Home | History | Annotate | Download | only in Scalar
      1 //===- IndVarSimplify.cpp - Induction Variable Elimination ----------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This transformation analyzes and transforms the induction variables (and
     11 // computations derived from them) into simpler forms suitable for subsequent
     12 // analysis and transformation.
     13 //
     14 // If the trip count of a loop is computable, this pass also makes the following
     15 // changes:
     16 //   1. The exit condition for the loop is canonicalized to compare the
     17 //      induction value against the exit value.  This turns loops like:
     18 //        'for (i = 7; i*i < 1000; ++i)' into 'for (i = 0; i != 25; ++i)'
     19 //   2. Any use outside of the loop of an expression derived from the indvar
     20 //      is changed to compute the derived value outside of the loop, eliminating
     21 //      the dependence on the exit value of the induction variable.  If the only
     22 //      purpose of the loop is to compute the exit value of some derived
     23 //      expression, this transformation will make the loop dead.
     24 //
     25 //===----------------------------------------------------------------------===//
     26 
     27 #include "llvm/Transforms/Scalar.h"
     28 #include "llvm/ADT/DenseMap.h"
     29 #include "llvm/ADT/SmallVector.h"
     30 #include "llvm/ADT/Statistic.h"
     31 #include "llvm/Analysis/LoopInfo.h"
     32 #include "llvm/Analysis/LoopPass.h"
     33 #include "llvm/Analysis/ScalarEvolutionExpander.h"
     34 #include "llvm/Analysis/TargetLibraryInfo.h"
     35 #include "llvm/Analysis/TargetTransformInfo.h"
     36 #include "llvm/IR/BasicBlock.h"
     37 #include "llvm/IR/CFG.h"
     38 #include "llvm/IR/Constants.h"
     39 #include "llvm/IR/DataLayout.h"
     40 #include "llvm/IR/Dominators.h"
     41 #include "llvm/IR/Instructions.h"
     42 #include "llvm/IR/IntrinsicInst.h"
     43 #include "llvm/IR/LLVMContext.h"
     44 #include "llvm/IR/Type.h"
     45 #include "llvm/Support/CommandLine.h"
     46 #include "llvm/Support/Debug.h"
     47 #include "llvm/Support/raw_ostream.h"
     48 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
     49 #include "llvm/Transforms/Utils/Local.h"
     50 #include "llvm/Transforms/Utils/SimplifyIndVar.h"
     51 using namespace llvm;
     52 
     53 #define DEBUG_TYPE "indvars"
     54 
     55 STATISTIC(NumWidened     , "Number of indvars widened");
     56 STATISTIC(NumReplaced    , "Number of exit values replaced");
     57 STATISTIC(NumLFTR        , "Number of loop exit tests replaced");
     58 STATISTIC(NumElimExt     , "Number of IV sign/zero extends eliminated");
     59 STATISTIC(NumElimIV      , "Number of congruent IVs eliminated");
     60 
     61 // Trip count verification can be enabled by default under NDEBUG if we
     62 // implement a strong expression equivalence checker in SCEV. Until then, we
     63 // use the verify-indvars flag, which may assert in some cases.
     64 static cl::opt<bool> VerifyIndvars(
     65   "verify-indvars", cl::Hidden,
     66   cl::desc("Verify the ScalarEvolution result after running indvars"));
     67 
     68 static cl::opt<bool> ReduceLiveIVs("liv-reduce", cl::Hidden,
     69   cl::desc("Reduce live induction variables."));
     70 
     71 namespace {
     72   class IndVarSimplify : public LoopPass {
     73     LoopInfo                  *LI;
     74     ScalarEvolution           *SE;
     75     DominatorTree             *DT;
     76     TargetLibraryInfo         *TLI;
     77     const TargetTransformInfo *TTI;
     78 
     79     SmallVector<WeakVH, 16> DeadInsts;
     80     bool Changed;
     81   public:
     82 
     83     static char ID; // Pass identification, replacement for typeid
     84     IndVarSimplify()
     85         : LoopPass(ID), LI(nullptr), SE(nullptr), DT(nullptr), Changed(false) {
     86       initializeIndVarSimplifyPass(*PassRegistry::getPassRegistry());
     87     }
     88 
     89     bool runOnLoop(Loop *L, LPPassManager &LPM) override;
     90 
     91     void getAnalysisUsage(AnalysisUsage &AU) const override {
     92       AU.addRequired<DominatorTreeWrapperPass>();
     93       AU.addRequired<LoopInfoWrapperPass>();
     94       AU.addRequired<ScalarEvolution>();
     95       AU.addRequiredID(LoopSimplifyID);
     96       AU.addRequiredID(LCSSAID);
     97       AU.addPreserved<ScalarEvolution>();
     98       AU.addPreservedID(LoopSimplifyID);
     99       AU.addPreservedID(LCSSAID);
    100       AU.setPreservesCFG();
    101     }
    102 
    103   private:
    104     void releaseMemory() override {
    105       DeadInsts.clear();
    106     }
    107 
    108     bool isValidRewrite(Value *FromVal, Value *ToVal);
    109 
    110     void HandleFloatingPointIV(Loop *L, PHINode *PH);
    111     void RewriteNonIntegerIVs(Loop *L);
    112 
    113     void SimplifyAndExtend(Loop *L, SCEVExpander &Rewriter, LPPassManager &LPM);
    114 
    115     void RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter);
    116 
    117     Value *LinearFunctionTestReplace(Loop *L, const SCEV *BackedgeTakenCount,
    118                                      PHINode *IndVar, SCEVExpander &Rewriter);
    119 
    120     void SinkUnusedInvariants(Loop *L);
    121   };
    122 }
    123 
    124 char IndVarSimplify::ID = 0;
    125 INITIALIZE_PASS_BEGIN(IndVarSimplify, "indvars",
    126                 "Induction Variable Simplification", false, false)
    127 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
    128 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
    129 INITIALIZE_PASS_DEPENDENCY(ScalarEvolution)
    130 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
    131 INITIALIZE_PASS_DEPENDENCY(LCSSA)
    132 INITIALIZE_PASS_END(IndVarSimplify, "indvars",
    133                 "Induction Variable Simplification", false, false)
    134 
    135 Pass *llvm::createIndVarSimplifyPass() {
    136   return new IndVarSimplify();
    137 }
    138 
    139 /// isValidRewrite - Return true if the SCEV expansion generated by the
    140 /// rewriter can replace the original value. SCEV guarantees that it
    141 /// produces the same value, but the way it is produced may be illegal IR.
    142 /// Ideally, this function will only be called for verification.
    143 bool IndVarSimplify::isValidRewrite(Value *FromVal, Value *ToVal) {
    144   // If an SCEV expression subsumed multiple pointers, its expansion could
    145   // reassociate the GEP changing the base pointer. This is illegal because the
    146   // final address produced by a GEP chain must be inbounds relative to its
    147   // underlying object. Otherwise basic alias analysis, among other things,
    148   // could fail in a dangerous way. Ultimately, SCEV will be improved to avoid
    149   // producing an expression involving multiple pointers. Until then, we must
    150   // bail out here.
    151   //
    152   // Retrieve the pointer operand of the GEP. Don't use GetUnderlyingObject
    153   // because it understands lcssa phis while SCEV does not.
    154   Value *FromPtr = FromVal;
    155   Value *ToPtr = ToVal;
    156   if (GEPOperator *GEP = dyn_cast<GEPOperator>(FromVal)) {
    157     FromPtr = GEP->getPointerOperand();
    158   }
    159   if (GEPOperator *GEP = dyn_cast<GEPOperator>(ToVal)) {
    160     ToPtr = GEP->getPointerOperand();
    161   }
    162   if (FromPtr != FromVal || ToPtr != ToVal) {
    163     // Quickly check the common case
    164     if (FromPtr == ToPtr)
    165       return true;
    166 
    167     // SCEV may have rewritten an expression that produces the GEP's pointer
    168     // operand. That's ok as long as the pointer operand has the same base
    169     // pointer. Unlike GetUnderlyingObject(), getPointerBase() will find the
    170     // base of a recurrence. This handles the case in which SCEV expansion
    171     // converts a pointer type recurrence into a nonrecurrent pointer base
    172     // indexed by an integer recurrence.
    173 
    174     // If the GEP base pointer is a vector of pointers, abort.
    175     if (!FromPtr->getType()->isPointerTy() || !ToPtr->getType()->isPointerTy())
    176       return false;
    177 
    178     const SCEV *FromBase = SE->getPointerBase(SE->getSCEV(FromPtr));
    179     const SCEV *ToBase = SE->getPointerBase(SE->getSCEV(ToPtr));
    180     if (FromBase == ToBase)
    181       return true;
    182 
    183     DEBUG(dbgs() << "INDVARS: GEP rewrite bail out "
    184           << *FromBase << " != " << *ToBase << "\n");
    185 
    186     return false;
    187   }
    188   return true;
    189 }
    190 
    191 /// Determine the insertion point for this user. By default, insert immediately
    192 /// before the user. SCEVExpander or LICM will hoist loop invariants out of the
    193 /// loop. For PHI nodes, there may be multiple uses, so compute the nearest
    194 /// common dominator for the incoming blocks.
    195 static Instruction *getInsertPointForUses(Instruction *User, Value *Def,
    196                                           DominatorTree *DT) {
    197   PHINode *PHI = dyn_cast<PHINode>(User);
    198   if (!PHI)
    199     return User;
    200 
    201   Instruction *InsertPt = nullptr;
    202   for (unsigned i = 0, e = PHI->getNumIncomingValues(); i != e; ++i) {
    203     if (PHI->getIncomingValue(i) != Def)
    204       continue;
    205 
    206     BasicBlock *InsertBB = PHI->getIncomingBlock(i);
    207     if (!InsertPt) {
    208       InsertPt = InsertBB->getTerminator();
    209       continue;
    210     }
    211     InsertBB = DT->findNearestCommonDominator(InsertPt->getParent(), InsertBB);
    212     InsertPt = InsertBB->getTerminator();
    213   }
    214   assert(InsertPt && "Missing phi operand");
    215   assert((!isa<Instruction>(Def) ||
    216           DT->dominates(cast<Instruction>(Def), InsertPt)) &&
    217          "def does not dominate all uses");
    218   return InsertPt;
    219 }
    220 
    221 //===----------------------------------------------------------------------===//
    222 // RewriteNonIntegerIVs and helpers. Prefer integer IVs.
    223 //===----------------------------------------------------------------------===//
    224 
    225 /// ConvertToSInt - Convert APF to an integer, if possible.
    226 static bool ConvertToSInt(const APFloat &APF, int64_t &IntVal) {
    227   bool isExact = false;
    228   // See if we can convert this to an int64_t
    229   uint64_t UIntVal;
    230   if (APF.convertToInteger(&UIntVal, 64, true, APFloat::rmTowardZero,
    231                            &isExact) != APFloat::opOK || !isExact)
    232     return false;
    233   IntVal = UIntVal;
    234   return true;
    235 }
    236 
    237 /// HandleFloatingPointIV - If the loop has floating induction variable
    238 /// then insert corresponding integer induction variable if possible.
    239 /// For example,
    240 /// for(double i = 0; i < 10000; ++i)
    241 ///   bar(i)
    242 /// is converted into
    243 /// for(int i = 0; i < 10000; ++i)
    244 ///   bar((double)i);
    245 ///
    246 void IndVarSimplify::HandleFloatingPointIV(Loop *L, PHINode *PN) {
    247   unsigned IncomingEdge = L->contains(PN->getIncomingBlock(0));
    248   unsigned BackEdge     = IncomingEdge^1;
    249 
    250   // Check incoming value.
    251   ConstantFP *InitValueVal =
    252     dyn_cast<ConstantFP>(PN->getIncomingValue(IncomingEdge));
    253 
    254   int64_t InitValue;
    255   if (!InitValueVal || !ConvertToSInt(InitValueVal->getValueAPF(), InitValue))
    256     return;
    257 
    258   // Check IV increment. Reject this PN if increment operation is not
    259   // an add or increment value can not be represented by an integer.
