5160 5161 Expr *E = ExprWithCleanups::Create(Context, SubExpr, Cleanups); 5162 DiscardCleanupsInEvaluationContext(); 5163 5164 return E; 5165 } 5166 5167 Stmt *Sema::MaybeCreateStmtWithCleanups(Stmt *SubStmt) { 5168 assert(SubStmt && "sub-statement can't be null!"); 5169 5170 CleanupVarDeclMarking(); 5171 5172 if (!ExprNeedsCleanups) 5173 return SubStmt; 5174 5175 // FIXME: In order to attach the temporaries, wrap the statement into 5176 // a StmtExpr; currently this is only used for asm statements. 5177 // This is hacky, either create a new CXXStmtWithTemporaries statement or 5178 // a new AsmStmtWithTemporaries. 5179 CompoundStmt *CompStmt = new (Context) CompoundStmt(Context, SubStmt, 5180 SourceLocation(), 5181 SourceLocation()); 5182 Expr *E = new (Context) StmtExpr(CompStmt, Context.VoidTy, SourceLocation(), 5183 SourceLocation()); 5184 return MaybeCreateExprWithCleanups(E); 5185 } 5186 5187 /// Process the expression contained within a decltype. For such expressions, 5188 /// certain semantic checks on temporaries are delayed until this point, and 5189 /// are omitted for the 'topmost' call in the decltype expression. If the 5190 /// topmost call bound a temporary, strip that temporary off the expression. 5191 ExprResult Sema::ActOnDecltypeExpression(Expr *E) { 5192 assert(ExprEvalContexts.back().IsDecltype && "not in a decltype expression"); 5193 5194 // C++11 [expr.call]p11: 5195 // If a function call is a prvalue of object type, 5196 // -- if the function call is either 5197 // -- the operand of a decltype-specifier, or 5198 // -- the right operand of a comma operator that is the operand of a 5199 // decltype-specifier, 5200 // a temporary object is not introduced for the prvalue. 5201 5202 // Recursively rebuild ParenExprs and comma expressions to strip out the 5203 // outermost CXXBindTemporaryExpr, if any. 5204 if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) { 5205 ExprResult SubExpr = ActOnDecltypeExpression(PE->getSubExpr()); 5206 if (SubExpr.isInvalid()) 5207 return ExprError(); 5208 if (SubExpr.get() == PE->getSubExpr()) 5209 return E; 5210 return ActOnParenExpr(PE->getLParen(), PE->getRParen(), SubExpr.get()); 5211 } 5212 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 5213 if (BO->getOpcode() == BO_Comma) { 5214 ExprResult RHS = ActOnDecltypeExpression(BO->getRHS()); 5215 if (RHS.isInvalid()) 5216 return ExprError(); 5217 if (RHS.get() == BO->getRHS()) 5218 return E; 5219 return new (Context) BinaryOperator( 5220 BO->getLHS(), RHS.get(), BO_Comma, BO->getType(), BO->getValueKind(), 5221 BO->getObjectKind(), BO->getOperatorLoc(), BO->isFPContractable()); 5222 } 5223 } 5224 5225 CXXBindTemporaryExpr *TopBind = dyn_cast<CXXBindTemporaryExpr>(E); 5226 CallExpr *TopCall = TopBind ? dyn_cast<CallExpr>(TopBind->getSubExpr()) 5227 : nullptr; 5228 if (TopCall) 5229 E = TopCall; 5230 else 5231 TopBind = nullptr; 5232 5233 // Disable the special decltype handling now. 5234 ExprEvalContexts.back().IsDecltype = false; 5235 5236 // In MS mode, don't perform any extra checking of call return types within a 5237 // decltype expression. 5238 if (getLangOpts().MSVCCompat) 5239 return E; 5240 5241 // Perform the semantic checks we delayed until this point. 5242 for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeCalls.size(); 5243 I != N; ++I) { 5244 CallExpr *Call = ExprEvalContexts.back().DelayedDecltypeCalls[I]; 5245 if (Call == TopCall) 5246 continue; 5247 5248 if (CheckCallReturnType(Call->getCallReturnType(Context), 5249 Call->getLocStart(), 5250 Call, Call->getDirectCallee())) 5251 return ExprError(); 5252 } 5253 5254 // Now all relevant types are complete, check the destructors are accessible 5255 // and non-deleted, and annotate them on the temporaries. 5256 for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeBinds.size(); 5257 I != N; ++I) { 5258 CXXBindTemporaryExpr *Bind = 5259 ExprEvalContexts.back().DelayedDecltypeBinds[I]; 5260 if (Bind == TopBind) 5261 continue; 5262 5263 CXXTemporary *Temp = Bind->getTemporary(); 5264 5265 CXXRecordDecl *RD = 5266 Bind->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 5267 CXXDestructorDecl *Destructor = LookupDestructor(RD); 5268 Temp->setDestructor(Destructor); 5269 5270 MarkFunctionReferenced(Bind->getExprLoc(), Destructor); 5271 CheckDestructorAccess(Bind->getExprLoc(), Destructor, 5272 PDiag(diag::err_access_dtor_temp) 5273 << Bind->getType()); 5274 if (DiagnoseUseOfDecl(Destructor, Bind->getExprLoc())) 5275 return ExprError(); 5276 5277 // We need a cleanup, but we don't need to remember the temporary. 5278 ExprNeedsCleanups = true; 5279 } 5280 5281 // Possibly strip off the top CXXBindTemporaryExpr. 5282 return E; 5283 } 5284 5285 /// Note a set of 'operator->' functions that were used for a member access. 5286 static void noteOperatorArrows(Sema &S, 5287 ArrayRef<FunctionDecl *> OperatorArrows) { 5288 unsigned SkipStart = OperatorArrows.size(), SkipCount = 0; 5289 // FIXME: Make this configurable? 5290 unsigned Limit = 9; 5291 if (OperatorArrows.size() > Limit) { 5292 // Produce Limit-1 normal notes and one 'skipping' note. 5293 SkipStart = (Limit - 1) / 2 + (Limit - 1) % 2; 5294 SkipCount = OperatorArrows.size() - (Limit - 1); 5295 } 5296 5297 for (unsigned I = 0; I < OperatorArrows.size(); /**/) { 5298 if (I == SkipStart) { 5299 S.Diag(OperatorArrows[I]->getLocation(), 5300 diag::note_operator_arrows_suppressed) 5301 << SkipCount; 5302 I += SkipCount; 5303 } else { 5304 S.Diag(OperatorArrows[I]->getLocation(), diag::note_operator_arrow_here) 5305 << OperatorArrows[I]->getCallResultType(); 5306 ++I; 5307 } 5308 } 5309 } 5310 5311 ExprResult Sema::ActOnStartCXXMemberReference(Scope *S, Expr *Base, 5312 SourceLocation OpLoc, 5313 tok::TokenKind OpKind, 5314 ParsedType &ObjectType, 5315 bool &MayBePseudoDestructor) { 5316 // Since this might be a postfix expression, get rid of ParenListExprs. 5317 ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base); 5318 if (Result.isInvalid()) return ExprError(); 5319 Base = Result.get(); 5320 5321 Result = CheckPlaceholderExpr(Base); 5322 if (Result.isInvalid()) return ExprError(); 5323 Base = Result.get(); 5324 5325 QualType BaseType = Base->getType(); 5326 MayBePseudoDestructor = false; 5327 if (BaseType->isDependentType()) { 5328 // If we have a pointer to a dependent type and are using the -> operator, 5329 // the object type is the type that the pointer points to. We might still 5330 // have enough information about that type to do something useful. 