Home | History | Annotate | Download | only in Analysis
      1 //===- TypeBasedAliasAnalysis.cpp - Type-Based Alias Analysis -------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the TypeBasedAliasAnalysis pass, which implements
     11 // metadata-based TBAA.
     12 //
     13 // In LLVM IR, memory does not have types, so LLVM's own type system is not
     14 // suitable for doing TBAA. Instead, metadata is added to the IR to describe
     15 // a type system of a higher level language. This can be used to implement
     16 // typical C/C++ TBAA, but it can also be used to implement custom alias
     17 // analysis behavior for other languages.
     18 //
     19 // We now support two types of metadata format: scalar TBAA and struct-path
     20 // aware TBAA. After all testing cases are upgraded to use struct-path aware
     21 // TBAA and we can auto-upgrade existing bc files, the support for scalar TBAA
     22 // can be dropped.
     23 //
     24 // The scalar TBAA metadata format is very simple. TBAA MDNodes have up to
     25 // three fields, e.g.:
     26 //   !0 = metadata !{ metadata !"an example type tree" }
     27 //   !1 = metadata !{ metadata !"int", metadata !0 }
     28 //   !2 = metadata !{ metadata !"float", metadata !0 }
     29 //   !3 = metadata !{ metadata !"const float", metadata !2, i64 1 }
     30 //
     31 // The first field is an identity field. It can be any value, usually
     32 // an MDString, which uniquely identifies the type. The most important
     33 // name in the tree is the name of the root node. Two trees with
     34 // different root node names are entirely disjoint, even if they
     35 // have leaves with common names.
     36 //
     37 // The second field identifies the type's parent node in the tree, or
     38 // is null or omitted for a root node. A type is considered to alias
     39 // all of its descendants and all of its ancestors in the tree. Also,
     40 // a type is considered to alias all types in other trees, so that
     41 // bitcode produced from multiple front-ends is handled conservatively.
     42 //
     43 // If the third field is present, it's an integer which if equal to 1
     44 // indicates that the type is "constant" (meaning pointsToConstantMemory
     45 // should return true; see
     46 // http://llvm.org/docs/AliasAnalysis.html#OtherItfs).
     47 //
     48 // With struct-path aware TBAA, the MDNodes attached to an instruction using
     49 // "!tbaa" are called path tag nodes.
     50 //
     51 // The path tag node has 4 fields with the last field being optional.
     52 //
     53 // The first field is the base type node, it can be a struct type node
     54 // or a scalar type node. The second field is the access type node, it
     55 // must be a scalar type node. The third field is the offset into the base type.
     56 // The last field has the same meaning as the last field of our scalar TBAA:
     57 // it's an integer which if equal to 1 indicates that the access is "constant".
     58 //
     59 // The struct type node has a name and a list of pairs, one pair for each member
     60 // of the struct. The first element of each pair is a type node (a struct type
     61 // node or a sclar type node), specifying the type of the member, the second
     62 // element of each pair is the offset of the member.
     63 //
     64 // Given an example
     65 // typedef struct {
     66 //   short s;
     67 // } A;
     68 // typedef struct {
     69 //   uint16_t s;
     70 //   A a;
     71 // } B;
     72 //
     73 // For an acess to B.a.s, we attach !5 (a path tag node) to the load/store
     74 // instruction. The base type is !4 (struct B), the access type is !2 (scalar
     75 // type short) and the offset is 4.
     76 //
     77 // !0 = metadata !{metadata !"Simple C/C++ TBAA"}
     78 // !1 = metadata !{metadata !"omnipotent char", metadata !0} // Scalar type node
     79 // !2 = metadata !{metadata !"short", metadata !1}           // Scalar type node
     80 // !3 = metadata !{metadata !"A", metadata !2, i64 0}        // Struct type node
     81 // !4 = metadata !{metadata !"B", metadata !2, i64 0, metadata !3, i64 4}
     82 //                                                           // Struct type node
     83 // !5 = metadata !{metadata !4, metadata !2, i64 4}          // Path tag node
     84 //
     85 // The struct type nodes and the scalar type nodes form a type DAG.
