Home | History | Annotate | Download | only in InstCombine
      1 //===- InstCombineInternal.h - InstCombine pass internals -------*- C++ -*-===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 /// \file
     10 ///
     11 /// This file provides internal interfaces used to implement the InstCombine.
     12 ///
     13 //===----------------------------------------------------------------------===//
     14 
     15 #ifndef LLVM_LIB_TRANSFORMS_INSTCOMBINE_INSTCOMBINEINTERNAL_H
     16 #define LLVM_LIB_TRANSFORMS_INSTCOMBINE_INSTCOMBINEINTERNAL_H
     17 
     18 #include "llvm/Analysis/AssumptionCache.h"
     19 #include "llvm/Analysis/LoopInfo.h"
     20 #include "llvm/Analysis/TargetFolder.h"
     21 #include "llvm/Analysis/ValueTracking.h"
     22 #include "llvm/IR/Dominators.h"
     23 #include "llvm/IR/IRBuilder.h"
     24 #include "llvm/IR/InstVisitor.h"
     25 #include "llvm/IR/IntrinsicInst.h"
     26 #include "llvm/IR/Operator.h"
     27 #include "llvm/IR/PatternMatch.h"
     28 #include "llvm/Pass.h"
     29 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h"
     30 
     31 #define DEBUG_TYPE "instcombine"
     32 
     33 namespace llvm {
     34 class CallSite;
     35 class DataLayout;
     36 class DominatorTree;
     37 class TargetLibraryInfo;
     38 class DbgDeclareInst;
     39 class MemIntrinsic;
     40 class MemSetInst;
     41 
     42 /// \brief Specific patterns of select instructions we can match.
     43 enum SelectPatternFlavor {
     44   SPF_UNKNOWN = 0,
     45   SPF_SMIN,
     46   SPF_UMIN,
     47   SPF_SMAX,
     48   SPF_UMAX,
     49   SPF_ABS,
     50   SPF_NABS
     51 };
     52 
     53 /// \brief Assign a complexity or rank value to LLVM Values.
     54 ///
     55 /// This routine maps IR values to various complexity ranks:
     56 ///   0 -> undef
     57 ///   1 -> Constants
     58 ///   2 -> Other non-instructions
     59 ///   3 -> Arguments
     60 ///   3 -> Unary operations
     61 ///   4 -> Other instructions
     62 static inline unsigned getComplexity(Value *V) {
     63   if (isa<Instruction>(V)) {
     64     if (BinaryOperator::isNeg(V) || BinaryOperator::isFNeg(V) ||
     65         BinaryOperator::isNot(V))
     66       return 3;
     67     return 4;
     68   }
     69   if (isa<Argument>(V))
     70     return 3;
     71   return isa<Constant>(V) ? (isa<UndefValue>(V) ? 0 : 1) : 2;
     72 }
     73 
     74 /// \brief Add one to a Constant
     75 static inline Constant *AddOne(Constant *C) {
     76   return ConstantExpr::getAdd(C, ConstantInt::get(C->getType(), 1));
     77 }
     78 /// \brief Subtract one from a Constant
     79 static inline Constant *SubOne(Constant *C) {
     80   return ConstantExpr::getSub(C, ConstantInt::get(C->getType(), 1));
     81 }
     82 
     83 /// \brief Return true if the specified value is free to invert (apply ~ to).
     84 /// This happens in cases where the ~ can be eliminated.  If WillInvertAllUses
     85 /// is true, work under the assumption that the caller intends to remove all
     86 /// uses of V and only keep uses of ~V.
     87 ///
     88 static inline bool IsFreeToInvert(Value *V, bool WillInvertAllUses) {
     89   // ~(~(X)) -> X.
     90   if (BinaryOperator::isNot(V))
     91     return true;
     92 
     93   // Constants can be considered to be not'ed values.
     94   if (isa<ConstantInt>(V))
     95     return true;
     96 
     97   // Compares can be inverted if all of their uses are being modified to use the
     98   // ~V.
     99   if (isa<CmpInst>(V))
    100     return WillInvertAllUses;
    101 
    102   // If `V` is of the form `A + Constant` then `-1 - V` can be folded into `(-1
    103   // - Constant) - A` if we are willing to invert all of the uses.