5331 if (OpKind == tok::arrow) 5332 if (const PointerType *Ptr = BaseType->getAs<PointerType>()) 5333 BaseType = Ptr->getPointeeType(); 5334 5335 ObjectType = ParsedType::make(BaseType); 5336 MayBePseudoDestructor = true; 5337 return Base; 5338 } 5339 5340 // C++ [over.match.oper]p8: 5341 // [...] When operator->returns, the operator-> is applied to the value 5342 // returned, with the original second operand. 5343 if (OpKind == tok::arrow) { 5344 QualType StartingType = BaseType; 5345 bool NoArrowOperatorFound = false; 5346 bool FirstIteration = true; 5347 FunctionDecl *CurFD = dyn_cast<FunctionDecl>(CurContext); 5348 // The set of types we've considered so far. 5349 llvm::SmallPtrSet<CanQualType,8> CTypes; 5350 SmallVector<FunctionDecl*, 8> OperatorArrows; 5351 CTypes.insert(Context.getCanonicalType(BaseType)); 5352 5353 while (BaseType->isRecordType()) { 5354 if (OperatorArrows.size() >= getLangOpts().ArrowDepth) { 5355 Diag(OpLoc, diag::err_operator_arrow_depth_exceeded) 5356 << StartingType << getLangOpts().ArrowDepth << Base->getSourceRange(); 5357 noteOperatorArrows(*this, OperatorArrows); 5358 Diag(OpLoc, diag::note_operator_arrow_depth) 5359 << getLangOpts().ArrowDepth; 5360 return ExprError(); 5361 } 5362 5363 Result = BuildOverloadedArrowExpr( 5364 S, Base, OpLoc, 5365 // When in a template specialization and on the first loop iteration, 5366 // potentially give the default diagnostic (with the fixit in a 5367 // separate note) instead of having the error reported back to here 5368 // and giving a diagnostic with a fixit attached to the error itself. 5369 (FirstIteration && CurFD && CurFD->isFunctionTemplateSpecialization()) 5370 ? nullptr 5371 : &NoArrowOperatorFound); 5372 if (Result.isInvalid()) { 5373 if (NoArrowOperatorFound) { 5374 if (FirstIteration) { 5375 Diag(OpLoc, diag::err_typecheck_member_reference_suggestion) 5376 << BaseType << 1 << Base->getSourceRange() 5377 << FixItHint::CreateReplacement(OpLoc, "."); 5378 OpKind = tok::period; 5379 break; 5380 } 5381 Diag(OpLoc, diag::err_typecheck_member_reference_arrow) 5382 << BaseType << Base->getSourceRange(); 5383 CallExpr *CE = dyn_cast<CallExpr>(Base); 5384 if (Decl *CD = (CE ? CE->getCalleeDecl() : nullptr)) { 5385 Diag(CD->getLocStart(), 5386 diag::note_member_reference_arrow_from_operator_arrow); 5387 } 5388 } 5389 return ExprError(); 5390 } 5391 Base = Result.get(); 5392 if (CXXOperatorCallExpr *OpCall = dyn_cast<CXXOperatorCallExpr>(Base)) 5393 OperatorArrows.push_back(OpCall->getDirectCallee()); 5394 BaseType = Base->getType(); 5395 CanQualType CBaseType = Context.getCanonicalType(BaseType); 5396 if (!CTypes.insert(CBaseType).second) { 5397 Diag(OpLoc, diag::err_operator_arrow_circular) << StartingType; 5398 noteOperatorArrows(*this, OperatorArrows); 5399 return ExprError(); 5400 } 5401 FirstIteration = false; 5402 } 5403 5404 if (OpKind == tok::arrow && 5405 (BaseType->isPointerType() || BaseType->isObjCObjectPointerType())) 5406 BaseType = BaseType->getPointeeType(); 5407 } 5408 5409 // Objective-C properties allow "." access on Objective-C pointer types, 5410 // so adjust the base type to the object type itself. 5411 if (BaseType->isObjCObjectPointerType()) 5412 BaseType = BaseType->getPointeeType(); 5413 5414 // C++ [basic.lookup.classref]p2: 5415 // [...] If the type of the object expression is of pointer to scalar 5416 // type, the unqualified-id is looked up in the context of the complete 5417 // postfix-expression. 5418 // 5419 // This also indicates that we could be parsing a pseudo-destructor-name. 5420 // Note that Objective-C class and object types can be pseudo-destructor 5421 // expressions or normal member (ivar or property) access expressions. 5422 if (BaseType->isObjCObjectOrInterfaceType()) { 5423 MayBePseudoDestructor = true; 5424 } else if (!BaseType->isRecordType()) { 5425 ObjectType = ParsedType(); 5426 MayBePseudoDestructor = true; 5427 return Base; 5428 } 5429 5430 // The object type must be complete (or dependent), or 5431 // C++11 [expr.prim.general]p3: 5432 // Unlike the object expression in other contexts, *this is not required to 5433 // be of complete type for purposes of class member access (5.2.5) outside 5434 // the member function body. 5435 if (!BaseType->isDependentType() && 5436 !isThisOutsideMemberFunctionBody(BaseType) && 5437 RequireCompleteType(OpLoc, BaseType, diag::err_incomplete_member_access)) 5438 return ExprError(); 5439 5440 // C++ [basic.lookup.classref]p2: 5441 // If the id-expression in a class member access (5.2.5) is an 5442 // unqualified-id, and the type of the object expression is of a class 5443 // type C (or of pointer to a class type C), the unqualified-id is looked 5444 // up in the scope of class C. [...] 5445 ObjectType = ParsedType::make(BaseType); 5446 return Base; 5447 } 5448 5449 static bool CheckArrow(Sema& S, QualType& ObjectType, Expr *&Base, 5450 tok::TokenKind& OpKind, SourceLocation OpLoc) { 5451 if (Base->hasPlaceholderType()) { 5452 ExprResult result = S.CheckPlaceholderExpr(Base); 5453 if (result.isInvalid()) return true; 5454 Base = result.get(); 5455 } 5456 ObjectType = Base->getType(); 5457 5458 // C++ [expr.pseudo]p2: 5459 // The left-hand side of the dot operator shall be of scalar type. The 5460 // left-hand side of the arrow operator shall be of pointer to scalar type. 5461 // This scalar type is the object type. 5462 // Note that this is rather different from the normal handling for the 5463 // arrow operator. 5464 if (OpKind == tok::arrow) { 5465 if (const PointerType *Ptr = ObjectType->getAs<PointerType>()) { 5466 ObjectType = Ptr->getPointeeType(); 5467 } else if (!Base->isTypeDependent()) { 5468 // The user wrote "p->" when she probably meant "p."; fix it. 5469 S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion) 5470 << ObjectType << true 5471 << FixItHint::CreateReplacement(OpLoc, "."); 5472 if (S.isSFINAEContext()) 5473 return true; 5474 5475 OpKind = tok::period; 5476 } 5477 } 5478 5479 return false; 5480 } 5481 5482 ExprResult Sema::BuildPseudoDestructorExpr(Expr *Base, 5483 SourceLocation OpLoc, 5484 tok::TokenKind OpKind, 5485 const CXXScopeSpec &SS, 5486 TypeSourceInfo *ScopeTypeInfo, 5487 SourceLocation CCLoc, 5488 SourceLocation TildeLoc, 5489 PseudoDestructorTypeStorage Destructed) { 5490 TypeSourceInfo *DestructedTypeInfo = Destructed.getTypeSourceInfo(); 5491 5492 QualType ObjectType; 5493 if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc)) 5494 return ExprError(); 5495 5496 if (!ObjectType->isDependentType() && !ObjectType->isScalarType() && 5497 !ObjectType->isVectorType()) { 5498 if (getLangOpts().MSVCCompat && ObjectType->isVoidType()) 5499 