    260   BinaryOperator *Incr =
    261     dyn_cast<BinaryOperator>(PN->getIncomingValue(BackEdge));
    262   if (Incr == nullptr || Incr->getOpcode() != Instruction::FAdd) return;
    263 
    264   // If this is not an add of the PHI with a constantfp, or if the constant fp
    265   // is not an integer, bail out.
    266   ConstantFP *IncValueVal = dyn_cast<ConstantFP>(Incr->getOperand(1));
    267   int64_t IncValue;
    268   if (IncValueVal == nullptr || Incr->getOperand(0) != PN ||
    269       !ConvertToSInt(IncValueVal->getValueAPF(), IncValue))
    270     return;
    271 
    272   // Check Incr uses. One user is PN and the other user is an exit condition
    273   // used by the conditional terminator.
    274   Value::user_iterator IncrUse = Incr->user_begin();
    275   Instruction *U1 = cast<Instruction>(*IncrUse++);
    276   if (IncrUse == Incr->user_end()) return;
    277   Instruction *U2 = cast<Instruction>(*IncrUse++);
    278   if (IncrUse != Incr->user_end()) return;
    279 
    280   // Find exit condition, which is an fcmp.  If it doesn't exist, or if it isn't
    281   // only used by a branch, we can't transform it.
    282   FCmpInst *Compare = dyn_cast<FCmpInst>(U1);
    283   if (!Compare)
    284     Compare = dyn_cast<FCmpInst>(U2);
    285   if (!Compare || !Compare->hasOneUse() ||
    286       !isa<BranchInst>(Compare->user_back()))
    287     return;
    288 
    289   BranchInst *TheBr = cast<BranchInst>(Compare->user_back());
    290 
    291   // We need to verify that the branch actually controls the iteration count
    292   // of the loop.  If not, the new IV can overflow and no one will notice.
    293   // The branch block must be in the loop and one of the successors must be out
    294   // of the loop.
    295   assert(TheBr->isConditional() && "Can't use fcmp if not conditional");
    296   if (!L->contains(TheBr->getParent()) ||
    297       (L->contains(TheBr->getSuccessor(0)) &&
    298        L->contains(TheBr->getSuccessor(1))))
    299     return;
    300 
    301 
    302   // If it isn't a comparison with an integer-as-fp (the exit value), we can't
    303   // transform it.
    304   ConstantFP *ExitValueVal = dyn_cast<ConstantFP>(Compare->getOperand(1));
    305   int64_t ExitValue;
    306   if (ExitValueVal == nullptr ||
    307       !ConvertToSInt(ExitValueVal->getValueAPF(), ExitValue))
    308     return;
    309 
    310   // Find new predicate for integer comparison.
    311   CmpInst::Predicate NewPred = CmpInst::BAD_ICMP_PREDICATE;
    312   switch (Compare->getPredicate()) {
    313   default: return;  // Unknown comparison.
    314   case CmpInst::FCMP_OEQ:
    315   case CmpInst::FCMP_UEQ: NewPred = CmpInst::ICMP_EQ; break;
    316   case CmpInst::FCMP_ONE:
    317   case CmpInst::FCMP_UNE: NewPred = CmpInst::ICMP_NE; break;
    318   case CmpInst::FCMP_OGT:
    319   case CmpInst::FCMP_UGT: NewPred = CmpInst::ICMP_SGT; break;
    320   case CmpInst::FCMP_OGE:
    321   case CmpInst::FCMP_UGE: NewPred = CmpInst::ICMP_SGE; break;
    322   case CmpInst::FCMP_OLT:
    323   case CmpInst::FCMP_ULT: NewPred = CmpInst::ICMP_SLT; break;
    324   case CmpInst::FCMP_OLE:
    325   case CmpInst::FCMP_ULE: NewPred = CmpInst::ICMP_SLE; break;
    326   }
    327 
    328   // We convert the floating point induction variable to a signed i32 value if
    329   // we can.  This is only safe if the comparison will not overflow in a way
    330   // that won't be trapped by the integer equivalent operations.  Check for this
    331   // now.
    332   // TODO: We could use i64 if it is native and the range requires it.
    333 
    334   // The start/stride/exit values must all fit in signed i32.
    335   if (!isInt<32>(InitValue) || !isInt<32>(IncValue) || !isInt<32>(ExitValue))
    336     return;
    337 
    338   // If not actually striding (add x, 0.0), avoid touching the code.
    339   if (IncValue == 0)
    340     return;
    341 
    342   // Positive and negative strides have different safety conditions.
    343   if (IncValue > 0) {
    344     // If we have a positive stride, we require the init to be less than the
    345     // exit value.
    346     if (InitValue >= ExitValue)
    347       return;
    348 
    349     uint32_t Range = uint32_t(ExitValue-InitValue);
    350     // Check for infinite loop, either:
    351     // while (i <= Exit) or until (i > Exit)
    352     if (NewPred == CmpInst::ICMP_SLE || NewPred == CmpInst::ICMP_SGT) {
    353       if (++Range == 0) return;  // Range overflows.
    354     }
    355 
    356     unsigned Leftover = Range % uint32_t(IncValue);
    357 
    358     // If this is an equality comparison, we require that the strided value
    359     // exactly land on the exit value, otherwise the IV condition will wrap
    360     // around and do things the fp IV wouldn't.
    361     if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
    362         Leftover != 0)
    363       return;
    364 
    365     // If the stride would wrap around the i32 before exiting, we can't
    366     // transform the IV.
    367     if (Leftover != 0 && int32_t(ExitValue+IncValue) < ExitValue)
    368       return;
    369 
    370   } else {
    371     // If we have a negative stride, we require the init to be greater than the
    372     // exit value.
    373     if (InitValue <= ExitValue)
    374       return;
    375 
    376     uint32_t Range = uint32_t(InitValue-ExitValue);
    377     // Check for infinite loop, either:
    378     // while (i >= Exit) or until (i < Exit)
    379     if (NewPred == CmpInst::ICMP_SGE || NewPred == CmpInst::ICMP_SLT) {
    380       if (++Range == 0) return;  // Range overflows.
    381     }
    382 
    383     unsigned Leftover = Range % uint32_t(-IncValue);
    384 
    385     // If this is an equality comparison, we require that the strided value
    386     // exactly land on the exit value, otherwise the IV condition will wrap
    387     // around and do things the fp IV wouldn't.
    388     if ((NewPred == CmpInst::ICMP_EQ || NewPred == CmpInst::ICMP_NE) &&
    389         Leftover != 0)
    390       return;
    391 
    392     // If the stride would wrap around the i32 before exiting, we can't
    393     // transform the IV.
    394     if (Leftover != 0 && int32_t(ExitValue+IncValue) > ExitValue)
    395       return;
    396   }
    397 
    398   IntegerType *Int32Ty = Type::getInt32Ty(PN->getContext());
    399 
    400   // Insert new integer induction variable.
    401   PHINode *NewPHI = PHINode::Create(Int32Ty, 2, PN->getName()+".int", PN);
    402   NewPHI->addIncoming(ConstantInt::get(Int32Ty, InitValue),
    403                       PN->getIncomingBlock(IncomingEdge));
    404 
    405   Value *NewAdd =
    406     BinaryOperator::CreateAdd(NewPHI, ConstantInt::get(Int32Ty, IncValue),
    407                               Incr->getName()+".int", Incr);
    408   NewPHI->addIncoming(NewAdd, PN->getIncomingBlock(BackEdge));
    409 
    410   ICmpInst *NewCompare = new ICmpInst(TheBr, NewPred, NewAdd,
    411                                       ConstantInt::get(Int32Ty, ExitValue),
    412                                       Compare->getName());
    413 
    414   // In the following deletions, PN may become dead and may be deleted.
    415   // Use a WeakVH to observe whether this happens.
    416   WeakVH WeakPH = PN;
    417 
    418   // Delete the old floating point exit comparison.  The branch starts using the
    419   // new comparison.
    420   NewCompare->takeName(Compare);
    421   Compare->replaceAllUsesWith(NewCompare);
    422   RecursivelyDeleteTriviallyDeadInstructions(Compare, TLI);
    423 
    424   // Delete the old floating point increment.
    425   Incr->replaceAllUsesWith(UndefValue::get(Incr->getType()));
    426   RecursivelyDeleteTriviallyDeadInstructions(Incr, TLI);
    427 
    428   // If the FP induction variable still has uses, this is because something else
    429   // in the loop uses its value.  In order to canonicalize the induction
    430   // variable, we chose to eliminate the IV and rewrite it in terms of an
    431   // int->fp cast.
    432   //
    433   // We give preference to sitofp over uitofp because it is faster on most
    434   // platforms.
    435   if (WeakPH) {
    436     Value *Conv = new SIToFPInst(NewPHI, PN->getType(), "indvar.conv",
    437                                  PN->getParent()->getFirstInsertionPt());
    438     PN->replaceAllUsesWith(Conv);
    439     RecursivelyDeleteTriviallyDeadInstructions(PN, TLI);
    440   }
    441   Changed = true;
    442 }
    443 
    444 void IndVarSimplify::RewriteNonIntegerIVs(Loop *L) {
    445   // First step.  Check to see if there are any floating-point recurrences.
    446   // If there are, change them into integer recurrences, permitting analysis by
    447   // the SCEV routines.
    448   //
    449   BasicBlock *Header = L->getHeader();
    450 
    451   SmallVector<WeakVH, 8> PHIs;
    452   for (BasicBlock::iterator I = Header->begin();
    453        PHINode *PN = dyn_cast<PHINode>(I); ++I)
    454     PHIs.push_back(PN);
    455 
    456   for (unsigned i = 0, e = PHIs.size(); i != e; ++i)
    457     if (PHINode *PN = dyn_cast_or_null<PHINode>(&*PHIs[i]))
    458       HandleFloatingPointIV(L, PN);
    459 
    460   // If the loop previously had floating-point IV, ScalarEvolution
    461   // may not have been able to compute a trip count. Now that we've done some
    462   // re-writing, the trip count may be computable.
    463   if (Changed)
    464     SE->forgetLoop(L);
    465 }
    466 
    467 //===----------------------------------------------------------------------===//
    468 // RewriteLoopExitValues - Optimize IV users outside the loop.
    469 // As a side effect, reduces the amount of IV processing within the loop.
    470 //===----------------------------------------------------------------------===//
    471 
    472 /// RewriteLoopExitValues - Check to see if this loop has a computable
    473 /// loop-invariant execution count.  If so, this means that we can compute the
    474 /// final value of any expressions that are recurrent in the loop, and
    475 /// substitute the exit values from the loop into any instructions outside of
    476 /// the loop that use the final values of the current expressions.
    477 ///
    478 /// This is mostly redundant with the regular IndVarSimplify activities that
    479 /// happen later, except that it's more powerful in some cases, because it's
    480 /// able to brute-force evaluate arbitrary instructions as long as they have
    481 /// constant operands at the beginning of the loop.
    482 void IndVarSimplify::RewriteLoopExitValues(Loop *L, SCEVExpander &Rewriter) {
    483   // Verify the input to the pass in already in LCSSA form.
    484   assert(L->isLCSSAForm(*DT));
    485 
    486   SmallVector<BasicBlock*, 8> ExitBlocks;
    487   L->getUniqueExitBlocks(ExitBlocks);
    488 
    489   // Find all values that are computed inside the loop, but used outside of it.
    490   // Because of LCSSA, these values will only occur in LCSSA PHI Nodes.  Scan
    491   // the exit blocks of the loop to find them.
    492   for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
    493     BasicBlock *ExitBB = ExitBlocks[i];
    494 
    495     // If there are no PHI nodes in this exit block, then no values defined
    496     // inside the loop are used on this path, skip it.