     86 //         Root (!0)
     87 //         char (!1)  -- edge to Root
     88 //         short (!2) -- edge to char
     89 //         A (!3) -- edge with offset 0 to short
     90 //         B (!4) -- edge with offset 0 to short and edge with offset 4 to A
     91 //
     92 // To check if two tags (tagX and tagY) can alias, we start from the base type
     93 // of tagX, follow the edge with the correct offset in the type DAG and adjust
     94 // the offset until we reach the base type of tagY or until we reach the Root
     95 // node.
     96 // If we reach the base type of tagY, compare the adjusted offset with
     97 // offset of tagY, return Alias if the offsets are the same, return NoAlias
     98 // otherwise.
     99 // If we reach the Root node, perform the above starting from base type of tagY
    100 // to see if we reach base type of tagX.
    101 //
    102 // If they have different roots, they're part of different potentially
    103 // unrelated type systems, so we return Alias to be conservative.
    104 // If neither node is an ancestor of the other and they have the same root,
    105 // then we say NoAlias.
    106 //
    107 // TODO: The current metadata format doesn't support struct
    108 // fields. For example:
    109 //   struct X {
    110 //     double d;
    111 //     int i;
    112 //   };
    113 //   void foo(struct X *x, struct X *y, double *p) {
    114 //     *x = *y;
    115 //     *p = 0.0;
    116 //   }
    117 // Struct X has a double member, so the store to *x can alias the store to *p.
    118 // Currently it's not possible to precisely describe all the things struct X
    119 // aliases, so struct assignments must use conservative TBAA nodes. There's
    120 // no scheme for attaching metadata to @llvm.memcpy yet either.
    121 //
    122 //===----------------------------------------------------------------------===//
    123 
    124 #include "llvm/Analysis/Passes.h"
    125 #include "llvm/Analysis/AliasAnalysis.h"
    126 #include "llvm/IR/Constants.h"
    127 #include "llvm/IR/LLVMContext.h"
    128 #include "llvm/IR/Metadata.h"
    129 #include "llvm/IR/Module.h"
    130 #include "llvm/Pass.h"
    131 #include "llvm/Support/CommandLine.h"
    132 #include "llvm/ADT/SetVector.h"
    133 using namespace llvm;
    134 
    135 // A handy option for disabling TBAA functionality. The same effect can also be
    136 // achieved by stripping the !tbaa tags from IR, but this option is sometimes
    137 // more convenient.
    138 static cl::opt<bool> EnableTBAA("enable-tbaa", cl::init(true));
    139 
    140 namespace {
    141   /// TBAANode - This is a simple wrapper around an MDNode which provides a
    142   /// higher-level interface by hiding the details of how alias analysis
    143   /// information is encoded in its operands.
    144   class TBAANode {
    145     const MDNode *Node;
    146 
    147   public:
    148     TBAANode() : Node(nullptr) {}
    149     explicit TBAANode(const MDNode *N) : Node(N) {}
    150 
    151     /// getNode - Get the MDNode for this TBAANode.
    152     const MDNode *getNode() const { return Node; }
    153 
    154     /// getParent - Get this TBAANode's Alias tree parent.
    155     TBAANode getParent() const {
    156       if (Node->getNumOperands() < 2)
    157         return TBAANode();
    158       MDNode *P = dyn_cast_or_null<MDNode>(Node->getOperand(1));
    159       if (!P)
    160         return TBAANode();
    161       // Ok, this node has a valid parent. Return it.
    162       return TBAANode(P);
    163     }
    164 
    165     /// TypeIsImmutable - Test if this TBAANode represents a type for objects
    166     /// which are not modified (by any means) in the context where this
    167     /// AliasAnalysis is relevant.
    168     bool TypeIsImmutable() const {
    169       if (Node->getNumOperands() < 3)
    170         return false;
    171       ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(Node->getOperand(2));
    172       if (!CI)
    173         return false;
    174       return CI->getValue()[0];
    175     }
    176   };
    177 
    178   /// This is a simple wrapper around an MDNode which provides a
    179   /// higher-level interface by hiding the details of how alias analysis
    180   /// information is encoded in its operands.