    104   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(V))
    105     if (BO->getOpcode() == Instruction::Add ||
    106         BO->getOpcode() == Instruction::Sub)
    107       if (isa<Constant>(BO->getOperand(0)) || isa<Constant>(BO->getOperand(1)))
    108         return WillInvertAllUses;
    109 
    110   return false;
    111 }
    112 
    113 
    114 /// \brief Specific patterns of overflow check idioms that we match.
    115 enum OverflowCheckFlavor {
    116   OCF_UNSIGNED_ADD,
    117   OCF_SIGNED_ADD,
    118   OCF_UNSIGNED_SUB,
    119   OCF_SIGNED_SUB,
    120   OCF_UNSIGNED_MUL,
    121   OCF_SIGNED_MUL,
    122 
    123   OCF_INVALID
    124 };
    125 
    126 /// \brief Returns the OverflowCheckFlavor corresponding to a overflow_with_op
    127 /// intrinsic.
    128 static inline OverflowCheckFlavor
    129 IntrinsicIDToOverflowCheckFlavor(unsigned ID) {
    130   switch (ID) {
    131   default:
    132     return OCF_INVALID;
    133   case Intrinsic::uadd_with_overflow:
    134     return OCF_UNSIGNED_ADD;
    135   case Intrinsic::sadd_with_overflow:
    136     return OCF_SIGNED_ADD;
    137   case Intrinsic::usub_with_overflow:
    138     return OCF_UNSIGNED_SUB;
    139   case Intrinsic::ssub_with_overflow:
    140     return OCF_SIGNED_SUB;
    141   case Intrinsic::umul_with_overflow:
    142     return OCF_UNSIGNED_MUL;
    143   case Intrinsic::smul_with_overflow:
    144     return OCF_SIGNED_MUL;
    145   }
    146 }
    147 
    148 /// \brief An IRBuilder inserter that adds new instructions to the instcombine
    149 /// worklist.
    150 class LLVM_LIBRARY_VISIBILITY InstCombineIRInserter
    151     : public IRBuilderDefaultInserter<true> {
    152   InstCombineWorklist &Worklist;
    153   AssumptionCache *AC;
    154 
    155 public:
    156   InstCombineIRInserter(InstCombineWorklist &WL, AssumptionCache *AC)
    157       : Worklist(WL), AC(AC) {}
    158 
    159   void InsertHelper(Instruction *I, const Twine &Name, BasicBlock *BB,
    160                     BasicBlock::iterator InsertPt) const {
    161     IRBuilderDefaultInserter<true>::InsertHelper(I, Name, BB, InsertPt);
    162     Worklist.Add(I);
    163 
    164     using namespace llvm::PatternMatch;
    165     if (match(I, m_Intrinsic<Intrinsic::assume>()))
    166       AC->registerAssumption(cast<CallInst>(I));
    167   }
    168 };
    169 
    170 /// \brief The core instruction combiner logic.
    171 ///
    172 /// This class provides both the logic to recursively visit instructions and
    173 /// combine them, as well as the pass infrastructure for running this as part
    174 /// of the LLVM pass pipeline.
    175 class LLVM_LIBRARY_VISIBILITY InstCombiner
    176     : public InstVisitor<InstCombiner, Instruction *> {
    177   // FIXME: These members shouldn't be public.
    178 public:
    179   /// \brief A worklist of the instructions that need to be simplified.
    180   InstCombineWorklist &Worklist;
    181 
    182   /// \brief An IRBuilder that automatically inserts new instructions into the
    183   /// worklist.
    184   typedef IRBuilder<true, TargetFolder, InstCombineIRInserter> BuilderTy;
    185   BuilderTy *Builder;
    186 
    187 private:
    188   // Mode in which we are running the combiner.
    189   const bool MinimizeSize;
    190 
    191   // Required analyses.
    192   // FIXME: These can never be null and should be references.
    193   AssumptionCache *AC;
    194   TargetLibraryInfo *TLI;
    195   DominatorTree *DT;
    196   const DataLayout &DL;
    197 
    198   // Optional analyses. When non-null, these can both be used to do better
    199   // combining and will be updated to reflect any changes.