    497     PHINode *PN = dyn_cast<PHINode>(ExitBB->begin());
    498     if (!PN) continue;
    499 
    500     unsigned NumPreds = PN->getNumIncomingValues();
    501 
    502     // We would like to be able to RAUW single-incoming value PHI nodes. We
    503     // have to be certain this is safe even when this is an LCSSA PHI node.
    504     // While the computed exit value is no longer varying in *this* loop, the
    505     // exit block may be an exit block for an outer containing loop as well,
    506     // the exit value may be varying in the outer loop, and thus it may still
    507     // require an LCSSA PHI node. The safe case is when this is
    508     // single-predecessor PHI node (LCSSA) and the exit block containing it is
    509     // part of the enclosing loop, or this is the outer most loop of the nest.
    510     // In either case the exit value could (at most) be varying in the same
    511     // loop body as the phi node itself. Thus if it is in turn used outside of
    512     // an enclosing loop it will only be via a separate LCSSA node.
    513     bool LCSSASafePhiForRAUW =
    514         NumPreds == 1 &&
    515         (!L->getParentLoop() || L->getParentLoop() == LI->getLoopFor(ExitBB));
    516 
    517     // Iterate over all of the PHI nodes.
    518     BasicBlock::iterator BBI = ExitBB->begin();
    519     while ((PN = dyn_cast<PHINode>(BBI++))) {
    520       if (PN->use_empty())
    521         continue; // dead use, don't replace it
    522 
    523       // SCEV only supports integer expressions for now.
    524       if (!PN->getType()->isIntegerTy() && !PN->getType()->isPointerTy())
    525         continue;
    526 
    527       // It's necessary to tell ScalarEvolution about this explicitly so that
    528       // it can walk the def-use list and forget all SCEVs, as it may not be
    529       // watching the PHI itself. Once the new exit value is in place, there
    530       // may not be a def-use connection between the loop and every instruction
    531       // which got a SCEVAddRecExpr for that loop.
    532       SE->forgetValue(PN);
    533 
    534       // Iterate over all of the values in all the PHI nodes.
    535       for (unsigned i = 0; i != NumPreds; ++i) {
    536         // If the value being merged in is not integer or is not defined
    537         // in the loop, skip it.
    538         Value *InVal = PN->getIncomingValue(i);
    539         if (!isa<Instruction>(InVal))
    540           continue;
    541 
    542         // If this pred is for a subloop, not L itself, skip it.
    543         if (LI->getLoopFor(PN->getIncomingBlock(i)) != L)
    544           continue; // The Block is in a subloop, skip it.
    545 
    546         // Check that InVal is defined in the loop.
    547         Instruction *Inst = cast<Instruction>(InVal);
    548         if (!L->contains(Inst))
    549           continue;
    550 
    551         // Okay, this instruction has a user outside of the current loop
    552         // and varies predictably *inside* the loop.  Evaluate the value it
    553         // contains when the loop exits, if possible.
    554         const SCEV *ExitValue = SE->getSCEVAtScope(Inst, L->getParentLoop());
    555         if (!SE->isLoopInvariant(ExitValue, L) ||
    556             !isSafeToExpand(ExitValue, *SE))
    557           continue;
    558 
    559         // Computing the value outside of the loop brings no benefit if :
    560         //  - it is definitely used inside the loop in a way which can not be
    561         //    optimized away.
    562         //  - no use outside of the loop can take advantage of hoisting the
    563         //    computation out of the loop
    564         if (ExitValue->getSCEVType()>=scMulExpr) {
    565           unsigned NumHardInternalUses = 0;
    566           unsigned NumSoftExternalUses = 0;
    567           unsigned NumUses = 0;
    568           for (auto IB = Inst->user_begin(), IE = Inst->user_end();
    569                IB != IE && NumUses <= 6; ++IB) {
    570             Instruction *UseInstr = cast<Instruction>(*IB);
    571             unsigned Opc = UseInstr->getOpcode();
    572             NumUses++;
    573             if (L->contains(UseInstr)) {
    574               if (Opc == Instruction::Call || Opc == Instruction::Ret)
    575                 NumHardInternalUses++;
    576             } else {
    577               if (Opc == Instruction::PHI) {
    578                 // Do not count the Phi as a use. LCSSA may have inserted
    579                 // plenty of trivial ones.
    580                 NumUses--;
    581                 for (auto PB = UseInstr->user_begin(),
    582                           PE = UseInstr->user_end();
    583                      PB != PE && NumUses <= 6; ++PB, ++NumUses) {
    584                   unsigned PhiOpc = cast<Instruction>(*PB)->getOpcode();
    585                   if (PhiOpc != Instruction::Call && PhiOpc != Instruction::Ret)
    586                     NumSoftExternalUses++;
    587                 }
    588                 continue;
    589               }
    590               if (Opc != Instruction::Call && Opc != Instruction::Ret)
    591                 NumSoftExternalUses++;
    592             }
    593           }
    594           if (NumUses <= 6 && NumHardInternalUses && !NumSoftExternalUses)
    595             continue;
    596         }
    597 
    598         Value *ExitVal = Rewriter.expandCodeFor(ExitValue, PN->getType(), Inst);
    599 
    600         DEBUG(dbgs() << "INDVARS: RLEV: AfterLoopVal = " << *ExitVal << '\n'
    601                      << "  LoopVal = " << *Inst << "\n");
    602 
    603         if (!isValidRewrite(Inst, ExitVal)) {
    604           DeadInsts.push_back(ExitVal);
    605           continue;
    606         }
    607         Changed = true;
    608         ++NumReplaced;
    609 
    610         PN->setIncomingValue(i, ExitVal);
    611 
    612         // If this instruction is dead now, delete it. Don't do it now to avoid
    613         // invalidating iterators.
    614         if (isInstructionTriviallyDead(Inst, TLI))
    615           DeadInsts.push_back(Inst);
    616 
    617         // If we determined that this PHI is safe to replace even if an LCSSA
    618         // PHI, do so.
    619         if (LCSSASafePhiForRAUW) {
    620           PN->replaceAllUsesWith(ExitVal);
    621           PN->eraseFromParent();
    622         }
    623       }
    624 
    625       // If we were unable to completely replace the PHI node, clone the PHI
    626       // and delete the original one. This lets IVUsers and any other maps
    627       // purge the original user from their records.
    628       if (!LCSSASafePhiForRAUW) {
    629         PHINode *NewPN = cast<PHINode>(PN->clone());
    630         NewPN->takeName(PN);
    631         NewPN->insertBefore(PN);
    632         PN->replaceAllUsesWith(NewPN);
    633         PN->eraseFromParent();
    634       }
    635     }
    636   }
    637 
    638   // The insertion point instruction may have been deleted; clear it out
    639   // so that the rewriter doesn't trip over it later.
    640   Rewriter.clearInsertPoint();
    641 }
    642 
    643 //===----------------------------------------------------------------------===//
    644 //  IV Widening - Extend the width of an IV to cover its widest uses.
    645 //===----------------------------------------------------------------------===//
    646 
    647 namespace {
    648   // Collect information about induction variables that are used by sign/zero
    649   // extend operations. This information is recorded by CollectExtend and
    650   // provides the input to WidenIV.
    651   struct WideIVInfo {
    652     PHINode *NarrowIV;
    653     Type *WidestNativeType; // Widest integer type created [sz]ext
    654     bool IsSigned;          // Was a sext user seen before a zext?
    655 
    656     WideIVInfo() : NarrowIV(nullptr), WidestNativeType(nullptr),
    657                    IsSigned(false) {}
    658   };
    659 }
    660 
    661 /// visitCast - Update information about the induction variable that is
    662 /// extended by this sign or zero extend operation. This is used to determine
    663 /// the final width of the IV before actually widening it.
    664 static void visitIVCast(CastInst *Cast, WideIVInfo &WI, ScalarEvolution *SE,
    665                         const TargetTransformInfo *TTI) {
    666   bool IsSigned = Cast->getOpcode() == Instruction::SExt;
    667   if (!IsSigned && Cast->getOpcode() != Instruction::ZExt)
    668     return;
    669 
    670   Type *Ty = Cast->getType();
    671   uint64_t Width = SE->getTypeSizeInBits(Ty);
    672   if (!Cast->getModule()->getDataLayout().isLegalInteger(Width))
    673     return;
    674 
    675   // Cast is either an sext or zext up to this point.
    676   // We should not widen an indvar if arithmetics on the wider indvar are more
    677   // expensive than those on the narrower indvar. We check only the cost of ADD
    678   // because at least an ADD is required to increment the induction variable. We
    679   // could compute more comprehensively the cost of all instructions on the
    680   // induction variable when necessary.
    681   if (TTI &&
    682       TTI->getArithmeticInstrCost(Instruction::Add, Ty) >
    683           TTI->getArithmeticInstrCost(Instruction::Add,
    684                                       Cast->getOperand(0)->getType())) {
    685     return;
    686   }
    687 
    688   if (!WI.WidestNativeType) {
    689     WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
    690     WI.IsSigned = IsSigned;
    691     return;
    692   }
    693 
    694   // We extend the IV to satisfy the sign of its first user, arbitrarily.
    695   if (WI.IsSigned != IsSigned)
    696     return;
    697 
    698   if (Width > SE->getTypeSizeInBits(WI.WidestNativeType))
    699     WI.WidestNativeType = SE->getEffectiveSCEVType(Ty);
    700 }
    701 
    702 namespace {
    703 
    704 /// NarrowIVDefUse - Record a link in the Narrow IV def-use chain along with the
    705 /// WideIV that computes the same value as the Narrow IV def.  This avoids
    706 /// caching Use* pointers.
    707 struct NarrowIVDefUse {
    708   Instruction *NarrowDef;
    709   Instruction *NarrowUse;
    710   Instruction *WideDef;
    711 
    712   NarrowIVDefUse(): NarrowDef(nullptr), NarrowUse(nullptr), WideDef(nullptr) {}
    713 
    714   NarrowIVDefUse(Instruction *ND, Instruction *NU, Instruction *WD):
    715     NarrowDef(ND), NarrowUse(NU), WideDef(WD) {}
    716 };
    717 
    718 /// WidenIV - The goal of this transform is to remove sign and zero extends
    719 /// without creating any new induction variables. To do this, it creates a new
    720 /// phi of the wider type and redirects all users, either removing extends or
    721 /// inserting truncs whenever we stop propagating the type.
    722 ///
    723 class WidenIV {
    724   // Parameters
    725   PHINode *OrigPhi;
    726   Type *WideType;
    727   bool IsSigned;
    728 
    729   // Context
    730   LoopInfo        *LI;
    731   Loop            *L;
    732   ScalarEvolution *SE;
    733   DominatorTree   *DT;
    734 
    735   // Result
    736   PHINode *WidePhi;
    737   Instruction *WideInc;
    738   const SCEV *WideIncExpr;
    739   SmallVectorImpl<WeakVH> &DeadInsts;
    740 
    741   SmallPtrSet<Instruction*,16> Widened;
    742   SmallVector<NarrowIVDefUse, 8> NarrowIVUsers;
    743 
    744 public:
    745   WidenIV(const WideIVInfo &WI, LoopInfo *LInfo,
    746           ScalarEvolution *SEv, DominatorTree *DTree,
    747           SmallVectorImpl<WeakVH> &DI) :
    748     OrigPhi(WI.NarrowIV),
    749     WideType(WI.WidestNativeType),
    750     IsSigned(WI.IsSigned),
    751     LI(LInfo),
    752     L(LI->getLoopFor(OrigPhi->getParent())),
    753     SE(SEv),
    754     DT(DTree),
    755     WidePhi(nullptr),
    756     WideInc(nullptr),
    757     WideIncExpr(nullptr),
    758     DeadInsts(DI) {
    759     assert(L->getHeader() == OrigPhi->getParent() && "Phi must be an IV");
    760   }
    761 
    762   PHINode *CreateWideIV(SCEVExpander &Rewriter);
    763 
    764 protected:
    765   Value *getExtend(Value *NarrowOper, Type *WideType, bool IsSigned,
    766                    Instruction *Use);
    767 
    768   Instruction *CloneIVUser(NarrowIVDefUse DU);
    769 
    770   const SCEVAddRecExpr *GetWideRecurrence(Instruction *NarrowUse);
    771 
    772   const SCEVAddRecExpr* GetExtendedOperandRecurrence(NarrowIVDefUse DU);
    773 
    774   const SCEV *GetSCEVByOpCode(const SCEV *LHS, const SCEV *RHS,
    775                               unsigned OpCode) const;
    776 
    777   Instruction *WidenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter);
    778 
    779   bool WidenLoopCompare(NarrowIVDefUse DU);
    780 
    781   void pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef);
    782 };
    783 } // anonymous namespace
    784 
    785 /// isLoopInvariant - Perform a quick domtree based check for loop invariance
    786 /// assuming that V is used within the loop. LoopInfo::isLoopInvariant() seems
    787 /// gratuitous for this purpose.