Diag(OpLoc, diag::ext_pseudo_dtor_on_void) << Base->getSourceRange(); 5500 else { 5501 Diag(OpLoc, diag::err_pseudo_dtor_base_not_scalar) 5502 << ObjectType << Base->getSourceRange(); 5503 return ExprError(); 5504 } 5505 } 5506 5507 // C++ [expr.pseudo]p2: 5508 // [...] The cv-unqualified versions of the object type and of the type 5509 // designated by the pseudo-destructor-name shall be the same type. 5510 if (DestructedTypeInfo) { 5511 QualType DestructedType = DestructedTypeInfo->getType(); 5512 SourceLocation DestructedTypeStart 5513 = DestructedTypeInfo->getTypeLoc().getLocalSourceRange().getBegin(); 5514 if (!DestructedType->isDependentType() && !ObjectType->isDependentType()) { 5515 if (!Context.hasSameUnqualifiedType(DestructedType, ObjectType)) { 5516 Diag(DestructedTypeStart, diag::err_pseudo_dtor_type_mismatch) 5517 << ObjectType << DestructedType << Base->getSourceRange() 5518 << DestructedTypeInfo->getTypeLoc().getLocalSourceRange(); 5519 5520 // Recover by setting the destructed type to the object type. 5521 DestructedType = ObjectType; 5522 DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType, 5523 DestructedTypeStart); 5524 Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo); 5525 } else if (DestructedType.getObjCLifetime() != 5526 ObjectType.getObjCLifetime()) { 5527 5528 if (DestructedType.getObjCLifetime() == Qualifiers::OCL_None) { 5529 // Okay: just pretend that the user provided the correctly-qualified 5530 // type. 5531 } else { 5532 Diag(DestructedTypeStart, diag::err_arc_pseudo_dtor_inconstant_quals) 5533 << ObjectType << DestructedType << Base->getSourceRange() 5534 << DestructedTypeInfo->getTypeLoc().getLocalSourceRange(); 5535 } 5536 5537 // Recover by setting the destructed type to the object type. 5538 DestructedType = ObjectType; 5539 DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType, 5540 DestructedTypeStart); 5541 Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo); 5542 } 5543 } 5544 } 5545 5546 // C++ [expr.pseudo]p2: 5547 // [...] Furthermore, the two type-names in a pseudo-destructor-name of the 5548 // form 5549 // 5550 // ::[opt] nested-name-specifier[opt] type-name :: ~ type-name 5551 // 5552 // shall designate the same scalar type. 5553 if (ScopeTypeInfo) { 5554 QualType ScopeType = ScopeTypeInfo->getType(); 5555 if (!ScopeType->isDependentType() && !ObjectType->isDependentType() && 5556 !Context.hasSameUnqualifiedType(ScopeType, ObjectType)) { 5557 5558 Diag(ScopeTypeInfo->getTypeLoc().getLocalSourceRange().getBegin(), 5559 diag::err_pseudo_dtor_type_mismatch) 5560 << ObjectType << ScopeType << Base->getSourceRange() 5561 << ScopeTypeInfo->getTypeLoc().getLocalSourceRange(); 5562 5563 ScopeType = QualType(); 5564 ScopeTypeInfo = nullptr; 5565 } 5566 } 5567 5568 Expr *Result 5569 = new (Context) CXXPseudoDestructorExpr(Context, Base, 5570 OpKind == tok::arrow, OpLoc, 5571 SS.getWithLocInContext(Context), 5572 ScopeTypeInfo, 5573 CCLoc, 5574 TildeLoc, 5575 Destructed); 5576 5577 return Result; 5578 } 5579 5580 ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base, 5581 SourceLocation OpLoc, 5582 tok::TokenKind OpKind, 5583 CXXScopeSpec &SS, 5584 UnqualifiedId &FirstTypeName, 5585 SourceLocation CCLoc, 5586 SourceLocation TildeLoc, 5587 UnqualifiedId &SecondTypeName) { 5588 assert((FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId || 5589 FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) && 5590 "Invalid first type name in pseudo-destructor"); 5591 assert((SecondTypeName.getKind() == UnqualifiedId::IK_TemplateId || 5592 SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) && 5593 "Invalid second type name in pseudo-destructor"); 5594 5595 QualType ObjectType; 5596 if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc)) 5597 return ExprError(); 5598 5599 // Compute the object type that we should use for name lookup purposes. Only 5600 // record types and dependent types matter. 5601 ParsedType ObjectTypePtrForLookup; 5602 if (!SS.isSet()) { 5603 if (ObjectType->isRecordType()) 5604 ObjectTypePtrForLookup = ParsedType::make(ObjectType); 5605 else if (ObjectType->isDependentType()) 5606 ObjectTypePtrForLookup = ParsedType::make(Context.DependentTy); 5607 } 5608 5609 // Convert the name of the type being destructed (following the ~) into a 5610 // type (with source-location information). 5611 QualType DestructedType; 5612 TypeSourceInfo *DestructedTypeInfo = nullptr; 5613 PseudoDestructorTypeStorage Destructed; 5614 if (SecondTypeName.getKind() == UnqualifiedId::IK_Identifier) { 5615 ParsedType T = getTypeName(*SecondTypeName.Identifier, 5616 SecondTypeName.StartLocation, 5617 S, &SS, true, false, ObjectTypePtrForLookup); 5618 if (!T && 5619 ((SS.isSet() && !computeDeclContext(SS, false)) || 5620 (!SS.isSet() && ObjectType->isDependentType()))) { 5621 // The name of the type being destroyed is a dependent name, and we 5622 // couldn't find anything useful in scope. Just store the identifier and 5623 // it's location, and we'll perform (qualified) name lookup again at 5624 // template instantiation time. 5625 Destructed = PseudoDestructorTypeStorage(SecondTypeName.Identifier, 5626 SecondTypeName.StartLocation); 5627 } else if (!T) { 5628 Diag(SecondTypeName.StartLocation, 5629 diag::err_pseudo_dtor_destructor_non_type) 5630 << SecondTypeName.Identifier << ObjectType; 5631 if (isSFINAEContext()) 5632 return ExprError(); 5633 5634 // Recover by assuming we had the right type all along. 5635 DestructedType = ObjectType; 5636 } else 5637 DestructedType = GetTypeFromParser(T, &DestructedTypeInfo); 5638 } else { 5639 // Resolve the template-id to a type. 5640 TemplateIdAnnotation *TemplateId = SecondTypeName.TemplateId; 5641 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(), 5642 TemplateId->NumArgs); 5643 TypeResult T = ActOnTemplateIdType(TemplateId->SS, 5644 TemplateId->TemplateKWLoc, 5645 TemplateId->Template, 5646 TemplateId->TemplateNameLoc, 5647 TemplateId->LAngleLoc, 5648 TemplateArgsPtr, 5649 TemplateId->RAngleLoc); 5650 if (T.isInvalid() || !T.get()) { 5651 // Recover by assuming we had the right type all along. 5652 DestructedType = ObjectType; 5653 } else 5654 DestructedType = GetTypeFromParser(T.get(), &DestructedTypeInfo); 5655 } 5656 5657 // If we've performed some kind of recovery, (re-)build the type source 5658 // information. 