    181   class TBAAStructTagNode {
    182     /// This node should be created with createTBAAStructTagNode.
    183     const MDNode *Node;
    184 
    185   public:
    186     explicit TBAAStructTagNode(const MDNode *N) : Node(N) {}
    187 
    188     /// Get the MDNode for this TBAAStructTagNode.
    189     const MDNode *getNode() const { return Node; }
    190 
    191     const MDNode *getBaseType() const {
    192       return dyn_cast_or_null<MDNode>(Node->getOperand(0));
    193     }
    194     const MDNode *getAccessType() const {
    195       return dyn_cast_or_null<MDNode>(Node->getOperand(1));
    196     }
    197     uint64_t getOffset() const {
    198       return mdconst::extract<ConstantInt>(Node->getOperand(2))->getZExtValue();
    199     }
    200     /// TypeIsImmutable - Test if this TBAAStructTagNode represents a type for
    201     /// objects which are not modified (by any means) in the context where this
    202     /// AliasAnalysis is relevant.
    203     bool TypeIsImmutable() const {
    204       if (Node->getNumOperands() < 4)
    205         return false;
    206       ConstantInt *CI = mdconst::dyn_extract<ConstantInt>(Node->getOperand(3));
    207       if (!CI)
    208         return false;
    209       return CI->getValue()[0];
    210     }
    211   };
    212 
    213   /// This is a simple wrapper around an MDNode which provides a
    214   /// higher-level interface by hiding the details of how alias analysis
    215   /// information is encoded in its operands.
    216   class TBAAStructTypeNode {
    217     /// This node should be created with createTBAAStructTypeNode.
    218     const MDNode *Node;
    219 
    220   public:
    221     TBAAStructTypeNode() : Node(nullptr) {}
    222     explicit TBAAStructTypeNode(const MDNode *N) : Node(N) {}
    223 
    224     /// Get the MDNode for this TBAAStructTypeNode.
    225     const MDNode *getNode() const { return Node; }
    226 
    227     /// Get this TBAAStructTypeNode's field in the type DAG with
    228     /// given offset. Update the offset to be relative to the field type.
    229     TBAAStructTypeNode getParent(uint64_t &Offset) const {
    230       // Parent can be omitted for the root node.
    231       if (Node->getNumOperands() < 2)
    232         return TBAAStructTypeNode();
    233 
    234       // Fast path for a scalar type node and a struct type node with a single
    235       // field.
    236       if (Node->getNumOperands() <= 3) {
    237         uint64_t Cur = Node->getNumOperands() == 2
    238                            ? 0
    239                            : mdconst::extract<ConstantInt>(Node->getOperand(2))
    240                                  ->getZExtValue();
    241         Offset -= Cur;
    242         MDNode *P = dyn_cast_or_null<MDNode>(Node->getOperand(1));
    243         if (!P)
    244           return TBAAStructTypeNode();
    245         return TBAAStructTypeNode(P);
    246       }
    247 
    248       // Assume the offsets are in order. We return the previous field if
    249       // the current offset is bigger than the given offset.
    250       unsigned TheIdx = 0;
    251       for (unsigned Idx = 1; Idx < Node->getNumOperands(); Idx += 2) {
    252         uint64_t Cur = mdconst::extract<ConstantInt>(Node->getOperand(Idx + 1))
    253                            ->getZExtValue();
    254         if (Cur > Offset) {
    255           assert(Idx >= 3 &&
    256                  "TBAAStructTypeNode::getParent should have an offset match!");
    257           TheIdx = Idx - 2;
    258           break;
    259         }
    260       }
    261       // Move along the last field.
    262       if (TheIdx == 0)
    263         TheIdx = Node->getNumOperands() - 2;
    264       uint64_t Cur = mdconst::extract<ConstantInt>(Node->getOperand(TheIdx + 1))
    265                          ->getZExtValue();
    266       Offset -= Cur;
    267       MDNode *P = dyn_cast_or_null<MDNode>(Node->getOperand(TheIdx));
    268       if (!P)
    269         return TBAAStructTypeNode();
    270       return TBAAStructTypeNode(P);
    271     }
    272   };
    273 }
    274 
    275 namespace {
    276   /// TypeBasedAliasAnalysis - This is a simple alias analysis
    277   /// implementation that uses TypeBased to answer queries.
