Home | History | Annotate | Download | only in InstCombine
      1 //===- InstCombineCompares.cpp --------------------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file implements the visitICmp and visitFCmp functions.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "InstCombineInternal.h"
     15 #include "llvm/ADT/APSInt.h"
     16 #include "llvm/ADT/Statistic.h"
     17 #include "llvm/Analysis/ConstantFolding.h"
     18 #include "llvm/Analysis/InstructionSimplify.h"
     19 #include "llvm/Analysis/MemoryBuiltins.h"
     20 #include "llvm/IR/ConstantRange.h"
     21 #include "llvm/IR/DataLayout.h"
     22 #include "llvm/IR/GetElementPtrTypeIterator.h"
     23 #include "llvm/IR/IntrinsicInst.h"
     24 #include "llvm/IR/PatternMatch.h"
     25 #include "llvm/Support/CommandLine.h"
     26 #include "llvm/Support/Debug.h"
     27 #include "llvm/Analysis/TargetLibraryInfo.h"
     28 
     29 using namespace llvm;
     30 using namespace PatternMatch;
     31 
     32 #define DEBUG_TYPE "instcombine"
     33 
     34 // How many times is a select replaced by one of its operands?
     35 STATISTIC(NumSel, "Number of select opts");
     36 
     37 // Initialization Routines
     38 
     39 static ConstantInt *getOne(Constant *C) {
     40   return ConstantInt::get(cast<IntegerType>(C->getType()), 1);
     41 }
     42 
     43 static ConstantInt *ExtractElement(Constant *V, Constant *Idx) {
     44   return cast<ConstantInt>(ConstantExpr::getExtractElement(V, Idx));
     45 }
     46 
     47 static bool HasAddOverflow(ConstantInt *Result,
     48                            ConstantInt *In1, ConstantInt *In2,
     49                            bool IsSigned) {
     50   if (!IsSigned)
     51     return Result->getValue().ult(In1->getValue());
     52 
     53   if (In2->isNegative())
     54     return Result->getValue().sgt(In1->getValue());
     55   return Result->getValue().slt(In1->getValue());
     56 }
     57 
     58 /// AddWithOverflow - Compute Result = In1+In2, returning true if the result
     59 /// overflowed for this type.
     60 static bool AddWithOverflow(Constant *&Result, Constant *In1,
     61                             Constant *In2, bool IsSigned = false) {
     62   Result = ConstantExpr::getAdd(In1, In2);
     63 
     64   if (VectorType *VTy = dyn_cast<VectorType>(In1->getType())) {
     65     for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
     66       Constant *Idx = ConstantInt::get(Type::getInt32Ty(In1->getContext()), i);
     67       if (HasAddOverflow(ExtractElement(Result, Idx),
     68                          ExtractElement(In1, Idx),
     69                          ExtractElement(In2, Idx),
     70                          IsSigned))
     71         return true;
     72     }
     73     return false;
     74   }
     75 
     76   return HasAddOverflow(cast<ConstantInt>(Result),
     77                         cast<ConstantInt>(In1), cast<ConstantInt>(In2),
     78                         IsSigned);
     79 }
     80 
     81 static bool HasSubOverflow(ConstantInt *Result,
     82                            ConstantInt *In1, ConstantInt *In2,
     83                            bool IsSigned) {
     84   if (!IsSigned)
     85     return Result->getValue().ugt(In1->getValue());
     86 
     87   if (In2->isNegative())
     88     return Result->getValue().slt(In1->getValue());
     89 
     90   return Result->getValue().sgt(In1->getValue());
     91 }
     92 
     93 /// SubWithOverflow - Compute Result = In1-In2, returning true if the result
     94 /// overflowed for this type.
     95 static bool SubWithOverflow(Constant *&Result, Constant *In1,
     96                             Constant *In2, bool IsSigned = false) {
     97   Result = ConstantExpr::getSub(In1, In2);
     98 
     99   if (VectorType *VTy = dyn_cast<VectorType>(In1->getType())) {
    100     for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
    101       Constant *Idx = ConstantInt::get(Type::getInt32Ty(In1->getContext()), i);
    102       if (HasSubOverflow(ExtractElement(Result, Idx),
    103                          ExtractElement(In1, Idx),
    104                          ExtractElement(In2, Idx),
    105                          IsSigned))
    106         return true;
    107     }
    108     return false;
    109   }
    110 
    111   return HasSubOverflow(cast<ConstantInt>(Result),
    112                         cast<ConstantInt>(In1), cast<ConstantInt>(In2),
    113                         IsSigned);
    114 }
    115 
    116 /// isSignBitCheck - Given an exploded icmp instruction, return true if the
    117 /// comparison only checks the sign bit.  If it only checks the sign bit, set
    118 /// TrueIfSigned if the result of the comparison is true when the input value is
    119 /// signed.
    120 static bool isSignBitCheck(ICmpInst::Predicate pred, ConstantInt *RHS,
    121                            bool &TrueIfSigned) {
    122   switch (pred) {
    123   case ICmpInst::ICMP_SLT:   // True if LHS s< 0
    124     TrueIfSigned = true;
    125     return RHS->isZero();
    126   case ICmpInst::ICMP_SLE:   // True if LHS s<= RHS and RHS == -1
    127     TrueIfSigned = true;
    128     return RHS->isAllOnesValue();
    129   case ICmpInst::ICMP_SGT:   // True if LHS s> -1
    130     TrueIfSigned = false;
    131     return RHS->isAllOnesValue();
    132   case ICmpInst::ICMP_UGT:
    133     // True if LHS u> RHS and RHS == high-bit-mask - 1
    134     TrueIfSigned = true;
    135     return RHS->isMaxValue(true);
    136   case ICmpInst::ICMP_UGE:
    137     // True if LHS u>= RHS and RHS == high-bit-mask (2^7, 2^15, 2^31, etc)
    138     TrueIfSigned = true;
    139     return RHS->getValue().isSignBit();
    140   default:
    141     return false;
    142   }
    143 }
    144 
    145 /// Returns true if the exploded icmp can be expressed as a signed comparison
    146 /// to zero and updates the predicate accordingly.
    147 /// The signedness of the comparison is preserved.
    148 static bool isSignTest(ICmpInst::Predicate &pred, const ConstantInt *RHS) {
    149   if (!ICmpInst::isSigned(pred))
    150     return false;
    151 
    152   if (RHS->isZero())
    153     return ICmpInst::isRelational(pred);
    154 
    155   if (RHS->isOne()) {
    156     if (pred == ICmpInst::ICMP_SLT) {
    157       pred = ICmpInst::ICMP_SLE;
    158       return true;
    159     }
    160   } else if (RHS->isAllOnesValue()) {
    161     if (pred == ICmpInst::ICMP_SGT) {
    162       pred = ICmpInst::ICMP_SGE;
    163       return true;
    164     }
    165   }
    166 
    167   return false;
    168 }
    169 
    170 // isHighOnes - Return true if the constant is of the form 1+0+.
    171 // This is the same as lowones(~X).
    172 static bool isHighOnes(const ConstantInt *CI) {
    173   return (~CI->getValue() + 1).isPowerOf2();
    174 }
    175 
    176 /// ComputeSignedMinMaxValuesFromKnownBits - Given a signed integer type and a
    177 /// set of known zero and one bits, compute the maximum and minimum values that
    178 /// could have the specified known zero and known one bits, returning them in
    179 /// min/max.
    180 static void ComputeSignedMinMaxValuesFromKnownBits(const APInt& KnownZero,
    181                                                    const APInt& KnownOne,
    182                                                    APInt& Min, APInt& Max) {
    183   assert(KnownZero.getBitWidth() == KnownOne.getBitWidth() &&
    184          KnownZero.getBitWidth() == Min.getBitWidth() &&
    185          KnownZero.getBitWidth() == Max.getBitWidth() &&
    186          "KnownZero, KnownOne and Min, Max must have equal bitwidth.");
    187   APInt UnknownBits = ~(KnownZero|KnownOne);
    188 
    189   // The minimum value is when all unknown bits are zeros, EXCEPT for the sign
    190   // bit if it is unknown.
    191   Min = KnownOne;
    192   Max = KnownOne|UnknownBits;
    193 
    194   if (UnknownBits.isNegative()) { // Sign bit is unknown
    195     Min.setBit(Min.getBitWidth()-1);
    196     Max.clearBit(Max.getBitWidth()-1);
    197   }
    198 }
    199 
    200 // ComputeUnsignedMinMaxValuesFromKnownBits - Given an unsigned integer type and
    201 // a set of known zero and one bits, compute the maximum and minimum values that
    202 // could have the specified known zero and known one bits, returning them in
    203 // min/max.
    204 static void ComputeUnsignedMinMaxValuesFromKnownBits(const APInt &KnownZero,
    205                                                      const APInt &KnownOne,
    206                                                      APInt &Min, APInt &Max) {
    207   assert(KnownZero.getBitWidth() == KnownOne.getBitWidth() &&
    208          KnownZero.getBitWidth() == Min.getBitWidth() &&
    209          KnownZero.getBitWidth() == Max.getBitWidth() &&
    210          "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth.");
    211   APInt UnknownBits = ~(KnownZero|KnownOne);
    212 
    213   // The minimum value is when the unknown bits are all zeros.
    214   Min = KnownOne;
    215   // The maximum value is when the unknown bits are all ones.
    216   Max = KnownOne|UnknownBits;
    217 }
    218 
    219 
    220 
    221 /// FoldCmpLoadFromIndexedGlobal - Called we see this pattern:
    222 ///   cmp pred (load (gep GV, ...)), cmpcst
    223 /// where GV is a global variable with a constant initializer.  Try to simplify
    224 /// this into some simple computation that does not need the load.  For example
    225 /// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3".
    226 ///
    227 /// If AndCst is non-null, then the loaded value is masked with that constant
    228 /// before doing the comparison.  This handles cases like "A[i]&4 == 0".
    229 Instruction *InstCombiner::
    230 FoldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, GlobalVariable *GV,
    231                              CmpInst &ICI, ConstantInt *AndCst) {
    232   Constant *Init = GV->getInitializer();
    233   if (!isa<ConstantArray>(Init) && !isa<ConstantDataArray>(Init))
    234     return nullptr;
    235 
    236   uint64_t ArrayElementCount = Init->getType()->getArrayNumElements();
    237   if (ArrayElementCount > 1024) return nullptr; // Don't blow up on huge arrays.
    238 
    239   // There are many forms of this optimization we can handle, for now, just do
    240   // the simple index into a single-dimensional array.
    241   //
    242   // Require: GEP GV, 0, i {{, constant indices}}
    243   if (GEP->getNumOperands() < 3 ||
    244       !isa<ConstantInt>(GEP->getOperand(1)) ||
    245       !cast<ConstantInt>(GEP->getOperand(1))->isZero() ||
    246       isa<Constant>(GEP->getOperand(2)))
    247     return nullptr;
    248 
    249   // Check that indices after the variable are constants and in-range for the
    250   // type they index.  Collect the indices.  This is typically for arrays of
    251   // structs.
    252   SmallVector<unsigned, 4> LaterIndices;
    253 
    254   Type *EltTy = Init->getType()->getArrayElementType();
    255   for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) {
    256     ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i));
    257     if (!Idx) return nullptr;  // Variable index.
    258 
    259     uint64_t IdxVal = Idx->getZExtValue();
    260     if ((unsigned)IdxVal != IdxVal) return nullptr; // Too large array index.
    261 
    262     if (StructType *STy = dyn_cast<StructType>(EltTy))
    263       EltTy = STy->getElementType(IdxVal);
    264     else if (ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) {
    265       if (IdxVal >= ATy->getNumElements()) return nullptr;
    266       EltTy = ATy->getElementType();
    267     } else {
    268       return nullptr; // Unknown type.
    269     }
    270 
    271     LaterIndices.push_back(IdxVal);
    272   }
    273 
    274   enum { Overdefined = -3, Undefined = -2 };
    275 
    276   // Variables for our state machines.
    277 
    278   // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form
    279   // "i == 47 | i == 87", where 47 is the first index the condition is true for,
    280   // and 87 is the second (and last) index.  FirstTrueElement is -2 when
    281   // undefined, otherwise set to the first true element.  SecondTrueElement is
    282   // -2 when undefined, -3 when overdefined and >= 0 when that index is true.
    283   int FirstTrueElement = Undefined, SecondTrueElement = Undefined;
    284 
    285   // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the
    286   // form "i != 47 & i != 87".  Same state transitions as for true elements.
    287   int FirstFalseElement = Undefined, SecondFalseElement = Undefined;
    288 
    289   /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these
    290   /// define a state machine that triggers for ranges of values that the index
    291   /// is true or false for.  This triggers on things like "abbbbc"[i] == 'b'.
    292   /// This is -2 when undefined, -3 when overdefined, and otherwise the last
    293   /// index in the range (inclusive).  We use -2 for undefined here because we
    294   /// use relative comparisons and don't want 0-1 to match -1.
    295   int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined;
    296 
    297   // MagicBitvector - This is a magic bitvector where we set a bit if the
    298   // comparison is true for element 'i'.  If there are 64 elements or less in
    299   // the array, this will fully represent all the comparison results.
    300   uint64_t MagicBitvector = 0;
    301 
    302   // Scan the array and see if one of our patterns matches.
    303   Constant *CompareRHS = cast<Constant>(ICI.getOperand(1));
    304   for (unsigned i = 0, e = ArrayElementCount; i != e; ++i) {
    305     Constant *Elt = Init->getAggregateElement(i);
    306     if (!Elt) return nullptr;
    307 
    308     // If this is indexing an array of structures, get the structure element.
    309     if (!LaterIndices.empty())
    310       Elt = ConstantExpr::getExtractValue(Elt, LaterIndices);
    311 
    312     // If the element is masked, handle it.
    313     if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst);
    314 
    315     // Find out if the comparison would be true or false for the i'th element.
    316     Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt,
    317                                                   CompareRHS, DL, TLI);
    318     // If the result is undef for this element, ignore it.
    319     if (isa<UndefValue>(C)) {
    320       // Extend range state machines to cover this element in case there is an
    321       // undef in the middle of the range.
    322       if (TrueRangeEnd == (int)i-1)
    323         TrueRangeEnd = i;
    324       if (FalseRangeEnd == (int)i-1)
    325         FalseRangeEnd = i;
    326       continue;
    327     }
    328 
    329     // If we can't compute the result for any of the elements, we have to give
    330     // up evaluating the entire conditional.
    331     if (!isa<ConstantInt>(C)) return nullptr;
    332 
    333     // Otherwise, we know if the comparison is true or false for this element,
    334     // update our state machines.
    335     bool IsTrueForElt = !cast<ConstantInt>(C)->isZero();
    336 
    337     // State machine for single/double/range index comparison.
    338     if (IsTrueForElt) {
    339       // Update the TrueElement state machine.
    340       if (FirstTrueElement == Undefined)
    341         FirstTrueElement = TrueRangeEnd = i;  // First true element.
    342       else {
    343         // Update double-compare state machine.
    344         if (SecondTrueElement == Undefined)
    345           SecondTrueElement = i;
    346         else
    347           SecondTrueElement = Overdefined;
    348 
    349         // Update range state machine.
    350         if (TrueRangeEnd == (int)i-1)
    351           TrueRangeEnd = i;
    352         else
    353           TrueRangeEnd = Overdefined;
    354       }
    355     } else {
    356       // Update the FalseElement state machine.
    357       if (FirstFalseElement == Undefined)
    358         FirstFalseElement = FalseRangeEnd = i; // First false element.
    359       else {
    360         // Update double-compare state machine.
    361         if (SecondFalseElement == Undefined)
    362           SecondFalseElement = i;
    363         else
    364           SecondFalseElement = Overdefined;
    365 
    366         // Update range state machine.
    367         if (FalseRangeEnd == (int)i-1)
    368           FalseRangeEnd = i;
    369         else
    370           FalseRangeEnd = Overdefined;
    371       }
    372     }
    373 
    374 
    375     // If this element is in range, update our magic bitvector.
    376     if (i < 64 && IsTrueForElt)
    377       MagicBitvector |= 1ULL << i;
    378 
    379     // If all of our states become overdefined, bail out early.  Since the
    380     // predicate is expensive, only check it every 8 elements.  This is only
    381     // really useful for really huge arrays.
    382     if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined &&
    383         SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined &&
    384         FalseRangeEnd == Overdefined)
    385       return nullptr;
    386   }
    387 
    388   // Now that we've scanned the entire array, emit our new comparison(s).  We
    389   // order the state machines in complexity of the generated code.
    390   Value *Idx = GEP->getOperand(2);
    391 
    392   // If the index is larger than the pointer size of the target, truncate the
    393   // index down like the GEP would do implicitly.  We don't have to do this for
    394   // an inbounds GEP because the index can't be out of range.
    395   if (!GEP->isInBounds()) {
    396     Type *IntPtrTy = DL.getIntPtrType(GEP->getType());
    397     unsigned PtrSize = IntPtrTy->getIntegerBitWidth();
    398     if (Idx->getType()->getPrimitiveSizeInBits() > PtrSize)
    399       Idx = Builder->CreateTrunc(Idx, IntPtrTy);
    400   }
    401 
    402   // If the comparison is only true for one or two elements, emit direct
    403   // comparisons.
    404   if (SecondTrueElement != Overdefined) {
    405     // None true -> false.
    406     if (FirstTrueElement == Undefined)
    407       return ReplaceInstUsesWith(ICI, Builder->getFalse());
    408 
    409     Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement);
    410 
    411     // True for one element -> 'i == 47'.
    412     if (SecondTrueElement == Undefined)
    413       return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx);
    414 
    415     // True for two elements -> 'i == 47 | i == 72'.
    416     Value *C1 = Builder->CreateICmpEQ(Idx, FirstTrueIdx);
    417     Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement);
    418     Value *C2 = Builder->CreateICmpEQ(Idx, SecondTrueIdx);
    419     return BinaryOperator::CreateOr(C1, C2);
    420   }
    421 
    422   // If the comparison is only false for one or two elements, emit direct
    423   // comparisons.
    424   if (SecondFalseElement != Overdefined) {
    425     // None false -> true.
    426     if (FirstFalseElement == Undefined)
    427       return ReplaceInstUsesWith(ICI, Builder->getTrue());
    428 
    429     Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement);
    430 
    431     // False for one element -> 'i != 47'.
    432     if (SecondFalseElement == Undefined)
    433       return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx);
    434 
    435     // False for two elements -> 'i != 47 & i != 72'.
    436     Value *C1 = Builder->CreateICmpNE(Idx, FirstFalseIdx);
    437     Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement);
    438     Value *C2 = Builder->CreateICmpNE(Idx, SecondFalseIdx);
    439     return BinaryOperator::CreateAnd(C1, C2);
    440   }
    441 
    442   // If the comparison can be replaced with a range comparison for the elements
    443   // where it is true, emit the range check.
    444   if (TrueRangeEnd != Overdefined) {
    445     assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare");
    446 
    447     // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1).
    448     if (FirstTrueElement) {
    449       Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement);
    450       Idx = Builder->CreateAdd(Idx, Offs);
    451     }
    452 
    453     Value *End = ConstantInt::get(Idx->getType(),
    454                                   TrueRangeEnd-FirstTrueElement+1);
    455     return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End);
    456   }
    457 
    458   // False range check.
    459   if (FalseRangeEnd != Overdefined) {
    460     assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare");
    461     // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse).
    462     if (FirstFalseElement) {
    463       Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement);
    464       Idx = Builder->CreateAdd(Idx, Offs);
    465     }
    466 
    467     Value *End = ConstantInt::get(Idx->getType(),
    468                                   FalseRangeEnd-FirstFalseElement);
    469     return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End);
    470   }
    471 
    472 
    473   // If a magic bitvector captures the entire comparison state
    474   // of this load, replace it with computation that does:
    475   //   ((magic_cst >> i) & 1) != 0
    476   {
    477     Type *Ty = nullptr;
    478 
    479     // Look for an appropriate type:
    480     // - The type of Idx if the magic fits
    481     // - The smallest fitting legal type if we have a DataLayout
    482     // - Default to i32
    483     if (ArrayElementCount <= Idx->getType()->getIntegerBitWidth())
    484       Ty = Idx->getType();
    485     else
    486       Ty = DL.getSmallestLegalIntType(Init->getContext(), ArrayElementCount);
    487 
    488     if (Ty) {
    489       Value *V = Builder->CreateIntCast(Idx, Ty, false);
    490       V = Builder->CreateLShr(ConstantInt::get(Ty, MagicBitvector), V);
    491       V = Builder->CreateAnd(ConstantInt::get(Ty, 1), V);
    492       return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0));
    493     }
    494   }
    495 
    496   return nullptr;
    497 }
    498 
    499 
    500 /// EvaluateGEPOffsetExpression - Return a value that can be used to compare
    501 /// the *offset* implied by a GEP to zero.  For example, if we have &A[i], we
    502 /// want to return 'i' for "icmp ne i, 0".  Note that, in general, indices can
    503 /// be complex, and scales are involved.  The above expression would also be
    504 /// legal to codegen as "icmp ne (i*4), 0" (assuming A is a pointer to i32).
    505 /// This later form is less amenable to optimization though, and we are allowed
    506 /// to generate the first by knowing that pointer arithmetic doesn't overflow.
    507 ///
    508 /// If we can't emit an optimized form for this expression, this returns null.
    509 ///
    510 static Value *EvaluateGEPOffsetExpression(User *GEP, InstCombiner &IC,
    511                                           const DataLayout &DL) {
    512   gep_type_iterator GTI = gep_type_begin(GEP);
    513 
    514   // Check to see if this gep only has a single variable index.  If so, and if
    515   // any constant indices are a multiple of its scale, then we can compute this
    516   // in terms of the scale of the variable index.  For example, if the GEP
    517   // implies an offset of "12 + i*4", then we can codegen this as "3 + i",
    518   // because the expression will cross zero at the same point.
    519   unsigned i, e = GEP->getNumOperands();
    520   int64_t Offset = 0;
    521   for (i = 1; i != e; ++i, ++GTI) {
    522     if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
    523       // Compute the aggregate offset of constant indices.
    524       if (CI->isZero()) continue;
    525 
    526       // Handle a struct index, which adds its field offset to the pointer.
    527       if (StructType *STy = dyn_cast<StructType>(*GTI)) {
    528         Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
    529       } else {
    530         uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
    531         Offset += Size*CI->getSExtValue();
    532       }
    533     } else {
    534       // Found our variable index.
    535       break;
    536     }
    537   }
    538 
    539   // If there are no variable indices, we must have a constant offset, just
    540   // evaluate it the general way.
    541   if (i == e) return nullptr;
    542 
    543   Value *VariableIdx = GEP->getOperand(i);
    544   // Determine the scale factor of the variable element.  For example, this is
    545   // 4 if the variable index is into an array of i32.
    546   uint64_t VariableScale = DL.getTypeAllocSize(GTI.getIndexedType());
    547 
    548   // Verify that there are no other variable indices.  If so, emit the hard way.
    549   for (++i, ++GTI; i != e; ++i, ++GTI) {
    550     ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i));
    551     if (!CI) return nullptr;
    552 
    553     // Compute the aggregate offset of constant indices.
    554     if (CI->isZero()) continue;
    555 
    556     // Handle a struct index, which adds its field offset to the pointer.
    557     if (StructType *STy = dyn_cast<StructType>(*GTI)) {
    558       Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
    559     } else {
    560       uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
    561       Offset += Size*CI->getSExtValue();
    562     }
    563   }
    564 
    565 
    566 
    567   // Okay, we know we have a single variable index, which must be a
    568   // pointer/array/vector index.  If there is no offset, life is simple, return
    569   // the index.
    570   Type *IntPtrTy = DL.getIntPtrType(GEP->getOperand(0)->getType());
    571   unsigned IntPtrWidth = IntPtrTy->getIntegerBitWidth();
    572   if (Offset == 0) {
    573     // Cast to intptrty in case a truncation occurs.  If an extension is needed,
    574     // we don't need to bother extending: the extension won't affect where the
    575     // computation crosses zero.
    576     if (VariableIdx->getType()->getPrimitiveSizeInBits() > IntPtrWidth) {
    577       VariableIdx = IC.Builder->CreateTrunc(VariableIdx, IntPtrTy);
    578     }
    579     return VariableIdx;
    580   }
    581 
    582   // Otherwise, there is an index.  The computation we will do will be modulo
    583   // the pointer size, so get it.
    584   uint64_t PtrSizeMask = ~0ULL >> (64-IntPtrWidth);
    585 
    586   Offset &= PtrSizeMask;
    587   VariableScale &= PtrSizeMask;
    588 
    589   // To do this transformation, any constant index must be a multiple of the
    590   // variable scale factor.  For example, we can evaluate "12 + 4*i" as "3 + i",
    591   // but we can't evaluate "10 + 3*i" in terms of i.  Check that the offset is a
    592   // multiple of the variable scale.
    593   int64_t NewOffs = Offset / (int64_t)VariableScale;
    594   if (Offset != NewOffs*(int64_t)VariableScale)
    595     return nullptr;
    596 
    597   // Okay, we can do this evaluation.  Start by converting the index to intptr.
