Home | History | Annotate | Download | only in Sema
      1 //===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 //  This file implements semantic analysis for expressions.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "clang/Sema/SemaInternal.h"
     15 #include "TreeTransform.h"
     16 #include "clang/AST/ASTConsumer.h"
     17 #include "clang/AST/ASTContext.h"
     18 #include "clang/AST/ASTLambda.h"
     19 #include "clang/AST/ASTMutationListener.h"
     20 #include "clang/AST/CXXInheritance.h"
     21 #include "clang/AST/DeclObjC.h"
     22 #include "clang/AST/DeclTemplate.h"
     23 #include "clang/AST/EvaluatedExprVisitor.h"
     24 #include "clang/AST/Expr.h"
     25 #include "clang/AST/ExprCXX.h"
     26 #include "clang/AST/ExprObjC.h"
     27 #include "clang/AST/ExprOpenMP.h"
     28 #include "clang/AST/RecursiveASTVisitor.h"
     29 #include "clang/AST/TypeLoc.h"
     30 #include "clang/Basic/PartialDiagnostic.h"
     31 #include "clang/Basic/SourceManager.h"
     32 #include "clang/Basic/TargetInfo.h"
     33 #include "clang/Lex/LiteralSupport.h"
     34 #include "clang/Lex/Preprocessor.h"
     35 #include "clang/Sema/AnalysisBasedWarnings.h"
     36 #include "clang/Sema/DeclSpec.h"
     37 #include "clang/Sema/DelayedDiagnostic.h"
     38 #include "clang/Sema/Designator.h"
     39 #include "clang/Sema/Initialization.h"
     40 #include "clang/Sema/Lookup.h"
     41 #include "clang/Sema/ParsedTemplate.h"
     42 #include "clang/Sema/Scope.h"
     43 #include "clang/Sema/ScopeInfo.h"
     44 #include "clang/Sema/SemaFixItUtils.h"
     45 #include "clang/Sema/Template.h"
     46 #include "llvm/Support/ConvertUTF.h"
     47 using namespace clang;
     48 using namespace sema;
     49 
     50 /// \brief Determine whether the use of this declaration is valid, without
     51 /// emitting diagnostics.
     52 bool Sema::CanUseDecl(NamedDecl *D) {
     53   // See if this is an auto-typed variable whose initializer we are parsing.
     54   if (ParsingInitForAutoVars.count(D))
     55     return false;
     56 
     57   // See if this is a deleted function.
     58   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
     59     if (FD->isDeleted())
     60       return false;
     61 
     62     // If the function has a deduced return type, and we can't deduce it,
     63     // then we can't use it either.
     64     if (getLangOpts().CPlusPlus14 && FD->getReturnType()->isUndeducedType() &&
     65         DeduceReturnType(FD, SourceLocation(), /*Diagnose*/ false))
     66       return false;
     67   }
     68 
     69   // See if this function is unavailable.
     70   if (D->getAvailability() == AR_Unavailable &&
     71       cast<Decl>(CurContext)->getAvailability() != AR_Unavailable)
     72     return false;
     73 
     74   return true;
     75 }
     76 
     77 static void DiagnoseUnusedOfDecl(Sema &S, NamedDecl *D, SourceLocation Loc) {
     78   // Warn if this is used but marked unused.
     79   if (D->hasAttr<UnusedAttr>()) {
     80     const Decl *DC = cast_or_null<Decl>(S.getCurObjCLexicalContext());
     81     if (DC && !DC->hasAttr<UnusedAttr>())
     82       S.Diag(Loc, diag::warn_used_but_marked_unused) << D->getDeclName();
     83   }
     84 }
     85 
     86 static bool HasRedeclarationWithoutAvailabilityInCategory(const Decl *D) {
     87   const auto *OMD = dyn_cast<ObjCMethodDecl>(D);
     88   if (!OMD)
     89     return false;
     90   const ObjCInterfaceDecl *OID = OMD->getClassInterface();
     91   if (!OID)
     92     return false;
     93 
     94   for (const ObjCCategoryDecl *Cat : OID->visible_categories())
     95     if (ObjCMethodDecl *CatMeth =
     96             Cat->getMethod(OMD->getSelector(), OMD->isInstanceMethod()))
     97       if (!CatMeth->hasAttr<AvailabilityAttr>())
     98         return true;
     99   return false;
    100 }
    101 
    102 static AvailabilityResult
    103 DiagnoseAvailabilityOfDecl(Sema &S, NamedDecl *D, SourceLocation Loc,
    104                            const ObjCInterfaceDecl *UnknownObjCClass,
    105                            bool ObjCPropertyAccess) {
    106   // See if this declaration is unavailable or deprecated.
    107   std::string Message;
    108   AvailabilityResult Result = D->getAvailability(&Message);
    109 
    110   // For typedefs, if the typedef declaration appears available look
    111   // to the underlying type to see if it is more restrictive.
    112   while (const TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D)) {
    113     if (Result == AR_Available) {
    114       if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
    115         D = TT->getDecl();
    116         Result = D->getAvailability(&Message);
    117         continue;
    118       }
    119     }
    120     break;
    121   }
    122 
    123   // Forward class declarations get their attributes from their definition.
    124   if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(D)) {
    125     if (IDecl->getDefinition()) {
    126       D = IDecl->getDefinition();
    127       Result = D->getAvailability(&Message);
    128     }
    129   }
    130 
    131   if (const EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(D))
    132     if (Result == AR_Available) {
    133       const DeclContext *DC = ECD->getDeclContext();
    134       if (const EnumDecl *TheEnumDecl = dyn_cast<EnumDecl>(DC))
    135         Result = TheEnumDecl->getAvailability(&Message);
    136     }
    137 
    138   const ObjCPropertyDecl *ObjCPDecl = nullptr;
    139   if (Result == AR_Deprecated || Result == AR_Unavailable ||
    140       AR_NotYetIntroduced) {
    141     if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
    142       if (const ObjCPropertyDecl *PD = MD->findPropertyDecl()) {
    143         AvailabilityResult PDeclResult = PD->getAvailability(nullptr);
    144         if (PDeclResult == Result)
    145           ObjCPDecl = PD;
    146       }
    147     }
    148   }
    149 
    150   switch (Result) {
    151     case AR_Available:
    152       break;
    153 
    154     case AR_Deprecated:
    155       if (S.getCurContextAvailability() != AR_Deprecated)
    156         S.EmitAvailabilityWarning(Sema::AD_Deprecation,
    157                                   D, Message, Loc, UnknownObjCClass, ObjCPDecl,
    158                                   ObjCPropertyAccess);
    159       break;
    160 
    161     case AR_NotYetIntroduced: {
    162       // Don't do this for enums, they can't be redeclared.
    163       if (isa<EnumConstantDecl>(D) || isa<EnumDecl>(D))
    164         break;
    165 
    166       bool Warn = !D->getAttr<AvailabilityAttr>()->isInherited();
    167       // Objective-C method declarations in categories are not modelled as
    168       // redeclarations, so manually look for a redeclaration in a category
    169       // if necessary.
    170       if (Warn && HasRedeclarationWithoutAvailabilityInCategory(D))
    171         Warn = false;
    172       // In general, D will point to the most recent redeclaration. However,
    173       // for `@class A;` decls, this isn't true -- manually go through the
    174       // redecl chain in that case.
    175       if (Warn && isa<ObjCInterfaceDecl>(D))
    176         for (Decl *Redecl = D->getMostRecentDecl(); Redecl && Warn;
    177              Redecl = Redecl->getPreviousDecl())
    178           if (!Redecl->hasAttr<AvailabilityAttr>() ||
    179               Redecl->getAttr<AvailabilityAttr>()->isInherited())
    180             Warn = false;
    181 
    182       if (Warn)
    183         S.EmitAvailabilityWarning(Sema::AD_Partial, D, Message, Loc,
    184                                   UnknownObjCClass, ObjCPDecl,
    185                                   ObjCPropertyAccess);
    186       break;
    187     }
    188 
    189     case AR_Unavailable:
    190       if (S.getCurContextAvailability() != AR_Unavailable)
    191         S.EmitAvailabilityWarning(Sema::AD_Unavailable,
    192                                   D, Message, Loc, UnknownObjCClass, ObjCPDecl,
    193                                   ObjCPropertyAccess);
    194       break;
    195 
    196     }
    197     return Result;
    198 }
    199 
    200 /// \brief Emit a note explaining that this function is deleted.
    201 void Sema::NoteDeletedFunction(FunctionDecl *Decl) {
    202   assert(Decl->isDeleted());
    203 
    204   CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Decl);
    205 
    206   if (Method && Method->isDeleted() && Method->isDefaulted()) {
    207     // If the method was explicitly defaulted, point at that declaration.
    208     if (!Method->isImplicit())
    209       Diag(Decl->getLocation(), diag::note_implicitly_deleted);
    210 
    211     // Try to diagnose why this special member function was implicitly
    212     // deleted. This might fail, if that reason no longer applies.
    213     CXXSpecialMember CSM = getSpecialMember(Method);
    214     if (CSM != CXXInvalid)
    215       ShouldDeleteSpecialMember(Method, CSM, /*Diagnose=*/true);
    216 
    217     return;
    218   }
    219 
    220   if (CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Decl)) {
    221     if (CXXConstructorDecl *BaseCD =
    222             const_cast<CXXConstructorDecl*>(CD->getInheritedConstructor())) {
    223       Diag(Decl->getLocation(), diag::note_inherited_deleted_here);
    224       if (BaseCD->isDeleted()) {
    225         NoteDeletedFunction(BaseCD);
    226       } else {
    227         // FIXME: An explanation of why exactly it can't be inherited
    228         // would be nice.
    229         Diag(BaseCD->getLocation(), diag::note_cannot_inherit);
    230       }
    231       return;
    232     }
    233   }
    234 
    235   Diag(Decl->getLocation(), diag::note_availability_specified_here)
    236     << Decl << true;
    237 }
    238 
    239 /// \brief Determine whether a FunctionDecl was ever declared with an
    240 /// explicit storage class.
    241 static bool hasAnyExplicitStorageClass(const FunctionDecl *D) {
    242   for (auto I : D->redecls()) {
    243     if (I->getStorageClass() != SC_None)
    244       return true;
    245   }
    246   return false;
    247 }
    248 
    249 /// \brief Check whether we're in an extern inline function and referring to a
    250 /// variable or function with internal linkage (C11 6.7.4p3).
    251 ///
    252 /// This is only a warning because we used to silently accept this code, but
    253 /// in many cases it will not behave correctly. This is not enabled in C++ mode
    254 /// because the restriction language is a bit weaker (C++11 [basic.def.odr]p6)
    255 /// and so while there may still be user mistakes, most of the time we can't
    256 /// prove that there are errors.
    257 static void diagnoseUseOfInternalDeclInInlineFunction(Sema &S,
    258                                                       const NamedDecl *D,
    259                                                       SourceLocation Loc) {
    260   // This is disabled under C++; there are too many ways for this to fire in
    261   // contexts where the warning is a false positive, or where it is technically
    262   // correct but benign.
    263   if (S.getLangOpts().CPlusPlus)
    264     return;
    265 
    266   // Check if this is an inlined function or method.
    267   FunctionDecl *Current = S.getCurFunctionDecl();
    268   if (!Current)
    269     return;
    270   if (!Current->isInlined())
    271     return;
    272   if (!Current->isExternallyVisible())
    273     return;
    274 
    275   // Check if the decl has internal linkage.
    276   if (D->getFormalLinkage() != InternalLinkage)
    277     return;
    278 
    279   // Downgrade from ExtWarn to Extension if
    280   //  (1) the supposedly external inline function is in the main file,
    281   //      and probably won't be included anywhere else.
    282   //  (2) the thing we're referencing is a pure function.
    283   //  (3) the thing we're referencing is another inline function.
    284   // This last can give us false negatives, but it's better than warning on
    285   // wrappers for simple C library functions.
    286   const FunctionDecl *UsedFn = dyn_cast<FunctionDecl>(D);
    287   bool DowngradeWarning = S.getSourceManager().isInMainFile(Loc);
    288   if (!DowngradeWarning && UsedFn)
    289     DowngradeWarning = UsedFn->isInlined() || UsedFn->hasAttr<ConstAttr>();
    290 
    291   S.Diag(Loc, DowngradeWarning ? diag::ext_internal_in_extern_inline_quiet
    292                                : diag::ext_internal_in_extern_inline)
    293     << /*IsVar=*/!UsedFn << D;
    294 
    295   S.MaybeSuggestAddingStaticToDecl(Current);
    296 
    297   S.Diag(D->getCanonicalDecl()->getLocation(), diag::note_entity_declared_at)
    298       << D;
    299 }
    300 
    301 void Sema::MaybeSuggestAddingStaticToDecl(const FunctionDecl *Cur) {
    302   const FunctionDecl *First = Cur->getFirstDecl();
    303 
    304   // Suggest "static" on the function, if possible.
    305   if (!hasAnyExplicitStorageClass(First)) {
    306     SourceLocation DeclBegin = First->getSourceRange().getBegin();
    307     Diag(DeclBegin, diag::note_convert_inline_to_static)
    308       << Cur << FixItHint::CreateInsertion(DeclBegin, "static ");
    309   }
    310 }
    311 
    312 /// \brief Determine whether the use of this declaration is valid, and
    313 /// emit any corresponding diagnostics.
    314 ///
    315 /// This routine diagnoses various problems with referencing
    316 /// declarations that can occur when using a declaration. For example,
    317 /// it might warn if a deprecated or unavailable declaration is being
    318 /// used, or produce an error (and return true) if a C++0x deleted
    319 /// function is being used.
    320 ///
    321 /// \returns true if there was an error (this declaration cannot be
    322 /// referenced), false otherwise.
    323 ///
    324 bool Sema::DiagnoseUseOfDecl(NamedDecl *D, SourceLocation Loc,
    325                              const ObjCInterfaceDecl *UnknownObjCClass,
    326                              bool ObjCPropertyAccess) {
    327   if (getLangOpts().CPlusPlus && isa<FunctionDecl>(D)) {
    328     // If there were any diagnostics suppressed by template argument deduction,
    329     // emit them now.
    330     auto Pos = SuppressedDiagnostics.find(D->getCanonicalDecl());
    331     if (Pos != SuppressedDiagnostics.end()) {
    332       for (const PartialDiagnosticAt &Suppressed : Pos->second)
    333         Diag(Suppressed.first, Suppressed.second);
    334 
    335       // Clear out the list of suppressed diagnostics, so that we don't emit
    336       // them again for this specialization. However, we don't obsolete this
    337       // entry from the table, because we want to avoid ever emitting these
    338       // diagnostics again.
    339       Pos->second.clear();
    340     }
    341 
    342     // C++ [basic.start.main]p3:
    343     //   The function 'main' shall not be used within a program.
    344     if (cast<FunctionDecl>(D)->isMain())
    345       Diag(Loc, diag::ext_main_used);
    346   }
    347 
    348   // See if this is an auto-typed variable whose initializer we are parsing.
    349   if (ParsingInitForAutoVars.count(D)) {
    350     const AutoType *AT = cast<VarDecl>(D)->getType()->getContainedAutoType();
    351 
    352     Diag(Loc, diag::err_auto_variable_cannot_appear_in_own_initializer)
    353       << D->getDeclName() << (unsigned)AT->getKeyword();
    354     return true;
    355   }
    356 
    357   // See if this is a deleted function.
    358   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
    359     if (FD->isDeleted()) {
    360       Diag(Loc, diag::err_deleted_function_use);
    361       NoteDeletedFunction(FD);
    362       return true;
    363     }
    364 
    365     // If the function has a deduced return type, and we can't deduce it,
    366     // then we can't use it either.
    367     if (getLangOpts().CPlusPlus14 && FD->getReturnType()->isUndeducedType() &&
    368         DeduceReturnType(FD, Loc))
    369       return true;
    370   }
    371   DiagnoseAvailabilityOfDecl(*this, D, Loc, UnknownObjCClass,
    372                              ObjCPropertyAccess);
    373 
    374   DiagnoseUnusedOfDecl(*this, D, Loc);
    375 
    376   diagnoseUseOfInternalDeclInInlineFunction(*this, D, Loc);
    377 
    378   return false;
    379 }
    380 
    381 /// \brief Retrieve the message suffix that should be added to a
    382 /// diagnostic complaining about the given function being deleted or
    383 /// unavailable.
    384 std::string Sema::getDeletedOrUnavailableSuffix(const FunctionDecl *FD) {
    385   std::string Message;
    386   if (FD->getAvailability(&Message))
    387     return ": " + Message;
    388 
    389   return std::string();
    390 }
    391 
    392 /// DiagnoseSentinelCalls - This routine checks whether a call or
    393 /// message-send is to a declaration with the sentinel attribute, and
    394 /// if so, it checks that the requirements of the sentinel are
    395 /// satisfied.
    396 void Sema::DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc,
    397                                  ArrayRef<Expr *> Args) {
    398   const SentinelAttr *attr = D->getAttr<SentinelAttr>();
    399   if (!attr)
    400     return;
    401 
    402   // The number of formal parameters of the declaration.
    403   unsigned numFormalParams;
    404 
    405   // The kind of declaration.  This is also an index into a %select in
    406   // the diagnostic.
    407   enum CalleeType { CT_Function, CT_Method, CT_Block } calleeType;
    408 
    409   if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
    410     numFormalParams = MD->param_size();
    411     calleeType = CT_Method;
    412   } else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
    413     numFormalParams = FD->param_size();
    414     calleeType = CT_Function;
    415   } else if (isa<VarDecl>(D)) {
    416     QualType type = cast<ValueDecl>(D)->getType();
    417     const FunctionType *fn = nullptr;
    418     if (const PointerType *ptr = type->getAs<PointerType>()) {
    419       fn = ptr->getPointeeType()->getAs<FunctionType>();
    420       if (!fn) return;
    421       calleeType = CT_Function;
    422     } else if (const BlockPointerType *ptr = type->getAs<BlockPointerType>()) {
    423       fn = ptr->getPointeeType()->castAs<FunctionType>();
    424       calleeType = CT_Block;
    425     } else {
    426       return;
    427     }
    428 
    429     if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fn)) {
    430       numFormalParams = proto->getNumParams();
    431     } else {
    432       numFormalParams = 0;
    433     }
    434   } else {
    435     return;
    436   }
    437 
    438   // "nullPos" is the number of formal parameters at the end which
    439   // effectively count as part of the variadic arguments.  This is
    440   // useful if you would prefer to not have *any* formal parameters,
    441   // but the language forces you to have at least one.
    442   unsigned nullPos = attr->getNullPos();
    443   assert((nullPos == 0 || nullPos == 1) && "invalid null position on sentinel");
    444   numFormalParams = (nullPos > numFormalParams ? 0 : numFormalParams - nullPos);
    445 
    446   // The number of arguments which should follow the sentinel.
    447   unsigned numArgsAfterSentinel = attr->getSentinel();
    448 
    449   // If there aren't enough arguments for all the formal parameters,
    450   // the sentinel, and the args after the sentinel, complain.
    451   if (Args.size() < numFormalParams + numArgsAfterSentinel + 1) {
    452     Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
    453     Diag(D->getLocation(), diag::note_sentinel_here) << int(calleeType);
    454     return;
    455   }
    456 
    457   // Otherwise, find the sentinel expression.
    458   Expr *sentinelExpr = Args[Args.size() - numArgsAfterSentinel - 1];
    459   if (!sentinelExpr) return;
    460   if (sentinelExpr->isValueDependent()) return;
    461   if (Context.isSentinelNullExpr(sentinelExpr)) return;
    462 
    463   // Pick a reasonable string to insert.  Optimistically use 'nil', 'nullptr',
    464   // or 'NULL' if those are actually defined in the context.  Only use
    465   // 'nil' for ObjC methods, where it's much more likely that the
    466   // variadic arguments form a list of object pointers.
    467   SourceLocation MissingNilLoc
    468     = getLocForEndOfToken(sentinelExpr->getLocEnd());
    469   std::string NullValue;
    470   if (calleeType == CT_Method && PP.isMacroDefined("nil"))
    471     NullValue = "nil";
    472   else if (getLangOpts().CPlusPlus11)
    473     NullValue = "nullptr";
    474   else if (PP.isMacroDefined("NULL"))
    475     NullValue = "NULL";
    476   else
    477     NullValue = "(void*) 0";
    478 
    479   if (MissingNilLoc.isInvalid())
    480     Diag(Loc, diag::warn_missing_sentinel) << int(calleeType);
    481   else
    482     Diag(MissingNilLoc, diag::warn_missing_sentinel)
    483       << int(calleeType)
    484       << FixItHint::CreateInsertion(MissingNilLoc, ", " + NullValue);
    485   Diag(D->getLocation(), diag::note_sentinel_here) << int(calleeType);
    486 }
    487 
    488 SourceRange Sema::getExprRange(Expr *E) const {
    489   return E ? E->getSourceRange() : SourceRange();
    490 }
    491 
    492 //===----------------------------------------------------------------------===//
    493 //  Standard Promotions and Conversions
    494 //===----------------------------------------------------------------------===//
    495 
    496 /// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
    497 ExprResult Sema::DefaultFunctionArrayConversion(Expr *E, bool Diagnose) {
    498   // Handle any placeholder expressions which made it here.
    499   if (E->getType()->isPlaceholderType()) {
    500     ExprResult result = CheckPlaceholderExpr(E);
    501     if (result.isInvalid()) return ExprError();
    502     E = result.get();
    503   }
    504 
    505   QualType Ty = E->getType();
    506   assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
    507 
    508   if (Ty->isFunctionType()) {
    509     // If we are here, we are not calling a function but taking
    510     // its address (which is not allowed in OpenCL v1.0 s6.8.a.3).
    511     if (getLangOpts().OpenCL) {
    512       if (Diagnose)
    513         Diag(E->getExprLoc(), diag::err_opencl_taking_function_address);
    514       return ExprError();
    515     }
    516 
    517     if (auto *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParenCasts()))
    518       if (auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl()))
    519         if (!checkAddressOfFunctionIsAvailable(FD, Diagnose, E->getExprLoc()))
    520           return ExprError();
    521 
    522     E = ImpCastExprToType(E, Context.getPointerType(Ty),
    523                           CK_FunctionToPointerDecay).get();
    524   } else if (Ty->isArrayType()) {
    525     // In C90 mode, arrays only promote to pointers if the array expression is
    526     // an lvalue.  The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
    527     // type 'array of type' is converted to an expression that has type 'pointer
    528     // to type'...".  In C99 this was changed to: C99 6.3.2.1p3: "an expression
    529     // that has type 'array of type' ...".  The relevant change is "an lvalue"
    530     // (C90) to "an expression" (C99).
    531     //
    532     // C++ 4.2p1:
    533     // An lvalue or rvalue of type "array of N T" or "array of unknown bound of
    534     // T" can be converted to an rvalue of type "pointer to T".
    535     //
    536     if (getLangOpts().C99 || getLangOpts().CPlusPlus || E->isLValue())
    537       E = ImpCastExprToType(E, Context.getArrayDecayedType(Ty),
    538                             CK_ArrayToPointerDecay).get();
    539   }
    540   return E;
    541 }
    542 
    543 static void CheckForNullPointerDereference(Sema &S, Expr *E) {
    544   // Check to see if we are dereferencing a null pointer.  If so,
    545   // and if not volatile-qualified, this is undefined behavior that the
    546   // optimizer will delete, so warn about it.  People sometimes try to use this
    547   // to get a deterministic trap and are surprised by clang's behavior.  This
    548   // only handles the pattern "*null", which is a very syntactic check.
    549   if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParenCasts()))
    550     if (UO->getOpcode() == UO_Deref &&
    551         UO->getSubExpr()->IgnoreParenCasts()->
    552           isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull) &&
    553         !UO->getType().isVolatileQualified()) {
    554     S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
    555                           S.PDiag(diag::warn_indirection_through_null)
    556                             << UO->getSubExpr()->getSourceRange());
    557     S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
    558                         S.PDiag(diag::note_indirection_through_null));
    559   }
    560 }
    561 
    562 static void DiagnoseDirectIsaAccess(Sema &S, const ObjCIvarRefExpr *OIRE,
    563                                     SourceLocation AssignLoc,
    564                                     const Expr* RHS) {
    565   const ObjCIvarDecl *IV = OIRE->getDecl();
    566   if (!IV)
    567     return;
    568 
    569   DeclarationName MemberName = IV->getDeclName();
    570   IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
    571   if (!Member || !Member->isStr("isa"))
    572     return;
    573 
    574   const Expr *Base = OIRE->getBase();
    575   QualType BaseType = Base->getType();
    576   if (OIRE->isArrow())
    577     BaseType = BaseType->getPointeeType();
    578   if (const ObjCObjectType *OTy = BaseType->getAs<ObjCObjectType>())
    579     if (ObjCInterfaceDecl *IDecl = OTy->getInterface()) {
    580       ObjCInterfaceDecl *ClassDeclared = nullptr;
    581       ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(Member, ClassDeclared);
    582       if (!ClassDeclared->getSuperClass()
    583           && (*ClassDeclared->ivar_begin()) == IV) {
    584         if (RHS) {
    585           NamedDecl *ObjectSetClass =
    586             S.LookupSingleName(S.TUScope,
    587                                &S.Context.Idents.get("object_setClass"),
    588                                SourceLocation(), S.LookupOrdinaryName);
    589           if (ObjectSetClass) {
    590             SourceLocation RHSLocEnd = S.getLocForEndOfToken(RHS->getLocEnd());
    591             S.Diag(OIRE->getExprLoc(), diag::warn_objc_isa_assign) <<
    592             FixItHint::CreateInsertion(OIRE->getLocStart(), "object_setClass(") <<
    593             FixItHint::CreateReplacement(SourceRange(OIRE->getOpLoc(),
    594                                                      AssignLoc), ",") <<
    595             FixItHint::CreateInsertion(RHSLocEnd, ")");
    596           }
    597           else
    598             S.Diag(OIRE->getLocation(), diag::warn_objc_isa_assign);
    599         } else {
    600           NamedDecl *ObjectGetClass =
    601             S.LookupSingleName(S.TUScope,
    602                                &S.Context.Idents.get("object_getClass"),
    603                                SourceLocation(), S.LookupOrdinaryName);
    604           if (ObjectGetClass)
    605             S.Diag(OIRE->getExprLoc(), diag::warn_objc_isa_use) <<
    606             FixItHint::CreateInsertion(OIRE->getLocStart(), "object_getClass(") <<
    607             FixItHint::CreateReplacement(
    608                                          SourceRange(OIRE->getOpLoc(),
    609                                                      OIRE->getLocEnd()), ")");
    610           else
    611             S.Diag(OIRE->getLocation(), diag::warn_objc_isa_use);
    612         }
    613         S.Diag(IV->getLocation(), diag::note_ivar_decl);
    614       }
    615     }
    616 }
    617 
    618 ExprResult Sema::DefaultLvalueConversion(Expr *E) {
    619   // Handle any placeholder expressions which made it here.