    278   class TypeBasedAliasAnalysis : public ImmutablePass,
    279                                  public AliasAnalysis {
    280   public:
    281     static char ID; // Class identification, replacement for typeinfo
    282     TypeBasedAliasAnalysis() : ImmutablePass(ID) {
    283       initializeTypeBasedAliasAnalysisPass(*PassRegistry::getPassRegistry());
    284     }
    285 
    286     bool doInitialization(Module &M) override;
    287 
    288     /// getAdjustedAnalysisPointer - This method is used when a pass implements
    289     /// an analysis interface through multiple inheritance.  If needed, it
    290     /// should override this to adjust the this pointer as needed for the
    291     /// specified pass info.
    292     void *getAdjustedAnalysisPointer(const void *PI) override {
    293       if (PI == &AliasAnalysis::ID)
    294         return (AliasAnalysis*)this;
    295       return this;
    296     }
    297 
    298     bool Aliases(const MDNode *A, const MDNode *B) const;
    299     bool PathAliases(const MDNode *A, const MDNode *B) const;
    300 
    301   private:
    302     void getAnalysisUsage(AnalysisUsage &AU) const override;
    303     AliasResult alias(const Location &LocA, const Location &LocB) override;
    304     bool pointsToConstantMemory(const Location &Loc, bool OrLocal) override;
    305     ModRefBehavior getModRefBehavior(ImmutableCallSite CS) override;
    306     ModRefBehavior getModRefBehavior(const Function *F) override;
    307     ModRefResult getModRefInfo(ImmutableCallSite CS,
    308                                const Location &Loc) override;
    309     ModRefResult getModRefInfo(ImmutableCallSite CS1,
    310                                ImmutableCallSite CS2) override;
    311   };
    312 }  // End of anonymous namespace
    313 
    314 // Register this pass...
    315 char TypeBasedAliasAnalysis::ID = 0;
    316 INITIALIZE_AG_PASS(TypeBasedAliasAnalysis, AliasAnalysis, "tbaa",
    317                    "Type-Based Alias Analysis", false, true, false)
    318 
    319 ImmutablePass *llvm::createTypeBasedAliasAnalysisPass() {
    320   return new TypeBasedAliasAnalysis();
    321 }
    322 
    323 bool TypeBasedAliasAnalysis::doInitialization(Module &M) {
    324   InitializeAliasAnalysis(this, &M.getDataLayout());
    325   return true;
    326 }
    327 
    328 void
    329 TypeBasedAliasAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
    330   AU.setPreservesAll();
    331   AliasAnalysis::getAnalysisUsage(AU);
    332 }
    333 
    334 /// Check the first operand of the tbaa tag node, if it is a MDNode, we treat
    335 /// it as struct-path aware TBAA format, otherwise, we treat it as scalar TBAA
    336 /// format.
    337 static bool isStructPathTBAA(const MDNode *MD) {
    338   // Anonymous TBAA root starts with a MDNode and dragonegg uses it as
    339   // a TBAA tag.
    340   return isa<MDNode>(MD->getOperand(0)) && MD->getNumOperands() >= 3;
    341 }
    342 
    343 /// Aliases - Test whether the type represented by A may alias the
    344 /// type represented by B.
    345 bool
    346 TypeBasedAliasAnalysis::Aliases(const MDNode *A,
    347                                 const MDNode *B) const {
    348   // Make sure that both MDNodes are struct-path aware.
    349   if (isStructPathTBAA(A) && isStructPathTBAA(B))
    350     return PathAliases(A, B);
    351 
    352   // Keep track of the root node for A and B.
    353   TBAANode RootA, RootB;
    354 
    355   // Climb the tree from A to see if we reach B.