    200   LoopInfo *LI;
    201 
    202   bool MadeIRChange;
    203 
    204 public:
    205   InstCombiner(InstCombineWorklist &Worklist, BuilderTy *Builder,
    206                bool MinimizeSize, AssumptionCache *AC, TargetLibraryInfo *TLI,
    207                DominatorTree *DT, const DataLayout &DL, LoopInfo *LI)
    208       : Worklist(Worklist), Builder(Builder), MinimizeSize(MinimizeSize),
    209         AC(AC), TLI(TLI), DT(DT), DL(DL), LI(LI), MadeIRChange(false) {}
    210 
    211   /// \brief Run the combiner over the entire worklist until it is empty.
    212   ///
    213   /// \returns true if the IR is changed.
    214   bool run();
    215 
    216   AssumptionCache *getAssumptionCache() const { return AC; }
    217 
    218   const DataLayout &getDataLayout() const { return DL; }
    219 
    220   DominatorTree *getDominatorTree() const { return DT; }
    221 
    222   LoopInfo *getLoopInfo() const { return LI; }
    223 
    224   TargetLibraryInfo *getTargetLibraryInfo() const { return TLI; }
    225 
    226   // Visitation implementation - Implement instruction combining for different
    227   // instruction types.  The semantics are as follows:
    228   // Return Value:
    229   //    null        - No change was made
    230   //     I          - Change was made, I is still valid, I may be dead though
    231   //   otherwise    - Change was made, replace I with returned instruction
    232   //
    233   Instruction *visitAdd(BinaryOperator &I);
    234   Instruction *visitFAdd(BinaryOperator &I);
    235   Value *OptimizePointerDifference(Value *LHS, Value *RHS, Type *Ty);
    236   Instruction *visitSub(BinaryOperator &I);
    237   Instruction *visitFSub(BinaryOperator &I);
    238   Instruction *visitMul(BinaryOperator &I);
    239   Value *foldFMulConst(Instruction *FMulOrDiv, Constant *C,
    240                        Instruction *InsertBefore);
    241   Instruction *visitFMul(BinaryOperator &I);
    242   Instruction *visitURem(BinaryOperator &I);
    243   Instruction *visitSRem(BinaryOperator &I);
    244   Instruction *visitFRem(BinaryOperator &I);
    245   bool SimplifyDivRemOfSelect(BinaryOperator &I);
    246   Instruction *commonRemTransforms(BinaryOperator &I);
    247   Instruction *commonIRemTransforms(BinaryOperator &I);
    248   Instruction *commonDivTransforms(BinaryOperator &I);
    249   Instruction *commonIDivTransforms(BinaryOperator &I);
    250   Instruction *visitUDiv(BinaryOperator &I);
    251   Instruction *visitSDiv(BinaryOperator &I);
    252   Instruction *visitFDiv(BinaryOperator &I);
    253   Value *simplifyRangeCheck(ICmpInst *Cmp0, ICmpInst *Cmp1, bool Inverted);
    254   Value *FoldAndOfICmps(ICmpInst *LHS, ICmpInst *RHS);
    255   Value *FoldAndOfFCmps(FCmpInst *LHS, FCmpInst *RHS);
    256   Instruction *visitAnd(BinaryOperator &I);
    257   Value *FoldOrOfICmps(ICmpInst *LHS, ICmpInst *RHS, Instruction *CxtI);
    258   Value *FoldOrOfFCmps(FCmpInst *LHS, FCmpInst *RHS);
    259   Instruction *FoldOrWithConstants(BinaryOperator &I, Value *Op, Value *A,
    260                                    Value *B, Value *C);
    261   Instruction *FoldXorWithConstants(BinaryOperator &I, Value *Op, Value *A,
    262                                     Value *B, Value *C);
    263   Instruction *visitOr(BinaryOperator &I);
    264   Instruction *visitXor(BinaryOperator &I);
    265   Instruction *visitShl(BinaryOperator &I);
    266   Instruction *visitAShr(BinaryOperator &I);
    267   Instruction *visitLShr(BinaryOperator &I);
    268   Instruction *commonShiftTransforms(BinaryOperator &I);
    269   Instruction *FoldFCmp_IntToFP_Cst(FCmpInst &I, Instruction *LHSI,
    270                                     Constant *RHSC);
    271   Instruction *FoldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP,
    272                                             GlobalVariable *GV, CmpInst &ICI,
    273                                             ConstantInt *AndCst = nullptr);
