Home | History | Annotate | Download | only in IPO
      1 //===- GlobalOpt.cpp - Optimize Global Variables --------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This pass transforms simple global variables that never have their address
     11 // taken.  If obviously true, it marks read/write globals as constant, deletes
     12 // variables only stored to, etc.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #include "llvm/Transforms/IPO.h"
     17 #include "llvm/ADT/DenseMap.h"
     18 #include "llvm/ADT/STLExtras.h"
     19 #include "llvm/ADT/SmallPtrSet.h"
     20 #include "llvm/ADT/SmallSet.h"
     21 #include "llvm/ADT/SmallVector.h"
     22 #include "llvm/ADT/Statistic.h"
     23 #include "llvm/Analysis/ConstantFolding.h"
     24 #include "llvm/Analysis/MemoryBuiltins.h"
     25 #include "llvm/Analysis/TargetLibraryInfo.h"
     26 #include "llvm/IR/CallSite.h"
     27 #include "llvm/IR/CallingConv.h"
     28 #include "llvm/IR/Constants.h"
     29 #include "llvm/IR/DataLayout.h"
     30 #include "llvm/IR/DerivedTypes.h"
     31 #include "llvm/IR/GetElementPtrTypeIterator.h"
     32 #include "llvm/IR/Instructions.h"
     33 #include "llvm/IR/IntrinsicInst.h"
     34 #include "llvm/IR/Module.h"
     35 #include "llvm/IR/Operator.h"
     36 #include "llvm/IR/ValueHandle.h"
     37 #include "llvm/Pass.h"
     38 #include "llvm/Support/Debug.h"
     39 #include "llvm/Support/ErrorHandling.h"
     40 #include "llvm/Support/MathExtras.h"
     41 #include "llvm/Support/raw_ostream.h"
     42 #include "llvm/Transforms/Utils/CtorUtils.h"
     43 #include "llvm/Transforms/Utils/GlobalStatus.h"
     44 #include "llvm/Transforms/Utils/ModuleUtils.h"
     45 #include <algorithm>
     46 #include <deque>
     47 using namespace llvm;
     48 
     49 #define DEBUG_TYPE "globalopt"
     50 
     51 STATISTIC(NumMarked    , "Number of globals marked constant");
     52 STATISTIC(NumUnnamed   , "Number of globals marked unnamed_addr");
     53 STATISTIC(NumSRA       , "Number of aggregate globals broken into scalars");
     54 STATISTIC(NumHeapSRA   , "Number of heap objects SRA'd");
     55 STATISTIC(NumSubstitute,"Number of globals with initializers stored into them");
     56 STATISTIC(NumDeleted   , "Number of globals deleted");
     57 STATISTIC(NumFnDeleted , "Number of functions deleted");
     58 STATISTIC(NumGlobUses  , "Number of global uses devirtualized");
     59 STATISTIC(NumLocalized , "Number of globals localized");
     60 STATISTIC(NumShrunkToBool  , "Number of global vars shrunk to booleans");
     61 STATISTIC(NumFastCallFns   , "Number of functions converted to fastcc");
     62 STATISTIC(NumCtorsEvaluated, "Number of static ctors evaluated");
     63 STATISTIC(NumNestRemoved   , "Number of nest attributes removed");
     64 STATISTIC(NumAliasesResolved, "Number of global aliases resolved");
     65 STATISTIC(NumAliasesRemoved, "Number of global aliases eliminated");
     66 STATISTIC(NumCXXDtorsRemoved, "Number of global C++ destructors removed");
     67 
     68 namespace {
     69   struct GlobalOpt : public ModulePass {
     70     void getAnalysisUsage(AnalysisUsage &AU) const override {
     71       AU.addRequired<TargetLibraryInfoWrapperPass>();
     72     }
     73     static char ID; // Pass identification, replacement for typeid
     74     GlobalOpt() : ModulePass(ID) {
     75       initializeGlobalOptPass(*PassRegistry::getPassRegistry());
     76     }
     77 
     78     bool runOnModule(Module &M) override;
     79 
     80   private:
     81     bool OptimizeFunctions(Module &M);
     82     bool OptimizeGlobalVars(Module &M);
     83     bool OptimizeGlobalAliases(Module &M);
     84     bool ProcessGlobal(GlobalVariable *GV,Module::global_iterator &GVI);
     85     bool ProcessInternalGlobal(GlobalVariable *GV,Module::global_iterator &GVI,
     86                                const GlobalStatus &GS);
     87     bool OptimizeEmptyGlobalCXXDtors(Function *CXAAtExitFn);
     88 
     89     TargetLibraryInfo *TLI;
     90     SmallSet<const Comdat *, 8> NotDiscardableComdats;
     91   };
     92 }
     93 
     94 char GlobalOpt::ID = 0;
     95 INITIALIZE_PASS_BEGIN(GlobalOpt, "globalopt",
     96                 "Global Variable Optimizer", false, false)
     97 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
     98 INITIALIZE_PASS_END(GlobalOpt, "globalopt",
     99                 "Global Variable Optimizer", false, false)
    100 
    101 ModulePass *llvm::createGlobalOptimizerPass() { return new GlobalOpt(); }
    102 
    103 /// isLeakCheckerRoot - Is this global variable possibly used by a leak checker
    104 /// as a root?  If so, we might not really want to eliminate the stores to it.
    105 static bool isLeakCheckerRoot(GlobalVariable *GV) {
    106   // A global variable is a root if it is a pointer, or could plausibly contain
    107   // a pointer.  There are two challenges; one is that we could have a struct
    108   // the has an inner member which is a pointer.  We recurse through the type to
    109   // detect these (up to a point).  The other is that we may actually be a union
    110   // of a pointer and another type, and so our LLVM type is an integer which
    111   // gets converted into a pointer, or our type is an [i8 x #] with a pointer
    112   // potentially contained here.
    113 
    114   if (GV->hasPrivateLinkage())
    115     return false;
    116 
    117   SmallVector<Type *, 4> Types;
    118   Types.push_back(cast<PointerType>(GV->getType())->getElementType());
    119 
    120   unsigned Limit = 20;
    121   do {
    122     Type *Ty = Types.pop_back_val();
    123     switch (Ty->getTypeID()) {
    124       default: break;
    125       case Type::PointerTyID: return true;
    126       case Type::ArrayTyID:
    127       case Type::VectorTyID: {
    128         SequentialType *STy = cast<SequentialType>(Ty);
    129         Types.push_back(STy->getElementType());
    130         break;
    131       }
    132       case Type::StructTyID: {
    133         StructType *STy = cast<StructType>(Ty);
    134         if (STy->isOpaque()) return true;
    135         for (StructType::element_iterator I = STy->element_begin(),
    136                  E = STy->element_end(); I != E; ++I) {
    137           Type *InnerTy = *I;
    138           if (isa<PointerType>(InnerTy)) return true;
    139           if (isa<CompositeType>(InnerTy))
    140             Types.push_back(InnerTy);
    141         }
    142         break;
    143       }
    144     }
    145     if (--Limit == 0) return true;
    146   } while (!Types.empty());
    147   return false;
    148 }
    149 
    150 /// Given a value that is stored to a global but never read, determine whether
    151 /// it's safe to remove the store and the chain of computation that feeds the
    152 /// store.
    153 static bool IsSafeComputationToRemove(Value *V, const TargetLibraryInfo *TLI) {
    154   do {
    155     if (isa<Constant>(V))
    156       return true;
    157     if (!V->hasOneUse())
    158       return false;
    159     if (isa<LoadInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V) ||
    160         isa<GlobalValue>(V))
    161       return false;
    162     if (isAllocationFn(V, TLI))
    163       return true;
    164 
    165     Instruction *I = cast<Instruction>(V);
    166     if (I->mayHaveSideEffects())
    167       return false;
    168     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
    169       if (!GEP->hasAllConstantIndices())
    170         return false;
    171     } else if (I->getNumOperands() != 1) {
    172       return false;
    173     }
    174 
    175     V = I->getOperand(0);
    176   } while (1);
    177 }
    178 
    179 /// CleanupPointerRootUsers - This GV is a pointer root.  Loop over all users
    180 /// of the global and clean up any that obviously don't assign the global a
    181 /// value that isn't dynamically allocated.
    182 ///
    183 static bool CleanupPointerRootUsers(GlobalVariable *GV,
    184                                     const TargetLibraryInfo *TLI) {
    185   // A brief explanation of leak checkers.  The goal is to find bugs where
    186   // pointers are forgotten, causing an accumulating growth in memory
    187   // usage over time.  The common strategy for leak checkers is to whitelist the
    188   // memory pointed to by globals at exit.  This is popular because it also
    189   // solves another problem where the main thread of a C++ program may shut down
    190   // before other threads that are still expecting to use those globals.  To
    191   // handle that case, we expect the program may create a singleton and never
    192   // destroy it.
    193 
    194   bool Changed = false;
    195 
    196   // If Dead[n].first is the only use of a malloc result, we can delete its
    197   // chain of computation and the store to the global in Dead[n].second.
    198   SmallVector<std::pair<Instruction *, Instruction *>, 32> Dead;
    199 
    200   // Constants can't be pointers to dynamically allocated memory.
    201   for (Value::user_iterator UI = GV->user_begin(), E = GV->user_end();
    202        UI != E;) {
    203     User *U = *UI++;
    204     if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
    205       Value *V = SI->getValueOperand();
    206       if (isa<Constant>(V)) {
    207         Changed = true;
    208         SI->eraseFromParent();
    209       } else if (Instruction *I = dyn_cast<Instruction>(V)) {
    210         if (I->hasOneUse())
    211           Dead.push_back(std::make_pair(I, SI));
    212       }
    213     } else if (MemSetInst *MSI = dyn_cast<MemSetInst>(U)) {
    214       if (isa<Constant>(MSI->getValue())) {
    215         Changed = true;
    216         MSI->eraseFromParent();
    217       } else if (Instruction *I = dyn_cast<Instruction>(MSI->getValue())) {
    218         if (I->hasOneUse())
    219           Dead.push_back(std::make_pair(I, MSI));
    220       }
    221     } else if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(U)) {
    222       GlobalVariable *MemSrc = dyn_cast<GlobalVariable>(MTI->getSource());
    223       if (MemSrc && MemSrc->isConstant()) {
    224         Changed = true;
    225         MTI->eraseFromParent();
    226       } else if (Instruction *I = dyn_cast<Instruction>(MemSrc)) {
    227         if (I->hasOneUse())
    228           Dead.push_back(std::make_pair(I, MTI));
    229       }
    230     } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
    231       if (CE->use_empty()) {
    232         CE->destroyConstant();
    233         Changed = true;
    234       }
    235     } else if (Constant *C = dyn_cast<Constant>(U)) {
    236       if (isSafeToDestroyConstant(C)) {
    237         C->destroyConstant();
    238         // This could have invalidated UI, start over from scratch.
    239         Dead.clear();
    240         CleanupPointerRootUsers(GV, TLI);
    241         return true;
    242       }
    243     }
    244   }
    245 
    246   for (int i = 0, e = Dead.size(); i != e; ++i) {
    247     if (IsSafeComputationToRemove(Dead[i].first, TLI)) {
    248       Dead[i].second->eraseFromParent();
    249       Instruction *I = Dead[i].first;
    250       do {
    251         if (isAllocationFn(I, TLI))
    252           break;
    253         Instruction *J = dyn_cast<Instruction>(I->getOperand(0));
    254         if (!J)
    255           break;
    256         I->eraseFromParent();
    257         I = J;
    258       } while (1);
    259       I->eraseFromParent();
    260     }
    261   }
    262 
    263   return Changed;
    264 }
    265 
    266 /// CleanupConstantGlobalUsers - We just marked GV constant.  Loop over all
    267 /// users of the global, cleaning up the obvious ones.  This is largely just a
    268 /// quick scan over the use list to clean up the easy and obvious cruft.  This
    269 /// returns true if it made a change.
    270 static bool CleanupConstantGlobalUsers(Value *V, Constant *Init,
    271                                        const DataLayout &DL,
    272                                        TargetLibraryInfo *TLI) {
    273   bool Changed = false;
    274   // Note that we need to use a weak value handle for the worklist items. When
    275   // we delete a constant array, we may also be holding pointer to one of its
    276   // elements (or an element of one of its elements if we're dealing with an
    277   // array of arrays) in the worklist.
    278   SmallVector<WeakVH, 8> WorkList(V->user_begin(), V->user_end());
    279   while (!WorkList.empty()) {
    280     Value *UV = WorkList.pop_back_val();
    281     if (!UV)
    282       continue;
    283 
    284     User *U = cast<User>(UV);
    285 
    286     if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
    287       if (Init) {
    288         // Replace the load with the initializer.
    289         LI->replaceAllUsesWith(Init);
    290         LI->eraseFromParent();
    291         Changed = true;
    292       }
    293     } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
    294       // Store must be unreachable or storing Init into the global.
    295       SI->eraseFromParent();
    296       Changed = true;
    297     } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(U)) {
    298       if (CE->getOpcode() == Instruction::GetElementPtr) {
    299         Constant *SubInit = nullptr;
    300         if (Init)
    301           SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
    302         Changed |= CleanupConstantGlobalUsers(CE, SubInit, DL, TLI);
    303       } else if ((CE->getOpcode() == Instruction::BitCast &&
    304                   CE->getType()->isPointerTy()) ||
    305                  CE->getOpcode() == Instruction::AddrSpaceCast) {
    306         // Pointer cast, delete any stores and memsets to the global.
    307         Changed |= CleanupConstantGlobalUsers(CE, nullptr, DL, TLI);
    308       }
    309 
    310       if (CE->use_empty()) {
    311         CE->destroyConstant();
    312         Changed = true;
    313       }
    314     } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
    315       // Do not transform "gepinst (gep constexpr (GV))" here, because forming
    316       // "gepconstexpr (gep constexpr (GV))" will cause the two gep's to fold
    317       // and will invalidate our notion of what Init is.
    318       Constant *SubInit = nullptr;
    319       if (!isa<ConstantExpr>(GEP->getOperand(0))) {
    320         ConstantExpr *CE = dyn_cast_or_null<ConstantExpr>(
    321             ConstantFoldInstruction(GEP, DL, TLI));
    322         if (Init && CE && CE->getOpcode() == Instruction::GetElementPtr)
    323           SubInit = ConstantFoldLoadThroughGEPConstantExpr(Init, CE);
    324 
    325         // If the initializer is an all-null value and we have an inbounds GEP,
    326         // we already know what the result of any load from that GEP is.
    327         // TODO: Handle splats.
    328         if (Init && isa<ConstantAggregateZero>(Init) && GEP->isInBounds())
    329           SubInit = Constant::getNullValue(GEP->getType()->getElementType());
    330       }
    331       Changed |= CleanupConstantGlobalUsers(GEP, SubInit, DL, TLI);
    332 
    333       if (GEP->use_empty()) {
    334         GEP->eraseFromParent();
    335         Changed = true;
    336       }
    337     } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(U)) { // memset/cpy/mv
    338       if (MI->getRawDest() == V) {
    339         MI->eraseFromParent();
    340         Changed = true;
    341       }
    342 
    343     } else if (Constant *C = dyn_cast<Constant>(U)) {
    344       // If we have a chain of dead constantexprs or other things dangling from
    345       // us, and if they are all dead, nuke them without remorse.
    346       if (isSafeToDestroyConstant(C)) {
    347         C->destroyConstant();
    348         CleanupConstantGlobalUsers(V, Init, DL, TLI);
    349         return true;
    350       }
    351     }
    352   }
    353   return Changed;
    354 }
    355 
    356 /// isSafeSROAElementUse - Return true if the specified instruction is a safe
    357 /// user of a derived expression from a global that we want to SROA.
    358 static bool isSafeSROAElementUse(Value *V) {
    359   // We might have a dead and dangling constant hanging off of here.
    360   if (Constant *C = dyn_cast<Constant>(V))
    361     return isSafeToDestroyConstant(C);
    362 
    363   Instruction *I = dyn_cast<Instruction>(V);
    364   if (!I) return false;
    365 
    366   // Loads are ok.
    367   if (isa<LoadInst>(I)) return true;
    368 
    369   // Stores *to* the pointer are ok.
    370   if (StoreInst *SI = dyn_cast<StoreInst>(I))
    371     return SI->getOperand(0) != V;
    372 
    373   // Otherwise, it must be a GEP.
    374   GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I);
    375   if (!GEPI) return false;
    376 
    377   if (GEPI->getNumOperands() < 3 || !isa<Constant>(GEPI->getOperand(1)) ||
    378       !cast<Constant>(GEPI->getOperand(1))->isNullValue())
    379     return false;
    380 
    381   for (User *U : GEPI->users())
    382     if (!isSafeSROAElementUse(U))
    383       return false;
    384   return true;
    385 }
    386 
    387 
    388 /// IsUserOfGlobalSafeForSRA - U is a direct user of the specified global value.
    389 /// Look at it and its uses and decide whether it is safe to SROA this global.
    390 ///
    391 static bool IsUserOfGlobalSafeForSRA(User *U, GlobalValue *GV) {
    392   // The user of the global must be a GEP Inst or a ConstantExpr GEP.
    393   if (!isa<GetElementPtrInst>(U) &&
    394       (!isa<ConstantExpr>(U) ||
    395        cast<ConstantExpr>(U)->getOpcode() != Instruction::GetElementPtr))
    396     return false;
    397 
    398   // Check to see if this ConstantExpr GEP is SRA'able.  In particular, we
    399   // don't like < 3 operand CE's, and we don't like non-constant integer
    400   // indices.  This enforces that all uses are 'gep GV, 0, C, ...' for some
    401   // value of C.
    402   if (U->getNumOperands() < 3 || !isa<Constant>(U->getOperand(1)) ||
    403       !cast<Constant>(U->getOperand(1))->isNullValue() ||
    404       !isa<ConstantInt>(U->getOperand(2)))
    405     return false;
    406 
    407   gep_type_iterator GEPI = gep_type_begin(U), E = gep_type_end(U);
    408   ++GEPI;  // Skip over the pointer index.
    409 
    410   // If this is a use of an array allocation, do a bit more checking for sanity.
