Home | History | Annotate | Download | only in IR
      1 //===- Metadata.cpp - Implement Metadata classes --------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the Metadata classes.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "llvm/IR/Metadata.h"
     15 #include "LLVMContextImpl.h"
     16 #include "MetadataImpl.h"
     17 #include "SymbolTableListTraitsImpl.h"
     18 #include "llvm/ADT/DenseMap.h"
     19 #include "llvm/ADT/STLExtras.h"
     20 #include "llvm/ADT/SmallSet.h"
     21 #include "llvm/ADT/SmallString.h"
     22 #include "llvm/ADT/StringMap.h"
     23 #include "llvm/IR/ConstantRange.h"
     24 #include "llvm/IR/DebugInfoMetadata.h"
     25 #include "llvm/IR/Instruction.h"
     26 #include "llvm/IR/LLVMContext.h"
     27 #include "llvm/IR/Module.h"
     28 #include "llvm/IR/ValueHandle.h"
     29 
     30 using namespace llvm;
     31 
     32 MetadataAsValue::MetadataAsValue(Type *Ty, Metadata *MD)
     33     : Value(Ty, MetadataAsValueVal), MD(MD) {
     34   track();
     35 }
     36 
     37 MetadataAsValue::~MetadataAsValue() {
     38   getType()->getContext().pImpl->MetadataAsValues.erase(MD);
     39   untrack();
     40 }
     41 
     42 /// \brief Canonicalize metadata arguments to intrinsics.
     43 ///
     44 /// To support bitcode upgrades (and assembly semantic sugar) for \a
     45 /// MetadataAsValue, we need to canonicalize certain metadata.
     46 ///
     47 ///   - nullptr is replaced by an empty MDNode.
     48 ///   - An MDNode with a single null operand is replaced by an empty MDNode.
     49 ///   - An MDNode whose only operand is a \a ConstantAsMetadata gets skipped.
     50 ///
     51 /// This maintains readability of bitcode from when metadata was a type of
     52 /// value, and these bridges were unnecessary.
     53 static Metadata *canonicalizeMetadataForValue(LLVMContext &Context,
     54                                               Metadata *MD) {
     55   if (!MD)
     56     // !{}
     57     return MDNode::get(Context, None);
     58 
     59   // Return early if this isn't a single-operand MDNode.
     60   auto *N = dyn_cast<MDNode>(MD);
     61   if (!N || N->getNumOperands() != 1)
     62     return MD;
     63 
     64   if (!N->getOperand(0))
     65     // !{}
     66     return MDNode::get(Context, None);
     67 
     68   if (auto *C = dyn_cast<ConstantAsMetadata>(N->getOperand(0)))
     69     // Look through the MDNode.
     70     return C;
     71 
     72   return MD;
     73 }
     74 
     75 MetadataAsValue *MetadataAsValue::get(LLVMContext &Context, Metadata *MD) {
     76   MD = canonicalizeMetadataForValue(Context, MD);
     77   auto *&Entry = Context.pImpl->MetadataAsValues[MD];
     78   if (!Entry)
     79     Entry = new MetadataAsValue(Type::getMetadataTy(Context), MD);
     80   return Entry;
     81 }
     82 
     83 MetadataAsValue *MetadataAsValue::getIfExists(LLVMContext &Context,
     84                                               Metadata *MD) {
     85   MD = canonicalizeMetadataForValue(Context, MD);
     86   auto &Store = Context.pImpl->MetadataAsValues;
     87   return Store.lookup(MD);
     88 }
     89 
     90 void MetadataAsValue::handleChangedMetadata(Metadata *MD) {
     91   LLVMContext &Context = getContext();
     92   MD = canonicalizeMetadataForValue(Context, MD);
     93   auto &Store = Context.pImpl->MetadataAsValues;
     94 
     95   // Stop tracking the old metadata.
     96   Store.erase(this->MD);
     97   untrack();
     98   this->MD = nullptr;
     99 
    100   // Start tracking MD, or RAUW if necessary.
    101   auto *&Entry = Store[MD];
    102   if (Entry) {
    103     replaceAllUsesWith(Entry);
    104     delete this;
    105     return;
    106   }
    107 
    108   this->MD = MD;
    109   track();
    110   Entry = this;
    111 }
    112 
    113 void MetadataAsValue::track() {
    114   if (MD)
    115     MetadataTracking::track(&MD, *MD, *this);
    116 }
    117 
    118 void MetadataAsValue::untrack() {
    119   if (MD)
    120     MetadataTracking::untrack(MD);
    121 }
    122 
    123 void ReplaceableMetadataImpl::addRef(void *Ref, OwnerTy Owner) {
    124   bool WasInserted =
    125       UseMap.insert(std::make_pair(Ref, std::make_pair(Owner, NextIndex)))
    126           .second;
    127   (void)WasInserted;
    128   assert(WasInserted && "Expected to add a reference");
    129 
    130   ++NextIndex;
    131   assert(NextIndex != 0 && "Unexpected overflow");
    132 }
    133 
    134 void ReplaceableMetadataImpl::dropRef(void *Ref) {
    135   bool WasErased = UseMap.erase(Ref);
    136   (void)WasErased;
    137   assert(WasErased && "Expected to drop a reference");
    138 }
    139 
    140 void ReplaceableMetadataImpl::moveRef(void *Ref, void *New,
    141                                       const Metadata &MD) {
    142   auto I = UseMap.find(Ref);
    143   assert(I != UseMap.end() && "Expected to move a reference");
    144   auto OwnerAndIndex = I->second;
    145   UseMap.erase(I);
    146   bool WasInserted = UseMap.insert(std::make_pair(New, OwnerAndIndex)).second;
    147   (void)WasInserted;
    148   assert(WasInserted && "Expected to add a reference");
    149 
    150   // Check that the references are direct if there's no owner.