5659 if (!DestructedType.isNull()) { 5660 if (!DestructedTypeInfo) 5661 DestructedTypeInfo = Context.getTrivialTypeSourceInfo(DestructedType, 5662 SecondTypeName.StartLocation); 5663 Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo); 5664 } 5665 5666 // Convert the name of the scope type (the type prior to '::') into a type. 5667 TypeSourceInfo *ScopeTypeInfo = nullptr; 5668 QualType ScopeType; 5669 if (FirstTypeName.getKind() == UnqualifiedId::IK_TemplateId || 5670 FirstTypeName.Identifier) { 5671 if (FirstTypeName.getKind() == UnqualifiedId::IK_Identifier) { 5672 ParsedType T = getTypeName(*FirstTypeName.Identifier, 5673 FirstTypeName.StartLocation, 5674 S, &SS, true, false, ObjectTypePtrForLookup); 5675 if (!T) { 5676 Diag(FirstTypeName.StartLocation, 5677 diag::err_pseudo_dtor_destructor_non_type) 5678 << FirstTypeName.Identifier << ObjectType; 5679 5680 if (isSFINAEContext()) 5681 return ExprError(); 5682 5683 // Just drop this type. It's unnecessary anyway. 5684 ScopeType = QualType(); 5685 } else 5686 ScopeType = GetTypeFromParser(T, &ScopeTypeInfo); 5687 } else { 5688 // Resolve the template-id to a type. 5689 TemplateIdAnnotation *TemplateId = FirstTypeName.TemplateId; 5690 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(), 5691 TemplateId->NumArgs); 5692 TypeResult T = ActOnTemplateIdType(TemplateId->SS, 5693 TemplateId->TemplateKWLoc, 5694 TemplateId->Template, 5695 TemplateId->TemplateNameLoc, 5696 TemplateId->LAngleLoc, 5697 TemplateArgsPtr, 5698 TemplateId->RAngleLoc); 5699 if (T.isInvalid() || !T.get()) { 5700 // Recover by dropping this type. 5701 ScopeType = QualType(); 5702 } else 5703 ScopeType = GetTypeFromParser(T.get(), &ScopeTypeInfo); 5704 } 5705 } 5706 5707 if (!ScopeType.isNull() && !ScopeTypeInfo) 5708 ScopeTypeInfo = Context.getTrivialTypeSourceInfo(ScopeType, 5709 FirstTypeName.StartLocation); 5710 5711 5712 return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, SS, 5713 ScopeTypeInfo, CCLoc, TildeLoc, 5714 Destructed); 5715 } 5716 5717 ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base, 5718 SourceLocation OpLoc, 5719 tok::TokenKind OpKind, 5720 SourceLocation TildeLoc, 5721 const DeclSpec& DS) { 5722 QualType ObjectType; 5723 if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc)) 5724 return ExprError(); 5725 5726 QualType T = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc(), 5727 false); 5728 5729 TypeLocBuilder TLB; 5730 DecltypeTypeLoc DecltypeTL = TLB.push<DecltypeTypeLoc>(T); 5731 DecltypeTL.setNameLoc(DS.getTypeSpecTypeLoc()); 5732 TypeSourceInfo *DestructedTypeInfo = TLB.getTypeSourceInfo(Context, T); 5733 PseudoDestructorTypeStorage Destructed(DestructedTypeInfo); 5734 5735 return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, CXXScopeSpec(), 5736 nullptr, SourceLocation(), TildeLoc, 5737 Destructed); 5738 } 5739 5740 ExprResult Sema::BuildCXXMemberCallExpr(Expr *E, NamedDecl *FoundDecl, 5741 CXXConversionDecl *Method, 5742 bool HadMultipleCandidates) { 5743 if (Method->getParent()->isLambda() && 5744 Method->getConversionType()->isBlockPointerType()) { 5745 // This is a lambda coversion to block pointer; check if the argument 5746 // is a LambdaExpr. 5747 Expr *SubE = E; 5748 CastExpr *CE = dyn_cast<CastExpr>(SubE); 5749 if (CE && CE->getCastKind() == CK_NoOp) 5750 SubE = CE->getSubExpr(); 5751 SubE = SubE->IgnoreParens(); 5752 if (CXXBindTemporaryExpr *BE = dyn_cast<CXXBindTemporaryExpr>(SubE)) 5753 SubE = BE->getSubExpr(); 5754 if (isa<LambdaExpr>(SubE)) { 5755 // For the conversion to block pointer on a lambda expression, we 5756 // construct a special BlockLiteral instead; this doesn't really make 5757 // a difference in ARC, but outside of ARC the resulting block literal 5758 // follows the normal lifetime rules for block literals instead of being 5759 // autoreleased. 5760 DiagnosticErrorTrap Trap(Diags); 5761 ExprResult Exp = BuildBlockForLambdaConversion(E->getExprLoc(), 5762 E->getExprLoc(), 5763 Method, E); 5764 if (Exp.isInvalid()) 5765 Diag(E->getExprLoc(), diag::note_lambda_to_block_conv); 5766 return Exp; 5767 } 5768 } 5769 5770 ExprResult Exp = PerformObjectArgumentInitialization(E, /*Qualifier=*/nullptr, 5771 FoundDecl, Method); 5772 if (Exp.isInvalid()) 5773 return true; 5774 5775 MemberExpr *ME = new (Context) MemberExpr( 5776 Exp.get(), /*IsArrow=*/false, SourceLocation(), Method, SourceLocation(), 5777 Context.BoundMemberTy, VK_RValue, OK_Ordinary); 5778 if (HadMultipleCandidates) 5779 ME->setHadMultipleCandidates(true); 5780 MarkMemberReferenced(ME); 5781 5782 QualType ResultType = Method->getReturnType(); 5783 ExprValueKind VK = Expr::getValueKindForType(ResultType); 5784 ResultType = ResultType.getNonLValueExprType(Context); 5785 5786 CXXMemberCallExpr *CE = 5787 new (Context) CXXMemberCallExpr(Context, ME, None, ResultType, VK, 5788 Exp.get()->getLocEnd()); 5789 return CE; 5790 } 5791 5792 ExprResult Sema::BuildCXXNoexceptExpr(SourceLocation KeyLoc, Expr *Operand, 5793 SourceLocation RParen) { 5794 if (ActiveTemplateInstantiations.empty() && 5795 Operand->HasSideEffects(Context, false)) { 5796 // The expression operand for noexcept is in an unevaluated expression 5797 // context, so side effects could result in unintended consequences. 5798 Diag(Operand->getExprLoc(), diag::warn_side_effects_unevaluated_context); 5799 } 5800 5801 CanThrowResult CanThrow = canThrow(Operand); 5802 return new (Context) 5803 CXXNoexceptExpr(Context.BoolTy, Operand, CanThrow, KeyLoc, RParen); 5804 } 5805 5806 ExprResult Sema::ActOnNoexceptExpr(SourceLocation KeyLoc, SourceLocation, 5807 Expr *Operand, SourceLocation RParen) { 5808 return BuildCXXNoexceptExpr(KeyLoc, Operand, RParen); 5809 } 5810 5811 static bool IsSpecialDiscardedValue(Expr *E) { 5812 // In C++11, discarded-value expressions of a certain form are special, 5813 // according to [expr]p10: 5814 // The lvalue-to-rvalue conversion (4.1) is applied only if the 5815 // expression is an lvalue of volatile-qualified type and it has 5816 // one of the following forms: 5817 E = E->IgnoreParens(); 5818 5819 // - id-expression (5.1.1), 5820 if (isa<DeclRefExpr>(E)) 5821 return true; 5822 5823 // - subscripting (5.2.1), 5824 if (isa<ArraySubscriptExpr>(E)) 5825 return true; 5826 5827 // - class member access (5.2.5), 5828 if (isa<MemberExpr>(E)) 5829 return true; 5830 5831 // - indirection (5.3.1), 5832 if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) 5833 if (UO->getOpcode() == UO_Deref) 5834 return true; 5835 5836 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { 5837 // - pointer-to-member operation (5.5), 5838 if (BO->isPtrMemOp()) 5839 return true; 5840 5841 // - comma expression (5.18) where the right operand is one of the above. 