    598   if (VariableIdx->getType() != IntPtrTy)
    599     VariableIdx = IC.Builder->CreateIntCast(VariableIdx, IntPtrTy,
    600                                             true /*Signed*/);
    601   Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs);
    602   return IC.Builder->CreateAdd(VariableIdx, OffsetVal, "offset");
    603 }
    604 
    605 /// FoldGEPICmp - Fold comparisons between a GEP instruction and something
    606 /// else.  At this point we know that the GEP is on the LHS of the comparison.
    607 Instruction *InstCombiner::FoldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
    608                                        ICmpInst::Predicate Cond,
    609                                        Instruction &I) {
    610   // Don't transform signed compares of GEPs into index compares. Even if the
    611   // GEP is inbounds, the final add of the base pointer can have signed overflow
    612   // and would change the result of the icmp.
    613   // e.g. "&foo[0] <s &foo[1]" can't be folded to "true" because "foo" could be
    614   // the maximum signed value for the pointer type.
    615   if (ICmpInst::isSigned(Cond))
    616     return nullptr;
    617 
    618   // Look through bitcasts and addrspacecasts. We do not however want to remove
    619   // 0 GEPs.
    620   if (!isa<GetElementPtrInst>(RHS))
    621     RHS = RHS->stripPointerCasts();
    622 
    623   Value *PtrBase = GEPLHS->getOperand(0);
    624   if (PtrBase == RHS && GEPLHS->isInBounds()) {
    625     // ((gep Ptr, OFFSET) cmp Ptr)   ---> (OFFSET cmp 0).
    626     // This transformation (ignoring the base and scales) is valid because we
    627     // know pointers can't overflow since the gep is inbounds.  See if we can
    628     // output an optimized form.
    629     Value *Offset = EvaluateGEPOffsetExpression(GEPLHS, *this, DL);
    630 
    631     // If not, synthesize the offset the hard way.
    632     if (!Offset)
    633       Offset = EmitGEPOffset(GEPLHS);
    634     return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset,
    635                         Constant::getNullValue(Offset->getType()));
    636   } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) {
    637     // If the base pointers are different, but the indices are the same, just
    638     // compare the base pointer.
    639     if (PtrBase != GEPRHS->getOperand(0)) {
    640       bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands();
    641       IndicesTheSame &= GEPLHS->getOperand(0)->getType() ==
    642                         GEPRHS->getOperand(0)->getType();
    643       if (IndicesTheSame)
    644         for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
    645           if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
    646             IndicesTheSame = false;
    647             break;
    648           }
    649 
    650       // If all indices are the same, just compare the base pointers.
    651       if (IndicesTheSame)
    652         return new ICmpInst(Cond, GEPLHS->getOperand(0), GEPRHS->getOperand(0));
    653 
    654       // If we're comparing GEPs with two base pointers that only differ in type
    655       // and both GEPs have only constant indices or just one use, then fold
    656       // the compare with the adjusted indices.
    657       if (GEPLHS->isInBounds() && GEPRHS->isInBounds() &&
    658           (GEPLHS->hasAllConstantIndices() || GEPLHS->hasOneUse()) &&
    659           (GEPRHS->hasAllConstantIndices() || GEPRHS->hasOneUse()) &&
    660           PtrBase->stripPointerCasts() ==
    661               GEPRHS->getOperand(0)->stripPointerCasts()) {
    662         Value *LOffset = EmitGEPOffset(GEPLHS);
    663         Value *ROffset = EmitGEPOffset(GEPRHS);
    664 
    665         // If we looked through an addrspacecast between different sized address
    666         // spaces, the LHS and RHS pointers are different sized
    667         // integers. Truncate to the smaller one.
    668         Type *LHSIndexTy = LOffset->getType();
    669         Type *RHSIndexTy = ROffset->getType();
    670         if (LHSIndexTy != RHSIndexTy) {
    671           if (LHSIndexTy->getPrimitiveSizeInBits() <
    672               RHSIndexTy->getPrimitiveSizeInBits()) {
    673             ROffset = Builder->CreateTrunc(ROffset, LHSIndexTy);
    674           } else
    675             LOffset = Builder->CreateTrunc(LOffset, RHSIndexTy);
    676         }
    677 
    678         Value *Cmp = Builder->CreateICmp(ICmpInst::getSignedPredicate(Cond),
    679                                          LOffset, ROffset);
    680         return ReplaceInstUsesWith(I, Cmp);
    681       }
    682 
    683       // Otherwise, the base pointers are different and the indices are
    684       // different, bail out.
    685       return nullptr;
    686     }
    687 
    688     // If one of the GEPs has all zero indices, recurse.
    689     if (GEPLHS->hasAllZeroIndices())
    690       return FoldGEPICmp(GEPRHS, GEPLHS->getOperand(0),
    691                          ICmpInst::getSwappedPredicate(Cond), I);
    692 
    693     // If the other GEP has all zero indices, recurse.
    694     if (GEPRHS->hasAllZeroIndices())
    695       return FoldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I);
    696 
    697     bool GEPsInBounds = GEPLHS->isInBounds() && GEPRHS->isInBounds();
    698     if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) {
    699       // If the GEPs only differ by one index, compare it.
    700       unsigned NumDifferences = 0;  // Keep track of # differences.
    701       unsigned DiffOperand = 0;     // The operand that differs.
    702       for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
    703         if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
    704           if (GEPLHS->getOperand(i)->getType()->getPrimitiveSizeInBits() !=
    705                    GEPRHS->getOperand(i)->getType()->getPrimitiveSizeInBits()) {
    706             // Irreconcilable differences.
    707             NumDifferences = 2;
    708             break;
    709           } else {
    710             if (NumDifferences++) break;
    711             DiffOperand = i;
    712           }
    713         }
    714 
    715       if (NumDifferences == 0)   // SAME GEP?
    716         return ReplaceInstUsesWith(I, // No comparison is needed here.
    717                              Builder->getInt1(ICmpInst::isTrueWhenEqual(Cond)));
    718 
    719       else if (NumDifferences == 1 && GEPsInBounds) {
    720         Value *LHSV = GEPLHS->getOperand(DiffOperand);
    721         Value *RHSV = GEPRHS->getOperand(DiffOperand);
    722         // Make sure we do a signed comparison here.
    723         return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV);
    724       }
    725     }
    726 
    727     // Only lower this if the icmp is the only user of the GEP or if we expect
    728     // the result to fold to a constant!
    729     if (GEPsInBounds && (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) &&
    730         (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) {
    731       // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2)  --->  (OFFSET1 cmp OFFSET2)
    732       Value *L = EmitGEPOffset(GEPLHS);
    733       Value *R = EmitGEPOffset(GEPRHS);
    734       return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R);
    735     }
    736   }
    737   return nullptr;
    738 }
    739 
    740 /// FoldICmpAddOpCst - Fold "icmp pred (X+CI), X".
    741 Instruction *InstCombiner::FoldICmpAddOpCst(Instruction &ICI,
    742                                             Value *X, ConstantInt *CI,
    743                                             ICmpInst::Predicate Pred) {
    744   // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0,
    745   // so the values can never be equal.  Similarly for all other "or equals"
    746   // operators.
    747 
    748   // (X+1) <u X        --> X >u (MAXUINT-1)        --> X == 255
    749   // (X+2) <u X        --> X >u (MAXUINT-2)        --> X > 253
    750   // (X+MAXUINT) <u X  --> X >u (MAXUINT-MAXUINT)  --> X != 0
    751   if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
    752     Value *R =
    753       ConstantExpr::getSub(ConstantInt::getAllOnesValue(CI->getType()), CI);
    754     return new ICmpInst(ICmpInst::ICMP_UGT, X, R);
    755   }
    756 
    757   // (X+1) >u X        --> X <u (0-1)        --> X != 255
    758   // (X+2) >u X        --> X <u (0-2)        --> X <u 254
    759   // (X+MAXUINT) >u X  --> X <u (0-MAXUINT)  --> X <u 1  --> X == 0
    760   if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)
    761     return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantExpr::getNeg(CI));
    762 
    763   unsigned BitWidth = CI->getType()->getPrimitiveSizeInBits();
    764   ConstantInt *SMax = ConstantInt::get(X->getContext(),
    765                                        APInt::getSignedMaxValue(BitWidth));
    766 
    767   // (X+ 1) <s X       --> X >s (MAXSINT-1)          --> X == 127
    768   // (X+ 2) <s X       --> X >s (MAXSINT-2)          --> X >s 125
    769   // (X+MAXSINT) <s X  --> X >s (MAXSINT-MAXSINT)    --> X >s 0
    770   // (X+MINSINT) <s X  --> X >s (MAXSINT-MINSINT)    --> X >s -1
    771   // (X+ -2) <s X      --> X >s (MAXSINT- -2)        --> X >s 126
    772   // (X+ -1) <s X      --> X >s (MAXSINT- -1)        --> X != 127
    773   if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
    774     return new ICmpInst(ICmpInst::ICMP_SGT, X, ConstantExpr::getSub(SMax, CI));
    775 
    776   // (X+ 1) >s X       --> X <s (MAXSINT-(1-1))       --> X != 127
    777   // (X+ 2) >s X       --> X <s (MAXSINT-(2-1))       --> X <s 126
    778   // (X+MAXSINT) >s X  --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1
    779   // (X+MINSINT) >s X  --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2
    780   // (X+ -2) >s X      --> X <s (MAXSINT-(-2-1))      --> X <s -126
    781   // (X+ -1) >s X      --> X <s (MAXSINT-(-1-1))      --> X == -128
    782 
    783   assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE);
    784   Constant *C = Builder->getInt(CI->getValue()-1);
    785   return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantExpr::getSub(SMax, C));
    786 }
    787 
    788 /// FoldICmpDivCst - Fold "icmp pred, ([su]div X, DivRHS), CmpRHS" where DivRHS
    789 /// and CmpRHS are both known to be integer constants.
    790 Instruction *InstCombiner::FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
    791                                           ConstantInt *DivRHS) {
    792   ConstantInt *CmpRHS = cast<ConstantInt>(ICI.getOperand(1));
    793   const APInt &CmpRHSV = CmpRHS->getValue();
    794 
    795   // FIXME: If the operand types don't match the type of the divide
    796   // then don't attempt this transform. The code below doesn't have the
    797   // logic to deal with a signed divide and an unsigned compare (and
    798   // vice versa). This is because (x /s C1) <s C2  produces different
    799   // results than (x /s C1) <u C2 or (x /u C1) <s C2 or even
    800   // (x /u C1) <u C2.  Simply casting the operands and result won't
    801   // work. :(  The if statement below tests that condition and bails
    802   // if it finds it.
    803   bool DivIsSigned = DivI->getOpcode() == Instruction::SDiv;
    804   if (!ICI.isEquality() && DivIsSigned != ICI.isSigned())
    805     return nullptr;
    806   if (DivRHS->isZero())
    807     return nullptr; // The ProdOV computation fails on divide by zero.
    808   if (DivIsSigned && DivRHS->isAllOnesValue())
    809     return nullptr; // The overflow computation also screws up here
    810   if (DivRHS->isOne()) {
    811     // This eliminates some funny cases with INT_MIN.
    812     ICI.setOperand(0, DivI->getOperand(0));   // X/1 == X.
    813     return &ICI;
    814   }
    815 
    816   // Compute Prod = CI * DivRHS. We are essentially solving an equation
    817   // of form X/C1=C2. We solve for X by multiplying C1 (DivRHS) and
    818   // C2 (CI). By solving for X we can turn this into a range check
    819   // instead of computing a divide.
    820   Constant *Prod = ConstantExpr::getMul(CmpRHS, DivRHS);
    821 
    822   // Determine if the product overflows by seeing if the product is
    823   // not equal to the divide. Make sure we do the same kind of divide
    824   // as in the LHS instruction that we're folding.
    825   bool ProdOV = (DivIsSigned ? ConstantExpr::getSDiv(Prod, DivRHS) :
    826                  ConstantExpr::getUDiv(Prod, DivRHS)) != CmpRHS;
    827 
    828   // Get the ICmp opcode
    829   ICmpInst::Predicate Pred = ICI.getPredicate();
    830 
    831   /// If the division is known to be exact, then there is no remainder from the
    832   /// divide, so the covered range size is unit, otherwise it is the divisor.
    833   ConstantInt *RangeSize = DivI->isExact() ? getOne(Prod) : DivRHS;
    834 
    835   // Figure out the interval that is being checked.  For example, a comparison
    836   // like "X /u 5 == 0" is really checking that X is in the interval [0, 5).
    837   // Compute this interval based on the constants involved and the signedness of
    838   // the compare/divide.  This computes a half-open interval, keeping track of
    839   // whether either value in the interval overflows.  After analysis each
    840   // overflow variable is set to 0 if it's corresponding bound variable is valid
    841   // -1 if overflowed off the bottom end, or +1 if overflowed off the top end.
    842   int LoOverflow = 0, HiOverflow = 0;
    843   Constant *LoBound = nullptr, *HiBound = nullptr;
    844 
    845   if (!DivIsSigned) {  // udiv
    846     // e.g. X/5 op 3  --> [15, 20)
    847     LoBound = Prod;
    848     HiOverflow = LoOverflow = ProdOV;
    849     if (!HiOverflow) {
    850       // If this is not an exact divide, then many values in the range collapse
    851       // to the same result value.
    852       HiOverflow = AddWithOverflow(HiBound, LoBound, RangeSize, false);
    853     }
    854 
    855   } else if (DivRHS->getValue().isStrictlyPositive()) { // Divisor is > 0.
    856     if (CmpRHSV == 0) {       // (X / pos) op 0
    857       // Can't overflow.  e.g.  X/2 op 0 --> [-1, 2)
    858       LoBound = ConstantExpr::getNeg(SubOne(RangeSize));
    859       HiBound = RangeSize;
    860     } else if (CmpRHSV.isStrictlyPositive()) {   // (X / pos) op pos
    861       LoBound = Prod;     // e.g.   X/5 op 3 --> [15, 20)
    862       HiOverflow = LoOverflow = ProdOV;
    863       if (!HiOverflow)
    864         HiOverflow = AddWithOverflow(HiBound, Prod, RangeSize, true);
    865     } else {                       // (X / pos) op neg
    866       // e.g. X/5 op -3  --> [-15-4, -15+1) --> [-19, -14)
    867       HiBound = AddOne(Prod);
    868       LoOverflow = HiOverflow = ProdOV ? -1 : 0;
    869       if (!LoOverflow) {
    870         ConstantInt *DivNeg =cast<ConstantInt>(ConstantExpr::getNeg(RangeSize));
    871         LoOverflow = AddWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0;
    872       }
    873     }
    874   } else if (DivRHS->isNegative()) { // Divisor is < 0.
    875     if (DivI->isExact())
    876       RangeSize = cast<ConstantInt>(ConstantExpr::getNeg(RangeSize));
    877     if (CmpRHSV == 0) {       // (X / neg) op 0
    878       // e.g. X/-5 op 0  --> [-4, 5)
    879       LoBound = AddOne(RangeSize);
    880       HiBound = cast<ConstantInt>(ConstantExpr::getNeg(RangeSize));
    881       if (HiBound == DivRHS) {     // -INTMIN = INTMIN
    882         HiOverflow = 1;            // [INTMIN+1, overflow)
    883         HiBound = nullptr;         // e.g. X/INTMIN = 0 --> X > INTMIN
    884       }
    885     } else if (CmpRHSV.isStrictlyPositive()) {   // (X / neg) op pos
    886       // e.g. X/-5 op 3  --> [-19, -14)
    887       HiBound = AddOne(Prod);
    888       HiOverflow = LoOverflow = ProdOV ? -1 : 0;
    889       if (!LoOverflow)
    890         LoOverflow = AddWithOverflow(LoBound, HiBound, RangeSize, true) ? -1:0;
    891     } else {                       // (X / neg) op neg
    892       LoBound = Prod;       // e.g. X/-5 op -3  --> [15, 20)
    893       LoOverflow = HiOverflow = ProdOV;
    894       if (!HiOverflow)
    895         HiOverflow = SubWithOverflow(HiBound, Prod, RangeSize, true);
    896     }
    897 
    898     // Dividing by a negative swaps the condition.  LT <-> GT
    899     Pred = ICmpInst::getSwappedPredicate(Pred);
    900   }
    901 
    902   Value *X = DivI->getOperand(0);
    903   switch (Pred) {
    904   default: llvm_unreachable("Unhandled icmp opcode!");
    905   case ICmpInst::ICMP_EQ:
    906     if (LoOverflow && HiOverflow)
    907       return ReplaceInstUsesWith(ICI, Builder->getFalse());
    908     if (HiOverflow)
    909       return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
    910                           ICmpInst::ICMP_UGE, X, LoBound);
    911     if (LoOverflow)
    912       return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
    913                           ICmpInst::ICMP_ULT, X, HiBound);
    914     return ReplaceInstUsesWith(ICI, InsertRangeTest(X, LoBound, HiBound,
    915                                                     DivIsSigned, true));
    916   case ICmpInst::ICMP_NE:
    917     if (LoOverflow && HiOverflow)
    918       return ReplaceInstUsesWith(ICI, Builder->getTrue());
    919     if (HiOverflow)
    920       return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
    921                           ICmpInst::ICMP_ULT, X, LoBound);
    922     if (LoOverflow)
    923       return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
    924                           ICmpInst::ICMP_UGE, X, HiBound);
    925     return ReplaceInstUsesWith(ICI, InsertRangeTest(X, LoBound, HiBound,
    926                                                     DivIsSigned, false));
    927   case ICmpInst::ICMP_ULT:
    928   case ICmpInst::ICMP_SLT:
    929     if (LoOverflow == +1)   // Low bound is greater than input range.
    930       return ReplaceInstUsesWith(ICI, Builder->getTrue());
    931     if (LoOverflow == -1)   // Low bound is less than input range.
    932       return ReplaceInstUsesWith(ICI, Builder->getFalse());
    933     return new ICmpInst(Pred, X, LoBound);
    934   case ICmpInst::ICMP_UGT:
    935   case ICmpInst::ICMP_SGT:
    936     if (HiOverflow == +1)       // High bound greater than input range.
    937       return ReplaceInstUsesWith(ICI, Builder->getFalse());
    938     if (HiOverflow == -1)       // High bound less than input range.
    939       return ReplaceInstUsesWith(ICI, Builder->getTrue());
    940     if (Pred == ICmpInst::ICMP_UGT)
    941       return new ICmpInst(ICmpInst::ICMP_UGE, X, HiBound);
    942     return new ICmpInst(ICmpInst::ICMP_SGE, X, HiBound);
    943   }
    944 }
    945 
    946 /// FoldICmpShrCst - Handle "icmp(([al]shr X, cst1), cst2)".
    947 Instruction *InstCombiner::FoldICmpShrCst(ICmpInst &ICI, BinaryOperator *Shr,
    948                                           ConstantInt *ShAmt) {
    949   const APInt &CmpRHSV = cast<ConstantInt>(ICI.getOperand(1))->getValue();
    950 
    951   // Check that the shift amount is in range.  If not, don't perform
    952   // undefined shifts.  When the shift is visited it will be
    953   // simplified.
    954   uint32_t TypeBits = CmpRHSV.getBitWidth();
    955   uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
    956   if (ShAmtVal >= TypeBits || ShAmtVal == 0)
    957     return nullptr;
    958 
    959   if (!ICI.isEquality()) {
    960     // If we have an unsigned comparison and an ashr, we can't simplify this.
    961     // Similarly for signed comparisons with lshr.
    962     if (ICI.isSigned() != (Shr->getOpcode() == Instruction::AShr))
    963       return nullptr;
    964 
    965     // Otherwise, all lshr and most exact ashr's are equivalent to a udiv/sdiv
    966     // by a power of 2.  Since we already have logic to simplify these,
    967     // transform to div and then simplify the resultant comparison.
    968     if (Shr->getOpcode() == Instruction::AShr &&
    969         (!Shr->isExact() || ShAmtVal == TypeBits - 1))
    970       return nullptr;
    971 
    972     // Revisit the shift (to delete it).
    973     Worklist.Add(Shr);
    974 
    975     Constant *DivCst =
    976       ConstantInt::get(Shr->getType(), APInt::getOneBitSet(TypeBits, ShAmtVal));
    977 
    978     Value *Tmp =
    979       Shr->getOpcode() == Instruction::AShr ?
    980       Builder->CreateSDiv(Shr->getOperand(0), DivCst, "", Shr->isExact()) :
    981       Builder->CreateUDiv(Shr->getOperand(0), DivCst, "", Shr->isExact());
    982 
    983     ICI.setOperand(0, Tmp);
    984 
    985     // If the builder folded the binop, just return it.
    986     BinaryOperator *TheDiv = dyn_cast<BinaryOperator>(Tmp);
    987     if (!TheDiv)
    988       return &ICI;
    989 
    990     // Otherwise, fold this div/compare.
    991     assert(TheDiv->getOpcode() == Instruction::SDiv ||
    992            TheDiv->getOpcode() == Instruction::UDiv);
    993 
    994     Instruction *Res = FoldICmpDivCst(ICI, TheDiv, cast<ConstantInt>(DivCst));
    995     assert(Res && "This div/cst should have folded!");
    996     return Res;
    997   }
    998 
    999 
   1000   // If we are comparing against bits always shifted out, the
   1001   // comparison cannot succeed.
   1002   APInt Comp = CmpRHSV << ShAmtVal;
   1003   ConstantInt *ShiftedCmpRHS = Builder->getInt(Comp);
   1004   if (Shr->getOpcode() == Instruction::LShr)
   1005     Comp = Comp.lshr(ShAmtVal);
   1006   else
   1007     Comp = Comp.ashr(ShAmtVal);
   1008 
   1009   if (Comp != CmpRHSV) { // Comparing against a bit that we know is zero.
   1010     bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
   1011     Constant *Cst = Builder->getInt1(IsICMP_NE);
   1012     return ReplaceInstUsesWith(ICI, Cst);
   1013   }
   1014 
   1015   // Otherwise, check to see if the bits shifted out are known to be zero.
   1016   // If so, we can compare against the unshifted value:
   1017   //  (X & 4) >> 1 == 2  --> (X & 4) == 4.
   1018   if (Shr->hasOneUse() && Shr->isExact())
   1019     return new ICmpInst(ICI.getPredicate(), Shr->getOperand(0), ShiftedCmpRHS);
   1020 
   1021   if (Shr->hasOneUse()) {
   1022     // Otherwise strength reduce the shift into an and.
   1023     APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal));
   1024     Constant *Mask = Builder->getInt(Val);
   1025 
   1026     Value *And = Builder->CreateAnd(Shr->getOperand(0),
   1027                                     Mask, Shr->getName()+".mask");
   1028     return new ICmpInst(ICI.getPredicate(), And, ShiftedCmpRHS);
   1029   }
   1030   return nullptr;
   1031 }
   1032 
   1033 /// FoldICmpCstShrCst - Handle "(icmp eq/ne (ashr/lshr const2, A), const1)" ->
   1034 /// (icmp eq/ne A, Log2(const2/const1)) ->
   1035 /// (icmp eq/ne A, Log2(const2) - Log2(const1)).
   1036 Instruction *InstCombiner::FoldICmpCstShrCst(ICmpInst &I, Value *Op, Value *A,
   1037                                              ConstantInt *CI1,
   1038                                              ConstantInt *CI2) {
   1039   assert(I.isEquality() && "Cannot fold icmp gt/lt");
   1040 
   1041   auto getConstant = [&I, this](bool IsTrue) {
   1042     if (I.getPredicate() == I.ICMP_NE)
   1043       IsTrue = !IsTrue;
   1044     return ReplaceInstUsesWith(I, ConstantInt::get(I.getType(), IsTrue));
   1045   };
   1046 
   1047   auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) {
   1048     if (I.getPredicate() == I.ICMP_NE)
   1049       Pred = CmpInst::getInversePredicate(Pred);
   1050     return new ICmpInst(Pred, LHS, RHS);
   1051   };
   1052 
   1053   APInt AP1 = CI1->getValue();
   1054   APInt AP2 = CI2->getValue();
   1055 
   1056   // Don't bother doing any work for cases which InstSimplify handles.
   1057   if (AP2 == 0)
   1058     return nullptr;
   1059   bool IsAShr = isa<AShrOperator>(Op);
   1060   if (IsAShr) {
   1061     if (AP2.isAllOnesValue())
   1062       return nullptr;
   1063     if (AP2.isNegative() != AP1.isNegative())
   1064       return nullptr;
   1065     if (AP2.sgt(AP1))
   1066       return nullptr;
   1067   }
   1068 
   1069   if (!AP1)
   1070     // 'A' must be large enough to shift out the highest set bit.
   1071     return getICmp(I.ICMP_UGT, A,
   1072                    ConstantInt::get(A->getType(), AP2.logBase2()));
   1073 
   1074   if (AP1 == AP2)
   1075     return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType()));
   1076 
   1077   // Get the distance between the highest bit that's set.
   1078   int Shift;
   1079   // Both the constants are negative, take their positive to calculate log.
   1080   if (IsAShr && AP1.isNegative())
   1081     // Get the ones' complement of AP2 and AP1 when computing the distance.