    151   (void)MD;
    152   assert((OwnerAndIndex.first || *static_cast<Metadata **>(Ref) == &MD) &&
    153          "Reference without owner must be direct");
    154   assert((OwnerAndIndex.first || *static_cast<Metadata **>(New) == &MD) &&
    155          "Reference without owner must be direct");
    156 }
    157 
    158 void ReplaceableMetadataImpl::replaceAllUsesWith(Metadata *MD) {
    159   assert(!(MD && isa<MDNode>(MD) && cast<MDNode>(MD)->isTemporary()) &&
    160          "Expected non-temp node");
    161 
    162   if (UseMap.empty())
    163     return;
    164 
    165   // Copy out uses since UseMap will get touched below.
    166   typedef std::pair<void *, std::pair<OwnerTy, uint64_t>> UseTy;
    167   SmallVector<UseTy, 8> Uses(UseMap.begin(), UseMap.end());
    168   std::sort(Uses.begin(), Uses.end(), [](const UseTy &L, const UseTy &R) {
    169     return L.second.second < R.second.second;
    170   });
    171   for (const auto &Pair : Uses) {
    172     // Check that this Ref hasn't disappeared after RAUW (when updating a
    173     // previous Ref).
    174     if (!UseMap.count(Pair.first))
    175       continue;
    176 
    177     OwnerTy Owner = Pair.second.first;
    178     if (!Owner) {
    179       // Update unowned tracking references directly.
    180       Metadata *&Ref = *static_cast<Metadata **>(Pair.first);
    181       Ref = MD;
    182       if (MD)
    183         MetadataTracking::track(Ref);
    184       UseMap.erase(Pair.first);
    185       continue;
    186     }
    187 
    188     // Check for MetadataAsValue.
    189     if (Owner.is<MetadataAsValue *>()) {
    190       Owner.get<MetadataAsValue *>()->handleChangedMetadata(MD);
    191       continue;
    192     }
    193 
    194     // There's a Metadata owner -- dispatch.
    195     Metadata *OwnerMD = Owner.get<Metadata *>();
    196     switch (OwnerMD->getMetadataID()) {
    197 #define HANDLE_METADATA_LEAF(CLASS)                                            \
    198   case Metadata::CLASS##Kind:                                                  \
    199     cast<CLASS>(OwnerMD)->handleChangedOperand(Pair.first, MD);                \
    200     continue;
    201 #include "llvm/IR/Metadata.def"
    202     default:
    203       llvm_unreachable("Invalid metadata subclass");
    204     }
    205   }
    206   assert(UseMap.empty() && "Expected all uses to be replaced");
    207 }
    208 
    209 void ReplaceableMetadataImpl::resolveAllUses(bool ResolveUsers) {
    210   if (UseMap.empty())
    211     return;
    212 
    213   if (!ResolveUsers) {
    214     UseMap.clear();
    215     return;
    216   }
    217 
    218   // Copy out uses since UseMap could get touched below.
    219   typedef std::pair<void *, std::pair<OwnerTy, uint64_t>> UseTy;
    220   SmallVector<UseTy, 8> Uses(UseMap.begin(), UseMap.end());
    221   std::sort(Uses.begin(), Uses.end(), [](const UseTy &L, const UseTy &R) {
    222     return L.second.second < R.second.second;
    223   });
    224   UseMap.clear();
    225   for (const auto &Pair : Uses) {
    226     auto Owner = Pair.second.first;
    227     if (!Owner)
    228       continue;
    229     if (Owner.is<MetadataAsValue *>())
    230       continue;
    231 
    232     // Resolve MDNodes that point at this.
    233     auto *OwnerMD = dyn_cast<MDNode>(Owner.get<Metadata *>());
    234     if (!OwnerMD)
    235       continue;
    236     if (OwnerMD->isResolved())
    237       continue;
    238     OwnerMD->decrementUnresolvedOperandCount();
    239   }
    240 }
    241 
    242 static Function *getLocalFunction(Value *V) {
    243   assert(V && "Expected value");
    244   if (auto *A = dyn_cast<Argument>(V))
    245     return A->getParent();
    246   if (BasicBlock *BB = cast<Instruction>(V)->getParent())
    247     return BB->getParent();
    248   return nullptr;
    249 }
    250 
    251 ValueAsMetadata *ValueAsMetadata::get(Value *V) {
    252   assert(V && "Unexpected null Value");
    253 
    254   auto &Context = V->getContext();
    255   auto *&Entry = Context.pImpl->ValuesAsMetadata[V];
    256   if (!Entry) {
    257     assert((isa<Constant>(V) || isa<Argument>(V) || isa<Instruction>(V)) &&
    258            "Expected constant or function-local value");
    259     assert(!V->NameAndIsUsedByMD.getInt() &&
    260            "Expected this to be the only metadata use");
    261     V->NameAndIsUsedByMD.setInt(true);
    262     if (auto *C = dyn_cast<Constant>(V))
    263       Entry = new ConstantAsMetadata(C);
    264     else
    265       Entry = new LocalAsMetadata(V);
    266   }
    267 
    268   return Entry;
    269 }
    270 
    271 ValueAsMetadata *ValueAsMetadata::getIfExists(Value *V) {
    272   assert(V && "Unexpected null Value");
    273   return V->getContext().pImpl->ValuesAsMetadata.lookup(V);
    274 }
    275 
    276 void ValueAsMetadata::handleDeletion(Value *V) {
    277   assert(V && "Expected valid value");
    278 
    279   auto &Store = V->getType()->getContext().pImpl->ValuesAsMetadata;
    280   auto I = Store.find(V);
    281   if (I == Store.end())
    282     return;
    283 
    284   // Remove old entry from the map.
    285   ValueAsMetadata *MD = I->second;
    286   assert(MD && "Expected valid metadata");
    287   assert(MD->getValue() == V && "Expected valid mapping");
    288   Store.erase(I);
    289 
    290   // Delete the metadata.