5842 if (BO->getOpcode() == BO_Comma) 5843 return IsSpecialDiscardedValue(BO->getRHS()); 5844 } 5845 5846 // - conditional expression (5.16) where both the second and the third 5847 // operands are one of the above, or 5848 if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) 5849 return IsSpecialDiscardedValue(CO->getTrueExpr()) && 5850 IsSpecialDiscardedValue(CO->getFalseExpr()); 5851 // The related edge case of "*x ?: *x". 5852 if (BinaryConditionalOperator *BCO = 5853 dyn_cast<BinaryConditionalOperator>(E)) { 5854 if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(BCO->getTrueExpr())) 5855 return IsSpecialDiscardedValue(OVE->getSourceExpr()) && 5856 IsSpecialDiscardedValue(BCO->getFalseExpr()); 5857 } 5858 5859 // Objective-C++ extensions to the rule. 5860 if (isa<PseudoObjectExpr>(E) || isa<ObjCIvarRefExpr>(E)) 5861 return true; 5862 5863 return false; 5864 } 5865 5866 /// Perform the conversions required for an expression used in a 5867 /// context that ignores the result. 5868 ExprResult Sema::IgnoredValueConversions(Expr *E) { 5869 if (E->hasPlaceholderType()) { 5870 ExprResult result = CheckPlaceholderExpr(E); 5871 if (result.isInvalid()) return E; 5872 E = result.get(); 5873 } 5874 5875 // C99 6.3.2.1: 5876 // [Except in specific positions,] an lvalue that does not have 5877 // array type is converted to the value stored in the 5878 // designated object (and is no longer an lvalue). 5879 if (E->isRValue()) { 5880 // In C, function designators (i.e. expressions of function type) 5881 // are r-values, but we still want to do function-to-pointer decay 5882 // on them. This is both technically correct and convenient for 5883 // some clients. 5884 if (!getLangOpts().CPlusPlus && E->getType()->isFunctionType()) 5885 return DefaultFunctionArrayConversion(E); 5886 5887 return E; 5888 } 5889 5890 if (getLangOpts().CPlusPlus) { 5891 // The C++11 standard defines the notion of a discarded-value expression; 5892 // normally, we don't need to do anything to handle it, but if it is a 5893 // volatile lvalue with a special form, we perform an lvalue-to-rvalue 5894 // conversion. 5895 if (getLangOpts().CPlusPlus11 && E->isGLValue() && 5896 E->getType().isVolatileQualified() && 5897 IsSpecialDiscardedValue(E)) { 5898 ExprResult Res = DefaultLvalueConversion(E); 5899 if (Res.isInvalid()) 5900 return E; 5901 E = Res.get(); 5902 } 5903 return E; 5904 } 5905 5906 // GCC seems to also exclude expressions of incomplete enum type. 5907 if (const EnumType *T = E->getType()->getAs<EnumType>()) { 5908 if (!T->getDecl()->isComplete()) { 5909 // FIXME: stupid workaround for a codegen bug! 5910 E = ImpCastExprToType(E, Context.VoidTy, CK_ToVoid).get(); 5911 return E; 5912 } 5913 } 5914 5915 ExprResult Res = DefaultFunctionArrayLvalueConversion(E); 5916 if (Res.isInvalid()) 5917 return E; 5918 E = Res.get(); 5919 5920 if (!E->getType()->isVoidType()) 5921 RequireCompleteType(E->getExprLoc(), E->getType(), 5922 diag::err_incomplete_type); 5923 return E; 5924 } 5925 5926 // If we can unambiguously determine whether Var can never be used 5927 // in a constant expression, return true. 5928 // - if the variable and its initializer are non-dependent, then 5929 // we can unambiguously check if the variable is a constant expression. 5930 // - if the initializer is not value dependent - we can determine whether 5931 // it can be used to initialize a constant expression. If Init can not 5932 // be used to initialize a constant expression we conclude that Var can 5933 // never be a constant expression. 5934 // - FXIME: if the initializer is dependent, we can still do some analysis and 5935 // identify certain cases unambiguously as non-const by using a Visitor: 5936 // - such as those that involve odr-use of a ParmVarDecl, involve a new 5937 // delete, lambda-expr, dynamic-cast, reinterpret-cast etc... 5938 static inline bool VariableCanNeverBeAConstantExpression(VarDecl *Var, 5939 ASTContext &Context) { 5940 if (isa<ParmVarDecl>(Var)) return true; 5941 const VarDecl *DefVD = nullptr; 5942 5943 // If there is no initializer - this can not be a constant expression. 5944 if (!Var->getAnyInitializer(DefVD)) return true; 5945 assert(DefVD); 5946 if (DefVD->isWeak()) return false; 5947 EvaluatedStmt *Eval = DefVD->ensureEvaluatedStmt(); 5948 5949 Expr *Init = cast<Expr>(Eval->Value); 5950 5951 if (Var->getType()->isDependentType() || Init->isValueDependent()) { 5952 // FIXME: Teach the constant evaluator to deal with the non-dependent parts 5953 // of value-dependent expressions, and use it here to determine whether the 5954 // initializer is a potential constant expression. 5955 return false; 5956 } 5957 5958 return !IsVariableAConstantExpression(Var, Context); 5959 } 5960 5961 /// \brief Check if the current lambda has any potential captures 5962 /// that must be captured by any of its enclosing lambdas that are ready to 5963 /// capture. If there is a lambda that can capture a nested 5964 /// potential-capture, go ahead and do so. Also, check to see if any 5965 /// variables are uncaptureable or do not involve an odr-use so do not 5966 /// need to be captured. 5967 5968 static void CheckIfAnyEnclosingLambdasMustCaptureAnyPotentialCaptures( 5969 Expr *const FE, LambdaScopeInfo *const CurrentLSI, Sema &S) { 5970 5971 assert(!S.isUnevaluatedContext()); 5972 assert(S.CurContext->isDependentContext()); 5973 assert(CurrentLSI->CallOperator == S.CurContext && 5974 "The current call operator must be synchronized with Sema's CurContext"); 5975 5976 const bool IsFullExprInstantiationDependent = FE->isInstantiationDependent(); 5977 5978 ArrayRef<const FunctionScopeInfo *> FunctionScopesArrayRef( 5979 S.FunctionScopes.data(), S.FunctionScopes.size()); 5980 5981 // All the potentially captureable variables in the current nested 5982 // lambda (within a generic outer lambda), must be captured by an 5983 // outer lambda that is enclosed within a non-dependent context. 5984 const unsigned NumPotentialCaptures = 5985 CurrentLSI->getNumPotentialVariableCaptures(); 5986 for (unsigned I = 0; I != NumPotentialCaptures; ++I) { 5987 Expr *VarExpr = nullptr; 5988 VarDecl *Var = nullptr; 5989 CurrentLSI->getPotentialVariableCapture(I, Var, VarExpr); 5990 // If the variable is clearly identified as non-odr-used and the full 5991 // expression is not instantiation dependent, only then do we not 5992 // need to check enclosing lambda's for speculative captures. 5993 // For e.g.: 5994 // Even though 'x' is not odr-used, it should be captured. 5995 // int test() { 5996 // const int x = 10; 5997 // auto L = [=](auto a) { 5998 // (void) +x + a; 5999 // }; 6000 // } 6001 if (CurrentLSI->isVariableExprMarkedAsNonODRUsed(VarExpr) && 6002 !IsFullExprInstantiationDependent) 6003 continue; 6004 6005 // If we have a capture-capable lambda for the variable, go ahead and 6006 // capture the variable in that lambda (and all its enclosing lambdas). 