    274   Instruction *visitFCmpInst(FCmpInst &I);
    275   Instruction *visitICmpInst(ICmpInst &I);
    276   Instruction *visitICmpInstWithCastAndCast(ICmpInst &ICI);
    277   Instruction *visitICmpInstWithInstAndIntCst(ICmpInst &ICI, Instruction *LHS,
    278                                               ConstantInt *RHS);
    279   Instruction *FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
    280                               ConstantInt *DivRHS);
    281   Instruction *FoldICmpShrCst(ICmpInst &ICI, BinaryOperator *DivI,
    282                               ConstantInt *DivRHS);
    283   Instruction *FoldICmpCstShrCst(ICmpInst &I, Value *Op, Value *A,
    284                                  ConstantInt *CI1, ConstantInt *CI2);
    285   Instruction *FoldICmpCstShlCst(ICmpInst &I, Value *Op, Value *A,
    286                                  ConstantInt *CI1, ConstantInt *CI2);
    287   Instruction *FoldICmpAddOpCst(Instruction &ICI, Value *X, ConstantInt *CI,
    288                                 ICmpInst::Predicate Pred);
    289   Instruction *FoldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
    290                            ICmpInst::Predicate Cond, Instruction &I);
    291   Instruction *FoldShiftByConstant(Value *Op0, Constant *Op1,
    292                                    BinaryOperator &I);
    293   Instruction *commonCastTransforms(CastInst &CI);
    294   Instruction *commonPointerCastTransforms(CastInst &CI);
    295   Instruction *visitTrunc(TruncInst &CI);
    296   Instruction *visitZExt(ZExtInst &CI);
    297   Instruction *visitSExt(SExtInst &CI);
    298   Instruction *visitFPTrunc(FPTruncInst &CI);
    299   Instruction *visitFPExt(CastInst &CI);
    300   Instruction *visitFPToUI(FPToUIInst &FI);
    301   Instruction *visitFPToSI(FPToSIInst &FI);
    302   Instruction *visitUIToFP(CastInst &CI);
    303   Instruction *visitSIToFP(CastInst &CI);
    304   Instruction *visitPtrToInt(PtrToIntInst &CI);
    305   Instruction *visitIntToPtr(IntToPtrInst &CI);
    306   Instruction *visitBitCast(BitCastInst &CI);
    307   Instruction *visitAddrSpaceCast(AddrSpaceCastInst &CI);
    308   Instruction *FoldSelectOpOp(SelectInst &SI, Instruction *TI, Instruction *FI);
    309   Instruction *FoldSelectIntoOp(SelectInst &SI, Value *, Value *);
    310   Instruction *FoldSPFofSPF(Instruction *Inner, SelectPatternFlavor SPF1,
    311                             Value *A, Value *B, Instruction &Outer,
    312                             SelectPatternFlavor SPF2, Value *C);
    313   Instruction *FoldItoFPtoI(Instruction &FI);
    314   Instruction *visitSelectInst(SelectInst &SI);
    315   Instruction *visitSelectInstWithICmp(SelectInst &SI, ICmpInst *ICI);
    316   Instruction *visitCallInst(CallInst &CI);
    317   Instruction *visitInvokeInst(InvokeInst &II);
    318 
    319   Instruction *SliceUpIllegalIntegerPHI(PHINode &PN);
    320   Instruction *visitPHINode(PHINode &PN);
    321   Instruction *visitGetElementPtrInst(GetElementPtrInst &GEP);
    322   Instruction *visitAllocaInst(AllocaInst &AI);
    323   Instruction *visitAllocSite(Instruction &FI);
    324   Instruction *visitFree(CallInst &FI);
    325   Instruction *visitLoadInst(LoadInst &LI);
    326   Instruction *visitStoreInst(StoreInst &SI);
    327   Instruction *visitBranchInst(BranchInst &BI);
    328   Instruction *visitSwitchInst(SwitchInst &SI);
    329   Instruction *visitReturnInst(ReturnInst &RI);
    330   Instruction *visitInsertValueInst(InsertValueInst &IV);
    331   Instruction *visitInsertElementInst(InsertElementInst &IE);
    332   Instruction *visitExtractElementInst(ExtractElementInst &EI);
    333   Instruction *visitShuffleVectorInst(ShuffleVectorInst &SVI);
    334   Instruction *visitExtractValueInst(ExtractValueInst &EV);
    335   Instruction *visitLandingPadInst(LandingPadInst &LI);
    336 
    337   // visitInstruction - Specify what to return for unhandled instructions...