    291   MD->replaceAllUsesWith(nullptr);
    292   delete MD;
    293 }
    294 
    295 void ValueAsMetadata::handleRAUW(Value *From, Value *To) {
    296   assert(From && "Expected valid value");
    297   assert(To && "Expected valid value");
    298   assert(From != To && "Expected changed value");
    299   assert(From->getType() == To->getType() && "Unexpected type change");
    300 
    301   LLVMContext &Context = From->getType()->getContext();
    302   auto &Store = Context.pImpl->ValuesAsMetadata;
    303   auto I = Store.find(From);
    304   if (I == Store.end()) {
    305     assert(!From->NameAndIsUsedByMD.getInt() &&
    306            "Expected From not to be used by metadata");
    307     return;
    308   }
    309 
    310   // Remove old entry from the map.
    311   assert(From->NameAndIsUsedByMD.getInt() &&
    312          "Expected From to be used by metadata");
    313   From->NameAndIsUsedByMD.setInt(false);
    314   ValueAsMetadata *MD = I->second;
    315   assert(MD && "Expected valid metadata");
    316   assert(MD->getValue() == From && "Expected valid mapping");
    317   Store.erase(I);
    318 
    319   if (isa<LocalAsMetadata>(MD)) {
    320     if (auto *C = dyn_cast<Constant>(To)) {
    321       // Local became a constant.
    322       MD->replaceAllUsesWith(ConstantAsMetadata::get(C));
    323       delete MD;
    324       return;
    325     }
    326     if (getLocalFunction(From) && getLocalFunction(To) &&
    327         getLocalFunction(From) != getLocalFunction(To)) {
    328       // Function changed.
    329       MD->replaceAllUsesWith(nullptr);
    330       delete MD;
    331       return;
    332     }
    333   } else if (!isa<Constant>(To)) {
    334     // Changed to function-local value.
    335     MD->replaceAllUsesWith(nullptr);
    336     delete MD;
    337     return;
    338   }
    339 
    340   auto *&Entry = Store[To];
    341   if (Entry) {
    342     // The target already exists.
    343     MD->replaceAllUsesWith(Entry);
    344     delete MD;
    345     return;
    346   }
    347 
    348   // Update MD in place (and update the map entry).
    349   assert(!To->NameAndIsUsedByMD.getInt() &&
    350          "Expected this to be the only metadata use");
    351   To->NameAndIsUsedByMD.setInt(true);
    352   MD->V = To;
    353   Entry = MD;
    354 }
    355 
    356 //===----------------------------------------------------------------------===//
    357 // MDString implementation.
    358 //
    359 
    360 MDString *MDString::get(LLVMContext &Context, StringRef Str) {
    361   auto &Store = Context.pImpl->MDStringCache;
    362   auto I = Store.find(Str);
    363   if (I != Store.end())
    364     return &I->second;
    365 
    366   auto *Entry =
    367       StringMapEntry<MDString>::Create(Str, Store.getAllocator(), MDString());
    368   bool WasInserted = Store.insert(Entry);
    369   (void)WasInserted;
    370   assert(WasInserted && "Expected entry to be inserted");
    371   Entry->second.Entry = Entry;
    372   return &Entry->second;
    373 }
    374 
    375 StringRef MDString::getString() const {
    376   assert(Entry && "Expected to find string map entry");
    377   return Entry->first();
    378 }
    379 
    380 //===----------------------------------------------------------------------===//
    381 // MDNode implementation.
    382 //
    383 
    384 void *MDNode::operator new(size_t Size, unsigned NumOps) {
    385   void *Ptr = ::operator new(Size + NumOps * sizeof(MDOperand));
    386   MDOperand *O = static_cast<MDOperand *>(Ptr);
    387   for (MDOperand *E = O + NumOps; O != E; ++O)
    388     (void)new (O) MDOperand;
    389   return O;
    390 }
    391 
    392 void MDNode::operator delete(void *Mem) {
    393   MDNode *N = static_cast<MDNode *>(Mem);
    394   MDOperand *O = static_cast<MDOperand *>(Mem);
    395   for (MDOperand *E = O - N->NumOperands; O != E; --O)
    396     (O - 1)->~MDOperand();
    397   ::operator delete(O);
    398 }
    399 
    400 MDNode::MDNode(LLVMContext &Context, unsigned ID, StorageType Storage,
    401                ArrayRef<Metadata *> Ops1, ArrayRef<Metadata *> Ops2)
    402     : Metadata(ID, Storage), NumOperands(Ops1.size() + Ops2.size()),
    403       NumUnresolved(0), Context(Context) {
    404   unsigned Op = 0;
    405   for (Metadata *MD : Ops1)
    406     setOperand(Op++, MD);
    407   for (Metadata *MD : Ops2)
    408     setOperand(Op++, MD);
    409 
    410   if (isDistinct())
    411     return;
    412 
    413   if (isUniqued())
    414     // Check whether any operands are unresolved, requiring re-uniquing.  If
    415     // not, don't support RAUW.
    416     if (!countUnresolvedOperands())
    417       return;
    418 
    419   this->Context.makeReplaceable(make_unique<ReplaceableMetadataImpl>(Context));
    420 }
    421 
    422 TempMDNode MDNode::clone() const {
    423   switch (getMetadataID()) {
    424   default:
    425     llvm_unreachable("Invalid MDNode subclass");
    426 #define HANDLE_MDNODE_LEAF(CLASS)                                              \
    427   case CLASS##Kind:                                                            \
    428     return cast<CLASS>(this)->cloneImpl();
    429 #include "llvm/IR/Metadata.def"
    430   }
    431 }
    432 
    433 static bool isOperandUnresolved(Metadata *Op) {
    434   if (auto *N = dyn_cast_or_null<MDNode>(Op))
    435     return !N->isResolved();
    436   return false;
    437 }
    438 
    439 unsigned MDNode::countUnresolvedOperands() {
    440   assert(NumUnresolved == 0 && "Expected unresolved ops to be uncounted");
    441   NumUnresolved = std::count_if(op_begin(), op_end(), isOperandUnresolved);
    442   return NumUnresolved;
    443 }
    444 
    445 void MDNode::makeUniqued() {
    446   assert(isTemporary() && "Expected this to be temporary");
    447   assert(!isResolved() && "Expected this to be unresolved");
    448 
    449   // Enable uniquing callbacks.