6007 if (const Optional<unsigned> Index = 6008 getStackIndexOfNearestEnclosingCaptureCapableLambda( 6009 FunctionScopesArrayRef, Var, S)) { 6010 const unsigned FunctionScopeIndexOfCapturableLambda = Index.getValue(); 6011 MarkVarDeclODRUsed(Var, VarExpr->getExprLoc(), S, 6012 &FunctionScopeIndexOfCapturableLambda); 6013 } 6014 const bool IsVarNeverAConstantExpression = 6015 VariableCanNeverBeAConstantExpression(Var, S.Context); 6016 if (!IsFullExprInstantiationDependent || IsVarNeverAConstantExpression) { 6017 // This full expression is not instantiation dependent or the variable 6018 // can not be used in a constant expression - which means 6019 // this variable must be odr-used here, so diagnose a 6020 // capture violation early, if the variable is un-captureable. 6021 // This is purely for diagnosing errors early. Otherwise, this 6022 // error would get diagnosed when the lambda becomes capture ready. 6023 QualType CaptureType, DeclRefType; 6024 SourceLocation ExprLoc = VarExpr->getExprLoc(); 6025 if (S.tryCaptureVariable(Var, ExprLoc, S.TryCapture_Implicit, 6026 /*EllipsisLoc*/ SourceLocation(), 6027 /*BuildAndDiagnose*/false, CaptureType, 6028 DeclRefType, nullptr)) { 6029 // We will never be able to capture this variable, and we need 6030 // to be able to in any and all instantiations, so diagnose it. 6031 S.tryCaptureVariable(Var, ExprLoc, S.TryCapture_Implicit, 6032 /*EllipsisLoc*/ SourceLocation(), 6033 /*BuildAndDiagnose*/true, CaptureType, 6034 DeclRefType, nullptr); 6035 } 6036 } 6037 } 6038 6039 // Check if 'this' needs to be captured. 6040 if (CurrentLSI->hasPotentialThisCapture()) { 6041 // If we have a capture-capable lambda for 'this', go ahead and capture 6042 // 'this' in that lambda (and all its enclosing lambdas). 6043 if (const Optional<unsigned> Index = 6044 getStackIndexOfNearestEnclosingCaptureCapableLambda( 6045 FunctionScopesArrayRef, /*0 is 'this'*/ nullptr, S)) { 6046 const unsigned FunctionScopeIndexOfCapturableLambda = Index.getValue(); 6047 S.CheckCXXThisCapture(CurrentLSI->PotentialThisCaptureLocation, 6048 /*Explicit*/ false, /*BuildAndDiagnose*/ true, 6049 &FunctionScopeIndexOfCapturableLambda); 6050 } 6051 } 6052 6053 // Reset all the potential captures at the end of each full-expression. 6054 CurrentLSI->clearPotentialCaptures(); 6055 } 6056 6057 static ExprResult attemptRecovery(Sema &SemaRef, 6058 const TypoCorrectionConsumer &Consumer, 6059 TypoCorrection TC) { 6060 LookupResult R(SemaRef, Consumer.getLookupResult().getLookupNameInfo(), 6061 Consumer.getLookupResult().getLookupKind()); 6062 const CXXScopeSpec *SS = Consumer.getSS(); 6063 CXXScopeSpec NewSS; 6064 6065 // Use an approprate CXXScopeSpec for building the expr. 6066 if (auto *NNS = TC.getCorrectionSpecifier()) 6067 NewSS.MakeTrivial(SemaRef.Context, NNS, TC.getCorrectionRange()); 6068 else if (SS && !TC.WillReplaceSpecifier()) 6069 NewSS = *SS; 6070 6071 if (auto *ND = TC.getCorrectionDecl()) { 6072 R.setLookupName(ND->getDeclName()); 6073 R.addDecl(ND); 6074 if (ND->isCXXClassMember()) { 6075 // Figure out the correct naming class to add to the LookupResult. 6076 CXXRecordDecl *Record = nullptr; 6077 if (auto *NNS = TC.getCorrectionSpecifier()) 6078 Record = NNS->getAsType()->getAsCXXRecordDecl(); 6079 if (!Record) 6080 Record = 6081 dyn_cast<CXXRecordDecl>(ND->getDeclContext()->getRedeclContext()); 6082 if (Record) 6083 R.setNamingClass(Record); 6084 6085 // Detect and handle the case where the decl might be an implicit 6086 // member. 6087 bool MightBeImplicitMember; 6088 if (!Consumer.isAddressOfOperand()) 6089 MightBeImplicitMember = true; 6090 else if (!NewSS.isEmpty()) 6091 MightBeImplicitMember = false; 6092 else if (R.isOverloadedResult()) 6093 MightBeImplicitMember = false; 6094 else if (R.isUnresolvableResult()) 6095 MightBeImplicitMember = true; 6096 else 6097 MightBeImplicitMember = isa<FieldDecl>(ND) || 6098 isa<IndirectFieldDecl>(ND) || 6099 isa<MSPropertyDecl>(ND); 6100 6101 if (MightBeImplicitMember) 6102 return SemaRef.BuildPossibleImplicitMemberExpr( 6103 NewSS, /*TemplateKWLoc*/ SourceLocation(), R, 6104 /*TemplateArgs*/ nullptr); 6105 } else if (auto *Ivar = dyn_cast<ObjCIvarDecl>(ND)) { 6106 return SemaRef.LookupInObjCMethod(R, Consumer.getScope(), 6107 Ivar->getIdentifier()); 6108 } 6109 } 6110 6111 return SemaRef.BuildDeclarationNameExpr(NewSS, R, /*NeedsADL*/ false, 6112 /*AcceptInvalidDecl*/ true); 6113 } 6114 6115 namespace { 6116 class FindTypoExprs : public RecursiveASTVisitor<FindTypoExprs> { 6117 llvm::SmallSetVector<TypoExpr *, 2> &TypoExprs; 6118 6119 public: 6120 explicit FindTypoExprs(llvm::SmallSetVector<TypoExpr *, 2> &TypoExprs) 6121 : TypoExprs(TypoExprs) {} 6122 bool VisitTypoExpr(TypoExpr *TE) { 6123 TypoExprs.insert(TE); 6124 return true; 6125 } 6126 }; 6127 6128 class TransformTypos : public TreeTransform<TransformTypos> { 6129 typedef TreeTransform<TransformTypos> BaseTransform; 6130 6131 llvm::function_ref<ExprResult(Expr *)> ExprFilter; 6132 llvm::SmallSetVector<TypoExpr *, 2> TypoExprs, AmbiguousTypoExprs; 6133 llvm::SmallDenseMap<TypoExpr *, ExprResult, 2> TransformCache; 6134 llvm::SmallDenseMap<OverloadExpr *, Expr *, 4> OverloadResolution; 6135 6136 /// \brief Emit diagnostics for all of the TypoExprs encountered. 6137 /// If the TypoExprs were successfully corrected, then the diagnostics should 6138 /// suggest the corrections. Otherwise the diagnostics will not suggest 6139 /// anything (having been passed an empty TypoCorrection). 6140 void EmitAllDiagnostics() { 6141 for (auto E : TypoExprs) { 6142 TypoExpr *TE = cast<TypoExpr>(E); 6143 auto &State = SemaRef.getTypoExprState(TE); 6144 if (State.DiagHandler) { 6145 TypoCorrection TC = State.Consumer->getCurrentCorrection(); 6146 ExprResult Replacement = TransformCache[TE]; 6147 6148 // Extract the NamedDecl from the transformed TypoExpr and add it to the 6149 // TypoCorrection, replacing the existing decls. This ensures the right 6150 // NamedDecl is used in diagnostics e.g. in the case where overload 6151 // resolution was used to select one from several possible decls that 6152 // had been stored in the TypoCorrection. 