    788 static bool isLoopInvariant(Value *V, const Loop *L, const DominatorTree *DT) {
    789   Instruction *Inst = dyn_cast<Instruction>(V);
    790   if (!Inst)
    791     return true;
    792 
    793   return DT->properlyDominates(Inst->getParent(), L->getHeader());
    794 }
    795 
    796 Value *WidenIV::getExtend(Value *NarrowOper, Type *WideType, bool IsSigned,
    797                           Instruction *Use) {
    798   // Set the debug location and conservative insertion point.
    799   IRBuilder<> Builder(Use);
    800   // Hoist the insertion point into loop preheaders as far as possible.
    801   for (const Loop *L = LI->getLoopFor(Use->getParent());
    802        L && L->getLoopPreheader() && isLoopInvariant(NarrowOper, L, DT);
    803        L = L->getParentLoop())
    804     Builder.SetInsertPoint(L->getLoopPreheader()->getTerminator());
    805 
    806   return IsSigned ? Builder.CreateSExt(NarrowOper, WideType) :
    807                     Builder.CreateZExt(NarrowOper, WideType);
    808 }
    809 
    810 /// CloneIVUser - Instantiate a wide operation to replace a narrow
    811 /// operation. This only needs to handle operations that can evaluation to
    812 /// SCEVAddRec. It can safely return 0 for any operation we decide not to clone.
    813 Instruction *WidenIV::CloneIVUser(NarrowIVDefUse DU) {
    814   unsigned Opcode = DU.NarrowUse->getOpcode();
    815   switch (Opcode) {
    816   default:
    817     return nullptr;
    818   case Instruction::Add:
    819   case Instruction::Mul:
    820   case Instruction::UDiv:
    821   case Instruction::Sub:
    822   case Instruction::And:
    823   case Instruction::Or:
    824   case Instruction::Xor:
    825   case Instruction::Shl:
    826   case Instruction::LShr:
    827   case Instruction::AShr:
    828     DEBUG(dbgs() << "Cloning IVUser: " << *DU.NarrowUse << "\n");
    829 
    830     // Replace NarrowDef operands with WideDef. Otherwise, we don't know
    831     // anything about the narrow operand yet so must insert a [sz]ext. It is
    832     // probably loop invariant and will be folded or hoisted. If it actually
    833     // comes from a widened IV, it should be removed during a future call to
    834     // WidenIVUse.
    835     Value *LHS = (DU.NarrowUse->getOperand(0) == DU.NarrowDef) ? DU.WideDef :
    836       getExtend(DU.NarrowUse->getOperand(0), WideType, IsSigned, DU.NarrowUse);
    837     Value *RHS = (DU.NarrowUse->getOperand(1) == DU.NarrowDef) ? DU.WideDef :
    838       getExtend(DU.NarrowUse->getOperand(1), WideType, IsSigned, DU.NarrowUse);
    839 
    840     BinaryOperator *NarrowBO = cast<BinaryOperator>(DU.NarrowUse);
    841     BinaryOperator *WideBO = BinaryOperator::Create(NarrowBO->getOpcode(),
    842                                                     LHS, RHS,
    843                                                     NarrowBO->getName());
    844     IRBuilder<> Builder(DU.NarrowUse);
    845     Builder.Insert(WideBO);
    846     if (const OverflowingBinaryOperator *OBO =
    847         dyn_cast<OverflowingBinaryOperator>(NarrowBO)) {
    848       if (OBO->hasNoUnsignedWrap()) WideBO->setHasNoUnsignedWrap();
    849       if (OBO->hasNoSignedWrap()) WideBO->setHasNoSignedWrap();
    850     }
    851     return WideBO;
    852   }
    853 }
    854 
    855 const SCEV *WidenIV::GetSCEVByOpCode(const SCEV *LHS, const SCEV *RHS,
    856                                      unsigned OpCode) const {
    857   if (OpCode == Instruction::Add)
    858     return SE->getAddExpr(LHS, RHS);
    859   if (OpCode == Instruction::Sub)
    860     return SE->getMinusSCEV(LHS, RHS);
    861   if (OpCode == Instruction::Mul)
    862     return SE->getMulExpr(LHS, RHS);
    863 
    864   llvm_unreachable("Unsupported opcode.");
    865 }
    866 
    867 /// No-wrap operations can transfer sign extension of their result to their
    868 /// operands. Generate the SCEV value for the widened operation without
    869 /// actually modifying the IR yet. If the expression after extending the
    870 /// operands is an AddRec for this loop, return it.
    871 const SCEVAddRecExpr* WidenIV::GetExtendedOperandRecurrence(NarrowIVDefUse DU) {
    872 
    873   // Handle the common case of add<nsw/nuw>
    874   const unsigned OpCode = DU.NarrowUse->getOpcode();
    875   // Only Add/Sub/Mul instructions supported yet.
    876   if (OpCode != Instruction::Add && OpCode != Instruction::Sub &&
    877       OpCode != Instruction::Mul)
    878     return nullptr;
    879 
    880   // One operand (NarrowDef) has already been extended to WideDef. Now determine
    881   // if extending the other will lead to a recurrence.
    882   const unsigned ExtendOperIdx =
    883       DU.NarrowUse->getOperand(0) == DU.NarrowDef ? 1 : 0;
    884   assert(DU.NarrowUse->getOperand(1-ExtendOperIdx) == DU.NarrowDef && "bad DU");
    885 
    886   const SCEV *ExtendOperExpr = nullptr;
    887   const OverflowingBinaryOperator *OBO =
    888     cast<OverflowingBinaryOperator>(DU.NarrowUse);
    889   if (IsSigned && OBO->hasNoSignedWrap())
    890     ExtendOperExpr = SE->getSignExtendExpr(
    891       SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
    892   else if(!IsSigned && OBO->hasNoUnsignedWrap())
    893     ExtendOperExpr = SE->getZeroExtendExpr(
    894       SE->getSCEV(DU.NarrowUse->getOperand(ExtendOperIdx)), WideType);
    895   else
    896     return nullptr;
    897 
    898   // When creating this SCEV expr, don't apply the current operations NSW or NUW
    899   // flags. This instruction may be guarded by control flow that the no-wrap
    900   // behavior depends on. Non-control-equivalent instructions can be mapped to
    901   // the same SCEV expression, and it would be incorrect to transfer NSW/NUW
    902   // semantics to those operations.
    903   const SCEV *lhs = SE->getSCEV(DU.WideDef);
    904   const SCEV *rhs = ExtendOperExpr;
    905 
    906   // Let's swap operands to the initial order for the case of non-commutative
    907   // operations, like SUB. See PR21014.
    908   if (ExtendOperIdx == 0)
    909     std::swap(lhs, rhs);
    910   const SCEVAddRecExpr *AddRec =
    911       dyn_cast<SCEVAddRecExpr>(GetSCEVByOpCode(lhs, rhs, OpCode));
    912 
    913   if (!AddRec || AddRec->getLoop() != L)
    914     return nullptr;
    915   return AddRec;
    916 }
    917 
    918 /// GetWideRecurrence - Is this instruction potentially interesting from
    919 /// IVUsers' perspective after widening it's type? In other words, can the
    920 /// extend be safely hoisted out of the loop with SCEV reducing the value to a
    921 /// recurrence on the same loop. If so, return the sign or zero extended
    922 /// recurrence. Otherwise return NULL.
    923 const SCEVAddRecExpr *WidenIV::GetWideRecurrence(Instruction *NarrowUse) {
    924   if (!SE->isSCEVable(NarrowUse->getType()))
    925     return nullptr;
    926 
    927   const SCEV *NarrowExpr = SE->getSCEV(NarrowUse);
    928   if (SE->getTypeSizeInBits(NarrowExpr->getType())
    929       >= SE->getTypeSizeInBits(WideType)) {
    930     // NarrowUse implicitly widens its operand. e.g. a gep with a narrow
    931     // index. So don't follow this use.
    932     return nullptr;
    933   }
    934 
    935   const SCEV *WideExpr = IsSigned ?
    936     SE->getSignExtendExpr(NarrowExpr, WideType) :
    937     SE->getZeroExtendExpr(NarrowExpr, WideType);
    938   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(WideExpr);
    939   if (!AddRec || AddRec->getLoop() != L)
    940     return nullptr;
    941   return AddRec;
    942 }
    943 
    944 /// This IV user cannot be widen. Replace this use of the original narrow IV
    945 /// with a truncation of the new wide IV to isolate and eliminate the narrow IV.
    946 static void truncateIVUse(NarrowIVDefUse DU, DominatorTree *DT) {
    947   DEBUG(dbgs() << "INDVARS: Truncate IV " << *DU.WideDef
    948         << " for user " << *DU.NarrowUse << "\n");
    949   IRBuilder<> Builder(getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT));
    950   Value *Trunc = Builder.CreateTrunc(DU.WideDef, DU.NarrowDef->getType());
    951   DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, Trunc);
    952 }
    953 
    954 /// If the narrow use is a compare instruction, then widen the compare
    955 //  (and possibly the other operand).  The extend operation is hoisted into the
    956 // loop preheader as far as possible.
    957 bool WidenIV::WidenLoopCompare(NarrowIVDefUse DU) {
    958   ICmpInst *Cmp = dyn_cast<ICmpInst>(DU.NarrowUse);
    959   if (!Cmp)
    960     return false;
    961 
    962   // Sign of IV user and compare must match.
    963   if (IsSigned != CmpInst::isSigned(Cmp->getPredicate()))
    964     return false;
    965 
    966   Value *Op = Cmp->getOperand(Cmp->getOperand(0) == DU.NarrowDef ? 1 : 0);
    967   unsigned CastWidth = SE->getTypeSizeInBits(Op->getType());
    968   unsigned IVWidth = SE->getTypeSizeInBits(WideType);
    969   assert (CastWidth <= IVWidth && "Unexpected width while widening compare.");
    970 
    971   // Widen the compare instruction.
    972   IRBuilder<> Builder(getInsertPointForUses(DU.NarrowUse, DU.NarrowDef, DT));
    973   DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef);
    974 
    975   // Widen the other operand of the compare, if necessary.
    976   if (CastWidth < IVWidth) {
    977     Value *ExtOp = getExtend(Op, WideType, IsSigned, Cmp);
    978     DU.NarrowUse->replaceUsesOfWith(Op, ExtOp);
    979   }
    980   return true;
    981 }
    982 
    983 /// WidenIVUse - Determine whether an individual user of the narrow IV can be
    984 /// widened. If so, return the wide clone of the user.
    985 Instruction *WidenIV::WidenIVUse(NarrowIVDefUse DU, SCEVExpander &Rewriter) {
    986 
    987   // Stop traversing the def-use chain at inner-loop phis or post-loop phis.
    988   if (PHINode *UsePhi = dyn_cast<PHINode>(DU.NarrowUse)) {
    989     if (LI->getLoopFor(UsePhi->getParent()) != L) {
    990       // For LCSSA phis, sink the truncate outside the loop.
    991       // After SimplifyCFG most loop exit targets have a single predecessor.
    992       // Otherwise fall back to a truncate within the loop.