    356   for (TBAANode T(A); ; ) {
    357     if (T.getNode() == B)
    358       // B is an ancestor of A.
    359       return true;
    360 
    361     RootA = T;
    362     T = T.getParent();
    363     if (!T.getNode())
    364       break;
    365   }
    366 
    367   // Climb the tree from B to see if we reach A.
    368   for (TBAANode T(B); ; ) {
    369     if (T.getNode() == A)
    370       // A is an ancestor of B.
    371       return true;
    372 
    373     RootB = T;
    374     T = T.getParent();
    375     if (!T.getNode())
    376       break;
    377   }
    378 
    379   // Neither node is an ancestor of the other.
    380 
    381   // If they have different roots, they're part of different potentially
    382   // unrelated type systems, so we must be conservative.
    383   if (RootA.getNode() != RootB.getNode())
    384     return true;
    385 
    386   // If they have the same root, then we've proved there's no alias.
    387   return false;
    388 }
    389 
    390 /// Test whether the struct-path tag represented by A may alias the
    391 /// struct-path tag represented by B.
    392 bool
    393 TypeBasedAliasAnalysis::PathAliases(const MDNode *A,
    394                                     const MDNode *B) const {
    395   // Verify that both input nodes are struct-path aware.
    396   assert(isStructPathTBAA(A) && "MDNode A is not struct-path aware.");
    397   assert(isStructPathTBAA(B) && "MDNode B is not struct-path aware.");
    398 
    399   // Keep track of the root node for A and B.
    400   TBAAStructTypeNode RootA, RootB;
    401   TBAAStructTagNode TagA(A), TagB(B);
    402 
    403   // TODO: We need to check if AccessType of TagA encloses AccessType of
    404   // TagB to support aggregate AccessType. If yes, return true.
    405 
    406   // Start from the base type of A, follow the edge with the correct offset in
    407   // the type DAG and adjust the offset until we reach the base type of B or
    408   // until we reach the Root node.
    409   // Compare the adjusted offset once we have the same base.
    410 
    411   // Climb the type DAG from base type of A to see if we reach base type of B.
    412   const MDNode *BaseA = TagA.getBaseType();
    413   const MDNode *BaseB = TagB.getBaseType();
    414   uint64_t OffsetA = TagA.getOffset(), OffsetB = TagB.getOffset();
    415   for (TBAAStructTypeNode T(BaseA); ; ) {
    416     if (T.getNode() == BaseB)
    417       // Base type of A encloses base type of B, check if the offsets match.
    418       return OffsetA == OffsetB;
    419 
    420     RootA = T;
    421     // Follow the edge with the correct offset, OffsetA will be adjusted to
    422     // be relative to the field type.
    423     T = T.getParent(OffsetA);
    424     if (!T.getNode())
    425       break;
    426   }
    427 
    428   // Reset OffsetA and climb the type DAG from base type of B to see if we reach
    429   // base type of A.
    430   OffsetA = TagA.getOffset();
    431   for (TBAAStructTypeNode T(BaseB); ; ) {
    432     if (T.getNode() == BaseA)
    433       // Base type of B encloses base type of A, check if the offsets match.
    434       return OffsetA == OffsetB;
    435 
    436     RootB = T;
    437     // Follow the edge with the correct offset, OffsetB will be adjusted to
    438     // be relative to the field type.
    439     T = T.getParent(OffsetB);
    440     if (!T.getNode())
    441       break;
    442   }
    443 
    444   // Neither node is an ancestor of the other.
    445 
    446   // If they have different roots, they're part of different potentially
    447   // unrelated type systems, so we must be conservative.
    448   if (RootA.getNode() != RootB.getNode())
    449     return true;
    450 
    451   // If they have the same root, then we've proved there's no alias.
    452   return false;
    453 }
    454 
    455 AliasAnalysis::AliasResult
    456 TypeBasedAliasAnalysis::alias(const Location &LocA,
    457                               const Location &LocB) {
    458   if (!EnableTBAA)
    459     return AliasAnalysis::alias(LocA, LocB);
    460 
    461   // Get the attached MDNodes. If either value lacks a tbaa MDNode, we must
    462   // be conservative.