    411   if (ArrayType *AT = dyn_cast<ArrayType>(*GEPI)) {
    412     uint64_t NumElements = AT->getNumElements();
    413     ConstantInt *Idx = cast<ConstantInt>(U->getOperand(2));
    414 
    415     // Check to make sure that index falls within the array.  If not,
    416     // something funny is going on, so we won't do the optimization.
    417     //
    418     if (Idx->getZExtValue() >= NumElements)
    419       return false;
    420 
    421     // We cannot scalar repl this level of the array unless any array
    422     // sub-indices are in-range constants.  In particular, consider:
    423     // A[0][i].  We cannot know that the user isn't doing invalid things like
    424     // allowing i to index an out-of-range subscript that accesses A[1].
    425     //
    426     // Scalar replacing *just* the outer index of the array is probably not
    427     // going to be a win anyway, so just give up.
    428     for (++GEPI; // Skip array index.
    429          GEPI != E;
    430          ++GEPI) {
    431       uint64_t NumElements;
    432       if (ArrayType *SubArrayTy = dyn_cast<ArrayType>(*GEPI))
    433         NumElements = SubArrayTy->getNumElements();
    434       else if (VectorType *SubVectorTy = dyn_cast<VectorType>(*GEPI))
    435         NumElements = SubVectorTy->getNumElements();
    436       else {
    437         assert((*GEPI)->isStructTy() &&
    438                "Indexed GEP type is not array, vector, or struct!");
    439         continue;
    440       }
    441 
    442       ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPI.getOperand());
    443       if (!IdxVal || IdxVal->getZExtValue() >= NumElements)
    444         return false;
    445     }
    446   }
    447 
    448   for (User *UU : U->users())
    449     if (!isSafeSROAElementUse(UU))
    450       return false;
    451 
    452   return true;
    453 }
    454 
    455 /// GlobalUsersSafeToSRA - Look at all uses of the global and decide whether it
    456 /// is safe for us to perform this transformation.
    457 ///
    458 static bool GlobalUsersSafeToSRA(GlobalValue *GV) {
    459   for (User *U : GV->users())
    460     if (!IsUserOfGlobalSafeForSRA(U, GV))
    461       return false;
    462 
    463   return true;
    464 }
    465 
    466 
    467 /// SRAGlobal - Perform scalar replacement of aggregates on the specified global
    468 /// variable.  This opens the door for other optimizations by exposing the
    469 /// behavior of the program in a more fine-grained way.  We have determined that
    470 /// this transformation is safe already.  We return the first global variable we
    471 /// insert so that the caller can reprocess it.
    472 static GlobalVariable *SRAGlobal(GlobalVariable *GV, const DataLayout &DL) {
    473   // Make sure this global only has simple uses that we can SRA.
    474   if (!GlobalUsersSafeToSRA(GV))
    475     return nullptr;
    476 
    477   assert(GV->hasLocalLinkage() && !GV->isConstant());
    478   Constant *Init = GV->getInitializer();
    479   Type *Ty = Init->getType();
    480 
    481   std::vector<GlobalVariable*> NewGlobals;
    482   Module::GlobalListType &Globals = GV->getParent()->getGlobalList();
    483 
    484   // Get the alignment of the global, either explicit or target-specific.
    485   unsigned StartAlignment = GV->getAlignment();
    486   if (StartAlignment == 0)
    487     StartAlignment = DL.getABITypeAlignment(GV->getType());
    488 
    489   if (StructType *STy = dyn_cast<StructType>(Ty)) {
    490     NewGlobals.reserve(STy->getNumElements());
    491     const StructLayout &Layout = *DL.getStructLayout(STy);
    492     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
    493       Constant *In = Init->getAggregateElement(i);
    494       assert(In && "Couldn't get element of initializer?");
    495       GlobalVariable *NGV = new GlobalVariable(STy->getElementType(i), false,
    496                                                GlobalVariable::InternalLinkage,
    497                                                In, GV->getName()+"."+Twine(i),
    498                                                GV->getThreadLocalMode(),
    499                                               GV->getType()->getAddressSpace());
    500       Globals.insert(GV, NGV);
    501       NewGlobals.push_back(NGV);
    502 
    503       // Calculate the known alignment of the field.  If the original aggregate
    504       // had 256 byte alignment for example, something might depend on that:
    505       // propagate info to each field.
    506       uint64_t FieldOffset = Layout.getElementOffset(i);
    507       unsigned NewAlign = (unsigned)MinAlign(StartAlignment, FieldOffset);
    508       if (NewAlign > DL.getABITypeAlignment(STy->getElementType(i)))
    509         NGV->setAlignment(NewAlign);
    510     }
    511   } else if (SequentialType *STy = dyn_cast<SequentialType>(Ty)) {
    512     unsigned NumElements = 0;
    513     if (ArrayType *ATy = dyn_cast<ArrayType>(STy))
    514       NumElements = ATy->getNumElements();
    515     else
    516       NumElements = cast<VectorType>(STy)->getNumElements();
    517 
    518     if (NumElements > 16 && GV->hasNUsesOrMore(16))
    519       return nullptr; // It's not worth it.
    520     NewGlobals.reserve(NumElements);
    521 
    522     uint64_t EltSize = DL.getTypeAllocSize(STy->getElementType());
    523     unsigned EltAlign = DL.getABITypeAlignment(STy->getElementType());
    524     for (unsigned i = 0, e = NumElements; i != e; ++i) {
    525       Constant *In = Init->getAggregateElement(i);
    526       assert(In && "Couldn't get element of initializer?");
    527 
    528       GlobalVariable *NGV = new GlobalVariable(STy->getElementType(), false,
    529                                                GlobalVariable::InternalLinkage,
    530                                                In, GV->getName()+"."+Twine(i),
    531                                                GV->getThreadLocalMode(),
    532                                               GV->getType()->getAddressSpace());
    533       Globals.insert(GV, NGV);
    534       NewGlobals.push_back(NGV);
    535 
    536       // Calculate the known alignment of the field.  If the original aggregate
    537       // had 256 byte alignment for example, something might depend on that:
    538       // propagate info to each field.
    539       unsigned NewAlign = (unsigned)MinAlign(StartAlignment, EltSize*i);
    540       if (NewAlign > EltAlign)
    541         NGV->setAlignment(NewAlign);
    542     }
    543   }
    544 
    545   if (NewGlobals.empty())
    546     return nullptr;
    547 
    548   DEBUG(dbgs() << "PERFORMING GLOBAL SRA ON: " << *GV);
    549 
    550   Constant *NullInt =Constant::getNullValue(Type::getInt32Ty(GV->getContext()));
    551 
    552   // Loop over all of the uses of the global, replacing the constantexpr geps,
    553   // with smaller constantexpr geps or direct references.
    554   while (!GV->use_empty()) {
    555     User *GEP = GV->user_back();
    556     assert(((isa<ConstantExpr>(GEP) &&
    557              cast<ConstantExpr>(GEP)->getOpcode()==Instruction::GetElementPtr)||
    558             isa<GetElementPtrInst>(GEP)) && "NonGEP CE's are not SRAable!");
    559 
    560     // Ignore the 1th operand, which has to be zero or else the program is quite
    561     // broken (undefined).  Get the 2nd operand, which is the structure or array
    562     // index.
    563     unsigned Val = cast<ConstantInt>(GEP->getOperand(2))->getZExtValue();
    564     if (Val >= NewGlobals.size()) Val = 0; // Out of bound array access.
    565 
    566     Value *NewPtr = NewGlobals[Val];
    567     Type *NewTy = NewGlobals[Val]->getType();
    568 
    569     // Form a shorter GEP if needed.
    570     if (GEP->getNumOperands() > 3) {
    571       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GEP)) {
    572         SmallVector<Constant*, 8> Idxs;
    573         Idxs.push_back(NullInt);
    574         for (unsigned i = 3, e = CE->getNumOperands(); i != e; ++i)
    575           Idxs.push_back(CE->getOperand(i));
    576         NewPtr =
    577             ConstantExpr::getGetElementPtr(NewTy, cast<Constant>(NewPtr), Idxs);
    578         NewTy = GetElementPtrInst::getIndexedType(NewTy, Idxs);
    579       } else {
    580         GetElementPtrInst *GEPI = cast<GetElementPtrInst>(GEP);
    581         SmallVector<Value*, 8> Idxs;
    582         Idxs.push_back(NullInt);
    583         for (unsigned i = 3, e = GEPI->getNumOperands(); i != e; ++i)
    584           Idxs.push_back(GEPI->getOperand(i));
    585         NewPtr = GetElementPtrInst::Create(
    586             NewPtr->getType()->getPointerElementType(), NewPtr, Idxs,
    587             GEPI->getName() + "." + Twine(Val), GEPI);
    588       }
    589     }
    590     GEP->replaceAllUsesWith(NewPtr);
    591 
    592     if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(GEP))
    593       GEPI->eraseFromParent();
    594     else
    595       cast<ConstantExpr>(GEP)->destroyConstant();
    596   }
    597 
    598   // Delete the old global, now that it is dead.
    599   Globals.erase(GV);
    600   ++NumSRA;
    601 
    602   // Loop over the new globals array deleting any globals that are obviously
    603   // dead.  This can arise due to scalarization of a structure or an array that
    604   // has elements that are dead.
    605   unsigned FirstGlobal = 0;
    606   for (unsigned i = 0, e = NewGlobals.size(); i != e; ++i)
    607     if (NewGlobals[i]->use_empty()) {
    608       Globals.erase(NewGlobals[i]);
    609       if (FirstGlobal == i) ++FirstGlobal;
    610     }
    611 
    612   return FirstGlobal != NewGlobals.size() ? NewGlobals[FirstGlobal] : nullptr;
    613 }
    614 
    615 /// AllUsesOfValueWillTrapIfNull - Return true if all users of the specified
    616 /// value will trap if the value is dynamically null.  PHIs keeps track of any
    617 /// phi nodes we've seen to avoid reprocessing them.
    618 static bool AllUsesOfValueWillTrapIfNull(const Value *V,
    619                                         SmallPtrSetImpl<const PHINode*> &PHIs) {
    620   for (const User *U : V->users())
    621     if (isa<LoadInst>(U)) {
    622       // Will trap.
    623     } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) {
    624       if (SI->getOperand(0) == V) {
    625         //cerr << "NONTRAPPING USE: " << *U;
    626         return false;  // Storing the value.
    627       }
    628     } else if (const CallInst *CI = dyn_cast<CallInst>(U)) {
    629       if (CI->getCalledValue() != V) {
    630         //cerr << "NONTRAPPING USE: " << *U;
    631         return false;  // Not calling the ptr
    632       }
    633     } else if (const InvokeInst *II = dyn_cast<InvokeInst>(U)) {
    634       if (II->getCalledValue() != V) {
    635         //cerr << "NONTRAPPING USE: " << *U;
    636         return false;  // Not calling the ptr
    637       }
    638     } else if (const BitCastInst *CI = dyn_cast<BitCastInst>(U)) {
    639       if (!AllUsesOfValueWillTrapIfNull(CI, PHIs)) return false;
    640     } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
    641       if (!AllUsesOfValueWillTrapIfNull(GEPI, PHIs)) return false;
    642     } else if (const PHINode *PN = dyn_cast<PHINode>(U)) {
    643       // If we've already seen this phi node, ignore it, it has already been
    644       // checked.
    645       if (PHIs.insert(PN).second && !AllUsesOfValueWillTrapIfNull(PN, PHIs))
    646         return false;
    647     } else if (isa<ICmpInst>(U) &&
    648                isa<ConstantPointerNull>(U->getOperand(1))) {
    649       // Ignore icmp X, null
    650     } else {
    651       //cerr << "NONTRAPPING USE: " << *U;
    652       return false;
    653     }
    654 
    655   return true;
    656 }
    657 
    658 /// AllUsesOfLoadedValueWillTrapIfNull - Return true if all uses of any loads
    659 /// from GV will trap if the loaded value is null.  Note that this also permits
    660 /// comparisons of the loaded value against null, as a special case.
    661 static bool AllUsesOfLoadedValueWillTrapIfNull(const GlobalVariable *GV) {
    662   for (const User *U : GV->users())
    663     if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
    664       SmallPtrSet<const PHINode*, 8> PHIs;
    665       if (!AllUsesOfValueWillTrapIfNull(LI, PHIs))
    666         return false;
    667     } else if (isa<StoreInst>(U)) {
    668       // Ignore stores to the global.
    669     } else {
    670       // We don't know or understand this user, bail out.
    671       //cerr << "UNKNOWN USER OF GLOBAL!: " << *U;
    672       return false;
    673     }
    674   return true;
    675 }
    676 
    677 static bool OptimizeAwayTrappingUsesOfValue(Value *V, Constant *NewV) {
    678   bool Changed = false;
    679   for (auto UI = V->user_begin(), E = V->user_end(); UI != E; ) {
    680     Instruction *I = cast<Instruction>(*UI++);
    681     if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
    682       LI->setOperand(0, NewV);
    683       Changed = true;
    684     } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
    685       if (SI->getOperand(1) == V) {
    686         SI->setOperand(1, NewV);
    687         Changed = true;
    688       }
    689     } else if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
    690       CallSite CS(I);
    691       if (CS.getCalledValue() == V) {
    692         // Calling through the pointer!  Turn into a direct call, but be careful
    693         // that the pointer is not also being passed as an argument.
    694         CS.setCalledFunction(NewV);
    695         Changed = true;
    696         bool PassedAsArg = false;
    697         for (unsigned i = 0, e = CS.arg_size(); i != e; ++i)
    698           if (CS.getArgument(i) == V) {
    699             PassedAsArg = true;
    700             CS.setArgument(i, NewV);
    701           }
    702 
    703         if (PassedAsArg) {
    704           // Being passed as an argument also.  Be careful to not invalidate UI!
    705           UI = V->user_begin();
    706         }
    707       }
    708     } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
    709       Changed |= OptimizeAwayTrappingUsesOfValue(CI,
    710                                 ConstantExpr::getCast(CI->getOpcode(),
    711                                                       NewV, CI->getType()));
    712       if (CI->use_empty()) {
    713         Changed = true;
    714         CI->eraseFromParent();
    715       }
    716     } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
    717       // Should handle GEP here.
    718       SmallVector<Constant*, 8> Idxs;
    719       Idxs.reserve(GEPI->getNumOperands()-1);
    720       for (User::op_iterator i = GEPI->op_begin() + 1, e = GEPI->op_end();
    721            i != e; ++i)
    722         if (Constant *C = dyn_cast<Constant>(*i))
    723           Idxs.push_back(C);
    724         else
    725           break;
    726       if (Idxs.size() == GEPI->getNumOperands()-1)
    727         Changed |= OptimizeAwayTrappingUsesOfValue(
    728             GEPI, ConstantExpr::getGetElementPtr(nullptr, NewV, Idxs));
    729       if (GEPI->use_empty()) {
    730         Changed = true;
    731         GEPI->eraseFromParent();
    732       }
    733     }
    734   }
    735 
    736   return Changed;
    737 }
    738 
    739 
    740 /// OptimizeAwayTrappingUsesOfLoads - The specified global has only one non-null
    741 /// value stored into it.  If there are uses of the loaded value that would trap
    742 /// if the loaded value is dynamically null, then we know that they cannot be
    743 /// reachable with a null optimize away the load.
    744 static bool OptimizeAwayTrappingUsesOfLoads(GlobalVariable *GV, Constant *LV,
    745                                             const DataLayout &DL,
    746                                             TargetLibraryInfo *TLI) {
    747   bool Changed = false;
    748 
    749   // Keep track of whether we are able to remove all the uses of the global
    750   // other than the store that defines it.
    751   bool AllNonStoreUsesGone = true;
    752 
    753   // Replace all uses of loads with uses of uses of the stored value.
    754   for (Value::user_iterator GUI = GV->user_begin(), E = GV->user_end(); GUI != E;){
    755     User *GlobalUser = *GUI++;
    756     if (LoadInst *LI = dyn_cast<LoadInst>(GlobalUser)) {
    757       Changed |= OptimizeAwayTrappingUsesOfValue(LI, LV);
    758       // If we were able to delete all uses of the loads
    759       if (LI->use_empty()) {
    760         LI->eraseFromParent();
    761         Changed = true;
    762       } else {
    763         AllNonStoreUsesGone = false;
    764       }
    765     } else if (isa<StoreInst>(GlobalUser)) {
    766       // Ignore the store that stores "LV" to the global.
    767       assert(GlobalUser->getOperand(1) == GV &&
    768              "Must be storing *to* the global");
    769     } else {
    770       AllNonStoreUsesGone = false;
    771 
    772       // If we get here we could have other crazy uses that are transitively
    773       // loaded.
    774       assert((isa<PHINode>(GlobalUser) || isa<SelectInst>(GlobalUser) ||
    775               isa<ConstantExpr>(GlobalUser) || isa<CmpInst>(GlobalUser) ||
    776               isa<BitCastInst>(GlobalUser) ||
    777               isa<GetElementPtrInst>(GlobalUser)) &&
    778              "Only expect load and stores!");
    779     }
    780   }
    781 
    782   if (Changed) {
    783     DEBUG(dbgs() << "OPTIMIZED LOADS FROM STORED ONCE POINTER: " << *GV);
    784     ++NumGlobUses;
    785   }
    786 
    787   // If we nuked all of the loads, then none of the stores are needed either,
    788   // nor is the global.
    789   if (AllNonStoreUsesGone) {
    790     if (isLeakCheckerRoot(GV)) {
    791       Changed |= CleanupPointerRootUsers(GV, TLI);
    792     } else {
    793       Changed = true;
    794       CleanupConstantGlobalUsers(GV, nullptr, DL, TLI);
    795     }
    796     if (GV->use_empty()) {
    797       DEBUG(dbgs() << "  *** GLOBAL NOW DEAD!\n");
    798       Changed = true;
    799       GV->eraseFromParent();
    800       ++NumDeleted;
    801     }
    802   }
    803   return Changed;
    804 }
    805 
    806 /// ConstantPropUsersOf - Walk the use list of V, constant folding all of the
    807 /// instructions that are foldable.