    338   Instruction *visitInstruction(Instruction &I) { return nullptr; }
    339 
    340   // True when DB dominates all uses of DI execpt UI.
    341   // UI must be in the same block as DI.
    342   // The routine checks that the DI parent and DB are different.
    343   bool dominatesAllUses(const Instruction *DI, const Instruction *UI,
    344                         const BasicBlock *DB) const;
    345 
    346   // Replace select with select operand SIOpd in SI-ICmp sequence when possible
    347   bool replacedSelectWithOperand(SelectInst *SI, const ICmpInst *Icmp,
    348                                  const unsigned SIOpd);
    349 
    350 private:
    351   bool ShouldChangeType(Type *From, Type *To) const;
    352   Value *dyn_castNegVal(Value *V) const;
    353   Value *dyn_castFNegVal(Value *V, bool NoSignedZero = false) const;
    354   Type *FindElementAtOffset(PointerType *PtrTy, int64_t Offset,
    355                             SmallVectorImpl<Value *> &NewIndices);
    356   Instruction *FoldOpIntoSelect(Instruction &Op, SelectInst *SI);
    357 
    358   /// \brief Classify whether a cast is worth optimizing.
    359   ///
    360   /// Returns true if the cast from "V to Ty" actually results in any code
    361   /// being generated and is interesting to optimize out. If the cast can be
    362   /// eliminated by some other simple transformation, we prefer to do the
    363   /// simplification first.
    364   bool ShouldOptimizeCast(Instruction::CastOps opcode, const Value *V,
    365                           Type *Ty);
    366 
    367   /// \brief Try to optimize a sequence of instructions checking if an operation
    368   /// on LHS and RHS overflows.
    369   ///
    370   /// If a simplification is possible, stores the simplified result of the
    371   /// operation in OperationResult and result of the overflow check in
    372   /// OverflowResult, and return true.  If no simplification is possible,
    373   /// returns false.
    374   bool OptimizeOverflowCheck(OverflowCheckFlavor OCF, Value *LHS, Value *RHS,
    375                              Instruction &CtxI, Value *&OperationResult,
    376                              Constant *&OverflowResult);
    377 
    378   Instruction *visitCallSite(CallSite CS);
    379   Instruction *tryOptimizeCall(CallInst *CI);
    380   bool transformConstExprCastCall(CallSite CS);
    381   Instruction *transformCallThroughTrampoline(CallSite CS,
    382                                               IntrinsicInst *Tramp);
    383   Instruction *transformZExtICmp(ICmpInst *ICI, Instruction &CI,
    384                                  bool DoXform = true);
    385   Instruction *transformSExtICmp(ICmpInst *ICI, Instruction &CI);
    386   bool WillNotOverflowSignedAdd(Value *LHS, Value *RHS, Instruction &CxtI);
    387   bool WillNotOverflowSignedSub(Value *LHS, Value *RHS, Instruction &CxtI);
    388   bool WillNotOverflowUnsignedSub(Value *LHS, Value *RHS, Instruction &CxtI);
    389   bool WillNotOverflowSignedMul(Value *LHS, Value *RHS, Instruction &CxtI);
    390   Value *EmitGEPOffset(User *GEP);
    391   Instruction *scalarizePHI(ExtractElementInst &EI, PHINode *PN);
    392   Value *EvaluateInDifferentElementOrder(Value *V, ArrayRef<int> Mask);
    393 
    394 public:
    395   /// \brief Inserts an instruction \p New before instruction \p Old
    396   ///
    397   /// Also adds the new instruction to the worklist and returns \p New so that
    398   /// it is suitable for use as the return from the visitation patterns.
    399   Instruction *InsertNewInstBefore(Instruction *New, Instruction &Old) {
    400     assert(New && !New->getParent() &&
    401            "New instruction already inserted into a basic block!");
    402     BasicBlock *BB = Old.getParent();
    403     BB->getInstList().insert(&Old, New); // Insert inst
    404     Worklist.Add(New);
    405     return New;
    406   }
    407 
    408   /// \brief Same as InsertNewInstBefore, but also sets the debug loc.
    409   Instruction *InsertNewInstWith(Instruction *New, Instruction &Old) {
    410     New->setDebugLoc(Old.getDebugLoc());
    411     return InsertNewInstBefore(New, Old);
    412   }
    413 
    414   /// \brief A combiner-aware RAUW-like routine.