    993       if (UsePhi->getNumOperands() != 1)
    994         truncateIVUse(DU, DT);
    995       else {
    996         PHINode *WidePhi =
    997           PHINode::Create(DU.WideDef->getType(), 1, UsePhi->getName() + ".wide",
    998                           UsePhi);
    999         WidePhi->addIncoming(DU.WideDef, UsePhi->getIncomingBlock(0));
   1000         IRBuilder<> Builder(WidePhi->getParent()->getFirstInsertionPt());
   1001         Value *Trunc = Builder.CreateTrunc(WidePhi, DU.NarrowDef->getType());
   1002         UsePhi->replaceAllUsesWith(Trunc);
   1003         DeadInsts.push_back(UsePhi);
   1004         DEBUG(dbgs() << "INDVARS: Widen lcssa phi " << *UsePhi
   1005               << " to " << *WidePhi << "\n");
   1006       }
   1007       return nullptr;
   1008     }
   1009   }
   1010   // Our raison d'etre! Eliminate sign and zero extension.
   1011   if (IsSigned ? isa<SExtInst>(DU.NarrowUse) : isa<ZExtInst>(DU.NarrowUse)) {
   1012     Value *NewDef = DU.WideDef;
   1013     if (DU.NarrowUse->getType() != WideType) {
   1014       unsigned CastWidth = SE->getTypeSizeInBits(DU.NarrowUse->getType());
   1015       unsigned IVWidth = SE->getTypeSizeInBits(WideType);
   1016       if (CastWidth < IVWidth) {
   1017         // The cast isn't as wide as the IV, so insert a Trunc.
   1018         IRBuilder<> Builder(DU.NarrowUse);
   1019         NewDef = Builder.CreateTrunc(DU.WideDef, DU.NarrowUse->getType());
   1020       }
   1021       else {
   1022         // A wider extend was hidden behind a narrower one. This may induce
   1023         // another round of IV widening in which the intermediate IV becomes
   1024         // dead. It should be very rare.
   1025         DEBUG(dbgs() << "INDVARS: New IV " << *WidePhi
   1026               << " not wide enough to subsume " << *DU.NarrowUse << "\n");
   1027         DU.NarrowUse->replaceUsesOfWith(DU.NarrowDef, DU.WideDef);
   1028         NewDef = DU.NarrowUse;
   1029       }
   1030     }
   1031     if (NewDef != DU.NarrowUse) {
   1032       DEBUG(dbgs() << "INDVARS: eliminating " << *DU.NarrowUse
   1033             << " replaced by " << *DU.WideDef << "\n");
   1034       ++NumElimExt;
   1035       DU.NarrowUse->replaceAllUsesWith(NewDef);
   1036       DeadInsts.push_back(DU.NarrowUse);
   1037     }
   1038     // Now that the extend is gone, we want to expose it's uses for potential
   1039     // further simplification. We don't need to directly inform SimplifyIVUsers
   1040     // of the new users, because their parent IV will be processed later as a
   1041     // new loop phi. If we preserved IVUsers analysis, we would also want to
   1042     // push the uses of WideDef here.
   1043 
   1044     // No further widening is needed. The deceased [sz]ext had done it for us.
   1045     return nullptr;
   1046   }
   1047 
   1048   // Does this user itself evaluate to a recurrence after widening?
   1049   const SCEVAddRecExpr *WideAddRec = GetWideRecurrence(DU.NarrowUse);
   1050   if (!WideAddRec)
   1051     WideAddRec = GetExtendedOperandRecurrence(DU);
   1052 
   1053   if (!WideAddRec) {
   1054     // If use is a loop condition, try to promote the condition instead of
   1055     // truncating the IV first.
   1056     if (WidenLoopCompare(DU))
   1057       return nullptr;
   1058 
   1059     // This user does not evaluate to a recurence after widening, so don't
   1060     // follow it. Instead insert a Trunc to kill off the original use,
   1061     // eventually isolating the original narrow IV so it can be removed.
   1062     truncateIVUse(DU, DT);
   1063     return nullptr;
   1064   }
   1065   // Assume block terminators cannot evaluate to a recurrence. We can't to
   1066   // insert a Trunc after a terminator if there happens to be a critical edge.
   1067   assert(DU.NarrowUse != DU.NarrowUse->getParent()->getTerminator() &&
   1068          "SCEV is not expected to evaluate a block terminator");
   1069 
   1070   // Reuse the IV increment that SCEVExpander created as long as it dominates
   1071   // NarrowUse.
   1072   Instruction *WideUse = nullptr;
   1073   if (WideAddRec == WideIncExpr
   1074       && Rewriter.hoistIVInc(WideInc, DU.NarrowUse))
   1075     WideUse = WideInc;
   1076   else {
   1077     WideUse = CloneIVUser(DU);
   1078     if (!WideUse)
   1079       return nullptr;
   1080   }
   1081   // Evaluation of WideAddRec ensured that the narrow expression could be
   1082   // extended outside the loop without overflow. This suggests that the wide use
   1083   // evaluates to the same expression as the extended narrow use, but doesn't
   1084   // absolutely guarantee it. Hence the following failsafe check. In rare cases
   1085   // where it fails, we simply throw away the newly created wide use.
   1086   if (WideAddRec != SE->getSCEV(WideUse)) {
   1087     DEBUG(dbgs() << "Wide use expression mismatch: " << *WideUse
   1088           << ": " << *SE->getSCEV(WideUse) << " != " << *WideAddRec << "\n");
   1089     DeadInsts.push_back(WideUse);
   1090     return nullptr;
   1091   }
   1092 
   1093   // Returning WideUse pushes it on the worklist.
   1094   return WideUse;
   1095 }
   1096 
   1097 /// pushNarrowIVUsers - Add eligible users of NarrowDef to NarrowIVUsers.
   1098 ///
   1099 void WidenIV::pushNarrowIVUsers(Instruction *NarrowDef, Instruction *WideDef) {
   1100   for (User *U : NarrowDef->users()) {
   1101     Instruction *NarrowUser = cast<Instruction>(U);
   1102 
   1103     // Handle data flow merges and bizarre phi cycles.
   1104     if (!Widened.insert(NarrowUser).second)
   1105       continue;
   1106 
   1107     NarrowIVUsers.push_back(NarrowIVDefUse(NarrowDef, NarrowUser, WideDef));
   1108   }
   1109 }
   1110 
   1111 /// CreateWideIV - Process a single induction variable. First use the
   1112 /// SCEVExpander to create a wide induction variable that evaluates to the same
   1113 /// recurrence as the original narrow IV. Then use a worklist to forward
   1114 /// traverse the narrow IV's def-use chain. After WidenIVUse has processed all
   1115 /// interesting IV users, the narrow IV will be isolated for removal by
   1116 /// DeleteDeadPHIs.
   1117 ///
   1118 /// It would be simpler to delete uses as they are processed, but we must avoid
   1119 /// invalidating SCEV expressions.
   1120 ///
   1121 PHINode *WidenIV::CreateWideIV(SCEVExpander &Rewriter) {
   1122   // Is this phi an induction variable?
   1123   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(OrigPhi));
   1124   if (!AddRec)
   1125     return nullptr;
   1126 
   1127   // Widen the induction variable expression.
   1128   const SCEV *WideIVExpr = IsSigned ?
   1129     SE->getSignExtendExpr(AddRec, WideType) :
   1130     SE->getZeroExtendExpr(AddRec, WideType);
   1131 
   1132   assert(SE->getEffectiveSCEVType(WideIVExpr->getType()) == WideType &&
   1133          "Expect the new IV expression to preserve its type");
   1134 
   1135   // Can the IV be extended outside the loop without overflow?
   1136   AddRec = dyn_cast<SCEVAddRecExpr>(WideIVExpr);
   1137   if (!AddRec || AddRec->getLoop() != L)
   1138     return nullptr;
   1139 
   1140   // An AddRec must have loop-invariant operands. Since this AddRec is
   1141   // materialized by a loop header phi, the expression cannot have any post-loop
   1142   // operands, so they must dominate the loop header.
   1143   assert(SE->properlyDominates(AddRec->getStart(), L->getHeader()) &&
   1144          SE->properlyDominates(AddRec->getStepRecurrence(*SE), L->getHeader())
   1145          && "Loop header phi recurrence inputs do not dominate the loop");
   1146 
   1147   // The rewriter provides a value for the desired IV expression. This may
   1148   // either find an existing phi or materialize a new one. Either way, we
   1149   // expect a well-formed cyclic phi-with-increments. i.e. any operand not part
   1150   // of the phi-SCC dominates the loop entry.
   1151   Instruction *InsertPt = L->getHeader()->begin();
   1152   WidePhi = cast<PHINode>(Rewriter.expandCodeFor(AddRec, WideType, InsertPt));
   1153 
   1154   // Remembering the WideIV increment generated by SCEVExpander allows
   1155   // WidenIVUse to reuse it when widening the narrow IV's increment. We don't
   1156   // employ a general reuse mechanism because the call above is the only call to
   1157   // SCEVExpander. Henceforth, we produce 1-to-1 narrow to wide uses.
   1158   if (BasicBlock *LatchBlock = L->getLoopLatch()) {
   1159     WideInc =
   1160       cast<Instruction>(WidePhi->getIncomingValueForBlock(LatchBlock));
   1161     WideIncExpr = SE->getSCEV(WideInc);
   1162   }
   1163 
   1164   DEBUG(dbgs() << "Wide IV: " << *WidePhi << "\n");
   1165   ++NumWidened;
   1166 
   1167   // Traverse the def-use chain using a worklist starting at the original IV.
   1168   assert(Widened.empty() && NarrowIVUsers.empty() && "expect initial state" );
   1169 
   1170   Widened.insert(OrigPhi);
   1171   pushNarrowIVUsers(OrigPhi, WidePhi);
   1172 
   1173   while (!NarrowIVUsers.empty()) {
   1174     NarrowIVDefUse DU = NarrowIVUsers.pop_back_val();
   1175 
   1176     // Process a def-use edge. This may replace the use, so don't hold a
   1177     // use_iterator across it.
   1178     Instruction *WideUse = WidenIVUse(DU, Rewriter);
   1179 
   1180     // Follow all def-use edges from the previous narrow use.
   1181     if (WideUse)
   1182       pushNarrowIVUsers(DU.NarrowUse, WideUse);
   1183 
   1184     // WidenIVUse may have removed the def-use edge.
   1185     if (DU.NarrowDef->use_empty())
   1186       DeadInsts.push_back(DU.NarrowDef);
   1187   }
   1188   return WidePhi;
   1189 }
   1190 
   1191 //===----------------------------------------------------------------------===//
   1192 //  Live IV Reduction - Minimize IVs live across the loop.
   1193 //===----------------------------------------------------------------------===//
   1194 
   1195 
   1196 //===----------------------------------------------------------------------===//
   1197 //  Simplification of IV users based on SCEV evaluation.
   1198 //===----------------------------------------------------------------------===//
   1199 
   1200 namespace {
   1201   class IndVarSimplifyVisitor : public IVVisitor {
   1202     ScalarEvolution *SE;
   1203     const TargetTransformInfo *TTI;
   1204     PHINode *IVPhi;
   1205 
   1206   public:
   1207     WideIVInfo WI;
   1208 
   1209     IndVarSimplifyVisitor(PHINode *IV, ScalarEvolution *SCEV,
   1210                           const TargetTransformInfo *TTI,
   1211                           const DominatorTree *DTree)
   1212         : SE(SCEV), TTI(TTI), IVPhi(IV) {
   1213       DT = DTree;
   1214       WI.NarrowIV = IVPhi;
   1215       if (ReduceLiveIVs)
   1216         setSplitOverflowIntrinsics();
   1217     }
   1218 
   1219     // Implement the interface used by simplifyUsersOfIV.