    808 static void ConstantPropUsersOf(Value *V, const DataLayout &DL,
    809                                 TargetLibraryInfo *TLI) {
    810   for (Value::user_iterator UI = V->user_begin(), E = V->user_end(); UI != E; )
    811     if (Instruction *I = dyn_cast<Instruction>(*UI++))
    812       if (Constant *NewC = ConstantFoldInstruction(I, DL, TLI)) {
    813         I->replaceAllUsesWith(NewC);
    814 
    815         // Advance UI to the next non-I use to avoid invalidating it!
    816         // Instructions could multiply use V.
    817         while (UI != E && *UI == I)
    818           ++UI;
    819         I->eraseFromParent();
    820       }
    821 }
    822 
    823 /// OptimizeGlobalAddressOfMalloc - This function takes the specified global
    824 /// variable, and transforms the program as if it always contained the result of
    825 /// the specified malloc.  Because it is always the result of the specified
    826 /// malloc, there is no reason to actually DO the malloc.  Instead, turn the
    827 /// malloc into a global, and any loads of GV as uses of the new global.
    828 static GlobalVariable *
    829 OptimizeGlobalAddressOfMalloc(GlobalVariable *GV, CallInst *CI, Type *AllocTy,
    830                               ConstantInt *NElements, const DataLayout &DL,
    831                               TargetLibraryInfo *TLI) {
    832   DEBUG(errs() << "PROMOTING GLOBAL: " << *GV << "  CALL = " << *CI << '\n');
    833 
    834   Type *GlobalType;
    835   if (NElements->getZExtValue() == 1)
    836     GlobalType = AllocTy;
    837   else
    838     // If we have an array allocation, the global variable is of an array.
    839     GlobalType = ArrayType::get(AllocTy, NElements->getZExtValue());
    840 
    841   // Create the new global variable.  The contents of the malloc'd memory is
    842   // undefined, so initialize with an undef value.
    843   GlobalVariable *NewGV = new GlobalVariable(*GV->getParent(),
    844                                              GlobalType, false,
    845                                              GlobalValue::InternalLinkage,
    846                                              UndefValue::get(GlobalType),
    847                                              GV->getName()+".body",
    848                                              GV,
    849                                              GV->getThreadLocalMode());
    850 
    851   // If there are bitcast users of the malloc (which is typical, usually we have
    852   // a malloc + bitcast) then replace them with uses of the new global.  Update
    853   // other users to use the global as well.
    854   BitCastInst *TheBC = nullptr;
    855   while (!CI->use_empty()) {
    856     Instruction *User = cast<Instruction>(CI->user_back());
    857     if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) {
    858       if (BCI->getType() == NewGV->getType()) {
    859         BCI->replaceAllUsesWith(NewGV);
    860         BCI->eraseFromParent();
    861       } else {
    862         BCI->setOperand(0, NewGV);
    863       }
    864     } else {
    865       if (!TheBC)
    866         TheBC = new BitCastInst(NewGV, CI->getType(), "newgv", CI);
    867       User->replaceUsesOfWith(CI, TheBC);
    868     }
    869   }
    870 
    871   Constant *RepValue = NewGV;
    872   if (NewGV->getType() != GV->getType()->getElementType())
    873     RepValue = ConstantExpr::getBitCast(RepValue,
    874                                         GV->getType()->getElementType());
    875 
    876   // If there is a comparison against null, we will insert a global bool to
    877   // keep track of whether the global was initialized yet or not.
    878   GlobalVariable *InitBool =
    879     new GlobalVariable(Type::getInt1Ty(GV->getContext()), false,
    880                        GlobalValue::InternalLinkage,
    881                        ConstantInt::getFalse(GV->getContext()),
    882                        GV->getName()+".init", GV->getThreadLocalMode());
    883   bool InitBoolUsed = false;
    884 
    885   // Loop over all uses of GV, processing them in turn.
    886   while (!GV->use_empty()) {
    887     if (StoreInst *SI = dyn_cast<StoreInst>(GV->user_back())) {
    888       // The global is initialized when the store to it occurs.
    889       new StoreInst(ConstantInt::getTrue(GV->getContext()), InitBool, false, 0,
    890                     SI->getOrdering(), SI->getSynchScope(), SI);
    891       SI->eraseFromParent();
    892       continue;
    893     }
    894 
    895     LoadInst *LI = cast<LoadInst>(GV->user_back());
    896     while (!LI->use_empty()) {
    897       Use &LoadUse = *LI->use_begin();
    898       ICmpInst *ICI = dyn_cast<ICmpInst>(LoadUse.getUser());
    899       if (!ICI) {
    900         LoadUse = RepValue;
    901         continue;
    902       }
    903 
    904       // Replace the cmp X, 0 with a use of the bool value.
    905       // Sink the load to where the compare was, if atomic rules allow us to.
    906       Value *LV = new LoadInst(InitBool, InitBool->getName()+".val", false, 0,
    907                                LI->getOrdering(), LI->getSynchScope(),
    908                                LI->isUnordered() ? (Instruction*)ICI : LI);
    909       InitBoolUsed = true;
    910       switch (ICI->getPredicate()) {
    911       default: llvm_unreachable("Unknown ICmp Predicate!");
    912       case ICmpInst::ICMP_ULT:
    913       case ICmpInst::ICMP_SLT:   // X < null -> always false
    914         LV = ConstantInt::getFalse(GV->getContext());
    915         break;
    916       case ICmpInst::ICMP_ULE:
    917       case ICmpInst::ICMP_SLE:
    918       case ICmpInst::ICMP_EQ:
    919         LV = BinaryOperator::CreateNot(LV, "notinit", ICI);
    920         break;
    921       case ICmpInst::ICMP_NE:
    922       case ICmpInst::ICMP_UGE:
    923       case ICmpInst::ICMP_SGE:
    924       case ICmpInst::ICMP_UGT:
    925       case ICmpInst::ICMP_SGT:
    926         break;  // no change.
    927       }
    928       ICI->replaceAllUsesWith(LV);
    929       ICI->eraseFromParent();
    930     }
    931     LI->eraseFromParent();
    932   }
    933 
    934   // If the initialization boolean was used, insert it, otherwise delete it.
    935   if (!InitBoolUsed) {
    936     while (!InitBool->use_empty())  // Delete initializations
    937       cast<StoreInst>(InitBool->user_back())->eraseFromParent();
    938     delete InitBool;
    939   } else
    940     GV->getParent()->getGlobalList().insert(GV, InitBool);
    941 
    942   // Now the GV is dead, nuke it and the malloc..
    943   GV->eraseFromParent();
    944   CI->eraseFromParent();
    945 
    946   // To further other optimizations, loop over all users of NewGV and try to
    947   // constant prop them.  This will promote GEP instructions with constant
    948   // indices into GEP constant-exprs, which will allow global-opt to hack on it.
    949   ConstantPropUsersOf(NewGV, DL, TLI);
    950   if (RepValue != NewGV)
    951     ConstantPropUsersOf(RepValue, DL, TLI);
    952 
    953   return NewGV;
    954 }
    955 
    956 /// ValueIsOnlyUsedLocallyOrStoredToOneGlobal - Scan the use-list of V checking
    957 /// to make sure that there are no complex uses of V.  We permit simple things
    958 /// like dereferencing the pointer, but not storing through the address, unless
    959 /// it is to the specified global.
    960 static bool ValueIsOnlyUsedLocallyOrStoredToOneGlobal(const Instruction *V,
    961                                                       const GlobalVariable *GV,
    962                                         SmallPtrSetImpl<const PHINode*> &PHIs) {
    963   for (const User *U : V->users()) {
    964     const Instruction *Inst = cast<Instruction>(U);
    965 
    966     if (isa<LoadInst>(Inst) || isa<CmpInst>(Inst)) {
    967       continue; // Fine, ignore.
    968     }
    969 
    970     if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
    971       if (SI->getOperand(0) == V && SI->getOperand(1) != GV)
    972         return false;  // Storing the pointer itself... bad.
    973       continue; // Otherwise, storing through it, or storing into GV... fine.
    974     }
    975 
    976     // Must index into the array and into the struct.
    977     if (isa<GetElementPtrInst>(Inst) && Inst->getNumOperands() >= 3) {
    978       if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(Inst, GV, PHIs))
    979         return false;
    980       continue;
    981     }
    982 
    983     if (const PHINode *PN = dyn_cast<PHINode>(Inst)) {
    984       // PHIs are ok if all uses are ok.  Don't infinitely recurse through PHI
    985       // cycles.
    986       if (PHIs.insert(PN).second)
    987         if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(PN, GV, PHIs))
    988           return false;
    989       continue;
    990     }
    991 
    992     if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Inst)) {
    993       if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(BCI, GV, PHIs))
    994         return false;
    995       continue;
    996     }
    997 
    998     return false;
    999   }
   1000   return true;
   1001 }
   1002 
   1003 /// ReplaceUsesOfMallocWithGlobal - The Alloc pointer is stored into GV
   1004 /// somewhere.  Transform all uses of the allocation into loads from the
   1005 /// global and uses of the resultant pointer.  Further, delete the store into
   1006 /// GV.  This assumes that these value pass the
   1007 /// 'ValueIsOnlyUsedLocallyOrStoredToOneGlobal' predicate.
   1008 static void ReplaceUsesOfMallocWithGlobal(Instruction *Alloc,
   1009                                           GlobalVariable *GV) {
   1010   while (!Alloc->use_empty()) {
   1011     Instruction *U = cast<Instruction>(*Alloc->user_begin());
   1012     Instruction *InsertPt = U;
   1013     if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
   1014       // If this is the store of the allocation into the global, remove it.
   1015       if (SI->getOperand(1) == GV) {
   1016         SI->eraseFromParent();
   1017         continue;
   1018       }
   1019     } else if (PHINode *PN = dyn_cast<PHINode>(U)) {
   1020       // Insert the load in the corresponding predecessor, not right before the
   1021       // PHI.
   1022       InsertPt = PN->getIncomingBlock(*Alloc->use_begin())->getTerminator();
   1023     } else if (isa<BitCastInst>(U)) {
   1024       // Must be bitcast between the malloc and store to initialize the global.
   1025       ReplaceUsesOfMallocWithGlobal(U, GV);
   1026       U->eraseFromParent();
   1027       continue;
   1028     } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
   1029       // If this is a "GEP bitcast" and the user is a store to the global, then
   1030       // just process it as a bitcast.
   1031       if (GEPI->hasAllZeroIndices() && GEPI->hasOneUse())
   1032         if (StoreInst *SI = dyn_cast<StoreInst>(GEPI->user_back()))
   1033           if (SI->getOperand(1) == GV) {
   1034             // Must be bitcast GEP between the malloc and store to initialize
   1035             // the global.
   1036             ReplaceUsesOfMallocWithGlobal(GEPI, GV);
   1037             GEPI->eraseFromParent();
   1038             continue;
   1039           }
   1040     }
   1041 
   1042     // Insert a load from the global, and use it instead of the malloc.
   1043     Value *NL = new LoadInst(GV, GV->getName()+".val", InsertPt);
   1044     U->replaceUsesOfWith(Alloc, NL);
   1045   }
   1046 }
   1047 
   1048 /// LoadUsesSimpleEnoughForHeapSRA - Verify that all uses of V (a load, or a phi
   1049 /// of a load) are simple enough to perform heap SRA on.  This permits GEP's
   1050 /// that index through the array and struct field, icmps of null, and PHIs.
   1051 static bool LoadUsesSimpleEnoughForHeapSRA(const Value *V,
   1052                         SmallPtrSetImpl<const PHINode*> &LoadUsingPHIs,
   1053                         SmallPtrSetImpl<const PHINode*> &LoadUsingPHIsPerLoad) {
   1054   // We permit two users of the load: setcc comparing against the null
   1055   // pointer, and a getelementptr of a specific form.
   1056   for (const User *U : V->users()) {
   1057     const Instruction *UI = cast<Instruction>(U);
   1058 
   1059     // Comparison against null is ok.
   1060     if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UI)) {
   1061       if (!isa<ConstantPointerNull>(ICI->getOperand(1)))
   1062         return false;
   1063       continue;
   1064     }
   1065 
   1066     // getelementptr is also ok, but only a simple form.
   1067     if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(UI)) {
   1068       // Must index into the array and into the struct.
   1069       if (GEPI->getNumOperands() < 3)
   1070         return false;
   1071 
   1072       // Otherwise the GEP is ok.
   1073       continue;
   1074     }
   1075 
   1076     if (const PHINode *PN = dyn_cast<PHINode>(UI)) {
   1077       if (!LoadUsingPHIsPerLoad.insert(PN).second)
   1078         // This means some phi nodes are dependent on each other.
   1079         // Avoid infinite looping!
   1080         return false;
   1081       if (!LoadUsingPHIs.insert(PN).second)
   1082         // If we have already analyzed this PHI, then it is safe.
   1083         continue;
   1084 
   1085       // Make sure all uses of the PHI are simple enough to transform.
   1086       if (!LoadUsesSimpleEnoughForHeapSRA(PN,
   1087                                           LoadUsingPHIs, LoadUsingPHIsPerLoad))
   1088         return false;
   1089 
   1090       continue;
   1091     }
   1092 
   1093     // Otherwise we don't know what this is, not ok.
   1094     return false;
   1095   }
   1096 
   1097   return true;
   1098 }
   1099 
   1100 
   1101 /// AllGlobalLoadUsesSimpleEnoughForHeapSRA - If all users of values loaded from
   1102 /// GV are simple enough to perform HeapSRA, return true.
   1103 static bool AllGlobalLoadUsesSimpleEnoughForHeapSRA(const GlobalVariable *GV,
   1104                                                     Instruction *StoredVal) {
   1105   SmallPtrSet<const PHINode*, 32> LoadUsingPHIs;
   1106   SmallPtrSet<const PHINode*, 32> LoadUsingPHIsPerLoad;
   1107   for (const User *U : GV->users())
   1108     if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
   1109       if (!LoadUsesSimpleEnoughForHeapSRA(LI, LoadUsingPHIs,
   1110                                           LoadUsingPHIsPerLoad))
   1111         return false;
   1112       LoadUsingPHIsPerLoad.clear();
   1113     }
   1114 
   1115   // If we reach here, we know that all uses of the loads and transitive uses
   1116   // (through PHI nodes) are simple enough to transform.  However, we don't know
   1117   // that all inputs the to the PHI nodes are in the same equivalence sets.
   1118   // Check to verify that all operands of the PHIs are either PHIS that can be
   1119   // transformed, loads from GV, or MI itself.
   1120   for (const PHINode *PN : LoadUsingPHIs) {
   1121     for (unsigned op = 0, e = PN->getNumIncomingValues(); op != e; ++op) {
   1122       Value *InVal = PN->getIncomingValue(op);
   1123 
   1124       // PHI of the stored value itself is ok.
   1125       if (InVal == StoredVal) continue;
   1126 
   1127       if (const PHINode *InPN = dyn_cast<PHINode>(InVal)) {
   1128         // One of the PHIs in our set is (optimistically) ok.
   1129         if (LoadUsingPHIs.count(InPN))
   1130           continue;
   1131         return false;
   1132       }
   1133 
   1134       // Load from GV is ok.
   1135       if (const LoadInst *LI = dyn_cast<LoadInst>(InVal))
   1136         if (LI->getOperand(0) == GV)
   1137           continue;
   1138 
   1139       // UNDEF? NULL?
   1140 
   1141       // Anything else is rejected.
   1142       return false;
   1143     }
   1144   }
   1145 
   1146   return true;
   1147 }
   1148 
   1149 static Value *GetHeapSROAValue(Value *V, unsigned FieldNo,
   1150                DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues,
   1151                    std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) {
   1152   std::vector<Value*> &FieldVals = InsertedScalarizedValues[V];
   1153 
   1154   if (FieldNo >= FieldVals.size())
   1155     FieldVals.resize(FieldNo+1);
   1156 
   1157   // If we already have this value, just reuse the previously scalarized
   1158   // version.
   1159   if (Value *FieldVal = FieldVals[FieldNo])
   1160     return FieldVal;
   1161 
   1162   // Depending on what instruction this is, we have several cases.
   1163   Value *Result;
   1164   if (LoadInst *LI = dyn_cast<LoadInst>(V)) {
   1165     // This is a scalarized version of the load from the global.  Just create
   1166     // a new Load of the scalarized global.
   1167     Result = new LoadInst(GetHeapSROAValue(LI->getOperand(0), FieldNo,
   1168                                            InsertedScalarizedValues,
   1169                                            PHIsToRewrite),
   1170                           LI->getName()+".f"+Twine(FieldNo), LI);
   1171   } else {
   1172     PHINode *PN = cast<PHINode>(V);
   1173     // PN's type is pointer to struct.  Make a new PHI of pointer to struct
   1174     // field.
   1175 
   1176     PointerType *PTy = cast<PointerType>(PN->getType());
   1177     StructType *ST = cast<StructType>(PTy->getElementType());
   1178 
   1179     unsigned AS = PTy->getAddressSpace();
   1180     PHINode *NewPN =
   1181       PHINode::Create(PointerType::get(ST->getElementType(FieldNo), AS),
   1182                      PN->getNumIncomingValues(),
   1183                      PN->getName()+".f"+Twine(FieldNo), PN);
   1184     Result = NewPN;
   1185     PHIsToRewrite.push_back(std::make_pair(PN, FieldNo));
   1186   }
   1187 
   1188   return FieldVals[FieldNo] = Result;
   1189 }
   1190 
   1191 /// RewriteHeapSROALoadUser - Given a load instruction and a value derived from
   1192 /// the load, rewrite the derived value to use the HeapSRoA'd load.
   1193 static void RewriteHeapSROALoadUser(Instruction *LoadUser,
   1194              DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues,
   1195                    std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) {
   1196   // If this is a comparison against null, handle it.
   1197   if (ICmpInst *SCI = dyn_cast<ICmpInst>(LoadUser)) {
   1198     assert(isa<ConstantPointerNull>(SCI->getOperand(1)));
   1199     // If we have a setcc of the loaded pointer, we can use a setcc of any
   1200     // field.