    620   if (E->getType()->isPlaceholderType()) {
    621     ExprResult result = CheckPlaceholderExpr(E);
    622     if (result.isInvalid()) return ExprError();
    623     E = result.get();
    624   }
    625 
    626   // C++ [conv.lval]p1:
    627   //   A glvalue of a non-function, non-array type T can be
    628   //   converted to a prvalue.
    629   if (!E->isGLValue()) return E;
    630 
    631   QualType T = E->getType();
    632   assert(!T.isNull() && "r-value conversion on typeless expression?");
    633 
    634   // We don't want to throw lvalue-to-rvalue casts on top of
    635   // expressions of certain types in C++.
    636   if (getLangOpts().CPlusPlus &&
    637       (E->getType() == Context.OverloadTy ||
    638        T->isDependentType() ||
    639        T->isRecordType()))
    640     return E;
    641 
    642   // The C standard is actually really unclear on this point, and
    643   // DR106 tells us what the result should be but not why.  It's
    644   // generally best to say that void types just doesn't undergo
    645   // lvalue-to-rvalue at all.  Note that expressions of unqualified
    646   // 'void' type are never l-values, but qualified void can be.
    647   if (T->isVoidType())
    648     return E;
    649 
    650   // OpenCL usually rejects direct accesses to values of 'half' type.
    651   if (getLangOpts().OpenCL && !getOpenCLOptions().cl_khr_fp16 &&
    652       T->isHalfType()) {
    653     Diag(E->getExprLoc(), diag::err_opencl_half_load_store)
    654       << 0 << T;
    655     return ExprError();
    656   }
    657 
    658   CheckForNullPointerDereference(*this, E);
    659   if (const ObjCIsaExpr *OISA = dyn_cast<ObjCIsaExpr>(E->IgnoreParenCasts())) {
    660     NamedDecl *ObjectGetClass = LookupSingleName(TUScope,
    661                                      &Context.Idents.get("object_getClass"),
    662                                      SourceLocation(), LookupOrdinaryName);
    663     if (ObjectGetClass)
    664       Diag(E->getExprLoc(), diag::warn_objc_isa_use) <<
    665         FixItHint::CreateInsertion(OISA->getLocStart(), "object_getClass(") <<
    666         FixItHint::CreateReplacement(
    667                     SourceRange(OISA->getOpLoc(), OISA->getIsaMemberLoc()), ")");
    668     else
    669       Diag(E->getExprLoc(), diag::warn_objc_isa_use);
    670   }
    671   else if (const ObjCIvarRefExpr *OIRE =
    672             dyn_cast<ObjCIvarRefExpr>(E->IgnoreParenCasts()))
    673     DiagnoseDirectIsaAccess(*this, OIRE, SourceLocation(), /* Expr*/nullptr);
    674 
    675   // C++ [conv.lval]p1:
    676   //   [...] If T is a non-class type, the type of the prvalue is the
    677   //   cv-unqualified version of T. Otherwise, the type of the
    678   //   rvalue is T.
    679   //
    680   // C99 6.3.2.1p2:
    681   //   If the lvalue has qualified type, the value has the unqualified
    682   //   version of the type of the lvalue; otherwise, the value has the
    683   //   type of the lvalue.
    684   if (T.hasQualifiers())
    685     T = T.getUnqualifiedType();
    686 
    687   // Under the MS ABI, lock down the inheritance model now.
    688   if (T->isMemberPointerType() &&
    689       Context.getTargetInfo().getCXXABI().isMicrosoft())
    690     (void)isCompleteType(E->getExprLoc(), T);
    691 
    692   UpdateMarkingForLValueToRValue(E);
    693 
    694   // Loading a __weak object implicitly retains the value, so we need a cleanup to
    695   // balance that.
    696   if (getLangOpts().ObjCAutoRefCount &&
    697       E->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
    698     ExprNeedsCleanups = true;
    699 
    700   ExprResult Res = ImplicitCastExpr::Create(Context, T, CK_LValueToRValue, E,
    701                                             nullptr, VK_RValue);
    702 
    703   // C11 6.3.2.1p2:
    704   //   ... if the lvalue has atomic type, the value has the non-atomic version
    705   //   of the type of the lvalue ...
    706   if (const AtomicType *Atomic = T->getAs<AtomicType>()) {
    707     T = Atomic->getValueType().getUnqualifiedType();
    708     Res = ImplicitCastExpr::Create(Context, T, CK_AtomicToNonAtomic, Res.get(),
    709                                    nullptr, VK_RValue);
    710   }
    711 
    712   return Res;
    713 }
    714 
    715 ExprResult Sema::DefaultFunctionArrayLvalueConversion(Expr *E, bool Diagnose) {
    716   ExprResult Res = DefaultFunctionArrayConversion(E, Diagnose);
    717   if (Res.isInvalid())
    718     return ExprError();
    719   Res = DefaultLvalueConversion(Res.get());
    720   if (Res.isInvalid())
    721     return ExprError();
    722   return Res;
    723 }
    724 
    725 /// CallExprUnaryConversions - a special case of an unary conversion
    726 /// performed on a function designator of a call expression.
    727 ExprResult Sema::CallExprUnaryConversions(Expr *E) {
    728   QualType Ty = E->getType();
    729   ExprResult Res = E;
    730   // Only do implicit cast for a function type, but not for a pointer
    731   // to function type.
    732   if (Ty->isFunctionType()) {
    733     Res = ImpCastExprToType(E, Context.getPointerType(Ty),
    734                             CK_FunctionToPointerDecay).get();
    735     if (Res.isInvalid())
    736       return ExprError();
    737   }
    738   Res = DefaultLvalueConversion(Res.get());
    739   if (Res.isInvalid())
    740     return ExprError();
    741   return Res.get();
    742 }
    743 
    744 /// UsualUnaryConversions - Performs various conversions that are common to most
    745 /// operators (C99 6.3). The conversions of array and function types are
    746 /// sometimes suppressed. For example, the array->pointer conversion doesn't
    747 /// apply if the array is an argument to the sizeof or address (&) operators.
    748 /// In these instances, this routine should *not* be called.
    749 ExprResult Sema::UsualUnaryConversions(Expr *E) {
    750   // First, convert to an r-value.
    751   ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
    752   if (Res.isInvalid())
    753     return ExprError();
    754   E = Res.get();
    755 
    756   QualType Ty = E->getType();
    757   assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
    758 
    759   // Half FP have to be promoted to float unless it is natively supported
    760   if (Ty->isHalfType() && !getLangOpts().NativeHalfType)
    761     return ImpCastExprToType(Res.get(), Context.FloatTy, CK_FloatingCast);
    762 
    763   // Try to perform integral promotions if the object has a theoretically
    764   // promotable type.
    765   if (Ty->isIntegralOrUnscopedEnumerationType()) {
    766     // C99 6.3.1.1p2:
    767     //
    768     //   The following may be used in an expression wherever an int or
    769     //   unsigned int may be used:
    770     //     - an object or expression with an integer type whose integer
    771     //       conversion rank is less than or equal to the rank of int
    772     //       and unsigned int.
    773     //     - A bit-field of type _Bool, int, signed int, or unsigned int.
    774     //
    775     //   If an int can represent all values of the original type, the
    776     //   value is converted to an int; otherwise, it is converted to an
    777     //   unsigned int. These are called the integer promotions. All
    778     //   other types are unchanged by the integer promotions.
    779 
    780     QualType PTy = Context.isPromotableBitField(E);
    781     if (!PTy.isNull()) {
    782       E = ImpCastExprToType(E, PTy, CK_IntegralCast).get();
    783       return E;
    784     }
    785     if (Ty->isPromotableIntegerType()) {
    786       QualType PT = Context.getPromotedIntegerType(Ty);
    787       E = ImpCastExprToType(E, PT, CK_IntegralCast).get();
    788       return E;
    789     }
    790   }
    791   return E;
    792 }
    793 
    794 /// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
    795 /// do not have a prototype. Arguments that have type float or __fp16
    796 /// are promoted to double. All other argument types are converted by
    797 /// UsualUnaryConversions().
    798 ExprResult Sema::DefaultArgumentPromotion(Expr *E) {
    799   QualType Ty = E->getType();
    800   assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
    801 
    802   ExprResult Res = UsualUnaryConversions(E);
    803   if (Res.isInvalid())
    804     return ExprError();
    805   E = Res.get();
    806 
    807   // If this is a 'float' or '__fp16' (CVR qualified or typedef) promote to
    808   // double.
    809   const BuiltinType *BTy = Ty->getAs<BuiltinType>();
    810   if (BTy && (BTy->getKind() == BuiltinType::Half ||
    811               BTy->getKind() == BuiltinType::Float))
    812     E = ImpCastExprToType(E, Context.DoubleTy, CK_FloatingCast).get();
    813 
    814   // C++ performs lvalue-to-rvalue conversion as a default argument
    815   // promotion, even on class types, but note:
    816   //   C++11 [conv.lval]p2:
    817   //     When an lvalue-to-rvalue conversion occurs in an unevaluated
    818   //     operand or a subexpression thereof the value contained in the
    819   //     referenced object is not accessed. Otherwise, if the glvalue
    820   //     has a class type, the conversion copy-initializes a temporary
    821   //     of type T from the glvalue and the result of the conversion
    822   //     is a prvalue for the temporary.
    823   // FIXME: add some way to gate this entire thing for correctness in
    824   // potentially potentially evaluated contexts.
    825   if (getLangOpts().CPlusPlus && E->isGLValue() && !isUnevaluatedContext()) {
    826     ExprResult Temp = PerformCopyInitialization(
    827                        InitializedEntity::InitializeTemporary(E->getType()),
    828                                                 E->getExprLoc(), E);
    829     if (Temp.isInvalid())
    830       return ExprError();
    831     E = Temp.get();
    832   }
    833 
    834   return E;
    835 }
    836 
    837 /// Determine the degree of POD-ness for an expression.
    838 /// Incomplete types are considered POD, since this check can be performed
    839 /// when we're in an unevaluated context.
    840 Sema::VarArgKind Sema::isValidVarArgType(const QualType &Ty) {
    841   if (Ty->isIncompleteType()) {
    842     // C++11 [expr.call]p7:
    843     //   After these conversions, if the argument does not have arithmetic,
    844     //   enumeration, pointer, pointer to member, or class type, the program
    845     //   is ill-formed.
    846     //
    847     // Since we've already performed array-to-pointer and function-to-pointer
    848     // decay, the only such type in C++ is cv void. This also handles
    849     // initializer lists as variadic arguments.
    850     if (Ty->isVoidType())
    851       return VAK_Invalid;
    852 
    853     if (Ty->isObjCObjectType())
    854       return VAK_Invalid;
    855     return VAK_Valid;
    856   }
    857 
    858   if (Ty.isCXX98PODType(Context))
    859     return VAK_Valid;
    860 
    861   // C++11 [expr.call]p7:
    862   //   Passing a potentially-evaluated argument of class type (Clause 9)
    863   //   having a non-trivial copy constructor, a non-trivial move constructor,
    864   //   or a non-trivial destructor, with no corresponding parameter,
    865   //   is conditionally-supported with implementation-defined semantics.
    866   if (getLangOpts().CPlusPlus11 && !Ty->isDependentType())
    867     if (CXXRecordDecl *Record = Ty->getAsCXXRecordDecl())
    868       if (!Record->hasNonTrivialCopyConstructor() &&
    869           !Record->hasNonTrivialMoveConstructor() &&
    870           !Record->hasNonTrivialDestructor())
    871         return VAK_ValidInCXX11;
    872 
    873   if (getLangOpts().ObjCAutoRefCount && Ty->isObjCLifetimeType())
    874     return VAK_Valid;
    875 
    876   if (Ty->isObjCObjectType())
    877     return VAK_Invalid;
    878 
    879   if (getLangOpts().MSVCCompat)
    880     return VAK_MSVCUndefined;
    881 
    882   // FIXME: In C++11, these cases are conditionally-supported, meaning we're
    883   // permitted to reject them. We should consider doing so.
    884   return VAK_Undefined;
    885 }
    886 
    887 void Sema::checkVariadicArgument(const Expr *E, VariadicCallType CT) {
    888   // Don't allow one to pass an Objective-C interface to a vararg.
    889   const QualType &Ty = E->getType();
    890   VarArgKind VAK = isValidVarArgType(Ty);
    891 
    892   // Complain about passing non-POD types through varargs.
    893   switch (VAK) {
    894   case VAK_ValidInCXX11:
    895     DiagRuntimeBehavior(
    896         E->getLocStart(), nullptr,
    897         PDiag(diag::warn_cxx98_compat_pass_non_pod_arg_to_vararg)
    898           << Ty << CT);
    899     // Fall through.
    900   case VAK_Valid:
    901     if (Ty->isRecordType()) {
    902       // This is unlikely to be what the user intended. If the class has a
    903       // 'c_str' member function, the user probably meant to call that.
    904       DiagRuntimeBehavior(E->getLocStart(), nullptr,
    905                           PDiag(diag::warn_pass_class_arg_to_vararg)
    906                             << Ty << CT << hasCStrMethod(E) << ".c_str()");
    907     }
    908     break;
    909 
    910   case VAK_Undefined:
    911   case VAK_MSVCUndefined:
    912     DiagRuntimeBehavior(
    913         E->getLocStart(), nullptr,
    914         PDiag(diag::warn_cannot_pass_non_pod_arg_to_vararg)
    915           << getLangOpts().CPlusPlus11 << Ty << CT);
    916     break;
    917 
    918   case VAK_Invalid:
    919     if (Ty->isObjCObjectType())
    920       DiagRuntimeBehavior(
    921           E->getLocStart(), nullptr,
    922           PDiag(diag::err_cannot_pass_objc_interface_to_vararg)
    923             << Ty << CT);
    924     else
    925       Diag(E->getLocStart(), diag::err_cannot_pass_to_vararg)
    926         << isa<InitListExpr>(E) << Ty << CT;
    927     break;
    928   }
    929 }
    930 
    931 /// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
    932 /// will create a trap if the resulting type is not a POD type.
    933 ExprResult Sema::DefaultVariadicArgumentPromotion(Expr *E, VariadicCallType CT,
    934                                                   FunctionDecl *FDecl) {
    935   if (const BuiltinType *PlaceholderTy = E->getType()->getAsPlaceholderType()) {
    936     // Strip the unbridged-cast placeholder expression off, if applicable.
    937     if (PlaceholderTy->getKind() == BuiltinType::ARCUnbridgedCast &&
    938         (CT == VariadicMethod ||
    939          (FDecl && FDecl->hasAttr<CFAuditedTransferAttr>()))) {
    940       E = stripARCUnbridgedCast(E);
    941 
    942     // Otherwise, do normal placeholder checking.
    943     } else {
    944       ExprResult ExprRes = CheckPlaceholderExpr(E);
    945       if (ExprRes.isInvalid())
    946         return ExprError();
    947       E = ExprRes.get();
    948     }
    949   }
    950 
    951   ExprResult ExprRes = DefaultArgumentPromotion(E);
    952   if (ExprRes.isInvalid())
    953     return ExprError();
    954   E = ExprRes.get();
    955 
    956   // Diagnostics regarding non-POD argument types are
    957   // emitted along with format string checking in Sema::CheckFunctionCall().
    958   if (isValidVarArgType(E->getType()) == VAK_Undefined) {
    959     // Turn this into a trap.
    960     CXXScopeSpec SS;
    961     SourceLocation TemplateKWLoc;
    962     UnqualifiedId Name;
    963     Name.setIdentifier(PP.getIdentifierInfo("__builtin_trap"),
    964                        E->getLocStart());
    965     ExprResult TrapFn = ActOnIdExpression(TUScope, SS, TemplateKWLoc,
    966                                           Name, true, false);
    967     if (TrapFn.isInvalid())
    968       return ExprError();
    969 
    970     ExprResult Call = ActOnCallExpr(TUScope, TrapFn.get(),
    971                                     E->getLocStart(), None,
    972                                     E->getLocEnd());
    973     if (Call.isInvalid())
    974       return ExprError();
    975 
    976     ExprResult Comma = ActOnBinOp(TUScope, E->getLocStart(), tok::comma,
    977                                   Call.get(), E);
    978     if (Comma.isInvalid())
    979       return ExprError();
    980     return Comma.get();
    981   }
    982 
    983   if (!getLangOpts().CPlusPlus &&
    984       RequireCompleteType(E->getExprLoc(), E->getType(),
    985                           diag::err_call_incomplete_argument))
    986     return ExprError();
    987 
    988   return E;
    989 }
    990 
    991 /// \brief Converts an integer to complex float type.  Helper function of
    992 /// UsualArithmeticConversions()
    993 ///
    994 /// \return false if the integer expression is an integer type and is
    995 /// successfully converted to the complex type.
    996 static bool handleIntegerToComplexFloatConversion(Sema &S, ExprResult &IntExpr,
    997                                                   ExprResult &ComplexExpr,
    998                                                   QualType IntTy,
    999                                                   QualType ComplexTy,
   1000                                                   bool SkipCast) {
   1001   if (IntTy->isComplexType() || IntTy->isRealFloatingType()) return true;
   1002   if (SkipCast) return false;
   1003   if (IntTy->isIntegerType()) {
   1004     QualType fpTy = cast<ComplexType>(ComplexTy)->getElementType();
   1005     IntExpr = S.ImpCastExprToType(IntExpr.get(), fpTy, CK_IntegralToFloating);
   1006     IntExpr = S.ImpCastExprToType(IntExpr.get(), ComplexTy,
   1007                                   CK_FloatingRealToComplex);
   1008   } else {
   1009     assert(IntTy->isComplexIntegerType());
   1010     IntExpr = S.ImpCastExprToType(IntExpr.get(), ComplexTy,
   1011                                   CK_IntegralComplexToFloatingComplex);
   1012   }
   1013   return false;
   1014 }
   1015 
   1016 /// \brief Handle arithmetic conversion with complex types.  Helper function of
   1017 /// UsualArithmeticConversions()
   1018 static QualType handleComplexFloatConversion(Sema &S, ExprResult &LHS,
   1019                                              ExprResult &RHS, QualType LHSType,
   1020                                              QualType RHSType,
   1021                                              bool IsCompAssign) {
   1022   // if we have an integer operand, the result is the complex type.
   1023   if (!handleIntegerToComplexFloatConversion(S, RHS, LHS, RHSType, LHSType,
   1024                                              /*skipCast*/false))
   1025     return LHSType;
   1026   if (!handleIntegerToComplexFloatConversion(S, LHS, RHS, LHSType, RHSType,
   1027                                              /*skipCast*/IsCompAssign))
   1028     return RHSType;
   1029 
   1030   // This handles complex/complex, complex/float, or float/complex.
   1031   // When both operands are complex, the shorter operand is converted to the
   1032   // type of the longer, and that is the type of the result. This corresponds
   1033   // to what is done when combining two real floating-point operands.
   1034   // The fun begins when size promotion occur across type domains.
   1035   // From H&S 6.3.4: When one operand is complex and the other is a real
   1036   // floating-point type, the less precise type is converted, within it's
   1037   // real or complex domain, to the precision of the other type. For example,
   1038   // when combining a "long double" with a "double _Complex", the
   1039   // "double _Complex" is promoted to "long double _Complex".
   1040 
   1041   // Compute the rank of the two types, regardless of whether they are complex.
   1042   int Order = S.Context.getFloatingTypeOrder(LHSType, RHSType);
   1043 
   1044   auto *LHSComplexType = dyn_cast<ComplexType>(LHSType);
   1045   auto *RHSComplexType = dyn_cast<ComplexType>(RHSType);
   1046   QualType LHSElementType =
   1047       LHSComplexType ? LHSComplexType->getElementType() : LHSType;
   1048   QualType RHSElementType =
   1049       RHSComplexType ? RHSComplexType->getElementType() : RHSType;
   1050 
   1051   QualType ResultType = S.Context.getComplexType(LHSElementType);
   1052   if (Order < 0) {
   1053     // Promote the precision of the LHS if not an assignment.
   1054     ResultType = S.Context.getComplexType(RHSElementType);
   1055     if (!IsCompAssign) {
   1056       if (LHSComplexType)
   1057         LHS =
   1058             S.ImpCastExprToType(LHS.get(), ResultType, CK_FloatingComplexCast);
   1059       else
   1060         LHS = S.ImpCastExprToType(LHS.get(), RHSElementType, CK_FloatingCast);
   1061     }
   1062   } else if (Order > 0) {
   1063     // Promote the precision of the RHS.
   1064     if (RHSComplexType)
   1065       RHS = S.ImpCastExprToType(RHS.get(), ResultType, CK_FloatingComplexCast);
   1066     else
   1067       RHS = S.ImpCastExprToType(RHS.get(), LHSElementType, CK_FloatingCast);
   1068   }
   1069   return ResultType;
   1070 }
   1071 
   1072 /// \brief Hande arithmetic conversion from integer to float.  Helper function
   1073 /// of UsualArithmeticConversions()
   1074 static QualType handleIntToFloatConversion(Sema &S, ExprResult &FloatExpr,
   1075                                            ExprResult &IntExpr,
   1076                                            QualType FloatTy, QualType IntTy,
   1077                                            bool ConvertFloat, bool ConvertInt) {
   1078   if (IntTy->isIntegerType()) {
   1079     if (ConvertInt)
   1080       // Convert intExpr to the lhs floating point type.
   1081       IntExpr = S.ImpCastExprToType(IntExpr.get(), FloatTy,
   1082                                     CK_IntegralToFloating);
   1083     return FloatTy;
   1084   }
   1085 
   1086   // Convert both sides to the appropriate complex float.
   1087   assert(IntTy->isComplexIntegerType());
   1088   QualType result = S.Context.getComplexType(FloatTy);
   1089 
   1090   // _Complex int -> _Complex float
   1091   if (ConvertInt)
   1092     IntExpr = S.ImpCastExprToType(IntExpr.get(), result,
   1093                                   CK_IntegralComplexToFloatingComplex);
   1094 
   1095   // float -> _Complex float
   1096   if (ConvertFloat)
   1097     FloatExpr = S.ImpCastExprToType(FloatExpr.get(), result,
   1098                                     CK_FloatingRealToComplex);
   1099 
   1100   return result;
   1101 }
   1102 
   1103 /// \brief Handle arithmethic conversion with floating point types.  Helper
   1104 /// function of UsualArithmeticConversions()
   1105 static QualType handleFloatConversion(Sema &S, ExprResult &LHS,
   1106                                       ExprResult &RHS, QualType LHSType,
   1107                                       QualType RHSType, bool IsCompAssign) {
   1108   bool LHSFloat = LHSType->isRealFloatingType();
   1109   bool RHSFloat = RHSType->isRealFloatingType();
   1110 
   1111   // If we have two real floating types, convert the smaller operand
   1112   // to the bigger result.
   1113   if (LHSFloat && RHSFloat) {
   1114     int order = S.Context.getFloatingTypeOrder(LHSType, RHSType);
   1115     if (order > 0) {
   1116       RHS = S.ImpCastExprToType(RHS.get(), LHSType, CK_FloatingCast);
   1117       return LHSType;
   1118     }
   1119 
   1120     assert(order < 0 && "illegal float comparison");
   1121     if (!IsCompAssign)
   1122       LHS = S.ImpCastExprToType(LHS.get(), RHSType, CK_FloatingCast);
   1123     return RHSType;
   1124   }
   1125 
   1126   if (LHSFloat) {
   1127     // Half FP has to be promoted to float unless it is natively supported
   1128     if (LHSType->isHalfType() && !S.getLangOpts().NativeHalfType)
   1129       LHSType = S.Context.FloatTy;
   1130 
   1131     return handleIntToFloatConversion(S, LHS, RHS, LHSType, RHSType,
   1132                                       /*convertFloat=*/!IsCompAssign,
   1133                                       /*convertInt=*/ true);
   1134   }
   1135   assert(RHSFloat);
   1136   return handleIntToFloatConversion(S, RHS, LHS, RHSType, LHSType,
   1137                                     /*convertInt=*/ true,
   1138                                     /*convertFloat=*/!IsCompAssign);
   1139 }
   1140 
   1141 typedef ExprResult PerformCastFn(Sema &S, Expr *operand, QualType toType);
   1142 
   1143 namespace {
   1144 /// These helper callbacks are placed in an anonymous namespace to
   1145 /// permit their use as function template parameters.
   1146 ExprResult doIntegralCast(Sema &S, Expr *op, QualType toType) {
   1147   return S.ImpCastExprToType(op, toType, CK_IntegralCast);
   1148 }
   1149 
   1150 ExprResult doComplexIntegralCast(Sema &S, Expr *op, QualType toType) {
   1151   return S.ImpCastExprToType(op, S.Context.getComplexType(toType),
   1152                              CK_IntegralComplexCast);
   1153 }
   1154 }
   1155 
   1156 /// \brief Handle integer arithmetic conversions.  Helper function of
   1157 /// UsualArithmeticConversions()
   1158 template <PerformCastFn doLHSCast, PerformCastFn doRHSCast>
   1159 static QualType handleIntegerConversion(Sema &S, ExprResult &LHS,
   1160                                         ExprResult &RHS, QualType LHSType,
   1161                                         QualType RHSType, bool IsCompAssign) {
   1162   // The rules for this case are in C99 6.3.1.8
   1163   int order = S.Context.getIntegerTypeOrder(LHSType, RHSType);
   1164   bool LHSSigned = LHSType->hasSignedIntegerRepresentation();
   1165   bool RHSSigned = RHSType->hasSignedIntegerRepresentation();
   1166   if (LHSSigned == RHSSigned) {
   1167     // Same signedness; use the higher-ranked type
   1168     if (order >= 0) {
   1169       RHS = (*doRHSCast)(S, RHS.get(), LHSType);
   1170       return LHSType;
   1171     } else if (!IsCompAssign)
   1172       LHS = (*doLHSCast)(S, LHS.get(), RHSType);
   1173     return RHSType;
   1174   } else if (order != (LHSSigned ? 1 : -1)) {
   1175     // The unsigned type has greater than or equal rank to the
   1176     // signed type, so use the unsigned type
   1177     if (RHSSigned) {
   1178       RHS = (*doRHSCast)(S, RHS.get(), LHSType);
   1179       return LHSType;
   1180     } else if (!IsCompAssign)
   1181       LHS = (*doLHSCast)(S, LHS.get(), RHSType);
   1182     return RHSType;
   1183   } else if (S.Context.getIntWidth(LHSType) != S.Context.getIntWidth(RHSType)) {
   1184     // The two types are different widths; if we are here, that
   1185     // means the signed type is larger than the unsigned type, so
   1186     // use the signed type.