   1220     void visitCast(CastInst *Cast) override { visitIVCast(Cast, WI, SE, TTI); }
   1221   };
   1222 }
   1223 
   1224 /// SimplifyAndExtend - Iteratively perform simplification on a worklist of IV
   1225 /// users. Each successive simplification may push more users which may
   1226 /// themselves be candidates for simplification.
   1227 ///
   1228 /// Sign/Zero extend elimination is interleaved with IV simplification.
   1229 ///
   1230 void IndVarSimplify::SimplifyAndExtend(Loop *L,
   1231                                        SCEVExpander &Rewriter,
   1232                                        LPPassManager &LPM) {
   1233   SmallVector<WideIVInfo, 8> WideIVs;
   1234 
   1235   SmallVector<PHINode*, 8> LoopPhis;
   1236   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
   1237     LoopPhis.push_back(cast<PHINode>(I));
   1238   }
   1239   // Each round of simplification iterates through the SimplifyIVUsers worklist
   1240   // for all current phis, then determines whether any IVs can be
   1241   // widened. Widening adds new phis to LoopPhis, inducing another round of
   1242   // simplification on the wide IVs.
   1243   while (!LoopPhis.empty()) {
   1244     // Evaluate as many IV expressions as possible before widening any IVs. This
   1245     // forces SCEV to set no-wrap flags before evaluating sign/zero
   1246     // extension. The first time SCEV attempts to normalize sign/zero extension,
   1247     // the result becomes final. So for the most predictable results, we delay
   1248     // evaluation of sign/zero extend evaluation until needed, and avoid running
   1249     // other SCEV based analysis prior to SimplifyAndExtend.
   1250     do {
   1251       PHINode *CurrIV = LoopPhis.pop_back_val();
   1252 
   1253       // Information about sign/zero extensions of CurrIV.
   1254       IndVarSimplifyVisitor Visitor(CurrIV, SE, TTI, DT);
   1255 
   1256       Changed |= simplifyUsersOfIV(CurrIV, SE, &LPM, DeadInsts, &Visitor);
   1257 
   1258       if (Visitor.WI.WidestNativeType) {
   1259         WideIVs.push_back(Visitor.WI);
   1260       }
   1261     } while(!LoopPhis.empty());
   1262 
   1263     for (; !WideIVs.empty(); WideIVs.pop_back()) {
   1264       WidenIV Widener(WideIVs.back(), LI, SE, DT, DeadInsts);
   1265       if (PHINode *WidePhi = Widener.CreateWideIV(Rewriter)) {
   1266         Changed = true;
   1267         LoopPhis.push_back(WidePhi);
   1268       }
   1269     }
   1270   }
   1271 }
   1272 
   1273 //===----------------------------------------------------------------------===//
   1274 //  LinearFunctionTestReplace and its kin. Rewrite the loop exit condition.
   1275 //===----------------------------------------------------------------------===//
   1276 
   1277 /// canExpandBackedgeTakenCount - Return true if this loop's backedge taken
   1278 /// count expression can be safely and cheaply expanded into an instruction
   1279 /// sequence that can be used by LinearFunctionTestReplace.
   1280 ///
   1281 /// TODO: This fails for pointer-type loop counters with greater than one byte
   1282 /// strides, consequently preventing LFTR from running. For the purpose of LFTR
   1283 /// we could skip this check in the case that the LFTR loop counter (chosen by
   1284 /// FindLoopCounter) is also pointer type. Instead, we could directly convert
   1285 /// the loop test to an inequality test by checking the target data's alignment
   1286 /// of element types (given that the initial pointer value originates from or is
   1287 /// used by ABI constrained operation, as opposed to inttoptr/ptrtoint).
   1288 /// However, we don't yet have a strong motivation for converting loop tests
   1289 /// into inequality tests.
   1290 static bool canExpandBackedgeTakenCount(Loop *L, ScalarEvolution *SE,
   1291                                         SCEVExpander &Rewriter) {
   1292   const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
   1293   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount) ||
   1294       BackedgeTakenCount->isZero())
   1295     return false;
   1296 
   1297   if (!L->getExitingBlock())
   1298     return false;
   1299 
   1300   // Can't rewrite non-branch yet.
   1301   if (!isa<BranchInst>(L->getExitingBlock()->getTerminator()))
   1302     return false;
   1303 
   1304   if (Rewriter.isHighCostExpansion(BackedgeTakenCount, L))
   1305     return false;
   1306 
   1307   return true;
   1308 }
   1309 
   1310 /// getLoopPhiForCounter - Return the loop header phi IFF IncV adds a loop
   1311 /// invariant value to the phi.
   1312 static PHINode *getLoopPhiForCounter(Value *IncV, Loop *L, DominatorTree *DT) {
   1313   Instruction *IncI = dyn_cast<Instruction>(IncV);
   1314   if (!IncI)
   1315     return nullptr;
   1316 
   1317   switch (IncI->getOpcode()) {
   1318   case Instruction::Add:
   1319   case Instruction::Sub:
   1320     break;
   1321   case Instruction::GetElementPtr:
   1322     // An IV counter must preserve its type.
   1323     if (IncI->getNumOperands() == 2)
   1324       break;
   1325   default:
   1326     return nullptr;
   1327   }
   1328 
   1329   PHINode *Phi = dyn_cast<PHINode>(IncI->getOperand(0));
   1330   if (Phi && Phi->getParent() == L->getHeader()) {
   1331     if (isLoopInvariant(IncI->getOperand(1), L, DT))
   1332       return Phi;
   1333     return nullptr;
   1334   }
   1335   if (IncI->getOpcode() == Instruction::GetElementPtr)
   1336     return nullptr;
   1337 
   1338   // Allow add/sub to be commuted.
   1339   Phi = dyn_cast<PHINode>(IncI->getOperand(1));
   1340   if (Phi && Phi->getParent() == L->getHeader()) {
   1341     if (isLoopInvariant(IncI->getOperand(0), L, DT))
   1342       return Phi;
   1343   }
   1344   return nullptr;
   1345 }
   1346 
   1347 /// Return the compare guarding the loop latch, or NULL for unrecognized tests.
   1348 static ICmpInst *getLoopTest(Loop *L) {
   1349   assert(L->getExitingBlock() && "expected loop exit");
   1350 
   1351   BasicBlock *LatchBlock = L->getLoopLatch();
   1352   // Don't bother with LFTR if the loop is not properly simplified.
   1353   if (!LatchBlock)
   1354     return nullptr;
   1355 
   1356   BranchInst *BI = dyn_cast<BranchInst>(L->getExitingBlock()->getTerminator());
   1357   assert(BI && "expected exit branch");
   1358 
   1359   return dyn_cast<ICmpInst>(BI->getCondition());
   1360 }
   1361 
   1362 /// needsLFTR - LinearFunctionTestReplace policy. Return true unless we can show
   1363 /// that the current exit test is already sufficiently canonical.
   1364 static bool needsLFTR(Loop *L, DominatorTree *DT) {
   1365   // Do LFTR to simplify the exit condition to an ICMP.
   1366   ICmpInst *Cond = getLoopTest(L);
   1367   if (!Cond)
   1368     return true;
   1369 
   1370   // Do LFTR to simplify the exit ICMP to EQ/NE
   1371   ICmpInst::Predicate Pred = Cond->getPredicate();
   1372   if (Pred != ICmpInst::ICMP_NE && Pred != ICmpInst::ICMP_EQ)
   1373     return true;
   1374 
   1375   // Look for a loop invariant RHS
   1376   Value *LHS = Cond->getOperand(0);
   1377   Value *RHS = Cond->getOperand(1);
   1378   if (!isLoopInvariant(RHS, L, DT)) {
   1379     if (!isLoopInvariant(LHS, L, DT))
   1380       return true;
   1381     std::swap(LHS, RHS);
   1382   }
   1383   // Look for a simple IV counter LHS
   1384   PHINode *Phi = dyn_cast<PHINode>(LHS);
   1385   if (!Phi)
   1386     Phi = getLoopPhiForCounter(LHS, L, DT);
   1387 
   1388   if (!Phi)
   1389     return true;
   1390 
   1391   // Do LFTR if PHI node is defined in the loop, but is *not* a counter.
   1392   int Idx = Phi->getBasicBlockIndex(L->getLoopLatch());
   1393   if (Idx < 0)
   1394     return true;
   1395 
   1396   // Do LFTR if the exit condition's IV is *not* a simple counter.
   1397   Value *IncV = Phi->getIncomingValue(Idx);
   1398   return Phi != getLoopPhiForCounter(IncV, L, DT);
   1399 }
   1400 
   1401 /// Recursive helper for hasConcreteDef(). Unfortunately, this currently boils
   1402 /// down to checking that all operands are constant and listing instructions
   1403 /// that may hide undef.
   1404 static bool hasConcreteDefImpl(Value *V, SmallPtrSetImpl<Value*> &Visited,
   1405                                unsigned Depth) {
   1406   if (isa<Constant>(V))
   1407     return !isa<UndefValue>(V);
   1408 
   1409   if (Depth >= 6)
   1410     return false;
   1411 
   1412   // Conservatively handle non-constant non-instructions. For example, Arguments
   1413   // may be undef.
   1414   Instruction *I = dyn_cast<Instruction>(V);
   1415   if (!I)
   1416     return false;
   1417 
   1418   // Load and return values may be undef.
   1419   if(I->mayReadFromMemory() || isa<CallInst>(I) || isa<InvokeInst>(I))
   1420     return false;
   1421 
   1422   // Optimistically handle other instructions.
   1423   for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI) {
   1424     if (!Visited.insert(*OI).second)
   1425       continue;
   1426     if (!hasConcreteDefImpl(*OI, Visited, Depth+1))
   1427       return false;
   1428   }
   1429   return true;
   1430 }
   1431 
   1432 /// Return true if the given value is concrete. We must prove that undef can
   1433 /// never reach it.
   1434 ///
   1435 /// TODO: If we decide that this is a good approach to checking for undef, we
   1436 /// may factor it into a common location.
   1437 static bool hasConcreteDef(Value *V) {
   1438   SmallPtrSet<Value*, 8> Visited;
   1439   Visited.insert(V);
   1440   return hasConcreteDefImpl(V, Visited, 0);
   1441 }
   1442 
   1443 /// AlmostDeadIV - Return true if this IV has any uses other than the (soon to
   1444 /// be rewritten) loop exit test.
   1445 static bool AlmostDeadIV(PHINode *Phi, BasicBlock *LatchBlock, Value *Cond) {
   1446   int LatchIdx = Phi->getBasicBlockIndex(LatchBlock);
   1447   Value *IncV = Phi->getIncomingValue(LatchIdx);
   1448 
   1449   for (User *U : Phi->users())
   1450     if (U != Cond && U != IncV) return false;
   1451 
   1452   for (User *U : IncV->users())
   1453     if (U != Cond && U != Phi) return false;
   1454   return true;
   1455 }
   1456 
   1457 /// FindLoopCounter - Find an affine IV in canonical form.
   1458 ///
   1459 /// BECount may be an i8* pointer type. The pointer difference is already
   1460 /// valid count without scaling the address stride, so it remains a pointer
   1461 /// expression as far as SCEV is concerned.
   1462 ///
   1463 /// Currently only valid for LFTR. See the comments on hasConcreteDef below.
   1464 ///
   1465 /// FIXME: Accept -1 stride and set IVLimit = IVInit - BECount
   1466 ///
   1467 /// FIXME: Accept non-unit stride as long as SCEV can reduce BECount * Stride.
   1468 /// This is difficult in general for SCEV because of potential overflow. But we
   1469 /// could at least handle constant BECounts.
   1470 static PHINode *FindLoopCounter(Loop *L, const SCEV *BECount,
   1471                                 ScalarEvolution *SE, DominatorTree *DT) {
   1472   uint64_t BCWidth = SE->getTypeSizeInBits(BECount->getType());
   1473 
   1474   Value *Cond =
   1475     cast<BranchInst>(L->getExitingBlock()->getTerminator())->getCondition();
   1476 
   1477   // Loop over all of the PHI nodes, looking for a simple counter.