   1201     Value *NPtr = GetHeapSROAValue(SCI->getOperand(0), 0,
   1202                                    InsertedScalarizedValues, PHIsToRewrite);
   1203 
   1204     Value *New = new ICmpInst(SCI, SCI->getPredicate(), NPtr,
   1205                               Constant::getNullValue(NPtr->getType()),
   1206                               SCI->getName());
   1207     SCI->replaceAllUsesWith(New);
   1208     SCI->eraseFromParent();
   1209     return;
   1210   }
   1211 
   1212   // Handle 'getelementptr Ptr, Idx, i32 FieldNo ...'
   1213   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(LoadUser)) {
   1214     assert(GEPI->getNumOperands() >= 3 && isa<ConstantInt>(GEPI->getOperand(2))
   1215            && "Unexpected GEPI!");
   1216 
   1217     // Load the pointer for this field.
   1218     unsigned FieldNo = cast<ConstantInt>(GEPI->getOperand(2))->getZExtValue();
   1219     Value *NewPtr = GetHeapSROAValue(GEPI->getOperand(0), FieldNo,
   1220                                      InsertedScalarizedValues, PHIsToRewrite);
   1221 
   1222     // Create the new GEP idx vector.
   1223     SmallVector<Value*, 8> GEPIdx;
   1224     GEPIdx.push_back(GEPI->getOperand(1));
   1225     GEPIdx.append(GEPI->op_begin()+3, GEPI->op_end());
   1226 
   1227     Value *NGEPI = GetElementPtrInst::Create(GEPI->getResultElementType(), NewPtr, GEPIdx,
   1228                                              GEPI->getName(), GEPI);
   1229     GEPI->replaceAllUsesWith(NGEPI);
   1230     GEPI->eraseFromParent();
   1231     return;
   1232   }
   1233 
   1234   // Recursively transform the users of PHI nodes.  This will lazily create the
   1235   // PHIs that are needed for individual elements.  Keep track of what PHIs we
   1236   // see in InsertedScalarizedValues so that we don't get infinite loops (very
   1237   // antisocial).  If the PHI is already in InsertedScalarizedValues, it has
   1238   // already been seen first by another load, so its uses have already been
   1239   // processed.
   1240   PHINode *PN = cast<PHINode>(LoadUser);
   1241   if (!InsertedScalarizedValues.insert(std::make_pair(PN,
   1242                                               std::vector<Value*>())).second)
   1243     return;
   1244 
   1245   // If this is the first time we've seen this PHI, recursively process all
   1246   // users.
   1247   for (auto UI = PN->user_begin(), E = PN->user_end(); UI != E;) {
   1248     Instruction *User = cast<Instruction>(*UI++);
   1249     RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite);
   1250   }
   1251 }
   1252 
   1253 /// RewriteUsesOfLoadForHeapSRoA - We are performing Heap SRoA on a global.  Ptr
   1254 /// is a value loaded from the global.  Eliminate all uses of Ptr, making them
   1255 /// use FieldGlobals instead.  All uses of loaded values satisfy
   1256 /// AllGlobalLoadUsesSimpleEnoughForHeapSRA.
   1257 static void RewriteUsesOfLoadForHeapSRoA(LoadInst *Load,
   1258                DenseMap<Value*, std::vector<Value*> > &InsertedScalarizedValues,
   1259                    std::vector<std::pair<PHINode*, unsigned> > &PHIsToRewrite) {
   1260   for (auto UI = Load->user_begin(), E = Load->user_end(); UI != E;) {
   1261     Instruction *User = cast<Instruction>(*UI++);
   1262     RewriteHeapSROALoadUser(User, InsertedScalarizedValues, PHIsToRewrite);
   1263   }
   1264 
   1265   if (Load->use_empty()) {
   1266     Load->eraseFromParent();
   1267     InsertedScalarizedValues.erase(Load);
   1268   }
   1269 }
   1270 
   1271 /// PerformHeapAllocSRoA - CI is an allocation of an array of structures.  Break
   1272 /// it up into multiple allocations of arrays of the fields.
   1273 static GlobalVariable *PerformHeapAllocSRoA(GlobalVariable *GV, CallInst *CI,
   1274                                             Value *NElems, const DataLayout &DL,
   1275                                             const TargetLibraryInfo *TLI) {
   1276   DEBUG(dbgs() << "SROA HEAP ALLOC: " << *GV << "  MALLOC = " << *CI << '\n');
   1277   Type *MAT = getMallocAllocatedType(CI, TLI);
   1278   StructType *STy = cast<StructType>(MAT);
   1279 
   1280   // There is guaranteed to be at least one use of the malloc (storing
   1281   // it into GV).  If there are other uses, change them to be uses of
   1282   // the global to simplify later code.  This also deletes the store
   1283   // into GV.
   1284   ReplaceUsesOfMallocWithGlobal(CI, GV);
   1285 
   1286   // Okay, at this point, there are no users of the malloc.  Insert N
   1287   // new mallocs at the same place as CI, and N globals.
   1288   std::vector<Value*> FieldGlobals;
   1289   std::vector<Value*> FieldMallocs;
   1290 
   1291   unsigned AS = GV->getType()->getPointerAddressSpace();
   1292   for (unsigned FieldNo = 0, e = STy->getNumElements(); FieldNo != e;++FieldNo){
   1293     Type *FieldTy = STy->getElementType(FieldNo);
   1294     PointerType *PFieldTy = PointerType::get(FieldTy, AS);
   1295 
   1296     GlobalVariable *NGV =
   1297       new GlobalVariable(*GV->getParent(),
   1298                          PFieldTy, false, GlobalValue::InternalLinkage,
   1299                          Constant::getNullValue(PFieldTy),
   1300                          GV->getName() + ".f" + Twine(FieldNo), GV,
   1301                          GV->getThreadLocalMode());
   1302     FieldGlobals.push_back(NGV);
   1303 
   1304     unsigned TypeSize = DL.getTypeAllocSize(FieldTy);
   1305     if (StructType *ST = dyn_cast<StructType>(FieldTy))
   1306       TypeSize = DL.getStructLayout(ST)->getSizeInBytes();
   1307     Type *IntPtrTy = DL.getIntPtrType(CI->getType());
   1308     Value *NMI = CallInst::CreateMalloc(CI, IntPtrTy, FieldTy,
   1309                                         ConstantInt::get(IntPtrTy, TypeSize),
   1310                                         NElems, nullptr,
   1311                                         CI->getName() + ".f" + Twine(FieldNo));
   1312     FieldMallocs.push_back(NMI);
   1313     new StoreInst(NMI, NGV, CI);
   1314   }
   1315 
   1316   // The tricky aspect of this transformation is handling the case when malloc
   1317   // fails.  In the original code, malloc failing would set the result pointer
   1318   // of malloc to null.  In this case, some mallocs could succeed and others
   1319   // could fail.  As such, we emit code that looks like this:
   1320   //    F0 = malloc(field0)
   1321   //    F1 = malloc(field1)
   1322   //    F2 = malloc(field2)
   1323   //    if (F0 == 0 || F1 == 0 || F2 == 0) {
   1324   //      if (F0) { free(F0); F0 = 0; }
   1325   //      if (F1) { free(F1); F1 = 0; }
   1326   //      if (F2) { free(F2); F2 = 0; }
   1327   //    }
   1328   // The malloc can also fail if its argument is too large.
   1329   Constant *ConstantZero = ConstantInt::get(CI->getArgOperand(0)->getType(), 0);
   1330   Value *RunningOr = new ICmpInst(CI, ICmpInst::ICMP_SLT, CI->getArgOperand(0),
   1331                                   ConstantZero, "isneg");
   1332   for (unsigned i = 0, e = FieldMallocs.size(); i != e; ++i) {
   1333     Value *Cond = new ICmpInst(CI, ICmpInst::ICMP_EQ, FieldMallocs[i],
   1334                              Constant::getNullValue(FieldMallocs[i]->getType()),
   1335                                "isnull");
   1336     RunningOr = BinaryOperator::CreateOr(RunningOr, Cond, "tmp", CI);
   1337   }
   1338 
   1339   // Split the basic block at the old malloc.
   1340   BasicBlock *OrigBB = CI->getParent();
   1341   BasicBlock *ContBB = OrigBB->splitBasicBlock(CI, "malloc_cont");
   1342 
   1343   // Create the block to check the first condition.  Put all these blocks at the
   1344   // end of the function as they are unlikely to be executed.
   1345   BasicBlock *NullPtrBlock = BasicBlock::Create(OrigBB->getContext(),
   1346                                                 "malloc_ret_null",
   1347                                                 OrigBB->getParent());
   1348 
   1349   // Remove the uncond branch from OrigBB to ContBB, turning it into a cond
   1350   // branch on RunningOr.
   1351   OrigBB->getTerminator()->eraseFromParent();
   1352   BranchInst::Create(NullPtrBlock, ContBB, RunningOr, OrigBB);
   1353 
   1354   // Within the NullPtrBlock, we need to emit a comparison and branch for each
   1355   // pointer, because some may be null while others are not.
   1356   for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
   1357     Value *GVVal = new LoadInst(FieldGlobals[i], "tmp", NullPtrBlock);
   1358     Value *Cmp = new ICmpInst(*NullPtrBlock, ICmpInst::ICMP_NE, GVVal,
   1359                               Constant::getNullValue(GVVal->getType()));
   1360     BasicBlock *FreeBlock = BasicBlock::Create(Cmp->getContext(), "free_it",
   1361                                                OrigBB->getParent());
   1362     BasicBlock *NextBlock = BasicBlock::Create(Cmp->getContext(), "next",
   1363                                                OrigBB->getParent());
   1364     Instruction *BI = BranchInst::Create(FreeBlock, NextBlock,
   1365                                          Cmp, NullPtrBlock);
   1366 
   1367     // Fill in FreeBlock.
   1368     CallInst::CreateFree(GVVal, BI);
   1369     new StoreInst(Constant::getNullValue(GVVal->getType()), FieldGlobals[i],
   1370                   FreeBlock);
   1371     BranchInst::Create(NextBlock, FreeBlock);
   1372 
   1373     NullPtrBlock = NextBlock;
   1374   }
   1375 
   1376   BranchInst::Create(ContBB, NullPtrBlock);
   1377 
   1378   // CI is no longer needed, remove it.
   1379   CI->eraseFromParent();
   1380 
   1381   /// InsertedScalarizedLoads - As we process loads, if we can't immediately
   1382   /// update all uses of the load, keep track of what scalarized loads are
   1383   /// inserted for a given load.
   1384   DenseMap<Value*, std::vector<Value*> > InsertedScalarizedValues;
   1385   InsertedScalarizedValues[GV] = FieldGlobals;
   1386 
   1387   std::vector<std::pair<PHINode*, unsigned> > PHIsToRewrite;
   1388 
   1389   // Okay, the malloc site is completely handled.  All of the uses of GV are now
   1390   // loads, and all uses of those loads are simple.  Rewrite them to use loads
   1391   // of the per-field globals instead.
   1392   for (auto UI = GV->user_begin(), E = GV->user_end(); UI != E;) {
   1393     Instruction *User = cast<Instruction>(*UI++);
   1394 
   1395     if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
   1396       RewriteUsesOfLoadForHeapSRoA(LI, InsertedScalarizedValues, PHIsToRewrite);
   1397       continue;
   1398     }
   1399 
   1400     // Must be a store of null.
   1401     StoreInst *SI = cast<StoreInst>(User);
   1402     assert(isa<ConstantPointerNull>(SI->getOperand(0)) &&
   1403            "Unexpected heap-sra user!");
   1404 
   1405     // Insert a store of null into each global.
   1406     for (unsigned i = 0, e = FieldGlobals.size(); i != e; ++i) {
   1407       PointerType *PT = cast<PointerType>(FieldGlobals[i]->getType());
   1408       Constant *Null = Constant::getNullValue(PT->getElementType());
   1409       new StoreInst(Null, FieldGlobals[i], SI);
   1410     }
   1411     // Erase the original store.
   1412     SI->eraseFromParent();
   1413   }
   1414 
   1415   // While we have PHIs that are interesting to rewrite, do it.
   1416   while (!PHIsToRewrite.empty()) {
   1417     PHINode *PN = PHIsToRewrite.back().first;
   1418     unsigned FieldNo = PHIsToRewrite.back().second;
   1419     PHIsToRewrite.pop_back();
   1420     PHINode *FieldPN = cast<PHINode>(InsertedScalarizedValues[PN][FieldNo]);
   1421     assert(FieldPN->getNumIncomingValues() == 0 &&"Already processed this phi");
   1422 
   1423     // Add all the incoming values.  This can materialize more phis.
   1424     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
   1425       Value *InVal = PN->getIncomingValue(i);
   1426       InVal = GetHeapSROAValue(InVal, FieldNo, InsertedScalarizedValues,
   1427                                PHIsToRewrite);
   1428       FieldPN->addIncoming(InVal, PN->getIncomingBlock(i));
   1429     }
   1430   }
   1431 
   1432   // Drop all inter-phi links and any loads that made it this far.
   1433   for (DenseMap<Value*, std::vector<Value*> >::iterator
   1434        I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end();
   1435        I != E; ++I) {
   1436     if (PHINode *PN = dyn_cast<PHINode>(I->first))
   1437       PN->dropAllReferences();
   1438     else if (LoadInst *LI = dyn_cast<LoadInst>(I->first))
   1439       LI->dropAllReferences();
   1440   }
   1441 
   1442   // Delete all the phis and loads now that inter-references are dead.
   1443   for (DenseMap<Value*, std::vector<Value*> >::iterator
   1444        I = InsertedScalarizedValues.begin(), E = InsertedScalarizedValues.end();
   1445        I != E; ++I) {
   1446     if (PHINode *PN = dyn_cast<PHINode>(I->first))
   1447       PN->eraseFromParent();
   1448     else if (LoadInst *LI = dyn_cast<LoadInst>(I->first))
   1449       LI->eraseFromParent();
   1450   }
   1451 
   1452   // The old global is now dead, remove it.
   1453   GV->eraseFromParent();
   1454 
   1455   ++NumHeapSRA;
   1456   return cast<GlobalVariable>(FieldGlobals[0]);
   1457 }
   1458 
   1459 /// TryToOptimizeStoreOfMallocToGlobal - This function is called when we see a
   1460 /// pointer global variable with a single value stored it that is a malloc or
   1461 /// cast of malloc.
   1462 static bool TryToOptimizeStoreOfMallocToGlobal(GlobalVariable *GV, CallInst *CI,
   1463                                                Type *AllocTy,
   1464                                                AtomicOrdering Ordering,
   1465                                                Module::global_iterator &GVI,
   1466                                                const DataLayout &DL,
   1467                                                TargetLibraryInfo *TLI) {
   1468   // If this is a malloc of an abstract type, don't touch it.
   1469   if (!AllocTy->isSized())
   1470     return false;
   1471 
   1472   // We can't optimize this global unless all uses of it are *known* to be
   1473   // of the malloc value, not of the null initializer value (consider a use
   1474   // that compares the global's value against zero to see if the malloc has
   1475   // been reached).  To do this, we check to see if all uses of the global
   1476   // would trap if the global were null: this proves that they must all
   1477   // happen after the malloc.
   1478   if (!AllUsesOfLoadedValueWillTrapIfNull(GV))
   1479     return false;
   1480 
   1481   // We can't optimize this if the malloc itself is used in a complex way,
   1482   // for example, being stored into multiple globals.  This allows the
   1483   // malloc to be stored into the specified global, loaded icmp'd, and
   1484   // GEP'd.  These are all things we could transform to using the global
   1485   // for.
   1486   SmallPtrSet<const PHINode*, 8> PHIs;
   1487   if (!ValueIsOnlyUsedLocallyOrStoredToOneGlobal(CI, GV, PHIs))
   1488     return false;
   1489 
   1490   // If we have a global that is only initialized with a fixed size malloc,
   1491   // transform the program to use global memory instead of malloc'd memory.
   1492   // This eliminates dynamic allocation, avoids an indirection accessing the
   1493   // data, and exposes the resultant global to further GlobalOpt.
   1494   // We cannot optimize the malloc if we cannot determine malloc array size.
   1495   Value *NElems = getMallocArraySize(CI, DL, TLI, true);
   1496   if (!NElems)
   1497     return false;
   1498 
   1499   if (ConstantInt *NElements = dyn_cast<ConstantInt>(NElems))
   1500     // Restrict this transformation to only working on small allocations
   1501     // (2048 bytes currently), as we don't want to introduce a 16M global or
   1502     // something.
   1503     if (NElements->getZExtValue() * DL.getTypeAllocSize(AllocTy) < 2048) {
   1504       GVI = OptimizeGlobalAddressOfMalloc(GV, CI, AllocTy, NElements, DL, TLI);
   1505       return true;
   1506     }
   1507 
   1508   // If the allocation is an array of structures, consider transforming this
   1509   // into multiple malloc'd arrays, one for each field.  This is basically
   1510   // SRoA for malloc'd memory.
   1511 
   1512   if (Ordering != NotAtomic)
   1513     return false;
   1514 
   1515   // If this is an allocation of a fixed size array of structs, analyze as a
   1516   // variable size array.  malloc [100 x struct],1 -> malloc struct, 100
   1517   if (NElems == ConstantInt::get(CI->getArgOperand(0)->getType(), 1))
   1518     if (ArrayType *AT = dyn_cast<ArrayType>(AllocTy))
   1519       AllocTy = AT->getElementType();
   1520 
   1521   StructType *AllocSTy = dyn_cast<StructType>(AllocTy);
   1522   if (!AllocSTy)
   1523     return false;
   1524 
   1525   // This the structure has an unreasonable number of fields, leave it
   1526   // alone.