   1187     if (LHSSigned) {
   1188       RHS = (*doRHSCast)(S, RHS.get(), LHSType);
   1189       return LHSType;
   1190     } else if (!IsCompAssign)
   1191       LHS = (*doLHSCast)(S, LHS.get(), RHSType);
   1192     return RHSType;
   1193   } else {
   1194     // The signed type is higher-ranked than the unsigned type,
   1195     // but isn't actually any bigger (like unsigned int and long
   1196     // on most 32-bit systems).  Use the unsigned type corresponding
   1197     // to the signed type.
   1198     QualType result =
   1199       S.Context.getCorrespondingUnsignedType(LHSSigned ? LHSType : RHSType);
   1200     RHS = (*doRHSCast)(S, RHS.get(), result);
   1201     if (!IsCompAssign)
   1202       LHS = (*doLHSCast)(S, LHS.get(), result);
   1203     return result;
   1204   }
   1205 }
   1206 
   1207 /// \brief Handle conversions with GCC complex int extension.  Helper function
   1208 /// of UsualArithmeticConversions()
   1209 static QualType handleComplexIntConversion(Sema &S, ExprResult &LHS,
   1210                                            ExprResult &RHS, QualType LHSType,
   1211                                            QualType RHSType,
   1212                                            bool IsCompAssign) {
   1213   const ComplexType *LHSComplexInt = LHSType->getAsComplexIntegerType();
   1214   const ComplexType *RHSComplexInt = RHSType->getAsComplexIntegerType();
   1215 
   1216   if (LHSComplexInt && RHSComplexInt) {
   1217     QualType LHSEltType = LHSComplexInt->getElementType();
   1218     QualType RHSEltType = RHSComplexInt->getElementType();
   1219     QualType ScalarType =
   1220       handleIntegerConversion<doComplexIntegralCast, doComplexIntegralCast>
   1221         (S, LHS, RHS, LHSEltType, RHSEltType, IsCompAssign);
   1222 
   1223     return S.Context.getComplexType(ScalarType);
   1224   }
   1225 
   1226   if (LHSComplexInt) {
   1227     QualType LHSEltType = LHSComplexInt->getElementType();
   1228     QualType ScalarType =
   1229       handleIntegerConversion<doComplexIntegralCast, doIntegralCast>
   1230         (S, LHS, RHS, LHSEltType, RHSType, IsCompAssign);
   1231     QualType ComplexType = S.Context.getComplexType(ScalarType);
   1232     RHS = S.ImpCastExprToType(RHS.get(), ComplexType,
   1233                               CK_IntegralRealToComplex);
   1234 
   1235     return ComplexType;
   1236   }
   1237 
   1238   assert(RHSComplexInt);
   1239 
   1240   QualType RHSEltType = RHSComplexInt->getElementType();
   1241   QualType ScalarType =
   1242     handleIntegerConversion<doIntegralCast, doComplexIntegralCast>
   1243       (S, LHS, RHS, LHSType, RHSEltType, IsCompAssign);
   1244   QualType ComplexType = S.Context.getComplexType(ScalarType);
   1245 
   1246   if (!IsCompAssign)
   1247     LHS = S.ImpCastExprToType(LHS.get(), ComplexType,
   1248                               CK_IntegralRealToComplex);
   1249   return ComplexType;
   1250 }
   1251 
   1252 /// UsualArithmeticConversions - Performs various conversions that are common to
   1253 /// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
   1254 /// routine returns the first non-arithmetic type found. The client is
   1255 /// responsible for emitting appropriate error diagnostics.
   1256 QualType Sema::UsualArithmeticConversions(ExprResult &LHS, ExprResult &RHS,
   1257                                           bool IsCompAssign) {
   1258   if (!IsCompAssign) {
   1259     LHS = UsualUnaryConversions(LHS.get());
   1260     if (LHS.isInvalid())
   1261       return QualType();
   1262   }
   1263 
   1264   RHS = UsualUnaryConversions(RHS.get());
   1265   if (RHS.isInvalid())
   1266     return QualType();
   1267 
   1268   // For conversion purposes, we ignore any qualifiers.
   1269   // For example, "const float" and "float" are equivalent.
   1270   QualType LHSType =
   1271     Context.getCanonicalType(LHS.get()->getType()).getUnqualifiedType();
   1272   QualType RHSType =
   1273     Context.getCanonicalType(RHS.get()->getType()).getUnqualifiedType();
   1274 
   1275   // For conversion purposes, we ignore any atomic qualifier on the LHS.
   1276   if (const AtomicType *AtomicLHS = LHSType->getAs<AtomicType>())
   1277     LHSType = AtomicLHS->getValueType();
   1278 
   1279   // If both types are identical, no conversion is needed.
   1280   if (LHSType == RHSType)
   1281     return LHSType;
   1282 
   1283   // If either side is a non-arithmetic type (e.g. a pointer), we are done.
   1284   // The caller can deal with this (e.g. pointer + int).
   1285   if (!LHSType->isArithmeticType() || !RHSType->isArithmeticType())
   1286     return QualType();
   1287 
   1288   // Apply unary and bitfield promotions to the LHS's type.
   1289   QualType LHSUnpromotedType = LHSType;
   1290   if (LHSType->isPromotableIntegerType())
   1291     LHSType = Context.getPromotedIntegerType(LHSType);
   1292   QualType LHSBitfieldPromoteTy = Context.isPromotableBitField(LHS.get());
   1293   if (!LHSBitfieldPromoteTy.isNull())
   1294     LHSType = LHSBitfieldPromoteTy;
   1295   if (LHSType != LHSUnpromotedType && !IsCompAssign)
   1296     LHS = ImpCastExprToType(LHS.get(), LHSType, CK_IntegralCast);
   1297 
   1298   // If both types are identical, no conversion is needed.
   1299   if (LHSType == RHSType)
   1300     return LHSType;
   1301 
   1302   // At this point, we have two different arithmetic types.
   1303 
   1304   // Handle complex types first (C99 6.3.1.8p1).
   1305   if (LHSType->isComplexType() || RHSType->isComplexType())
   1306     return handleComplexFloatConversion(*this, LHS, RHS, LHSType, RHSType,
   1307                                         IsCompAssign);
   1308 
   1309   // Now handle "real" floating types (i.e. float, double, long double).
   1310   if (LHSType->isRealFloatingType() || RHSType->isRealFloatingType())
   1311     return handleFloatConversion(*this, LHS, RHS, LHSType, RHSType,
   1312                                  IsCompAssign);
   1313 
   1314   // Handle GCC complex int extension.
   1315   if (LHSType->isComplexIntegerType() || RHSType->isComplexIntegerType())
   1316     return handleComplexIntConversion(*this, LHS, RHS, LHSType, RHSType,
   1317                                       IsCompAssign);
   1318 
   1319   // Finally, we have two differing integer types.
   1320   return handleIntegerConversion<doIntegralCast, doIntegralCast>
   1321            (*this, LHS, RHS, LHSType, RHSType, IsCompAssign);
   1322 }
   1323 
   1324 
   1325 //===----------------------------------------------------------------------===//
   1326 //  Semantic Analysis for various Expression Types
   1327 //===----------------------------------------------------------------------===//
   1328 
   1329 
   1330 ExprResult
   1331 Sema::ActOnGenericSelectionExpr(SourceLocation KeyLoc,
   1332                                 SourceLocation DefaultLoc,
   1333                                 SourceLocation RParenLoc,
   1334                                 Expr *ControllingExpr,
   1335                                 ArrayRef<ParsedType> ArgTypes,
   1336                                 ArrayRef<Expr *> ArgExprs) {
   1337   unsigned NumAssocs = ArgTypes.size();
   1338   assert(NumAssocs == ArgExprs.size());
   1339 
   1340   TypeSourceInfo **Types = new TypeSourceInfo*[NumAssocs];
   1341   for (unsigned i = 0; i < NumAssocs; ++i) {
   1342     if (ArgTypes[i])
   1343       (void) GetTypeFromParser(ArgTypes[i], &Types[i]);
   1344     else
   1345       Types[i] = nullptr;
   1346   }
   1347 
   1348   ExprResult ER = CreateGenericSelectionExpr(KeyLoc, DefaultLoc, RParenLoc,
   1349                                              ControllingExpr,
   1350                                              llvm::makeArrayRef(Types, NumAssocs),
   1351                                              ArgExprs);
   1352   delete [] Types;
   1353   return ER;
   1354 }
   1355 
   1356 ExprResult
   1357 Sema::CreateGenericSelectionExpr(SourceLocation KeyLoc,
   1358                                  SourceLocation DefaultLoc,
   1359                                  SourceLocation RParenLoc,
   1360                                  Expr *ControllingExpr,
   1361                                  ArrayRef<TypeSourceInfo *> Types,
   1362                                  ArrayRef<Expr *> Exprs) {
   1363   unsigned NumAssocs = Types.size();
   1364   assert(NumAssocs == Exprs.size());
   1365 
   1366   // Decay and strip qualifiers for the controlling expression type, and handle
   1367   // placeholder type replacement. See committee discussion from WG14 DR423.
   1368   ExprResult R = DefaultFunctionArrayLvalueConversion(ControllingExpr);
   1369   if (R.isInvalid())
   1370     return ExprError();
   1371   ControllingExpr = R.get();
   1372 
   1373   // The controlling expression is an unevaluated operand, so side effects are
   1374   // likely unintended.
   1375   if (ActiveTemplateInstantiations.empty() &&
   1376       ControllingExpr->HasSideEffects(Context, false))
   1377     Diag(ControllingExpr->getExprLoc(),
   1378          diag::warn_side_effects_unevaluated_context);
   1379 
   1380   bool TypeErrorFound = false,
   1381        IsResultDependent = ControllingExpr->isTypeDependent(),
   1382        ContainsUnexpandedParameterPack
   1383          = ControllingExpr->containsUnexpandedParameterPack();
   1384 
   1385   for (unsigned i = 0; i < NumAssocs; ++i) {
   1386     if (Exprs[i]->containsUnexpandedParameterPack())
   1387       ContainsUnexpandedParameterPack = true;
   1388 
   1389     if (Types[i]) {
   1390       if (Types[i]->getType()->containsUnexpandedParameterPack())
   1391         ContainsUnexpandedParameterPack = true;
   1392 
   1393       if (Types[i]->getType()->isDependentType()) {
   1394         IsResultDependent = true;
   1395       } else {
   1396         // C11 6.5.1.1p2 "The type name in a generic association shall specify a
   1397         // complete object type other than a variably modified type."
   1398         unsigned D = 0;
   1399         if (Types[i]->getType()->isIncompleteType())
   1400           D = diag::err_assoc_type_incomplete;
   1401         else if (!Types[i]->getType()->isObjectType())
   1402           D = diag::err_assoc_type_nonobject;
   1403         else if (Types[i]->getType()->isVariablyModifiedType())
   1404           D = diag::err_assoc_type_variably_modified;
   1405 
   1406         if (D != 0) {
   1407           Diag(Types[i]->getTypeLoc().getBeginLoc(), D)
   1408             << Types[i]->getTypeLoc().getSourceRange()
   1409             << Types[i]->getType();
   1410           TypeErrorFound = true;
   1411         }
   1412 
   1413         // C11 6.5.1.1p2 "No two generic associations in the same generic
   1414         // selection shall specify compatible types."
   1415         for (unsigned j = i+1; j < NumAssocs; ++j)
   1416           if (Types[j] && !Types[j]->getType()->isDependentType() &&
   1417               Context.typesAreCompatible(Types[i]->getType(),
   1418                                          Types[j]->getType())) {
   1419             Diag(Types[j]->getTypeLoc().getBeginLoc(),
   1420                  diag::err_assoc_compatible_types)
   1421               << Types[j]->getTypeLoc().getSourceRange()
   1422               << Types[j]->getType()
   1423               << Types[i]->getType();
   1424             Diag(Types[i]->getTypeLoc().getBeginLoc(),
   1425                  diag::note_compat_assoc)
   1426               << Types[i]->getTypeLoc().getSourceRange()
   1427               << Types[i]->getType();
   1428             TypeErrorFound = true;
   1429           }
   1430       }
   1431     }
   1432   }
   1433   if (TypeErrorFound)
   1434     return ExprError();
   1435 
   1436   // If we determined that the generic selection is result-dependent, don't
   1437   // try to compute the result expression.
   1438   if (IsResultDependent)
   1439     return new (Context) GenericSelectionExpr(
   1440         Context, KeyLoc, ControllingExpr, Types, Exprs, DefaultLoc, RParenLoc,
   1441         ContainsUnexpandedParameterPack);
   1442 
   1443   SmallVector<unsigned, 1> CompatIndices;
   1444   unsigned DefaultIndex = -1U;
   1445   for (unsigned i = 0; i < NumAssocs; ++i) {
   1446     if (!Types[i])
   1447       DefaultIndex = i;
   1448     else if (Context.typesAreCompatible(ControllingExpr->getType(),
   1449                                         Types[i]->getType()))
   1450       CompatIndices.push_back(i);
   1451   }
   1452 
   1453   // C11 6.5.1.1p2 "The controlling expression of a generic selection shall have
   1454   // type compatible with at most one of the types named in its generic
   1455   // association list."
   1456   if (CompatIndices.size() > 1) {
   1457     // We strip parens here because the controlling expression is typically
   1458     // parenthesized in macro definitions.
   1459     ControllingExpr = ControllingExpr->IgnoreParens();
   1460     Diag(ControllingExpr->getLocStart(), diag::err_generic_sel_multi_match)
   1461       << ControllingExpr->getSourceRange() << ControllingExpr->getType()
   1462       << (unsigned) CompatIndices.size();
   1463     for (unsigned I : CompatIndices) {
   1464       Diag(Types[I]->getTypeLoc().getBeginLoc(),
   1465            diag::note_compat_assoc)
   1466         << Types[I]->getTypeLoc().getSourceRange()
   1467         << Types[I]->getType();
   1468     }
   1469     return ExprError();
   1470   }
   1471 
   1472   // C11 6.5.1.1p2 "If a generic selection has no default generic association,
   1473   // its controlling expression shall have type compatible with exactly one of
   1474   // the types named in its generic association list."
   1475   if (DefaultIndex == -1U && CompatIndices.size() == 0) {
   1476     // We strip parens here because the controlling expression is typically
   1477     // parenthesized in macro definitions.
   1478     ControllingExpr = ControllingExpr->IgnoreParens();
   1479     Diag(ControllingExpr->getLocStart(), diag::err_generic_sel_no_match)
   1480       << ControllingExpr->getSourceRange() << ControllingExpr->getType();
   1481     return ExprError();
   1482   }
   1483 
   1484   // C11 6.5.1.1p3 "If a generic selection has a generic association with a
   1485   // type name that is compatible with the type of the controlling expression,
   1486   // then the result expression of the generic selection is the expression
   1487   // in that generic association. Otherwise, the result expression of the
   1488   // generic selection is the expression in the default generic association."
   1489   unsigned ResultIndex =
   1490     CompatIndices.size() ? CompatIndices[0] : DefaultIndex;
   1491 
   1492   return new (Context) GenericSelectionExpr(
   1493       Context, KeyLoc, ControllingExpr, Types, Exprs, DefaultLoc, RParenLoc,
   1494       ContainsUnexpandedParameterPack, ResultIndex);
   1495 }
   1496 
   1497 /// getUDSuffixLoc - Create a SourceLocation for a ud-suffix, given the
   1498 /// location of the token and the offset of the ud-suffix within it.
   1499 static SourceLocation getUDSuffixLoc(Sema &S, SourceLocation TokLoc,
   1500                                      unsigned Offset) {
   1501   return Lexer::AdvanceToTokenCharacter(TokLoc, Offset, S.getSourceManager(),
   1502                                         S.getLangOpts());
   1503 }
   1504 
   1505 /// BuildCookedLiteralOperatorCall - A user-defined literal was found. Look up
   1506 /// the corresponding cooked (non-raw) literal operator, and build a call to it.
   1507 static ExprResult BuildCookedLiteralOperatorCall(Sema &S, Scope *Scope,
   1508                                                  IdentifierInfo *UDSuffix,
   1509                                                  SourceLocation UDSuffixLoc,
   1510                                                  ArrayRef<Expr*> Args,
   1511                                                  SourceLocation LitEndLoc) {
   1512   assert(Args.size() <= 2 && "too many arguments for literal operator");
   1513 
   1514   QualType ArgTy[2];
   1515   for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) {
   1516     ArgTy[ArgIdx] = Args[ArgIdx]->getType();
   1517     if (ArgTy[ArgIdx]->isArrayType())
   1518       ArgTy[ArgIdx] = S.Context.getArrayDecayedType(ArgTy[ArgIdx]);
   1519   }
   1520 
   1521   DeclarationName OpName =
   1522     S.Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
   1523   DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
   1524   OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
   1525 
   1526   LookupResult R(S, OpName, UDSuffixLoc, Sema::LookupOrdinaryName);
   1527   if (S.LookupLiteralOperator(Scope, R, llvm::makeArrayRef(ArgTy, Args.size()),
   1528                               /*AllowRaw*/false, /*AllowTemplate*/false,
   1529                               /*AllowStringTemplate*/false) == Sema::LOLR_Error)
   1530     return ExprError();
   1531 
   1532   return S.BuildLiteralOperatorCall(R, OpNameInfo, Args, LitEndLoc);
   1533 }
   1534 
   1535 /// ActOnStringLiteral - The specified tokens were lexed as pasted string
   1536 /// fragments (e.g. "foo" "bar" L"baz").  The result string has to handle string
   1537 /// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
   1538 /// multiple tokens.  However, the common case is that StringToks points to one
   1539 /// string.
   1540 ///
   1541 ExprResult
   1542 Sema::ActOnStringLiteral(ArrayRef<Token> StringToks, Scope *UDLScope) {
   1543   assert(!StringToks.empty() && "Must have at least one string!");
   1544 
   1545   StringLiteralParser Literal(StringToks, PP);
   1546   if (Literal.hadError)
   1547     return ExprError();
   1548 
   1549   SmallVector<SourceLocation, 4> StringTokLocs;
   1550   for (const Token &Tok : StringToks)
   1551     StringTokLocs.push_back(Tok.getLocation());
   1552 
   1553   QualType CharTy = Context.CharTy;
   1554   StringLiteral::StringKind Kind = StringLiteral::Ascii;
   1555   if (Literal.isWide()) {
   1556     CharTy = Context.getWideCharType();
   1557     Kind = StringLiteral::Wide;
   1558   } else if (Literal.isUTF8()) {
   1559     Kind = StringLiteral::UTF8;
   1560   } else if (Literal.isUTF16()) {
   1561     CharTy = Context.Char16Ty;
   1562     Kind = StringLiteral::UTF16;
   1563   } else if (Literal.isUTF32()) {
   1564     CharTy = Context.Char32Ty;
   1565     Kind = StringLiteral::UTF32;
   1566   } else if (Literal.isPascal()) {
   1567     CharTy = Context.UnsignedCharTy;
   1568   }
   1569 
   1570   QualType CharTyConst = CharTy;
   1571   // A C++ string literal has a const-qualified element type (C++ 2.13.4p1).
   1572   if (getLangOpts().CPlusPlus || getLangOpts().ConstStrings)
   1573     CharTyConst.addConst();
   1574 
   1575   // Get an array type for the string, according to C99 6.4.5.  This includes
   1576   // the nul terminator character as well as the string length for pascal
   1577   // strings.
   1578   QualType StrTy = Context.getConstantArrayType(CharTyConst,
   1579                                  llvm::APInt(32, Literal.GetNumStringChars()+1),
   1580                                  ArrayType::Normal, 0);
   1581 
   1582   // OpenCL v1.1 s6.5.3: a string literal is in the constant address space.
   1583   if (getLangOpts().OpenCL) {
   1584     StrTy = Context.getAddrSpaceQualType(StrTy, LangAS::opencl_constant);
   1585   }
   1586 
   1587   // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
   1588   StringLiteral *Lit = StringLiteral::Create(Context, Literal.GetString(),
   1589                                              Kind, Literal.Pascal, StrTy,
   1590                                              &StringTokLocs[0],
   1591                                              StringTokLocs.size());
   1592   if (Literal.getUDSuffix().empty())
   1593     return Lit;
   1594 
   1595   // We're building a user-defined literal.
   1596   IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
   1597   SourceLocation UDSuffixLoc =
   1598     getUDSuffixLoc(*this, StringTokLocs[Literal.getUDSuffixToken()],
   1599                    Literal.getUDSuffixOffset());
   1600 
   1601   // Make sure we're allowed user-defined literals here.
   1602   if (!UDLScope)
   1603     return ExprError(Diag(UDSuffixLoc, diag::err_invalid_string_udl));
   1604 
   1605   // C++11 [lex.ext]p5: The literal L is treated as a call of the form
   1606   //   operator "" X (str, len)
   1607   QualType SizeType = Context.getSizeType();
   1608 
   1609   DeclarationName OpName =
   1610     Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
   1611   DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
   1612   OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
   1613 
   1614   QualType ArgTy[] = {
   1615     Context.getArrayDecayedType(StrTy), SizeType
   1616   };
   1617 
   1618   LookupResult R(*this, OpName, UDSuffixLoc, LookupOrdinaryName);
   1619   switch (LookupLiteralOperator(UDLScope, R, ArgTy,
   1620                                 /*AllowRaw*/false, /*AllowTemplate*/false,
   1621                                 /*AllowStringTemplate*/true)) {
   1622 
   1623   case LOLR_Cooked: {
   1624     llvm::APInt Len(Context.getIntWidth(SizeType), Literal.GetNumStringChars());
   1625     IntegerLiteral *LenArg = IntegerLiteral::Create(Context, Len, SizeType,
   1626                                                     StringTokLocs[0]);
   1627     Expr *Args[] = { Lit, LenArg };
   1628 
   1629     return BuildLiteralOperatorCall(R, OpNameInfo, Args, StringTokLocs.back());
   1630   }
   1631 
   1632   case LOLR_StringTemplate: {
   1633     TemplateArgumentListInfo ExplicitArgs;
   1634 
   1635     unsigned CharBits = Context.getIntWidth(CharTy);
   1636     bool CharIsUnsigned = CharTy->isUnsignedIntegerType();
   1637     llvm::APSInt Value(CharBits, CharIsUnsigned);
   1638 
   1639     TemplateArgument TypeArg(CharTy);
   1640     TemplateArgumentLocInfo TypeArgInfo(Context.getTrivialTypeSourceInfo(CharTy));
   1641     ExplicitArgs.addArgument(TemplateArgumentLoc(TypeArg, TypeArgInfo));
   1642 
   1643     for (unsigned I = 0, N = Lit->getLength(); I != N; ++I) {
   1644       Value = Lit->getCodeUnit(I);
   1645       TemplateArgument Arg(Context, Value, CharTy);
   1646       TemplateArgumentLocInfo ArgInfo;
   1647       ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo));
   1648     }
   1649     return BuildLiteralOperatorCall(R, OpNameInfo, None, StringTokLocs.back(),
   1650                                     &ExplicitArgs);
   1651   }
   1652   case LOLR_Raw:
   1653   case LOLR_Template:
   1654     llvm_unreachable("unexpected literal operator lookup result");
   1655   case LOLR_Error:
   1656     return ExprError();
   1657   }
   1658   llvm_unreachable("unexpected literal operator lookup result");
   1659 }
   1660 
   1661 ExprResult
   1662 Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
   1663                        SourceLocation Loc,
   1664                        const CXXScopeSpec *SS) {
   1665   DeclarationNameInfo NameInfo(D->getDeclName(), Loc);
   1666   return BuildDeclRefExpr(D, Ty, VK, NameInfo, SS);
   1667 }
   1668 
   1669 /// BuildDeclRefExpr - Build an expression that references a
   1670 /// declaration that does not require a closure capture.
   1671 ExprResult
   1672 Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
   1673                        const DeclarationNameInfo &NameInfo,
   1674                        const CXXScopeSpec *SS, NamedDecl *FoundD,
   1675                        const TemplateArgumentListInfo *TemplateArgs) {
   1676   if (getLangOpts().CUDA)
   1677     if (const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext))
   1678       if (const FunctionDecl *Callee = dyn_cast<FunctionDecl>(D)) {
   1679         if (CheckCUDATarget(Caller, Callee)) {
   1680           Diag(NameInfo.getLoc(), diag::err_ref_bad_target)
   1681             << IdentifyCUDATarget(Callee) << D->getIdentifier()
   1682             << IdentifyCUDATarget(Caller);
   1683           Diag(D->getLocation(), diag::note_previous_decl)
   1684             << D->getIdentifier();
   1685           return ExprError();
   1686         }
   1687       }
   1688 
   1689   bool RefersToCapturedVariable =
   1690       isa<VarDecl>(D) &&
   1691       NeedToCaptureVariable(cast<VarDecl>(D), NameInfo.getLoc());
   1692 
   1693   DeclRefExpr *E;
   1694   if (isa<VarTemplateSpecializationDecl>(D)) {
   1695     VarTemplateSpecializationDecl *VarSpec =
   1696         cast<VarTemplateSpecializationDecl>(D);
   1697 
   1698     E = DeclRefExpr::Create(Context, SS ? SS->getWithLocInContext(Context)
   1699                                         : NestedNameSpecifierLoc(),
   1700                             VarSpec->getTemplateKeywordLoc(), D,
   1701                             RefersToCapturedVariable, NameInfo.getLoc(), Ty, VK,
   1702                             FoundD, TemplateArgs);
   1703   } else {
   1704     assert(!TemplateArgs && "No template arguments for non-variable"
   1705                             " template specialization references");
   1706     E = DeclRefExpr::Create(Context, SS ? SS->getWithLocInContext(Context)
   1707                                         : NestedNameSpecifierLoc(),
   1708                             SourceLocation(), D, RefersToCapturedVariable,
   1709                             NameInfo, Ty, VK, FoundD);
   1710   }
   1711 
   1712   MarkDeclRefReferenced(E);
   1713 
   1714   if (getLangOpts().ObjCWeak && isa<VarDecl>(D) &&
   1715       Ty.getObjCLifetime() == Qualifiers::OCL_Weak &&
   1716       !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, E->getLocStart()))
   1717       recordUseOfEvaluatedWeak(E);
   1718 
   1719   // Just in case we're building an illegal pointer-to-member.