   1082     Shift = (~AP2).logBase2() - (~AP1).logBase2();
   1083   else
   1084     Shift = AP2.logBase2() - AP1.logBase2();
   1085 
   1086   if (Shift > 0) {
   1087     if (IsAShr ? AP1 == AP2.ashr(Shift) : AP1 == AP2.lshr(Shift))
   1088       return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
   1089   }
   1090   // Shifting const2 will never be equal to const1.
   1091   return getConstant(false);
   1092 }
   1093 
   1094 /// FoldICmpCstShlCst - Handle "(icmp eq/ne (shl const2, A), const1)" ->
   1095 /// (icmp eq/ne A, TrailingZeros(const1) - TrailingZeros(const2)).
   1096 Instruction *InstCombiner::FoldICmpCstShlCst(ICmpInst &I, Value *Op, Value *A,
   1097                                              ConstantInt *CI1,
   1098                                              ConstantInt *CI2) {
   1099   assert(I.isEquality() && "Cannot fold icmp gt/lt");
   1100 
   1101   auto getConstant = [&I, this](bool IsTrue) {
   1102     if (I.getPredicate() == I.ICMP_NE)
   1103       IsTrue = !IsTrue;
   1104     return ReplaceInstUsesWith(I, ConstantInt::get(I.getType(), IsTrue));
   1105   };
   1106 
   1107   auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) {
   1108     if (I.getPredicate() == I.ICMP_NE)
   1109       Pred = CmpInst::getInversePredicate(Pred);
   1110     return new ICmpInst(Pred, LHS, RHS);
   1111   };
   1112 
   1113   APInt AP1 = CI1->getValue();
   1114   APInt AP2 = CI2->getValue();
   1115 
   1116   // Don't bother doing any work for cases which InstSimplify handles.
   1117   if (AP2 == 0)
   1118     return nullptr;
   1119 
   1120   unsigned AP2TrailingZeros = AP2.countTrailingZeros();
   1121 
   1122   if (!AP1 && AP2TrailingZeros != 0)
   1123     return getICmp(I.ICMP_UGE, A,
   1124                    ConstantInt::get(A->getType(), AP2.getBitWidth() - AP2TrailingZeros));
   1125 
   1126   if (AP1 == AP2)
   1127     return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType()));
   1128 
   1129   // Get the distance between the lowest bits that are set.
   1130   int Shift = AP1.countTrailingZeros() - AP2TrailingZeros;
   1131 
   1132   if (Shift > 0 && AP2.shl(Shift) == AP1)
   1133     return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
   1134 
   1135   // Shifting const2 will never be equal to const1.
   1136   return getConstant(false);
   1137 }
   1138 
   1139 /// visitICmpInstWithInstAndIntCst - Handle "icmp (instr, intcst)".
   1140 ///
   1141 Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
   1142                                                           Instruction *LHSI,
   1143                                                           ConstantInt *RHS) {
   1144   const APInt &RHSV = RHS->getValue();
   1145 
   1146   switch (LHSI->getOpcode()) {
   1147   case Instruction::Trunc:
   1148     if (ICI.isEquality() && LHSI->hasOneUse()) {
   1149       // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all
   1150       // of the high bits truncated out of x are known.
   1151       unsigned DstBits = LHSI->getType()->getPrimitiveSizeInBits(),
   1152              SrcBits = LHSI->getOperand(0)->getType()->getPrimitiveSizeInBits();
   1153       APInt KnownZero(SrcBits, 0), KnownOne(SrcBits, 0);
   1154       computeKnownBits(LHSI->getOperand(0), KnownZero, KnownOne, 0, &ICI);
   1155 
   1156       // If all the high bits are known, we can do this xform.
   1157       if ((KnownZero|KnownOne).countLeadingOnes() >= SrcBits-DstBits) {
   1158         // Pull in the high bits from known-ones set.
   1159         APInt NewRHS = RHS->getValue().zext(SrcBits);
   1160         NewRHS |= KnownOne & APInt::getHighBitsSet(SrcBits, SrcBits-DstBits);
   1161         return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
   1162                             Builder->getInt(NewRHS));
   1163       }
   1164     }
   1165     break;
   1166 
   1167   case Instruction::Xor:         // (icmp pred (xor X, XorCst), CI)
   1168     if (ConstantInt *XorCst = dyn_cast<ConstantInt>(LHSI->getOperand(1))) {
   1169       // If this is a comparison that tests the signbit (X < 0) or (x > -1),
   1170       // fold the xor.
   1171       if ((ICI.getPredicate() == ICmpInst::ICMP_SLT && RHSV == 0) ||
   1172           (ICI.getPredicate() == ICmpInst::ICMP_SGT && RHSV.isAllOnesValue())) {
   1173         Value *CompareVal = LHSI->getOperand(0);
   1174 
   1175         // If the sign bit of the XorCst is not set, there is no change to
   1176         // the operation, just stop using the Xor.
   1177         if (!XorCst->isNegative()) {
   1178           ICI.setOperand(0, CompareVal);
   1179           Worklist.Add(LHSI);
   1180           return &ICI;
   1181         }
   1182 
   1183         // Was the old condition true if the operand is positive?
   1184         bool isTrueIfPositive = ICI.getPredicate() == ICmpInst::ICMP_SGT;
   1185 
   1186         // If so, the new one isn't.
   1187         isTrueIfPositive ^= true;
   1188 
   1189         if (isTrueIfPositive)
   1190           return new ICmpInst(ICmpInst::ICMP_SGT, CompareVal,
   1191                               SubOne(RHS));
   1192         else
   1193           return new ICmpInst(ICmpInst::ICMP_SLT, CompareVal,
   1194                               AddOne(RHS));
   1195       }
   1196 
   1197       if (LHSI->hasOneUse()) {
   1198         // (icmp u/s (xor A SignBit), C) -> (icmp s/u A, (xor C SignBit))
   1199         if (!ICI.isEquality() && XorCst->getValue().isSignBit()) {
   1200           const APInt &SignBit = XorCst->getValue();
   1201           ICmpInst::Predicate Pred = ICI.isSigned()
   1202                                          ? ICI.getUnsignedPredicate()
   1203                                          : ICI.getSignedPredicate();
   1204           return new ICmpInst(Pred, LHSI->getOperand(0),
   1205                               Builder->getInt(RHSV ^ SignBit));
   1206         }
   1207 
   1208         // (icmp u/s (xor A ~SignBit), C) -> (icmp s/u (xor C ~SignBit), A)
   1209         if (!ICI.isEquality() && XorCst->isMaxValue(true)) {
   1210           const APInt &NotSignBit = XorCst->getValue();
   1211           ICmpInst::Predicate Pred = ICI.isSigned()
   1212                                          ? ICI.getUnsignedPredicate()
   1213                                          : ICI.getSignedPredicate();
   1214           Pred = ICI.getSwappedPredicate(Pred);
   1215           return new ICmpInst(Pred, LHSI->getOperand(0),
   1216                               Builder->getInt(RHSV ^ NotSignBit));
   1217         }
   1218       }
   1219 
   1220       // (icmp ugt (xor X, C), ~C) -> (icmp ult X, C)
   1221       //   iff -C is a power of 2
   1222       if (ICI.getPredicate() == ICmpInst::ICMP_UGT &&
   1223           XorCst->getValue() == ~RHSV && (RHSV + 1).isPowerOf2())
   1224         return new ICmpInst(ICmpInst::ICMP_ULT, LHSI->getOperand(0), XorCst);
   1225 
   1226       // (icmp ult (xor X, C), -C) -> (icmp uge X, C)
   1227       //   iff -C is a power of 2
   1228       if (ICI.getPredicate() == ICmpInst::ICMP_ULT &&
   1229           XorCst->getValue() == -RHSV && RHSV.isPowerOf2())
   1230         return new ICmpInst(ICmpInst::ICMP_UGE, LHSI->getOperand(0), XorCst);
   1231     }
   1232     break;
   1233   case Instruction::And:         // (icmp pred (and X, AndCst), RHS)
   1234     if (LHSI->hasOneUse() && isa<ConstantInt>(LHSI->getOperand(1)) &&
   1235         LHSI->getOperand(0)->hasOneUse()) {
   1236       ConstantInt *AndCst = cast<ConstantInt>(LHSI->getOperand(1));
   1237 
   1238       // If the LHS is an AND of a truncating cast, we can widen the
   1239       // and/compare to be the input width without changing the value
   1240       // produced, eliminating a cast.
   1241       if (TruncInst *Cast = dyn_cast<TruncInst>(LHSI->getOperand(0))) {
   1242         // We can do this transformation if either the AND constant does not
   1243         // have its sign bit set or if it is an equality comparison.
   1244         // Extending a relational comparison when we're checking the sign
   1245         // bit would not work.
   1246         if (ICI.isEquality() ||
   1247             (!AndCst->isNegative() && RHSV.isNonNegative())) {
   1248           Value *NewAnd =
   1249             Builder->CreateAnd(Cast->getOperand(0),
   1250                                ConstantExpr::getZExt(AndCst, Cast->getSrcTy()));
   1251           NewAnd->takeName(LHSI);
   1252           return new ICmpInst(ICI.getPredicate(), NewAnd,
   1253                               ConstantExpr::getZExt(RHS, Cast->getSrcTy()));
   1254         }
   1255       }
   1256 
   1257       // If the LHS is an AND of a zext, and we have an equality compare, we can
   1258       // shrink the and/compare to the smaller type, eliminating the cast.
   1259       if (ZExtInst *Cast = dyn_cast<ZExtInst>(LHSI->getOperand(0))) {
   1260         IntegerType *Ty = cast<IntegerType>(Cast->getSrcTy());
   1261         // Make sure we don't compare the upper bits, SimplifyDemandedBits
   1262         // should fold the icmp to true/false in that case.
   1263         if (ICI.isEquality() && RHSV.getActiveBits() <= Ty->getBitWidth()) {
   1264           Value *NewAnd =
   1265             Builder->CreateAnd(Cast->getOperand(0),
   1266                                ConstantExpr::getTrunc(AndCst, Ty));
   1267           NewAnd->takeName(LHSI);
   1268           return new ICmpInst(ICI.getPredicate(), NewAnd,
   1269                               ConstantExpr::getTrunc(RHS, Ty));
   1270         }
   1271       }
   1272 
   1273       // If this is: (X >> C1) & C2 != C3 (where any shift and any compare
   1274       // could exist), turn it into (X & (C2 << C1)) != (C3 << C1).  This
   1275       // happens a LOT in code produced by the C front-end, for bitfield
   1276       // access.
   1277       BinaryOperator *Shift = dyn_cast<BinaryOperator>(LHSI->getOperand(0));
   1278       if (Shift && !Shift->isShift())
   1279         Shift = nullptr;
   1280 
   1281       ConstantInt *ShAmt;
   1282       ShAmt = Shift ? dyn_cast<ConstantInt>(Shift->getOperand(1)) : nullptr;
   1283 
   1284       // This seemingly simple opportunity to fold away a shift turns out to
   1285       // be rather complicated. See PR17827
   1286       // ( http://llvm.org/bugs/show_bug.cgi?id=17827 ) for details.
   1287       if (ShAmt) {
   1288         bool CanFold = false;
   1289         unsigned ShiftOpcode = Shift->getOpcode();
   1290         if (ShiftOpcode == Instruction::AShr) {
   1291           // There may be some constraints that make this possible,
   1292           // but nothing simple has been discovered yet.
   1293           CanFold = false;
   1294         } else if (ShiftOpcode == Instruction::Shl) {
   1295           // For a left shift, we can fold if the comparison is not signed.
   1296           // We can also fold a signed comparison if the mask value and
   1297           // comparison value are not negative. These constraints may not be
   1298           // obvious, but we can prove that they are correct using an SMT
   1299           // solver.
   1300           if (!ICI.isSigned() || (!AndCst->isNegative() && !RHS->isNegative()))
   1301             CanFold = true;
   1302         } else if (ShiftOpcode == Instruction::LShr) {
   1303           // For a logical right shift, we can fold if the comparison is not
   1304           // signed. We can also fold a signed comparison if the shifted mask
   1305           // value and the shifted comparison value are not negative.
   1306           // These constraints may not be obvious, but we can prove that they
   1307           // are correct using an SMT solver.
   1308           if (!ICI.isSigned())
   1309             CanFold = true;
   1310           else {
   1311             ConstantInt *ShiftedAndCst =
   1312               cast<ConstantInt>(ConstantExpr::getShl(AndCst, ShAmt));
   1313             ConstantInt *ShiftedRHSCst =
   1314               cast<ConstantInt>(ConstantExpr::getShl(RHS, ShAmt));
   1315 
   1316             if (!ShiftedAndCst->isNegative() && !ShiftedRHSCst->isNegative())
   1317               CanFold = true;
   1318           }
   1319         }
   1320 
   1321         if (CanFold) {
   1322           Constant *NewCst;
   1323           if (ShiftOpcode == Instruction::Shl)
   1324             NewCst = ConstantExpr::getLShr(RHS, ShAmt);
   1325           else
   1326             NewCst = ConstantExpr::getShl(RHS, ShAmt);
   1327 
   1328           // Check to see if we are shifting out any of the bits being
   1329           // compared.
   1330           if (ConstantExpr::get(ShiftOpcode, NewCst, ShAmt) != RHS) {
   1331             // If we shifted bits out, the fold is not going to work out.
   1332             // As a special case, check to see if this means that the
   1333             // result is always true or false now.
   1334             if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
   1335               return ReplaceInstUsesWith(ICI, Builder->getFalse());
   1336             if (ICI.getPredicate() == ICmpInst::ICMP_NE)
   1337               return ReplaceInstUsesWith(ICI, Builder->getTrue());
   1338           } else {
   1339             ICI.setOperand(1, NewCst);
   1340             Constant *NewAndCst;
   1341             if (ShiftOpcode == Instruction::Shl)
   1342               NewAndCst = ConstantExpr::getLShr(AndCst, ShAmt);
   1343             else
   1344               NewAndCst = ConstantExpr::getShl(AndCst, ShAmt);
   1345             LHSI->setOperand(1, NewAndCst);
   1346             LHSI->setOperand(0, Shift->getOperand(0));
   1347             Worklist.Add(Shift); // Shift is dead.
   1348             return &ICI;
   1349           }
   1350         }
   1351       }
   1352 
   1353       // Turn ((X >> Y) & C) == 0  into  (X & (C << Y)) == 0.  The later is
   1354       // preferable because it allows the C<<Y expression to be hoisted out
   1355       // of a loop if Y is invariant and X is not.
   1356       if (Shift && Shift->hasOneUse() && RHSV == 0 &&
   1357           ICI.isEquality() && !Shift->isArithmeticShift() &&
   1358           !isa<Constant>(Shift->getOperand(0))) {
   1359         // Compute C << Y.
   1360         Value *NS;
   1361         if (Shift->getOpcode() == Instruction::LShr) {
   1362           NS = Builder->CreateShl(AndCst, Shift->getOperand(1));
   1363         } else {
   1364           // Insert a logical shift.
   1365           NS = Builder->CreateLShr(AndCst, Shift->getOperand(1));
   1366         }
   1367 
   1368         // Compute X & (C << Y).
   1369         Value *NewAnd =
   1370           Builder->CreateAnd(Shift->getOperand(0), NS, LHSI->getName());
   1371 
   1372         ICI.setOperand(0, NewAnd);
   1373         return &ICI;
   1374       }
   1375 
   1376       // (icmp pred (and (or (lshr X, Y), X), 1), 0) -->
   1377       //    (icmp pred (and X, (or (shl 1, Y), 1), 0))
   1378       //
   1379       // iff pred isn't signed
   1380       {
   1381         Value *X, *Y, *LShr;
   1382         if (!ICI.isSigned() && RHSV == 0) {
   1383           if (match(LHSI->getOperand(1), m_One())) {
   1384             Constant *One = cast<Constant>(LHSI->getOperand(1));
   1385             Value *Or = LHSI->getOperand(0);
   1386             if (match(Or, m_Or(m_Value(LShr), m_Value(X))) &&
   1387                 match(LShr, m_LShr(m_Specific(X), m_Value(Y)))) {
   1388               unsigned UsesRemoved = 0;
   1389               if (LHSI->hasOneUse())
   1390                 ++UsesRemoved;
   1391               if (Or->hasOneUse())
   1392                 ++UsesRemoved;
   1393               if (LShr->hasOneUse())
   1394                 ++UsesRemoved;
   1395               Value *NewOr = nullptr;
   1396               // Compute X & ((1 << Y) | 1)
   1397               if (auto *C = dyn_cast<Constant>(Y)) {
   1398                 if (UsesRemoved >= 1)
   1399                   NewOr =
   1400                       ConstantExpr::getOr(ConstantExpr::getNUWShl(One, C), One);
   1401               } else {
   1402                 if (UsesRemoved >= 3)
   1403                   NewOr = Builder->CreateOr(Builder->CreateShl(One, Y,
   1404                                                                LShr->getName(),
   1405                                                                /*HasNUW=*/true),
   1406                                             One, Or->getName());
   1407               }
   1408               if (NewOr) {
   1409                 Value *NewAnd = Builder->CreateAnd(X, NewOr, LHSI->getName());
   1410                 ICI.setOperand(0, NewAnd);
   1411                 return &ICI;
   1412               }
   1413             }
   1414           }
   1415         }
   1416       }
   1417 
   1418       // Replace ((X & AndCst) > RHSV) with ((X & AndCst) != 0), if any
   1419       // bit set in (X & AndCst) will produce a result greater than RHSV.
   1420       if (ICI.getPredicate() == ICmpInst::ICMP_UGT) {
   1421         unsigned NTZ = AndCst->getValue().countTrailingZeros();
   1422         if ((NTZ < AndCst->getBitWidth()) &&
   1423             APInt::getOneBitSet(AndCst->getBitWidth(), NTZ).ugt(RHSV))
   1424           return new ICmpInst(ICmpInst::ICMP_NE, LHSI,
   1425                               Constant::getNullValue(RHS->getType()));
   1426       }
   1427     }
   1428 
   1429     // Try to optimize things like "A[i]&42 == 0" to index computations.
   1430     if (LoadInst *LI = dyn_cast<LoadInst>(LHSI->getOperand(0))) {
   1431       if (GetElementPtrInst *GEP =
   1432           dyn_cast<GetElementPtrInst>(LI->getOperand(0)))
   1433         if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
   1434           if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
   1435               !LI->isVolatile() && isa<ConstantInt>(LHSI->getOperand(1))) {
   1436             ConstantInt *C = cast<ConstantInt>(LHSI->getOperand(1));
   1437             if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV,ICI, C))
   1438               return Res;
   1439           }
   1440     }
   1441 
   1442     // X & -C == -C -> X >  u ~C
   1443     // X & -C != -C -> X <= u ~C
   1444     //   iff C is a power of 2
   1445     if (ICI.isEquality() && RHS == LHSI->getOperand(1) && (-RHSV).isPowerOf2())
   1446       return new ICmpInst(
   1447           ICI.getPredicate() == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_UGT
   1448                                                   : ICmpInst::ICMP_ULE,
   1449           LHSI->getOperand(0), SubOne(RHS));
   1450     break;
   1451 
   1452   case Instruction::Or: {
   1453     if (!ICI.isEquality() || !RHS->isNullValue() || !LHSI->hasOneUse())
   1454       break;
   1455     Value *P, *Q;
   1456     if (match(LHSI, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) {
   1457       // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0
   1458       // -> and (icmp eq P, null), (icmp eq Q, null).
   1459       Value *ICIP = Builder->CreateICmp(ICI.getPredicate(), P,
   1460                                         Constant::getNullValue(P->getType()));
   1461       Value *ICIQ = Builder->CreateICmp(ICI.getPredicate(), Q,
   1462                                         Constant::getNullValue(Q->getType()));
   1463       Instruction *Op;
   1464       if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
   1465         Op = BinaryOperator::CreateAnd(ICIP, ICIQ);
   1466       else
   1467         Op = BinaryOperator::CreateOr(ICIP, ICIQ);
   1468       return Op;
   1469     }
   1470     break;
   1471   }
   1472 
   1473   case Instruction::Mul: {       // (icmp pred (mul X, Val), CI)
   1474     ConstantInt *Val = dyn_cast<ConstantInt>(LHSI->getOperand(1));
   1475     if (!Val) break;
   1476 
   1477     // If this is a signed comparison to 0 and the mul is sign preserving,
   1478     // use the mul LHS operand instead.
   1479     ICmpInst::Predicate pred = ICI.getPredicate();
   1480     if (isSignTest(pred, RHS) && !Val->isZero() &&
   1481         cast<BinaryOperator>(LHSI)->hasNoSignedWrap())
   1482       return new ICmpInst(Val->isNegative() ?
   1483                           ICmpInst::getSwappedPredicate(pred) : pred,
   1484                           LHSI->getOperand(0),
   1485                           Constant::getNullValue(RHS->getType()));
   1486 
   1487     break;
   1488   }
   1489 
   1490   case Instruction::Shl: {       // (icmp pred (shl X, ShAmt), CI)
   1491     uint32_t TypeBits = RHSV.getBitWidth();
   1492     ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1));
   1493     if (!ShAmt) {
   1494       Value *X;
   1495       // (1 << X) pred P2 -> X pred Log2(P2)
   1496       if (match(LHSI, m_Shl(m_One(), m_Value(X)))) {
   1497         bool RHSVIsPowerOf2 = RHSV.isPowerOf2();
   1498         ICmpInst::Predicate Pred = ICI.getPredicate();
   1499         if (ICI.isUnsigned()) {
   1500           if (!RHSVIsPowerOf2) {
   1501             // (1 << X) <  30 -> X <= 4
   1502             // (1 << X) <= 30 -> X <= 4
   1503             // (1 << X) >= 30 -> X >  4
   1504             // (1 << X) >  30 -> X >  4
   1505             if (Pred == ICmpInst::ICMP_ULT)
   1506               Pred = ICmpInst::ICMP_ULE;
   1507             else if (Pred == ICmpInst::ICMP_UGE)
   1508               Pred = ICmpInst::ICMP_UGT;
   1509           }
   1510           unsigned RHSLog2 = RHSV.logBase2();
   1511 
   1512           // (1 << X) >= 2147483648 -> X >= 31 -> X == 31
   1513           // (1 << X) <  2147483648 -> X <  31 -> X != 31
   1514           if (RHSLog2 == TypeBits-1) {
   1515             if (Pred == ICmpInst::ICMP_UGE)
   1516               Pred = ICmpInst::ICMP_EQ;
   1517             else if (Pred == ICmpInst::ICMP_ULT)
   1518               Pred = ICmpInst::ICMP_NE;
   1519           }
   1520 
   1521           return new ICmpInst(Pred, X,
   1522                               ConstantInt::get(RHS->getType(), RHSLog2));
   1523         } else if (ICI.isSigned()) {
   1524           if (RHSV.isAllOnesValue()) {
   1525             // (1 << X) <= -1 -> X == 31
   1526             if (Pred == ICmpInst::ICMP_SLE)
   1527               return new ICmpInst(ICmpInst::ICMP_EQ, X,
   1528                                   ConstantInt::get(RHS->getType(), TypeBits-1));
   1529 
   1530             // (1 << X) >  -1 -> X != 31
   1531             if (Pred == ICmpInst::ICMP_SGT)
   1532               return new ICmpInst(ICmpInst::ICMP_NE, X,
   1533                                   ConstantInt::get(RHS->getType(), TypeBits-1));
   1534           } else if (!RHSV) {
   1535             // (1 << X) <  0 -> X == 31
   1536             // (1 << X) <= 0 -> X == 31
   1537             if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
   1538               return new ICmpInst(ICmpInst::ICMP_EQ, X,
   1539                                   ConstantInt::get(RHS->getType(), TypeBits-1));
   1540 
   1541             // (1 << X) >= 0 -> X != 31
   1542             // (1 << X) >  0 -> X != 31
   1543             if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE)
   1544               return new ICmpInst(ICmpInst::ICMP_NE, X,
   1545                                   ConstantInt::get(RHS->getType(), TypeBits-1));
   1546           }
   1547         } else if (ICI.isEquality()) {
   1548           if (RHSVIsPowerOf2)
   1549             return new ICmpInst(
   1550                 Pred, X, ConstantInt::get(RHS->getType(), RHSV.logBase2()));
   1551         }
   1552       }
   1553       break;
   1554     }
   1555 
   1556     // Check that the shift amount is in range.  If not, don't perform
   1557     // undefined shifts.  When the shift is visited it will be
   1558     // simplified.
   1559     if (ShAmt->uge(TypeBits))
   1560       break;
   1561 
   1562     if (ICI.isEquality()) {
   1563       // If we are comparing against bits always shifted out, the
   1564       // comparison cannot succeed.
   1565       Constant *Comp =
   1566         ConstantExpr::getShl(ConstantExpr::getLShr(RHS, ShAmt),
   1567                                                                  ShAmt);
   1568       if (Comp != RHS) {// Comparing against a bit that we know is zero.
   1569         bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
   1570         Constant *Cst = Builder->getInt1(IsICMP_NE);
   1571         return ReplaceInstUsesWith(ICI, Cst);
   1572       }
   1573 
   1574       // If the shift is NUW, then it is just shifting out zeros, no need for an
   1575       // AND.