   1478   PHINode *BestPhi = nullptr;
   1479   const SCEV *BestInit = nullptr;
   1480   BasicBlock *LatchBlock = L->getLoopLatch();
   1481   assert(LatchBlock && "needsLFTR should guarantee a loop latch");
   1482 
   1483   for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
   1484     PHINode *Phi = cast<PHINode>(I);
   1485     if (!SE->isSCEVable(Phi->getType()))
   1486       continue;
   1487 
   1488     // Avoid comparing an integer IV against a pointer Limit.
   1489     if (BECount->getType()->isPointerTy() && !Phi->getType()->isPointerTy())
   1490       continue;
   1491 
   1492     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Phi));
   1493     if (!AR || AR->getLoop() != L || !AR->isAffine())
   1494       continue;
   1495 
   1496     // AR may be a pointer type, while BECount is an integer type.
   1497     // AR may be wider than BECount. With eq/ne tests overflow is immaterial.
   1498     // AR may not be a narrower type, or we may never exit.
   1499     uint64_t PhiWidth = SE->getTypeSizeInBits(AR->getType());
   1500     if (PhiWidth < BCWidth ||
   1501         !L->getHeader()->getModule()->getDataLayout().isLegalInteger(PhiWidth))
   1502       continue;
   1503 
   1504     const SCEV *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*SE));
   1505     if (!Step || !Step->isOne())
   1506       continue;
   1507 
   1508     int LatchIdx = Phi->getBasicBlockIndex(LatchBlock);
   1509     Value *IncV = Phi->getIncomingValue(LatchIdx);
   1510     if (getLoopPhiForCounter(IncV, L, DT) != Phi)
   1511       continue;
   1512 
   1513     // Avoid reusing a potentially undef value to compute other values that may
   1514     // have originally had a concrete definition.
   1515     if (!hasConcreteDef(Phi)) {
   1516       // We explicitly allow unknown phis as long as they are already used by
   1517       // the loop test. In this case we assume that performing LFTR could not
   1518       // increase the number of undef users.
   1519       if (ICmpInst *Cond = getLoopTest(L)) {
   1520         if (Phi != getLoopPhiForCounter(Cond->getOperand(0), L, DT)
   1521             && Phi != getLoopPhiForCounter(Cond->getOperand(1), L, DT)) {
   1522           continue;
   1523         }
   1524       }
   1525     }
   1526     const SCEV *Init = AR->getStart();
   1527 
   1528     if (BestPhi && !AlmostDeadIV(BestPhi, LatchBlock, Cond)) {
   1529       // Don't force a live loop counter if another IV can be used.
   1530       if (AlmostDeadIV(Phi, LatchBlock, Cond))
   1531         continue;
   1532 
   1533       // Prefer to count-from-zero. This is a more "canonical" counter form. It
   1534       // also prefers integer to pointer IVs.
   1535       if (BestInit->isZero() != Init->isZero()) {
   1536         if (BestInit->isZero())
   1537           continue;
   1538       }
   1539       // If two IVs both count from zero or both count from nonzero then the
   1540       // narrower is likely a dead phi that has been widened. Use the wider phi
   1541       // to allow the other to be eliminated.
   1542       else if (PhiWidth <= SE->getTypeSizeInBits(BestPhi->getType()))
   1543         continue;
   1544     }
   1545     BestPhi = Phi;
   1546     BestInit = Init;
   1547   }
   1548   return BestPhi;
   1549 }
   1550 
   1551 /// genLoopLimit - Help LinearFunctionTestReplace by generating a value that
   1552 /// holds the RHS of the new loop test.
   1553 static Value *genLoopLimit(PHINode *IndVar, const SCEV *IVCount, Loop *L,
   1554                            SCEVExpander &Rewriter, ScalarEvolution *SE) {
   1555   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(IndVar));
   1556   assert(AR && AR->getLoop() == L && AR->isAffine() && "bad loop counter");
   1557   const SCEV *IVInit = AR->getStart();
   1558 
   1559   // IVInit may be a pointer while IVCount is an integer when FindLoopCounter
   1560   // finds a valid pointer IV. Sign extend BECount in order to materialize a
   1561   // GEP. Avoid running SCEVExpander on a new pointer value, instead reusing
   1562   // the existing GEPs whenever possible.
   1563   if (IndVar->getType()->isPointerTy()
   1564       && !IVCount->getType()->isPointerTy()) {
   1565 
   1566     // IVOffset will be the new GEP offset that is interpreted by GEP as a
   1567     // signed value. IVCount on the other hand represents the loop trip count,
   1568     // which is an unsigned value. FindLoopCounter only allows induction
   1569     // variables that have a positive unit stride of one. This means we don't
   1570     // have to handle the case of negative offsets (yet) and just need to zero
   1571     // extend IVCount.
   1572     Type *OfsTy = SE->getEffectiveSCEVType(IVInit->getType());
   1573     const SCEV *IVOffset = SE->getTruncateOrZeroExtend(IVCount, OfsTy);
   1574 
   1575     // Expand the code for the iteration count.
   1576     assert(SE->isLoopInvariant(IVOffset, L) &&
   1577            "Computed iteration count is not loop invariant!");
   1578     BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
   1579     Value *GEPOffset = Rewriter.expandCodeFor(IVOffset, OfsTy, BI);
   1580 
   1581     Value *GEPBase = IndVar->getIncomingValueForBlock(L->getLoopPreheader());
   1582     assert(AR->getStart() == SE->getSCEV(GEPBase) && "bad loop counter");
   1583     // We could handle pointer IVs other than i8*, but we need to compensate for
   1584     // gep index scaling. See canExpandBackedgeTakenCount comments.
   1585     assert(SE->getSizeOfExpr(IntegerType::getInt64Ty(IndVar->getContext()),
   1586              cast<PointerType>(GEPBase->getType())->getElementType())->isOne()
   1587            && "unit stride pointer IV must be i8*");
   1588 
   1589     IRBuilder<> Builder(L->getLoopPreheader()->getTerminator());
   1590     return Builder.CreateGEP(nullptr, GEPBase, GEPOffset, "lftr.limit");
   1591   }
   1592   else {
   1593     // In any other case, convert both IVInit and IVCount to integers before
   1594     // comparing. This may result in SCEV expension of pointers, but in practice
   1595     // SCEV will fold the pointer arithmetic away as such:
   1596     // BECount = (IVEnd - IVInit - 1) => IVLimit = IVInit (postinc).
   1597     //
   1598     // Valid Cases: (1) both integers is most common; (2) both may be pointers
   1599     // for simple memset-style loops.
   1600     //
   1601     // IVInit integer and IVCount pointer would only occur if a canonical IV
   1602     // were generated on top of case #2, which is not expected.
   1603 
   1604     const SCEV *IVLimit = nullptr;
   1605     // For unit stride, IVCount = Start + BECount with 2's complement overflow.
   1606     // For non-zero Start, compute IVCount here.
   1607     if (AR->getStart()->isZero())
   1608       IVLimit = IVCount;
   1609     else {
   1610       assert(AR->getStepRecurrence(*SE)->isOne() && "only handles unit stride");
   1611       const SCEV *IVInit = AR->getStart();
   1612 
   1613       // For integer IVs, truncate the IV before computing IVInit + BECount.
   1614       if (SE->getTypeSizeInBits(IVInit->getType())
   1615           > SE->getTypeSizeInBits(IVCount->getType()))
   1616         IVInit = SE->getTruncateExpr(IVInit, IVCount->getType());
   1617 
   1618       IVLimit = SE->getAddExpr(IVInit, IVCount);
   1619     }
   1620     // Expand the code for the iteration count.
   1621     BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
   1622     IRBuilder<> Builder(BI);
   1623     assert(SE->isLoopInvariant(IVLimit, L) &&
   1624            "Computed iteration count is not loop invariant!");
   1625     // Ensure that we generate the same type as IndVar, or a smaller integer
   1626     // type. In the presence of null pointer values, we have an integer type
   1627     // SCEV expression (IVInit) for a pointer type IV value (IndVar).
   1628     Type *LimitTy = IVCount->getType()->isPointerTy() ?
   1629       IndVar->getType() : IVCount->getType();
   1630     return Rewriter.expandCodeFor(IVLimit, LimitTy, BI);
   1631   }
   1632 }
   1633 
   1634 /// LinearFunctionTestReplace - This method rewrites the exit condition of the
   1635 /// loop to be a canonical != comparison against the incremented loop induction
   1636 /// variable.  This pass is able to rewrite the exit tests of any loop where the
   1637 /// SCEV analysis can determine a loop-invariant trip count of the loop, which
   1638 /// is actually a much broader range than just linear tests.
   1639 Value *IndVarSimplify::
   1640 LinearFunctionTestReplace(Loop *L,
   1641                           const SCEV *BackedgeTakenCount,
   1642                           PHINode *IndVar,
   1643                           SCEVExpander &Rewriter) {
   1644   assert(canExpandBackedgeTakenCount(L, SE, Rewriter) && "precondition");
   1645 
   1646   // Initialize CmpIndVar and IVCount to their preincremented values.
   1647   Value *CmpIndVar = IndVar;
   1648   const SCEV *IVCount = BackedgeTakenCount;
   1649 
   1650   // If the exiting block is the same as the backedge block, we prefer to
   1651   // compare against the post-incremented value, otherwise we must compare
   1652   // against the preincremented value.
   1653   if (L->getExitingBlock() == L->getLoopLatch()) {
   1654     // Add one to the "backedge-taken" count to get the trip count.
   1655     // This addition may overflow, which is valid as long as the comparison is
   1656     // truncated to BackedgeTakenCount->getType().
   1657     IVCount = SE->getAddExpr(BackedgeTakenCount,
   1658                              SE->getConstant(BackedgeTakenCount->getType(), 1));
   1659     // The BackedgeTaken expression contains the number of times that the
   1660     // backedge branches to the loop header.  This is one less than the
   1661     // number of times the loop executes, so use the incremented indvar.
   1662     CmpIndVar = IndVar->getIncomingValueForBlock(L->getExitingBlock());
   1663   }
   1664 
   1665   Value *ExitCnt = genLoopLimit(IndVar, IVCount, L, Rewriter, SE);
   1666   assert(ExitCnt->getType()->isPointerTy() == IndVar->getType()->isPointerTy()
   1667          && "genLoopLimit missed a cast");
   1668 
   1669   // Insert a new icmp_ne or icmp_eq instruction before the branch.
   1670   BranchInst *BI = cast<BranchInst>(L->getExitingBlock()->getTerminator());
   1671   ICmpInst::Predicate P;
   1672   if (L->contains(BI->getSuccessor(0)))
   1673     P = ICmpInst::ICMP_NE;
   1674   else
   1675     P = ICmpInst::ICMP_EQ;
   1676 
   1677   DEBUG(dbgs() << "INDVARS: Rewriting loop exit condition to:\n"
   1678                << "      LHS:" << *CmpIndVar << '\n'
   1679                << "       op:\t"
   1680                << (P == ICmpInst::ICMP_NE ? "!=" : "==") << "\n"
   1681                << "      RHS:\t" << *ExitCnt << "\n"
   1682                << "  IVCount:\t" << *IVCount << "\n");
   1683 
   1684   IRBuilder<> Builder(BI);
   1685 
   1686   // LFTR can ignore IV overflow and truncate to the width of
   1687   // BECount. This avoids materializing the add(zext(add)) expression.
   1688   unsigned CmpIndVarSize = SE->getTypeSizeInBits(CmpIndVar->getType());
   1689   unsigned ExitCntSize = SE->getTypeSizeInBits(ExitCnt->getType());
   1690   if (CmpIndVarSize > ExitCntSize) {
   1691     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(SE->getSCEV(IndVar));
   1692     const SCEV *ARStart = AR->getStart();
   1693     const SCEV *ARStep = AR->getStepRecurrence(*SE);
   1694     // For constant IVCount, avoid truncation.