    450   for (auto &Op : mutable_operands())
    451     Op.reset(Op.get(), this);
    452 
    453   // Make this 'uniqued'.
    454   Storage = Uniqued;
    455   if (!countUnresolvedOperands())
    456     resolve();
    457 
    458   assert(isUniqued() && "Expected this to be uniqued");
    459 }
    460 
    461 void MDNode::makeDistinct() {
    462   assert(isTemporary() && "Expected this to be temporary");
    463   assert(!isResolved() && "Expected this to be unresolved");
    464 
    465   // Pretend to be uniqued, resolve the node, and then store in distinct table.
    466   Storage = Uniqued;
    467   resolve();
    468   storeDistinctInContext();
    469 
    470   assert(isDistinct() && "Expected this to be distinct");
    471   assert(isResolved() && "Expected this to be resolved");
    472 }
    473 
    474 void MDNode::resolve() {
    475   assert(isUniqued() && "Expected this to be uniqued");
    476   assert(!isResolved() && "Expected this to be unresolved");
    477 
    478   // Move the map, so that this immediately looks resolved.
    479   auto Uses = Context.takeReplaceableUses();
    480   NumUnresolved = 0;
    481   assert(isResolved() && "Expected this to be resolved");
    482 
    483   // Drop RAUW support.
    484   Uses->resolveAllUses();
    485 }
    486 
    487 void MDNode::resolveAfterOperandChange(Metadata *Old, Metadata *New) {
    488   assert(NumUnresolved != 0 && "Expected unresolved operands");
    489 
    490   // Check if an operand was resolved.
    491   if (!isOperandUnresolved(Old)) {
    492     if (isOperandUnresolved(New))
    493       // An operand was un-resolved!
    494       ++NumUnresolved;
    495   } else if (!isOperandUnresolved(New))
    496     decrementUnresolvedOperandCount();
    497 }
    498 
    499 void MDNode::decrementUnresolvedOperandCount() {
    500   if (!--NumUnresolved)
    501     // Last unresolved operand has just been resolved.
    502     resolve();
    503 }
    504 
    505 void MDNode::resolveCycles() {
    506   if (isResolved())
    507     return;
    508 
    509   // Resolve this node immediately.
    510   resolve();
    511 
    512   // Resolve all operands.
    513   for (const auto &Op : operands()) {
    514     auto *N = dyn_cast_or_null<MDNode>(Op);
    515     if (!N)
    516       continue;
    517 
    518     assert(!N->isTemporary() &&
    519            "Expected all forward declarations to be resolved");
    520     if (!N->isResolved())
    521       N->resolveCycles();
    522   }
    523 }
    524 
    525 static bool hasSelfReference(MDNode *N) {
    526   for (Metadata *MD : N->operands())
    527     if (MD == N)
    528       return true;
    529   return false;
    530 }
    531 
    532 MDNode *MDNode::replaceWithPermanentImpl() {
    533   if (hasSelfReference(this))
    534     return replaceWithDistinctImpl();
    535   return replaceWithUniquedImpl();
    536 }
    537 
    538 MDNode *MDNode::replaceWithUniquedImpl() {
    539   // Try to uniquify in place.
    540   MDNode *UniquedNode = uniquify();
    541 
    542   if (UniquedNode == this) {
    543     makeUniqued();
    544     return this;
    545   }
    546 
    547   // Collision, so RAUW instead.
    548   replaceAllUsesWith(UniquedNode);
    549   deleteAsSubclass();
    550   return UniquedNode;
    551 }
    552 
    553 MDNode *MDNode::replaceWithDistinctImpl() {
    554   makeDistinct();
    555   return this;
    556 }
    557 
    558 void MDTuple::recalculateHash() {
    559   setHash(MDTupleInfo::KeyTy::calculateHash(this));
    560 }
    561 
    562 void MDNode::dropAllReferences() {
    563   for (unsigned I = 0, E = NumOperands; I != E; ++I)
    564     setOperand(I, nullptr);
    565   if (!isResolved()) {
    566     Context.getReplaceableUses()->resolveAllUses(/* ResolveUsers */ false);
    567     (void)Context.takeReplaceableUses();
    568   }
    569 }
    570 
    571 void MDNode::handleChangedOperand(void *Ref, Metadata *New) {
    572   unsigned Op = static_cast<MDOperand *>(Ref) - op_begin();
    573   assert(Op < getNumOperands() && "Expected valid operand");
    574 
    575   if (!isUniqued()) {
    576     // This node is not uniqued.  Just set the operand and be done with it.
    577     setOperand(Op, New);
    578     return;
    579   }
    580 
    581   // This node is uniqued.
    582   eraseFromStore();
    583 
    584   Metadata *Old = getOperand(Op);
    585   setOperand(Op, New);
    586 
    587   // Drop uniquing for self-reference cycles.
    588   if (New == this) {
    589     if (!isResolved())
    590       resolve();
    591     storeDistinctInContext();
    592     return;
    593   }
    594 
    595   // Re-unique the node.
    596   auto *Uniqued = uniquify();
    597   if (Uniqued == this) {
    598     if (!isResolved())
    599       resolveAfterOperandChange(Old, New);
    600     return;
    601   }
    602 
    603   // Collision.
    604   if (!isResolved()) {
    605     // Still unresolved, so RAUW.
    606     //
    607     // First, clear out all operands to prevent any recursion (similar to
    608     // dropAllReferences(), but we still need the use-list).
    609     for (unsigned O = 0, E = getNumOperands(); O != E; ++O)
    610       setOperand(O, nullptr);
    611     Context.getReplaceableUses()->replaceAllUsesWith(Uniqued);
    612     deleteAsSubclass();
    613     return;
    614   }
    615 
    616   // Store in non-uniqued form if RAUW isn't possible.