   1576       if (cast<BinaryOperator>(LHSI)->hasNoUnsignedWrap())
   1577         return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
   1578                             ConstantExpr::getLShr(RHS, ShAmt));
   1579 
   1580       // If the shift is NSW and we compare to 0, then it is just shifting out
   1581       // sign bits, no need for an AND either.
   1582       if (cast<BinaryOperator>(LHSI)->hasNoSignedWrap() && RHSV == 0)
   1583         return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
   1584                             ConstantExpr::getLShr(RHS, ShAmt));
   1585 
   1586       if (LHSI->hasOneUse()) {
   1587         // Otherwise strength reduce the shift into an and.
   1588         uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
   1589         Constant *Mask = Builder->getInt(APInt::getLowBitsSet(TypeBits,
   1590                                                           TypeBits - ShAmtVal));
   1591 
   1592         Value *And =
   1593           Builder->CreateAnd(LHSI->getOperand(0),Mask, LHSI->getName()+".mask");
   1594         return new ICmpInst(ICI.getPredicate(), And,
   1595                             ConstantExpr::getLShr(RHS, ShAmt));
   1596       }
   1597     }
   1598 
   1599     // If this is a signed comparison to 0 and the shift is sign preserving,
   1600     // use the shift LHS operand instead.
   1601     ICmpInst::Predicate pred = ICI.getPredicate();
   1602     if (isSignTest(pred, RHS) &&
   1603         cast<BinaryOperator>(LHSI)->hasNoSignedWrap())
   1604       return new ICmpInst(pred,
   1605                           LHSI->getOperand(0),
   1606                           Constant::getNullValue(RHS->getType()));
   1607 
   1608     // Otherwise, if this is a comparison of the sign bit, simplify to and/test.
   1609     bool TrueIfSigned = false;
   1610     if (LHSI->hasOneUse() &&
   1611         isSignBitCheck(ICI.getPredicate(), RHS, TrueIfSigned)) {
   1612       // (X << 31) <s 0  --> (X&1) != 0
   1613       Constant *Mask = ConstantInt::get(LHSI->getOperand(0)->getType(),
   1614                                         APInt::getOneBitSet(TypeBits,
   1615                                             TypeBits-ShAmt->getZExtValue()-1));
   1616       Value *And =
   1617         Builder->CreateAnd(LHSI->getOperand(0), Mask, LHSI->getName()+".mask");
   1618       return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ,
   1619                           And, Constant::getNullValue(And->getType()));
   1620     }
   1621 
   1622     // Transform (icmp pred iM (shl iM %v, N), CI)
   1623     // -> (icmp pred i(M-N) (trunc %v iM to i(M-N)), (trunc (CI>>N))
   1624     // Transform the shl to a trunc if (trunc (CI>>N)) has no loss and M-N.
   1625     // This enables to get rid of the shift in favor of a trunc which can be
   1626     // free on the target. It has the additional benefit of comparing to a
   1627     // smaller constant, which will be target friendly.
   1628     unsigned Amt = ShAmt->getLimitedValue(TypeBits-1);
   1629     if (LHSI->hasOneUse() &&
   1630         Amt != 0 && RHSV.countTrailingZeros() >= Amt) {
   1631       Type *NTy = IntegerType::get(ICI.getContext(), TypeBits - Amt);
   1632       Constant *NCI = ConstantExpr::getTrunc(
   1633                         ConstantExpr::getAShr(RHS,
   1634                           ConstantInt::get(RHS->getType(), Amt)),
   1635                         NTy);
   1636       return new ICmpInst(ICI.getPredicate(),
   1637                           Builder->CreateTrunc(LHSI->getOperand(0), NTy),
   1638                           NCI);
   1639     }
   1640 
   1641     break;
   1642   }
   1643 
   1644   case Instruction::LShr:         // (icmp pred (shr X, ShAmt), CI)
   1645   case Instruction::AShr: {
   1646     // Handle equality comparisons of shift-by-constant.
   1647     BinaryOperator *BO = cast<BinaryOperator>(LHSI);
   1648     if (ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1))) {
   1649       if (Instruction *Res = FoldICmpShrCst(ICI, BO, ShAmt))
   1650         return Res;
   1651     }
   1652 
   1653     // Handle exact shr's.
   1654     if (ICI.isEquality() && BO->isExact() && BO->hasOneUse()) {
   1655       if (RHSV.isMinValue())
   1656         return new ICmpInst(ICI.getPredicate(), BO->getOperand(0), RHS);
   1657     }
   1658     break;
   1659   }
   1660 
   1661   case Instruction::SDiv:
   1662   case Instruction::UDiv:
   1663     // Fold: icmp pred ([us]div X, C1), C2 -> range test
   1664     // Fold this div into the comparison, producing a range check.
   1665     // Determine, based on the divide type, what the range is being
   1666     // checked.  If there is an overflow on the low or high side, remember
   1667     // it, otherwise compute the range [low, hi) bounding the new value.
   1668     // See: InsertRangeTest above for the kinds of replacements possible.
   1669     if (ConstantInt *DivRHS = dyn_cast<ConstantInt>(LHSI->getOperand(1)))
   1670       if (Instruction *R = FoldICmpDivCst(ICI, cast<BinaryOperator>(LHSI),
   1671                                           DivRHS))
   1672         return R;
   1673     break;
   1674 
   1675   case Instruction::Sub: {
   1676     ConstantInt *LHSC = dyn_cast<ConstantInt>(LHSI->getOperand(0));
   1677     if (!LHSC) break;
   1678     const APInt &LHSV = LHSC->getValue();
   1679 
   1680     // C1-X <u C2 -> (X|(C2-1)) == C1
   1681     //   iff C1 & (C2-1) == C2-1
   1682     //       C2 is a power of 2
   1683     if (ICI.getPredicate() == ICmpInst::ICMP_ULT && LHSI->hasOneUse() &&
   1684         RHSV.isPowerOf2() && (LHSV & (RHSV - 1)) == (RHSV - 1))
   1685       return new ICmpInst(ICmpInst::ICMP_EQ,
   1686                           Builder->CreateOr(LHSI->getOperand(1), RHSV - 1),
   1687                           LHSC);
   1688 
   1689     // C1-X >u C2 -> (X|C2) != C1
   1690     //   iff C1 & C2 == C2
   1691     //       C2+1 is a power of 2
   1692     if (ICI.getPredicate() == ICmpInst::ICMP_UGT && LHSI->hasOneUse() &&
   1693         (RHSV + 1).isPowerOf2() && (LHSV & RHSV) == RHSV)
   1694       return new ICmpInst(ICmpInst::ICMP_NE,
   1695                           Builder->CreateOr(LHSI->getOperand(1), RHSV), LHSC);
   1696     break;
   1697   }
   1698 
   1699   case Instruction::Add:
   1700     // Fold: icmp pred (add X, C1), C2
   1701     if (!ICI.isEquality()) {
   1702       ConstantInt *LHSC = dyn_cast<ConstantInt>(LHSI->getOperand(1));
   1703       if (!LHSC) break;
   1704       const APInt &LHSV = LHSC->getValue();
   1705 
   1706       ConstantRange CR = ICI.makeConstantRange(ICI.getPredicate(), RHSV)
   1707                             .subtract(LHSV);
   1708 
   1709       if (ICI.isSigned()) {
   1710         if (CR.getLower().isSignBit()) {
   1711           return new ICmpInst(ICmpInst::ICMP_SLT, LHSI->getOperand(0),
   1712                               Builder->getInt(CR.getUpper()));
   1713         } else if (CR.getUpper().isSignBit()) {
   1714           return new ICmpInst(ICmpInst::ICMP_SGE, LHSI->getOperand(0),
   1715                               Builder->getInt(CR.getLower()));
   1716         }
   1717       } else {
   1718         if (CR.getLower().isMinValue()) {
   1719           return new ICmpInst(ICmpInst::ICMP_ULT, LHSI->getOperand(0),
   1720                               Builder->getInt(CR.getUpper()));
   1721         } else if (CR.getUpper().isMinValue()) {
   1722           return new ICmpInst(ICmpInst::ICMP_UGE, LHSI->getOperand(0),
   1723                               Builder->getInt(CR.getLower()));
   1724         }
   1725       }
   1726 
   1727       // X-C1 <u C2 -> (X & -C2) == C1
   1728       //   iff C1 & (C2-1) == 0
   1729       //       C2 is a power of 2
   1730       if (ICI.getPredicate() == ICmpInst::ICMP_ULT && LHSI->hasOneUse() &&
   1731           RHSV.isPowerOf2() && (LHSV & (RHSV - 1)) == 0)
   1732         return new ICmpInst(ICmpInst::ICMP_EQ,
   1733                             Builder->CreateAnd(LHSI->getOperand(0), -RHSV),
   1734                             ConstantExpr::getNeg(LHSC));
   1735 
   1736       // X-C1 >u C2 -> (X & ~C2) != C1
   1737       //   iff C1 & C2 == 0
   1738       //       C2+1 is a power of 2
   1739       if (ICI.getPredicate() == ICmpInst::ICMP_UGT && LHSI->hasOneUse() &&
   1740           (RHSV + 1).isPowerOf2() && (LHSV & RHSV) == 0)
   1741         return new ICmpInst(ICmpInst::ICMP_NE,
   1742                             Builder->CreateAnd(LHSI->getOperand(0), ~RHSV),
   1743                             ConstantExpr::getNeg(LHSC));
   1744     }
   1745     break;
   1746   }
   1747 
   1748   // Simplify icmp_eq and icmp_ne instructions with integer constant RHS.
   1749   if (ICI.isEquality()) {
   1750     bool isICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
   1751 
   1752     // If the first operand is (add|sub|and|or|xor|rem) with a constant, and
   1753     // the second operand is a constant, simplify a bit.
   1754     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(LHSI)) {
   1755       switch (BO->getOpcode()) {
   1756       case Instruction::SRem:
   1757         // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
   1758         if (RHSV == 0 && isa<ConstantInt>(BO->getOperand(1)) &&BO->hasOneUse()){
   1759           const APInt &V = cast<ConstantInt>(BO->getOperand(1))->getValue();
   1760           if (V.sgt(1) && V.isPowerOf2()) {
   1761             Value *NewRem =
   1762               Builder->CreateURem(BO->getOperand(0), BO->getOperand(1),
   1763                                   BO->getName());
   1764             return new ICmpInst(ICI.getPredicate(), NewRem,
   1765                                 Constant::getNullValue(BO->getType()));
   1766           }
   1767         }
   1768         break;
   1769       case Instruction::Add:
   1770         // Replace ((add A, B) != C) with (A != C-B) if B & C are constants.
   1771         if (ConstantInt *BOp1C = dyn_cast<ConstantInt>(BO->getOperand(1))) {
   1772           if (BO->hasOneUse())
   1773             return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
   1774                                 ConstantExpr::getSub(RHS, BOp1C));
   1775         } else if (RHSV == 0) {
   1776           // Replace ((add A, B) != 0) with (A != -B) if A or B is
   1777           // efficiently invertible, or if the add has just this one use.
   1778           Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
   1779 
   1780           if (Value *NegVal = dyn_castNegVal(BOp1))
   1781             return new ICmpInst(ICI.getPredicate(), BOp0, NegVal);
   1782           if (Value *NegVal = dyn_castNegVal(BOp0))
   1783             return new ICmpInst(ICI.getPredicate(), NegVal, BOp1);
   1784           if (BO->hasOneUse()) {
   1785             Value *Neg = Builder->CreateNeg(BOp1);
   1786             Neg->takeName(BO);
   1787             return new ICmpInst(ICI.getPredicate(), BOp0, Neg);
   1788           }
   1789         }
   1790         break;
   1791       case Instruction::Xor:
   1792         // For the xor case, we can xor two constants together, eliminating
   1793         // the explicit xor.
   1794         if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1))) {
   1795           return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
   1796                               ConstantExpr::getXor(RHS, BOC));
   1797         } else if (RHSV == 0) {
   1798           // Replace ((xor A, B) != 0) with (A != B)
   1799           return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
   1800                               BO->getOperand(1));
   1801         }
   1802         break;
   1803       case Instruction::Sub:
   1804         // Replace ((sub A, B) != C) with (B != A-C) if A & C are constants.
   1805         if (ConstantInt *BOp0C = dyn_cast<ConstantInt>(BO->getOperand(0))) {
   1806           if (BO->hasOneUse())
   1807             return new ICmpInst(ICI.getPredicate(), BO->getOperand(1),
   1808                                 ConstantExpr::getSub(BOp0C, RHS));
   1809         } else if (RHSV == 0) {
   1810           // Replace ((sub A, B) != 0) with (A != B)
   1811           return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
   1812                               BO->getOperand(1));
   1813         }
   1814         break;
   1815       case Instruction::Or:
   1816         // If bits are being or'd in that are not present in the constant we
   1817         // are comparing against, then the comparison could never succeed!
   1818         if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
   1819           Constant *NotCI = ConstantExpr::getNot(RHS);
   1820           if (!ConstantExpr::getAnd(BOC, NotCI)->isNullValue())
   1821             return ReplaceInstUsesWith(ICI, Builder->getInt1(isICMP_NE));
   1822         }
   1823         break;
   1824 
   1825       case Instruction::And:
   1826         if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
   1827           // If bits are being compared against that are and'd out, then the
   1828           // comparison can never succeed!
   1829           if ((RHSV & ~BOC->getValue()) != 0)
   1830             return ReplaceInstUsesWith(ICI, Builder->getInt1(isICMP_NE));
   1831 
   1832           // If we have ((X & C) == C), turn it into ((X & C) != 0).
   1833           if (RHS == BOC && RHSV.isPowerOf2())
   1834             return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ :
   1835                                 ICmpInst::ICMP_NE, LHSI,
   1836                                 Constant::getNullValue(RHS->getType()));
   1837 
   1838           // Don't perform the following transforms if the AND has multiple uses
   1839           if (!BO->hasOneUse())
   1840             break;
   1841 
   1842           // Replace (and X, (1 << size(X)-1) != 0) with x s< 0
   1843           if (BOC->getValue().isSignBit()) {
   1844             Value *X = BO->getOperand(0);
   1845             Constant *Zero = Constant::getNullValue(X->getType());
   1846             ICmpInst::Predicate pred = isICMP_NE ?
   1847               ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE;
   1848             return new ICmpInst(pred, X, Zero);
   1849           }
   1850 
   1851           // ((X & ~7) == 0) --> X < 8
   1852           if (RHSV == 0 && isHighOnes(BOC)) {
   1853             Value *X = BO->getOperand(0);
   1854             Constant *NegX = ConstantExpr::getNeg(BOC);
   1855             ICmpInst::Predicate pred = isICMP_NE ?
   1856               ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
   1857             return new ICmpInst(pred, X, NegX);
   1858           }
   1859         }
   1860         break;
   1861       case Instruction::Mul:
   1862         if (RHSV == 0 && BO->hasNoSignedWrap()) {
   1863           if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
   1864             // The trivial case (mul X, 0) is handled by InstSimplify
   1865             // General case : (mul X, C) != 0 iff X != 0
   1866             //                (mul X, C) == 0 iff X == 0
   1867             if (!BOC->isZero())
   1868               return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
   1869                                   Constant::getNullValue(RHS->getType()));
   1870           }
   1871         }
   1872         break;
   1873       default: break;
   1874       }
   1875     } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(LHSI)) {
   1876       // Handle icmp {eq|ne} <intrinsic>, intcst.
   1877       switch (II->getIntrinsicID()) {
   1878       case Intrinsic::bswap:
   1879         Worklist.Add(II);
   1880         ICI.setOperand(0, II->getArgOperand(0));
   1881         ICI.setOperand(1, Builder->getInt(RHSV.byteSwap()));
   1882         return &ICI;
   1883       case Intrinsic::ctlz:
   1884       case Intrinsic::cttz:
   1885         // ctz(A) == bitwidth(a)  ->  A == 0 and likewise for !=
   1886         if (RHSV == RHS->getType()->getBitWidth()) {
   1887           Worklist.Add(II);
   1888           ICI.setOperand(0, II->getArgOperand(0));
   1889           ICI.setOperand(1, ConstantInt::get(RHS->getType(), 0));
   1890           return &ICI;
   1891         }
   1892         break;
   1893       case Intrinsic::ctpop:
   1894         // popcount(A) == 0  ->  A == 0 and likewise for !=
   1895         if (RHS->isZero()) {
   1896           Worklist.Add(II);
   1897           ICI.setOperand(0, II->getArgOperand(0));
   1898           ICI.setOperand(1, RHS);
   1899           return &ICI;
   1900         }
   1901         break;
   1902       default:
   1903         break;
   1904       }
   1905     }
   1906   }
   1907   return nullptr;
   1908 }
   1909 
   1910 /// visitICmpInstWithCastAndCast - Handle icmp (cast x to y), (cast/cst).
   1911 /// We only handle extending casts so far.
   1912 ///
   1913 Instruction *InstCombiner::visitICmpInstWithCastAndCast(ICmpInst &ICI) {
   1914   const CastInst *LHSCI = cast<CastInst>(ICI.getOperand(0));
   1915   Value *LHSCIOp        = LHSCI->getOperand(0);
   1916   Type *SrcTy     = LHSCIOp->getType();
   1917   Type *DestTy    = LHSCI->getType();
   1918   Value *RHSCIOp;
   1919 
   1920   // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the
   1921   // integer type is the same size as the pointer type.
   1922   if (LHSCI->getOpcode() == Instruction::PtrToInt &&
   1923       DL.getPointerTypeSizeInBits(SrcTy) == DestTy->getIntegerBitWidth()) {
   1924     Value *RHSOp = nullptr;
   1925     if (PtrToIntOperator *RHSC = dyn_cast<PtrToIntOperator>(ICI.getOperand(1))) {
   1926       Value *RHSCIOp = RHSC->getOperand(0);
   1927       if (RHSCIOp->getType()->getPointerAddressSpace() ==
   1928           LHSCIOp->getType()->getPointerAddressSpace()) {
   1929         RHSOp = RHSC->getOperand(0);
   1930         // If the pointer types don't match, insert a bitcast.
   1931         if (LHSCIOp->getType() != RHSOp->getType())
   1932           RHSOp = Builder->CreateBitCast(RHSOp, LHSCIOp->getType());
   1933       }
   1934     } else if (Constant *RHSC = dyn_cast<Constant>(ICI.getOperand(1)))
   1935       RHSOp = ConstantExpr::getIntToPtr(RHSC, SrcTy);
   1936 
   1937     if (RHSOp)
   1938       return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSOp);
   1939   }
   1940 
   1941   // The code below only handles extension cast instructions, so far.
   1942   // Enforce this.
   1943   if (LHSCI->getOpcode() != Instruction::ZExt &&
   1944       LHSCI->getOpcode() != Instruction::SExt)
   1945     return nullptr;
   1946 
   1947   bool isSignedExt = LHSCI->getOpcode() == Instruction::SExt;
   1948   bool isSignedCmp = ICI.isSigned();
   1949 
   1950   if (CastInst *CI = dyn_cast<CastInst>(ICI.getOperand(1))) {
   1951     // Not an extension from the same type?
   1952     RHSCIOp = CI->getOperand(0);
   1953     if (RHSCIOp->getType() != LHSCIOp->getType())
   1954       return nullptr;
   1955 
   1956     // If the signedness of the two casts doesn't agree (i.e. one is a sext
   1957     // and the other is a zext), then we can't handle this.
   1958     if (CI->getOpcode() != LHSCI->getOpcode())
   1959       return nullptr;
   1960 
   1961     // Deal with equality cases early.
   1962     if (ICI.isEquality())
   1963       return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
   1964 
   1965     // A signed comparison of sign extended values simplifies into a
   1966     // signed comparison.
   1967     if (isSignedCmp && isSignedExt)
   1968       return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
   1969 
   1970     // The other three cases all fold into an unsigned comparison.
   1971     return new ICmpInst(ICI.getUnsignedPredicate(), LHSCIOp, RHSCIOp);
   1972   }
   1973 
   1974   // If we aren't dealing with a constant on the RHS, exit early
   1975   ConstantInt *CI = dyn_cast<ConstantInt>(ICI.getOperand(1));
   1976   if (!CI)
   1977     return nullptr;
   1978 
   1979   // Compute the constant that would happen if we truncated to SrcTy then
   1980   // reextended to DestTy.
   1981   Constant *Res1 = ConstantExpr::getTrunc(CI, SrcTy);
   1982   Constant *Res2 = ConstantExpr::getCast(LHSCI->getOpcode(),
   1983                                                 Res1, DestTy);
   1984 
   1985   // If the re-extended constant didn't change...
   1986   if (Res2 == CI) {
   1987     // Deal with equality cases early.
   1988     if (ICI.isEquality())
   1989       return new ICmpInst(ICI.getPredicate(), LHSCIOp, Res1);
   1990 
   1991     // A signed comparison of sign extended values simplifies into a
   1992     // signed comparison.
   1993     if (isSignedExt && isSignedCmp)
   1994       return new ICmpInst(ICI.getPredicate(), LHSCIOp, Res1);
   1995 
   1996     // The other three cases all fold into an unsigned comparison.
   1997     return new ICmpInst(ICI.getUnsignedPredicate(), LHSCIOp, Res1);
   1998   }
   1999 
   2000   // The re-extended constant changed so the constant cannot be represented
   2001   // in the shorter type. Consequently, we cannot emit a simple comparison.
   2002   // All the cases that fold to true or false will have already been handled
   2003   // by SimplifyICmpInst, so only deal with the tricky case.
   2004 
   2005   if (isSignedCmp || !isSignedExt)
   2006     return nullptr;
   2007 
   2008   // Evaluate the comparison for LT (we invert for GT below). LE and GE cases
   2009   // should have been folded away previously and not enter in here.
   2010 
   2011   // We're performing an unsigned comp with a sign extended value.
   2012   // This is true if the input is >= 0. [aka >s -1]
   2013   Constant *NegOne = Constant::getAllOnesValue(SrcTy);
   2014   Value *Result = Builder->CreateICmpSGT(LHSCIOp, NegOne, ICI.getName());
   2015 
   2016   // Finally, return the value computed.
   2017   if (ICI.getPredicate() == ICmpInst::ICMP_ULT)
   2018     return ReplaceInstUsesWith(ICI, Result);
   2019 
   2020   assert(ICI.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!");
   2021   return BinaryOperator::CreateNot(Result);
   2022 }
   2023 
   2024 /// ProcessUGT_ADDCST_ADD - The caller has matched a pattern of the form:
   2025 ///   I = icmp ugt (add (add A, B), CI2), CI1
   2026 /// If this is of the form:
   2027 ///   sum = a + b
   2028 ///   if (sum+128 >u 255)
   2029 /// Then replace it with llvm.sadd.with.overflow.i8.
   2030 ///
   2031 static Instruction *ProcessUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B,
   2032                                           ConstantInt *CI2, ConstantInt *CI1,
   2033                                           InstCombiner &IC) {
   2034   // The transformation we're trying to do here is to transform this into an
   2035   // llvm.sadd.with.overflow.  To do this, we have to replace the original add
   2036   // with a narrower add, and discard the add-with-constant that is part of the
   2037   // range check (if we can't eliminate it, this isn't profitable).
   2038 
   2039   // In order to eliminate the add-with-constant, the compare can be its only
   2040   // use.
   2041   Instruction *AddWithCst = cast<Instruction>(I.getOperand(0));
   2042   if (!AddWithCst->hasOneUse()) return nullptr;
   2043 
   2044   // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow.
   2045   if (!CI2->getValue().isPowerOf2()) return nullptr;
   2046   unsigned NewWidth = CI2->getValue().countTrailingZeros();
   2047   if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31) return nullptr;
   2048 
   2049   // The width of the new add formed is 1 more than the bias.
   2050   ++NewWidth;
   2051 
   2052   // Check to see that CI1 is an all-ones value with NewWidth bits.
   2053   if (CI1->getBitWidth() == NewWidth ||
   2054       CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth))
   2055     return nullptr;
   2056 
   2057   // This is only really a signed overflow check if the inputs have been
   2058   // sign-extended; check for that condition. For example, if CI2 is 2^31 and
   2059   // the operands of the add are 64 bits wide, we need at least 33 sign bits.
   2060   unsigned NeededSignBits = CI1->getBitWidth() - NewWidth + 1;
   2061   if (IC.ComputeNumSignBits(A, 0, &I) < NeededSignBits ||
   2062       IC.ComputeNumSignBits(B, 0, &I) < NeededSignBits)
   2063     return nullptr;
   2064 
   2065   // In order to replace the original add with a narrower
   2066   // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant
   2067   // and truncates that discard the high bits of the add.  Verify that this is
   2068   // the case.
   2069   Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0));
   2070   for (User *U : OrigAdd->users()) {
   2071     if (U == AddWithCst) continue;
   2072 
   2073     // Only accept truncates for now.  We would really like a nice recursive
   2074     // predicate like SimplifyDemandedBits, but which goes downwards the use-def
   2075     // chain to see which bits of a value are actually demanded.  If the
   2076     // original add had another add which was then immediately truncated, we
   2077     // could still do the transformation.