    415   ///
    416   /// This method is to be used when an instruction is found to be dead,
    417   /// replacable with another preexisting expression. Here we add all uses of
    418   /// I to the worklist, replace all uses of I with the new value, then return
    419   /// I, so that the inst combiner will know that I was modified.
    420   Instruction *ReplaceInstUsesWith(Instruction &I, Value *V) {
    421     // If there are no uses to replace, then we return nullptr to indicate that
    422     // no changes were made to the program.
    423     if (I.use_empty()) return nullptr;
    424 
    425     Worklist.AddUsersToWorkList(I); // Add all modified instrs to worklist.
    426 
    427     // If we are replacing the instruction with itself, this must be in a
    428     // segment of unreachable code, so just clobber the instruction.
    429     if (&I == V)
    430       V = UndefValue::get(I.getType());
    431 
    432     DEBUG(dbgs() << "IC: Replacing " << I << "\n"
    433                  << "    with " << *V << '\n');
    434 
    435     I.replaceAllUsesWith(V);
    436     return &I;
    437   }
    438 
    439   /// Creates a result tuple for an overflow intrinsic \p II with a given
    440   /// \p Result and a constant \p Overflow value.
    441   Instruction *CreateOverflowTuple(IntrinsicInst *II, Value *Result,
    442                                    Constant *Overflow) {
    443     Constant *V[] = {UndefValue::get(Result->getType()), Overflow};
    444     StructType *ST = cast<StructType>(II->getType());
    445     Constant *Struct = ConstantStruct::get(ST, V);
    446     return InsertValueInst::Create(Struct, Result, 0);
    447   }
    448 
    449   /// \brief Combiner aware instruction erasure.
    450   ///
    451   /// When dealing with an instruction that has side effects or produces a void
    452   /// value, we can't rely on DCE to delete the instruction. Instead, visit
    453   /// methods should return the value returned by this function.
    454   Instruction *EraseInstFromFunction(Instruction &I) {
    455     DEBUG(dbgs() << "IC: ERASE " << I << '\n');
    456 
    457     assert(I.use_empty() && "Cannot erase instruction that is used!");
    458     // Make sure that we reprocess all operands now that we reduced their
    459     // use counts.
    460     if (I.getNumOperands() < 8) {
    461       for (User::op_iterator i = I.op_begin(), e = I.op_end(); i != e; ++i)
    462         if (Instruction *Op = dyn_cast<Instruction>(*i))
    463           Worklist.Add(Op);
    464     }
    465     Worklist.Remove(&I);
    466     I.eraseFromParent();
    467     MadeIRChange = true;
    468     return nullptr; // Don't do anything with FI
    469   }
    470 
    471   void computeKnownBits(Value *V, APInt &KnownZero, APInt &KnownOne,
    472                         unsigned Depth, Instruction *CxtI) const {
    473     return llvm::computeKnownBits(V, KnownZero, KnownOne, DL, Depth, AC, CxtI,
    474                                   DT);
    475   }
    476 
    477   bool MaskedValueIsZero(Value *V, const APInt &Mask, unsigned Depth = 0,
    478                          Instruction *CxtI = nullptr) const {
    479     return llvm::MaskedValueIsZero(V, Mask, DL, Depth, AC, CxtI, DT);
    480   }
    481   unsigned ComputeNumSignBits(Value *Op, unsigned Depth = 0,
    482                               Instruction *CxtI = nullptr) const {
    483     return llvm::ComputeNumSignBits(Op, DL, Depth, AC, CxtI, DT);
    484   }
    485   void ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
    486                       unsigned Depth = 0, Instruction *CxtI = nullptr) const {
    487     return llvm::ComputeSignBit(V, KnownZero, KnownOne, DL, Depth, AC, CxtI,
    488                                 DT);
    489   }
    490   OverflowResult computeOverflowForUnsignedMul(Value *LHS, Value *RHS,
    491                                                const Instruction *CxtI) {
    492     return llvm::computeOverflowForUnsignedMul(LHS, RHS, DL, AC, CxtI, DT);
    493   }
    494   OverflowResult computeOverflowForUnsignedAdd(Value *LHS, Value *RHS,
    495                                                const Instruction *CxtI) {
    496     return llvm::computeOverflowForUnsignedAdd(LHS, RHS, DL, AC, CxtI, DT);
    497   }
    498 
    499 private:
    500   /// \brief Performs a few simplifications for operators which are associative
    501   /// or commutative.