6153 if (auto *ND = getDeclFromExpr( 6154 Replacement.isInvalid() ? nullptr : Replacement.get())) 6155 TC.setCorrectionDecl(ND); 6156 6157 State.DiagHandler(TC); 6158 } 6159 SemaRef.clearDelayedTypo(TE); 6160 } 6161 } 6162 6163 /// \brief If corrections for the first TypoExpr have been exhausted for a 6164 /// given combination of the other TypoExprs, retry those corrections against 6165 /// the next combination of substitutions for the other TypoExprs by advancing 6166 /// to the next potential correction of the second TypoExpr. For the second 6167 /// and subsequent TypoExprs, if its stream of corrections has been exhausted, 6168 /// the stream is reset and the next TypoExpr's stream is advanced by one (a 6169 /// TypoExpr's correction stream is advanced by removing the TypoExpr from the 6170 /// TransformCache). Returns true if there is still any untried combinations 6171 /// of corrections. 6172 bool CheckAndAdvanceTypoExprCorrectionStreams() { 6173 for (auto TE : TypoExprs) { 6174 auto &State = SemaRef.getTypoExprState(TE); 6175 TransformCache.erase(TE); 6176 if (!State.Consumer->finished()) 6177 return true; 6178 State.Consumer->resetCorrectionStream(); 6179 } 6180 return false; 6181 } 6182 6183 NamedDecl *getDeclFromExpr(Expr *E) { 6184 if (auto *OE = dyn_cast_or_null<OverloadExpr>(E)) 6185 E = OverloadResolution[OE]; 6186 6187 if (!E) 6188 return nullptr; 6189 if (auto *DRE = dyn_cast<DeclRefExpr>(E)) 6190 return DRE->getDecl(); 6191 if (auto *ME = dyn_cast<MemberExpr>(E)) 6192 return ME->getMemberDecl(); 6193 // FIXME: Add any other expr types that could be be seen by the delayed typo 6194 // correction TreeTransform for which the corresponding TypoCorrection could 6195 // contain multiple decls. 6196 return nullptr; 6197 } 6198 6199 ExprResult TryTransform(Expr *E) { 6200 Sema::SFINAETrap Trap(SemaRef); 6201 ExprResult Res = TransformExpr(E); 6202 if (Trap.hasErrorOccurred() || Res.isInvalid()) 6203 return ExprError(); 6204 6205 return ExprFilter(Res.get()); 6206 } 6207 6208 public: 6209 TransformTypos(Sema &SemaRef, llvm::function_ref<ExprResult(Expr *)> Filter) 6210 : BaseTransform(SemaRef), ExprFilter(Filter) {} 6211 6212 ExprResult RebuildCallExpr(Expr *Callee, SourceLocation LParenLoc, 6213 MultiExprArg Args, 6214 SourceLocation RParenLoc, 6215 Expr *ExecConfig = nullptr) { 6216 auto Result = BaseTransform::RebuildCallExpr(Callee, LParenLoc, Args, 6217 RParenLoc, ExecConfig); 6218 if (auto *OE = dyn_cast<OverloadExpr>(Callee)) { 6219 if (Result.isUsable()) { 6220 Expr *ResultCall = Result.get(); 6221 if (auto *BE = dyn_cast<CXXBindTemporaryExpr>(ResultCall)) 6222 ResultCall = BE->getSubExpr(); 6223 if (auto *CE = dyn_cast<CallExpr>(ResultCall)) 6224 OverloadResolution[OE] = CE->getCallee(); 6225 } 6226 } 6227 return Result; 6228 } 6229 6230 ExprResult TransformLambdaExpr(LambdaExpr *E) { return Owned(E); } 6231 6232 ExprResult Transform(Expr *E) { 6233 ExprResult Res; 6234 while (true) { 6235 Res = TryTransform(E); 6236 6237 // Exit if either the transform was valid or if there were no TypoExprs 6238 // to transform that still have any untried correction candidates.. 6239 if (!Res.isInvalid() || 6240 !CheckAndAdvanceTypoExprCorrectionStreams()) 6241 break; 6242 } 6243 6244 // Ensure none of the TypoExprs have multiple typo correction candidates 6245 // with the same edit length that pass all the checks and filters. 6246 // TODO: Properly handle various permutations of possible corrections when 6247 // there is more than one potentially ambiguous typo correction. 6248 while (!AmbiguousTypoExprs.empty()) { 6249 auto TE = AmbiguousTypoExprs.back(); 6250 auto Cached = TransformCache[TE]; 6251 auto &State = SemaRef.getTypoExprState(TE); 6252 State.Consumer->saveCurrentPosition(); 6253 TransformCache.erase(TE); 6254 if (!TryTransform(E).isInvalid()) { 6255 State.Consumer->resetCorrectionStream(); 6256 TransformCache.erase(TE); 6257 Res = ExprError(); 6258 break; 6259 } 6260 AmbiguousTypoExprs.remove(TE); 6261 State.Consumer->restoreSavedPosition(); 6262 TransformCache[TE] = Cached; 6263 } 6264 6265 // Ensure that all of the TypoExprs within the current Expr have been found. 6266 if (!Res.isUsable()) 6267 FindTypoExprs(TypoExprs).TraverseStmt(E); 6268 6269 EmitAllDiagnostics(); 6270 6271 return Res; 6272 } 6273 6274 ExprResult TransformTypoExpr(TypoExpr *E) { 6275 // If the TypoExpr hasn't been seen before, record it. Otherwise, return the 6276 // cached transformation result if there is one and the TypoExpr isn't the 6277 // first one that was encountered. 6278 auto &CacheEntry = TransformCache[E]; 6279 if (!TypoExprs.insert(E) && !CacheEntry.isUnset()) { 6280 return CacheEntry; 6281 } 6282 6283 auto &State = SemaRef.getTypoExprState(E); 6284 assert(State.Consumer && "Cannot transform a cleared TypoExpr"); 6285 6286 // For the first TypoExpr and an uncached TypoExpr, find the next likely 6287 // typo correction and return it. 6288 while (TypoCorrection TC = State.Consumer->getNextCorrection()) { 6289 ExprResult NE = State.RecoveryHandler ? 6290 State.RecoveryHandler(SemaRef, E, TC) : 6291 attemptRecovery(SemaRef, *State.Consumer, TC); 6292 if (!NE.isInvalid()) { 6293 // Check whether there may be a second viable correction with the same 6294 // edit distance; if so, remember this TypoExpr may have an ambiguous 6295 // correction so it can be more thoroughly vetted later. 6296 TypoCorrection Next; 6297 if ((Next = State.Consumer->peekNextCorrection()) && 6298 Next.getEditDistance(false) == TC.getEditDistance(false)) { 6299 AmbiguousTypoExprs.insert(E); 6300 } else { 6301 AmbiguousTypoExprs.remove(E); 6302 } 6303 assert(!NE.isUnset() && 6304 "Typo was transformed into a valid-but-null ExprResult"); 6305 return CacheEntry = NE; 6306 } 6307 } 6308 return CacheEntry = ExprError(); 6309 } 6310 }; 6311 } 6312 6313 ExprResult Sema::CorrectDelayedTyposInExpr( 6314 Expr *E, llvm::function_ref<ExprResult(Expr *)> Filter) { 6315 // If the current evaluation context indicates there are uncorrected typos 6316 // and the current expression isn't guaranteed to not have typos, try to 6317 // resolve any TypoExpr nodes that might be in the expression. 6318 if (E && !ExprEvalContexts.empty() && ExprEvalContexts.back().NumTypos && 6319 (E->isTypeDependent() || E->isValueDependent() || 6320 E->isInstantiationDependent())) { 6321 auto TyposInContext = ExprEvalContexts.back().NumTypos; 6322 assert(TyposInContext < ~0U && "Recursive call of CorrectDelayedTyposInExpr"); 6323 ExprEvalContexts.back().NumTypos = ~0U; 6324 auto TyposResolved = DelayedTypos.size(); 6325 auto Result = TransformTypos(*this, Filter).Transform(E); 6326 ExprEvalContexts.back().NumTypos = TyposInContext; 6327 TyposResolved -= DelayedTypos.size(); 6328 if (Result.isInvalid() || Result.get() != E) { 6329 ExprEvalContexts.back().NumTypos -= TyposResolved; 6330 return Result; 6331 } 6332 assert(TyposResolved == 0 && "Corrected typo but got same Expr back?"); 6333 } 6334 return E; 6335 } 6336 6337 ExprResult Sema::ActOnFinishFullExpr(Expr *FE, SourceLocation CC, 6338 bool DiscardedValue, 6339 bool IsConstexpr, 6340 bool IsLambdaInitCaptureInitializer) { 6341 ExprResult FullExpr = FE; 6342 6343 if (!FullExpr.get()) 6344 return ExprError(); 6345 6346 // If we are an init-expression in a lambdas init-capture, we should not 6347 // diagnose an unexpanded pack now (will be diagnosed once lambda-expr 6348 // containing full-expression is done). 