   2078     TruncInst *TI = dyn_cast<TruncInst>(U);
   2079     if (!TI || TI->getType()->getPrimitiveSizeInBits() > NewWidth)
   2080       return nullptr;
   2081   }
   2082 
   2083   // If the pattern matches, truncate the inputs to the narrower type and
   2084   // use the sadd_with_overflow intrinsic to efficiently compute both the
   2085   // result and the overflow bit.
   2086   Module *M = I.getParent()->getParent()->getParent();
   2087 
   2088   Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth);
   2089   Value *F = Intrinsic::getDeclaration(M, Intrinsic::sadd_with_overflow,
   2090                                        NewType);
   2091 
   2092   InstCombiner::BuilderTy *Builder = IC.Builder;
   2093 
   2094   // Put the new code above the original add, in case there are any uses of the
   2095   // add between the add and the compare.
   2096   Builder->SetInsertPoint(OrigAdd);
   2097 
   2098   Value *TruncA = Builder->CreateTrunc(A, NewType, A->getName()+".trunc");
   2099   Value *TruncB = Builder->CreateTrunc(B, NewType, B->getName()+".trunc");
   2100   CallInst *Call = Builder->CreateCall2(F, TruncA, TruncB, "sadd");
   2101   Value *Add = Builder->CreateExtractValue(Call, 0, "sadd.result");
   2102   Value *ZExt = Builder->CreateZExt(Add, OrigAdd->getType());
   2103 
   2104   // The inner add was the result of the narrow add, zero extended to the
   2105   // wider type.  Replace it with the result computed by the intrinsic.
   2106   IC.ReplaceInstUsesWith(*OrigAdd, ZExt);
   2107 
   2108   // The original icmp gets replaced with the overflow value.
   2109   return ExtractValueInst::Create(Call, 1, "sadd.overflow");
   2110 }
   2111 
   2112 bool InstCombiner::OptimizeOverflowCheck(OverflowCheckFlavor OCF, Value *LHS,
   2113                                          Value *RHS, Instruction &OrigI,
   2114                                          Value *&Result, Constant *&Overflow) {
   2115   assert((!OrigI.isCommutative() ||
   2116           !(isa<Constant>(LHS) && !isa<Constant>(RHS))) &&
   2117          "call with a constant RHS if possible!");
   2118 
   2119   auto SetResult = [&](Value *OpResult, Constant *OverflowVal, bool ReuseName) {
   2120     Result = OpResult;
   2121     Overflow = OverflowVal;
   2122     if (ReuseName)
   2123       Result->takeName(&OrigI);
   2124     return true;
   2125   };
   2126 
   2127   switch (OCF) {
   2128   case OCF_INVALID:
   2129     llvm_unreachable("bad overflow check kind!");
   2130 
   2131   case OCF_UNSIGNED_ADD: {
   2132     OverflowResult OR = computeOverflowForUnsignedAdd(LHS, RHS, &OrigI);
   2133     if (OR == OverflowResult::NeverOverflows)
   2134       return SetResult(Builder->CreateNUWAdd(LHS, RHS), Builder->getFalse(),
   2135                        true);
   2136 
   2137     if (OR == OverflowResult::AlwaysOverflows)
   2138       return SetResult(Builder->CreateAdd(LHS, RHS), Builder->getTrue(), true);
   2139   }
   2140   // FALL THROUGH uadd into sadd
   2141   case OCF_SIGNED_ADD: {
   2142     // X + undef -> undef
   2143     if (isa<UndefValue>(RHS))
   2144       return SetResult(UndefValue::get(RHS->getType()),
   2145                        UndefValue::get(Builder->getInt1Ty()), false);
   2146 
   2147     if (ConstantInt *ConstRHS = dyn_cast<ConstantInt>(RHS))
   2148       // X + 0 -> {X, false}
   2149       if (ConstRHS->isZero())
   2150         return SetResult(LHS, Builder->getFalse(), false);
   2151 
   2152     // We can strength reduce this signed add into a regular add if we can prove
   2153     // that it will never overflow.
   2154     if (OCF == OCF_SIGNED_ADD)
   2155       if (WillNotOverflowSignedAdd(LHS, RHS, OrigI))
   2156         return SetResult(Builder->CreateNSWAdd(LHS, RHS), Builder->getFalse(),
   2157                          true);
   2158   }
   2159 
   2160   case OCF_UNSIGNED_SUB:
   2161   case OCF_SIGNED_SUB: {
   2162     // undef - X -> undef
   2163     // X - undef -> undef
   2164     if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS))
   2165       return SetResult(UndefValue::get(LHS->getType()),
   2166                        UndefValue::get(Builder->getInt1Ty()), false);
   2167 
   2168     if (ConstantInt *ConstRHS = dyn_cast<ConstantInt>(RHS))
   2169       // X - 0 -> {X, false}
   2170       if (ConstRHS->isZero())
   2171         return SetResult(UndefValue::get(LHS->getType()), Builder->getFalse(),
   2172                          false);
   2173 
   2174     if (OCF == OCF_SIGNED_SUB) {
   2175       if (WillNotOverflowSignedSub(LHS, RHS, OrigI))
   2176         return SetResult(Builder->CreateNSWSub(LHS, RHS), Builder->getFalse(),
   2177                          true);
   2178     } else {
   2179       if (WillNotOverflowUnsignedSub(LHS, RHS, OrigI))
   2180         return SetResult(Builder->CreateNUWSub(LHS, RHS), Builder->getFalse(),
   2181                          true);
   2182     }
   2183     break;
   2184   }
   2185 
   2186   case OCF_UNSIGNED_MUL: {
   2187     OverflowResult OR = computeOverflowForUnsignedMul(LHS, RHS, &OrigI);
   2188     if (OR == OverflowResult::NeverOverflows)
   2189       return SetResult(Builder->CreateNUWMul(LHS, RHS), Builder->getFalse(),
   2190                        true);
   2191     if (OR == OverflowResult::AlwaysOverflows)
   2192       return SetResult(Builder->CreateMul(LHS, RHS), Builder->getTrue(), true);
   2193   } // FALL THROUGH
   2194   case OCF_SIGNED_MUL:
   2195     // X * undef -> undef
   2196     if (isa<UndefValue>(RHS))
   2197       return SetResult(UndefValue::get(LHS->getType()),
   2198                        UndefValue::get(Builder->getInt1Ty()), false);
   2199 
   2200     if (ConstantInt *RHSI = dyn_cast<ConstantInt>(RHS)) {
   2201       // X * 0 -> {0, false}
   2202       if (RHSI->isZero())
   2203         return SetResult(Constant::getNullValue(RHS->getType()),
   2204                          Builder->getFalse(), false);
   2205 
   2206       // X * 1 -> {X, false}
   2207       if (RHSI->equalsInt(1))
   2208         return SetResult(LHS, Builder->getFalse(), false);
   2209     }
   2210 
   2211     if (OCF == OCF_SIGNED_MUL)
   2212       if (WillNotOverflowSignedMul(LHS, RHS, OrigI))
   2213         return SetResult(Builder->CreateNSWMul(LHS, RHS), Builder->getFalse(),
   2214                          true);
   2215   }
   2216 
   2217   return false;
   2218 }
   2219 
   2220 /// \brief Recognize and process idiom involving test for multiplication
   2221 /// overflow.
   2222 ///
   2223 /// The caller has matched a pattern of the form:
   2224 ///   I = cmp u (mul(zext A, zext B), V
   2225 /// The function checks if this is a test for overflow and if so replaces
   2226 /// multiplication with call to 'mul.with.overflow' intrinsic.
   2227 ///
   2228 /// \param I Compare instruction.
   2229 /// \param MulVal Result of 'mult' instruction.  It is one of the arguments of
   2230 ///               the compare instruction.  Must be of integer type.
   2231 /// \param OtherVal The other argument of compare instruction.
   2232 /// \returns Instruction which must replace the compare instruction, NULL if no
   2233 ///          replacement required.
   2234 static Instruction *ProcessUMulZExtIdiom(ICmpInst &I, Value *MulVal,
   2235                                          Value *OtherVal, InstCombiner &IC) {
   2236   // Don't bother doing this transformation for pointers, don't do it for
   2237   // vectors.
   2238   if (!isa<IntegerType>(MulVal->getType()))
   2239     return nullptr;
   2240 
   2241   assert(I.getOperand(0) == MulVal || I.getOperand(1) == MulVal);
   2242   assert(I.getOperand(0) == OtherVal || I.getOperand(1) == OtherVal);
   2243   Instruction *MulInstr = cast<Instruction>(MulVal);
   2244   assert(MulInstr->getOpcode() == Instruction::Mul);
   2245 
   2246   auto *LHS = cast<ZExtOperator>(MulInstr->getOperand(0)),
   2247        *RHS = cast<ZExtOperator>(MulInstr->getOperand(1));
   2248   assert(LHS->getOpcode() == Instruction::ZExt);
   2249   assert(RHS->getOpcode() == Instruction::ZExt);
   2250   Value *A = LHS->getOperand(0), *B = RHS->getOperand(0);
   2251 
   2252   // Calculate type and width of the result produced by mul.with.overflow.
   2253   Type *TyA = A->getType(), *TyB = B->getType();
   2254   unsigned WidthA = TyA->getPrimitiveSizeInBits(),
   2255            WidthB = TyB->getPrimitiveSizeInBits();
   2256   unsigned MulWidth;
   2257   Type *MulType;
   2258   if (WidthB > WidthA) {
   2259     MulWidth = WidthB;
   2260     MulType = TyB;
   2261   } else {
   2262     MulWidth = WidthA;
   2263     MulType = TyA;
   2264   }
   2265 
   2266   // In order to replace the original mul with a narrower mul.with.overflow,
   2267   // all uses must ignore upper bits of the product.  The number of used low
   2268   // bits must be not greater than the width of mul.with.overflow.
   2269   if (MulVal->hasNUsesOrMore(2))
   2270     for (User *U : MulVal->users()) {
   2271       if (U == &I)
   2272         continue;
   2273       if (TruncInst *TI = dyn_cast<TruncInst>(U)) {
   2274         // Check if truncation ignores bits above MulWidth.
   2275         unsigned TruncWidth = TI->getType()->getPrimitiveSizeInBits();
   2276         if (TruncWidth > MulWidth)
   2277           return nullptr;
   2278       } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) {
   2279         // Check if AND ignores bits above MulWidth.
   2280         if (BO->getOpcode() != Instruction::And)
   2281           return nullptr;
   2282         if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
   2283           const APInt &CVal = CI->getValue();
   2284           if (CVal.getBitWidth() - CVal.countLeadingZeros() > MulWidth)
   2285             return nullptr;
   2286         }
   2287       } else {
   2288         // Other uses prohibit this transformation.
   2289         return nullptr;
   2290       }
   2291     }
   2292 
   2293   // Recognize patterns
   2294   switch (I.getPredicate()) {
   2295   case ICmpInst::ICMP_EQ:
   2296   case ICmpInst::ICMP_NE:
   2297     // Recognize pattern:
   2298     //   mulval = mul(zext A, zext B)
   2299     //   cmp eq/neq mulval, zext trunc mulval
   2300     if (ZExtInst *Zext = dyn_cast<ZExtInst>(OtherVal))
   2301       if (Zext->hasOneUse()) {
   2302         Value *ZextArg = Zext->getOperand(0);
   2303         if (TruncInst *Trunc = dyn_cast<TruncInst>(ZextArg))
   2304           if (Trunc->getType()->getPrimitiveSizeInBits() == MulWidth)
   2305             break; //Recognized
   2306       }
   2307 
   2308     // Recognize pattern:
   2309     //   mulval = mul(zext A, zext B)
   2310     //   cmp eq/neq mulval, and(mulval, mask), mask selects low MulWidth bits.
   2311     ConstantInt *CI;
   2312     Value *ValToMask;
   2313     if (match(OtherVal, m_And(m_Value(ValToMask), m_ConstantInt(CI)))) {
   2314       if (ValToMask != MulVal)
   2315         return nullptr;
   2316       const APInt &CVal = CI->getValue() + 1;
   2317       if (CVal.isPowerOf2()) {
   2318         unsigned MaskWidth = CVal.logBase2();
   2319         if (MaskWidth == MulWidth)
   2320           break; // Recognized
   2321       }
   2322     }
   2323     return nullptr;
   2324 
   2325   case ICmpInst::ICMP_UGT:
   2326     // Recognize pattern:
   2327     //   mulval = mul(zext A, zext B)
   2328     //   cmp ugt mulval, max
   2329     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
   2330       APInt MaxVal = APInt::getMaxValue(MulWidth);
   2331       MaxVal = MaxVal.zext(CI->getBitWidth());
   2332       if (MaxVal.eq(CI->getValue()))
   2333         break; // Recognized
   2334     }
   2335     return nullptr;
   2336 
   2337   case ICmpInst::ICMP_UGE:
   2338     // Recognize pattern:
   2339     //   mulval = mul(zext A, zext B)
   2340     //   cmp uge mulval, max+1
   2341     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
   2342       APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth);
   2343       if (MaxVal.eq(CI->getValue()))
   2344         break; // Recognized
   2345     }
   2346     return nullptr;
   2347 
   2348   case ICmpInst::ICMP_ULE:
   2349     // Recognize pattern:
   2350     //   mulval = mul(zext A, zext B)
   2351     //   cmp ule mulval, max
   2352     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
   2353       APInt MaxVal = APInt::getMaxValue(MulWidth);
   2354       MaxVal = MaxVal.zext(CI->getBitWidth());
   2355       if (MaxVal.eq(CI->getValue()))
   2356         break; // Recognized
   2357     }
   2358     return nullptr;
   2359 
   2360   case ICmpInst::ICMP_ULT:
   2361     // Recognize pattern:
   2362     //   mulval = mul(zext A, zext B)
   2363     //   cmp ule mulval, max + 1
   2364     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
   2365       APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth);
   2366       if (MaxVal.eq(CI->getValue()))
   2367         break; // Recognized
   2368     }
   2369     return nullptr;
   2370 
   2371   default:
   2372     return nullptr;
   2373   }
   2374 
   2375   InstCombiner::BuilderTy *Builder = IC.Builder;
   2376   Builder->SetInsertPoint(MulInstr);
   2377   Module *M = I.getParent()->getParent()->getParent();
   2378 
   2379   // Replace: mul(zext A, zext B) --> mul.with.overflow(A, B)
   2380   Value *MulA = A, *MulB = B;
   2381   if (WidthA < MulWidth)
   2382     MulA = Builder->CreateZExt(A, MulType);
   2383   if (WidthB < MulWidth)
   2384     MulB = Builder->CreateZExt(B, MulType);
   2385   Value *F =
   2386       Intrinsic::getDeclaration(M, Intrinsic::umul_with_overflow, MulType);
   2387   CallInst *Call = Builder->CreateCall2(F, MulA, MulB, "umul");
   2388   IC.Worklist.Add(MulInstr);
   2389 
   2390   // If there are uses of mul result other than the comparison, we know that
   2391   // they are truncation or binary AND. Change them to use result of
   2392   // mul.with.overflow and adjust properly mask/size.
   2393   if (MulVal->hasNUsesOrMore(2)) {
   2394     Value *Mul = Builder->CreateExtractValue(Call, 0, "umul.value");
   2395     for (User *U : MulVal->users()) {
   2396       if (U == &I || U == OtherVal)
   2397         continue;
   2398       if (TruncInst *TI = dyn_cast<TruncInst>(U)) {
   2399         if (TI->getType()->getPrimitiveSizeInBits() == MulWidth)
   2400           IC.ReplaceInstUsesWith(*TI, Mul);
   2401         else
   2402           TI->setOperand(0, Mul);
   2403       } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) {
   2404         assert(BO->getOpcode() == Instruction::And);
   2405         // Replace (mul & mask) --> zext (mul.with.overflow & short_mask)
   2406         ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1));
   2407         APInt ShortMask = CI->getValue().trunc(MulWidth);
   2408         Value *ShortAnd = Builder->CreateAnd(Mul, ShortMask);
   2409         Instruction *Zext =
   2410             cast<Instruction>(Builder->CreateZExt(ShortAnd, BO->getType()));
   2411         IC.Worklist.Add(Zext);
   2412         IC.ReplaceInstUsesWith(*BO, Zext);
   2413       } else {
   2414         llvm_unreachable("Unexpected Binary operation");
   2415       }
   2416       IC.Worklist.Add(cast<Instruction>(U));
   2417     }
   2418   }
   2419   if (isa<Instruction>(OtherVal))
   2420     IC.Worklist.Add(cast<Instruction>(OtherVal));
   2421 
   2422   // The original icmp gets replaced with the overflow value, maybe inverted
   2423   // depending on predicate.
   2424   bool Inverse = false;
   2425   switch (I.getPredicate()) {
   2426   case ICmpInst::ICMP_NE:
   2427     break;
   2428   case ICmpInst::ICMP_EQ:
   2429     Inverse = true;
   2430     break;
   2431   case ICmpInst::ICMP_UGT:
   2432   case ICmpInst::ICMP_UGE:
   2433     if (I.getOperand(0) == MulVal)
   2434       break;
   2435     Inverse = true;
   2436     break;
   2437   case ICmpInst::ICMP_ULT:
   2438   case ICmpInst::ICMP_ULE:
   2439     if (I.getOperand(1) == MulVal)
   2440       break;
   2441     Inverse = true;
   2442     break;
   2443   default:
   2444     llvm_unreachable("Unexpected predicate");
   2445   }
   2446   if (Inverse) {
   2447     Value *Res = Builder->CreateExtractValue(Call, 1);
   2448     return BinaryOperator::CreateNot(Res);
   2449   }
   2450 
   2451   return ExtractValueInst::Create(Call, 1);
   2452 }
   2453 
   2454 // DemandedBitsLHSMask - When performing a comparison against a constant,
   2455 // it is possible that not all the bits in the LHS are demanded.  This helper
   2456 // method computes the mask that IS demanded.
   2457 static APInt DemandedBitsLHSMask(ICmpInst &I,
   2458                                  unsigned BitWidth, bool isSignCheck) {
   2459   if (isSignCheck)
   2460     return APInt::getSignBit(BitWidth);
   2461 
   2462   ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(1));
   2463   if (!CI) return APInt::getAllOnesValue(BitWidth);
   2464   const APInt &RHS = CI->getValue();
   2465 
   2466   switch (I.getPredicate()) {
   2467   // For a UGT comparison, we don't care about any bits that
   2468   // correspond to the trailing ones of the comparand.  The value of these
   2469   // bits doesn't impact the outcome of the comparison, because any value
   2470   // greater than the RHS must differ in a bit higher than these due to carry.
   2471   case ICmpInst::ICMP_UGT: {
   2472     unsigned trailingOnes = RHS.countTrailingOnes();
   2473     APInt lowBitsSet = APInt::getLowBitsSet(BitWidth, trailingOnes);
   2474     return ~lowBitsSet;
   2475   }
   2476 
   2477   // Similarly, for a ULT comparison, we don't care about the trailing zeros.
   2478   // Any value less than the RHS must differ in a higher bit because of carries.
   2479   case ICmpInst::ICMP_ULT: {
   2480     unsigned trailingZeros = RHS.countTrailingZeros();
   2481     APInt lowBitsSet = APInt::getLowBitsSet(BitWidth, trailingZeros);
   2482     return ~lowBitsSet;
   2483   }
   2484 
   2485   default:
   2486     return APInt::getAllOnesValue(BitWidth);
   2487   }
   2488 
   2489 }
   2490 
   2491 /// \brief Check if the order of \p Op0 and \p Op1 as operand in an ICmpInst
   2492 /// should be swapped.
   2493 /// The decision is based on how many times these two operands are reused
   2494 /// as subtract operands and their positions in those instructions.
   2495 /// The rational is that several architectures use the same instruction for
   2496 /// both subtract and cmp, thus it is better if the order of those operands
   2497 /// match.
   2498 /// \return true if Op0 and Op1 should be swapped.
   2499 static bool swapMayExposeCSEOpportunities(const Value * Op0,
   2500                                           const Value * Op1) {
   2501   // Filter out pointer value as those cannot appears directly in subtract.
   2502   // FIXME: we may want to go through inttoptrs or bitcasts.
   2503   if (Op0->getType()->isPointerTy())
   2504     return false;
   2505   // Count every uses of both Op0 and Op1 in a subtract.
   2506   // Each time Op0 is the first operand, count -1: swapping is bad, the
   2507   // subtract has already the same layout as the compare.
   2508   // Each time Op0 is the second operand, count +1: swapping is good, the
   2509   // subtract has a different layout as the compare.
   2510   // At the end, if the benefit is greater than 0, Op0 should come second to
   2511   // expose more CSE opportunities.
   2512   int GlobalSwapBenefits = 0;
   2513   for (const User *U : Op0->users()) {
   2514     const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(U);
   2515     if (!BinOp || BinOp->getOpcode() != Instruction::Sub)
   2516       continue;
   2517     // If Op0 is the first argument, this is not beneficial to swap the
   2518     // arguments.
   2519     int LocalSwapBenefits = -1;
   2520     unsigned Op1Idx = 1;
   2521     if (BinOp->getOperand(Op1Idx) == Op0) {
   2522       Op1Idx = 0;
   2523       LocalSwapBenefits = 1;
   2524     }
   2525     if (BinOp->getOperand(Op1Idx) != Op1)
   2526       continue;
   2527     GlobalSwapBenefits += LocalSwapBenefits;
   2528   }
   2529   return GlobalSwapBenefits > 0;
   2530 }
   2531 
   2532 /// \brief Check that one use is in the same block as the definition and all
   2533 /// other uses are in blocks dominated by a given block
   2534 ///
   2535 /// \param DI Definition
   2536 /// \param UI Use
   2537 /// \param DB Block that must dominate all uses of \p DI outside
   2538 ///           the parent block
   2539 /// \return true when \p UI is the only use of \p DI in the parent block
   2540 /// and all other uses of \p DI are in blocks dominated by \p DB.
   2541 ///
   2542 bool InstCombiner::dominatesAllUses(const Instruction *DI,
   2543                                     const Instruction *UI,
   2544                                     const BasicBlock *DB) const {
   2545   assert(DI && UI && "Instruction not defined\n");
   2546   // ignore incomplete definitions
   2547   if (!DI->getParent())
   2548     return false;
   2549   // DI and UI must be in the same block
   2550   if (DI->getParent() != UI->getParent())
   2551     return false;
   2552   // Protect from self-referencing blocks
   2553   if (DI->getParent() == DB)
   2554     return false;
   2555   // DominatorTree available?
   2556   if (!DT)
   2557     return false;
   2558   for (const User *U : DI->users()) {
   2559     auto *Usr = cast<Instruction>(U);
   2560     if (Usr != UI && !DT->dominates(DB, Usr->getParent()))
   2561       return false;
   2562   }
   2563   return true;
   2564 }
   2565 
   2566 ///
   2567 /// true when the instruction sequence within a block is select-cmp-br.
   2568 ///
   2569 static bool isChainSelectCmpBranch(const SelectInst *SI) {
   2570   const BasicBlock *BB = SI->getParent();
   2571   if (!BB)
   2572     return false;
   2573   auto *BI = dyn_cast_or_null<BranchInst>(BB->getTerminator());
   2574   if (!BI || BI->getNumSuccessors() != 2)
   2575     return false;
   2576   auto *IC = dyn_cast<ICmpInst>(BI->getCondition());
   2577   if (!IC || (IC->getOperand(0) != SI && IC->getOperand(1) != SI))
   2578     return false;
   2579   return true;
   2580 }
   2581 
   2582 ///
   2583 /// \brief True when a select result is replaced by one of its operands
   2584 /// in select-icmp sequence. This will eventually result in the elimination
   2585 /// of the select.
   2586 ///
   2587 /// \param SI    Select instruction
   2588 /// \param Icmp  Compare instruction
   2589 /// \param SIOpd Operand that replaces the select
   2590 ///
   2591 /// Notes:
   2592 /// - The replacement is global and requires dominator information
   2593 /// - The caller is responsible for the actual replacement
   2594 ///
   2595 /// Example:
   2596 ///
   2597 /// entry:
   2598 ///  %4 = select i1 %3, %C* %0, %C* null
   2599 ///  %5 = icmp eq %C* %4, null
   2600 ///  br i1 %5, label %9, label %7
   2601 ///  ...
   2602 ///  ; <label>:7                                       ; preds = %entry
   2603 ///  %8 = getelementptr inbounds %C* %4, i64 0, i32 0
   2604 ///  ...
   2605 ///
   2606 /// can be transformed to
   2607 ///
   2608 ///  %5 = icmp eq %C* %0, null
   2609 ///  %6 = select i1 %3, i1 %5, i1 true
   2610 ///  br i1 %6, label %9, label %7
   2611 ///  ...
   2612 ///  ; <label>:7                                       ; preds = %entry
   2613 ///  %8 = getelementptr inbounds %C* %0, i64 0, i32 0  // replace by %0!
   2614 ///
   2615 /// Similar when the first operand of the select is a constant or/and
   2616 /// the compare is for not equal rather than equal.
   2617 ///
   2618 /// NOTE: The function is only called when the select and compare constants
   2619 /// are equal, the optimization can work only for EQ predicates. This is not a
   2620 /// major restriction since a NE compare should be 'normalized' to an equal
   2621 /// compare, which usually happens in the combiner and test case
   2622 /// select-cmp-br.ll
   2623 /// checks for it.