   1720   FieldDecl *FD = dyn_cast<FieldDecl>(D);
   1721   if (FD && FD->isBitField())
   1722     E->setObjectKind(OK_BitField);
   1723 
   1724   return E;
   1725 }
   1726 
   1727 /// Decomposes the given name into a DeclarationNameInfo, its location, and
   1728 /// possibly a list of template arguments.
   1729 ///
   1730 /// If this produces template arguments, it is permitted to call
   1731 /// DecomposeTemplateName.
   1732 ///
   1733 /// This actually loses a lot of source location information for
   1734 /// non-standard name kinds; we should consider preserving that in
   1735 /// some way.
   1736 void
   1737 Sema::DecomposeUnqualifiedId(const UnqualifiedId &Id,
   1738                              TemplateArgumentListInfo &Buffer,
   1739                              DeclarationNameInfo &NameInfo,
   1740                              const TemplateArgumentListInfo *&TemplateArgs) {
   1741   if (Id.getKind() == UnqualifiedId::IK_TemplateId) {
   1742     Buffer.setLAngleLoc(Id.TemplateId->LAngleLoc);
   1743     Buffer.setRAngleLoc(Id.TemplateId->RAngleLoc);
   1744 
   1745     ASTTemplateArgsPtr TemplateArgsPtr(Id.TemplateId->getTemplateArgs(),
   1746                                        Id.TemplateId->NumArgs);
   1747     translateTemplateArguments(TemplateArgsPtr, Buffer);
   1748 
   1749     TemplateName TName = Id.TemplateId->Template.get();
   1750     SourceLocation TNameLoc = Id.TemplateId->TemplateNameLoc;
   1751     NameInfo = Context.getNameForTemplate(TName, TNameLoc);
   1752     TemplateArgs = &Buffer;
   1753   } else {
   1754     NameInfo = GetNameFromUnqualifiedId(Id);
   1755     TemplateArgs = nullptr;
   1756   }
   1757 }
   1758 
   1759 static void emitEmptyLookupTypoDiagnostic(
   1760     const TypoCorrection &TC, Sema &SemaRef, const CXXScopeSpec &SS,
   1761     DeclarationName Typo, SourceLocation TypoLoc, ArrayRef<Expr *> Args,
   1762     unsigned DiagnosticID, unsigned DiagnosticSuggestID) {
   1763   DeclContext *Ctx =
   1764       SS.isEmpty() ? nullptr : SemaRef.computeDeclContext(SS, false);
   1765   if (!TC) {
   1766     // Emit a special diagnostic for failed member lookups.
   1767     // FIXME: computing the declaration context might fail here (?)
   1768     if (Ctx)
   1769       SemaRef.Diag(TypoLoc, diag::err_no_member) << Typo << Ctx
   1770                                                  << SS.getRange();
   1771     else
   1772       SemaRef.Diag(TypoLoc, DiagnosticID) << Typo;
   1773     return;
   1774   }
   1775 
   1776   std::string CorrectedStr = TC.getAsString(SemaRef.getLangOpts());
   1777   bool DroppedSpecifier =
   1778       TC.WillReplaceSpecifier() && Typo.getAsString() == CorrectedStr;
   1779   unsigned NoteID =
   1780       (TC.getCorrectionDecl() && isa<ImplicitParamDecl>(TC.getCorrectionDecl()))
   1781           ? diag::note_implicit_param_decl
   1782           : diag::note_previous_decl;
   1783   if (!Ctx)
   1784     SemaRef.diagnoseTypo(TC, SemaRef.PDiag(DiagnosticSuggestID) << Typo,
   1785                          SemaRef.PDiag(NoteID));
   1786   else
   1787     SemaRef.diagnoseTypo(TC, SemaRef.PDiag(diag::err_no_member_suggest)
   1788                                  << Typo << Ctx << DroppedSpecifier
   1789                                  << SS.getRange(),
   1790                          SemaRef.PDiag(NoteID));
   1791 }
   1792 
   1793 /// Diagnose an empty lookup.
   1794 ///
   1795 /// \return false if new lookup candidates were found
   1796 bool
   1797 Sema::DiagnoseEmptyLookup(Scope *S, CXXScopeSpec &SS, LookupResult &R,
   1798                           std::unique_ptr<CorrectionCandidateCallback> CCC,
   1799                           TemplateArgumentListInfo *ExplicitTemplateArgs,
   1800                           ArrayRef<Expr *> Args, TypoExpr **Out) {
   1801   DeclarationName Name = R.getLookupName();
   1802 
   1803   unsigned diagnostic = diag::err_undeclared_var_use;
   1804   unsigned diagnostic_suggest = diag::err_undeclared_var_use_suggest;
   1805   if (Name.getNameKind() == DeclarationName::CXXOperatorName ||
   1806       Name.getNameKind() == DeclarationName::CXXLiteralOperatorName ||
   1807       Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
   1808     diagnostic = diag::err_undeclared_use;
   1809     diagnostic_suggest = diag::err_undeclared_use_suggest;
   1810   }
   1811 
   1812   // If the original lookup was an unqualified lookup, fake an
   1813   // unqualified lookup.  This is useful when (for example) the
   1814   // original lookup would not have found something because it was a
   1815   // dependent name.
   1816   DeclContext *DC = SS.isEmpty() ? CurContext : nullptr;
   1817   while (DC) {
   1818     if (isa<CXXRecordDecl>(DC)) {
   1819       LookupQualifiedName(R, DC);
   1820 
   1821       if (!R.empty()) {
   1822         // Don't give errors about ambiguities in this lookup.
   1823         R.suppressDiagnostics();
   1824 
   1825         // During a default argument instantiation the CurContext points
   1826         // to a CXXMethodDecl; but we can't apply a this-> fixit inside a
   1827         // function parameter list, hence add an explicit check.
   1828         bool isDefaultArgument = !ActiveTemplateInstantiations.empty() &&
   1829                               ActiveTemplateInstantiations.back().Kind ==
   1830             ActiveTemplateInstantiation::DefaultFunctionArgumentInstantiation;
   1831         CXXMethodDecl *CurMethod = dyn_cast<CXXMethodDecl>(CurContext);
   1832         bool isInstance = CurMethod &&
   1833                           CurMethod->isInstance() &&
   1834                           DC == CurMethod->getParent() && !isDefaultArgument;
   1835 
   1836         // Give a code modification hint to insert 'this->'.
   1837         // TODO: fixit for inserting 'Base<T>::' in the other cases.
   1838         // Actually quite difficult!
   1839         if (getLangOpts().MSVCCompat)
   1840           diagnostic = diag::ext_found_via_dependent_bases_lookup;
   1841         if (isInstance) {
   1842           Diag(R.getNameLoc(), diagnostic) << Name
   1843             << FixItHint::CreateInsertion(R.getNameLoc(), "this->");
   1844           CheckCXXThisCapture(R.getNameLoc());
   1845         } else {
   1846           Diag(R.getNameLoc(), diagnostic) << Name;
   1847         }
   1848 
   1849         // Do we really want to note all of these?
   1850         for (NamedDecl *D : R)
   1851           Diag(D->getLocation(), diag::note_dependent_var_use);
   1852 
   1853         // Return true if we are inside a default argument instantiation
   1854         // and the found name refers to an instance member function, otherwise
   1855         // the function calling DiagnoseEmptyLookup will try to create an
   1856         // implicit member call and this is wrong for default argument.
   1857         if (isDefaultArgument && ((*R.begin())->isCXXInstanceMember())) {
   1858           Diag(R.getNameLoc(), diag::err_member_call_without_object);
   1859           return true;
   1860         }
   1861 
   1862         // Tell the callee to try to recover.
   1863         return false;
   1864       }
   1865 
   1866       R.clear();
   1867     }
   1868 
   1869     // In Microsoft mode, if we are performing lookup from within a friend
   1870     // function definition declared at class scope then we must set
   1871     // DC to the lexical parent to be able to search into the parent
   1872     // class.
   1873     if (getLangOpts().MSVCCompat && isa<FunctionDecl>(DC) &&
   1874         cast<FunctionDecl>(DC)->getFriendObjectKind() &&
   1875         DC->getLexicalParent()->isRecord())
   1876       DC = DC->getLexicalParent();
   1877     else
   1878       DC = DC->getParent();
   1879   }
   1880 
   1881   // We didn't find anything, so try to correct for a typo.
   1882   TypoCorrection Corrected;
   1883   if (S && Out) {
   1884     SourceLocation TypoLoc = R.getNameLoc();
   1885     assert(!ExplicitTemplateArgs &&
   1886            "Diagnosing an empty lookup with explicit template args!");
   1887     *Out = CorrectTypoDelayed(
   1888         R.getLookupNameInfo(), R.getLookupKind(), S, &SS, std::move(CCC),
   1889         [=](const TypoCorrection &TC) {
   1890           emitEmptyLookupTypoDiagnostic(TC, *this, SS, Name, TypoLoc, Args,
   1891                                         diagnostic, diagnostic_suggest);
   1892         },
   1893         nullptr, CTK_ErrorRecovery);
   1894     if (*Out)
   1895       return true;
   1896   } else if (S && (Corrected =
   1897                        CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S,
   1898                                    &SS, std::move(CCC), CTK_ErrorRecovery))) {
   1899     std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
   1900     bool DroppedSpecifier =
   1901         Corrected.WillReplaceSpecifier() && Name.getAsString() == CorrectedStr;
   1902     R.setLookupName(Corrected.getCorrection());
   1903 
   1904     bool AcceptableWithRecovery = false;
   1905     bool AcceptableWithoutRecovery = false;
   1906     NamedDecl *ND = Corrected.getCorrectionDecl();
   1907     if (ND) {
   1908       if (Corrected.isOverloaded()) {
   1909         OverloadCandidateSet OCS(R.getNameLoc(),
   1910                                  OverloadCandidateSet::CSK_Normal);
   1911         OverloadCandidateSet::iterator Best;
   1912         for (NamedDecl *CD : Corrected) {
   1913           if (FunctionTemplateDecl *FTD =
   1914                    dyn_cast<FunctionTemplateDecl>(CD))
   1915             AddTemplateOverloadCandidate(
   1916                 FTD, DeclAccessPair::make(FTD, AS_none), ExplicitTemplateArgs,
   1917                 Args, OCS);
   1918           else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(CD))
   1919             if (!ExplicitTemplateArgs || ExplicitTemplateArgs->size() == 0)
   1920               AddOverloadCandidate(FD, DeclAccessPair::make(FD, AS_none),
   1921                                    Args, OCS);
   1922         }
   1923         switch (OCS.BestViableFunction(*this, R.getNameLoc(), Best)) {
   1924         case OR_Success:
   1925           ND = Best->Function;
   1926           Corrected.setCorrectionDecl(ND);
   1927           break;
   1928         default:
   1929           // FIXME: Arbitrarily pick the first declaration for the note.
   1930           Corrected.setCorrectionDecl(ND);
   1931           break;
   1932         }
   1933       }
   1934       R.addDecl(ND);
   1935       if (getLangOpts().CPlusPlus && ND->isCXXClassMember()) {
   1936         CXXRecordDecl *Record = nullptr;
   1937         if (Corrected.getCorrectionSpecifier()) {
   1938           const Type *Ty = Corrected.getCorrectionSpecifier()->getAsType();
   1939           Record = Ty->getAsCXXRecordDecl();
   1940         }
   1941         if (!Record)
   1942           Record = cast<CXXRecordDecl>(
   1943               ND->getDeclContext()->getRedeclContext());
   1944         R.setNamingClass(Record);
   1945       }
   1946 
   1947       AcceptableWithRecovery =
   1948           isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND);
   1949       // FIXME: If we ended up with a typo for a type name or
   1950       // Objective-C class name, we're in trouble because the parser
   1951       // is in the wrong place to recover. Suggest the typo
   1952       // correction, but don't make it a fix-it since we're not going
   1953       // to recover well anyway.
   1954       AcceptableWithoutRecovery =
   1955           isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND);
   1956     } else {
   1957       // FIXME: We found a keyword. Suggest it, but don't provide a fix-it
   1958       // because we aren't able to recover.
   1959       AcceptableWithoutRecovery = true;
   1960     }
   1961 
   1962     if (AcceptableWithRecovery || AcceptableWithoutRecovery) {
   1963       unsigned NoteID = (Corrected.getCorrectionDecl() &&
   1964                          isa<ImplicitParamDecl>(Corrected.getCorrectionDecl()))
   1965                             ? diag::note_implicit_param_decl
   1966                             : diag::note_previous_decl;
   1967       if (SS.isEmpty())
   1968         diagnoseTypo(Corrected, PDiag(diagnostic_suggest) << Name,
   1969                      PDiag(NoteID), AcceptableWithRecovery);
   1970       else
   1971         diagnoseTypo(Corrected, PDiag(diag::err_no_member_suggest)
   1972                                   << Name << computeDeclContext(SS, false)
   1973                                   << DroppedSpecifier << SS.getRange(),
   1974                      PDiag(NoteID), AcceptableWithRecovery);
   1975 
   1976       // Tell the callee whether to try to recover.
   1977       return !AcceptableWithRecovery;
   1978     }
   1979   }
   1980   R.clear();
   1981 
   1982   // Emit a special diagnostic for failed member lookups.
   1983   // FIXME: computing the declaration context might fail here (?)
   1984   if (!SS.isEmpty()) {
   1985     Diag(R.getNameLoc(), diag::err_no_member)
   1986       << Name << computeDeclContext(SS, false)
   1987       << SS.getRange();
   1988     return true;
   1989   }
   1990 
   1991   // Give up, we can't recover.
   1992   Diag(R.getNameLoc(), diagnostic) << Name;
   1993   return true;
   1994 }
   1995 
   1996 /// In Microsoft mode, if we are inside a template class whose parent class has
   1997 /// dependent base classes, and we can't resolve an unqualified identifier, then
   1998 /// assume the identifier is a member of a dependent base class.  We can only
   1999 /// recover successfully in static methods, instance methods, and other contexts
   2000 /// where 'this' is available.  This doesn't precisely match MSVC's
   2001 /// instantiation model, but it's close enough.
   2002 static Expr *
   2003 recoverFromMSUnqualifiedLookup(Sema &S, ASTContext &Context,
   2004                                DeclarationNameInfo &NameInfo,
   2005                                SourceLocation TemplateKWLoc,
   2006                                const TemplateArgumentListInfo *TemplateArgs) {
   2007   // Only try to recover from lookup into dependent bases in static methods or
   2008   // contexts where 'this' is available.
   2009   QualType ThisType = S.getCurrentThisType();
   2010   const CXXRecordDecl *RD = nullptr;
   2011   if (!ThisType.isNull())
   2012     RD = ThisType->getPointeeType()->getAsCXXRecordDecl();
   2013   else if (auto *MD = dyn_cast<CXXMethodDecl>(S.CurContext))
   2014     RD = MD->getParent();
   2015   if (!RD || !RD->hasAnyDependentBases())
   2016     return nullptr;
   2017 
   2018   // Diagnose this as unqualified lookup into a dependent base class.  If 'this'
   2019   // is available, suggest inserting 'this->' as a fixit.
   2020   SourceLocation Loc = NameInfo.getLoc();
   2021   auto DB = S.Diag(Loc, diag::ext_undeclared_unqual_id_with_dependent_base);
   2022   DB << NameInfo.getName() << RD;
   2023 
   2024   if (!ThisType.isNull()) {
   2025     DB << FixItHint::CreateInsertion(Loc, "this->");
   2026     return CXXDependentScopeMemberExpr::Create(
   2027         Context, /*This=*/nullptr, ThisType, /*IsArrow=*/true,
   2028         /*Op=*/SourceLocation(), NestedNameSpecifierLoc(), TemplateKWLoc,
   2029         /*FirstQualifierInScope=*/nullptr, NameInfo, TemplateArgs);
   2030   }
   2031 
   2032   // Synthesize a fake NNS that points to the derived class.  This will
   2033   // perform name lookup during template instantiation.
   2034   CXXScopeSpec SS;
   2035   auto *NNS =
   2036       NestedNameSpecifier::Create(Context, nullptr, true, RD->getTypeForDecl());
   2037   SS.MakeTrivial(Context, NNS, SourceRange(Loc, Loc));
   2038   return DependentScopeDeclRefExpr::Create(
   2039       Context, SS.getWithLocInContext(Context), TemplateKWLoc, NameInfo,
   2040       TemplateArgs);
   2041 }
   2042 
   2043 ExprResult
   2044 Sema::ActOnIdExpression(Scope *S, CXXScopeSpec &SS,
   2045                         SourceLocation TemplateKWLoc, UnqualifiedId &Id,
   2046                         bool HasTrailingLParen, bool IsAddressOfOperand,
   2047                         std::unique_ptr<CorrectionCandidateCallback> CCC,
   2048                         bool IsInlineAsmIdentifier, Token *KeywordReplacement) {
   2049   assert(!(IsAddressOfOperand && HasTrailingLParen) &&
   2050          "cannot be direct & operand and have a trailing lparen");
   2051   if (SS.isInvalid())
   2052     return ExprError();
   2053 
   2054   TemplateArgumentListInfo TemplateArgsBuffer;
   2055 
   2056   // Decompose the UnqualifiedId into the following data.
   2057   DeclarationNameInfo NameInfo;
   2058   const TemplateArgumentListInfo *TemplateArgs;
   2059   DecomposeUnqualifiedId(Id, TemplateArgsBuffer, NameInfo, TemplateArgs);
   2060 
   2061   DeclarationName Name = NameInfo.getName();
   2062   IdentifierInfo *II = Name.getAsIdentifierInfo();
   2063   SourceLocation NameLoc = NameInfo.getLoc();
   2064 
   2065   // C++ [temp.dep.expr]p3:
   2066   //   An id-expression is type-dependent if it contains:
   2067   //     -- an identifier that was declared with a dependent type,
   2068   //        (note: handled after lookup)
   2069   //     -- a template-id that is dependent,
   2070   //        (note: handled in BuildTemplateIdExpr)
   2071   //     -- a conversion-function-id that specifies a dependent type,
   2072   //     -- a nested-name-specifier that contains a class-name that
   2073   //        names a dependent type.
   2074   // Determine whether this is a member of an unknown specialization;
   2075   // we need to handle these differently.
   2076   bool DependentID = false;
   2077   if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName &&
   2078       Name.getCXXNameType()->isDependentType()) {
   2079     DependentID = true;
   2080   } else if (SS.isSet()) {
   2081     if (DeclContext *DC = computeDeclContext(SS, false)) {
   2082       if (RequireCompleteDeclContext(SS, DC))
   2083         return ExprError();
   2084     } else {
   2085       DependentID = true;
   2086     }
   2087   }
   2088 
   2089   if (DependentID)
   2090     return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
   2091                                       IsAddressOfOperand, TemplateArgs);
   2092 
   2093   // Perform the required lookup.
   2094   LookupResult R(*this, NameInfo,
   2095                  (Id.getKind() == UnqualifiedId::IK_ImplicitSelfParam)
   2096                   ? LookupObjCImplicitSelfParam : LookupOrdinaryName);
   2097   if (TemplateArgs) {
   2098     // Lookup the template name again to correctly establish the context in
   2099     // which it was found. This is really unfortunate as we already did the
   2100     // lookup to determine that it was a template name in the first place. If
   2101     // this becomes a performance hit, we can work harder to preserve those
   2102     // results until we get here but it's likely not worth it.
   2103     bool MemberOfUnknownSpecialization;
   2104     LookupTemplateName(R, S, SS, QualType(), /*EnteringContext=*/false,
   2105                        MemberOfUnknownSpecialization);
   2106 
   2107     if (MemberOfUnknownSpecialization ||
   2108         (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation))
   2109       return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
   2110                                         IsAddressOfOperand, TemplateArgs);
   2111   } else {
   2112     bool IvarLookupFollowUp = II && !SS.isSet() && getCurMethodDecl();
   2113     LookupParsedName(R, S, &SS, !IvarLookupFollowUp);
   2114 
   2115     // If the result might be in a dependent base class, this is a dependent
   2116     // id-expression.
   2117     if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation)
   2118       return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
   2119                                         IsAddressOfOperand, TemplateArgs);
   2120 
   2121     // If this reference is in an Objective-C method, then we need to do
   2122     // some special Objective-C lookup, too.
   2123     if (IvarLookupFollowUp) {
   2124       ExprResult E(LookupInObjCMethod(R, S, II, true));
   2125       if (E.isInvalid())
   2126         return ExprError();
   2127 
   2128       if (Expr *Ex = E.getAs<Expr>())
   2129         return Ex;
   2130     }
   2131   }
   2132 
   2133   if (R.isAmbiguous())
   2134     return ExprError();
   2135 
   2136   // This could be an implicitly declared function reference (legal in C90,
   2137   // extension in C99, forbidden in C++).
   2138   if (R.empty() && HasTrailingLParen && II && !getLangOpts().CPlusPlus) {
   2139     NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *II, S);
   2140     if (D) R.addDecl(D);
   2141   }
   2142 
   2143   // Determine whether this name might be a candidate for
   2144   // argument-dependent lookup.
   2145   bool ADL = UseArgumentDependentLookup(SS, R, HasTrailingLParen);
   2146 
   2147   if (R.empty() && !ADL) {
   2148     if (SS.isEmpty() && getLangOpts().MSVCCompat) {
   2149       if (Expr *E = recoverFromMSUnqualifiedLookup(*this, Context, NameInfo,
   2150                                                    TemplateKWLoc, TemplateArgs))
   2151         return E;
   2152     }
   2153 
   2154     // Don't diagnose an empty lookup for inline assembly.
   2155     if (IsInlineAsmIdentifier)
   2156       return ExprError();
   2157 
   2158     // If this name wasn't predeclared and if this is not a function
   2159     // call, diagnose the problem.
   2160     TypoExpr *TE = nullptr;
   2161     auto DefaultValidator = llvm::make_unique<CorrectionCandidateCallback>(
   2162         II, SS.isValid() ? SS.getScopeRep() : nullptr);
   2163     DefaultValidator->IsAddressOfOperand = IsAddressOfOperand;
   2164     assert((!CCC || CCC->IsAddressOfOperand == IsAddressOfOperand) &&
   2165            "Typo correction callback misconfigured");
   2166     if (CCC) {
   2167       // Make sure the callback knows what the typo being diagnosed is.
   2168       CCC->setTypoName(II);
   2169       if (SS.isValid())
   2170         CCC->setTypoNNS(SS.getScopeRep());
   2171     }
   2172     if (DiagnoseEmptyLookup(S, SS, R,
   2173                             CCC ? std::move(CCC) : std::move(DefaultValidator),
   2174                             nullptr, None, &TE)) {
   2175       if (TE && KeywordReplacement) {
   2176         auto &State = getTypoExprState(TE);
   2177         auto BestTC = State.Consumer->getNextCorrection();
   2178         if (BestTC.isKeyword()) {
   2179           auto *II = BestTC.getCorrectionAsIdentifierInfo();
   2180           if (State.DiagHandler)
   2181             State.DiagHandler(BestTC);
   2182           KeywordReplacement->startToken();
   2183           KeywordReplacement->setKind(II->getTokenID());
   2184           KeywordReplacement->setIdentifierInfo(II);
   2185           KeywordReplacement->setLocation(BestTC.getCorrectionRange().getBegin());
   2186           // Clean up the state associated with the TypoExpr, since it has
   2187           // now been diagnosed (without a call to CorrectDelayedTyposInExpr).
   2188           clearDelayedTypo(TE);
   2189           // Signal that a correction to a keyword was performed by returning a
   2190           // valid-but-null ExprResult.
   2191           return (Expr*)nullptr;
   2192         }
   2193         State.Consumer->resetCorrectionStream();
   2194       }
   2195       return TE ? TE : ExprError();
   2196     }
   2197 
   2198     assert(!R.empty() &&
   2199            "DiagnoseEmptyLookup returned false but added no results");
   2200 
   2201     // If we found an Objective-C instance variable, let
   2202     // LookupInObjCMethod build the appropriate expression to
   2203     // reference the ivar.
   2204     if (ObjCIvarDecl *Ivar = R.getAsSingle<ObjCIvarDecl>()) {
   2205       R.clear();
   2206       ExprResult E(LookupInObjCMethod(R, S, Ivar->getIdentifier()));
   2207       // In a hopelessly buggy code, Objective-C instance variable
   2208       // lookup fails and no expression will be built to reference it.
   2209       if (!E.isInvalid() && !E.get())
   2210         return ExprError();
   2211       return E;
   2212     }
   2213   }
   2214 
   2215   // This is guaranteed from this point on.
   2216   assert(!R.empty() || ADL);
   2217 
   2218   // Check whether this might be a C++ implicit instance member access.
   2219   // C++ [class.mfct.non-static]p3:
   2220   //   When an id-expression that is not part of a class member access
   2221   //   syntax and not used to form a pointer to member is used in the
   2222   //   body of a non-static member function of class X, if name lookup
   2223   //   resolves the name in the id-expression to a non-static non-type
   2224   //   member of some class C, the id-expression is transformed into a
   2225   //   class member access expression using (*this) as the
   2226   //   postfix-expression to the left of the . operator.
   2227   //
   2228   // But we don't actually need to do this for '&' operands if R
   2229   // resolved to a function or overloaded function set, because the
   2230   // expression is ill-formed if it actually works out to be a
   2231   // non-static member function:
   2232   //
   2233   // C++ [expr.ref]p4:
   2234   //   Otherwise, if E1.E2 refers to a non-static member function. . .