   1527   if (AllocSTy->getNumElements() <= 16 && AllocSTy->getNumElements() != 0 &&
   1528       AllGlobalLoadUsesSimpleEnoughForHeapSRA(GV, CI)) {
   1529 
   1530     // If this is a fixed size array, transform the Malloc to be an alloc of
   1531     // structs.  malloc [100 x struct],1 -> malloc struct, 100
   1532     if (ArrayType *AT = dyn_cast<ArrayType>(getMallocAllocatedType(CI, TLI))) {
   1533       Type *IntPtrTy = DL.getIntPtrType(CI->getType());
   1534       unsigned TypeSize = DL.getStructLayout(AllocSTy)->getSizeInBytes();
   1535       Value *AllocSize = ConstantInt::get(IntPtrTy, TypeSize);
   1536       Value *NumElements = ConstantInt::get(IntPtrTy, AT->getNumElements());
   1537       Instruction *Malloc = CallInst::CreateMalloc(CI, IntPtrTy, AllocSTy,
   1538                                                    AllocSize, NumElements,
   1539                                                    nullptr, CI->getName());
   1540       Instruction *Cast = new BitCastInst(Malloc, CI->getType(), "tmp", CI);
   1541       CI->replaceAllUsesWith(Cast);
   1542       CI->eraseFromParent();
   1543       if (BitCastInst *BCI = dyn_cast<BitCastInst>(Malloc))
   1544         CI = cast<CallInst>(BCI->getOperand(0));
   1545       else
   1546         CI = cast<CallInst>(Malloc);
   1547     }
   1548 
   1549     GVI = PerformHeapAllocSRoA(GV, CI, getMallocArraySize(CI, DL, TLI, true),
   1550                                DL, TLI);
   1551     return true;
   1552   }
   1553 
   1554   return false;
   1555 }
   1556 
   1557 // OptimizeOnceStoredGlobal - Try to optimize globals based on the knowledge
   1558 // that only one value (besides its initializer) is ever stored to the global.
   1559 static bool OptimizeOnceStoredGlobal(GlobalVariable *GV, Value *StoredOnceVal,
   1560                                      AtomicOrdering Ordering,
   1561                                      Module::global_iterator &GVI,
   1562                                      const DataLayout &DL,
   1563                                      TargetLibraryInfo *TLI) {
   1564   // Ignore no-op GEPs and bitcasts.
   1565   StoredOnceVal = StoredOnceVal->stripPointerCasts();
   1566 
   1567   // If we are dealing with a pointer global that is initialized to null and
   1568   // only has one (non-null) value stored into it, then we can optimize any
   1569   // users of the loaded value (often calls and loads) that would trap if the
   1570   // value was null.
   1571   if (GV->getInitializer()->getType()->isPointerTy() &&
   1572       GV->getInitializer()->isNullValue()) {
   1573     if (Constant *SOVC = dyn_cast<Constant>(StoredOnceVal)) {
   1574       if (GV->getInitializer()->getType() != SOVC->getType())
   1575         SOVC = ConstantExpr::getBitCast(SOVC, GV->getInitializer()->getType());
   1576 
   1577       // Optimize away any trapping uses of the loaded value.
   1578       if (OptimizeAwayTrappingUsesOfLoads(GV, SOVC, DL, TLI))
   1579         return true;
   1580     } else if (CallInst *CI = extractMallocCall(StoredOnceVal, TLI)) {
   1581       Type *MallocType = getMallocAllocatedType(CI, TLI);
   1582       if (MallocType &&
   1583           TryToOptimizeStoreOfMallocToGlobal(GV, CI, MallocType, Ordering, GVI,
   1584                                              DL, TLI))
   1585         return true;
   1586     }
   1587   }
   1588 
   1589   return false;
   1590 }
   1591 
   1592 /// TryToShrinkGlobalToBoolean - At this point, we have learned that the only
   1593 /// two values ever stored into GV are its initializer and OtherVal.  See if we
   1594 /// can shrink the global into a boolean and select between the two values
   1595 /// whenever it is used.  This exposes the values to other scalar optimizations.
   1596 static bool TryToShrinkGlobalToBoolean(GlobalVariable *GV, Constant *OtherVal) {
   1597   Type *GVElType = GV->getType()->getElementType();
   1598 
   1599   // If GVElType is already i1, it is already shrunk.  If the type of the GV is
   1600   // an FP value, pointer or vector, don't do this optimization because a select
   1601   // between them is very expensive and unlikely to lead to later
   1602   // simplification.  In these cases, we typically end up with "cond ? v1 : v2"
   1603   // where v1 and v2 both require constant pool loads, a big loss.
   1604   if (GVElType == Type::getInt1Ty(GV->getContext()) ||
   1605       GVElType->isFloatingPointTy() ||
   1606       GVElType->isPointerTy() || GVElType->isVectorTy())
   1607     return false;
   1608 
   1609   // Walk the use list of the global seeing if all the uses are load or store.
   1610   // If there is anything else, bail out.
   1611   for (User *U : GV->users())
   1612     if (!isa<LoadInst>(U) && !isa<StoreInst>(U))
   1613       return false;
   1614 
   1615   DEBUG(dbgs() << "   *** SHRINKING TO BOOL: " << *GV);
   1616 
   1617   // Create the new global, initializing it to false.
   1618   GlobalVariable *NewGV = new GlobalVariable(Type::getInt1Ty(GV->getContext()),
   1619                                              false,
   1620                                              GlobalValue::InternalLinkage,
   1621                                         ConstantInt::getFalse(GV->getContext()),
   1622                                              GV->getName()+".b",
   1623                                              GV->getThreadLocalMode(),
   1624                                              GV->getType()->getAddressSpace());
   1625   GV->getParent()->getGlobalList().insert(GV, NewGV);
   1626 
   1627   Constant *InitVal = GV->getInitializer();
   1628   assert(InitVal->getType() != Type::getInt1Ty(GV->getContext()) &&
   1629          "No reason to shrink to bool!");
   1630 
   1631   // If initialized to zero and storing one into the global, we can use a cast
   1632   // instead of a select to synthesize the desired value.
   1633   bool IsOneZero = false;
   1634   if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal))
   1635     IsOneZero = InitVal->isNullValue() && CI->isOne();
   1636 
   1637   while (!GV->use_empty()) {
   1638     Instruction *UI = cast<Instruction>(GV->user_back());
   1639     if (StoreInst *SI = dyn_cast<StoreInst>(UI)) {
   1640       // Change the store into a boolean store.
   1641       bool StoringOther = SI->getOperand(0) == OtherVal;
   1642       // Only do this if we weren't storing a loaded value.
   1643       Value *StoreVal;
   1644       if (StoringOther || SI->getOperand(0) == InitVal) {
   1645         StoreVal = ConstantInt::get(Type::getInt1Ty(GV->getContext()),
   1646                                     StoringOther);
   1647       } else {
   1648         // Otherwise, we are storing a previously loaded copy.  To do this,
   1649         // change the copy from copying the original value to just copying the
   1650         // bool.
   1651         Instruction *StoredVal = cast<Instruction>(SI->getOperand(0));
   1652 
   1653         // If we've already replaced the input, StoredVal will be a cast or
   1654         // select instruction.  If not, it will be a load of the original
   1655         // global.
   1656         if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) {
   1657           assert(LI->getOperand(0) == GV && "Not a copy!");
   1658           // Insert a new load, to preserve the saved value.
   1659           StoreVal = new LoadInst(NewGV, LI->getName()+".b", false, 0,
   1660                                   LI->getOrdering(), LI->getSynchScope(), LI);
   1661         } else {
   1662           assert((isa<CastInst>(StoredVal) || isa<SelectInst>(StoredVal)) &&
   1663                  "This is not a form that we understand!");
   1664           StoreVal = StoredVal->getOperand(0);
   1665           assert(isa<LoadInst>(StoreVal) && "Not a load of NewGV!");
   1666         }
   1667       }
   1668       new StoreInst(StoreVal, NewGV, false, 0,
   1669                     SI->getOrdering(), SI->getSynchScope(), SI);
   1670     } else {
   1671       // Change the load into a load of bool then a select.
   1672       LoadInst *LI = cast<LoadInst>(UI);
   1673       LoadInst *NLI = new LoadInst(NewGV, LI->getName()+".b", false, 0,
   1674                                    LI->getOrdering(), LI->getSynchScope(), LI);
   1675       Value *NSI;
   1676       if (IsOneZero)
   1677         NSI = new ZExtInst(NLI, LI->getType(), "", LI);
   1678       else
   1679         NSI = SelectInst::Create(NLI, OtherVal, InitVal, "", LI);
   1680       NSI->takeName(LI);
   1681       LI->replaceAllUsesWith(NSI);
   1682     }
   1683     UI->eraseFromParent();
   1684   }
   1685 
   1686   // Retain the name of the old global variable. People who are debugging their
   1687   // programs may expect these variables to be named the same.
   1688   NewGV->takeName(GV);
   1689   GV->eraseFromParent();
   1690   return true;
   1691 }
   1692 
   1693 
   1694 /// ProcessGlobal - Analyze the specified global variable and optimize it if
   1695 /// possible.  If we make a change, return true.
   1696 bool GlobalOpt::ProcessGlobal(GlobalVariable *GV,
   1697                               Module::global_iterator &GVI) {
   1698   // Do more involved optimizations if the global is internal.
   1699   GV->removeDeadConstantUsers();
   1700 
   1701   if (GV->use_empty()) {
   1702     DEBUG(dbgs() << "GLOBAL DEAD: " << *GV);
   1703     GV->eraseFromParent();
   1704     ++NumDeleted;
   1705     return true;
   1706   }
   1707 
   1708   if (!GV->hasLocalLinkage())
   1709     return false;
   1710 
   1711   GlobalStatus GS;
   1712 
   1713   if (GlobalStatus::analyzeGlobal(GV, GS))
   1714     return false;
   1715 
   1716   if (!GS.IsCompared && !GV->hasUnnamedAddr()) {
   1717     GV->setUnnamedAddr(true);
   1718     NumUnnamed++;
   1719   }
   1720 
   1721   if (GV->isConstant() || !GV->hasInitializer())
   1722     return false;
   1723 
   1724   return ProcessInternalGlobal(GV, GVI, GS);
   1725 }
   1726 
   1727 /// ProcessInternalGlobal - Analyze the specified global variable and optimize
   1728 /// it if possible.  If we make a change, return true.
   1729 bool GlobalOpt::ProcessInternalGlobal(GlobalVariable *GV,
   1730                                       Module::global_iterator &GVI,
   1731                                       const GlobalStatus &GS) {
   1732   auto &DL = GV->getParent()->getDataLayout();
   1733   // If this is a first class global and has only one accessing function
   1734   // and this function is main (which we know is not recursive), we replace
   1735   // the global with a local alloca in this function.
   1736   //
   1737   // NOTE: It doesn't make sense to promote non-single-value types since we
   1738   // are just replacing static memory to stack memory.
   1739   //
   1740   // If the global is in different address space, don't bring it to stack.
   1741   if (!GS.HasMultipleAccessingFunctions &&
   1742       GS.AccessingFunction && !GS.HasNonInstructionUser &&
   1743       GV->getType()->getElementType()->isSingleValueType() &&
   1744       GS.AccessingFunction->getName() == "main" &&
   1745       GS.AccessingFunction->hasExternalLinkage() &&
   1746       GV->getType()->getAddressSpace() == 0) {
   1747     DEBUG(dbgs() << "LOCALIZING GLOBAL: " << *GV);
   1748     Instruction &FirstI = const_cast<Instruction&>(*GS.AccessingFunction
   1749                                                    ->getEntryBlock().begin());
   1750     Type *ElemTy = GV->getType()->getElementType();
   1751     // FIXME: Pass Global's alignment when globals have alignment
   1752     AllocaInst *Alloca = new AllocaInst(ElemTy, nullptr,
   1753                                         GV->getName(), &FirstI);
   1754     if (!isa<UndefValue>(GV->getInitializer()))
   1755       new StoreInst(GV->getInitializer(), Alloca, &FirstI);
   1756 
   1757     GV->replaceAllUsesWith(Alloca);
   1758     GV->eraseFromParent();
   1759     ++NumLocalized;
   1760     return true;
   1761   }
   1762 
   1763   // If the global is never loaded (but may be stored to), it is dead.
   1764   // Delete it now.
   1765   if (!GS.IsLoaded) {
   1766     DEBUG(dbgs() << "GLOBAL NEVER LOADED: " << *GV);
   1767 
   1768     bool Changed;
   1769     if (isLeakCheckerRoot(GV)) {
   1770       // Delete any constant stores to the global.
   1771       Changed = CleanupPointerRootUsers(GV, TLI);
   1772     } else {
   1773       // Delete any stores we can find to the global.  We may not be able to
   1774       // make it completely dead though.
   1775       Changed = CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, TLI);
   1776     }
   1777 
   1778     // If the global is dead now, delete it.
   1779     if (GV->use_empty()) {
   1780       GV->eraseFromParent();
   1781       ++NumDeleted;
   1782       Changed = true;
   1783     }
   1784     return Changed;
   1785 
   1786   } else if (GS.StoredType <= GlobalStatus::InitializerStored) {
   1787     DEBUG(dbgs() << "MARKING CONSTANT: " << *GV << "\n");
   1788     GV->setConstant(true);
   1789 
   1790     // Clean up any obviously simplifiable users now.
   1791     CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, TLI);
   1792 
   1793     // If the global is dead now, just nuke it.
   1794     if (GV->use_empty()) {
   1795       DEBUG(dbgs() << "   *** Marking constant allowed us to simplify "
   1796             << "all users and delete global!\n");
   1797       GV->eraseFromParent();
   1798       ++NumDeleted;
   1799     }
   1800 
   1801     ++NumMarked;
   1802     return true;
   1803   } else if (!GV->getInitializer()->getType()->isSingleValueType()) {
   1804     const DataLayout &DL = GV->getParent()->getDataLayout();
   1805     if (GlobalVariable *FirstNewGV = SRAGlobal(GV, DL)) {
   1806       GVI = FirstNewGV; // Don't skip the newly produced globals!
   1807       return true;
   1808     }
   1809   } else if (GS.StoredType == GlobalStatus::StoredOnce) {
   1810     // If the initial value for the global was an undef value, and if only
   1811     // one other value was stored into it, we can just change the
   1812     // initializer to be the stored value, then delete all stores to the
   1813     // global.  This allows us to mark it constant.
   1814     if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue))
   1815       if (isa<UndefValue>(GV->getInitializer())) {
   1816         // Change the initial value here.
   1817         GV->setInitializer(SOVConstant);
   1818 
   1819         // Clean up any obviously simplifiable users now.
   1820         CleanupConstantGlobalUsers(GV, GV->getInitializer(), DL, TLI);
   1821 
   1822         if (GV->use_empty()) {
   1823           DEBUG(dbgs() << "   *** Substituting initializer allowed us to "
   1824                        << "simplify all users and delete global!\n");
   1825           GV->eraseFromParent();
   1826           ++NumDeleted;
   1827         } else {
   1828           GVI = GV;
   1829         }
   1830         ++NumSubstitute;
   1831         return true;
   1832       }
   1833 
   1834     // Try to optimize globals based on the knowledge that only one value
   1835     // (besides its initializer) is ever stored to the global.
   1836     if (OptimizeOnceStoredGlobal(GV, GS.StoredOnceValue, GS.Ordering, GVI,
   1837                                  DL, TLI))
   1838       return true;
   1839 
   1840     // Otherwise, if the global was not a boolean, we can shrink it to be a
   1841     // boolean.
   1842     if (Constant *SOVConstant = dyn_cast<Constant>(GS.StoredOnceValue)) {
   1843       if (GS.Ordering == NotAtomic) {
   1844         if (TryToShrinkGlobalToBoolean(GV, SOVConstant)) {
   1845           ++NumShrunkToBool;
   1846           return true;
   1847         }
   1848       }
   1849     }
   1850   }
   1851 
   1852   return false;
   1853 }
   1854 
   1855 /// ChangeCalleesToFastCall - Walk all of the direct calls of the specified
   1856 /// function, changing them to FastCC.
   1857 static void ChangeCalleesToFastCall(Function *F) {
   1858   for (User *U : F->users()) {
   1859     if (isa<BlockAddress>(U))
   1860       continue;
   1861     CallSite CS(cast<Instruction>(U));
   1862     CS.setCallingConv(CallingConv::Fast);
   1863   }
   1864 }
   1865 
   1866 static AttributeSet StripNest(LLVMContext &C, const AttributeSet &Attrs) {
   1867   for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) {
   1868     unsigned Index = Attrs.getSlotIndex(i);
   1869     if (!Attrs.getSlotAttributes(i).hasAttribute(Index, Attribute::Nest))
   1870       continue;
   1871 
   1872     // There can be only one.
   1873     return Attrs.removeAttribute(C, Index, Attribute::Nest);
   1874   }
   1875 
   1876   return Attrs;
   1877 }
   1878 
   1879 static void RemoveNestAttribute(Function *F) {
   1880   F->setAttributes(StripNest(F->getContext(), F->getAttributes()));
   1881   for (User *U : F->users()) {
   1882     if (isa<BlockAddress>(U))
   1883       continue;
   1884     CallSite CS(cast<Instruction>(U));
   1885     CS.setAttributes(StripNest(F->getContext(), CS.getAttributes()));
   1886   }
   1887 }
   1888 
   1889 /// Return true if this is a calling convention that we'd like to change.  The
   1890 /// idea here is that we don't want to mess with the convention if the user
   1891 /// explicitly requested something with performance implications like coldcc,
   1892 /// GHC, or anyregcc.
   1893 static bool isProfitableToMakeFastCC(Function *F) {
   1894   CallingConv::ID CC = F->getCallingConv();
   1895   // FIXME: Is it worth transforming x86_stdcallcc and x86_fastcallcc?
   1896   return CC == CallingConv::C || CC == CallingConv::X86_ThisCall;
   1897 }
   1898 
   1899 bool GlobalOpt::OptimizeFunctions(Module &M) {
   1900   bool Changed = false;
   1901   // Optimize functions.
   1902   for (Module::iterator FI = M.begin(), E = M.end(); FI != E; ) {
   1903     Function *F = FI++;
   1904     // Functions without names cannot be referenced outside this module.