   2624 bool InstCombiner::replacedSelectWithOperand(SelectInst *SI,
   2625                                              const ICmpInst *Icmp,
   2626                                              const unsigned SIOpd) {
   2627   assert((SIOpd == 1 || SIOpd == 2) && "Invalid select operand!");
   2628   if (isChainSelectCmpBranch(SI) && Icmp->getPredicate() == ICmpInst::ICMP_EQ) {
   2629     BasicBlock *Succ = SI->getParent()->getTerminator()->getSuccessor(1);
   2630     // The check for the unique predecessor is not the best that can be
   2631     // done. But it protects efficiently against cases like  when SI's
   2632     // home block has two successors, Succ and Succ1, and Succ1 predecessor
   2633     // of Succ. Then SI can't be replaced by SIOpd because the use that gets
   2634     // replaced can be reached on either path. So the uniqueness check
   2635     // guarantees that the path all uses of SI (outside SI's parent) are on
   2636     // is disjoint from all other paths out of SI. But that information
   2637     // is more expensive to compute, and the trade-off here is in favor
   2638     // of compile-time.
   2639     if (Succ->getUniquePredecessor() && dominatesAllUses(SI, Icmp, Succ)) {
   2640       NumSel++;
   2641       SI->replaceUsesOutsideBlock(SI->getOperand(SIOpd), SI->getParent());
   2642       return true;
   2643     }
   2644   }
   2645   return false;
   2646 }
   2647 
   2648 Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
   2649   bool Changed = false;
   2650   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
   2651   unsigned Op0Cplxity = getComplexity(Op0);
   2652   unsigned Op1Cplxity = getComplexity(Op1);
   2653 
   2654   /// Orders the operands of the compare so that they are listed from most
   2655   /// complex to least complex.  This puts constants before unary operators,
   2656   /// before binary operators.
   2657   if (Op0Cplxity < Op1Cplxity ||
   2658         (Op0Cplxity == Op1Cplxity &&
   2659          swapMayExposeCSEOpportunities(Op0, Op1))) {
   2660     I.swapOperands();
   2661     std::swap(Op0, Op1);
   2662     Changed = true;
   2663   }
   2664 
   2665   if (Value *V = SimplifyICmpInst(I.getPredicate(), Op0, Op1, DL, TLI, DT, AC))
   2666     return ReplaceInstUsesWith(I, V);
   2667 
   2668   // comparing -val or val with non-zero is the same as just comparing val
   2669   // ie, abs(val) != 0 -> val != 0
   2670   if (I.getPredicate() == ICmpInst::ICMP_NE && match(Op1, m_Zero()))
   2671   {
   2672     Value *Cond, *SelectTrue, *SelectFalse;
   2673     if (match(Op0, m_Select(m_Value(Cond), m_Value(SelectTrue),
   2674                             m_Value(SelectFalse)))) {
   2675       if (Value *V = dyn_castNegVal(SelectTrue)) {
   2676         if (V == SelectFalse)
   2677           return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
   2678       }
   2679       else if (Value *V = dyn_castNegVal(SelectFalse)) {
   2680         if (V == SelectTrue)
   2681           return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
   2682       }
   2683     }
   2684   }
   2685 
   2686   Type *Ty = Op0->getType();
   2687 
   2688   // icmp's with boolean values can always be turned into bitwise operations
   2689   if (Ty->isIntegerTy(1)) {
   2690     switch (I.getPredicate()) {
   2691     default: llvm_unreachable("Invalid icmp instruction!");
   2692     case ICmpInst::ICMP_EQ: {               // icmp eq i1 A, B -> ~(A^B)
   2693       Value *Xor = Builder->CreateXor(Op0, Op1, I.getName()+"tmp");
   2694       return BinaryOperator::CreateNot(Xor);
   2695     }
   2696     case ICmpInst::ICMP_NE:                  // icmp eq i1 A, B -> A^B
   2697       return BinaryOperator::CreateXor(Op0, Op1);
   2698 
   2699     case ICmpInst::ICMP_UGT:
   2700       std::swap(Op0, Op1);                   // Change icmp ugt -> icmp ult
   2701       // FALL THROUGH
   2702     case ICmpInst::ICMP_ULT:{               // icmp ult i1 A, B -> ~A & B
   2703       Value *Not = Builder->CreateNot(Op0, I.getName()+"tmp");
   2704       return BinaryOperator::CreateAnd(Not, Op1);
   2705     }
   2706     case ICmpInst::ICMP_SGT:
   2707       std::swap(Op0, Op1);                   // Change icmp sgt -> icmp slt
   2708       // FALL THROUGH
   2709     case ICmpInst::ICMP_SLT: {               // icmp slt i1 A, B -> A & ~B
   2710       Value *Not = Builder->CreateNot(Op1, I.getName()+"tmp");
   2711       return BinaryOperator::CreateAnd(Not, Op0);
   2712     }
   2713     case ICmpInst::ICMP_UGE:
   2714       std::swap(Op0, Op1);                   // Change icmp uge -> icmp ule
   2715       // FALL THROUGH
   2716     case ICmpInst::ICMP_ULE: {               //  icmp ule i1 A, B -> ~A | B
   2717       Value *Not = Builder->CreateNot(Op0, I.getName()+"tmp");
   2718       return BinaryOperator::CreateOr(Not, Op1);
   2719     }
   2720     case ICmpInst::ICMP_SGE:
   2721       std::swap(Op0, Op1);                   // Change icmp sge -> icmp sle
   2722       // FALL THROUGH
   2723     case ICmpInst::ICMP_SLE: {               //  icmp sle i1 A, B -> A | ~B
   2724       Value *Not = Builder->CreateNot(Op1, I.getName()+"tmp");
   2725       return BinaryOperator::CreateOr(Not, Op0);
   2726     }
   2727     }
   2728   }
   2729 
   2730   unsigned BitWidth = 0;
   2731   if (Ty->isIntOrIntVectorTy())
   2732     BitWidth = Ty->getScalarSizeInBits();
   2733   else // Get pointer size.
   2734     BitWidth = DL.getTypeSizeInBits(Ty->getScalarType());
   2735 
   2736   bool isSignBit = false;
   2737 
   2738   // See if we are doing a comparison with a constant.
   2739   if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
   2740     Value *A = nullptr, *B = nullptr;
   2741 
   2742     // Match the following pattern, which is a common idiom when writing
   2743     // overflow-safe integer arithmetic function.  The source performs an
   2744     // addition in wider type, and explicitly checks for overflow using
   2745     // comparisons against INT_MIN and INT_MAX.  Simplify this by using the
   2746     // sadd_with_overflow intrinsic.
   2747     //
   2748     // TODO: This could probably be generalized to handle other overflow-safe
   2749     // operations if we worked out the formulas to compute the appropriate
   2750     // magic constants.
   2751     //
   2752     // sum = a + b
   2753     // if (sum+128 >u 255)  ...  -> llvm.sadd.with.overflow.i8
   2754     {
   2755     ConstantInt *CI2;    // I = icmp ugt (add (add A, B), CI2), CI
   2756     if (I.getPredicate() == ICmpInst::ICMP_UGT &&
   2757         match(Op0, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2))))
   2758       if (Instruction *Res = ProcessUGT_ADDCST_ADD(I, A, B, CI2, CI, *this))
   2759         return Res;
   2760     }
   2761 
   2762     // The following transforms are only 'worth it' if the only user of the
   2763     // subtraction is the icmp.
   2764     if (Op0->hasOneUse()) {
   2765       // (icmp ne/eq (sub A B) 0) -> (icmp ne/eq A, B)
   2766       if (I.isEquality() && CI->isZero() &&
   2767           match(Op0, m_Sub(m_Value(A), m_Value(B))))
   2768         return new ICmpInst(I.getPredicate(), A, B);
   2769 
   2770       // (icmp sgt (sub nsw A B), -1) -> (icmp sge A, B)
   2771       if (I.getPredicate() == ICmpInst::ICMP_SGT && CI->isAllOnesValue() &&
   2772           match(Op0, m_NSWSub(m_Value(A), m_Value(B))))
   2773         return new ICmpInst(ICmpInst::ICMP_SGE, A, B);
   2774 
   2775       // (icmp sgt (sub nsw A B), 0) -> (icmp sgt A, B)
   2776       if (I.getPredicate() == ICmpInst::ICMP_SGT && CI->isZero() &&
   2777           match(Op0, m_NSWSub(m_Value(A), m_Value(B))))
   2778         return new ICmpInst(ICmpInst::ICMP_SGT, A, B);
   2779 
   2780       // (icmp slt (sub nsw A B), 0) -> (icmp slt A, B)
   2781       if (I.getPredicate() == ICmpInst::ICMP_SLT && CI->isZero() &&
   2782           match(Op0, m_NSWSub(m_Value(A), m_Value(B))))
   2783         return new ICmpInst(ICmpInst::ICMP_SLT, A, B);
   2784 
   2785       // (icmp slt (sub nsw A B), 1) -> (icmp sle A, B)
   2786       if (I.getPredicate() == ICmpInst::ICMP_SLT && CI->isOne() &&
   2787           match(Op0, m_NSWSub(m_Value(A), m_Value(B))))
   2788         return new ICmpInst(ICmpInst::ICMP_SLE, A, B);
   2789     }
   2790 
   2791     // If we have an icmp le or icmp ge instruction, turn it into the
   2792     // appropriate icmp lt or icmp gt instruction.  This allows us to rely on
   2793     // them being folded in the code below.  The SimplifyICmpInst code has
   2794     // already handled the edge cases for us, so we just assert on them.
   2795     switch (I.getPredicate()) {
   2796     default: break;
   2797     case ICmpInst::ICMP_ULE:
   2798       assert(!CI->isMaxValue(false));                 // A <=u MAX -> TRUE
   2799       return new ICmpInst(ICmpInst::ICMP_ULT, Op0,
   2800                           Builder->getInt(CI->getValue()+1));
   2801     case ICmpInst::ICMP_SLE:
   2802       assert(!CI->isMaxValue(true));                  // A <=s MAX -> TRUE
   2803       return new ICmpInst(ICmpInst::ICMP_SLT, Op0,
   2804                           Builder->getInt(CI->getValue()+1));
   2805     case ICmpInst::ICMP_UGE:
   2806       assert(!CI->isMinValue(false));                 // A >=u MIN -> TRUE
   2807       return new ICmpInst(ICmpInst::ICMP_UGT, Op0,
   2808                           Builder->getInt(CI->getValue()-1));
   2809     case ICmpInst::ICMP_SGE:
   2810       assert(!CI->isMinValue(true));                  // A >=s MIN -> TRUE
   2811       return new ICmpInst(ICmpInst::ICMP_SGT, Op0,
   2812                           Builder->getInt(CI->getValue()-1));
   2813     }
   2814 
   2815     if (I.isEquality()) {
   2816       ConstantInt *CI2;
   2817       if (match(Op0, m_AShr(m_ConstantInt(CI2), m_Value(A))) ||
   2818           match(Op0, m_LShr(m_ConstantInt(CI2), m_Value(A)))) {
   2819         // (icmp eq/ne (ashr/lshr const2, A), const1)
   2820         if (Instruction *Inst = FoldICmpCstShrCst(I, Op0, A, CI, CI2))
   2821           return Inst;
   2822       }
   2823       if (match(Op0, m_Shl(m_ConstantInt(CI2), m_Value(A)))) {
   2824         // (icmp eq/ne (shl const2, A), const1)
   2825         if (Instruction *Inst = FoldICmpCstShlCst(I, Op0, A, CI, CI2))
   2826           return Inst;
   2827       }
   2828     }
   2829 
   2830     // If this comparison is a normal comparison, it demands all
   2831     // bits, if it is a sign bit comparison, it only demands the sign bit.
   2832     bool UnusedBit;
   2833     isSignBit = isSignBitCheck(I.getPredicate(), CI, UnusedBit);
   2834   }
   2835 
   2836   // See if we can fold the comparison based on range information we can get
   2837   // by checking whether bits are known to be zero or one in the input.
   2838   if (BitWidth != 0) {
   2839     APInt Op0KnownZero(BitWidth, 0), Op0KnownOne(BitWidth, 0);
   2840     APInt Op1KnownZero(BitWidth, 0), Op1KnownOne(BitWidth, 0);
   2841 
   2842     if (SimplifyDemandedBits(I.getOperandUse(0),
   2843                              DemandedBitsLHSMask(I, BitWidth, isSignBit),
   2844                              Op0KnownZero, Op0KnownOne, 0))
   2845       return &I;
   2846     if (SimplifyDemandedBits(I.getOperandUse(1),
   2847                              APInt::getAllOnesValue(BitWidth), Op1KnownZero,
   2848                              Op1KnownOne, 0))
   2849       return &I;
   2850 
   2851     // Given the known and unknown bits, compute a range that the LHS could be
   2852     // in.  Compute the Min, Max and RHS values based on the known bits. For the
   2853     // EQ and NE we use unsigned values.
   2854     APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0);
   2855     APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0);
   2856     if (I.isSigned()) {
   2857       ComputeSignedMinMaxValuesFromKnownBits(Op0KnownZero, Op0KnownOne,
   2858                                              Op0Min, Op0Max);
   2859       ComputeSignedMinMaxValuesFromKnownBits(Op1KnownZero, Op1KnownOne,
   2860                                              Op1Min, Op1Max);
   2861     } else {
   2862       ComputeUnsignedMinMaxValuesFromKnownBits(Op0KnownZero, Op0KnownOne,
   2863                                                Op0Min, Op0Max);
   2864       ComputeUnsignedMinMaxValuesFromKnownBits(Op1KnownZero, Op1KnownOne,
   2865                                                Op1Min, Op1Max);
   2866     }
   2867 
   2868     // If Min and Max are known to be the same, then SimplifyDemandedBits
   2869     // figured out that the LHS is a constant.  Just constant fold this now so
   2870     // that code below can assume that Min != Max.
   2871     if (!isa<Constant>(Op0) && Op0Min == Op0Max)
   2872       return new ICmpInst(I.getPredicate(),
   2873                           ConstantInt::get(Op0->getType(), Op0Min), Op1);
   2874     if (!isa<Constant>(Op1) && Op1Min == Op1Max)
   2875       return new ICmpInst(I.getPredicate(), Op0,
   2876                           ConstantInt::get(Op1->getType(), Op1Min));
   2877 
   2878     // Based on the range information we know about the LHS, see if we can
   2879     // simplify this comparison.  For example, (x&4) < 8 is always true.
   2880     switch (I.getPredicate()) {
   2881     default: llvm_unreachable("Unknown icmp opcode!");
   2882     case ICmpInst::ICMP_EQ: {
   2883       if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max))
   2884         return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
   2885 
   2886       // If all bits are known zero except for one, then we know at most one
   2887       // bit is set.   If the comparison is against zero, then this is a check
   2888       // to see if *that* bit is set.
   2889       APInt Op0KnownZeroInverted = ~Op0KnownZero;
   2890       if (~Op1KnownZero == 0) {
   2891         // If the LHS is an AND with the same constant, look through it.
   2892         Value *LHS = nullptr;
   2893         ConstantInt *LHSC = nullptr;
   2894         if (!match(Op0, m_And(m_Value(LHS), m_ConstantInt(LHSC))) ||
   2895             LHSC->getValue() != Op0KnownZeroInverted)
   2896           LHS = Op0;
   2897 
   2898         // If the LHS is 1 << x, and we know the result is a power of 2 like 8,
   2899         // then turn "((1 << x)&8) == 0" into "x != 3".
   2900         // or turn "((1 << x)&7) == 0" into "x > 2".
   2901         Value *X = nullptr;
   2902         if (match(LHS, m_Shl(m_One(), m_Value(X)))) {
   2903           APInt ValToCheck = Op0KnownZeroInverted;
   2904           if (ValToCheck.isPowerOf2()) {
   2905             unsigned CmpVal = ValToCheck.countTrailingZeros();
   2906             return new ICmpInst(ICmpInst::ICMP_NE, X,
   2907                                 ConstantInt::get(X->getType(), CmpVal));
   2908           } else if ((++ValToCheck).isPowerOf2()) {
   2909             unsigned CmpVal = ValToCheck.countTrailingZeros() - 1;
   2910             return new ICmpInst(ICmpInst::ICMP_UGT, X,
   2911                                 ConstantInt::get(X->getType(), CmpVal));
   2912           }
   2913         }
   2914 
   2915         // If the LHS is 8 >>u x, and we know the result is a power of 2 like 1,
   2916         // then turn "((8 >>u x)&1) == 0" into "x != 3".
   2917         const APInt *CI;
   2918         if (Op0KnownZeroInverted == 1 &&
   2919             match(LHS, m_LShr(m_Power2(CI), m_Value(X))))
   2920           return new ICmpInst(ICmpInst::ICMP_NE, X,
   2921                               ConstantInt::get(X->getType(),
   2922                                                CI->countTrailingZeros()));
   2923       }
   2924 
   2925       break;
   2926     }
   2927     case ICmpInst::ICMP_NE: {
   2928       if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max))
   2929         return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
   2930 
   2931       // If all bits are known zero except for one, then we know at most one
   2932       // bit is set.   If the comparison is against zero, then this is a check
   2933       // to see if *that* bit is set.
   2934       APInt Op0KnownZeroInverted = ~Op0KnownZero;
   2935       if (~Op1KnownZero == 0) {
   2936         // If the LHS is an AND with the same constant, look through it.
   2937         Value *LHS = nullptr;
   2938         ConstantInt *LHSC = nullptr;
   2939         if (!match(Op0, m_And(m_Value(LHS), m_ConstantInt(LHSC))) ||
   2940             LHSC->getValue() != Op0KnownZeroInverted)
   2941           LHS = Op0;
   2942 
   2943         // If the LHS is 1 << x, and we know the result is a power of 2 like 8,
   2944         // then turn "((1 << x)&8) != 0" into "x == 3".
   2945         // or turn "((1 << x)&7) != 0" into "x < 3".
   2946         Value *X = nullptr;
   2947         if (match(LHS, m_Shl(m_One(), m_Value(X)))) {
   2948           APInt ValToCheck = Op0KnownZeroInverted;
   2949           if (ValToCheck.isPowerOf2()) {
   2950             unsigned CmpVal = ValToCheck.countTrailingZeros();
   2951             return new ICmpInst(ICmpInst::ICMP_EQ, X,
   2952                                 ConstantInt::get(X->getType(), CmpVal));
   2953           } else if ((++ValToCheck).isPowerOf2()) {
   2954             unsigned CmpVal = ValToCheck.countTrailingZeros();
   2955             return new ICmpInst(ICmpInst::ICMP_ULT, X,
   2956                                 ConstantInt::get(X->getType(), CmpVal));
   2957           }
   2958         }
   2959 
   2960         // If the LHS is 8 >>u x, and we know the result is a power of 2 like 1,
   2961         // then turn "((8 >>u x)&1) != 0" into "x == 3".
   2962         const APInt *CI;
   2963         if (Op0KnownZeroInverted == 1 &&
   2964             match(LHS, m_LShr(m_Power2(CI), m_Value(X))))
   2965           return new ICmpInst(ICmpInst::ICMP_EQ, X,
   2966                               ConstantInt::get(X->getType(),
   2967                                                CI->countTrailingZeros()));
   2968       }
   2969 
   2970       break;
   2971     }
   2972     case ICmpInst::ICMP_ULT:
   2973       if (Op0Max.ult(Op1Min))          // A <u B -> true if max(A) < min(B)
   2974         return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
   2975       if (Op0Min.uge(Op1Max))          // A <u B -> false if min(A) >= max(B)
   2976         return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
   2977       if (Op1Min == Op0Max)            // A <u B -> A != B if max(A) == min(B)
   2978         return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
   2979       if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
   2980         if (Op1Max == Op0Min+1)        // A <u C -> A == C-1 if min(A)+1 == C
   2981           return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
   2982                               Builder->getInt(CI->getValue()-1));
   2983 
   2984         // (x <u 2147483648) -> (x >s -1)  -> true if sign bit clear
   2985         if (CI->isMinValue(true))
   2986           return new ICmpInst(ICmpInst::ICMP_SGT, Op0,
   2987                            Constant::getAllOnesValue(Op0->getType()));
   2988       }
   2989       break;
   2990     case ICmpInst::ICMP_UGT:
   2991       if (Op0Min.ugt(Op1Max))          // A >u B -> true if min(A) > max(B)
   2992         return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
   2993       if (Op0Max.ule(Op1Min))          // A >u B -> false if max(A) <= max(B)
   2994         return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
   2995 
   2996       if (Op1Max == Op0Min)            // A >u B -> A != B if min(A) == max(B)
   2997         return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
   2998       if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
   2999         if (Op1Min == Op0Max-1)        // A >u C -> A == C+1 if max(a)-1 == C
   3000           return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
   3001                               Builder->getInt(CI->getValue()+1));
   3002 
   3003         // (x >u 2147483647) -> (x <s 0)  -> true if sign bit set
   3004         if (CI->isMaxValue(true))
   3005           return new ICmpInst(ICmpInst::ICMP_SLT, Op0,
   3006                               Constant::getNullValue(Op0->getType()));
   3007       }
   3008       break;
   3009     case ICmpInst::ICMP_SLT:
   3010       if (Op0Max.slt(Op1Min))          // A <s B -> true if max(A) < min(C)
   3011         return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
   3012       if (Op0Min.sge(Op1Max))          // A <s B -> false if min(A) >= max(C)
   3013         return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
   3014       if (Op1Min == Op0Max)            // A <s B -> A != B if max(A) == min(B)
   3015         return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
   3016       if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
   3017         if (Op1Max == Op0Min+1)        // A <s C -> A == C-1 if min(A)+1 == C
   3018           return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
   3019                               Builder->getInt(CI->getValue()-1));
   3020       }
   3021       break;
   3022     case ICmpInst::ICMP_SGT:
   3023       if (Op0Min.sgt(Op1Max))          // A >s B -> true if min(A) > max(B)
   3024         return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
   3025       if (Op0Max.sle(Op1Min))          // A >s B -> false if max(A) <= min(B)
   3026         return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
   3027 
   3028       if (Op1Max == Op0Min)            // A >s B -> A != B if min(A) == max(B)
   3029         return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
   3030       if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
   3031         if (Op1Min == Op0Max-1)        // A >s C -> A == C+1 if max(A)-1 == C
   3032           return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
   3033                               Builder->getInt(CI->getValue()+1));
   3034       }
   3035       break;
   3036     case ICmpInst::ICMP_SGE:
   3037       assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!");
   3038       if (Op0Min.sge(Op1Max))          // A >=s B -> true if min(A) >= max(B)
   3039         return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
   3040       if (Op0Max.slt(Op1Min))          // A >=s B -> false if max(A) < min(B)
   3041         return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
   3042       break;
   3043     case ICmpInst::ICMP_SLE:
   3044       assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!");
   3045       if (Op0Max.sle(Op1Min))          // A <=s B -> true if max(A) <= min(B)
   3046         return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
   3047       if (Op0Min.sgt(Op1Max))          // A <=s B -> false if min(A) > max(B)
   3048         return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
   3049       break;
   3050     case ICmpInst::ICMP_UGE:
   3051       assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!");
   3052       if (Op0Min.uge(Op1Max))          // A >=u B -> true if min(A) >= max(B)
   3053         return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
   3054       if (Op0Max.ult(Op1Min))          // A >=u B -> false if max(A) < min(B)
   3055         return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
   3056       break;
   3057     case ICmpInst::ICMP_ULE:
   3058       assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!");
   3059       if (Op0Max.ule(Op1Min))          // A <=u B -> true if max(A) <= min(B)
   3060         return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
   3061       if (Op0Min.ugt(Op1Max))          // A <=u B -> false if min(A) > max(B)
   3062         return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
   3063       break;
   3064     }
   3065 
   3066     // Turn a signed comparison into an unsigned one if both operands
   3067     // are known to have the same sign.
   3068     if (I.isSigned() &&
   3069         ((Op0KnownZero.isNegative() && Op1KnownZero.isNegative()) ||
   3070          (Op0KnownOne.isNegative() && Op1KnownOne.isNegative())))
   3071       return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1);
   3072   }
   3073 
   3074   // Test if the ICmpInst instruction is used exclusively by a select as
   3075   // part of a minimum or maximum operation. If so, refrain from doing
   3076   // any other folding. This helps out other analyses which understand
   3077   // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
   3078   // and CodeGen. And in this case, at least one of the comparison
   3079   // operands has at least one user besides the compare (the select),
   3080   // which would often largely negate the benefit of folding anyway.
   3081   if (I.hasOneUse())
   3082     if (SelectInst *SI = dyn_cast<SelectInst>(*I.user_begin()))
   3083       if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) ||
   3084           (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1))
   3085         return nullptr;
   3086 
   3087   // See if we are doing a comparison between a constant and an instruction that
   3088   // can be folded into the comparison.