   2235   //   [t]he expression can be used only as the left-hand operand of a
   2236   //   member function call.
   2237   //
   2238   // There are other safeguards against such uses, but it's important
   2239   // to get this right here so that we don't end up making a
   2240   // spuriously dependent expression if we're inside a dependent
   2241   // instance method.
   2242   if (!R.empty() && (*R.begin())->isCXXClassMember()) {
   2243     bool MightBeImplicitMember;
   2244     if (!IsAddressOfOperand)
   2245       MightBeImplicitMember = true;
   2246     else if (!SS.isEmpty())
   2247       MightBeImplicitMember = false;
   2248     else if (R.isOverloadedResult())
   2249       MightBeImplicitMember = false;
   2250     else if (R.isUnresolvableResult())
   2251       MightBeImplicitMember = true;
   2252     else
   2253       MightBeImplicitMember = isa<FieldDecl>(R.getFoundDecl()) ||
   2254                               isa<IndirectFieldDecl>(R.getFoundDecl()) ||
   2255                               isa<MSPropertyDecl>(R.getFoundDecl());
   2256 
   2257     if (MightBeImplicitMember)
   2258       return BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc,
   2259                                              R, TemplateArgs, S);
   2260   }
   2261 
   2262   if (TemplateArgs || TemplateKWLoc.isValid()) {
   2263 
   2264     // In C++1y, if this is a variable template id, then check it
   2265     // in BuildTemplateIdExpr().
   2266     // The single lookup result must be a variable template declaration.
   2267     if (Id.getKind() == UnqualifiedId::IK_TemplateId && Id.TemplateId &&
   2268         Id.TemplateId->Kind == TNK_Var_template) {
   2269       assert(R.getAsSingle<VarTemplateDecl>() &&
   2270              "There should only be one declaration found.");
   2271     }
   2272 
   2273     return BuildTemplateIdExpr(SS, TemplateKWLoc, R, ADL, TemplateArgs);
   2274   }
   2275 
   2276   return BuildDeclarationNameExpr(SS, R, ADL);
   2277 }
   2278 
   2279 /// BuildQualifiedDeclarationNameExpr - Build a C++ qualified
   2280 /// declaration name, generally during template instantiation.
   2281 /// There's a large number of things which don't need to be done along
   2282 /// this path.
   2283 ExprResult Sema::BuildQualifiedDeclarationNameExpr(
   2284     CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo,
   2285     bool IsAddressOfOperand, const Scope *S, TypeSourceInfo **RecoveryTSI) {
   2286   DeclContext *DC = computeDeclContext(SS, false);
   2287   if (!DC)
   2288     return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
   2289                                      NameInfo, /*TemplateArgs=*/nullptr);
   2290 
   2291   if (RequireCompleteDeclContext(SS, DC))
   2292     return ExprError();
   2293 
   2294   LookupResult R(*this, NameInfo, LookupOrdinaryName);
   2295   LookupQualifiedName(R, DC);
   2296 
   2297   if (R.isAmbiguous())
   2298     return ExprError();
   2299 
   2300   if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation)
   2301     return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
   2302                                      NameInfo, /*TemplateArgs=*/nullptr);
   2303 
   2304   if (R.empty()) {
   2305     Diag(NameInfo.getLoc(), diag::err_no_member)
   2306       << NameInfo.getName() << DC << SS.getRange();
   2307     return ExprError();
   2308   }
   2309 
   2310   if (const TypeDecl *TD = R.getAsSingle<TypeDecl>()) {
   2311     // Diagnose a missing typename if this resolved unambiguously to a type in
   2312     // a dependent context.  If we can recover with a type, downgrade this to
   2313     // a warning in Microsoft compatibility mode.
   2314     unsigned DiagID = diag::err_typename_missing;
   2315     if (RecoveryTSI && getLangOpts().MSVCCompat)
   2316       DiagID = diag::ext_typename_missing;
   2317     SourceLocation Loc = SS.getBeginLoc();
   2318     auto D = Diag(Loc, DiagID);
   2319     D << SS.getScopeRep() << NameInfo.getName().getAsString()
   2320       << SourceRange(Loc, NameInfo.getEndLoc());
   2321 
   2322     // Don't recover if the caller isn't expecting us to or if we're in a SFINAE
   2323     // context.
   2324     if (!RecoveryTSI)
   2325       return ExprError();
   2326 
   2327     // Only issue the fixit if we're prepared to recover.
   2328     D << FixItHint::CreateInsertion(Loc, "typename ");
   2329 
   2330     // Recover by pretending this was an elaborated type.
   2331     QualType Ty = Context.getTypeDeclType(TD);
   2332     TypeLocBuilder TLB;
   2333     TLB.pushTypeSpec(Ty).setNameLoc(NameInfo.getLoc());
   2334 
   2335     QualType ET = getElaboratedType(ETK_None, SS, Ty);
   2336     ElaboratedTypeLoc QTL = TLB.push<ElaboratedTypeLoc>(ET);
   2337     QTL.setElaboratedKeywordLoc(SourceLocation());
   2338     QTL.setQualifierLoc(SS.getWithLocInContext(Context));
   2339 
   2340     *RecoveryTSI = TLB.getTypeSourceInfo(Context, ET);
   2341 
   2342     return ExprEmpty();
   2343   }
   2344 
   2345   // Defend against this resolving to an implicit member access. We usually
   2346   // won't get here if this might be a legitimate a class member (we end up in
   2347   // BuildMemberReferenceExpr instead), but this can be valid if we're forming
   2348   // a pointer-to-member or in an unevaluated context in C++11.
   2349   if (!R.empty() && (*R.begin())->isCXXClassMember() && !IsAddressOfOperand)
   2350     return BuildPossibleImplicitMemberExpr(SS,
   2351                                            /*TemplateKWLoc=*/SourceLocation(),
   2352                                            R, /*TemplateArgs=*/nullptr, S);
   2353 
   2354   return BuildDeclarationNameExpr(SS, R, /* ADL */ false);
   2355 }
   2356 
   2357 /// LookupInObjCMethod - The parser has read a name in, and Sema has
   2358 /// detected that we're currently inside an ObjC method.  Perform some
   2359 /// additional lookup.
   2360 ///
   2361 /// Ideally, most of this would be done by lookup, but there's
   2362 /// actually quite a lot of extra work involved.
   2363 ///
   2364 /// Returns a null sentinel to indicate trivial success.
   2365 ExprResult
   2366 Sema::LookupInObjCMethod(LookupResult &Lookup, Scope *S,
   2367                          IdentifierInfo *II, bool AllowBuiltinCreation) {
   2368   SourceLocation Loc = Lookup.getNameLoc();
   2369   ObjCMethodDecl *CurMethod = getCurMethodDecl();
   2370 
   2371   // Check for error condition which is already reported.
   2372   if (!CurMethod)
   2373     return ExprError();
   2374 
   2375   // There are two cases to handle here.  1) scoped lookup could have failed,
   2376   // in which case we should look for an ivar.  2) scoped lookup could have
   2377   // found a decl, but that decl is outside the current instance method (i.e.
   2378   // a global variable).  In these two cases, we do a lookup for an ivar with
   2379   // this name, if the lookup sucedes, we replace it our current decl.
   2380 
   2381   // If we're in a class method, we don't normally want to look for
   2382   // ivars.  But if we don't find anything else, and there's an
   2383   // ivar, that's an error.
   2384   bool IsClassMethod = CurMethod->isClassMethod();
   2385 
   2386   bool LookForIvars;
   2387   if (Lookup.empty())
   2388     LookForIvars = true;
   2389   else if (IsClassMethod)
   2390     LookForIvars = false;
   2391   else
   2392     LookForIvars = (Lookup.isSingleResult() &&
   2393                     Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod());
   2394   ObjCInterfaceDecl *IFace = nullptr;
   2395   if (LookForIvars) {
   2396     IFace = CurMethod->getClassInterface();
   2397     ObjCInterfaceDecl *ClassDeclared;
   2398     ObjCIvarDecl *IV = nullptr;
   2399     if (IFace && (IV = IFace->lookupInstanceVariable(II, ClassDeclared))) {
   2400       // Diagnose using an ivar in a class method.
   2401       if (IsClassMethod)
   2402         return ExprError(Diag(Loc, diag::error_ivar_use_in_class_method)
   2403                          << IV->getDeclName());
   2404 
   2405       // If we're referencing an invalid decl, just return this as a silent
   2406       // error node.  The error diagnostic was already emitted on the decl.
   2407       if (IV->isInvalidDecl())
   2408         return ExprError();
   2409 
   2410       // Check if referencing a field with __attribute__((deprecated)).
   2411       if (DiagnoseUseOfDecl(IV, Loc))
   2412         return ExprError();
   2413 
   2414       // Diagnose the use of an ivar outside of the declaring class.
   2415       if (IV->getAccessControl() == ObjCIvarDecl::Private &&
   2416           !declaresSameEntity(ClassDeclared, IFace) &&
   2417           !getLangOpts().DebuggerSupport)
   2418         Diag(Loc, diag::error_private_ivar_access) << IV->getDeclName();
   2419 
   2420       // FIXME: This should use a new expr for a direct reference, don't
   2421       // turn this into Self->ivar, just return a BareIVarExpr or something.
   2422       IdentifierInfo &II = Context.Idents.get("self");
   2423       UnqualifiedId SelfName;
   2424       SelfName.setIdentifier(&II, SourceLocation());
   2425       SelfName.setKind(UnqualifiedId::IK_ImplicitSelfParam);
   2426       CXXScopeSpec SelfScopeSpec;
   2427       SourceLocation TemplateKWLoc;
   2428       ExprResult SelfExpr = ActOnIdExpression(S, SelfScopeSpec, TemplateKWLoc,
   2429                                               SelfName, false, false);
   2430       if (SelfExpr.isInvalid())
   2431         return ExprError();
   2432 
   2433       SelfExpr = DefaultLvalueConversion(SelfExpr.get());
   2434       if (SelfExpr.isInvalid())
   2435         return ExprError();
   2436 
   2437       MarkAnyDeclReferenced(Loc, IV, true);
   2438 
   2439       ObjCMethodFamily MF = CurMethod->getMethodFamily();
   2440       if (MF != OMF_init && MF != OMF_dealloc && MF != OMF_finalize &&
   2441           !IvarBacksCurrentMethodAccessor(IFace, CurMethod, IV))
   2442         Diag(Loc, diag::warn_direct_ivar_access) << IV->getDeclName();
   2443 
   2444       ObjCIvarRefExpr *Result = new (Context)
   2445           ObjCIvarRefExpr(IV, IV->getUsageType(SelfExpr.get()->getType()), Loc,
   2446                           IV->getLocation(), SelfExpr.get(), true, true);
   2447 
   2448       if (getLangOpts().ObjCAutoRefCount) {
   2449         if (IV->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
   2450           if (!Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, Loc))
   2451             recordUseOfEvaluatedWeak(Result);
   2452         }
   2453         if (CurContext->isClosure())
   2454           Diag(Loc, diag::warn_implicitly_retains_self)
   2455             << FixItHint::CreateInsertion(Loc, "self->");
   2456       }
   2457 
   2458       return Result;
   2459     }
   2460   } else if (CurMethod->isInstanceMethod()) {
   2461     // We should warn if a local variable hides an ivar.
   2462     if (ObjCInterfaceDecl *IFace = CurMethod->getClassInterface()) {
   2463       ObjCInterfaceDecl *ClassDeclared;
   2464       if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
   2465         if (IV->getAccessControl() != ObjCIvarDecl::Private ||
   2466             declaresSameEntity(IFace, ClassDeclared))
   2467           Diag(Loc, diag::warn_ivar_use_hidden) << IV->getDeclName();
   2468       }
   2469     }
   2470   } else if (Lookup.isSingleResult() &&
   2471              Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod()) {
   2472     // If accessing a stand-alone ivar in a class method, this is an error.
   2473     if (const ObjCIvarDecl *IV = dyn_cast<ObjCIvarDecl>(Lookup.getFoundDecl()))
   2474       return ExprError(Diag(Loc, diag::error_ivar_use_in_class_method)
   2475                        << IV->getDeclName());
   2476   }
   2477 
   2478   if (Lookup.empty() && II && AllowBuiltinCreation) {
   2479     // FIXME. Consolidate this with similar code in LookupName.
   2480     if (unsigned BuiltinID = II->getBuiltinID()) {
   2481       if (!(getLangOpts().CPlusPlus &&
   2482             Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))) {
   2483         NamedDecl *D = LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID,
   2484                                            S, Lookup.isForRedeclaration(),
   2485                                            Lookup.getNameLoc());
   2486         if (D) Lookup.addDecl(D);
   2487       }
   2488     }
   2489   }
   2490   // Sentinel value saying that we didn't do anything special.
   2491   return ExprResult((Expr *)nullptr);
   2492 }
   2493 
   2494 /// \brief Cast a base object to a member's actual type.
   2495 ///
   2496 /// Logically this happens in three phases:
   2497 ///
   2498 /// * First we cast from the base type to the naming class.
   2499 ///   The naming class is the class into which we were looking
   2500 ///   when we found the member;  it's the qualifier type if a
   2501 ///   qualifier was provided, and otherwise it's the base type.
   2502 ///
   2503 /// * Next we cast from the naming class to the declaring class.
   2504 ///   If the member we found was brought into a class's scope by
   2505 ///   a using declaration, this is that class;  otherwise it's
   2506 ///   the class declaring the member.
   2507 ///
   2508 /// * Finally we cast from the declaring class to the "true"
   2509 ///   declaring class of the member.  This conversion does not
   2510 ///   obey access control.
   2511 ExprResult
   2512 Sema::PerformObjectMemberConversion(Expr *From,
   2513                                     NestedNameSpecifier *Qualifier,
   2514                                     NamedDecl *FoundDecl,
   2515                                     NamedDecl *Member) {
   2516   CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Member->getDeclContext());
   2517   if (!RD)
   2518     return From;
   2519 
   2520   QualType DestRecordType;
   2521   QualType DestType;
   2522   QualType FromRecordType;
   2523   QualType FromType = From->getType();
   2524   bool PointerConversions = false;
   2525   if (isa<FieldDecl>(Member)) {
   2526     DestRecordType = Context.getCanonicalType(Context.getTypeDeclType(RD));
   2527 
   2528     if (FromType->getAs<PointerType>()) {
   2529       DestType = Context.getPointerType(DestRecordType);
   2530       FromRecordType = FromType->getPointeeType();
   2531       PointerConversions = true;
   2532     } else {
   2533       DestType = DestRecordType;
   2534       FromRecordType = FromType;
   2535     }
   2536   } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Member)) {
   2537     if (Method->isStatic())
   2538       return From;
   2539 
   2540     DestType = Method->getThisType(Context);
   2541     DestRecordType = DestType->getPointeeType();
   2542 
   2543     if (FromType->getAs<PointerType>()) {
   2544       FromRecordType = FromType->getPointeeType();
   2545       PointerConversions = true;
   2546     } else {
   2547       FromRecordType = FromType;
   2548       DestType = DestRecordType;
   2549     }
   2550   } else {
   2551     // No conversion necessary.
   2552     return From;
   2553   }
   2554 
   2555   if (DestType->isDependentType() || FromType->isDependentType())
   2556     return From;
   2557 
   2558   // If the unqualified types are the same, no conversion is necessary.
   2559   if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
   2560     return From;
   2561 
   2562   SourceRange FromRange = From->getSourceRange();
   2563   SourceLocation FromLoc = FromRange.getBegin();
   2564 
   2565   ExprValueKind VK = From->getValueKind();
   2566 
   2567   // C++ [class.member.lookup]p8:
   2568   //   [...] Ambiguities can often be resolved by qualifying a name with its
   2569   //   class name.
   2570   //
   2571   // If the member was a qualified name and the qualified referred to a
   2572   // specific base subobject type, we'll cast to that intermediate type
   2573   // first and then to the object in which the member is declared. That allows
   2574   // one to resolve ambiguities in, e.g., a diamond-shaped hierarchy such as:
   2575   //
   2576   //   class Base { public: int x; };
   2577   //   class Derived1 : public Base { };
   2578   //   class Derived2 : public Base { };
   2579   //   class VeryDerived : public Derived1, public Derived2 { void f(); };
   2580   //
   2581   //   void VeryDerived::f() {
   2582   //     x = 17; // error: ambiguous base subobjects
   2583   //     Derived1::x = 17; // okay, pick the Base subobject of Derived1
   2584   //   }
   2585   if (Qualifier && Qualifier->getAsType()) {
   2586     QualType QType = QualType(Qualifier->getAsType(), 0);
   2587     assert(QType->isRecordType() && "lookup done with non-record type");
   2588 
   2589     QualType QRecordType = QualType(QType->getAs<RecordType>(), 0);
   2590 
   2591     // In C++98, the qualifier type doesn't actually have to be a base
   2592     // type of the object type, in which case we just ignore it.
   2593     // Otherwise build the appropriate casts.
   2594     if (IsDerivedFrom(FromLoc, FromRecordType, QRecordType)) {
   2595       CXXCastPath BasePath;
   2596       if (CheckDerivedToBaseConversion(FromRecordType, QRecordType,
   2597                                        FromLoc, FromRange, &BasePath))
   2598         return ExprError();
   2599 
   2600       if (PointerConversions)
   2601         QType = Context.getPointerType(QType);
   2602       From = ImpCastExprToType(From, QType, CK_UncheckedDerivedToBase,
   2603                                VK, &BasePath).get();
   2604 
   2605       FromType = QType;
   2606       FromRecordType = QRecordType;
   2607 
   2608       // If the qualifier type was the same as the destination type,
   2609       // we're done.
   2610       if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
   2611         return From;
   2612     }
   2613   }
   2614 
   2615   bool IgnoreAccess = false;
   2616 
   2617   // If we actually found the member through a using declaration, cast
   2618   // down to the using declaration's type.
   2619   //
   2620   // Pointer equality is fine here because only one declaration of a
   2621   // class ever has member declarations.
   2622   if (FoundDecl->getDeclContext() != Member->getDeclContext()) {
   2623     assert(isa<UsingShadowDecl>(FoundDecl));
   2624     QualType URecordType = Context.getTypeDeclType(
   2625                            cast<CXXRecordDecl>(FoundDecl->getDeclContext()));
   2626 
   2627     // We only need to do this if the naming-class to declaring-class
   2628     // conversion is non-trivial.
   2629     if (!Context.hasSameUnqualifiedType(FromRecordType, URecordType)) {
   2630       assert(IsDerivedFrom(FromLoc, FromRecordType, URecordType));
   2631       CXXCastPath BasePath;
   2632       if (CheckDerivedToBaseConversion(FromRecordType, URecordType,
   2633                                        FromLoc, FromRange, &BasePath))
   2634         return ExprError();
   2635 
   2636       QualType UType = URecordType;
   2637       if (PointerConversions)
   2638         UType = Context.getPointerType(UType);
   2639       From = ImpCastExprToType(From, UType, CK_UncheckedDerivedToBase,
   2640                                VK, &BasePath).get();
   2641       FromType = UType;
   2642       FromRecordType = URecordType;
   2643     }
   2644 
   2645     // We don't do access control for the conversion from the
   2646     // declaring class to the true declaring class.
   2647     IgnoreAccess = true;
   2648   }
   2649 
   2650   CXXCastPath BasePath;
   2651   if (CheckDerivedToBaseConversion(FromRecordType, DestRecordType,
   2652                                    FromLoc, FromRange, &BasePath,
   2653                                    IgnoreAccess))
   2654     return ExprError();
   2655 
   2656   return ImpCastExprToType(From, DestType, CK_UncheckedDerivedToBase,
   2657                            VK, &BasePath);
   2658 }
   2659 
   2660 bool Sema::UseArgumentDependentLookup(const CXXScopeSpec &SS,
   2661                                       const LookupResult &R,
   2662                                       bool HasTrailingLParen) {
   2663   // Only when used directly as the postfix-expression of a call.
   2664   if (!HasTrailingLParen)
   2665     return false;
   2666 
   2667   // Never if a scope specifier was provided.
   2668   if (SS.isSet())
   2669     return false;
   2670 
   2671   // Only in C++ or ObjC++.
   2672   if (!getLangOpts().CPlusPlus)
   2673     return false;
   2674 
   2675   // Turn off ADL when we find certain kinds of declarations during
   2676   // normal lookup:
   2677   for (NamedDecl *D : R) {
   2678     // C++0x [basic.lookup.argdep]p3:
   2679     //     -- a declaration of a class member
   2680     // Since using decls preserve this property, we check this on the
   2681     // original decl.
   2682     if (D->isCXXClassMember())
   2683       return false;
   2684 
   2685     // C++0x [basic.lookup.argdep]p3:
   2686     //     -- a block-scope function declaration that is not a
   2687     //        using-declaration
   2688     // NOTE: we also trigger this for function templates (in fact, we
   2689     // don't check the decl type at all, since all other decl types
   2690     // turn off ADL anyway).
   2691     if (isa<UsingShadowDecl>(D))
   2692       D = cast<UsingShadowDecl>(D)->getTargetDecl();
   2693     else if (D->getLexicalDeclContext()->isFunctionOrMethod())
   2694       return false;
   2695 
   2696     // C++0x [basic.lookup.argdep]p3:
   2697     //     -- a declaration that is neither a function or a function
   2698     //        template
   2699     // And also for builtin functions.
   2700     if (isa<FunctionDecl>(D)) {
   2701       FunctionDecl *FDecl = cast<FunctionDecl>(D);
   2702 
   2703       // But also builtin functions.
   2704       if (FDecl->getBuiltinID() && FDecl->isImplicit())
   2705         return false;
   2706     } else if (!isa<FunctionTemplateDecl>(D))
   2707       return false;
   2708   }
   2709 
   2710   return true;
   2711 }
   2712 
   2713 
   2714 /// Diagnoses obvious problems with the use of the given declaration
   2715 /// as an expression.  This is only actually called for lookups that
   2716 /// were not overloaded, and it doesn't promise that the declaration
   2717 /// will in fact be used.
   2718 static bool CheckDeclInExpr(Sema &S, SourceLocation Loc, NamedDecl *D) {
   2719   if (isa<TypedefNameDecl>(D)) {
   2720     S.Diag(Loc, diag::err_unexpected_typedef) << D->getDeclName();
   2721     return true;
   2722   }
   2723 
   2724   if (isa<ObjCInterfaceDecl>(D)) {
   2725     S.Diag(Loc, diag::err_unexpected_interface) << D->getDeclName();
   2726     return true;
   2727   }
   2728 
   2729   if (isa<NamespaceDecl>(D)) {
   2730     S.Diag(Loc, diag::err_unexpected_namespace) << D->getDeclName();
   2731     return true;
   2732   }
   2733 
   2734   return false;
   2735 }
   2736 
   2737 ExprResult Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
   2738                                           LookupResult &R, bool NeedsADL,
   2739                                           bool AcceptInvalidDecl) {
   2740   // If this is a single, fully-resolved result and we don't need ADL,
   2741   // just build an ordinary singleton decl ref.
   2742   if (!NeedsADL && R.isSingleResult() && !R.getAsSingle<FunctionTemplateDecl>())
   2743     return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(), R.getFoundDecl(),
   2744                                     R.getRepresentativeDecl(), nullptr,
   2745                                     AcceptInvalidDecl);
   2746 
   2747   // We only need to check the declaration if there's exactly one
   2748   // result, because in the overloaded case the results can only be
   2749   // functions and function templates.
   2750   if (R.isSingleResult() &&
   2751       CheckDeclInExpr(*this, R.getNameLoc(), R.getFoundDecl()))
   2752     return ExprError();
   2753 
   2754   // Otherwise, just build an unresolved lookup expression.  Suppress
   2755   // any lookup-related diagnostics; we'll hash these out later, when
   2756   // we've picked a target.
   2757   R.suppressDiagnostics();
   2758 
   2759   UnresolvedLookupExpr *ULE
   2760     = UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
   2761                                    SS.getWithLocInContext(Context),
   2762                                    R.getLookupNameInfo(),
   2763                                    NeedsADL, R.isOverloadedResult(),
   2764                                    R.begin(), R.end());
   2765 
   2766   return ULE;
   2767 }
   2768 
   2769 /// \brief Complete semantic analysis for a reference to the given declaration.
   2770 ExprResult Sema::BuildDeclarationNameExpr(
   2771     const CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo, NamedDecl *D,
   2772     NamedDecl *FoundD, const TemplateArgumentListInfo *TemplateArgs,
   2773     bool AcceptInvalidDecl) {
   2774   assert(D && "Cannot refer to a NULL declaration");
   2775   assert(!isa<FunctionTemplateDecl>(D) &&
   2776          "Cannot refer unambiguously to a function template");
   2777 
   2778   SourceLocation Loc = NameInfo.getLoc();
   2779   if (CheckDeclInExpr(*this, Loc, D))
   2780     return ExprError();
   2781 
   2782   if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D)) {
   2783     // Specifically diagnose references to class templates that are missing
   2784     // a template argument list.
   2785     Diag(Loc, diag::err_template_decl_ref) << (isa<VarTemplateDecl>(D) ? 1 : 0)
   2786                                            << Template << SS.getRange();
   2787     Diag(Template->getLocation(), diag::note_template_decl_here);
   2788     return ExprError();
   2789   }
   2790 
   2791   // Make sure that we're referring to a value.
   2792   ValueDecl *VD = dyn_cast<ValueDecl>(D);
   2793   if (!VD) {
   2794     Diag(Loc, diag::err_ref_non_value)
   2795       << D << SS.getRange();
   2796     Diag(D->getLocation(), diag::note_declared_at);
   2797     return ExprError();
   2798   }
   2799 
   2800   // Check whether this declaration can be used. Note that we suppress
   2801   // this check when we're going to perform argument-dependent lookup
   2802   // on this function name, because this might not be the function
   2803   // that overload resolution actually selects.
   2804   if (DiagnoseUseOfDecl(VD, Loc))
   2805     return ExprError();
   2806 
   2807   // Only create DeclRefExpr's for valid Decl's.
   2808   if (VD->isInvalidDecl() && !AcceptInvalidDecl)
   2809     return ExprError();
   2810 
   2811   // Handle members of anonymous structs and unions.  If we got here,
   2812   // and the reference is to a class member indirect field, then this
   2813   // must be the subject of a pointer-to-member expression.