    617   storeDistinctInContext();
    618 }
    619 
    620 void MDNode::deleteAsSubclass() {
    621   switch (getMetadataID()) {
    622   default:
    623     llvm_unreachable("Invalid subclass of MDNode");
    624 #define HANDLE_MDNODE_LEAF(CLASS)                                              \
    625   case CLASS##Kind:                                                            \
    626     delete cast<CLASS>(this);                                                  \
    627     break;
    628 #include "llvm/IR/Metadata.def"
    629   }
    630 }
    631 
    632 template <class T, class InfoT>
    633 static T *uniquifyImpl(T *N, DenseSet<T *, InfoT> &Store) {
    634   if (T *U = getUniqued(Store, N))
    635     return U;
    636 
    637   Store.insert(N);
    638   return N;
    639 }
    640 
    641 template <class NodeTy> struct MDNode::HasCachedHash {
    642   typedef char Yes[1];
    643   typedef char No[2];
    644   template <class U, U Val> struct SFINAE {};
    645 
    646   template <class U>
    647   static Yes &check(SFINAE<void (U::*)(unsigned), &U::setHash> *);
    648   template <class U> static No &check(...);
    649 
    650   static const bool value = sizeof(check<NodeTy>(nullptr)) == sizeof(Yes);
    651 };
    652 
    653 MDNode *MDNode::uniquify() {
    654   assert(!hasSelfReference(this) && "Cannot uniquify a self-referencing node");
    655 
    656   // Try to insert into uniquing store.
    657   switch (getMetadataID()) {
    658   default:
    659     llvm_unreachable("Invalid subclass of MDNode");
    660 #define HANDLE_MDNODE_LEAF(CLASS)                                              \
    661   case CLASS##Kind: {                                                          \
    662     CLASS *SubclassThis = cast<CLASS>(this);                                   \
    663     std::integral_constant<bool, HasCachedHash<CLASS>::value>                  \
    664         ShouldRecalculateHash;                                                 \
    665     dispatchRecalculateHash(SubclassThis, ShouldRecalculateHash);              \
    666     return uniquifyImpl(SubclassThis, getContext().pImpl->CLASS##s);           \
    667   }
    668 #include "llvm/IR/Metadata.def"
    669   }
    670 }
    671 
    672 void MDNode::eraseFromStore() {
    673   switch (getMetadataID()) {
    674   default:
    675     llvm_unreachable("Invalid subclass of MDNode");
    676 #define HANDLE_MDNODE_LEAF(CLASS)                                              \
    677   case CLASS##Kind:                                                            \
    678     getContext().pImpl->CLASS##s.erase(cast<CLASS>(this));                     \
    679     break;
    680 #include "llvm/IR/Metadata.def"
    681   }
    682 }
    683 
    684 MDTuple *MDTuple::getImpl(LLVMContext &Context, ArrayRef<Metadata *> MDs,
    685                           StorageType Storage, bool ShouldCreate) {
    686   unsigned Hash = 0;
    687   if (Storage == Uniqued) {
    688     MDTupleInfo::KeyTy Key(MDs);
    689     if (auto *N = getUniqued(Context.pImpl->MDTuples, Key))
    690       return N;
    691     if (!ShouldCreate)
    692       return nullptr;
    693     Hash = Key.getHash();
    694   } else {
    695     assert(ShouldCreate && "Expected non-uniqued nodes to always be created");
    696   }
    697 
    698   return storeImpl(new (MDs.size()) MDTuple(Context, Storage, Hash, MDs),
    699                    Storage, Context.pImpl->MDTuples);
    700 }
    701 
    702 void MDNode::deleteTemporary(MDNode *N) {
    703   assert(N->isTemporary() && "Expected temporary node");
    704   N->replaceAllUsesWith(nullptr);
    705   N->deleteAsSubclass();
    706 }
    707 
    708 void MDNode::storeDistinctInContext() {
    709   assert(isResolved() && "Expected resolved nodes");
    710   Storage = Distinct;
    711 
    712   // Reset the hash.
    713   switch (getMetadataID()) {
    714   default:
    715     llvm_unreachable("Invalid subclass of MDNode");
    716 #define HANDLE_MDNODE_LEAF(CLASS)                                              \
    717   case CLASS##Kind: {                                                          \
    718     std::integral_constant<bool, HasCachedHash<CLASS>::value> ShouldResetHash; \
    719     dispatchResetHash(cast<CLASS>(this), ShouldResetHash);                     \
    720     break;                                                                     \
    721   }
    722 #include "llvm/IR/Metadata.def"
    723   }
    724 
    725   getContext().pImpl->DistinctMDNodes.insert(this);
    726 }
    727 
    728 void MDNode::replaceOperandWith(unsigned I, Metadata *New) {
    729   if (getOperand(I) == New)
    730     return;
    731 
    732   if (!isUniqued()) {
    733     setOperand(I, New);
    734     return;
    735   }
    736 
    737   handleChangedOperand(mutable_begin() + I, New);
    738 }
    739 
    740 void MDNode::setOperand(unsigned I, Metadata *New) {
    741   assert(I < NumOperands);
    742   mutable_begin()[I].reset(New, isUniqued() ? this : nullptr);
    743 }
    744 
    745 /// \brief Get a node, or a self-reference that looks like it.
    746 ///
    747 /// Special handling for finding self-references, for use by \a
    748 /// MDNode::concatenate() and \a MDNode::intersect() to maintain behaviour from
    749 /// when self-referencing nodes were still uniqued.  If the first operand has
    750 /// the same operands as \c Ops, return the first operand instead.