   3089   if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
   3090     // Since the RHS is a ConstantInt (CI), if the left hand side is an
   3091     // instruction, see if that instruction also has constants so that the
   3092     // instruction can be folded into the icmp
   3093     if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
   3094       if (Instruction *Res = visitICmpInstWithInstAndIntCst(I, LHSI, CI))
   3095         return Res;
   3096   }
   3097 
   3098   // Handle icmp with constant (but not simple integer constant) RHS
   3099   if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
   3100     if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
   3101       switch (LHSI->getOpcode()) {
   3102       case Instruction::GetElementPtr:
   3103           // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null
   3104         if (RHSC->isNullValue() &&
   3105             cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices())
   3106           return new ICmpInst(I.getPredicate(), LHSI->getOperand(0),
   3107                   Constant::getNullValue(LHSI->getOperand(0)->getType()));
   3108         break;
   3109       case Instruction::PHI:
   3110         // Only fold icmp into the PHI if the phi and icmp are in the same
   3111         // block.  If in the same block, we're encouraging jump threading.  If
   3112         // not, we are just pessimizing the code by making an i1 phi.
   3113         if (LHSI->getParent() == I.getParent())
   3114           if (Instruction *NV = FoldOpIntoPhi(I))
   3115             return NV;
   3116         break;
   3117       case Instruction::Select: {
   3118         // If either operand of the select is a constant, we can fold the
   3119         // comparison into the select arms, which will cause one to be
   3120         // constant folded and the select turned into a bitwise or.
   3121         Value *Op1 = nullptr, *Op2 = nullptr;
   3122         ConstantInt *CI = 0;
   3123         if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
   3124           Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
   3125           CI = dyn_cast<ConstantInt>(Op1);
   3126         }
   3127         if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
   3128           Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
   3129           CI = dyn_cast<ConstantInt>(Op2);
   3130         }
   3131 
   3132         // We only want to perform this transformation if it will not lead to
   3133         // additional code. This is true if either both sides of the select
   3134         // fold to a constant (in which case the icmp is replaced with a select
   3135         // which will usually simplify) or this is the only user of the
   3136         // select (in which case we are trading a select+icmp for a simpler
   3137         // select+icmp) or all uses of the select can be replaced based on
   3138         // dominance information ("Global cases").
   3139         bool Transform = false;
   3140         if (Op1 && Op2)
   3141           Transform = true;
   3142         else if (Op1 || Op2) {
   3143           // Local case
   3144           if (LHSI->hasOneUse())
   3145             Transform = true;
   3146           // Global cases
   3147           else if (CI && !CI->isZero())
   3148             // When Op1 is constant try replacing select with second operand.
   3149             // Otherwise Op2 is constant and try replacing select with first
   3150             // operand.
   3151             Transform = replacedSelectWithOperand(cast<SelectInst>(LHSI), &I,
   3152                                                   Op1 ? 2 : 1);
   3153         }
   3154         if (Transform) {
   3155           if (!Op1)
   3156             Op1 = Builder->CreateICmp(I.getPredicate(), LHSI->getOperand(1),
   3157                                       RHSC, I.getName());
   3158           if (!Op2)
   3159             Op2 = Builder->CreateICmp(I.getPredicate(), LHSI->getOperand(2),
   3160                                       RHSC, I.getName());
   3161           return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
   3162         }
   3163         break;
   3164       }
   3165       case Instruction::IntToPtr:
   3166         // icmp pred inttoptr(X), null -> icmp pred X, 0
   3167         if (RHSC->isNullValue() &&
   3168             DL.getIntPtrType(RHSC->getType()) == LHSI->getOperand(0)->getType())
   3169           return new ICmpInst(I.getPredicate(), LHSI->getOperand(0),
   3170                         Constant::getNullValue(LHSI->getOperand(0)->getType()));
   3171         break;
   3172 
   3173       case Instruction::Load:
   3174         // Try to optimize things like "A[i] > 4" to index computations.
   3175         if (GetElementPtrInst *GEP =
   3176               dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) {
   3177           if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
   3178             if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
   3179                 !cast<LoadInst>(LHSI)->isVolatile())
   3180               if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV, I))
   3181                 return Res;
   3182         }
   3183         break;
   3184       }
   3185   }
   3186 
   3187   // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now.
   3188   if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op0))
   3189     if (Instruction *NI = FoldGEPICmp(GEP, Op1, I.getPredicate(), I))
   3190       return NI;
   3191   if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op1))
   3192     if (Instruction *NI = FoldGEPICmp(GEP, Op0,
   3193                            ICmpInst::getSwappedPredicate(I.getPredicate()), I))
   3194       return NI;
   3195 
   3196   // Test to see if the operands of the icmp are casted versions of other
   3197   // values.  If the ptr->ptr cast can be stripped off both arguments, we do so
   3198   // now.
   3199   if (BitCastInst *CI = dyn_cast<BitCastInst>(Op0)) {
   3200     if (Op0->getType()->isPointerTy() &&
   3201         (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) {
   3202       // We keep moving the cast from the left operand over to the right
   3203       // operand, where it can often be eliminated completely.
   3204       Op0 = CI->getOperand(0);
   3205 
   3206       // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast
   3207       // so eliminate it as well.
   3208       if (BitCastInst *CI2 = dyn_cast<BitCastInst>(Op1))
   3209         Op1 = CI2->getOperand(0);
   3210 
   3211       // If Op1 is a constant, we can fold the cast into the constant.
   3212       if (Op0->getType() != Op1->getType()) {
   3213         if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
   3214           Op1 = ConstantExpr::getBitCast(Op1C, Op0->getType());
   3215         } else {
   3216           // Otherwise, cast the RHS right before the icmp
   3217           Op1 = Builder->CreateBitCast(Op1, Op0->getType());
   3218         }
   3219       }
   3220       return new ICmpInst(I.getPredicate(), Op0, Op1);
   3221     }
   3222   }
   3223 
   3224   if (isa<CastInst>(Op0)) {
   3225     // Handle the special case of: icmp (cast bool to X), <cst>
   3226     // This comes up when you have code like
   3227     //   int X = A < B;
   3228     //   if (X) ...
   3229     // For generality, we handle any zero-extension of any operand comparison
   3230     // with a constant or another cast from the same type.
   3231     if (isa<Constant>(Op1) || isa<CastInst>(Op1))
   3232       if (Instruction *R = visitICmpInstWithCastAndCast(I))
   3233         return R;
   3234   }
   3235 
   3236   // Special logic for binary operators.
   3237   BinaryOperator *BO0 = dyn_cast<BinaryOperator>(Op0);
   3238   BinaryOperator *BO1 = dyn_cast<BinaryOperator>(Op1);
   3239   if (BO0 || BO1) {
   3240     CmpInst::Predicate Pred = I.getPredicate();
   3241     bool NoOp0WrapProblem = false, NoOp1WrapProblem = false;
   3242     if (BO0 && isa<OverflowingBinaryOperator>(BO0))
   3243       NoOp0WrapProblem = ICmpInst::isEquality(Pred) ||
   3244         (CmpInst::isUnsigned(Pred) && BO0->hasNoUnsignedWrap()) ||
   3245         (CmpInst::isSigned(Pred) && BO0->hasNoSignedWrap());
   3246     if (BO1 && isa<OverflowingBinaryOperator>(BO1))
   3247       NoOp1WrapProblem = ICmpInst::isEquality(Pred) ||
   3248         (CmpInst::isUnsigned(Pred) && BO1->hasNoUnsignedWrap()) ||
   3249         (CmpInst::isSigned(Pred) && BO1->hasNoSignedWrap());
   3250 
   3251     // Analyze the case when either Op0 or Op1 is an add instruction.
   3252     // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null).
   3253     Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
   3254     if (BO0 && BO0->getOpcode() == Instruction::Add)
   3255       A = BO0->getOperand(0), B = BO0->getOperand(1);
   3256     if (BO1 && BO1->getOpcode() == Instruction::Add)
   3257       C = BO1->getOperand(0), D = BO1->getOperand(1);
   3258 
   3259     // icmp (X+cst) < 0 --> X < -cst
   3260     if (NoOp0WrapProblem && ICmpInst::isSigned(Pred) && match(Op1, m_Zero()))
   3261       if (ConstantInt *RHSC = dyn_cast_or_null<ConstantInt>(B))
   3262         if (!RHSC->isMinValue(/*isSigned=*/true))
   3263           return new ICmpInst(Pred, A, ConstantExpr::getNeg(RHSC));
   3264 
   3265     // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow.
   3266     if ((A == Op1 || B == Op1) && NoOp0WrapProblem)
   3267       return new ICmpInst(Pred, A == Op1 ? B : A,
   3268                           Constant::getNullValue(Op1->getType()));
   3269 
   3270     // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow.
   3271     if ((C == Op0 || D == Op0) && NoOp1WrapProblem)
   3272       return new ICmpInst(Pred, Constant::getNullValue(Op0->getType()),
   3273                           C == Op0 ? D : C);
   3274 
   3275     // icmp (X+Y), (X+Z) -> icmp Y, Z for equalities or if there is no overflow.
   3276     if (A && C && (A == C || A == D || B == C || B == D) &&
   3277         NoOp0WrapProblem && NoOp1WrapProblem &&
   3278         // Try not to increase register pressure.
   3279         BO0->hasOneUse() && BO1->hasOneUse()) {
   3280       // Determine Y and Z in the form icmp (X+Y), (X+Z).
   3281       Value *Y, *Z;
   3282       if (A == C) {
   3283         // C + B == C + D  ->  B == D
   3284         Y = B;
   3285         Z = D;
   3286       } else if (A == D) {
   3287         // D + B == C + D  ->  B == C
   3288         Y = B;
   3289         Z = C;
   3290       } else if (B == C) {
   3291         // A + C == C + D  ->  A == D
   3292         Y = A;
   3293         Z = D;
   3294       } else {
   3295         assert(B == D);
   3296         // A + D == C + D  ->  A == C
   3297         Y = A;
   3298         Z = C;
   3299       }
   3300       return new ICmpInst(Pred, Y, Z);
   3301     }
   3302 
   3303     // icmp slt (X + -1), Y -> icmp sle X, Y
   3304     if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLT &&
   3305         match(B, m_AllOnes()))
   3306       return new ICmpInst(CmpInst::ICMP_SLE, A, Op1);
   3307 
   3308     // icmp sge (X + -1), Y -> icmp sgt X, Y
   3309     if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGE &&
   3310         match(B, m_AllOnes()))
   3311       return new ICmpInst(CmpInst::ICMP_SGT, A, Op1);
   3312 
   3313     // icmp sle (X + 1), Y -> icmp slt X, Y
   3314     if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLE &&
   3315         match(B, m_One()))
   3316       return new ICmpInst(CmpInst::ICMP_SLT, A, Op1);
   3317 
   3318     // icmp sgt (X + 1), Y -> icmp sge X, Y
   3319     if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGT &&
   3320         match(B, m_One()))
   3321       return new ICmpInst(CmpInst::ICMP_SGE, A, Op1);
   3322 
   3323     // if C1 has greater magnitude than C2:
   3324     //  icmp (X + C1), (Y + C2) -> icmp (X + C3), Y
   3325     //  s.t. C3 = C1 - C2
   3326     //
   3327     // if C2 has greater magnitude than C1:
   3328     //  icmp (X + C1), (Y + C2) -> icmp X, (Y + C3)
   3329     //  s.t. C3 = C2 - C1
   3330     if (A && C && NoOp0WrapProblem && NoOp1WrapProblem &&
   3331         (BO0->hasOneUse() || BO1->hasOneUse()) && !I.isUnsigned())
   3332       if (ConstantInt *C1 = dyn_cast<ConstantInt>(B))
   3333         if (ConstantInt *C2 = dyn_cast<ConstantInt>(D)) {
   3334           const APInt &AP1 = C1->getValue();
   3335           const APInt &AP2 = C2->getValue();
   3336           if (AP1.isNegative() == AP2.isNegative()) {
   3337             APInt AP1Abs = C1->getValue().abs();
   3338             APInt AP2Abs = C2->getValue().abs();
   3339             if (AP1Abs.uge(AP2Abs)) {
   3340               ConstantInt *C3 = Builder->getInt(AP1 - AP2);
   3341               Value *NewAdd = Builder->CreateNSWAdd(A, C3);
   3342               return new ICmpInst(Pred, NewAdd, C);
   3343             } else {
   3344               ConstantInt *C3 = Builder->getInt(AP2 - AP1);
   3345               Value *NewAdd = Builder->CreateNSWAdd(C, C3);
   3346               return new ICmpInst(Pred, A, NewAdd);
   3347             }
   3348           }
   3349         }
   3350 
   3351 
   3352     // Analyze the case when either Op0 or Op1 is a sub instruction.
   3353     // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null).
   3354     A = nullptr; B = nullptr; C = nullptr; D = nullptr;
   3355     if (BO0 && BO0->getOpcode() == Instruction::Sub)
   3356       A = BO0->getOperand(0), B = BO0->getOperand(1);
   3357     if (BO1 && BO1->getOpcode() == Instruction::Sub)
   3358       C = BO1->getOperand(0), D = BO1->getOperand(1);
   3359 
   3360     // icmp (X-Y), X -> icmp 0, Y for equalities or if there is no overflow.
   3361     if (A == Op1 && NoOp0WrapProblem)
   3362       return new ICmpInst(Pred, Constant::getNullValue(Op1->getType()), B);
   3363 
   3364     // icmp X, (X-Y) -> icmp Y, 0 for equalities or if there is no overflow.
   3365     if (C == Op0 && NoOp1WrapProblem)
   3366       return new ICmpInst(Pred, D, Constant::getNullValue(Op0->getType()));
   3367 
   3368     // icmp (Y-X), (Z-X) -> icmp Y, Z for equalities or if there is no overflow.
   3369     if (B && D && B == D && NoOp0WrapProblem && NoOp1WrapProblem &&
   3370         // Try not to increase register pressure.
   3371         BO0->hasOneUse() && BO1->hasOneUse())
   3372       return new ICmpInst(Pred, A, C);
   3373 
   3374     // icmp (X-Y), (X-Z) -> icmp Z, Y for equalities or if there is no overflow.
   3375     if (A && C && A == C && NoOp0WrapProblem && NoOp1WrapProblem &&
   3376         // Try not to increase register pressure.
   3377         BO0->hasOneUse() && BO1->hasOneUse())
   3378       return new ICmpInst(Pred, D, B);
   3379 
   3380     // icmp (0-X) < cst --> x > -cst
   3381     if (NoOp0WrapProblem && ICmpInst::isSigned(Pred)) {
   3382       Value *X;
   3383       if (match(BO0, m_Neg(m_Value(X))))
   3384         if (ConstantInt *RHSC = dyn_cast<ConstantInt>(Op1))
   3385           if (!RHSC->isMinValue(/*isSigned=*/true))
   3386             return new ICmpInst(I.getSwappedPredicate(), X,
   3387                                 ConstantExpr::getNeg(RHSC));
   3388     }
   3389 
   3390     BinaryOperator *SRem = nullptr;
   3391     // icmp (srem X, Y), Y
   3392     if (BO0 && BO0->getOpcode() == Instruction::SRem &&
   3393         Op1 == BO0->getOperand(1))
   3394       SRem = BO0;
   3395     // icmp Y, (srem X, Y)
   3396     else if (BO1 && BO1->getOpcode() == Instruction::SRem &&
   3397              Op0 == BO1->getOperand(1))
   3398       SRem = BO1;
   3399     if (SRem) {
   3400       // We don't check hasOneUse to avoid increasing register pressure because
   3401       // the value we use is the same value this instruction was already using.
   3402       switch (SRem == BO0 ? ICmpInst::getSwappedPredicate(Pred) : Pred) {
   3403         default: break;
   3404         case ICmpInst::ICMP_EQ:
   3405           return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
   3406         case ICmpInst::ICMP_NE:
   3407           return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
   3408         case ICmpInst::ICMP_SGT:
   3409         case ICmpInst::ICMP_SGE:
   3410           return new ICmpInst(ICmpInst::ICMP_SGT, SRem->getOperand(1),
   3411                               Constant::getAllOnesValue(SRem->getType()));
   3412         case ICmpInst::ICMP_SLT:
   3413         case ICmpInst::ICMP_SLE:
   3414           return new ICmpInst(ICmpInst::ICMP_SLT, SRem->getOperand(1),
   3415                               Constant::getNullValue(SRem->getType()));
   3416       }
   3417     }
   3418 
   3419     if (BO0 && BO1 && BO0->getOpcode() == BO1->getOpcode() &&
   3420         BO0->hasOneUse() && BO1->hasOneUse() &&
   3421         BO0->getOperand(1) == BO1->getOperand(1)) {
   3422       switch (BO0->getOpcode()) {
   3423       default: break;
   3424       case Instruction::Add:
   3425       case Instruction::Sub:
   3426       case Instruction::Xor:
   3427         if (I.isEquality())    // a+x icmp eq/ne b+x --> a icmp b
   3428           return new ICmpInst(I.getPredicate(), BO0->getOperand(0),
   3429                               BO1->getOperand(0));
   3430         // icmp u/s (a ^ signbit), (b ^ signbit) --> icmp s/u a, b
   3431         if (ConstantInt *CI = dyn_cast<ConstantInt>(BO0->getOperand(1))) {
   3432           if (CI->getValue().isSignBit()) {
   3433             ICmpInst::Predicate Pred = I.isSigned()
   3434                                            ? I.getUnsignedPredicate()
   3435                                            : I.getSignedPredicate();
   3436             return new ICmpInst(Pred, BO0->getOperand(0),
   3437                                 BO1->getOperand(0));
   3438           }
   3439 
   3440           if (CI->isMaxValue(true)) {
   3441             ICmpInst::Predicate Pred = I.isSigned()
   3442                                            ? I.getUnsignedPredicate()
   3443                                            : I.getSignedPredicate();
   3444             Pred = I.getSwappedPredicate(Pred);
   3445             return new ICmpInst(Pred, BO0->getOperand(0),
   3446                                 BO1->getOperand(0));
   3447           }
   3448         }
   3449         break;
   3450       case Instruction::Mul:
   3451         if (!I.isEquality())
   3452           break;
   3453 
   3454         if (ConstantInt *CI = dyn_cast<ConstantInt>(BO0->getOperand(1))) {
   3455           // a * Cst icmp eq/ne b * Cst --> a & Mask icmp b & Mask
   3456           // Mask = -1 >> count-trailing-zeros(Cst).
   3457           if (!CI->isZero() && !CI->isOne()) {
   3458             const APInt &AP = CI->getValue();
   3459             ConstantInt *Mask = ConstantInt::get(I.getContext(),
   3460                                     APInt::getLowBitsSet(AP.getBitWidth(),
   3461                                                          AP.getBitWidth() -
   3462                                                     AP.countTrailingZeros()));
   3463             Value *And1 = Builder->CreateAnd(BO0->getOperand(0), Mask);
   3464             Value *And2 = Builder->CreateAnd(BO1->getOperand(0), Mask);
   3465             return new ICmpInst(I.getPredicate(), And1, And2);
   3466           }
   3467         }
   3468         break;
   3469       case Instruction::UDiv:
   3470       case Instruction::LShr:
   3471         if (I.isSigned())
   3472           break;
   3473         // fall-through
   3474       case Instruction::SDiv:
   3475       case Instruction::AShr:
   3476         if (!BO0->isExact() || !BO1->isExact())
   3477           break;
   3478         return new ICmpInst(I.getPredicate(), BO0->getOperand(0),
   3479                             BO1->getOperand(0));
   3480       case Instruction::Shl: {
   3481         bool NUW = BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap();
   3482         bool NSW = BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap();
   3483         if (!NUW && !NSW)
   3484           break;
   3485         if (!NSW && I.isSigned())
   3486           break;
   3487         return new ICmpInst(I.getPredicate(), BO0->getOperand(0),
   3488                             BO1->getOperand(0));
   3489       }
   3490       }
   3491     }
   3492   }
   3493 
   3494   { Value *A, *B;
   3495     // Transform (A & ~B) == 0 --> (A & B) != 0
   3496     // and       (A & ~B) != 0 --> (A & B) == 0
   3497     // if A is a power of 2.
   3498     if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) &&
   3499         match(Op1, m_Zero()) &&
   3500         isKnownToBeAPowerOfTwo(A, DL, false, 0, AC, &I, DT) && I.isEquality())
   3501       return new ICmpInst(I.getInversePredicate(),
   3502                           Builder->CreateAnd(A, B),
   3503                           Op1);
   3504 
   3505     // ~x < ~y --> y < x
   3506     // ~x < cst --> ~cst < x
   3507     if (match(Op0, m_Not(m_Value(A)))) {
   3508       if (match(Op1, m_Not(m_Value(B))))
   3509         return new ICmpInst(I.getPredicate(), B, A);
   3510       if (ConstantInt *RHSC = dyn_cast<ConstantInt>(Op1))
   3511         return new ICmpInst(I.getPredicate(), ConstantExpr::getNot(RHSC), A);
   3512     }
   3513 
   3514     Instruction *AddI = nullptr;
   3515     if (match(&I, m_UAddWithOverflow(m_Value(A), m_Value(B),
   3516                                      m_Instruction(AddI))) &&
   3517         isa<IntegerType>(A->getType())) {
   3518       Value *Result;
   3519       Constant *Overflow;
   3520       if (OptimizeOverflowCheck(OCF_UNSIGNED_ADD, A, B, *AddI, Result,
   3521                                 Overflow)) {
   3522         ReplaceInstUsesWith(*AddI, Result);
   3523         return ReplaceInstUsesWith(I, Overflow);
   3524       }
   3525     }
   3526 
   3527     // (zext a) * (zext b)  --> llvm.umul.with.overflow.
   3528     if (match(Op0, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) {
   3529       if (Instruction *R = ProcessUMulZExtIdiom(I, Op0, Op1, *this))
   3530         return R;
   3531     }
   3532     if (match(Op1, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) {
   3533       if (Instruction *R = ProcessUMulZExtIdiom(I, Op1, Op0, *this))
   3534         return R;
   3535     }
   3536   }
   3537 
   3538   if (I.isEquality()) {
   3539     Value *A, *B, *C, *D;
   3540 
   3541     if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
   3542       if (A == Op1 || B == Op1) {    // (A^B) == A  ->  B == 0
   3543         Value *OtherVal = A == Op1 ? B : A;
   3544         return new ICmpInst(I.getPredicate(), OtherVal,
   3545                             Constant::getNullValue(A->getType()));
   3546       }
   3547 
   3548       if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) {
   3549         // A^c1 == C^c2 --> A == C^(c1^c2)
   3550         ConstantInt *C1, *C2;
   3551         if (match(B, m_ConstantInt(C1)) &&
   3552             match(D, m_ConstantInt(C2)) && Op1->hasOneUse()) {
   3553           Constant *NC = Builder->getInt(C1->getValue() ^ C2->getValue());
   3554           Value *Xor = Builder->CreateXor(C, NC);
   3555           return new ICmpInst(I.getPredicate(), A, Xor);
   3556         }
   3557 
   3558         // A^B == A^D -> B == D
   3559         if (A == C) return new ICmpInst(I.getPredicate(), B, D);
   3560         if (A == D) return new ICmpInst(I.getPredicate(), B, C);
   3561         if (B == C) return new ICmpInst(I.getPredicate(), A, D);
   3562         if (B == D) return new ICmpInst(I.getPredicate(), A, C);
   3563       }
   3564     }
   3565 
   3566     if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
   3567         (A == Op0 || B == Op0)) {
   3568       // A == (A^B)  ->  B == 0
   3569       Value *OtherVal = A == Op0 ? B : A;
   3570       return new ICmpInst(I.getPredicate(), OtherVal,
   3571                           Constant::getNullValue(A->getType()));
   3572     }
   3573 
   3574     // (X&Z) == (Y&Z) -> (X^Y) & Z == 0
   3575     if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B)))) &&
   3576         match(Op1, m_OneUse(m_And(m_Value(C), m_Value(D))))) {
   3577       Value *X = nullptr, *Y = nullptr, *Z = nullptr;
   3578 
   3579       if (A == C) {
   3580         X = B; Y = D; Z = A;
   3581       } else if (A == D) {
   3582         X = B; Y = C; Z = A;
   3583       } else if (B == C) {
   3584         X = A; Y = D; Z = B;
   3585       } else if (B == D) {
   3586         X = A; Y = C; Z = B;
   3587       }
   3588 
   3589       if (X) {   // Build (X^Y) & Z
   3590         Op1 = Builder->CreateXor(X, Y);
   3591         Op1 = Builder->CreateAnd(Op1, Z);
   3592         I.setOperand(0, Op1);
   3593         I.setOperand(1, Constant::getNullValue(Op1->getType()));
   3594         return &I;
   3595       }
   3596     }
   3597 
   3598     // Transform (zext A) == (B & (1<<X)-1) --> A == (trunc B)
   3599     // and       (B & (1<<X)-1) == (zext A) --> A == (trunc B)
   3600     ConstantInt *Cst1;
   3601     if ((Op0->hasOneUse() &&
   3602          match(Op0, m_ZExt(m_Value(A))) &&
   3603          match(Op1, m_And(m_Value(B), m_ConstantInt(Cst1)))) ||
   3604         (Op1->hasOneUse() &&
   3605          match(Op0, m_And(m_Value(B), m_ConstantInt(Cst1))) &&
   3606          match(Op1, m_ZExt(m_Value(A))))) {
   3607       APInt Pow2 = Cst1->getValue() + 1;
   3608       if (Pow2.isPowerOf2() && isa<IntegerType>(A->getType()) &&
   3609           Pow2.logBase2() == cast<IntegerType>(A->getType())->getBitWidth())
   3610         return new ICmpInst(I.getPredicate(), A,
   3611                             Builder->CreateTrunc(B, A->getType()));
   3612     }
   3613 
   3614     // (A >> C) == (B >> C) --> (A^B) u< (1 << C)
   3615     // For lshr and ashr pairs.