   1905     if (!F->hasName() && !F->isDeclaration() && !F->hasLocalLinkage())
   1906       F->setLinkage(GlobalValue::InternalLinkage);
   1907 
   1908     const Comdat *C = F->getComdat();
   1909     bool inComdat = C && NotDiscardableComdats.count(C);
   1910     F->removeDeadConstantUsers();
   1911     if ((!inComdat || F->hasLocalLinkage()) && F->isDefTriviallyDead()) {
   1912       F->eraseFromParent();
   1913       Changed = true;
   1914       ++NumFnDeleted;
   1915     } else if (F->hasLocalLinkage()) {
   1916       if (isProfitableToMakeFastCC(F) && !F->isVarArg() &&
   1917           !F->hasAddressTaken()) {
   1918         // If this function has a calling convention worth changing, is not a
   1919         // varargs function, and is only called directly, promote it to use the
   1920         // Fast calling convention.
   1921         F->setCallingConv(CallingConv::Fast);
   1922         ChangeCalleesToFastCall(F);
   1923         ++NumFastCallFns;
   1924         Changed = true;
   1925       }
   1926 
   1927       if (F->getAttributes().hasAttrSomewhere(Attribute::Nest) &&
   1928           !F->hasAddressTaken()) {
   1929         // The function is not used by a trampoline intrinsic, so it is safe
   1930         // to remove the 'nest' attribute.
   1931         RemoveNestAttribute(F);
   1932         ++NumNestRemoved;
   1933         Changed = true;
   1934       }
   1935     }
   1936   }
   1937   return Changed;
   1938 }
   1939 
   1940 bool GlobalOpt::OptimizeGlobalVars(Module &M) {
   1941   bool Changed = false;
   1942 
   1943   for (Module::global_iterator GVI = M.global_begin(), E = M.global_end();
   1944        GVI != E; ) {
   1945     GlobalVariable *GV = GVI++;
   1946     // Global variables without names cannot be referenced outside this module.
   1947     if (!GV->hasName() && !GV->isDeclaration() && !GV->hasLocalLinkage())
   1948       GV->setLinkage(GlobalValue::InternalLinkage);
   1949     // Simplify the initializer.
   1950     if (GV->hasInitializer())
   1951       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(GV->getInitializer())) {
   1952         auto &DL = M.getDataLayout();
   1953         Constant *New = ConstantFoldConstantExpression(CE, DL, TLI);
   1954         if (New && New != CE)
   1955           GV->setInitializer(New);
   1956       }
   1957 
   1958     if (GV->isDiscardableIfUnused()) {
   1959       if (const Comdat *C = GV->getComdat())
   1960         if (NotDiscardableComdats.count(C) && !GV->hasLocalLinkage())
   1961           continue;
   1962       Changed |= ProcessGlobal(GV, GVI);
   1963     }
   1964   }
   1965   return Changed;
   1966 }
   1967 
   1968 static inline bool
   1969 isSimpleEnoughValueToCommit(Constant *C,
   1970                             SmallPtrSetImpl<Constant *> &SimpleConstants,
   1971                             const DataLayout &DL);
   1972 
   1973 /// isSimpleEnoughValueToCommit - Return true if the specified constant can be
   1974 /// handled by the code generator.  We don't want to generate something like:
   1975 ///   void *X = &X/42;
   1976 /// because the code generator doesn't have a relocation that can handle that.
   1977 ///
   1978 /// This function should be called if C was not found (but just got inserted)
   1979 /// in SimpleConstants to avoid having to rescan the same constants all the
   1980 /// time.
   1981 static bool
   1982 isSimpleEnoughValueToCommitHelper(Constant *C,
   1983                                   SmallPtrSetImpl<Constant *> &SimpleConstants,
   1984                                   const DataLayout &DL) {
   1985   // Simple global addresses are supported, do not allow dllimport or
   1986   // thread-local globals.
   1987   if (auto *GV = dyn_cast<GlobalValue>(C))
   1988     return !GV->hasDLLImportStorageClass() && !GV->isThreadLocal();
   1989 
   1990   // Simple integer, undef, constant aggregate zero, etc are all supported.
   1991   if (C->getNumOperands() == 0 || isa<BlockAddress>(C))
   1992     return true;
   1993 
   1994   // Aggregate values are safe if all their elements are.
   1995   if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) ||
   1996       isa<ConstantVector>(C)) {
   1997     for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) {
   1998       Constant *Op = cast<Constant>(C->getOperand(i));
   1999       if (!isSimpleEnoughValueToCommit(Op, SimpleConstants, DL))
   2000         return false;
   2001     }
   2002     return true;
   2003   }
   2004 
   2005   // We don't know exactly what relocations are allowed in constant expressions,
   2006   // so we allow &global+constantoffset, which is safe and uniformly supported
   2007   // across targets.
   2008   ConstantExpr *CE = cast<ConstantExpr>(C);
   2009   switch (CE->getOpcode()) {
   2010   case Instruction::BitCast:
   2011     // Bitcast is fine if the casted value is fine.
   2012     return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL);
   2013 
   2014   case Instruction::IntToPtr:
   2015   case Instruction::PtrToInt:
   2016     // int <=> ptr is fine if the int type is the same size as the
   2017     // pointer type.
   2018     if (DL.getTypeSizeInBits(CE->getType()) !=
   2019         DL.getTypeSizeInBits(CE->getOperand(0)->getType()))
   2020       return false;
   2021     return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL);
   2022 
   2023   // GEP is fine if it is simple + constant offset.
   2024   case Instruction::GetElementPtr:
   2025     for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i)
   2026       if (!isa<ConstantInt>(CE->getOperand(i)))
   2027         return false;
   2028     return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL);
   2029 
   2030   case Instruction::Add:
   2031     // We allow simple+cst.
   2032     if (!isa<ConstantInt>(CE->getOperand(1)))
   2033       return false;
   2034     return isSimpleEnoughValueToCommit(CE->getOperand(0), SimpleConstants, DL);
   2035   }
   2036   return false;
   2037 }
   2038 
   2039 static inline bool
   2040 isSimpleEnoughValueToCommit(Constant *C,
   2041                             SmallPtrSetImpl<Constant *> &SimpleConstants,
   2042                             const DataLayout &DL) {
   2043   // If we already checked this constant, we win.
   2044   if (!SimpleConstants.insert(C).second)
   2045     return true;
   2046   // Check the constant.
   2047   return isSimpleEnoughValueToCommitHelper(C, SimpleConstants, DL);
   2048 }
   2049 
   2050 
   2051 /// isSimpleEnoughPointerToCommit - Return true if this constant is simple
   2052 /// enough for us to understand.  In particular, if it is a cast to anything
   2053 /// other than from one pointer type to another pointer type, we punt.
   2054 /// We basically just support direct accesses to globals and GEP's of
   2055 /// globals.  This should be kept up to date with CommitValueTo.
   2056 static bool isSimpleEnoughPointerToCommit(Constant *C) {
   2057   // Conservatively, avoid aggregate types. This is because we don't
   2058   // want to worry about them partially overlapping other stores.
   2059   if (!cast<PointerType>(C->getType())->getElementType()->isSingleValueType())
   2060     return false;
   2061 
   2062   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
   2063     // Do not allow weak/*_odr/linkonce linkage or external globals.
   2064     return GV->hasUniqueInitializer();
   2065 
   2066   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
   2067     // Handle a constantexpr gep.
   2068     if (CE->getOpcode() == Instruction::GetElementPtr &&
   2069         isa<GlobalVariable>(CE->getOperand(0)) &&
   2070         cast<GEPOperator>(CE)->isInBounds()) {
   2071       GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
   2072       // Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or
   2073       // external globals.
   2074       if (!GV->hasUniqueInitializer())
   2075         return false;
   2076 
   2077       // The first index must be zero.
   2078       ConstantInt *CI = dyn_cast<ConstantInt>(*std::next(CE->op_begin()));
   2079       if (!CI || !CI->isZero()) return false;
   2080 
   2081       // The remaining indices must be compile-time known integers within the
   2082       // notional bounds of the corresponding static array types.
   2083       if (!CE->isGEPWithNoNotionalOverIndexing())
   2084         return false;
   2085 
   2086       return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE);
   2087 
   2088     // A constantexpr bitcast from a pointer to another pointer is a no-op,
   2089     // and we know how to evaluate it by moving the bitcast from the pointer
   2090     // operand to the value operand.
   2091     } else if (CE->getOpcode() == Instruction::BitCast &&
   2092                isa<GlobalVariable>(CE->getOperand(0))) {
   2093       // Do not allow weak/*_odr/linkonce/dllimport/dllexport linkage or
   2094       // external globals.
   2095       return cast<GlobalVariable>(CE->getOperand(0))->hasUniqueInitializer();
   2096     }
   2097   }
   2098 
   2099   return false;
   2100 }
   2101 
   2102 /// EvaluateStoreInto - Evaluate a piece of a constantexpr store into a global
   2103 /// initializer.  This returns 'Init' modified to reflect 'Val' stored into it.
   2104 /// At this point, the GEP operands of Addr [0, OpNo) have been stepped into.
   2105 static Constant *EvaluateStoreInto(Constant *Init, Constant *Val,
   2106                                    ConstantExpr *Addr, unsigned OpNo) {
   2107   // Base case of the recursion.
   2108   if (OpNo == Addr->getNumOperands()) {
   2109     assert(Val->getType() == Init->getType() && "Type mismatch!");
   2110     return Val;
   2111   }
   2112 
   2113   SmallVector<Constant*, 32> Elts;
   2114   if (StructType *STy = dyn_cast<StructType>(Init->getType())) {
   2115     // Break up the constant into its elements.
   2116     for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
   2117       Elts.push_back(Init->getAggregateElement(i));
   2118 
   2119     // Replace the element that we are supposed to.
   2120     ConstantInt *CU = cast<ConstantInt>(Addr->getOperand(OpNo));
   2121     unsigned Idx = CU->getZExtValue();
   2122     assert(Idx < STy->getNumElements() && "Struct index out of range!");
   2123     Elts[Idx] = EvaluateStoreInto(Elts[Idx], Val, Addr, OpNo+1);
   2124 
   2125     // Return the modified struct.
   2126     return ConstantStruct::get(STy, Elts);
   2127   }
   2128 
   2129   ConstantInt *CI = cast<ConstantInt>(Addr->getOperand(OpNo));
   2130   SequentialType *InitTy = cast<SequentialType>(Init->getType());
   2131 
   2132   uint64_t NumElts;
   2133   if (ArrayType *ATy = dyn_cast<ArrayType>(InitTy))
   2134     NumElts = ATy->getNumElements();
   2135   else
   2136     NumElts = InitTy->getVectorNumElements();
   2137 
   2138   // Break up the array into elements.
   2139   for (uint64_t i = 0, e = NumElts; i != e; ++i)
   2140     Elts.push_back(Init->getAggregateElement(i));
   2141 
   2142   assert(CI->getZExtValue() < NumElts);
   2143   Elts[CI->getZExtValue()] =
   2144     EvaluateStoreInto(Elts[CI->getZExtValue()], Val, Addr, OpNo+1);
   2145 
   2146   if (Init->getType()->isArrayTy())
   2147     return ConstantArray::get(cast<ArrayType>(InitTy), Elts);
   2148   return ConstantVector::get(Elts);
   2149 }
   2150 
   2151 /// CommitValueTo - We have decided that Addr (which satisfies the predicate
   2152 /// isSimpleEnoughPointerToCommit) should get Val as its value.  Make it happen.
   2153 static void CommitValueTo(Constant *Val, Constant *Addr) {
   2154   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) {
   2155     assert(GV->hasInitializer());
   2156     GV->setInitializer(Val);
   2157     return;
   2158   }
   2159 
   2160   ConstantExpr *CE = cast<ConstantExpr>(Addr);
   2161   GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
   2162   GV->setInitializer(EvaluateStoreInto(GV->getInitializer(), Val, CE, 2));
   2163 }
   2164 
   2165 namespace {
   2166 
   2167 /// Evaluator - This class evaluates LLVM IR, producing the Constant
   2168 /// representing each SSA instruction.  Changes to global variables are stored
   2169 /// in a mapping that can be iterated over after the evaluation is complete.
   2170 /// Once an evaluation call fails, the evaluation object should not be reused.
   2171 class Evaluator {
   2172 public:
   2173   Evaluator(const DataLayout &DL, const TargetLibraryInfo *TLI)
   2174       : DL(DL), TLI(TLI) {
   2175     ValueStack.emplace_back();
   2176   }
   2177 
   2178   ~Evaluator() {
   2179     for (auto &Tmp : AllocaTmps)
   2180       // If there are still users of the alloca, the program is doing something
   2181       // silly, e.g. storing the address of the alloca somewhere and using it
   2182       // later.  Since this is undefined, we'll just make it be null.
   2183       if (!Tmp->use_empty())
   2184         Tmp->replaceAllUsesWith(Constant::getNullValue(Tmp->getType()));
   2185   }
   2186 
   2187   /// EvaluateFunction - Evaluate a call to function F, returning true if
   2188   /// successful, false if we can't evaluate it.  ActualArgs contains the formal
   2189   /// arguments for the function.
   2190   bool EvaluateFunction(Function *F, Constant *&RetVal,
   2191                         const SmallVectorImpl<Constant*> &ActualArgs);
   2192 
   2193   /// EvaluateBlock - Evaluate all instructions in block BB, returning true if
   2194   /// successful, false if we can't evaluate it.  NewBB returns the next BB that
   2195   /// control flows into, or null upon return.
   2196   bool EvaluateBlock(BasicBlock::iterator CurInst, BasicBlock *&NextBB);
   2197 
   2198   Constant *getVal(Value *V) {
   2199     if (Constant *CV = dyn_cast<Constant>(V)) return CV;
   2200     Constant *R = ValueStack.back().lookup(V);
   2201     assert(R && "Reference to an uncomputed value!");
   2202     return R;
   2203   }
   2204 
   2205   void setVal(Value *V, Constant *C) {
   2206     ValueStack.back()[V] = C;
   2207   }
   2208 
   2209   const DenseMap<Constant*, Constant*> &getMutatedMemory() const {
   2210     return MutatedMemory;
   2211   }
   2212 
   2213   const SmallPtrSetImpl<GlobalVariable*> &getInvariants() const {
   2214     return Invariants;
   2215   }
   2216 
   2217 private:
   2218   Constant *ComputeLoadResult(Constant *P);
   2219 
   2220   /// ValueStack - As we compute SSA register values, we store their contents
   2221   /// here. The back of the deque contains the current function and the stack
   2222   /// contains the values in the calling frames.
   2223   std::deque<DenseMap<Value*, Constant*>> ValueStack;
   2224 
   2225   /// CallStack - This is used to detect recursion.  In pathological situations
   2226   /// we could hit exponential behavior, but at least there is nothing
   2227   /// unbounded.
   2228   SmallVector<Function*, 4> CallStack;
   2229 
   2230   /// MutatedMemory - For each store we execute, we update this map.  Loads
   2231   /// check this to get the most up-to-date value.  If evaluation is successful,
   2232   /// this state is committed to the process.
   2233   DenseMap<Constant*, Constant*> MutatedMemory;
   2234 
   2235   /// AllocaTmps - To 'execute' an alloca, we create a temporary global variable
   2236   /// to represent its body.  This vector is needed so we can delete the
   2237   /// temporary globals when we are done.
   2238   SmallVector<std::unique_ptr<GlobalVariable>, 32> AllocaTmps;
   2239 
   2240   /// Invariants - These global variables have been marked invariant by the
   2241   /// static constructor.
   2242   SmallPtrSet<GlobalVariable*, 8> Invariants;
   2243 
   2244   /// SimpleConstants - These are constants we have checked and know to be
   2245   /// simple enough to live in a static initializer of a global.
   2246   SmallPtrSet<Constant*, 8> SimpleConstants;
   2247 
   2248   const DataLayout &DL;
   2249   const TargetLibraryInfo *TLI;
   2250 };
   2251 
   2252 }  // anonymous namespace
   2253 
   2254 /// ComputeLoadResult - Return the value that would be computed by a load from
   2255 /// P after the stores reflected by 'memory' have been performed.  If we can't
   2256 /// decide, return null.
   2257 Constant *Evaluator::ComputeLoadResult(Constant *P) {
   2258   // If this memory location has been recently stored, use the stored value: it
   2259   // is the most up-to-date.
   2260   DenseMap<Constant*, Constant*>::const_iterator I = MutatedMemory.find(P);
   2261   if (I != MutatedMemory.end()) return I->second;
   2262 
   2263   // Access it.
   2264   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) {
   2265     if (GV->hasDefinitiveInitializer())
   2266       return GV->getInitializer();
   2267     return nullptr;
   2268   }
   2269 
   2270   // Handle a constantexpr getelementptr.
   2271   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(P))
   2272     if (CE->getOpcode() == Instruction::GetElementPtr &&
   2273         isa<GlobalVariable>(CE->getOperand(0))) {
   2274       GlobalVariable *GV = cast<GlobalVariable>(CE->getOperand(0));
   2275       if (GV->hasDefinitiveInitializer())
   2276         return ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE);
   2277     }
   2278 
   2279   return nullptr;  // don't know how to evaluate.
   2280 }
   2281 
   2282 /// EvaluateBlock - Evaluate all instructions in block BB, returning true if
   2283 /// successful, false if we can't evaluate it.  NewBB returns the next BB that
   2284 /// control flows into, or null upon return.
   2285 bool Evaluator::EvaluateBlock(BasicBlock::iterator CurInst,
   2286                               BasicBlock *&NextBB) {
   2287   // This is the main evaluation loop.
   2288   while (1) {
   2289     Constant *InstResult = nullptr;
   2290 
   2291     DEBUG(dbgs() << "Evaluating Instruction: " << *CurInst << "\n");
   2292 
   2293     if (StoreInst *SI = dyn_cast<StoreInst>(CurInst)) {
   2294       if (!SI->isSimple()) {
   2295         DEBUG(dbgs() << "Store is not simple! Can not evaluate.\n");
   2296         return false;  // no volatile/atomic accesses.
   2297       }
   2298       Constant *Ptr = getVal(SI->getOperand(1));
   2299       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) {
   2300         DEBUG(dbgs() << "Folding constant ptr expression: " << *Ptr);
   2301         Ptr = ConstantFoldConstantExpression(CE, DL, TLI);
   2302         DEBUG(dbgs() << "; To: " << *Ptr << "\n");
   2303       }
   2304       if (!isSimpleEnoughPointerToCommit(Ptr)) {
   2305         // If this is too complex for us to commit, reject it.