    751 static MDNode *getOrSelfReference(LLVMContext &Context,
    752                                   ArrayRef<Metadata *> Ops) {
    753   if (!Ops.empty())
    754     if (MDNode *N = dyn_cast_or_null<MDNode>(Ops[0]))
    755       if (N->getNumOperands() == Ops.size() && N == N->getOperand(0)) {
    756         for (unsigned I = 1, E = Ops.size(); I != E; ++I)
    757           if (Ops[I] != N->getOperand(I))
    758             return MDNode::get(Context, Ops);
    759         return N;
    760       }
    761 
    762   return MDNode::get(Context, Ops);
    763 }
    764 
    765 MDNode *MDNode::concatenate(MDNode *A, MDNode *B) {
    766   if (!A)
    767     return B;
    768   if (!B)
    769     return A;
    770 
    771   SmallVector<Metadata *, 4> MDs;
    772   MDs.reserve(A->getNumOperands() + B->getNumOperands());
    773   MDs.append(A->op_begin(), A->op_end());
    774   MDs.append(B->op_begin(), B->op_end());
    775 
    776   // FIXME: This preserves long-standing behaviour, but is it really the right
    777   // behaviour?  Or was that an unintended side-effect of node uniquing?
    778   return getOrSelfReference(A->getContext(), MDs);
    779 }
    780 
    781 MDNode *MDNode::intersect(MDNode *A, MDNode *B) {
    782   if (!A || !B)
    783     return nullptr;
    784 
    785   SmallVector<Metadata *, 4> MDs;
    786   for (Metadata *MD : A->operands())
    787     if (std::find(B->op_begin(), B->op_end(), MD) != B->op_end())
    788       MDs.push_back(MD);
    789 
    790   // FIXME: This preserves long-standing behaviour, but is it really the right
    791   // behaviour?  Or was that an unintended side-effect of node uniquing?
    792   return getOrSelfReference(A->getContext(), MDs);
    793 }
    794 
    795 MDNode *MDNode::getMostGenericAliasScope(MDNode *A, MDNode *B) {
    796   if (!A || !B)
    797     return nullptr;
    798 
    799   SmallVector<Metadata *, 4> MDs(B->op_begin(), B->op_end());
    800   for (Metadata *MD : A->operands())
    801     if (std::find(B->op_begin(), B->op_end(), MD) == B->op_end())
    802       MDs.push_back(MD);
    803 
    804   // FIXME: This preserves long-standing behaviour, but is it really the right
    805   // behaviour?  Or was that an unintended side-effect of node uniquing?
    806   return getOrSelfReference(A->getContext(), MDs);
    807 }
    808 
    809 MDNode *MDNode::getMostGenericFPMath(MDNode *A, MDNode *B) {
    810   if (!A || !B)
    811     return nullptr;
    812 
    813   APFloat AVal = mdconst::extract<ConstantFP>(A->getOperand(0))->getValueAPF();
    814   APFloat BVal = mdconst::extract<ConstantFP>(B->getOperand(0))->getValueAPF();
    815   if (AVal.compare(BVal) == APFloat::cmpLessThan)
    816     return A;
    817   return B;
    818 }
    819 
    820 static bool isContiguous(const ConstantRange &A, const ConstantRange &B) {
    821   return A.getUpper() == B.getLower() || A.getLower() == B.getUpper();
    822 }
    823 
    824 static bool canBeMerged(const ConstantRange &A, const ConstantRange &B) {
    825   return !A.intersectWith(B).isEmptySet() || isContiguous(A, B);
    826 }
    827 
    828 static bool tryMergeRange(SmallVectorImpl<ConstantInt *> &EndPoints,
    829                           ConstantInt *Low, ConstantInt *High) {
    830   ConstantRange NewRange(Low->getValue(), High->getValue());
    831   unsigned Size = EndPoints.size();
    832   APInt LB = EndPoints[Size - 2]->getValue();
    833   APInt LE = EndPoints[Size - 1]->getValue();
    834   ConstantRange LastRange(LB, LE);
    835   if (canBeMerged(NewRange, LastRange)) {
    836     ConstantRange Union = LastRange.unionWith(NewRange);
    837     Type *Ty = High->getType();
    838     EndPoints[Size - 2] =
    839         cast<ConstantInt>(ConstantInt::get(Ty, Union.getLower()));
    840     EndPoints[Size - 1] =
    841         cast<ConstantInt>(ConstantInt::get(Ty, Union.getUpper()));
    842     return true;
    843   }
    844   return false;
    845 }
    846 
    847 static void addRange(SmallVectorImpl<ConstantInt *> &EndPoints,
    848                      ConstantInt *Low, ConstantInt *High) {
    849   if (!EndPoints.empty())
    850     if (tryMergeRange(EndPoints, Low, High))
    851       return;
    852 
    853   EndPoints.push_back(Low);
    854   EndPoints.push_back(High);
    855 }
    856 
    857 MDNode *MDNode::getMostGenericRange(MDNode *A, MDNode *B) {
    858   // Given two ranges, we want to compute the union of the ranges. This
    859   // is slightly complitade by having to combine the intervals and merge
    860   // the ones that overlap.
    861 
    862   if (!A || !B)
    863     return nullptr;
    864 
    865   if (A == B)
    866     return A;
    867 
    868   // First, walk both lists in older of the lower boundary of each interval.
    869   // At each step, try to merge the new interval to the last one we adedd.
    870   SmallVector<ConstantInt *, 4> EndPoints;
    871   int AI = 0;
    872   int BI = 0;
    873   int AN = A->getNumOperands() / 2;
    874   int BN = B->getNumOperands() / 2;
    875   while (AI < AN && BI < BN) {
    876     ConstantInt *ALow = mdconst::extract<ConstantInt>(A->getOperand(2 * AI));
    877     ConstantInt *BLow = mdconst::extract<ConstantInt>(B->getOperand(2 * BI));
    878 
    879     if (ALow->getValue().slt(BLow->getValue())) {
    880       addRange(EndPoints, ALow,
    881                mdconst::extract<ConstantInt>(A->getOperand(2 * AI + 1)));
    882       ++AI;
    883     } else {
    884       addRange(EndPoints, BLow,
    885                mdconst::extract<ConstantInt>(B->getOperand(2 * BI + 1)));
    886       ++BI;
    887     }
    888   }
    889   while (AI < AN) {
    890     addRange(EndPoints, mdconst::extract<ConstantInt>(A->getOperand(2 * AI)),
    891              mdconst::extract<ConstantInt>(A->getOperand(2 * AI + 1)));
    892     ++AI;
    893   }
    894   while (BI < BN) {
    895     addRange(EndPoints, mdconst::extract<ConstantInt>(B->getOperand(2 * BI)),
    896              mdconst::extract<ConstantInt>(B->getOperand(2 * BI + 1)));
    897     ++BI;
    898   }
    899 
    900   // If we have more than 2 ranges (4 endpoints) we have to try to merge
    901   // the last and first ones.