   2814   if (IndirectFieldDecl *indirectField = dyn_cast<IndirectFieldDecl>(VD))
   2815     if (!indirectField->isCXXClassMember())
   2816       return BuildAnonymousStructUnionMemberReference(SS, NameInfo.getLoc(),
   2817                                                       indirectField);
   2818 
   2819   {
   2820     QualType type = VD->getType();
   2821     ExprValueKind valueKind = VK_RValue;
   2822 
   2823     switch (D->getKind()) {
   2824     // Ignore all the non-ValueDecl kinds.
   2825 #define ABSTRACT_DECL(kind)
   2826 #define VALUE(type, base)
   2827 #define DECL(type, base) \
   2828     case Decl::type:
   2829 #include "clang/AST/DeclNodes.inc"
   2830       llvm_unreachable("invalid value decl kind");
   2831 
   2832     // These shouldn't make it here.
   2833     case Decl::ObjCAtDefsField:
   2834     case Decl::ObjCIvar:
   2835       llvm_unreachable("forming non-member reference to ivar?");
   2836 
   2837     // Enum constants are always r-values and never references.
   2838     // Unresolved using declarations are dependent.
   2839     case Decl::EnumConstant:
   2840     case Decl::UnresolvedUsingValue:
   2841       valueKind = VK_RValue;
   2842       break;
   2843 
   2844     // Fields and indirect fields that got here must be for
   2845     // pointer-to-member expressions; we just call them l-values for
   2846     // internal consistency, because this subexpression doesn't really
   2847     // exist in the high-level semantics.
   2848     case Decl::Field:
   2849     case Decl::IndirectField:
   2850       assert(getLangOpts().CPlusPlus &&
   2851              "building reference to field in C?");
   2852 
   2853       // These can't have reference type in well-formed programs, but
   2854       // for internal consistency we do this anyway.
   2855       type = type.getNonReferenceType();
   2856       valueKind = VK_LValue;
   2857       break;
   2858 
   2859     // Non-type template parameters are either l-values or r-values
   2860     // depending on the type.
   2861     case Decl::NonTypeTemplateParm: {
   2862       if (const ReferenceType *reftype = type->getAs<ReferenceType>()) {
   2863         type = reftype->getPointeeType();
   2864         valueKind = VK_LValue; // even if the parameter is an r-value reference
   2865         break;
   2866       }
   2867 
   2868       // For non-references, we need to strip qualifiers just in case
   2869       // the template parameter was declared as 'const int' or whatever.
   2870       valueKind = VK_RValue;
   2871       type = type.getUnqualifiedType();
   2872       break;
   2873     }
   2874 
   2875     case Decl::Var:
   2876     case Decl::VarTemplateSpecialization:
   2877     case Decl::VarTemplatePartialSpecialization:
   2878       // In C, "extern void blah;" is valid and is an r-value.
   2879       if (!getLangOpts().CPlusPlus &&
   2880           !type.hasQualifiers() &&
   2881           type->isVoidType()) {
   2882         valueKind = VK_RValue;
   2883         break;
   2884       }
   2885       // fallthrough
   2886 
   2887     case Decl::ImplicitParam:
   2888     case Decl::ParmVar: {
   2889       // These are always l-values.
   2890       valueKind = VK_LValue;
   2891       type = type.getNonReferenceType();
   2892 
   2893       // FIXME: Does the addition of const really only apply in
   2894       // potentially-evaluated contexts? Since the variable isn't actually
   2895       // captured in an unevaluated context, it seems that the answer is no.
   2896       if (!isUnevaluatedContext()) {
   2897         QualType CapturedType = getCapturedDeclRefType(cast<VarDecl>(VD), Loc);
   2898         if (!CapturedType.isNull())
   2899           type = CapturedType;
   2900       }
   2901 
   2902       break;
   2903     }
   2904 
   2905     case Decl::Function: {
   2906       if (unsigned BID = cast<FunctionDecl>(VD)->getBuiltinID()) {
   2907         if (!Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
   2908           type = Context.BuiltinFnTy;
   2909           valueKind = VK_RValue;
   2910           break;
   2911         }
   2912       }
   2913 
   2914       const FunctionType *fty = type->castAs<FunctionType>();
   2915 
   2916       // If we're referring to a function with an __unknown_anytype
   2917       // result type, make the entire expression __unknown_anytype.
   2918       if (fty->getReturnType() == Context.UnknownAnyTy) {
   2919         type = Context.UnknownAnyTy;
   2920         valueKind = VK_RValue;
   2921         break;
   2922       }
   2923 
   2924       // Functions are l-values in C++.
   2925       if (getLangOpts().CPlusPlus) {
   2926         valueKind = VK_LValue;
   2927         break;
   2928       }
   2929 
   2930       // C99 DR 316 says that, if a function type comes from a
   2931       // function definition (without a prototype), that type is only
   2932       // used for checking compatibility. Therefore, when referencing
   2933       // the function, we pretend that we don't have the full function
   2934       // type.
   2935       if (!cast<FunctionDecl>(VD)->hasPrototype() &&
   2936           isa<FunctionProtoType>(fty))
   2937         type = Context.getFunctionNoProtoType(fty->getReturnType(),
   2938                                               fty->getExtInfo());
   2939 
   2940       // Functions are r-values in C.
   2941       valueKind = VK_RValue;
   2942       break;
   2943     }
   2944 
   2945     case Decl::MSProperty:
   2946       valueKind = VK_LValue;
   2947       break;
   2948 
   2949     case Decl::CXXMethod:
   2950       // If we're referring to a method with an __unknown_anytype
   2951       // result type, make the entire expression __unknown_anytype.
   2952       // This should only be possible with a type written directly.
   2953       if (const FunctionProtoType *proto
   2954             = dyn_cast<FunctionProtoType>(VD->getType()))
   2955         if (proto->getReturnType() == Context.UnknownAnyTy) {
   2956           type = Context.UnknownAnyTy;
   2957           valueKind = VK_RValue;
   2958           break;
   2959         }
   2960 
   2961       // C++ methods are l-values if static, r-values if non-static.
   2962       if (cast<CXXMethodDecl>(VD)->isStatic()) {
   2963         valueKind = VK_LValue;
   2964         break;
   2965       }
   2966       // fallthrough
   2967 
   2968     case Decl::CXXConversion:
   2969     case Decl::CXXDestructor:
   2970     case Decl::CXXConstructor:
   2971       valueKind = VK_RValue;
   2972       break;
   2973     }
   2974 
   2975     return BuildDeclRefExpr(VD, type, valueKind, NameInfo, &SS, FoundD,
   2976                             TemplateArgs);
   2977   }
   2978 }
   2979 
   2980 static void ConvertUTF8ToWideString(unsigned CharByteWidth, StringRef Source,
   2981                                     SmallString<32> &Target) {
   2982   Target.resize(CharByteWidth * (Source.size() + 1));
   2983   char *ResultPtr = &Target[0];
   2984   const UTF8 *ErrorPtr;
   2985   bool success = ConvertUTF8toWide(CharByteWidth, Source, ResultPtr, ErrorPtr);
   2986   (void)success;
   2987   assert(success);
   2988   Target.resize(ResultPtr - &Target[0]);
   2989 }
   2990 
   2991 ExprResult Sema::BuildPredefinedExpr(SourceLocation Loc,
   2992                                      PredefinedExpr::IdentType IT) {
   2993   // Pick the current block, lambda, captured statement or function.
   2994   Decl *currentDecl = nullptr;
   2995   if (const BlockScopeInfo *BSI = getCurBlock())
   2996     currentDecl = BSI->TheDecl;
   2997   else if (const LambdaScopeInfo *LSI = getCurLambda())
   2998     currentDecl = LSI->CallOperator;
   2999   else if (const CapturedRegionScopeInfo *CSI = getCurCapturedRegion())
   3000     currentDecl = CSI->TheCapturedDecl;
   3001   else
   3002     currentDecl = getCurFunctionOrMethodDecl();
   3003 
   3004   if (!currentDecl) {
   3005     Diag(Loc, diag::ext_predef_outside_function);
   3006     currentDecl = Context.getTranslationUnitDecl();
   3007   }
   3008 
   3009   QualType ResTy;
   3010   StringLiteral *SL = nullptr;
   3011   if (cast<DeclContext>(currentDecl)->isDependentContext())
   3012     ResTy = Context.DependentTy;
   3013   else {
   3014     // Pre-defined identifiers are of type char[x], where x is the length of
   3015     // the string.
   3016     auto Str = PredefinedExpr::ComputeName(IT, currentDecl);
   3017     unsigned Length = Str.length();
   3018 
   3019     llvm::APInt LengthI(32, Length + 1);
   3020     if (IT == PredefinedExpr::LFunction) {
   3021       ResTy = Context.WideCharTy.withConst();
   3022       SmallString<32> RawChars;
   3023       ConvertUTF8ToWideString(Context.getTypeSizeInChars(ResTy).getQuantity(),
   3024                               Str, RawChars);
   3025       ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal,
   3026                                            /*IndexTypeQuals*/ 0);
   3027       SL = StringLiteral::Create(Context, RawChars, StringLiteral::Wide,
   3028                                  /*Pascal*/ false, ResTy, Loc);
   3029     } else {
   3030       ResTy = Context.CharTy.withConst();
   3031       ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal,
   3032                                            /*IndexTypeQuals*/ 0);
   3033       SL = StringLiteral::Create(Context, Str, StringLiteral::Ascii,
   3034                                  /*Pascal*/ false, ResTy, Loc);
   3035     }
   3036   }
   3037 
   3038   return new (Context) PredefinedExpr(Loc, ResTy, IT, SL);
   3039 }
   3040 
   3041 ExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc, tok::TokenKind Kind) {
   3042   PredefinedExpr::IdentType IT;
   3043 
   3044   switch (Kind) {
   3045   default: llvm_unreachable("Unknown simple primary expr!");
   3046   case tok::kw___func__: IT = PredefinedExpr::Func; break; // [C99 6.4.2.2]
   3047   case tok::kw___FUNCTION__: IT = PredefinedExpr::Function; break;
   3048   case tok::kw___FUNCDNAME__: IT = PredefinedExpr::FuncDName; break; // [MS]
   3049   case tok::kw___FUNCSIG__: IT = PredefinedExpr::FuncSig; break; // [MS]
   3050   case tok::kw_L__FUNCTION__: IT = PredefinedExpr::LFunction; break;
   3051   case tok::kw___PRETTY_FUNCTION__: IT = PredefinedExpr::PrettyFunction; break;
   3052   }
   3053 
   3054   return BuildPredefinedExpr(Loc, IT);
   3055 }
   3056 
   3057 ExprResult Sema::ActOnCharacterConstant(const Token &Tok, Scope *UDLScope) {
   3058   SmallString<16> CharBuffer;
   3059   bool Invalid = false;
   3060   StringRef ThisTok = PP.getSpelling(Tok, CharBuffer, &Invalid);
   3061   if (Invalid)
   3062     return ExprError();
   3063 
   3064   CharLiteralParser Literal(ThisTok.begin(), ThisTok.end(), Tok.getLocation(),
   3065                             PP, Tok.getKind());
   3066   if (Literal.hadError())
   3067     return ExprError();
   3068 
   3069   QualType Ty;
   3070   if (Literal.isWide())
   3071     Ty = Context.WideCharTy; // L'x' -> wchar_t in C and C++.
   3072   else if (Literal.isUTF16())
   3073     Ty = Context.Char16Ty; // u'x' -> char16_t in C11 and C++11.
   3074   else if (Literal.isUTF32())
   3075     Ty = Context.Char32Ty; // U'x' -> char32_t in C11 and C++11.
   3076   else if (!getLangOpts().CPlusPlus || Literal.isMultiChar())
   3077     Ty = Context.IntTy;   // 'x' -> int in C, 'wxyz' -> int in C++.
   3078   else
   3079     Ty = Context.CharTy;  // 'x' -> char in C++
   3080 
   3081   CharacterLiteral::CharacterKind Kind = CharacterLiteral::Ascii;
   3082   if (Literal.isWide())
   3083     Kind = CharacterLiteral::Wide;
   3084   else if (Literal.isUTF16())
   3085     Kind = CharacterLiteral::UTF16;
   3086   else if (Literal.isUTF32())
   3087     Kind = CharacterLiteral::UTF32;
   3088 
   3089   Expr *Lit = new (Context) CharacterLiteral(Literal.getValue(), Kind, Ty,
   3090                                              Tok.getLocation());
   3091 
   3092   if (Literal.getUDSuffix().empty())
   3093     return Lit;
   3094 
   3095   // We're building a user-defined literal.
   3096   IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
   3097   SourceLocation UDSuffixLoc =
   3098     getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset());
   3099 
   3100   // Make sure we're allowed user-defined literals here.
   3101   if (!UDLScope)
   3102     return ExprError(Diag(UDSuffixLoc, diag::err_invalid_character_udl));
   3103 
   3104   // C++11 [lex.ext]p6: The literal L is treated as a call of the form
   3105   //   operator "" X (ch)
   3106   return BuildCookedLiteralOperatorCall(*this, UDLScope, UDSuffix, UDSuffixLoc,
   3107                                         Lit, Tok.getLocation());
   3108 }
   3109 
   3110 ExprResult Sema::ActOnIntegerConstant(SourceLocation Loc, uint64_t Val) {
   3111   unsigned IntSize = Context.getTargetInfo().getIntWidth();
   3112   return IntegerLiteral::Create(Context, llvm::APInt(IntSize, Val),
   3113                                 Context.IntTy, Loc);
   3114 }
   3115 
   3116 static Expr *BuildFloatingLiteral(Sema &S, NumericLiteralParser &Literal,
   3117                                   QualType Ty, SourceLocation Loc) {
   3118   const llvm::fltSemantics &Format = S.Context.getFloatTypeSemantics(Ty);
   3119 
   3120   using llvm::APFloat;
   3121   APFloat Val(Format);
   3122 
   3123   APFloat::opStatus result = Literal.GetFloatValue(Val);
   3124 
   3125   // Overflow is always an error, but underflow is only an error if
   3126   // we underflowed to zero (APFloat reports denormals as underflow).
   3127   if ((result & APFloat::opOverflow) ||
   3128       ((result & APFloat::opUnderflow) && Val.isZero())) {
   3129     unsigned diagnostic;
   3130     SmallString<20> buffer;
   3131     if (result & APFloat::opOverflow) {
   3132       diagnostic = diag::warn_float_overflow;
   3133       APFloat::getLargest(Format).toString(buffer);
   3134     } else {
   3135       diagnostic = diag::warn_float_underflow;
   3136       APFloat::getSmallest(Format).toString(buffer);
   3137     }
   3138 
   3139     S.Diag(Loc, diagnostic)
   3140       << Ty
   3141       << StringRef(buffer.data(), buffer.size());
   3142   }
   3143 
   3144   bool isExact = (result == APFloat::opOK);
   3145   return FloatingLiteral::Create(S.Context, Val, isExact, Ty, Loc);
   3146 }
   3147 
   3148 bool Sema::CheckLoopHintExpr(Expr *E, SourceLocation Loc) {
   3149   assert(E && "Invalid expression");
   3150 
   3151   if (E->isValueDependent())
   3152     return false;
   3153 
   3154   QualType QT = E->getType();
   3155   if (!QT->isIntegerType() || QT->isBooleanType() || QT->isCharType()) {
   3156     Diag(E->getExprLoc(), diag::err_pragma_loop_invalid_argument_type) << QT;
   3157     return true;
   3158   }
   3159 
   3160   llvm::APSInt ValueAPS;
   3161   ExprResult R = VerifyIntegerConstantExpression(E, &ValueAPS);
   3162 
   3163   if (R.isInvalid())
   3164     return true;
   3165 
   3166   bool ValueIsPositive = ValueAPS.isStrictlyPositive();
   3167   if (!ValueIsPositive || ValueAPS.getActiveBits() > 31) {
   3168     Diag(E->getExprLoc(), diag::err_pragma_loop_invalid_argument_value)
   3169         << ValueAPS.toString(10) << ValueIsPositive;
   3170     return true;
   3171   }
   3172 
   3173   return false;
   3174 }
   3175 
   3176 ExprResult Sema::ActOnNumericConstant(const Token &Tok, Scope *UDLScope) {
   3177   // Fast path for a single digit (which is quite common).  A single digit
   3178   // cannot have a trigraph, escaped newline, radix prefix, or suffix.
   3179   if (Tok.getLength() == 1) {
   3180     const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok);
   3181     return ActOnIntegerConstant(Tok.getLocation(), Val-'0');
   3182   }
   3183 
   3184   SmallString<128> SpellingBuffer;
   3185   // NumericLiteralParser wants to overread by one character.  Add padding to
   3186   // the buffer in case the token is copied to the buffer.  If getSpelling()
   3187   // returns a StringRef to the memory buffer, it should have a null char at
   3188   // the EOF, so it is also safe.
   3189   SpellingBuffer.resize(Tok.getLength() + 1);
   3190 
   3191   // Get the spelling of the token, which eliminates trigraphs, etc.
   3192   bool Invalid = false;
   3193   StringRef TokSpelling = PP.getSpelling(Tok, SpellingBuffer, &Invalid);
   3194   if (Invalid)
   3195     return ExprError();
   3196 
   3197   NumericLiteralParser Literal(TokSpelling, Tok.getLocation(), PP);
   3198   if (Literal.hadError)
   3199     return ExprError();
   3200 
   3201   if (Literal.hasUDSuffix()) {
   3202     // We're building a user-defined literal.
   3203     IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
   3204     SourceLocation UDSuffixLoc =
   3205       getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset());
   3206 
   3207     // Make sure we're allowed user-defined literals here.
   3208     if (!UDLScope)
   3209       return ExprError(Diag(UDSuffixLoc, diag::err_invalid_numeric_udl));
   3210 
   3211     QualType CookedTy;
   3212     if (Literal.isFloatingLiteral()) {
   3213       // C++11 [lex.ext]p4: If S contains a literal operator with parameter type
   3214       // long double, the literal is treated as a call of the form
   3215       //   operator "" X (f L)
   3216       CookedTy = Context.LongDoubleTy;
   3217     } else {
   3218       // C++11 [lex.ext]p3: If S contains a literal operator with parameter type
   3219       // unsigned long long, the literal is treated as a call of the form
   3220       //   operator "" X (n ULL)
   3221       CookedTy = Context.UnsignedLongLongTy;
   3222     }
   3223 
   3224     DeclarationName OpName =
   3225       Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
   3226     DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
   3227     OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
   3228 
   3229     SourceLocation TokLoc = Tok.getLocation();
   3230 
   3231     // Perform literal operator lookup to determine if we're building a raw
   3232     // literal or a cooked one.
   3233     LookupResult R(*this, OpName, UDSuffixLoc, LookupOrdinaryName);
   3234     switch (LookupLiteralOperator(UDLScope, R, CookedTy,
   3235                                   /*AllowRaw*/true, /*AllowTemplate*/true,
   3236                                   /*AllowStringTemplate*/false)) {
   3237     case LOLR_Error:
   3238       return ExprError();
   3239 
   3240     case LOLR_Cooked: {
   3241       Expr *Lit;
   3242       if (Literal.isFloatingLiteral()) {
   3243         Lit = BuildFloatingLiteral(*this, Literal, CookedTy, Tok.getLocation());
   3244       } else {
   3245         llvm::APInt ResultVal(Context.getTargetInfo().getLongLongWidth(), 0);
   3246         if (Literal.GetIntegerValue(ResultVal))
   3247           Diag(Tok.getLocation(), diag::err_integer_literal_too_large)
   3248               << /* Unsigned */ 1;
   3249         Lit = IntegerLiteral::Create(Context, ResultVal, CookedTy,
   3250                                      Tok.getLocation());
   3251       }
   3252       return BuildLiteralOperatorCall(R, OpNameInfo, Lit, TokLoc);
   3253     }
   3254 
   3255     case LOLR_Raw: {
   3256       // C++11 [lit.ext]p3, p4: If S contains a raw literal operator, the
   3257       // literal is treated as a call of the form
   3258       //   operator "" X ("n")
   3259       unsigned Length = Literal.getUDSuffixOffset();
   3260       QualType StrTy = Context.getConstantArrayType(
   3261           Context.CharTy.withConst(), llvm::APInt(32, Length + 1),
   3262           ArrayType::Normal, 0);
   3263       Expr *Lit = StringLiteral::Create(
   3264           Context, StringRef(TokSpelling.data(), Length), StringLiteral::Ascii,
   3265           /*Pascal*/false, StrTy, &TokLoc, 1);
   3266       return BuildLiteralOperatorCall(R, OpNameInfo, Lit, TokLoc);
   3267     }
   3268 
   3269     case LOLR_Template: {
   3270       // C++11 [lit.ext]p3, p4: Otherwise (S contains a literal operator
   3271       // template), L is treated as a call fo the form
   3272       //   operator "" X <'c1', 'c2', ... 'ck'>()
   3273       // where n is the source character sequence c1 c2 ... ck.
   3274       TemplateArgumentListInfo ExplicitArgs;
   3275       unsigned CharBits = Context.getIntWidth(Context.CharTy);
   3276       bool CharIsUnsigned = Context.CharTy->isUnsignedIntegerType();
   3277       llvm::APSInt Value(CharBits, CharIsUnsigned);
   3278       for (unsigned I = 0, N = Literal.getUDSuffixOffset(); I != N; ++I) {
   3279         Value = TokSpelling[I];
   3280         TemplateArgument Arg(Context, Value, Context.CharTy);
   3281         TemplateArgumentLocInfo ArgInfo;
   3282         ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo));
   3283       }
   3284       return BuildLiteralOperatorCall(R, OpNameInfo, None, TokLoc,
   3285                                       &ExplicitArgs);
   3286     }
   3287     case LOLR_StringTemplate:
   3288       llvm_unreachable("unexpected literal operator lookup result");
   3289     }
   3290   }
   3291 
   3292   Expr *Res;
   3293 
   3294   if (Literal.isFloatingLiteral()) {
   3295     QualType Ty;
   3296     if (Literal.isFloat)
   3297       Ty = Context.FloatTy;
   3298     else if (!Literal.isLong)
   3299       Ty = Context.DoubleTy;
   3300     else
   3301       Ty = Context.LongDoubleTy;
   3302 
   3303     Res = BuildFloatingLiteral(*this, Literal, Ty, Tok.getLocation());
   3304 
   3305     if (Ty == Context.DoubleTy) {
   3306       if (getLangOpts().SinglePrecisionConstants) {
   3307         Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).get();
   3308       } else if (getLangOpts().OpenCL &&
   3309                  !((getLangOpts().OpenCLVersion >= 120) ||
   3310                    getOpenCLOptions().cl_khr_fp64)) {
   3311         Diag(Tok.getLocation(), diag::warn_double_const_requires_fp64);
   3312         Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).get();
   3313       }
   3314     }
   3315   } else if (!Literal.isIntegerLiteral()) {
   3316     return ExprError();
   3317   } else {
   3318     QualType Ty;
   3319 
   3320     // 'long long' is a C99 or C++11 feature.
   3321     if (!getLangOpts().C99 && Literal.isLongLong) {
   3322       if (getLangOpts().CPlusPlus)
   3323         Diag(Tok.getLocation(),
   3324              getLangOpts().CPlusPlus11 ?
   3325              diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong);
   3326       else
   3327         Diag(Tok.getLocation(), diag::ext_c99_longlong);
   3328     }
   3329 
   3330     // Get the value in the widest-possible width.
   3331     unsigned MaxWidth = Context.getTargetInfo().getIntMaxTWidth();
   3332     llvm::APInt ResultVal(MaxWidth, 0);
   3333 
   3334     if (Literal.GetIntegerValue(ResultVal)) {
   3335       // If this value didn't fit into uintmax_t, error and force to ull.
   3336       Diag(Tok.getLocation(), diag::err_integer_literal_too_large)
   3337           << /* Unsigned */ 1;
   3338       Ty = Context.UnsignedLongLongTy;
   3339       assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
   3340              "long long is not intmax_t?");
   3341     } else {
   3342       // If this value fits into a ULL, try to figure out what else it fits into
   3343       // according to the rules of C99 6.4.4.1p5.
   3344 
   3345       // Octal, Hexadecimal, and integers with a U suffix are allowed to
   3346       // be an unsigned int.
   3347       bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
   3348 
   3349       // Check from smallest to largest, picking the smallest type we can.
   3350       unsigned Width = 0;
   3351 
   3352       // Microsoft specific integer suffixes are explicitly sized.
   3353       if (Literal.MicrosoftInteger) {
   3354         if (Literal.MicrosoftInteger == 8 && !Literal.isUnsigned) {
   3355           Width = 8;
   3356           Ty = Context.CharTy;
   3357         } else {
   3358           Width = Literal.MicrosoftInteger;
   3359           Ty = Context.getIntTypeForBitwidth(Width,
   3360                                              /*Signed=*/!Literal.isUnsigned);
   3361         }
   3362       }
   3363 
   3364       if (Ty.isNull() && !Literal.isLong && !Literal.isLongLong) {
   3365         // Are int/unsigned possibilities?
   3366         unsigned IntSize = Context.getTargetInfo().getIntWidth();
   3367 
   3368         // Does it fit in a unsigned int?
   3369         if (ResultVal.isIntN(IntSize)) {
   3370           // Does it fit in a signed int?
   3371           if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
   3372             Ty = Context.IntTy;
   3373           else if (AllowUnsigned)
   3374             Ty = Context.UnsignedIntTy;
   3375           Width = IntSize;
   3376         }
   3377       }
   3378 
   3379       // Are long/unsigned long possibilities?
   3380       if (Ty.isNull() && !Literal.isLongLong) {
   3381         unsigned LongSize = Context.getTargetInfo().getLongWidth();
   3382 
   3383         // Does it fit in a unsigned long?
   3384         if (ResultVal.isIntN(LongSize)) {
   3385           // Does it fit in a signed long?
   3386           if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
   3387             Ty = Context.LongTy;
   3388           else if (AllowUnsigned)
   3389             Ty = Context.UnsignedLongTy;
   3390           // Check according to the rules of C90 6.1.3.2p5. C++03 [lex.icon]p2
   3391           // is compatible.