    463   const MDNode *AM = LocA.AATags.TBAA;
    464   if (!AM) return AliasAnalysis::alias(LocA, LocB);
    465   const MDNode *BM = LocB.AATags.TBAA;
    466   if (!BM) return AliasAnalysis::alias(LocA, LocB);
    467 
    468   // If they may alias, chain to the next AliasAnalysis.
    469   if (Aliases(AM, BM))
    470     return AliasAnalysis::alias(LocA, LocB);
    471 
    472   // Otherwise return a definitive result.
    473   return NoAlias;
    474 }
    475 
    476 bool TypeBasedAliasAnalysis::pointsToConstantMemory(const Location &Loc,
    477                                                     bool OrLocal) {
    478   if (!EnableTBAA)
    479     return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
    480 
    481   const MDNode *M = Loc.AATags.TBAA;
    482   if (!M) return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
    483 
    484   // If this is an "immutable" type, we can assume the pointer is pointing
    485   // to constant memory.
    486   if ((!isStructPathTBAA(M) && TBAANode(M).TypeIsImmutable()) ||
    487       (isStructPathTBAA(M) && TBAAStructTagNode(M).TypeIsImmutable()))
    488     return true;
    489 
    490   return AliasAnalysis::pointsToConstantMemory(Loc, OrLocal);
    491 }
    492 
    493 AliasAnalysis::ModRefBehavior
    494 TypeBasedAliasAnalysis::getModRefBehavior(ImmutableCallSite CS) {
    495   if (!EnableTBAA)
    496     return AliasAnalysis::getModRefBehavior(CS);
    497 
    498   ModRefBehavior Min = UnknownModRefBehavior;
    499 
    500   // If this is an "immutable" type, we can assume the call doesn't write
    501   // to memory.
    502   if (const MDNode *M = CS.getInstruction()->getMetadata(LLVMContext::MD_tbaa))
    503     if ((!isStructPathTBAA(M) && TBAANode(M).TypeIsImmutable()) ||
    504         (isStructPathTBAA(M) && TBAAStructTagNode(M).TypeIsImmutable()))
    505       Min = OnlyReadsMemory;
    506 
    507   return ModRefBehavior(AliasAnalysis::getModRefBehavior(CS) & Min);
    508 }
    509 
    510 AliasAnalysis::ModRefBehavior
    511 TypeBasedAliasAnalysis::getModRefBehavior(const Function *F) {
    512   // Functions don't have metadata. Just chain to the next implementation.
    513   return AliasAnalysis::getModRefBehavior(F);
    514 }
    515 
    516 AliasAnalysis::ModRefResult
    517 TypeBasedAliasAnalysis::getModRefInfo(ImmutableCallSite CS,
    518                                       const Location &Loc) {
    519   if (!EnableTBAA)
    520     return AliasAnalysis::getModRefInfo(CS, Loc);
    521 
    522   if (const MDNode *L = Loc.AATags.TBAA)
    523     if (const MDNode *M =
    524             CS.getInstruction()->getMetadata(LLVMContext::MD_tbaa))
    525       if (!Aliases(L, M))
    526         return NoModRef;
    527 
    528   return AliasAnalysis::getModRefInfo(CS, Loc);
    529 }
    530 
    531 AliasAnalysis::ModRefResult
    532 TypeBasedAliasAnalysis::getModRefInfo(ImmutableCallSite CS1,
    533                                       ImmutableCallSite CS2) {
    534   if (!EnableTBAA)
    535     return AliasAnalysis::getModRefInfo(CS1, CS2);
    536 
    537   if (const MDNode *M1 =
    538           CS1.getInstruction()->getMetadata(LLVMContext::MD_tbaa))
    539     if (const MDNode *M2 =
    540             CS2.getInstruction()->getMetadata(LLVMContext::MD_tbaa))
    541       if (!Aliases(M1, M2))
    542         return NoModRef;
    543 
    544   return AliasAnalysis::getModRefInfo(CS1, CS2);
    545 }
    546 
    547 bool MDNode::isTBAAVtableAccess() const {
    548   if (!isStructPathTBAA(this)) {
    549     if (getNumOperands() < 1) return false;
    550     if (MDString *Tag1 = dyn_cast<MDString>(getOperand(0))) {
    551       if (Tag1->getString() == "vtable pointer") return true;
    552     }
    553     return false;
    554   }
    555 
    556   // For struct-path aware TBAA, we use the access type of the tag.