    902   unsigned Size = EndPoints.size();
    903   if (Size > 4) {
    904     ConstantInt *FB = EndPoints[0];
    905     ConstantInt *FE = EndPoints[1];
    906     if (tryMergeRange(EndPoints, FB, FE)) {
    907       for (unsigned i = 0; i < Size - 2; ++i) {
    908         EndPoints[i] = EndPoints[i + 2];
    909       }
    910       EndPoints.resize(Size - 2);
    911     }
    912   }
    913 
    914   // If in the end we have a single range, it is possible that it is now the
    915   // full range. Just drop the metadata in that case.
    916   if (EndPoints.size() == 2) {
    917     ConstantRange Range(EndPoints[0]->getValue(), EndPoints[1]->getValue());
    918     if (Range.isFullSet())
    919       return nullptr;
    920   }
    921 
    922   SmallVector<Metadata *, 4> MDs;
    923   MDs.reserve(EndPoints.size());
    924   for (auto *I : EndPoints)
    925     MDs.push_back(ConstantAsMetadata::get(I));
    926   return MDNode::get(A->getContext(), MDs);
    927 }
    928 
    929 //===----------------------------------------------------------------------===//
    930 // NamedMDNode implementation.
    931 //
    932 
    933 static SmallVector<TrackingMDRef, 4> &getNMDOps(void *Operands) {
    934   return *(SmallVector<TrackingMDRef, 4> *)Operands;
    935 }
    936 
    937 NamedMDNode::NamedMDNode(const Twine &N)
    938     : Name(N.str()), Parent(nullptr),
    939       Operands(new SmallVector<TrackingMDRef, 4>()) {}
    940 
    941 NamedMDNode::~NamedMDNode() {
    942   dropAllReferences();
    943   delete &getNMDOps(Operands);
    944 }
    945 
    946 unsigned NamedMDNode::getNumOperands() const {
    947   return (unsigned)getNMDOps(Operands).size();
    948 }
    949 
    950 MDNode *NamedMDNode::getOperand(unsigned i) const {
    951   assert(i < getNumOperands() && "Invalid Operand number!");
    952   auto *N = getNMDOps(Operands)[i].get();
    953   return cast_or_null<MDNode>(N);
    954 }
    955 
    956 void NamedMDNode::addOperand(MDNode *M) { getNMDOps(Operands).emplace_back(M); }
    957 
    958 void NamedMDNode::setOperand(unsigned I, MDNode *New) {
    959   assert(I < getNumOperands() && "Invalid operand number");
    960   getNMDOps(Operands)[I].reset(New);
    961 }
    962 
    963 void NamedMDNode::eraseFromParent() {
    964   getParent()->eraseNamedMetadata(this);
    965 }
    966 
    967 void NamedMDNode::dropAllReferences() {
    968   getNMDOps(Operands).clear();
    969 }
    970 
    971 StringRef NamedMDNode::getName() const {
    972   return StringRef(Name);
    973 }
    974 
    975 //===----------------------------------------------------------------------===//
    976 // Instruction Metadata method implementations.
    977 //
    978 
    979 void Instruction::setMetadata(StringRef Kind, MDNode *Node) {
    980   if (!Node && !hasMetadata())
    981     return;
    982   setMetadata(getContext().getMDKindID(Kind), Node);
    983 }
    984 
    985 MDNode *Instruction::getMetadataImpl(StringRef Kind) const {
    986   return getMetadataImpl(getContext().getMDKindID(Kind));
    987 }
    988 
    989 void Instruction::dropUnknownMetadata(ArrayRef<unsigned> KnownIDs) {
    990   SmallSet<unsigned, 5> KnownSet;
    991   KnownSet.insert(KnownIDs.begin(), KnownIDs.end());
    992 
    993   // Drop debug if needed
    994   if (KnownSet.erase(LLVMContext::MD_dbg))
    995     DbgLoc = DebugLoc();
    996 
    997   if (!hasMetadataHashEntry())
    998     return; // Nothing to remove!
    999 
   1000   DenseMap<const Instruction *, LLVMContextImpl::MDMapTy> &MetadataStore =
   1001       getContext().pImpl->MetadataStore;
   1002 
   1003   if (KnownSet.empty()) {
   1004     // Just drop our entry at the store.
   1005     MetadataStore.erase(this);
   1006     setHasMetadataHashEntry(false);
   1007     return;
   1008   }
   1009 
   1010   LLVMContextImpl::MDMapTy &Info = MetadataStore[this];
   1011   unsigned I;
   1012   unsigned E;
   1013   // Walk the array and drop any metadata we don't know.
   1014   for (I = 0, E = Info.size(); I != E;) {
   1015     if (KnownSet.count(Info[I].first)) {
   1016       ++I;
   1017       continue;
   1018     }
   1019 
   1020     Info[I] = std::move(Info.back());
   1021     Info.pop_back();
   1022     --E;
   1023   }
   1024   assert(E == Info.size());
   1025 
   1026   if (E == 0) {
   1027     // Drop our entry at the store.
   1028     MetadataStore.erase(this);
   1029     setHasMetadataHashEntry(false);
   1030   }
   1031 }
   1032 
   1033 /// setMetadata - Set the metadata of of the specified kind to the specified
   1034 /// node.  This updates/replaces metadata if already present, or removes it if
   1035 /// Node is null.
   1036 void Instruction::setMetadata(unsigned KindID, MDNode *Node) {
   1037   if (!Node && !hasMetadata())
   1038     return;
   1039 
   1040   // Handle 'dbg' as a special case since it is not stored in the hash table.