    502   bool SimplifyAssociativeOrCommutative(BinaryOperator &I);
    503 
    504   /// \brief Tries to simplify binary operations which some other binary
    505   /// operation distributes over.
    506   ///
    507   /// It does this by either by factorizing out common terms (eg "(A*B)+(A*C)"
    508   /// -> "A*(B+C)") or expanding out if this results in simplifications (eg: "A
    509   /// & (B | C) -> (A&B) | (A&C)" if this is a win).  Returns the simplified
    510   /// value, or null if it didn't simplify.
    511   Value *SimplifyUsingDistributiveLaws(BinaryOperator &I);
    512 
    513   /// \brief Attempts to replace V with a simpler value based on the demanded
    514   /// bits.
    515   Value *SimplifyDemandedUseBits(Value *V, APInt DemandedMask, APInt &KnownZero,
    516                                  APInt &KnownOne, unsigned Depth,
    517                                  Instruction *CxtI);
    518   bool SimplifyDemandedBits(Use &U, APInt DemandedMask, APInt &KnownZero,
    519                             APInt &KnownOne, unsigned Depth = 0);
    520   /// Helper routine of SimplifyDemandedUseBits. It tries to simplify demanded
    521   /// bit for "r1 = shr x, c1; r2 = shl r1, c2" instruction sequence.
    522   Value *SimplifyShrShlDemandedBits(Instruction *Lsr, Instruction *Sftl,
    523                                     APInt DemandedMask, APInt &KnownZero,
    524                                     APInt &KnownOne);
    525 
    526   /// \brief Tries to simplify operands to an integer instruction based on its
    527   /// demanded bits.
    528   bool SimplifyDemandedInstructionBits(Instruction &Inst);
    529 
    530   Value *SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
    531                                     APInt &UndefElts, unsigned Depth = 0);
    532 
    533   Value *SimplifyVectorOp(BinaryOperator &Inst);
    534   Value *SimplifyBSwap(BinaryOperator &Inst);
    535 
    536   // FoldOpIntoPhi - Given a binary operator, cast instruction, or select
    537   // which has a PHI node as operand #0, see if we can fold the instruction
    538   // into the PHI (which is only possible if all operands to the PHI are
    539   // constants).
    540   //
    541   Instruction *FoldOpIntoPhi(Instruction &I);
    542 
    543   /// \brief Try to rotate an operation below a PHI node, using PHI nodes for
    544   /// its operands.
    545   Instruction *FoldPHIArgOpIntoPHI(PHINode &PN);
    546   Instruction *FoldPHIArgBinOpIntoPHI(PHINode &PN);
    547   Instruction *FoldPHIArgGEPIntoPHI(PHINode &PN);
    548   Instruction *FoldPHIArgLoadIntoPHI(PHINode &PN);
    549 
    550   Instruction *OptAndOp(Instruction *Op, ConstantInt *OpRHS,
    551                         ConstantInt *AndRHS, BinaryOperator &TheAnd);
    552 
    553   Value *FoldLogicalPlusAnd(Value *LHS, Value *RHS, ConstantInt *Mask,
    554                             bool isSub, Instruction &I);
    555   Value *InsertRangeTest(Value *V, Constant *Lo, Constant *Hi, bool isSigned,
    556                          bool Inside);
    557   Instruction *PromoteCastOfAllocation(BitCastInst &CI, AllocaInst &AI);
    558   Instruction *MatchBSwap(BinaryOperator &I);
    559   bool SimplifyStoreAtEndOfBlock(StoreInst &SI);
    560   Instruction *SimplifyMemTransfer(MemIntrinsic *MI);
    561   Instruction *SimplifyMemSet(MemSetInst *MI);
    562 
    563   Value *EvaluateInDifferentType(Value *V, Type *Ty, bool isSigned);
    564 
    565   /// \brief Returns a value X such that Val = X * Scale, or null if none.
    566   ///
    567   /// If the multiplication is known not to overflow then NoSignedWrap is set.
    568   Value *Descale(Value *Val, APInt Scale, bool &NoSignedWrap);
    569 };
    570 
    571 } // end namespace llvm.
    572 
    573 #undef DEBUG_TYPE
    574 
    575 #endif
    576