    557   if (getNumOperands() < 2) return false;
    558   MDNode *Tag = cast_or_null<MDNode>(getOperand(1));
    559   if (!Tag) return false;
    560   if (MDString *Tag1 = dyn_cast<MDString>(Tag->getOperand(0))) {
    561     if (Tag1->getString() == "vtable pointer") return true;
    562   }
    563   return false;
    564 }
    565 
    566 MDNode *MDNode::getMostGenericTBAA(MDNode *A, MDNode *B) {
    567   if (!A || !B)
    568     return nullptr;
    569 
    570   if (A == B)
    571     return A;
    572 
    573   // For struct-path aware TBAA, we use the access type of the tag.
    574   bool StructPath = isStructPathTBAA(A) && isStructPathTBAA(B);
    575   if (StructPath) {
    576     A = cast_or_null<MDNode>(A->getOperand(1));
    577     if (!A) return nullptr;
    578     B = cast_or_null<MDNode>(B->getOperand(1));
    579     if (!B) return nullptr;
    580   }
    581 
    582   SmallSetVector<MDNode *, 4> PathA;
    583   MDNode *T = A;
    584   while (T) {
    585     if (PathA.count(T))
    586       report_fatal_error("Cycle found in TBAA metadata.");
    587     PathA.insert(T);
    588     T = T->getNumOperands() >= 2 ? cast_or_null<MDNode>(T->getOperand(1))
    589                                  : nullptr;
    590   }
    591 
    592   SmallSetVector<MDNode *, 4> PathB;
    593   T = B;
    594   while (T) {
    595     if (PathB.count(T))
    596       report_fatal_error("Cycle found in TBAA metadata.");
    597     PathB.insert(T);
    598     T = T->getNumOperands() >= 2 ? cast_or_null<MDNode>(T->getOperand(1))
    599                                  : nullptr;
    600   }
    601 
    602   int IA = PathA.size() - 1;
    603   int IB = PathB.size() - 1;
    604 
    605   MDNode *Ret = nullptr;
    606   while (IA >= 0 && IB >=0) {
    607     if (PathA[IA] == PathB[IB])
    608       Ret = PathA[IA];
    609     else
    610       break;
    611     --IA;
    612     --IB;
    613   }
    614   if (!StructPath)
    615     return Ret;
    616 
    617   if (!Ret)
    618     return nullptr;
    619   // We need to convert from a type node to a tag node.
    620   Type *Int64 = IntegerType::get(A->getContext(), 64);
    621   Metadata *Ops[3] = {Ret, Ret,
    622                       ConstantAsMetadata::get(ConstantInt::get(Int64, 0))};
    623   return MDNode::get(A->getContext(), Ops);
    624 }
    625 
    626 void Instruction::getAAMetadata(AAMDNodes &N, bool Merge) const {
    627   if (Merge)
    628     N.TBAA =
    629         MDNode::getMostGenericTBAA(N.TBAA, getMetadata(LLVMContext::MD_tbaa));
    630   else
    631     N.TBAA = getMetadata(LLVMContext::MD_tbaa);
    632 
    633   if (Merge)
    634     N.Scope = MDNode::getMostGenericAliasScope(
    635         N.Scope, getMetadata(LLVMContext::MD_alias_scope));
    636   else
    637     N.Scope = getMetadata(LLVMContext::MD_alias_scope);
    638 
    639   if (Merge)
    640     N.NoAlias =
    641         MDNode::intersect(N.NoAlias, getMetadata(LLVMContext::MD_noalias));
    642   else
    643     N.NoAlias = getMetadata(LLVMContext::MD_noalias);
    644 }
    645 
    646