   3392           else if (!getLangOpts().C99 && !getLangOpts().CPlusPlus11) {
   3393             const unsigned LongLongSize =
   3394                 Context.getTargetInfo().getLongLongWidth();
   3395             Diag(Tok.getLocation(),
   3396                  getLangOpts().CPlusPlus
   3397                      ? Literal.isLong
   3398                            ? diag::warn_old_implicitly_unsigned_long_cxx
   3399                            : /*C++98 UB*/ diag::
   3400                                  ext_old_implicitly_unsigned_long_cxx
   3401                      : diag::warn_old_implicitly_unsigned_long)
   3402                 << (LongLongSize > LongSize ? /*will have type 'long long'*/ 0
   3403                                             : /*will be ill-formed*/ 1);
   3404             Ty = Context.UnsignedLongTy;
   3405           }
   3406           Width = LongSize;
   3407         }
   3408       }
   3409 
   3410       // Check long long if needed.
   3411       if (Ty.isNull()) {
   3412         unsigned LongLongSize = Context.getTargetInfo().getLongLongWidth();
   3413 
   3414         // Does it fit in a unsigned long long?
   3415         if (ResultVal.isIntN(LongLongSize)) {
   3416           // Does it fit in a signed long long?
   3417           // To be compatible with MSVC, hex integer literals ending with the
   3418           // LL or i64 suffix are always signed in Microsoft mode.
   3419           if (!Literal.isUnsigned && (ResultVal[LongLongSize-1] == 0 ||
   3420               (getLangOpts().MicrosoftExt && Literal.isLongLong)))
   3421             Ty = Context.LongLongTy;
   3422           else if (AllowUnsigned)
   3423             Ty = Context.UnsignedLongLongTy;
   3424           Width = LongLongSize;
   3425         }
   3426       }
   3427 
   3428       // If we still couldn't decide a type, we probably have something that
   3429       // does not fit in a signed long long, but has no U suffix.
   3430       if (Ty.isNull()) {
   3431         Diag(Tok.getLocation(), diag::ext_integer_literal_too_large_for_signed);
   3432         Ty = Context.UnsignedLongLongTy;
   3433         Width = Context.getTargetInfo().getLongLongWidth();
   3434       }
   3435 
   3436       if (ResultVal.getBitWidth() != Width)
   3437         ResultVal = ResultVal.trunc(Width);
   3438     }
   3439     Res = IntegerLiteral::Create(Context, ResultVal, Ty, Tok.getLocation());
   3440   }
   3441 
   3442   // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
   3443   if (Literal.isImaginary)
   3444     Res = new (Context) ImaginaryLiteral(Res,
   3445                                         Context.getComplexType(Res->getType()));
   3446 
   3447   return Res;
   3448 }
   3449 
   3450 ExprResult Sema::ActOnParenExpr(SourceLocation L, SourceLocation R, Expr *E) {
   3451   assert(E && "ActOnParenExpr() missing expr");
   3452   return new (Context) ParenExpr(L, R, E);
   3453 }
   3454 
   3455 static bool CheckVecStepTraitOperandType(Sema &S, QualType T,
   3456                                          SourceLocation Loc,
   3457                                          SourceRange ArgRange) {
   3458   // [OpenCL 1.1 6.11.12] "The vec_step built-in function takes a built-in
   3459   // scalar or vector data type argument..."
   3460   // Every built-in scalar type (OpenCL 1.1 6.1.1) is either an arithmetic
   3461   // type (C99 6.2.5p18) or void.
   3462   if (!(T->isArithmeticType() || T->isVoidType() || T->isVectorType())) {
   3463     S.Diag(Loc, diag::err_vecstep_non_scalar_vector_type)
   3464       << T << ArgRange;
   3465     return true;
   3466   }
   3467 
   3468   assert((T->isVoidType() || !T->isIncompleteType()) &&
   3469          "Scalar types should always be complete");
   3470   return false;
   3471 }
   3472 
   3473 static bool CheckExtensionTraitOperandType(Sema &S, QualType T,
   3474                                            SourceLocation Loc,
   3475                                            SourceRange ArgRange,
   3476                                            UnaryExprOrTypeTrait TraitKind) {
   3477   // Invalid types must be hard errors for SFINAE in C++.
   3478   if (S.LangOpts.CPlusPlus)
   3479     return true;
   3480 
   3481   // C99 6.5.3.4p1:
   3482   if (T->isFunctionType() &&
   3483       (TraitKind == UETT_SizeOf || TraitKind == UETT_AlignOf)) {
   3484     // sizeof(function)/alignof(function) is allowed as an extension.
   3485     S.Diag(Loc, diag::ext_sizeof_alignof_function_type)
   3486       << TraitKind << ArgRange;
   3487     return false;
   3488   }
   3489 
   3490   // Allow sizeof(void)/alignof(void) as an extension, unless in OpenCL where
   3491   // this is an error (OpenCL v1.1 s6.3.k)
   3492   if (T->isVoidType()) {
   3493     unsigned DiagID = S.LangOpts.OpenCL ? diag::err_opencl_sizeof_alignof_type
   3494                                         : diag::ext_sizeof_alignof_void_type;
   3495     S.Diag(Loc, DiagID) << TraitKind << ArgRange;
   3496     return false;
   3497   }
   3498 
   3499   return true;
   3500 }
   3501 
   3502 static bool CheckObjCTraitOperandConstraints(Sema &S, QualType T,
   3503                                              SourceLocation Loc,
   3504                                              SourceRange ArgRange,
   3505                                              UnaryExprOrTypeTrait TraitKind) {
   3506   // Reject sizeof(interface) and sizeof(interface<proto>) if the
   3507   // runtime doesn't allow it.
   3508   if (!S.LangOpts.ObjCRuntime.allowsSizeofAlignof() && T->isObjCObjectType()) {
   3509     S.Diag(Loc, diag::err_sizeof_nonfragile_interface)
   3510       << T << (TraitKind == UETT_SizeOf)
   3511       << ArgRange;
   3512     return true;
   3513   }
   3514 
   3515   return false;
   3516 }
   3517 
   3518 /// \brief Check whether E is a pointer from a decayed array type (the decayed
   3519 /// pointer type is equal to T) and emit a warning if it is.
   3520 static void warnOnSizeofOnArrayDecay(Sema &S, SourceLocation Loc, QualType T,
   3521                                      Expr *E) {
   3522   // Don't warn if the operation changed the type.
   3523   if (T != E->getType())
   3524     return;
   3525 
   3526   // Now look for array decays.
   3527   ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E);
   3528   if (!ICE || ICE->getCastKind() != CK_ArrayToPointerDecay)
   3529     return;
   3530 
   3531   S.Diag(Loc, diag::warn_sizeof_array_decay) << ICE->getSourceRange()
   3532                                              << ICE->getType()
   3533                                              << ICE->getSubExpr()->getType();
   3534 }
   3535 
   3536 /// \brief Check the constraints on expression operands to unary type expression
   3537 /// and type traits.
   3538 ///
   3539 /// Completes any types necessary and validates the constraints on the operand
   3540 /// expression. The logic mostly mirrors the type-based overload, but may modify
   3541 /// the expression as it completes the type for that expression through template
   3542 /// instantiation, etc.
   3543 bool Sema::CheckUnaryExprOrTypeTraitOperand(Expr *E,
   3544                                             UnaryExprOrTypeTrait ExprKind) {
   3545   QualType ExprTy = E->getType();
   3546   assert(!ExprTy->isReferenceType());
   3547 
   3548   if (ExprKind == UETT_VecStep)
   3549     return CheckVecStepTraitOperandType(*this, ExprTy, E->getExprLoc(),
   3550                                         E->getSourceRange());
   3551 
   3552   // Whitelist some types as extensions
   3553   if (!CheckExtensionTraitOperandType(*this, ExprTy, E->getExprLoc(),
   3554                                       E->getSourceRange(), ExprKind))
   3555     return false;
   3556 
   3557   // 'alignof' applied to an expression only requires the base element type of
   3558   // the expression to be complete. 'sizeof' requires the expression's type to
   3559   // be complete (and will attempt to complete it if it's an array of unknown
   3560   // bound).
   3561   if (ExprKind == UETT_AlignOf) {
   3562     if (RequireCompleteType(E->getExprLoc(),
   3563                             Context.getBaseElementType(E->getType()),
   3564                             diag::err_sizeof_alignof_incomplete_type, ExprKind,
   3565                             E->getSourceRange()))
   3566       return true;
   3567   } else {
   3568     if (RequireCompleteExprType(E, diag::err_sizeof_alignof_incomplete_type,
   3569                                 ExprKind, E->getSourceRange()))
   3570       return true;
   3571   }
   3572 
   3573   // Completing the expression's type may have changed it.
   3574   ExprTy = E->getType();
   3575   assert(!ExprTy->isReferenceType());
   3576 
   3577   if (ExprTy->isFunctionType()) {
   3578     Diag(E->getExprLoc(), diag::err_sizeof_alignof_function_type)
   3579       << ExprKind << E->getSourceRange();
   3580     return true;
   3581   }
   3582 
   3583   // The operand for sizeof and alignof is in an unevaluated expression context,
   3584   // so side effects could result in unintended consequences.
   3585   if ((ExprKind == UETT_SizeOf || ExprKind == UETT_AlignOf) &&
   3586       ActiveTemplateInstantiations.empty() && E->HasSideEffects(Context, false))
   3587     Diag(E->getExprLoc(), diag::warn_side_effects_unevaluated_context);
   3588 
   3589   if (CheckObjCTraitOperandConstraints(*this, ExprTy, E->getExprLoc(),
   3590                                        E->getSourceRange(), ExprKind))
   3591     return true;
   3592 
   3593   if (ExprKind == UETT_SizeOf) {
   3594     if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
   3595       if (ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(DeclRef->getFoundDecl())) {
   3596         QualType OType = PVD->getOriginalType();
   3597         QualType Type = PVD->getType();
   3598         if (Type->isPointerType() && OType->isArrayType()) {
   3599           Diag(E->getExprLoc(), diag::warn_sizeof_array_param)
   3600             << Type << OType;
   3601           Diag(PVD->getLocation(), diag::note_declared_at);
   3602         }
   3603       }
   3604     }
   3605 
   3606     // Warn on "sizeof(array op x)" and "sizeof(x op array)", where the array
   3607     // decays into a pointer and returns an unintended result. This is most
   3608     // likely a typo for "sizeof(array) op x".
   3609     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E->IgnoreParens())) {
   3610       warnOnSizeofOnArrayDecay(*this, BO->getOperatorLoc(), BO->getType(),
   3611                                BO->getLHS());
   3612       warnOnSizeofOnArrayDecay(*this, BO->getOperatorLoc(), BO->getType(),
   3613                                BO->getRHS());
   3614     }
   3615   }
   3616 
   3617   return false;
   3618 }
   3619 
   3620 /// \brief Check the constraints on operands to unary expression and type
   3621 /// traits.
   3622 ///
   3623 /// This will complete any types necessary, and validate the various constraints
   3624 /// on those operands.
   3625 ///
   3626 /// The UsualUnaryConversions() function is *not* called by this routine.
   3627 /// C99 6.3.2.1p[2-4] all state:
   3628 ///   Except when it is the operand of the sizeof operator ...
   3629 ///
   3630 /// C++ [expr.sizeof]p4
   3631 ///   The lvalue-to-rvalue, array-to-pointer, and function-to-pointer
   3632 ///   standard conversions are not applied to the operand of sizeof.
   3633 ///
   3634 /// This policy is followed for all of the unary trait expressions.
   3635 bool Sema::CheckUnaryExprOrTypeTraitOperand(QualType ExprType,
   3636                                             SourceLocation OpLoc,
   3637                                             SourceRange ExprRange,
   3638                                             UnaryExprOrTypeTrait ExprKind) {
   3639   if (ExprType->isDependentType())
   3640     return false;
   3641 
   3642   // C++ [expr.sizeof]p2:
   3643   //     When applied to a reference or a reference type, the result
   3644   //     is the size of the referenced type.
   3645   // C++11 [expr.alignof]p3:
   3646   //     When alignof is applied to a reference type, the result
   3647   //     shall be the alignment of the referenced type.
   3648   if (const ReferenceType *Ref = ExprType->getAs<ReferenceType>())
   3649     ExprType = Ref->getPointeeType();
   3650 
   3651   // C11 6.5.3.4/3, C++11 [expr.alignof]p3:
   3652   //   When alignof or _Alignof is applied to an array type, the result
   3653   //   is the alignment of the element type.
   3654   if (ExprKind == UETT_AlignOf || ExprKind == UETT_OpenMPRequiredSimdAlign)
   3655     ExprType = Context.getBaseElementType(ExprType);
   3656 
   3657   if (ExprKind == UETT_VecStep)
   3658     return CheckVecStepTraitOperandType(*this, ExprType, OpLoc, ExprRange);
   3659 
   3660   // Whitelist some types as extensions
   3661   if (!CheckExtensionTraitOperandType(*this, ExprType, OpLoc, ExprRange,
   3662                                       ExprKind))
   3663     return false;
   3664 
   3665   if (RequireCompleteType(OpLoc, ExprType,
   3666                           diag::err_sizeof_alignof_incomplete_type,
   3667                           ExprKind, ExprRange))
   3668     return true;
   3669 
   3670   if (ExprType->isFunctionType()) {
   3671     Diag(OpLoc, diag::err_sizeof_alignof_function_type)
   3672       << ExprKind << ExprRange;
   3673     return true;
   3674   }
   3675 
   3676   if (CheckObjCTraitOperandConstraints(*this, ExprType, OpLoc, ExprRange,
   3677                                        ExprKind))
   3678     return true;
   3679 
   3680   return false;
   3681 }
   3682 
   3683 static bool CheckAlignOfExpr(Sema &S, Expr *E) {
   3684   E = E->IgnoreParens();
   3685 
   3686   // Cannot know anything else if the expression is dependent.
   3687   if (E->isTypeDependent())
   3688     return false;
   3689 
   3690   if (E->getObjectKind() == OK_BitField) {
   3691     S.Diag(E->getExprLoc(), diag::err_sizeof_alignof_typeof_bitfield)
   3692        << 1 << E->getSourceRange();
   3693     return true;
   3694   }
   3695 
   3696   ValueDecl *D = nullptr;
   3697   if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
   3698     D = DRE->getDecl();
   3699   } else if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
   3700     D = ME->getMemberDecl();
   3701   }
   3702 
   3703   // If it's a field, require the containing struct to have a
   3704   // complete definition so that we can compute the layout.
   3705   //
   3706   // This can happen in C++11 onwards, either by naming the member
   3707   // in a way that is not transformed into a member access expression
   3708   // (in an unevaluated operand, for instance), or by naming the member
   3709   // in a trailing-return-type.
   3710   //
   3711   // For the record, since __alignof__ on expressions is a GCC
   3712   // extension, GCC seems to permit this but always gives the
   3713   // nonsensical answer 0.
   3714   //
   3715   // We don't really need the layout here --- we could instead just
   3716   // directly check for all the appropriate alignment-lowing
   3717   // attributes --- but that would require duplicating a lot of
   3718   // logic that just isn't worth duplicating for such a marginal
   3719   // use-case.
   3720   if (FieldDecl *FD = dyn_cast_or_null<FieldDecl>(D)) {
   3721     // Fast path this check, since we at least know the record has a
   3722     // definition if we can find a member of it.
   3723     if (!FD->getParent()->isCompleteDefinition()) {
   3724       S.Diag(E->getExprLoc(), diag::err_alignof_member_of_incomplete_type)
   3725         << E->getSourceRange();
   3726       return true;
   3727     }
   3728 
   3729     // Otherwise, if it's a field, and the field doesn't have
   3730     // reference type, then it must have a complete type (or be a
   3731     // flexible array member, which we explicitly want to
   3732     // white-list anyway), which makes the following checks trivial.
   3733     if (!FD->getType()->isReferenceType())
   3734       return false;
   3735   }
   3736 
   3737   return S.CheckUnaryExprOrTypeTraitOperand(E, UETT_AlignOf);
   3738 }
   3739 
   3740 bool Sema::CheckVecStepExpr(Expr *E) {
   3741   E = E->IgnoreParens();
   3742 
   3743   // Cannot know anything else if the expression is dependent.
   3744   if (E->isTypeDependent())
   3745     return false;
   3746 
   3747   return CheckUnaryExprOrTypeTraitOperand(E, UETT_VecStep);
   3748 }
   3749 
   3750 /// \brief Build a sizeof or alignof expression given a type operand.
   3751 ExprResult
   3752 Sema::CreateUnaryExprOrTypeTraitExpr(TypeSourceInfo *TInfo,
   3753                                      SourceLocation OpLoc,
   3754                                      UnaryExprOrTypeTrait ExprKind,
   3755                                      SourceRange R) {
   3756   if (!TInfo)
   3757     return ExprError();
   3758 
   3759   QualType T = TInfo->getType();
   3760 
   3761   if (!T->isDependentType() &&
   3762       CheckUnaryExprOrTypeTraitOperand(T, OpLoc, R, ExprKind))
   3763     return ExprError();
   3764 
   3765   // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
   3766   return new (Context) UnaryExprOrTypeTraitExpr(
   3767       ExprKind, TInfo, Context.getSizeType(), OpLoc, R.getEnd());
   3768 }
   3769 
   3770 /// \brief Build a sizeof or alignof expression given an expression
   3771 /// operand.
   3772 ExprResult
   3773 Sema::CreateUnaryExprOrTypeTraitExpr(Expr *E, SourceLocation OpLoc,
   3774                                      UnaryExprOrTypeTrait ExprKind) {
   3775   ExprResult PE = CheckPlaceholderExpr(E);
   3776   if (PE.isInvalid())
   3777     return ExprError();
   3778 
   3779   E = PE.get();
   3780 
   3781   // Verify that the operand is valid.
   3782   bool isInvalid = false;
   3783   if (E->isTypeDependent()) {
   3784     // Delay type-checking for type-dependent expressions.
   3785   } else if (ExprKind == UETT_AlignOf) {
   3786     isInvalid = CheckAlignOfExpr(*this, E);
   3787   } else if (ExprKind == UETT_VecStep) {
   3788     isInvalid = CheckVecStepExpr(E);
   3789   } else if (ExprKind == UETT_OpenMPRequiredSimdAlign) {
   3790       Diag(E->getExprLoc(), diag::err_openmp_default_simd_align_expr);
   3791       isInvalid = true;
   3792   } else if (E->refersToBitField()) {  // C99 6.5.3.4p1.
   3793     Diag(E->getExprLoc(), diag::err_sizeof_alignof_typeof_bitfield) << 0;
   3794     isInvalid = true;
   3795   } else {
   3796     isInvalid = CheckUnaryExprOrTypeTraitOperand(E, UETT_SizeOf);
   3797   }
   3798 
   3799   if (isInvalid)
   3800     return ExprError();
   3801 
   3802   if (ExprKind == UETT_SizeOf && E->getType()->isVariableArrayType()) {
   3803     PE = TransformToPotentiallyEvaluated(E);
   3804     if (PE.isInvalid()) return ExprError();
   3805     E = PE.get();
   3806   }
   3807 
   3808   // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
   3809   return new (Context) UnaryExprOrTypeTraitExpr(
   3810       ExprKind, E, Context.getSizeType(), OpLoc, E->getSourceRange().getEnd());
   3811 }
   3812 
   3813 /// ActOnUnaryExprOrTypeTraitExpr - Handle @c sizeof(type) and @c sizeof @c
   3814 /// expr and the same for @c alignof and @c __alignof
   3815 /// Note that the ArgRange is invalid if isType is false.
   3816 ExprResult
   3817 Sema::ActOnUnaryExprOrTypeTraitExpr(SourceLocation OpLoc,
   3818                                     UnaryExprOrTypeTrait ExprKind, bool IsType,
   3819                                     void *TyOrEx, SourceRange ArgRange) {
   3820   // If error parsing type, ignore.
   3821   if (!TyOrEx) return ExprError();
   3822 
   3823   if (IsType) {
   3824     TypeSourceInfo *TInfo;
   3825     (void) GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrEx), &TInfo);
   3826     return CreateUnaryExprOrTypeTraitExpr(TInfo, OpLoc, ExprKind, ArgRange);
   3827   }
   3828 
   3829   Expr *ArgEx = (Expr *)TyOrEx;
   3830   ExprResult Result = CreateUnaryExprOrTypeTraitExpr(ArgEx, OpLoc, ExprKind);
   3831   return Result;
   3832 }
   3833 
   3834 static QualType CheckRealImagOperand(Sema &S, ExprResult &V, SourceLocation Loc,
   3835                                      bool IsReal) {
   3836   if (V.get()->isTypeDependent())
   3837     return S.Context.DependentTy;
   3838 
   3839   // _Real and _Imag are only l-values for normal l-values.
   3840   if (V.get()->getObjectKind() != OK_Ordinary) {
   3841     V = S.DefaultLvalueConversion(V.get());
   3842     if (V.isInvalid())
   3843       return QualType();
   3844   }
   3845 
   3846   // These operators return the element type of a complex type.
   3847   if (const ComplexType *CT = V.get()->getType()->getAs<ComplexType>())
   3848     return CT->getElementType();
   3849 
   3850   // Otherwise they pass through real integer and floating point types here.
   3851   if (V.get()->getType()->isArithmeticType())
   3852     return V.get()->getType();
   3853 
   3854   // Test for placeholders.
   3855   ExprResult PR = S.CheckPlaceholderExpr(V.get());
   3856   if (PR.isInvalid()) return QualType();
   3857   if (PR.get() != V.get()) {
   3858     V = PR;
   3859     return CheckRealImagOperand(S, V, Loc, IsReal);
   3860   }
   3861 
   3862   // Reject anything else.
   3863   S.Diag(Loc, diag::err_realimag_invalid_type) << V.get()->getType()
   3864     << (IsReal ? "__real" : "__imag");
   3865   return QualType();
   3866 }
   3867 
   3868 
   3869 
   3870 ExprResult
   3871 Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
   3872                           tok::TokenKind Kind, Expr *Input) {
   3873   UnaryOperatorKind Opc;
   3874   switch (Kind) {
   3875   default: llvm_unreachable("Unknown unary op!");
   3876   case tok::plusplus:   Opc = UO_PostInc; break;
   3877   case tok::minusminus: Opc = UO_PostDec; break;
   3878   }
   3879 
   3880   // Since this might is a postfix expression, get rid of ParenListExprs.
   3881   ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Input);
   3882   if (Result.isInvalid()) return ExprError();
   3883   Input = Result.get();
   3884 
   3885   return BuildUnaryOp(S, OpLoc, Opc, Input);
   3886 }
   3887 
   3888 /// \brief Diagnose if arithmetic on the given ObjC pointer is illegal.
   3889 ///
   3890 /// \return true on error
   3891 static bool checkArithmeticOnObjCPointer(Sema &S,
   3892                                          SourceLocation opLoc,
   3893                                          Expr *op) {
   3894   assert(op->getType()->isObjCObjectPointerType());
   3895   if (S.LangOpts.ObjCRuntime.allowsPointerArithmetic() &&
   3896       !S.LangOpts.ObjCSubscriptingLegacyRuntime)
   3897     return false;
   3898 
   3899   S.Diag(opLoc, diag::err_arithmetic_nonfragile_interface)
   3900     << op->getType()->castAs<ObjCObjectPointerType>()->getPointeeType()
   3901     << op->getSourceRange();
   3902   return true;
   3903 }
   3904 
   3905 static bool isMSPropertySubscriptExpr(Sema &S, Expr *Base) {
   3906   auto *BaseNoParens = Base->IgnoreParens();
   3907   if (auto *MSProp = dyn_cast<MSPropertyRefExpr>(BaseNoParens))
   3908     return MSProp->getPropertyDecl()->getType()->isArrayType();
   3909   return isa<MSPropertySubscriptExpr>(BaseNoParens);
   3910 }
   3911 
   3912 ExprResult
   3913 Sema::ActOnArraySubscriptExpr(Scope *S, Expr *base, SourceLocation lbLoc,
   3914                               Expr *idx, SourceLocation rbLoc) {
   3915   if (base && !base->getType().isNull() &&
   3916       base->getType()->isSpecificPlaceholderType(BuiltinType::OMPArraySection))
   3917     return ActOnOMPArraySectionExpr(base, lbLoc, idx, SourceLocation(),
   3918                                     /*Length=*/nullptr, rbLoc);
   3919 
   3920   // Since this might be a postfix expression, get rid of ParenListExprs.
   3921   if (isa<ParenListExpr>(base)) {
   3922     ExprResult result = MaybeConvertParenListExprToParenExpr(S, base);
   3923     if (result.isInvalid()) return ExprError();
   3924     base = result.get();
   3925   }
   3926 
   3927   // Handle any non-overload placeholder types in the base and index
   3928   // expressions.  We can't handle overloads here because the other
   3929   // operand might be an overloadable type, in which case the overload
   3930   // resolution for the operator overload should get the first crack
   3931   // at the overload.
   3932   bool IsMSPropertySubscript = false;
   3933   if (base->getType()->isNonOverloadPlaceholderType()) {
   3934     IsMSPropertySubscript = isMSPropertySubscriptExpr(*this, base);
   3935     if (!IsMSPropertySubscript) {
   3936       ExprResult result = CheckPlaceholderExpr(base);
   3937       if (result.isInvalid())
   3938         return ExprError();
   3939       base = result.get();
   3940     }
   3941   }
   3942   if (idx->getType()->isNonOverloadPlaceholderType()) {
   3943     ExprResult result = CheckPlaceholderExpr(idx);
   3944     if (result.isInvalid()) return ExprError();
   3945     idx = result.get();
   3946   }
   3947 
   3948   // Build an unanalyzed expression if either operand is type-dependent.
   3949   if (getLangOpts().CPlusPlus &&
   3950       (base->isTypeDependent() || idx->isTypeDependent())) {
   3951     return new (Context) ArraySubscriptExpr(base, idx, Context.DependentTy,
   3952                                             VK_LValue, OK_Ordinary, rbLoc);
   3953   }
   3954 
   3955   // MSDN, property (C++)
   3956   // https://msdn.microsoft.com/en-us/library/yhfk0thd(v=vs.120).aspx
   3957   // This attribute can also be used in the declaration of an empty array in a
   3958   // class or structure definition. For example:
   3959   // __declspec(property(get=GetX, put=PutX)) int x[];
   3960   // The above statement indicates that x[] can be used with one or more array
   3961   // indices. In this case, i=p->x[a][b] will be turned into i=p->GetX(a, b),
   3962   // and p->x[a][b] = i will be turned into p->PutX(a, b, i);
   3963   if (IsMSPropertySubscript) {
   3964     // Build MS property subscript expression if base is MS property reference
   3965     // or MS property subscript.