   3616     if ((match(Op0, m_OneUse(m_LShr(m_Value(A), m_ConstantInt(Cst1)))) &&
   3617          match(Op1, m_OneUse(m_LShr(m_Value(B), m_Specific(Cst1))))) ||
   3618         (match(Op0, m_OneUse(m_AShr(m_Value(A), m_ConstantInt(Cst1)))) &&
   3619          match(Op1, m_OneUse(m_AShr(m_Value(B), m_Specific(Cst1)))))) {
   3620       unsigned TypeBits = Cst1->getBitWidth();
   3621       unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits);
   3622       if (ShAmt < TypeBits && ShAmt != 0) {
   3623         ICmpInst::Predicate Pred = I.getPredicate() == ICmpInst::ICMP_NE
   3624                                        ? ICmpInst::ICMP_UGE
   3625                                        : ICmpInst::ICMP_ULT;
   3626         Value *Xor = Builder->CreateXor(A, B, I.getName() + ".unshifted");
   3627         APInt CmpVal = APInt::getOneBitSet(TypeBits, ShAmt);
   3628         return new ICmpInst(Pred, Xor, Builder->getInt(CmpVal));
   3629       }
   3630     }
   3631 
   3632     // (A << C) == (B << C) --> ((A^B) & (~0U >> C)) == 0
   3633     if (match(Op0, m_OneUse(m_Shl(m_Value(A), m_ConstantInt(Cst1)))) &&
   3634         match(Op1, m_OneUse(m_Shl(m_Value(B), m_Specific(Cst1))))) {
   3635       unsigned TypeBits = Cst1->getBitWidth();
   3636       unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits);
   3637       if (ShAmt < TypeBits && ShAmt != 0) {
   3638         Value *Xor = Builder->CreateXor(A, B, I.getName() + ".unshifted");
   3639         APInt AndVal = APInt::getLowBitsSet(TypeBits, TypeBits - ShAmt);
   3640         Value *And = Builder->CreateAnd(Xor, Builder->getInt(AndVal),
   3641                                         I.getName() + ".mask");
   3642         return new ICmpInst(I.getPredicate(), And,
   3643                             Constant::getNullValue(Cst1->getType()));
   3644       }
   3645     }
   3646 
   3647     // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to
   3648     // "icmp (and X, mask), cst"
   3649     uint64_t ShAmt = 0;
   3650     if (Op0->hasOneUse() &&
   3651         match(Op0, m_Trunc(m_OneUse(m_LShr(m_Value(A),
   3652                                            m_ConstantInt(ShAmt))))) &&
   3653         match(Op1, m_ConstantInt(Cst1)) &&
   3654         // Only do this when A has multiple uses.  This is most important to do
   3655         // when it exposes other optimizations.
   3656         !A->hasOneUse()) {
   3657       unsigned ASize =cast<IntegerType>(A->getType())->getPrimitiveSizeInBits();
   3658 
   3659       if (ShAmt < ASize) {
   3660         APInt MaskV =
   3661           APInt::getLowBitsSet(ASize, Op0->getType()->getPrimitiveSizeInBits());
   3662         MaskV <<= ShAmt;
   3663 
   3664         APInt CmpV = Cst1->getValue().zext(ASize);
   3665         CmpV <<= ShAmt;
   3666 
   3667         Value *Mask = Builder->CreateAnd(A, Builder->getInt(MaskV));
   3668         return new ICmpInst(I.getPredicate(), Mask, Builder->getInt(CmpV));
   3669       }
   3670     }
   3671   }
   3672 
   3673   // The 'cmpxchg' instruction returns an aggregate containing the old value and
   3674   // an i1 which indicates whether or not we successfully did the swap.
   3675   //
   3676   // Replace comparisons between the old value and the expected value with the
   3677   // indicator that 'cmpxchg' returns.
   3678   //
   3679   // N.B.  This transform is only valid when the 'cmpxchg' is not permitted to
   3680   // spuriously fail.  In those cases, the old value may equal the expected
   3681   // value but it is possible for the swap to not occur.
   3682   if (I.getPredicate() == ICmpInst::ICMP_EQ)
   3683     if (auto *EVI = dyn_cast<ExtractValueInst>(Op0))
   3684       if (auto *ACXI = dyn_cast<AtomicCmpXchgInst>(EVI->getAggregateOperand()))
   3685         if (EVI->getIndices()[0] == 0 && ACXI->getCompareOperand() == Op1 &&
   3686             !ACXI->isWeak())
   3687           return ExtractValueInst::Create(ACXI, 1);
   3688 
   3689   {
   3690     Value *X; ConstantInt *Cst;
   3691     // icmp X+Cst, X
   3692     if (match(Op0, m_Add(m_Value(X), m_ConstantInt(Cst))) && Op1 == X)
   3693       return FoldICmpAddOpCst(I, X, Cst, I.getPredicate());
   3694 
   3695     // icmp X, X+Cst
   3696     if (match(Op1, m_Add(m_Value(X), m_ConstantInt(Cst))) && Op0 == X)
   3697       return FoldICmpAddOpCst(I, X, Cst, I.getSwappedPredicate());
   3698   }
   3699   return Changed ? &I : nullptr;
   3700 }
   3701 
   3702 /// FoldFCmp_IntToFP_Cst - Fold fcmp ([us]itofp x, cst) if possible.
   3703 Instruction *InstCombiner::FoldFCmp_IntToFP_Cst(FCmpInst &I,
   3704                                                 Instruction *LHSI,
   3705                                                 Constant *RHSC) {
   3706   if (!isa<ConstantFP>(RHSC)) return nullptr;
   3707   const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF();
   3708 
   3709   // Get the width of the mantissa.  We don't want to hack on conversions that
   3710   // might lose information from the integer, e.g. "i64 -> float"
   3711   int MantissaWidth = LHSI->getType()->getFPMantissaWidth();
   3712   if (MantissaWidth == -1) return nullptr;  // Unknown.
   3713 
   3714   IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType());
   3715 
   3716   // Check to see that the input is converted from an integer type that is small
   3717   // enough that preserves all bits.  TODO: check here for "known" sign bits.
   3718   // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e.
   3719   unsigned InputSize = IntTy->getScalarSizeInBits();
   3720 
   3721   // If this is a uitofp instruction, we need an extra bit to hold the sign.
   3722   bool LHSUnsigned = isa<UIToFPInst>(LHSI);
   3723   if (LHSUnsigned)
   3724     ++InputSize;
   3725 
   3726   if (I.isEquality()) {
   3727     FCmpInst::Predicate P = I.getPredicate();
   3728     bool IsExact = false;
   3729     APSInt RHSCvt(IntTy->getBitWidth(), LHSUnsigned);
   3730     RHS.convertToInteger(RHSCvt, APFloat::rmNearestTiesToEven, &IsExact);
   3731 
   3732     // If the floating point constant isn't an integer value, we know if we will
   3733     // ever compare equal / not equal to it.
   3734     if (!IsExact) {
   3735       // TODO: Can never be -0.0 and other non-representable values
   3736       APFloat RHSRoundInt(RHS);
   3737       RHSRoundInt.roundToIntegral(APFloat::rmNearestTiesToEven);
   3738       if (RHS.compare(RHSRoundInt) != APFloat::cmpEqual) {
   3739         if (P == FCmpInst::FCMP_OEQ || P == FCmpInst::FCMP_UEQ)
   3740           return ReplaceInstUsesWith(I, Builder->getFalse());
   3741 
   3742         assert(P == FCmpInst::FCMP_ONE || P == FCmpInst::FCMP_UNE);
   3743         return ReplaceInstUsesWith(I, Builder->getTrue());
   3744       }
   3745     }
   3746 
   3747     // TODO: If the constant is exactly representable, is it always OK to do
   3748     // equality compares as integer?
   3749   }
   3750 
   3751   // Comparisons with zero are a special case where we know we won't lose
   3752   // information.
   3753   bool IsCmpZero = RHS.isPosZero();
   3754 
   3755   // If the conversion would lose info, don't hack on this.
   3756   if ((int)InputSize > MantissaWidth && !IsCmpZero)
   3757     return nullptr;
   3758 
   3759   // Otherwise, we can potentially simplify the comparison.  We know that it
   3760   // will always come through as an integer value and we know the constant is
   3761   // not a NAN (it would have been previously simplified).
   3762   assert(!RHS.isNaN() && "NaN comparison not already folded!");
   3763 
   3764   ICmpInst::Predicate Pred;
   3765   switch (I.getPredicate()) {
   3766   default: llvm_unreachable("Unexpected predicate!");
   3767   case FCmpInst::FCMP_UEQ:
   3768   case FCmpInst::FCMP_OEQ:
   3769     Pred = ICmpInst::ICMP_EQ;
   3770     break;
   3771   case FCmpInst::FCMP_UGT:
   3772   case FCmpInst::FCMP_OGT:
   3773     Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT;
   3774     break;
   3775   case FCmpInst::FCMP_UGE:
   3776   case FCmpInst::FCMP_OGE:
   3777     Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE;
   3778     break;
   3779   case FCmpInst::FCMP_ULT:
   3780   case FCmpInst::FCMP_OLT:
   3781     Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT;
   3782     break;
   3783   case FCmpInst::FCMP_ULE:
   3784   case FCmpInst::FCMP_OLE:
   3785     Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE;
   3786     break;
   3787   case FCmpInst::FCMP_UNE:
   3788   case FCmpInst::FCMP_ONE:
   3789     Pred = ICmpInst::ICMP_NE;
   3790     break;
   3791   case FCmpInst::FCMP_ORD:
   3792     return ReplaceInstUsesWith(I, Builder->getTrue());
   3793   case FCmpInst::FCMP_UNO:
   3794     return ReplaceInstUsesWith(I, Builder->getFalse());
   3795   }
   3796 
   3797   // Now we know that the APFloat is a normal number, zero or inf.
   3798 
   3799   // See if the FP constant is too large for the integer.  For example,
   3800   // comparing an i8 to 300.0.
   3801   unsigned IntWidth = IntTy->getScalarSizeInBits();
   3802 
   3803   if (!LHSUnsigned) {
   3804     // If the RHS value is > SignedMax, fold the comparison.  This handles +INF
   3805     // and large values.
   3806     APFloat SMax(RHS.getSemantics());
   3807     SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true,
   3808                           APFloat::rmNearestTiesToEven);
   3809     if (SMax.compare(RHS) == APFloat::cmpLessThan) {  // smax < 13123.0
   3810       if (Pred == ICmpInst::ICMP_NE  || Pred == ICmpInst::ICMP_SLT ||
   3811           Pred == ICmpInst::ICMP_SLE)
   3812         return ReplaceInstUsesWith(I, Builder->getTrue());
   3813       return ReplaceInstUsesWith(I, Builder->getFalse());
   3814     }
   3815   } else {
   3816     // If the RHS value is > UnsignedMax, fold the comparison. This handles
   3817     // +INF and large values.
   3818     APFloat UMax(RHS.getSemantics());
   3819     UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false,
   3820                           APFloat::rmNearestTiesToEven);
   3821     if (UMax.compare(RHS) == APFloat::cmpLessThan) {  // umax < 13123.0
   3822       if (Pred == ICmpInst::ICMP_NE  || Pred == ICmpInst::ICMP_ULT ||
   3823           Pred == ICmpInst::ICMP_ULE)
   3824         return ReplaceInstUsesWith(I, Builder->getTrue());
   3825       return ReplaceInstUsesWith(I, Builder->getFalse());
   3826     }
   3827   }
   3828 
   3829   if (!LHSUnsigned) {
   3830     // See if the RHS value is < SignedMin.
   3831     APFloat SMin(RHS.getSemantics());
   3832     SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true,
   3833                           APFloat::rmNearestTiesToEven);
   3834     if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // smin > 12312.0
   3835       if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT ||
   3836           Pred == ICmpInst::ICMP_SGE)
   3837         return ReplaceInstUsesWith(I, Builder->getTrue());
   3838       return ReplaceInstUsesWith(I, Builder->getFalse());
   3839     }
   3840   } else {
   3841     // See if the RHS value is < UnsignedMin.
   3842     APFloat SMin(RHS.getSemantics());
   3843     SMin.convertFromAPInt(APInt::getMinValue(IntWidth), true,
   3844                           APFloat::rmNearestTiesToEven);
   3845     if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // umin > 12312.0
   3846       if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_UGT ||
   3847           Pred == ICmpInst::ICMP_UGE)
   3848         return ReplaceInstUsesWith(I, Builder->getTrue());
   3849       return ReplaceInstUsesWith(I, Builder->getFalse());
   3850     }
   3851   }
   3852 
   3853   // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or
   3854   // [0, UMAX], but it may still be fractional.  See if it is fractional by
   3855   // casting the FP value to the integer value and back, checking for equality.
   3856   // Don't do this for zero, because -0.0 is not fractional.
   3857   Constant *RHSInt = LHSUnsigned
   3858     ? ConstantExpr::getFPToUI(RHSC, IntTy)
   3859     : ConstantExpr::getFPToSI(RHSC, IntTy);
   3860   if (!RHS.isZero()) {
   3861     bool Equal = LHSUnsigned
   3862       ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC
   3863       : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC;
   3864     if (!Equal) {
   3865       // If we had a comparison against a fractional value, we have to adjust
   3866       // the compare predicate and sometimes the value.  RHSC is rounded towards
   3867       // zero at this point.
   3868       switch (Pred) {
   3869       default: llvm_unreachable("Unexpected integer comparison!");
   3870       case ICmpInst::ICMP_NE:  // (float)int != 4.4   --> true
   3871         return ReplaceInstUsesWith(I, Builder->getTrue());
   3872       case ICmpInst::ICMP_EQ:  // (float)int == 4.4   --> false
   3873         return ReplaceInstUsesWith(I, Builder->getFalse());
   3874       case ICmpInst::ICMP_ULE:
   3875         // (float)int <= 4.4   --> int <= 4
   3876         // (float)int <= -4.4  --> false
   3877         if (RHS.isNegative())
   3878           return ReplaceInstUsesWith(I, Builder->getFalse());
   3879         break;
   3880       case ICmpInst::ICMP_SLE:
   3881         // (float)int <= 4.4   --> int <= 4
   3882         // (float)int <= -4.4  --> int < -4
   3883         if (RHS.isNegative())
   3884           Pred = ICmpInst::ICMP_SLT;
   3885         break;
   3886       case ICmpInst::ICMP_ULT:
   3887         // (float)int < -4.4   --> false
   3888         // (float)int < 4.4    --> int <= 4
   3889         if (RHS.isNegative())
   3890           return ReplaceInstUsesWith(I, Builder->getFalse());
   3891         Pred = ICmpInst::ICMP_ULE;
   3892         break;
   3893       case ICmpInst::ICMP_SLT:
   3894         // (float)int < -4.4   --> int < -4
   3895         // (float)int < 4.4    --> int <= 4
   3896         if (!RHS.isNegative())
   3897           Pred = ICmpInst::ICMP_SLE;
   3898         break;
   3899       case ICmpInst::ICMP_UGT:
   3900         // (float)int > 4.4    --> int > 4
   3901         // (float)int > -4.4   --> true
   3902         if (RHS.isNegative())
   3903           return ReplaceInstUsesWith(I, Builder->getTrue());
   3904         break;
   3905       case ICmpInst::ICMP_SGT:
   3906         // (float)int > 4.4    --> int > 4
   3907         // (float)int > -4.4   --> int >= -4
   3908         if (RHS.isNegative())
   3909           Pred = ICmpInst::ICMP_SGE;
   3910         break;
   3911       case ICmpInst::ICMP_UGE:
   3912         // (float)int >= -4.4   --> true
   3913         // (float)int >= 4.4    --> int > 4
   3914         if (RHS.isNegative())
   3915           return ReplaceInstUsesWith(I, Builder->getTrue());
   3916         Pred = ICmpInst::ICMP_UGT;
   3917         break;
   3918       case ICmpInst::ICMP_SGE:
   3919         // (float)int >= -4.4   --> int >= -4
   3920         // (float)int >= 4.4    --> int > 4
   3921         if (!RHS.isNegative())
   3922           Pred = ICmpInst::ICMP_SGT;
   3923         break;
   3924       }
   3925     }
   3926   }
   3927 
   3928   // Lower this FP comparison into an appropriate integer version of the
   3929   // comparison.
   3930   return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt);
   3931 }
   3932 
   3933 Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) {
   3934   bool Changed = false;
   3935 
   3936   /// Orders the operands of the compare so that they are listed from most
   3937   /// complex to least complex.  This puts constants before unary operators,
   3938   /// before binary operators.
   3939   if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) {
   3940     I.swapOperands();
   3941     Changed = true;
   3942   }
   3943 
   3944   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
   3945 
   3946   if (Value *V = SimplifyFCmpInst(I.getPredicate(), Op0, Op1, DL, TLI, DT, AC))
   3947     return ReplaceInstUsesWith(I, V);
   3948 
   3949   // Simplify 'fcmp pred X, X'
   3950   if (Op0 == Op1) {
   3951     switch (I.getPredicate()) {
   3952     default: llvm_unreachable("Unknown predicate!");
   3953     case FCmpInst::FCMP_UNO:    // True if unordered: isnan(X) | isnan(Y)
   3954     case FCmpInst::FCMP_ULT:    // True if unordered or less than
   3955     case FCmpInst::FCMP_UGT:    // True if unordered or greater than
   3956     case FCmpInst::FCMP_UNE:    // True if unordered or not equal
   3957       // Canonicalize these to be 'fcmp uno %X, 0.0'.
   3958       I.setPredicate(FCmpInst::FCMP_UNO);
   3959       I.setOperand(1, Constant::getNullValue(Op0->getType()));
   3960       return &I;
   3961 
   3962     case FCmpInst::FCMP_ORD:    // True if ordered (no nans)
   3963     case FCmpInst::FCMP_OEQ:    // True if ordered and equal
   3964     case FCmpInst::FCMP_OGE:    // True if ordered and greater than or equal
   3965     case FCmpInst::FCMP_OLE:    // True if ordered and less than or equal
   3966       // Canonicalize these to be 'fcmp ord %X, 0.0'.
   3967       I.setPredicate(FCmpInst::FCMP_ORD);
   3968       I.setOperand(1, Constant::getNullValue(Op0->getType()));
   3969       return &I;
   3970     }
   3971   }
   3972 
   3973   // Handle fcmp with constant RHS
   3974   if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
   3975     if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
   3976       switch (LHSI->getOpcode()) {
   3977       case Instruction::FPExt: {
   3978         // fcmp (fpext x), C -> fcmp x, (fptrunc C) if fptrunc is lossless
   3979         FPExtInst *LHSExt = cast<FPExtInst>(LHSI);
   3980         ConstantFP *RHSF = dyn_cast<ConstantFP>(RHSC);
   3981         if (!RHSF)
   3982           break;
   3983 
   3984         const fltSemantics *Sem;
   3985         // FIXME: This shouldn't be here.
   3986         if (LHSExt->getSrcTy()->isHalfTy())
   3987           Sem = &APFloat::IEEEhalf;
   3988         else if (LHSExt->getSrcTy()->isFloatTy())
   3989           Sem = &APFloat::IEEEsingle;
   3990         else if (LHSExt->getSrcTy()->isDoubleTy())
   3991           Sem = &APFloat::IEEEdouble;
   3992         else if (LHSExt->getSrcTy()->isFP128Ty())
   3993           Sem = &APFloat::IEEEquad;
   3994         else if (LHSExt->getSrcTy()->isX86_FP80Ty())
   3995           Sem = &APFloat::x87DoubleExtended;
   3996         else if (LHSExt->getSrcTy()->isPPC_FP128Ty())
   3997           Sem = &APFloat::PPCDoubleDouble;
   3998         else
   3999           break;
   4000 
   4001         bool Lossy;
   4002         APFloat F = RHSF->getValueAPF();
   4003         F.convert(*Sem, APFloat::rmNearestTiesToEven, &Lossy);
   4004 
   4005         // Avoid lossy conversions and denormals. Zero is a special case
   4006         // that's OK to convert.
   4007         APFloat Fabs = F;
   4008         Fabs.clearSign();
   4009         if (!Lossy &&
   4010             ((Fabs.compare(APFloat::getSmallestNormalized(*Sem)) !=
   4011                  APFloat::cmpLessThan) || Fabs.isZero()))
   4012 
   4013           return new FCmpInst(I.getPredicate(), LHSExt->getOperand(0),
   4014                               ConstantFP::get(RHSC->getContext(), F));
   4015         break;
   4016       }
   4017       case Instruction::PHI:
   4018         // Only fold fcmp into the PHI if the phi and fcmp are in the same
   4019         // block.  If in the same block, we're encouraging jump threading.  If
   4020         // not, we are just pessimizing the code by making an i1 phi.
   4021         if (LHSI->getParent() == I.getParent())
   4022           if (Instruction *NV = FoldOpIntoPhi(I))
   4023             return NV;
   4024         break;
   4025       case Instruction::SIToFP:
   4026       case Instruction::UIToFP:
   4027         if (Instruction *NV = FoldFCmp_IntToFP_Cst(I, LHSI, RHSC))
   4028           return NV;
   4029         break;
   4030       case Instruction::FSub: {
   4031         // fcmp pred (fneg x), C -> fcmp swap(pred) x, -C
   4032         Value *Op;
   4033         if (match(LHSI, m_FNeg(m_Value(Op))))
   4034           return new FCmpInst(I.getSwappedPredicate(), Op,
   4035                               ConstantExpr::getFNeg(RHSC));
   4036         break;
   4037       }
   4038       case Instruction::Load:
   4039         if (GetElementPtrInst *GEP =
   4040             dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) {
   4041           if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
   4042             if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
   4043                 !cast<LoadInst>(LHSI)->isVolatile())
   4044               if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV, I))
   4045                 return Res;
   4046         }
   4047         break;
   4048       case Instruction::Call: {
   4049         if (!RHSC->isNullValue())
   4050           break;
   4051 
   4052         CallInst *CI = cast<CallInst>(LHSI);
   4053         const Function *F = CI->getCalledFunction();
   4054         if (!F)
   4055           break;
   4056 
   4057         // Various optimization for fabs compared with zero.
   4058         LibFunc::Func Func;
   4059         if (F->getIntrinsicID() == Intrinsic::fabs ||
   4060             (TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) &&
   4061              (Func == LibFunc::fabs || Func == LibFunc::fabsf ||
   4062               Func == LibFunc::fabsl))) {
   4063           switch (I.getPredicate()) {
   4064           default:
   4065             break;
   4066             // fabs(x) < 0 --> false
   4067           case FCmpInst::FCMP_OLT:
   4068             return ReplaceInstUsesWith(I, Builder->getFalse());
   4069             // fabs(x) > 0 --> x != 0
   4070           case FCmpInst::FCMP_OGT:
   4071             return new FCmpInst(FCmpInst::FCMP_ONE, CI->getArgOperand(0), RHSC);
   4072             // fabs(x) <= 0 --> x == 0
   4073           case FCmpInst::FCMP_OLE:
   4074             return new FCmpInst(FCmpInst::FCMP_OEQ, CI->getArgOperand(0), RHSC);
   4075             // fabs(x) >= 0 --> !isnan(x)
   4076           case FCmpInst::FCMP_OGE:
   4077             return new FCmpInst(FCmpInst::FCMP_ORD, CI->getArgOperand(0), RHSC);
   4078             // fabs(x) == 0 --> x == 0
   4079             // fabs(x) != 0 --> x != 0
   4080           case FCmpInst::FCMP_OEQ:
   4081           case FCmpInst::FCMP_UEQ:
   4082           case FCmpInst::FCMP_ONE:
   4083           case FCmpInst::FCMP_UNE:
   4084             return new FCmpInst(I.getPredicate(), CI->getArgOperand(0), RHSC);
   4085           }
   4086         }
   4087       }
   4088       }
   4089   }
   4090 
   4091   // fcmp pred (fneg x), (fneg y) -> fcmp swap(pred) x, y
   4092   Value *X, *Y;
   4093   if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y))))
   4094     return new FCmpInst(I.getSwappedPredicate(), X, Y);
   4095 
   4096   // fcmp (fpext x), (fpext y) -> fcmp x, y
   4097   if (FPExtInst *LHSExt = dyn_cast<FPExtInst>(Op0))
   4098     if (FPExtInst *RHSExt = dyn_cast<FPExtInst>(Op1))
   4099       if (LHSExt->getSrcTy() == RHSExt->getSrcTy())
   4100         return new FCmpInst(I.getPredicate(), LHSExt->getOperand(0),
   4101                             RHSExt->getOperand(0));
   4102 
   4103   return Changed ? &I : nullptr;
   4104 }
   4105