   1041   if (KindID == LLVMContext::MD_dbg) {
   1042     DbgLoc = DebugLoc(Node);
   1043     return;
   1044   }
   1045 
   1046   // Handle the case when we're adding/updating metadata on an instruction.
   1047   if (Node) {
   1048     LLVMContextImpl::MDMapTy &Info = getContext().pImpl->MetadataStore[this];
   1049     assert(!Info.empty() == hasMetadataHashEntry() &&
   1050            "HasMetadata bit is wonked");
   1051     if (Info.empty()) {
   1052       setHasMetadataHashEntry(true);
   1053     } else {
   1054       // Handle replacement of an existing value.
   1055       for (auto &P : Info)
   1056         if (P.first == KindID) {
   1057           P.second.reset(Node);
   1058           return;
   1059         }
   1060     }
   1061 
   1062     // No replacement, just add it to the list.
   1063     Info.emplace_back(std::piecewise_construct, std::make_tuple(KindID),
   1064                       std::make_tuple(Node));
   1065     return;
   1066   }
   1067 
   1068   // Otherwise, we're removing metadata from an instruction.
   1069   assert((hasMetadataHashEntry() ==
   1070           (getContext().pImpl->MetadataStore.count(this) > 0)) &&
   1071          "HasMetadata bit out of date!");
   1072   if (!hasMetadataHashEntry())
   1073     return;  // Nothing to remove!
   1074   LLVMContextImpl::MDMapTy &Info = getContext().pImpl->MetadataStore[this];
   1075 
   1076   // Common case is removing the only entry.
   1077   if (Info.size() == 1 && Info[0].first == KindID) {
   1078     getContext().pImpl->MetadataStore.erase(this);
   1079     setHasMetadataHashEntry(false);
   1080     return;
   1081   }
   1082 
   1083   // Handle removal of an existing value.
   1084   for (unsigned i = 0, e = Info.size(); i != e; ++i)
   1085     if (Info[i].first == KindID) {
   1086       Info[i] = std::move(Info.back());
   1087       Info.pop_back();
   1088       assert(!Info.empty() && "Removing last entry should be handled above");
   1089       return;
   1090     }
   1091   // Otherwise, removing an entry that doesn't exist on the instruction.
   1092 }
   1093 
   1094 void Instruction::setAAMetadata(const AAMDNodes &N) {
   1095   setMetadata(LLVMContext::MD_tbaa, N.TBAA);
   1096   setMetadata(LLVMContext::MD_alias_scope, N.Scope);
   1097   setMetadata(LLVMContext::MD_noalias, N.NoAlias);
   1098 }
   1099 
   1100 MDNode *Instruction::getMetadataImpl(unsigned KindID) const {
   1101   // Handle 'dbg' as a special case since it is not stored in the hash table.
   1102   if (KindID == LLVMContext::MD_dbg)
   1103     return DbgLoc.getAsMDNode();
   1104 
   1105   if (!hasMetadataHashEntry()) return nullptr;
   1106 
   1107   LLVMContextImpl::MDMapTy &Info = getContext().pImpl->MetadataStore[this];
   1108   assert(!Info.empty() && "bit out of sync with hash table");
   1109 
   1110   for (const auto &I : Info)
   1111     if (I.first == KindID)
   1112       return I.second;
   1113   return nullptr;
   1114 }
   1115 
   1116 void Instruction::getAllMetadataImpl(
   1117     SmallVectorImpl<std::pair<unsigned, MDNode *>> &Result) const {
   1118   Result.clear();
   1119 
   1120   // Handle 'dbg' as a special case since it is not stored in the hash table.
   1121   if (DbgLoc) {
   1122     Result.push_back(
   1123         std::make_pair((unsigned)LLVMContext::MD_dbg, DbgLoc.getAsMDNode()));
   1124     if (!hasMetadataHashEntry()) return;
   1125   }
   1126 
   1127   assert(hasMetadataHashEntry() &&
   1128          getContext().pImpl->MetadataStore.count(this) &&
   1129          "Shouldn't have called this");
   1130   const LLVMContextImpl::MDMapTy &Info =
   1131     getContext().pImpl->MetadataStore.find(this)->second;
   1132   assert(!Info.empty() && "Shouldn't have called this");
   1133 
   1134   Result.reserve(Result.size() + Info.size());
   1135   for (auto &I : Info)
   1136     Result.push_back(std::make_pair(I.first, cast<MDNode>(I.second.get())));
   1137 
   1138   // Sort the resulting array so it is stable.
   1139   if (Result.size() > 1)
   1140     array_pod_sort(Result.begin(), Result.end());
   1141 }
   1142 
   1143 void Instruction::getAllMetadataOtherThanDebugLocImpl(
   1144     SmallVectorImpl<std::pair<unsigned, MDNode *>> &Result) const {
   1145   Result.clear();
   1146   assert(hasMetadataHashEntry() &&
   1147          getContext().pImpl->MetadataStore.count(this) &&
   1148          "Shouldn't have called this");
   1149   const LLVMContextImpl::MDMapTy &Info =
   1150     getContext().pImpl->MetadataStore.find(this)->second;
   1151   assert(!Info.empty() && "Shouldn't have called this");
   1152   Result.reserve(Result.size() + Info.size());
   1153   for (auto &I : Info)
   1154     Result.push_back(std::make_pair(I.first, cast<MDNode>(I.second.get())));
   1155 
   1156   // Sort the resulting array so it is stable.
   1157   if (Result.size() > 1)
   1158     array_pod_sort(Result.begin(), Result.end());
   1159 }
   1160 
   1161 /// clearMetadataHashEntries - Clear all hashtable-based metadata from
   1162 /// this instruction.
   1163 void Instruction::clearMetadataHashEntries() {
   1164   assert(hasMetadataHashEntry() && "Caller should check");
   1165   getContext().pImpl->MetadataStore.erase(this);
   1166   setHasMetadataHashEntry(false);
   1167 }
   1168