   2306         DEBUG(dbgs() << "Pointer is too complex for us to evaluate store.");
   2307         return false;
   2308       }
   2309 
   2310       Constant *Val = getVal(SI->getOperand(0));
   2311 
   2312       // If this might be too difficult for the backend to handle (e.g. the addr
   2313       // of one global variable divided by another) then we can't commit it.
   2314       if (!isSimpleEnoughValueToCommit(Val, SimpleConstants, DL)) {
   2315         DEBUG(dbgs() << "Store value is too complex to evaluate store. " << *Val
   2316               << "\n");
   2317         return false;
   2318       }
   2319 
   2320       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) {
   2321         if (CE->getOpcode() == Instruction::BitCast) {
   2322           DEBUG(dbgs() << "Attempting to resolve bitcast on constant ptr.\n");
   2323           // If we're evaluating a store through a bitcast, then we need
   2324           // to pull the bitcast off the pointer type and push it onto the
   2325           // stored value.
   2326           Ptr = CE->getOperand(0);
   2327 
   2328           Type *NewTy = cast<PointerType>(Ptr->getType())->getElementType();
   2329 
   2330           // In order to push the bitcast onto the stored value, a bitcast
   2331           // from NewTy to Val's type must be legal.  If it's not, we can try
   2332           // introspecting NewTy to find a legal conversion.
   2333           while (!Val->getType()->canLosslesslyBitCastTo(NewTy)) {
   2334             // If NewTy is a struct, we can convert the pointer to the struct
   2335             // into a pointer to its first member.
   2336             // FIXME: This could be extended to support arrays as well.
   2337             if (StructType *STy = dyn_cast<StructType>(NewTy)) {
   2338               NewTy = STy->getTypeAtIndex(0U);
   2339 
   2340               IntegerType *IdxTy = IntegerType::get(NewTy->getContext(), 32);
   2341               Constant *IdxZero = ConstantInt::get(IdxTy, 0, false);
   2342               Constant * const IdxList[] = {IdxZero, IdxZero};
   2343 
   2344               Ptr = ConstantExpr::getGetElementPtr(nullptr, Ptr, IdxList);
   2345               if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
   2346                 Ptr = ConstantFoldConstantExpression(CE, DL, TLI);
   2347 
   2348             // If we can't improve the situation by introspecting NewTy,
   2349             // we have to give up.
   2350             } else {
   2351               DEBUG(dbgs() << "Failed to bitcast constant ptr, can not "
   2352                     "evaluate.\n");
   2353               return false;
   2354             }
   2355           }
   2356 
   2357           // If we found compatible types, go ahead and push the bitcast
   2358           // onto the stored value.
   2359           Val = ConstantExpr::getBitCast(Val, NewTy);
   2360 
   2361           DEBUG(dbgs() << "Evaluated bitcast: " << *Val << "\n");
   2362         }
   2363       }
   2364 
   2365       MutatedMemory[Ptr] = Val;
   2366     } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(CurInst)) {
   2367       InstResult = ConstantExpr::get(BO->getOpcode(),
   2368                                      getVal(BO->getOperand(0)),
   2369                                      getVal(BO->getOperand(1)));
   2370       DEBUG(dbgs() << "Found a BinaryOperator! Simplifying: " << *InstResult
   2371             << "\n");
   2372     } else if (CmpInst *CI = dyn_cast<CmpInst>(CurInst)) {
   2373       InstResult = ConstantExpr::getCompare(CI->getPredicate(),
   2374                                             getVal(CI->getOperand(0)),
   2375                                             getVal(CI->getOperand(1)));
   2376       DEBUG(dbgs() << "Found a CmpInst! Simplifying: " << *InstResult
   2377             << "\n");
   2378     } else if (CastInst *CI = dyn_cast<CastInst>(CurInst)) {
   2379       InstResult = ConstantExpr::getCast(CI->getOpcode(),
   2380                                          getVal(CI->getOperand(0)),
   2381                                          CI->getType());
   2382       DEBUG(dbgs() << "Found a Cast! Simplifying: " << *InstResult
   2383             << "\n");
   2384     } else if (SelectInst *SI = dyn_cast<SelectInst>(CurInst)) {
   2385       InstResult = ConstantExpr::getSelect(getVal(SI->getOperand(0)),
   2386                                            getVal(SI->getOperand(1)),
   2387                                            getVal(SI->getOperand(2)));
   2388       DEBUG(dbgs() << "Found a Select! Simplifying: " << *InstResult
   2389             << "\n");
   2390     } else if (auto *EVI = dyn_cast<ExtractValueInst>(CurInst)) {
   2391       InstResult = ConstantExpr::getExtractValue(
   2392           getVal(EVI->getAggregateOperand()), EVI->getIndices());
   2393       DEBUG(dbgs() << "Found an ExtractValueInst! Simplifying: " << *InstResult
   2394                    << "\n");
   2395     } else if (auto *IVI = dyn_cast<InsertValueInst>(CurInst)) {
   2396       InstResult = ConstantExpr::getInsertValue(
   2397           getVal(IVI->getAggregateOperand()),
   2398           getVal(IVI->getInsertedValueOperand()), IVI->getIndices());
   2399       DEBUG(dbgs() << "Found an InsertValueInst! Simplifying: " << *InstResult
   2400                    << "\n");
   2401     } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(CurInst)) {
   2402       Constant *P = getVal(GEP->getOperand(0));
   2403       SmallVector<Constant*, 8> GEPOps;
   2404       for (User::op_iterator i = GEP->op_begin() + 1, e = GEP->op_end();
   2405            i != e; ++i)
   2406         GEPOps.push_back(getVal(*i));
   2407       InstResult =
   2408           ConstantExpr::getGetElementPtr(GEP->getSourceElementType(), P, GEPOps,
   2409                                          cast<GEPOperator>(GEP)->isInBounds());
   2410       DEBUG(dbgs() << "Found a GEP! Simplifying: " << *InstResult
   2411             << "\n");
   2412     } else if (LoadInst *LI = dyn_cast<LoadInst>(CurInst)) {
   2413 
   2414       if (!LI->isSimple()) {
   2415         DEBUG(dbgs() << "Found a Load! Not a simple load, can not evaluate.\n");
   2416         return false;  // no volatile/atomic accesses.
   2417       }
   2418 
   2419       Constant *Ptr = getVal(LI->getOperand(0));
   2420       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) {
   2421         Ptr = ConstantFoldConstantExpression(CE, DL, TLI);
   2422         DEBUG(dbgs() << "Found a constant pointer expression, constant "
   2423               "folding: " << *Ptr << "\n");
   2424       }
   2425       InstResult = ComputeLoadResult(Ptr);
   2426       if (!InstResult) {
   2427         DEBUG(dbgs() << "Failed to compute load result. Can not evaluate load."
   2428               "\n");
   2429         return false; // Could not evaluate load.
   2430       }
   2431 
   2432       DEBUG(dbgs() << "Evaluated load: " << *InstResult << "\n");
   2433     } else if (AllocaInst *AI = dyn_cast<AllocaInst>(CurInst)) {
   2434       if (AI->isArrayAllocation()) {
   2435         DEBUG(dbgs() << "Found an array alloca. Can not evaluate.\n");
   2436         return false;  // Cannot handle array allocs.
   2437       }
   2438       Type *Ty = AI->getType()->getElementType();
   2439       AllocaTmps.push_back(
   2440           make_unique<GlobalVariable>(Ty, false, GlobalValue::InternalLinkage,
   2441                                       UndefValue::get(Ty), AI->getName()));
   2442       InstResult = AllocaTmps.back().get();
   2443       DEBUG(dbgs() << "Found an alloca. Result: " << *InstResult << "\n");
   2444     } else if (isa<CallInst>(CurInst) || isa<InvokeInst>(CurInst)) {
   2445       CallSite CS(CurInst);
   2446 
   2447       // Debug info can safely be ignored here.
   2448       if (isa<DbgInfoIntrinsic>(CS.getInstruction())) {
   2449         DEBUG(dbgs() << "Ignoring debug info.\n");
   2450         ++CurInst;
   2451         continue;
   2452       }
   2453 
   2454       // Cannot handle inline asm.
   2455       if (isa<InlineAsm>(CS.getCalledValue())) {
   2456         DEBUG(dbgs() << "Found inline asm, can not evaluate.\n");
   2457         return false;
   2458       }
   2459 
   2460       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction())) {
   2461         if (MemSetInst *MSI = dyn_cast<MemSetInst>(II)) {
   2462           if (MSI->isVolatile()) {
   2463             DEBUG(dbgs() << "Can not optimize a volatile memset " <<
   2464                   "intrinsic.\n");
   2465             return false;
   2466           }
   2467           Constant *Ptr = getVal(MSI->getDest());
   2468           Constant *Val = getVal(MSI->getValue());
   2469           Constant *DestVal = ComputeLoadResult(getVal(Ptr));
   2470           if (Val->isNullValue() && DestVal && DestVal->isNullValue()) {
   2471             // This memset is a no-op.
   2472             DEBUG(dbgs() << "Ignoring no-op memset.\n");
   2473             ++CurInst;
   2474             continue;
   2475           }
   2476         }
   2477 
   2478         if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
   2479             II->getIntrinsicID() == Intrinsic::lifetime_end) {
   2480           DEBUG(dbgs() << "Ignoring lifetime intrinsic.\n");
   2481           ++CurInst;
   2482           continue;
   2483         }
   2484 
   2485         if (II->getIntrinsicID() == Intrinsic::invariant_start) {
   2486           // We don't insert an entry into Values, as it doesn't have a
   2487           // meaningful return value.
   2488           if (!II->use_empty()) {
   2489             DEBUG(dbgs() << "Found unused invariant_start. Can't evaluate.\n");
   2490             return false;
   2491           }
   2492           ConstantInt *Size = cast<ConstantInt>(II->getArgOperand(0));
   2493           Value *PtrArg = getVal(II->getArgOperand(1));
   2494           Value *Ptr = PtrArg->stripPointerCasts();
   2495           if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) {
   2496             Type *ElemTy = cast<PointerType>(GV->getType())->getElementType();
   2497             if (!Size->isAllOnesValue() &&
   2498                 Size->getValue().getLimitedValue() >=
   2499                     DL.getTypeStoreSize(ElemTy)) {
   2500               Invariants.insert(GV);
   2501               DEBUG(dbgs() << "Found a global var that is an invariant: " << *GV
   2502                     << "\n");
   2503             } else {
   2504               DEBUG(dbgs() << "Found a global var, but can not treat it as an "
   2505                     "invariant.\n");
   2506             }
   2507           }
   2508           // Continue even if we do nothing.
   2509           ++CurInst;
   2510           continue;
   2511         }
   2512 
   2513         DEBUG(dbgs() << "Unknown intrinsic. Can not evaluate.\n");
   2514         return false;
   2515       }
   2516 
   2517       // Resolve function pointers.
   2518       Function *Callee = dyn_cast<Function>(getVal(CS.getCalledValue()));
   2519       if (!Callee || Callee->mayBeOverridden()) {
   2520         DEBUG(dbgs() << "Can not resolve function pointer.\n");
   2521         return false;  // Cannot resolve.
   2522       }
   2523 
   2524       SmallVector<Constant*, 8> Formals;
   2525       for (User::op_iterator i = CS.arg_begin(), e = CS.arg_end(); i != e; ++i)
   2526         Formals.push_back(getVal(*i));
   2527 
   2528       if (Callee->isDeclaration()) {
   2529         // If this is a function we can constant fold, do it.
   2530         if (Constant *C = ConstantFoldCall(Callee, Formals, TLI)) {
   2531           InstResult = C;
   2532           DEBUG(dbgs() << "Constant folded function call. Result: " <<
   2533                 *InstResult << "\n");
   2534         } else {
   2535           DEBUG(dbgs() << "Can not constant fold function call.\n");
   2536           return false;
   2537         }
   2538       } else {
   2539         if (Callee->getFunctionType()->isVarArg()) {
   2540           DEBUG(dbgs() << "Can not constant fold vararg function call.\n");
   2541           return false;
   2542         }
   2543 
   2544         Constant *RetVal = nullptr;
   2545         // Execute the call, if successful, use the return value.
   2546         ValueStack.emplace_back();
   2547         if (!EvaluateFunction(Callee, RetVal, Formals)) {
   2548           DEBUG(dbgs() << "Failed to evaluate function.\n");
   2549           return false;
   2550         }
   2551         ValueStack.pop_back();
   2552         InstResult = RetVal;
   2553 
   2554         if (InstResult) {
   2555           DEBUG(dbgs() << "Successfully evaluated function. Result: " <<
   2556                 InstResult << "\n\n");
   2557         } else {
   2558           DEBUG(dbgs() << "Successfully evaluated function. Result: 0\n\n");
   2559         }
   2560       }
   2561     } else if (isa<TerminatorInst>(CurInst)) {
   2562       DEBUG(dbgs() << "Found a terminator instruction.\n");
   2563 
   2564       if (BranchInst *BI = dyn_cast<BranchInst>(CurInst)) {
   2565         if (BI->isUnconditional()) {
   2566           NextBB = BI->getSuccessor(0);
   2567         } else {
   2568           ConstantInt *Cond =
   2569             dyn_cast<ConstantInt>(getVal(BI->getCondition()));
   2570           if (!Cond) return false;  // Cannot determine.
   2571 
   2572           NextBB = BI->getSuccessor(!Cond->getZExtValue());
   2573         }
   2574       } else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurInst)) {
   2575         ConstantInt *Val =
   2576           dyn_cast<ConstantInt>(getVal(SI->getCondition()));
   2577         if (!Val) return false;  // Cannot determine.
   2578         NextBB = SI->findCaseValue(Val).getCaseSuccessor();
   2579       } else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(CurInst)) {
   2580         Value *Val = getVal(IBI->getAddress())->stripPointerCasts();
   2581         if (BlockAddress *BA = dyn_cast<BlockAddress>(Val))
   2582           NextBB = BA->getBasicBlock();
   2583         else
   2584           return false;  // Cannot determine.
   2585       } else if (isa<ReturnInst>(CurInst)) {
   2586         NextBB = nullptr;
   2587       } else {
   2588         // invoke, unwind, resume, unreachable.
   2589         DEBUG(dbgs() << "Can not handle terminator.");
   2590         return false;  // Cannot handle this terminator.
   2591       }
   2592 
   2593       // We succeeded at evaluating this block!
   2594       DEBUG(dbgs() << "Successfully evaluated block.\n");
   2595       return true;
   2596     } else {
   2597       // Did not know how to evaluate this!
   2598       DEBUG(dbgs() << "Failed to evaluate block due to unhandled instruction."
   2599             "\n");
   2600       return false;
   2601     }
   2602 
   2603     if (!CurInst->use_empty()) {
   2604       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(InstResult))
   2605         InstResult = ConstantFoldConstantExpression(CE, DL, TLI);
   2606 
   2607       setVal(CurInst, InstResult);
   2608     }
   2609 
   2610     // If we just processed an invoke, we finished evaluating the block.
   2611     if (InvokeInst *II = dyn_cast<InvokeInst>(CurInst)) {
   2612       NextBB = II->getNormalDest();
   2613       DEBUG(dbgs() << "Found an invoke instruction. Finished Block.\n\n");
   2614       return true;
   2615     }
   2616 
   2617     // Advance program counter.
   2618     ++CurInst;
   2619   }
   2620 }
   2621 
   2622 /// EvaluateFunction - Evaluate a call to function F, returning true if
   2623 /// successful, false if we can't evaluate it.  ActualArgs contains the formal
   2624 /// arguments for the function.
   2625 bool Evaluator::EvaluateFunction(Function *F, Constant *&RetVal,
   2626                                  const SmallVectorImpl<Constant*> &ActualArgs) {
   2627   // Check to see if this function is already executing (recursion).  If so,
   2628   // bail out.  TODO: we might want to accept limited recursion.
   2629   if (std::find(CallStack.begin(), CallStack.end(), F) != CallStack.end())
   2630     return false;
   2631 
   2632   CallStack.push_back(F);
   2633 
   2634   // Initialize arguments to the incoming values specified.
   2635   unsigned ArgNo = 0;
   2636   for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E;
   2637        ++AI, ++ArgNo)
   2638     setVal(AI, ActualArgs[ArgNo]);
   2639 
   2640   // ExecutedBlocks - We only handle non-looping, non-recursive code.  As such,
   2641   // we can only evaluate any one basic block at most once.  This set keeps
   2642   // track of what we have executed so we can detect recursive cases etc.
   2643   SmallPtrSet<BasicBlock*, 32> ExecutedBlocks;
   2644 
   2645   // CurBB - The current basic block we're evaluating.
   2646   BasicBlock *CurBB = F->begin();
   2647 
   2648   BasicBlock::iterator CurInst = CurBB->begin();
   2649 
   2650   while (1) {
   2651     BasicBlock *NextBB = nullptr; // Initialized to avoid compiler warnings.
   2652     DEBUG(dbgs() << "Trying to evaluate BB: " << *CurBB << "\n");
   2653 
   2654     if (!EvaluateBlock(CurInst, NextBB))
   2655       return false;
   2656 
   2657     if (!NextBB) {
   2658       // Successfully running until there's no next block means that we found
   2659       // the return.  Fill it the return value and pop the call stack.
   2660       ReturnInst *RI = cast<ReturnInst>(CurBB->getTerminator());
   2661       if (RI->getNumOperands())
   2662         RetVal = getVal(RI->getOperand(0));
   2663       CallStack.pop_back();
   2664       return true;
   2665     }
   2666 
   2667     // Okay, we succeeded in evaluating this control flow.  See if we have
   2668     // executed the new block before.  If so, we have a looping function,
   2669     // which we cannot evaluate in reasonable time.
   2670     if (!ExecutedBlocks.insert(NextBB).second)
   2671       return false;  // looped!
   2672 
   2673     // Okay, we have never been in this block before.  Check to see if there
   2674     // are any PHI nodes.  If so, evaluate them with information about where
   2675     // we came from.
   2676     PHINode *PN = nullptr;
   2677     for (CurInst = NextBB->begin();
   2678          (PN = dyn_cast<PHINode>(CurInst)); ++CurInst)
   2679       setVal(PN, getVal(PN->getIncomingValueForBlock(CurBB)));
   2680 
   2681     // Advance to the next block.