6349 // template<class ... Ts> void test(Ts ... t) { 6350 // test([&a(t)]() { <-- (t) is an init-expr that shouldn't be diagnosed now. 6351 // return a; 6352 // }() ...); 6353 // } 6354 // FIXME: This is a hack. It would be better if we pushed the lambda scope 6355 // when we parse the lambda introducer, and teach capturing (but not 6356 // unexpanded pack detection) to walk over LambdaScopeInfos which don't have a 6357 // corresponding class yet (that is, have LambdaScopeInfo either represent a 6358 // lambda where we've entered the introducer but not the body, or represent a 6359 // lambda where we've entered the body, depending on where the 6360 // parser/instantiation has got to). 6361 if (!IsLambdaInitCaptureInitializer && 6362 DiagnoseUnexpandedParameterPack(FullExpr.get())) 6363 return ExprError(); 6364 6365 // Top-level expressions default to 'id' when we're in a debugger. 6366 if (DiscardedValue && getLangOpts().DebuggerCastResultToId && 6367 FullExpr.get()->getType() == Context.UnknownAnyTy) { 6368 FullExpr = forceUnknownAnyToType(FullExpr.get(), Context.getObjCIdType()); 6369 if (FullExpr.isInvalid()) 6370 return ExprError(); 6371 } 6372 6373 if (DiscardedValue) { 6374 FullExpr = CheckPlaceholderExpr(FullExpr.get()); 6375 if (FullExpr.isInvalid()) 6376 return ExprError(); 6377 6378 FullExpr = IgnoredValueConversions(FullExpr.get()); 6379 if (FullExpr.isInvalid()) 6380 return ExprError(); 6381 } 6382 6383 FullExpr = CorrectDelayedTyposInExpr(FullExpr.get()); 6384 if (FullExpr.isInvalid()) 6385 return ExprError(); 6386 6387 CheckCompletedExpr(FullExpr.get(), CC, IsConstexpr); 6388 6389 // At the end of this full expression (which could be a deeply nested 6390 // lambda), if there is a potential capture within the nested lambda, 6391 // have the outer capture-able lambda try and capture it. 6392 // Consider the following code: 6393 // void f(int, int); 6394 // void f(const int&, double); 6395 // void foo() { 6396 // const int x = 10, y = 20; 6397 // auto L = [=](auto a) { 6398 // auto M = [=](auto b) { 6399 // f(x, b); <-- requires x to be captured by L and M 6400 // f(y, a); <-- requires y to be captured by L, but not all Ms 6401 // }; 6402 // }; 6403 // } 6404 6405 // FIXME: Also consider what happens for something like this that involves 6406 // the gnu-extension statement-expressions or even lambda-init-captures: 6407 // void f() { 6408 // const int n = 0; 6409 // auto L = [&](auto a) { 6410 // +n + ({ 0; a; }); 6411 // }; 6412 // } 6413 // 6414 // Here, we see +n, and then the full-expression 0; ends, so we don't 6415 // capture n (and instead remove it from our list of potential captures), 6416 // and then the full-expression +n + ({ 0; }); ends, but it's too late 6417 // for us to see that we need to capture n after all. 6418 6419 LambdaScopeInfo *const CurrentLSI = getCurLambda(); 6420 // FIXME: PR 17877 showed that getCurLambda() can return a valid pointer 6421 // even if CurContext is not a lambda call operator. Refer to that Bug Report 6422 // for an example of the code that might cause this asynchrony. 6423 // By ensuring we are in the context of a lambda's call operator 6424 // we can fix the bug (we only need to check whether we need to capture 6425 // if we are within a lambda's body); but per the comments in that 6426 // PR, a proper fix would entail : 6427 // "Alternative suggestion: 6428 // - Add to Sema an integer holding the smallest (outermost) scope 6429 // index that we are *lexically* within, and save/restore/set to 6430 // FunctionScopes.size() in InstantiatingTemplate's 6431 // constructor/destructor. 6432 // - Teach the handful of places that iterate over FunctionScopes to 6433 // stop at the outermost enclosing lexical scope." 6434 const bool IsInLambdaDeclContext = isLambdaCallOperator(CurContext); 6435 if (IsInLambdaDeclContext && CurrentLSI && 6436 CurrentLSI->hasPotentialCaptures() && !FullExpr.isInvalid()) 6437 CheckIfAnyEnclosingLambdasMustCaptureAnyPotentialCaptures(FE, CurrentLSI, 6438 *this); 6439 return MaybeCreateExprWithCleanups(FullExpr); 6440 } 6441 6442 StmtResult Sema::ActOnFinishFullStmt(Stmt *FullStmt) { 6443 if (!FullStmt) return StmtError(); 6444 6445 return MaybeCreateStmtWithCleanups(FullStmt); 6446 } 6447 6448 Sema::IfExistsResult 6449 Sema::CheckMicrosoftIfExistsSymbol(Scope *S, 6450 CXXScopeSpec &SS, 6451 const DeclarationNameInfo &TargetNameInfo) { 6452 DeclarationName TargetName = TargetNameInfo.getName(); 6453 if (!TargetName) 6454 return IER_DoesNotExist; 6455 6456 // If the name itself is dependent, then the result is dependent. 6457 if (TargetName.isDependentName()) 6458 return IER_Dependent; 6459 6460 // Do the redeclaration lookup in the current scope. 6461 LookupResult R(*this, TargetNameInfo, Sema::LookupAnyName, 6462 Sema::NotForRedeclaration); 6463 LookupParsedName(R, S, &SS); 6464 R.suppressDiagnostics(); 6465 6466 switch (R.getResultKind()) { 6467 case LookupResult::Found: 6468 case LookupResult::FoundOverloaded: 6469 case LookupResult::FoundUnresolvedValue: 6470 case LookupResult::Ambiguous: 6471 return IER_Exists; 6472 6473 case LookupResult::NotFound: 6474 return IER_DoesNotExist; 6475 6476 case LookupResult::NotFoundInCurrentInstantiation: 6477 return IER_Dependent; 6478 } 6479 6480 llvm_unreachable("Invalid LookupResult Kind!"); 6481 } 6482 6483 Sema::IfExistsResult 6484 Sema::CheckMicrosoftIfExistsSymbol(Scope *S, SourceLocation KeywordLoc, 6485 bool IsIfExists, CXXScopeSpec &SS, 6486 UnqualifiedId &Name) { 6487 DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name); 6488 6489 // Check for unexpanded parameter packs. 6490 SmallVector<UnexpandedParameterPack, 4> Unexpanded; 6491 collectUnexpandedParameterPacks(SS, Unexpanded); 6492 collectUnexpandedParameterPacks(TargetNameInfo, Unexpanded); 6493 if (!Unexpanded.empty()) { 6494 DiagnoseUnexpandedParameterPacks(KeywordLoc, 6495 IsIfExists? UPPC_IfExists 6496 : UPPC_IfNotExists, 6497 Unexpanded); 6498 return IER_Error; 6499 } 6500 6501 return CheckMicrosoftIfExistsSymbol(S, SS, TargetNameInfo); 6502 } 6503