   1695     if (isa<SCEVConstant>(ARStart) && isa<SCEVConstant>(IVCount)) {
   1696       const APInt &Start = cast<SCEVConstant>(ARStart)->getValue()->getValue();
   1697       APInt Count = cast<SCEVConstant>(IVCount)->getValue()->getValue();
   1698       // Note that the post-inc value of BackedgeTakenCount may have overflowed
   1699       // above such that IVCount is now zero.
   1700       if (IVCount != BackedgeTakenCount && Count == 0) {
   1701         Count = APInt::getMaxValue(Count.getBitWidth()).zext(CmpIndVarSize);
   1702         ++Count;
   1703       }
   1704       else
   1705         Count = Count.zext(CmpIndVarSize);
   1706       APInt NewLimit;
   1707       if (cast<SCEVConstant>(ARStep)->getValue()->isNegative())
   1708         NewLimit = Start - Count;
   1709       else
   1710         NewLimit = Start + Count;
   1711       ExitCnt = ConstantInt::get(CmpIndVar->getType(), NewLimit);
   1712 
   1713       DEBUG(dbgs() << "  Widen RHS:\t" << *ExitCnt << "\n");
   1714     } else {
   1715       CmpIndVar = Builder.CreateTrunc(CmpIndVar, ExitCnt->getType(),
   1716                                       "lftr.wideiv");
   1717     }
   1718   }
   1719   Value *Cond = Builder.CreateICmp(P, CmpIndVar, ExitCnt, "exitcond");
   1720   Value *OrigCond = BI->getCondition();
   1721   // It's tempting to use replaceAllUsesWith here to fully replace the old
   1722   // comparison, but that's not immediately safe, since users of the old
   1723   // comparison may not be dominated by the new comparison. Instead, just
   1724   // update the branch to use the new comparison; in the common case this
   1725   // will make old comparison dead.
   1726   BI->setCondition(Cond);
   1727   DeadInsts.push_back(OrigCond);
   1728 
   1729   ++NumLFTR;
   1730   Changed = true;
   1731   return Cond;
   1732 }
   1733 
   1734 //===----------------------------------------------------------------------===//
   1735 //  SinkUnusedInvariants. A late subpass to cleanup loop preheaders.
   1736 //===----------------------------------------------------------------------===//
   1737 
   1738 /// If there's a single exit block, sink any loop-invariant values that
   1739 /// were defined in the preheader but not used inside the loop into the
   1740 /// exit block to reduce register pressure in the loop.
   1741 void IndVarSimplify::SinkUnusedInvariants(Loop *L) {
   1742   BasicBlock *ExitBlock = L->getExitBlock();
   1743   if (!ExitBlock) return;
   1744 
   1745   BasicBlock *Preheader = L->getLoopPreheader();
   1746   if (!Preheader) return;
   1747 
   1748   Instruction *InsertPt = ExitBlock->getFirstInsertionPt();
   1749   BasicBlock::iterator I = Preheader->getTerminator();
   1750   while (I != Preheader->begin()) {
   1751     --I;
   1752     // New instructions were inserted at the end of the preheader.
   1753     if (isa<PHINode>(I))
   1754       break;
   1755 
   1756     // Don't move instructions which might have side effects, since the side
   1757     // effects need to complete before instructions inside the loop.  Also don't
   1758     // move instructions which might read memory, since the loop may modify
   1759     // memory. Note that it's okay if the instruction might have undefined
   1760     // behavior: LoopSimplify guarantees that the preheader dominates the exit
   1761     // block.
   1762     if (I->mayHaveSideEffects() || I->mayReadFromMemory())
   1763       continue;
   1764 
   1765     // Skip debug info intrinsics.
   1766     if (isa<DbgInfoIntrinsic>(I))
   1767       continue;
   1768 
   1769     // Skip landingpad instructions.
   1770     if (isa<LandingPadInst>(I))
   1771       continue;
   1772 
   1773     // Don't sink alloca: we never want to sink static alloca's out of the
   1774     // entry block, and correctly sinking dynamic alloca's requires
   1775     // checks for stacksave/stackrestore intrinsics.
   1776     // FIXME: Refactor this check somehow?
   1777     if (isa<AllocaInst>(I))
   1778       continue;
   1779 
   1780     // Determine if there is a use in or before the loop (direct or
   1781     // otherwise).
   1782     bool UsedInLoop = false;
   1783     for (Use &U : I->uses()) {
   1784       Instruction *User = cast<Instruction>(U.getUser());
   1785       BasicBlock *UseBB = User->getParent();
   1786       if (PHINode *P = dyn_cast<PHINode>(User)) {
   1787         unsigned i =
   1788           PHINode::getIncomingValueNumForOperand(U.getOperandNo());
   1789         UseBB = P->getIncomingBlock(i);
   1790       }
   1791       if (UseBB == Preheader || L->contains(UseBB)) {
   1792         UsedInLoop = true;
   1793         break;
   1794       }
   1795     }
   1796 
   1797     // If there is, the def must remain in the preheader.
   1798     if (UsedInLoop)
   1799       continue;
   1800 
   1801     // Otherwise, sink it to the exit block.
   1802     Instruction *ToMove = I;
   1803     bool Done = false;
   1804 
   1805     if (I != Preheader->begin()) {
   1806       // Skip debug info intrinsics.
   1807       do {
   1808         --I;
   1809       } while (isa<DbgInfoIntrinsic>(I) && I != Preheader->begin());
   1810 
   1811       if (isa<DbgInfoIntrinsic>(I) && I == Preheader->begin())
   1812         Done = true;
   1813     } else {
   1814       Done = true;
   1815     }
   1816 
   1817     ToMove->moveBefore(InsertPt);
   1818     if (Done) break;
   1819     InsertPt = ToMove;
   1820   }
   1821 }
   1822 
   1823 //===----------------------------------------------------------------------===//
   1824 //  IndVarSimplify driver. Manage several subpasses of IV simplification.
   1825 //===----------------------------------------------------------------------===//
   1826 
   1827 bool IndVarSimplify::runOnLoop(Loop *L, LPPassManager &LPM) {
   1828   if (skipOptnoneFunction(L))
   1829     return false;
   1830 
   1831   // If LoopSimplify form is not available, stay out of trouble. Some notes:
   1832   //  - LSR currently only supports LoopSimplify-form loops. Indvars'
   1833   //    canonicalization can be a pessimization without LSR to "clean up"
   1834   //    afterwards.
   1835   //  - We depend on having a preheader; in particular,
   1836   //    Loop::getCanonicalInductionVariable only supports loops with preheaders,
   1837   //    and we're in trouble if we can't find the induction variable even when
   1838   //    we've manually inserted one.
   1839   if (!L->isLoopSimplifyForm())
   1840     return false;
   1841 
   1842   LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
   1843   SE = &getAnalysis<ScalarEvolution>();
   1844   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
   1845   auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
   1846   TLI = TLIP ? &TLIP->getTLI() : nullptr;
   1847   auto *TTIP = getAnalysisIfAvailable<TargetTransformInfoWrapperPass>();
   1848   TTI = TTIP ? &TTIP->getTTI(*L->getHeader()->getParent()) : nullptr;
   1849   const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
   1850 
   1851   DeadInsts.clear();
   1852   Changed = false;
   1853 
   1854   // If there are any floating-point recurrences, attempt to
   1855   // transform them to use integer recurrences.
   1856   RewriteNonIntegerIVs(L);
   1857 
   1858   const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
   1859 
   1860   // Create a rewriter object which we'll use to transform the code with.
   1861   SCEVExpander Rewriter(*SE, DL, "indvars");
   1862 #ifndef NDEBUG
   1863   Rewriter.setDebugType(DEBUG_TYPE);
   1864 #endif
   1865 
   1866   // Eliminate redundant IV users.
   1867   //
   1868   // Simplification works best when run before other consumers of SCEV. We
   1869   // attempt to avoid evaluating SCEVs for sign/zero extend operations until
   1870   // other expressions involving loop IVs have been evaluated. This helps SCEV
   1871   // set no-wrap flags before normalizing sign/zero extension.
   1872   Rewriter.disableCanonicalMode();
   1873   SimplifyAndExtend(L, Rewriter, LPM);
   1874 
   1875   // Check to see if this loop has a computable loop-invariant execution count.
   1876   // If so, this means that we can compute the final value of any expressions
   1877   // that are recurrent in the loop, and substitute the exit values from the
   1878   // loop into any instructions outside of the loop that use the final values of
   1879   // the current expressions.
   1880   //
   1881   if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount))
   1882     RewriteLoopExitValues(L, Rewriter);
   1883 
   1884   // Eliminate redundant IV cycles.
   1885   NumElimIV += Rewriter.replaceCongruentIVs(L, DT, DeadInsts);
   1886 
   1887   // If we have a trip count expression, rewrite the loop's exit condition
   1888   // using it.  We can currently only handle loops with a single exit.
   1889   if (canExpandBackedgeTakenCount(L, SE, Rewriter) && needsLFTR(L, DT)) {
   1890     PHINode *IndVar = FindLoopCounter(L, BackedgeTakenCount, SE, DT);
   1891     if (IndVar) {
   1892       // Check preconditions for proper SCEVExpander operation. SCEV does not
   1893       // express SCEVExpander's dependencies, such as LoopSimplify. Instead any
   1894       // pass that uses the SCEVExpander must do it. This does not work well for
   1895       // loop passes because SCEVExpander makes assumptions about all loops,
   1896       // while LoopPassManager only forces the current loop to be simplified.
   1897       //
   1898       // FIXME: SCEV expansion has no way to bail out, so the caller must
   1899       // explicitly check any assumptions made by SCEV. Brittle.
   1900       const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(BackedgeTakenCount);
   1901       if (!AR || AR->getLoop()->getLoopPreheader())
   1902         (void)LinearFunctionTestReplace(L, BackedgeTakenCount, IndVar,
   1903                                         Rewriter);
   1904     }
   1905   }
   1906   // Clear the rewriter cache, because values that are in the rewriter's cache
   1907   // can be deleted in the loop below, causing the AssertingVH in the cache to
   1908   // trigger.
   1909   Rewriter.clear();
   1910 
   1911   // Now that we're done iterating through lists, clean up any instructions
   1912   // which are now dead.
   1913   while (!DeadInsts.empty())
   1914     if (Instruction *Inst =
   1915           dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val()))
   1916       RecursivelyDeleteTriviallyDeadInstructions(Inst, TLI);
   1917 
   1918   // The Rewriter may not be used from this point on.
   1919 
   1920   // Loop-invariant instructions in the preheader that aren't used in the
   1921   // loop may be sunk below the loop to reduce register pressure.
   1922   SinkUnusedInvariants(L);
   1923 
   1924   // Clean up dead instructions.
   1925   Changed |= DeleteDeadPHIs(L->getHeader(), TLI);
   1926   // Check a post-condition.
   1927   assert(L->isLCSSAForm(*DT) &&
   1928          "Indvars did not leave the loop in lcssa form!");
   1929 
   1930   // Verify that LFTR, and any other change have not interfered with SCEV's
   1931   // ability to compute trip count.
   1932 #ifndef NDEBUG
   1933   if (VerifyIndvars && !isa<SCEVCouldNotCompute>(BackedgeTakenCount)) {
   1934     SE->forgetLoop(L);
   1935     const SCEV *NewBECount = SE->getBackedgeTakenCount(L);
   1936     if (SE->getTypeSizeInBits(BackedgeTakenCount->getType()) <
   1937         SE->getTypeSizeInBits(NewBECount->getType()))
   1938       NewBECount = SE->getTruncateOrNoop(NewBECount,
   1939                                          BackedgeTakenCount->getType());
   1940     else
   1941       BackedgeTakenCount = SE->getTruncateOrNoop(BackedgeTakenCount,
   1942                                                  NewBECount->getType());
   1943     assert(BackedgeTakenCount == NewBECount && "indvars must preserve SCEV");
   1944   }
   1945 #endif
   1946 
   1947   return Changed;
   1948 }
   1949