   2682     CurBB = NextBB;
   2683   }
   2684 }
   2685 
   2686 /// EvaluateStaticConstructor - Evaluate static constructors in the function, if
   2687 /// we can.  Return true if we can, false otherwise.
   2688 static bool EvaluateStaticConstructor(Function *F, const DataLayout &DL,
   2689                                       const TargetLibraryInfo *TLI) {
   2690   // Call the function.
   2691   Evaluator Eval(DL, TLI);
   2692   Constant *RetValDummy;
   2693   bool EvalSuccess = Eval.EvaluateFunction(F, RetValDummy,
   2694                                            SmallVector<Constant*, 0>());
   2695 
   2696   if (EvalSuccess) {
   2697     ++NumCtorsEvaluated;
   2698 
   2699     // We succeeded at evaluation: commit the result.
   2700     DEBUG(dbgs() << "FULLY EVALUATED GLOBAL CTOR FUNCTION '"
   2701           << F->getName() << "' to " << Eval.getMutatedMemory().size()
   2702           << " stores.\n");
   2703     for (DenseMap<Constant*, Constant*>::const_iterator I =
   2704            Eval.getMutatedMemory().begin(), E = Eval.getMutatedMemory().end();
   2705          I != E; ++I)
   2706       CommitValueTo(I->second, I->first);
   2707     for (GlobalVariable *GV : Eval.getInvariants())
   2708       GV->setConstant(true);
   2709   }
   2710 
   2711   return EvalSuccess;
   2712 }
   2713 
   2714 static int compareNames(Constant *const *A, Constant *const *B) {
   2715   return (*A)->getName().compare((*B)->getName());
   2716 }
   2717 
   2718 static void setUsedInitializer(GlobalVariable &V,
   2719                                const SmallPtrSet<GlobalValue *, 8> &Init) {
   2720   if (Init.empty()) {
   2721     V.eraseFromParent();
   2722     return;
   2723   }
   2724 
   2725   // Type of pointer to the array of pointers.
   2726   PointerType *Int8PtrTy = Type::getInt8PtrTy(V.getContext(), 0);
   2727 
   2728   SmallVector<llvm::Constant *, 8> UsedArray;
   2729   for (GlobalValue *GV : Init) {
   2730     Constant *Cast
   2731       = ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV, Int8PtrTy);
   2732     UsedArray.push_back(Cast);
   2733   }
   2734   // Sort to get deterministic order.
   2735   array_pod_sort(UsedArray.begin(), UsedArray.end(), compareNames);
   2736   ArrayType *ATy = ArrayType::get(Int8PtrTy, UsedArray.size());
   2737 
   2738   Module *M = V.getParent();
   2739   V.removeFromParent();
   2740   GlobalVariable *NV =
   2741       new GlobalVariable(*M, ATy, false, llvm::GlobalValue::AppendingLinkage,
   2742                          llvm::ConstantArray::get(ATy, UsedArray), "");
   2743   NV->takeName(&V);
   2744   NV->setSection("llvm.metadata");
   2745   delete &V;
   2746 }
   2747 
   2748 namespace {
   2749 /// \brief An easy to access representation of llvm.used and llvm.compiler.used.
   2750 class LLVMUsed {
   2751   SmallPtrSet<GlobalValue *, 8> Used;
   2752   SmallPtrSet<GlobalValue *, 8> CompilerUsed;
   2753   GlobalVariable *UsedV;
   2754   GlobalVariable *CompilerUsedV;
   2755 
   2756 public:
   2757   LLVMUsed(Module &M) {
   2758     UsedV = collectUsedGlobalVariables(M, Used, false);
   2759     CompilerUsedV = collectUsedGlobalVariables(M, CompilerUsed, true);
   2760   }
   2761   typedef SmallPtrSet<GlobalValue *, 8>::iterator iterator;
   2762   typedef iterator_range<iterator> used_iterator_range;
   2763   iterator usedBegin() { return Used.begin(); }
   2764   iterator usedEnd() { return Used.end(); }
   2765   used_iterator_range used() {
   2766     return used_iterator_range(usedBegin(), usedEnd());
   2767   }
   2768   iterator compilerUsedBegin() { return CompilerUsed.begin(); }
   2769   iterator compilerUsedEnd() { return CompilerUsed.end(); }
   2770   used_iterator_range compilerUsed() {
   2771     return used_iterator_range(compilerUsedBegin(), compilerUsedEnd());
   2772   }
   2773   bool usedCount(GlobalValue *GV) const { return Used.count(GV); }
   2774   bool compilerUsedCount(GlobalValue *GV) const {
   2775     return CompilerUsed.count(GV);
   2776   }
   2777   bool usedErase(GlobalValue *GV) { return Used.erase(GV); }
   2778   bool compilerUsedErase(GlobalValue *GV) { return CompilerUsed.erase(GV); }
   2779   bool usedInsert(GlobalValue *GV) { return Used.insert(GV).second; }
   2780   bool compilerUsedInsert(GlobalValue *GV) {
   2781     return CompilerUsed.insert(GV).second;
   2782   }
   2783 
   2784   void syncVariablesAndSets() {
   2785     if (UsedV)
   2786       setUsedInitializer(*UsedV, Used);
   2787     if (CompilerUsedV)
   2788       setUsedInitializer(*CompilerUsedV, CompilerUsed);
   2789   }
   2790 };
   2791 }
   2792 
   2793 static bool hasUseOtherThanLLVMUsed(GlobalAlias &GA, const LLVMUsed &U) {
   2794   if (GA.use_empty()) // No use at all.
   2795     return false;
   2796 
   2797   assert((!U.usedCount(&GA) || !U.compilerUsedCount(&GA)) &&
   2798          "We should have removed the duplicated "
   2799          "element from llvm.compiler.used");
   2800   if (!GA.hasOneUse())
   2801     // Strictly more than one use. So at least one is not in llvm.used and
   2802     // llvm.compiler.used.
   2803     return true;
   2804 
   2805   // Exactly one use. Check if it is in llvm.used or llvm.compiler.used.
   2806   return !U.usedCount(&GA) && !U.compilerUsedCount(&GA);
   2807 }
   2808 
   2809 static bool hasMoreThanOneUseOtherThanLLVMUsed(GlobalValue &V,
   2810                                                const LLVMUsed &U) {
   2811   unsigned N = 2;
   2812   assert((!U.usedCount(&V) || !U.compilerUsedCount(&V)) &&
   2813          "We should have removed the duplicated "
   2814          "element from llvm.compiler.used");
   2815   if (U.usedCount(&V) || U.compilerUsedCount(&V))
   2816     ++N;
   2817   return V.hasNUsesOrMore(N);
   2818 }
   2819 
   2820 static bool mayHaveOtherReferences(GlobalAlias &GA, const LLVMUsed &U) {
   2821   if (!GA.hasLocalLinkage())
   2822     return true;
   2823 
   2824   return U.usedCount(&GA) || U.compilerUsedCount(&GA);
   2825 }
   2826 
   2827 static bool hasUsesToReplace(GlobalAlias &GA, const LLVMUsed &U,
   2828                              bool &RenameTarget) {
   2829   RenameTarget = false;
   2830   bool Ret = false;
   2831   if (hasUseOtherThanLLVMUsed(GA, U))
   2832     Ret = true;
   2833 
   2834   // If the alias is externally visible, we may still be able to simplify it.
   2835   if (!mayHaveOtherReferences(GA, U))
   2836     return Ret;
   2837 
   2838   // If the aliasee has internal linkage, give it the name and linkage
   2839   // of the alias, and delete the alias.  This turns:
   2840   //   define internal ... @f(...)
   2841   //   @a = alias ... @f
   2842   // into:
   2843   //   define ... @a(...)
   2844   Constant *Aliasee = GA.getAliasee();
   2845   GlobalValue *Target = cast<GlobalValue>(Aliasee->stripPointerCasts());
   2846   if (!Target->hasLocalLinkage())
   2847     return Ret;
   2848 
   2849   // Do not perform the transform if multiple aliases potentially target the
   2850   // aliasee. This check also ensures that it is safe to replace the section
   2851   // and other attributes of the aliasee with those of the alias.
   2852   if (hasMoreThanOneUseOtherThanLLVMUsed(*Target, U))
   2853     return Ret;
   2854 
   2855   RenameTarget = true;
   2856   return true;
   2857 }
   2858 
   2859 bool GlobalOpt::OptimizeGlobalAliases(Module &M) {
   2860   bool Changed = false;
   2861   LLVMUsed Used(M);
   2862 
   2863   for (GlobalValue *GV : Used.used())
   2864     Used.compilerUsedErase(GV);
   2865 
   2866   for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end();
   2867        I != E;) {
   2868     Module::alias_iterator J = I++;
   2869     // Aliases without names cannot be referenced outside this module.
   2870     if (!J->hasName() && !J->isDeclaration() && !J->hasLocalLinkage())
   2871       J->setLinkage(GlobalValue::InternalLinkage);
   2872     // If the aliasee may change at link time, nothing can be done - bail out.
   2873     if (J->mayBeOverridden())
   2874       continue;
   2875 
   2876     Constant *Aliasee = J->getAliasee();
   2877     GlobalValue *Target = dyn_cast<GlobalValue>(Aliasee->stripPointerCasts());
   2878     // We can't trivially replace the alias with the aliasee if the aliasee is
   2879     // non-trivial in some way.
   2880     // TODO: Try to handle non-zero GEPs of local aliasees.
   2881     if (!Target)
   2882       continue;
   2883     Target->removeDeadConstantUsers();
   2884 
   2885     // Make all users of the alias use the aliasee instead.
   2886     bool RenameTarget;
   2887     if (!hasUsesToReplace(*J, Used, RenameTarget))
   2888       continue;
   2889 
   2890     J->replaceAllUsesWith(ConstantExpr::getBitCast(Aliasee, J->getType()));
   2891     ++NumAliasesResolved;
   2892     Changed = true;
   2893 
   2894     if (RenameTarget) {
   2895       // Give the aliasee the name, linkage and other attributes of the alias.
   2896       Target->takeName(J);
   2897       Target->setLinkage(J->getLinkage());
   2898       Target->setVisibility(J->getVisibility());
   2899       Target->setDLLStorageClass(J->getDLLStorageClass());
   2900 
   2901       if (Used.usedErase(J))
   2902         Used.usedInsert(Target);
   2903 
   2904       if (Used.compilerUsedErase(J))
   2905         Used.compilerUsedInsert(Target);
   2906     } else if (mayHaveOtherReferences(*J, Used))
   2907       continue;
   2908 
   2909     // Delete the alias.
   2910     M.getAliasList().erase(J);
   2911     ++NumAliasesRemoved;
   2912     Changed = true;
   2913   }
   2914 
   2915   Used.syncVariablesAndSets();
   2916 
   2917   return Changed;
   2918 }
   2919 
   2920 static Function *FindCXAAtExit(Module &M, TargetLibraryInfo *TLI) {
   2921   if (!TLI->has(LibFunc::cxa_atexit))
   2922     return nullptr;
   2923 
   2924   Function *Fn = M.getFunction(TLI->getName(LibFunc::cxa_atexit));
   2925 
   2926   if (!Fn)
   2927     return nullptr;
   2928 
   2929   FunctionType *FTy = Fn->getFunctionType();
   2930 
   2931   // Checking that the function has the right return type, the right number of
   2932   // parameters and that they all have pointer types should be enough.
   2933   if (!FTy->getReturnType()->isIntegerTy() ||
   2934       FTy->getNumParams() != 3 ||
   2935       !FTy->getParamType(0)->isPointerTy() ||
   2936       !FTy->getParamType(1)->isPointerTy() ||
   2937       !FTy->getParamType(2)->isPointerTy())
   2938     return nullptr;
   2939 
   2940   return Fn;
   2941 }
   2942 
   2943 /// cxxDtorIsEmpty - Returns whether the given function is an empty C++
   2944 /// destructor and can therefore be eliminated.
   2945 /// Note that we assume that other optimization passes have already simplified
   2946 /// the code so we only look for a function with a single basic block, where
   2947 /// the only allowed instructions are 'ret', 'call' to an empty C++ dtor and
   2948 /// other side-effect free instructions.
   2949 static bool cxxDtorIsEmpty(const Function &Fn,
   2950                            SmallPtrSet<const Function *, 8> &CalledFunctions) {
   2951   // FIXME: We could eliminate C++ destructors if they're readonly/readnone and
   2952   // nounwind, but that doesn't seem worth doing.
   2953   if (Fn.isDeclaration())
   2954     return false;
   2955 
   2956   if (++Fn.begin() != Fn.end())
   2957     return false;
   2958 
   2959   const BasicBlock &EntryBlock = Fn.getEntryBlock();
   2960   for (BasicBlock::const_iterator I = EntryBlock.begin(), E = EntryBlock.end();
   2961        I != E; ++I) {
   2962     if (const CallInst *CI = dyn_cast<CallInst>(I)) {
   2963       // Ignore debug intrinsics.
   2964       if (isa<DbgInfoIntrinsic>(CI))
   2965         continue;
   2966 
   2967       const Function *CalledFn = CI->getCalledFunction();
   2968 
   2969       if (!CalledFn)
   2970         return false;
   2971 
   2972       SmallPtrSet<const Function *, 8> NewCalledFunctions(CalledFunctions);
   2973 
   2974       // Don't treat recursive functions as empty.
   2975       if (!NewCalledFunctions.insert(CalledFn).second)
   2976         return false;
   2977 
   2978       if (!cxxDtorIsEmpty(*CalledFn, NewCalledFunctions))
   2979         return false;
   2980     } else if (isa<ReturnInst>(*I))
   2981       return true; // We're done.
   2982     else if (I->mayHaveSideEffects())
   2983       return false; // Destructor with side effects, bail.
   2984   }
   2985 
   2986   return false;
   2987 }
   2988 
   2989 bool GlobalOpt::OptimizeEmptyGlobalCXXDtors(Function *CXAAtExitFn) {
   2990   /// Itanium C++ ABI p3.3.5:
   2991   ///
   2992   ///   After constructing a global (or local static) object, that will require
   2993   ///   destruction on exit, a termination function is registered as follows:
   2994   ///
   2995   ///   extern "C" int __cxa_atexit ( void (*f)(void *), void *p, void *d );
   2996   ///
   2997   ///   This registration, e.g. __cxa_atexit(f,p,d), is intended to cause the
   2998   ///   call f(p) when DSO d is unloaded, before all such termination calls
   2999   ///   registered before this one. It returns zero if registration is
   3000   ///   successful, nonzero on failure.
   3001 
   3002   // This pass will look for calls to __cxa_atexit where the function is trivial
   3003   // and remove them.
   3004   bool Changed = false;
   3005 
   3006   for (auto I = CXAAtExitFn->user_begin(), E = CXAAtExitFn->user_end();
   3007        I != E;) {
   3008     // We're only interested in calls. Theoretically, we could handle invoke
   3009     // instructions as well, but neither llvm-gcc nor clang generate invokes
   3010     // to __cxa_atexit.
   3011     CallInst *CI = dyn_cast<CallInst>(*I++);
   3012     if (!CI)
   3013       continue;
   3014 
   3015     Function *DtorFn =
   3016       dyn_cast<Function>(CI->getArgOperand(0)->stripPointerCasts());
   3017     if (!DtorFn)
   3018       continue;
   3019 
   3020     SmallPtrSet<const Function *, 8> CalledFunctions;
   3021     if (!cxxDtorIsEmpty(*DtorFn, CalledFunctions))
   3022       continue;
   3023 
   3024     // Just remove the call.
   3025     CI->replaceAllUsesWith(Constant::getNullValue(CI->getType()));
   3026     CI->eraseFromParent();
   3027 
   3028     ++NumCXXDtorsRemoved;
   3029 
   3030     Changed |= true;
   3031   }
   3032 
   3033   return Changed;
   3034 }
   3035 
   3036 bool GlobalOpt::runOnModule(Module &M) {
   3037   bool Changed = false;
   3038 
   3039   auto &DL = M.getDataLayout();
   3040   TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
   3041 
   3042   bool LocalChange = true;
   3043   while (LocalChange) {
   3044     LocalChange = false;
   3045 
   3046     NotDiscardableComdats.clear();
   3047     for (const GlobalVariable &GV : M.globals())
   3048       if (const Comdat *C = GV.getComdat())
   3049         if (!GV.isDiscardableIfUnused() || !GV.use_empty())
   3050           NotDiscardableComdats.insert(C);
   3051     for (Function &F : M)
   3052       if (const Comdat *C = F.getComdat())
   3053         if (!F.isDefTriviallyDead())
   3054           NotDiscardableComdats.insert(C);
   3055     for (GlobalAlias &GA : M.aliases())
   3056       if (const Comdat *C = GA.getComdat())
   3057         if (!GA.isDiscardableIfUnused() || !GA.use_empty())
   3058           NotDiscardableComdats.insert(C);
   3059 
   3060     // Delete functions that are trivially dead, ccc -> fastcc
   3061     LocalChange |= OptimizeFunctions(M);
   3062 
   3063     // Optimize global_ctors list.
   3064     LocalChange |= optimizeGlobalCtorsList(M, [&](Function *F) {
   3065       return EvaluateStaticConstructor(F, DL, TLI);
   3066     });
   3067 
   3068     // Optimize non-address-taken globals.
   3069     LocalChange |= OptimizeGlobalVars(M);
   3070 
   3071     // Resolve aliases, when possible.
   3072     LocalChange |= OptimizeGlobalAliases(M);
   3073 
   3074     // Try to remove trivial global destructors if they are not removed
   3075     // already.
   3076     Function *CXAAtExitFn = FindCXAAtExit(M, TLI);
   3077     if (CXAAtExitFn)
   3078       LocalChange |= OptimizeEmptyGlobalCXXDtors(CXAAtExitFn);
   3079 
   3080     Changed |= LocalChange;
   3081   }
   3082 
   3083   // TODO: Move all global ctors functions to the end of the module for code
   3084   // layout.
   3085 
   3086   return Changed;
   3087 }
   3088