   3966     return new (Context) MSPropertySubscriptExpr(
   3967         base, idx, Context.PseudoObjectTy, VK_LValue, OK_Ordinary, rbLoc);
   3968   }
   3969 
   3970   // Use C++ overloaded-operator rules if either operand has record
   3971   // type.  The spec says to do this if either type is *overloadable*,
   3972   // but enum types can't declare subscript operators or conversion
   3973   // operators, so there's nothing interesting for overload resolution
   3974   // to do if there aren't any record types involved.
   3975   //
   3976   // ObjC pointers have their own subscripting logic that is not tied
   3977   // to overload resolution and so should not take this path.
   3978   if (getLangOpts().CPlusPlus &&
   3979       (base->getType()->isRecordType() ||
   3980        (!base->getType()->isObjCObjectPointerType() &&
   3981         idx->getType()->isRecordType()))) {
   3982     return CreateOverloadedArraySubscriptExpr(lbLoc, rbLoc, base, idx);
   3983   }
   3984 
   3985   return CreateBuiltinArraySubscriptExpr(base, lbLoc, idx, rbLoc);
   3986 }
   3987 
   3988 ExprResult Sema::ActOnOMPArraySectionExpr(Expr *Base, SourceLocation LBLoc,
   3989                                           Expr *LowerBound,
   3990                                           SourceLocation ColonLoc, Expr *Length,
   3991                                           SourceLocation RBLoc) {
   3992   if (Base->getType()->isPlaceholderType() &&
   3993       !Base->getType()->isSpecificPlaceholderType(
   3994           BuiltinType::OMPArraySection)) {
   3995     ExprResult Result = CheckPlaceholderExpr(Base);
   3996     if (Result.isInvalid())
   3997       return ExprError();
   3998     Base = Result.get();
   3999   }
   4000   if (LowerBound && LowerBound->getType()->isNonOverloadPlaceholderType()) {
   4001     ExprResult Result = CheckPlaceholderExpr(LowerBound);
   4002     if (Result.isInvalid())
   4003       return ExprError();
   4004     LowerBound = Result.get();
   4005   }
   4006   if (Length && Length->getType()->isNonOverloadPlaceholderType()) {
   4007     ExprResult Result = CheckPlaceholderExpr(Length);
   4008     if (Result.isInvalid())
   4009       return ExprError();
   4010     Length = Result.get();
   4011   }
   4012 
   4013   // Build an unanalyzed expression if either operand is type-dependent.
   4014   if (Base->isTypeDependent() ||
   4015       (LowerBound &&
   4016        (LowerBound->isTypeDependent() || LowerBound->isValueDependent())) ||
   4017       (Length && (Length->isTypeDependent() || Length->isValueDependent()))) {
   4018     return new (Context)
   4019         OMPArraySectionExpr(Base, LowerBound, Length, Context.DependentTy,
   4020                             VK_LValue, OK_Ordinary, ColonLoc, RBLoc);
   4021   }
   4022 
   4023   // Perform default conversions.
   4024   QualType OriginalTy = OMPArraySectionExpr::getBaseOriginalType(Base);
   4025   QualType ResultTy;
   4026   if (OriginalTy->isAnyPointerType()) {
   4027     ResultTy = OriginalTy->getPointeeType();
   4028   } else if (OriginalTy->isArrayType()) {
   4029     ResultTy = OriginalTy->getAsArrayTypeUnsafe()->getElementType();
   4030   } else {
   4031     return ExprError(
   4032         Diag(Base->getExprLoc(), diag::err_omp_typecheck_section_value)
   4033         << Base->getSourceRange());
   4034   }
   4035   // C99 6.5.2.1p1
   4036   if (LowerBound) {
   4037     auto Res = PerformOpenMPImplicitIntegerConversion(LowerBound->getExprLoc(),
   4038                                                       LowerBound);
   4039     if (Res.isInvalid())
   4040       return ExprError(Diag(LowerBound->getExprLoc(),
   4041                             diag::err_omp_typecheck_section_not_integer)
   4042                        << 0 << LowerBound->getSourceRange());
   4043     LowerBound = Res.get();
   4044 
   4045     if (LowerBound->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
   4046         LowerBound->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
   4047       Diag(LowerBound->getExprLoc(), diag::warn_omp_section_is_char)
   4048           << 0 << LowerBound->getSourceRange();
   4049   }
   4050   if (Length) {
   4051     auto Res =
   4052         PerformOpenMPImplicitIntegerConversion(Length->getExprLoc(), Length);
   4053     if (Res.isInvalid())
   4054       return ExprError(Diag(Length->getExprLoc(),
   4055                             diag::err_omp_typecheck_section_not_integer)
   4056                        << 1 << Length->getSourceRange());
   4057     Length = Res.get();
   4058 
   4059     if (Length->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
   4060         Length->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
   4061       Diag(Length->getExprLoc(), diag::warn_omp_section_is_char)
   4062           << 1 << Length->getSourceRange();
   4063   }
   4064 
   4065   // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
   4066   // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
   4067   // type. Note that functions are not objects, and that (in C99 parlance)
   4068   // incomplete types are not object types.
   4069   if (ResultTy->isFunctionType()) {
   4070     Diag(Base->getExprLoc(), diag::err_omp_section_function_type)
   4071         << ResultTy << Base->getSourceRange();
   4072     return ExprError();
   4073   }
   4074 
   4075   if (RequireCompleteType(Base->getExprLoc(), ResultTy,
   4076                           diag::err_omp_section_incomplete_type, Base))
   4077     return ExprError();
   4078 
   4079   if (LowerBound) {
   4080     llvm::APSInt LowerBoundValue;
   4081     if (LowerBound->EvaluateAsInt(LowerBoundValue, Context)) {
   4082       // OpenMP 4.0, [2.4 Array Sections]
   4083       // The lower-bound and length must evaluate to non-negative integers.
   4084       if (LowerBoundValue.isNegative()) {
   4085         Diag(LowerBound->getExprLoc(), diag::err_omp_section_negative)
   4086             << 0 << LowerBoundValue.toString(/*Radix=*/10, /*Signed=*/true)
   4087             << LowerBound->getSourceRange();
   4088         return ExprError();
   4089       }
   4090     }
   4091   }
   4092 
   4093   if (Length) {
   4094     llvm::APSInt LengthValue;
   4095     if (Length->EvaluateAsInt(LengthValue, Context)) {
   4096       // OpenMP 4.0, [2.4 Array Sections]
   4097       // The lower-bound and length must evaluate to non-negative integers.
   4098       if (LengthValue.isNegative()) {
   4099         Diag(Length->getExprLoc(), diag::err_omp_section_negative)
   4100             << 1 << LengthValue.toString(/*Radix=*/10, /*Signed=*/true)
   4101             << Length->getSourceRange();
   4102         return ExprError();
   4103       }
   4104     }
   4105   } else if (ColonLoc.isValid() &&
   4106              (OriginalTy.isNull() || (!OriginalTy->isConstantArrayType() &&
   4107                                       !OriginalTy->isVariableArrayType()))) {
   4108     // OpenMP 4.0, [2.4 Array Sections]
   4109     // When the size of the array dimension is not known, the length must be
   4110     // specified explicitly.
   4111     Diag(ColonLoc, diag::err_omp_section_length_undefined)
   4112         << (!OriginalTy.isNull() && OriginalTy->isArrayType());
   4113     return ExprError();
   4114   }
   4115 
   4116   return new (Context)
   4117       OMPArraySectionExpr(Base, LowerBound, Length, Context.OMPArraySectionTy,
   4118                           VK_LValue, OK_Ordinary, ColonLoc, RBLoc);
   4119 }
   4120 
   4121 ExprResult
   4122 Sema::CreateBuiltinArraySubscriptExpr(Expr *Base, SourceLocation LLoc,
   4123                                       Expr *Idx, SourceLocation RLoc) {
   4124   Expr *LHSExp = Base;
   4125   Expr *RHSExp = Idx;
   4126 
   4127   // Perform default conversions.
   4128   if (!LHSExp->getType()->getAs<VectorType>()) {
   4129     ExprResult Result = DefaultFunctionArrayLvalueConversion(LHSExp);
   4130     if (Result.isInvalid())
   4131       return ExprError();
   4132     LHSExp = Result.get();
   4133   }
   4134   ExprResult Result = DefaultFunctionArrayLvalueConversion(RHSExp);
   4135   if (Result.isInvalid())
   4136     return ExprError();
   4137   RHSExp = Result.get();
   4138 
   4139   QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
   4140   ExprValueKind VK = VK_LValue;
   4141   ExprObjectKind OK = OK_Ordinary;
   4142 
   4143   // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
   4144   // to the expression *((e1)+(e2)). This means the array "Base" may actually be
   4145   // in the subscript position. As a result, we need to derive the array base
   4146   // and index from the expression types.
   4147   Expr *BaseExpr, *IndexExpr;
   4148   QualType ResultType;
   4149   if (LHSTy->isDependentType() || RHSTy->isDependentType()) {
   4150     BaseExpr = LHSExp;
   4151     IndexExpr = RHSExp;
   4152     ResultType = Context.DependentTy;
   4153   } else if (const PointerType *PTy = LHSTy->getAs<PointerType>()) {
   4154     BaseExpr = LHSExp;
   4155     IndexExpr = RHSExp;
   4156     ResultType = PTy->getPointeeType();
   4157   } else if (const ObjCObjectPointerType *PTy =
   4158                LHSTy->getAs<ObjCObjectPointerType>()) {
   4159     BaseExpr = LHSExp;
   4160     IndexExpr = RHSExp;
   4161 
   4162     // Use custom logic if this should be the pseudo-object subscript
   4163     // expression.
   4164     if (!LangOpts.isSubscriptPointerArithmetic())
   4165       return BuildObjCSubscriptExpression(RLoc, BaseExpr, IndexExpr, nullptr,
   4166                                           nullptr);
   4167 
   4168     ResultType = PTy->getPointeeType();
   4169   } else if (const PointerType *PTy = RHSTy->getAs<PointerType>()) {
   4170      // Handle the uncommon case of "123[Ptr]".
   4171     BaseExpr = RHSExp;
   4172     IndexExpr = LHSExp;
   4173     ResultType = PTy->getPointeeType();
   4174   } else if (const ObjCObjectPointerType *PTy =
   4175                RHSTy->getAs<ObjCObjectPointerType>()) {
   4176      // Handle the uncommon case of "123[Ptr]".
   4177     BaseExpr = RHSExp;
   4178     IndexExpr = LHSExp;
   4179     ResultType = PTy->getPointeeType();
   4180     if (!LangOpts.isSubscriptPointerArithmetic()) {
   4181       Diag(LLoc, diag::err_subscript_nonfragile_interface)
   4182         << ResultType << BaseExpr->getSourceRange();
   4183       return ExprError();
   4184     }
   4185   } else if (const VectorType *VTy = LHSTy->getAs<VectorType>()) {
   4186     BaseExpr = LHSExp;    // vectors: V[123]
   4187     IndexExpr = RHSExp;
   4188     VK = LHSExp->getValueKind();
   4189     if (VK != VK_RValue)
   4190       OK = OK_VectorComponent;
   4191 
   4192     // FIXME: need to deal with const...
   4193     ResultType = VTy->getElementType();
   4194   } else if (LHSTy->isArrayType()) {
   4195     // If we see an array that wasn't promoted by
   4196     // DefaultFunctionArrayLvalueConversion, it must be an array that
   4197     // wasn't promoted because of the C90 rule that doesn't
   4198     // allow promoting non-lvalue arrays.  Warn, then
   4199     // force the promotion here.
   4200     Diag(LHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
   4201         LHSExp->getSourceRange();
   4202     LHSExp = ImpCastExprToType(LHSExp, Context.getArrayDecayedType(LHSTy),
   4203                                CK_ArrayToPointerDecay).get();
   4204     LHSTy = LHSExp->getType();
   4205 
   4206     BaseExpr = LHSExp;
   4207     IndexExpr = RHSExp;
   4208     ResultType = LHSTy->getAs<PointerType>()->getPointeeType();
   4209   } else if (RHSTy->isArrayType()) {
   4210     // Same as previous, except for 123[f().a] case
   4211     Diag(RHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
   4212         RHSExp->getSourceRange();
   4213     RHSExp = ImpCastExprToType(RHSExp, Context.getArrayDecayedType(RHSTy),
   4214                                CK_ArrayToPointerDecay).get();
   4215     RHSTy = RHSExp->getType();
   4216 
   4217     BaseExpr = RHSExp;
   4218     IndexExpr = LHSExp;
   4219     ResultType = RHSTy->getAs<PointerType>()->getPointeeType();
   4220   } else {
   4221     return ExprError(Diag(LLoc, diag::err_typecheck_subscript_value)
   4222        << LHSExp->getSourceRange() << RHSExp->getSourceRange());
   4223   }
   4224   // C99 6.5.2.1p1
   4225   if (!IndexExpr->getType()->isIntegerType() && !IndexExpr->isTypeDependent())
   4226     return ExprError(Diag(LLoc, diag::err_typecheck_subscript_not_integer)
   4227                      << IndexExpr->getSourceRange());
   4228 
   4229   if ((IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
   4230        IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
   4231          && !IndexExpr->isTypeDependent())
   4232     Diag(LLoc, diag::warn_subscript_is_char) << IndexExpr->getSourceRange();
   4233 
   4234   // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
   4235   // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
   4236   // type. Note that Functions are not objects, and that (in C99 parlance)
   4237   // incomplete types are not object types.
   4238   if (ResultType->isFunctionType()) {
   4239     Diag(BaseExpr->getLocStart(), diag::err_subscript_function_type)
   4240       << ResultType << BaseExpr->getSourceRange();
   4241     return ExprError();
   4242   }
   4243 
   4244   if (ResultType->isVoidType() && !getLangOpts().CPlusPlus) {
   4245     // GNU extension: subscripting on pointer to void
   4246     Diag(LLoc, diag::ext_gnu_subscript_void_type)
   4247       << BaseExpr->getSourceRange();
   4248 
   4249     // C forbids expressions of unqualified void type from being l-values.
   4250     // See IsCForbiddenLValueType.
   4251     if (!ResultType.hasQualifiers()) VK = VK_RValue;
   4252   } else if (!ResultType->isDependentType() &&
   4253       RequireCompleteType(LLoc, ResultType,
   4254                           diag::err_subscript_incomplete_type, BaseExpr))
   4255     return ExprError();
   4256 
   4257   assert(VK == VK_RValue || LangOpts.CPlusPlus ||
   4258          !ResultType.isCForbiddenLValueType());
   4259 
   4260   return new (Context)
   4261       ArraySubscriptExpr(LHSExp, RHSExp, ResultType, VK, OK, RLoc);
   4262 }
   4263 
   4264 ExprResult Sema::BuildCXXDefaultArgExpr(SourceLocation CallLoc,
   4265                                         FunctionDecl *FD,
   4266                                         ParmVarDecl *Param) {
   4267   if (Param->hasUnparsedDefaultArg()) {
   4268     Diag(CallLoc,
   4269          diag::err_use_of_default_argument_to_function_declared_later) <<
   4270       FD << cast<CXXRecordDecl>(FD->getDeclContext())->getDeclName();
   4271     Diag(UnparsedDefaultArgLocs[Param],
   4272          diag::note_default_argument_declared_here);
   4273     return ExprError();
   4274   }
   4275 
   4276   if (Param->hasUninstantiatedDefaultArg()) {
   4277     Expr *UninstExpr = Param->getUninstantiatedDefaultArg();
   4278 
   4279     EnterExpressionEvaluationContext EvalContext(*this, PotentiallyEvaluated,
   4280                                                  Param);
   4281 
   4282     // Instantiate the expression.
   4283     MultiLevelTemplateArgumentList MutiLevelArgList
   4284       = getTemplateInstantiationArgs(FD, nullptr, /*RelativeToPrimary=*/true);
   4285 
   4286     InstantiatingTemplate Inst(*this, CallLoc, Param,
   4287                                MutiLevelArgList.getInnermost());
   4288     if (Inst.isInvalid())
   4289       return ExprError();
   4290 
   4291     ExprResult Result;
   4292     {
   4293       // C++ [dcl.fct.default]p5:
   4294       //   The names in the [default argument] expression are bound, and
   4295       //   the semantic constraints are checked, at the point where the
   4296       //   default argument expression appears.
   4297       ContextRAII SavedContext(*this, FD);
   4298       LocalInstantiationScope Local(*this);
   4299       Result = SubstExpr(UninstExpr, MutiLevelArgList);
   4300     }
   4301     if (Result.isInvalid())
   4302       return ExprError();
   4303 
   4304     // Check the expression as an initializer for the parameter.
   4305     InitializedEntity Entity
   4306       = InitializedEntity::InitializeParameter(Context, Param);
   4307     InitializationKind Kind
   4308       = InitializationKind::CreateCopy(Param->getLocation(),
   4309              /*FIXME:EqualLoc*/UninstExpr->getLocStart());
   4310     Expr *ResultE = Result.getAs<Expr>();
   4311 
   4312     InitializationSequence InitSeq(*this, Entity, Kind, ResultE);
   4313     Result = InitSeq.Perform(*this, Entity, Kind, ResultE);
   4314     if (Result.isInvalid())
   4315       return ExprError();
   4316 
   4317     Expr *Arg = Result.getAs<Expr>();
   4318     CheckCompletedExpr(Arg, Param->getOuterLocStart());
   4319     // Build the default argument expression.
   4320     return CXXDefaultArgExpr::Create(Context, CallLoc, Param, Arg);
   4321   }
   4322 
   4323   // If the default expression creates temporaries, we need to
   4324   // push them to the current stack of expression temporaries so they'll
   4325   // be properly destroyed.
   4326   // FIXME: We should really be rebuilding the default argument with new
   4327   // bound temporaries; see the comment in PR5810.
   4328   // We don't need to do that with block decls, though, because
   4329   // blocks in default argument expression can never capture anything.
   4330   if (isa<ExprWithCleanups>(Param->getInit())) {
   4331     // Set the "needs cleanups" bit regardless of whether there are
   4332     // any explicit objects.
   4333     ExprNeedsCleanups = true;
   4334 
   4335     // Append all the objects to the cleanup list.  Right now, this
   4336     // should always be a no-op, because blocks in default argument
   4337     // expressions should never be able to capture anything.
   4338     assert(!cast<ExprWithCleanups>(Param->getInit())->getNumObjects() &&
   4339            "default argument expression has capturing blocks?");
   4340   }
   4341 
   4342   // We already type-checked the argument, so we know it works.
   4343   // Just mark all of the declarations in this potentially-evaluated expression
   4344   // as being "referenced".
   4345   MarkDeclarationsReferencedInExpr(Param->getDefaultArg(),
   4346                                    /*SkipLocalVariables=*/true);
   4347   return CXXDefaultArgExpr::Create(Context, CallLoc, Param);
   4348 }
   4349 
   4350 
   4351 Sema::VariadicCallType
   4352 Sema::getVariadicCallType(FunctionDecl *FDecl, const FunctionProtoType *Proto,
   4353                           Expr *Fn) {
   4354   if (Proto && Proto->isVariadic()) {
   4355     if (dyn_cast_or_null<CXXConstructorDecl>(FDecl))
   4356       return VariadicConstructor;
   4357     else if (Fn && Fn->getType()->isBlockPointerType())
   4358       return VariadicBlock;
   4359     else if (FDecl) {
   4360       if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
   4361         if (Method->isInstance())
   4362           return VariadicMethod;
   4363     } else if (Fn && Fn->getType() == Context.BoundMemberTy)
   4364       return VariadicMethod;
   4365     return VariadicFunction;
   4366   }
   4367   return VariadicDoesNotApply;
   4368 }
   4369 
   4370 namespace {
   4371 class FunctionCallCCC : public FunctionCallFilterCCC {
   4372 public:
   4373   FunctionCallCCC(Sema &SemaRef, const IdentifierInfo *FuncName,
   4374                   unsigned NumArgs, MemberExpr *ME)
   4375       : FunctionCallFilterCCC(SemaRef, NumArgs, false, ME),
   4376         FunctionName(FuncName) {}
   4377 
   4378   bool ValidateCandidate(const TypoCorrection &candidate) override {
   4379     if (!candidate.getCorrectionSpecifier() ||
   4380         candidate.getCorrectionAsIdentifierInfo() != FunctionName) {
   4381       return false;
   4382     }
   4383 
   4384     return FunctionCallFilterCCC::ValidateCandidate(candidate);
   4385   }
   4386 
   4387 private:
   4388   const IdentifierInfo *const FunctionName;
   4389 };
   4390 }
   4391 
   4392 static TypoCorrection TryTypoCorrectionForCall(Sema &S, Expr *Fn,
   4393                                                FunctionDecl *FDecl,
   4394                                                ArrayRef<Expr *> Args) {
   4395   MemberExpr *ME = dyn_cast<MemberExpr>(Fn);
   4396   DeclarationName FuncName = FDecl->getDeclName();
   4397   SourceLocation NameLoc = ME ? ME->getMemberLoc() : Fn->getLocStart();
   4398 
   4399   if (TypoCorrection Corrected = S.CorrectTypo(
   4400           DeclarationNameInfo(FuncName, NameLoc), Sema::LookupOrdinaryName,
   4401           S.getScopeForContext(S.CurContext), nullptr,
   4402           llvm::make_unique<FunctionCallCCC>(S, FuncName.getAsIdentifierInfo(),
   4403                                              Args.size(), ME),
   4404           Sema::CTK_ErrorRecovery)) {
   4405     if (NamedDecl *ND = Corrected.getCorrectionDecl()) {
   4406       if (Corrected.isOverloaded()) {
   4407         OverloadCandidateSet OCS(NameLoc, OverloadCandidateSet::CSK_Normal);
   4408         OverloadCandidateSet::iterator Best;
   4409         for (NamedDecl *CD : Corrected) {
   4410           if (FunctionDecl *FD = dyn_cast<FunctionDecl>(CD))
   4411             S.AddOverloadCandidate(FD, DeclAccessPair::make(FD, AS_none), Args,
   4412                                    OCS);
   4413         }
   4414         switch (OCS.BestViableFunction(S, NameLoc, Best)) {
   4415         case OR_Success:
   4416           ND = Best->Function;
   4417           Corrected.setCorrectionDecl(ND);
   4418           break;
   4419         default:
   4420           break;
   4421         }
   4422       }
   4423       if (isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND)) {
   4424         return Corrected;
   4425       }
   4426     }
   4427   }
   4428   return TypoCorrection();
   4429 }
   4430 
   4431 /// ConvertArgumentsForCall - Converts the arguments specified in
   4432 /// Args/NumArgs to the parameter types of the function FDecl with
   4433 /// function prototype Proto. Call is the call expression itself, and
   4434 /// Fn is the function expression. For a C++ member function, this
   4435 /// routine does not attempt to convert the object argument. Returns
   4436 /// true if the call is ill-formed.
   4437 bool
   4438 Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
   4439                               FunctionDecl *FDecl,
   4440                               const FunctionProtoType *Proto,
   4441                               ArrayRef<Expr *> Args,
   4442                               SourceLocation RParenLoc,
   4443                               bool IsExecConfig) {
   4444   // Bail out early if calling a builtin with custom typechecking.
   4445   if (FDecl)
   4446     if (unsigned ID = FDecl->getBuiltinID())
   4447       if (Context.BuiltinInfo.hasCustomTypechecking(ID))
   4448         return false;
   4449 
   4450   // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
   4451   // assignment, to the types of the corresponding parameter, ...
   4452   unsigned NumParams = Proto->getNumParams();
   4453   bool Invalid = false;
   4454   unsigned MinArgs = FDecl ? FDecl->getMinRequiredArguments() : NumParams;
   4455   unsigned FnKind = Fn->getType()->isBlockPointerType()
   4456                        ? 1 /* block */
   4457                        : (IsExecConfig ? 3 /* kernel function (exec config) */
   4458                                        : 0 /* function */);
   4459 
   4460   // If too few arguments are available (and we don't have default
   4461   // arguments for the remaining parameters), don't make the call.
   4462   if (Args.size() < NumParams) {
   4463     if (Args.size() < MinArgs) {
   4464       TypoCorrection TC;
   4465       if (FDecl && (TC = TryTypoCorrectionForCall(*this, Fn, FDecl, Args))) {
   4466         unsigned diag_id =
   4467             MinArgs == NumParams && !Proto->isVariadic()
   4468                 ? diag::err_typecheck_call_too_few_args_suggest
   4469                 : diag::err_typecheck_call_too_few_args_at_least_suggest;
   4470         diagnoseTypo(TC, PDiag(diag_id) << FnKind << MinArgs
   4471                                         << static_cast<unsigned>(Args.size())
   4472                                         << TC.getCorrectionRange());
   4473       } else if (MinArgs == 1 && FDecl && FDecl->getParamDecl(0)->getDeclName())
   4474         Diag(RParenLoc,
   4475              MinArgs == NumParams && !Proto->isVariadic()
   4476                  ? diag::err_typecheck_call_too_few_args_one
   4477                  : diag::err_typecheck_call_too_few_args_at_least_one)
   4478             << FnKind << FDecl->getParamDecl(0) << Fn->getSourceRange();
   4479       else
   4480         Diag(RParenLoc, MinArgs == NumParams && !Proto->isVariadic()
   4481                             ? diag::err_typecheck_call_too_few_args
   4482                             : diag::err_typecheck_call_too_few_args_at_least)
   4483             << FnKind << MinArgs << static_cast<unsigned>(Args.size())
   4484             << Fn->getSourceRange();
   4485 
   4486       // Emit the location of the prototype.
   4487       if (!TC && FDecl && !FDecl->getBuiltinID() && !IsExecConfig)
   4488         Diag(FDecl->getLocStart(), diag::note_callee_decl)
   4489           << FDecl;
   4490 
   4491       return true;
   4492     }
   4493     Call->setNumArgs(Context, NumParams);
   4494   }
   4495 
   4496   // If too many are passed and not variadic, error on the extras and drop
   4497   // them.
   4498   if (Args.size() > NumParams) {
   4499     if (!Proto->isVariadic()) {
   4500       TypoCorrection TC;
   4501       if (FDecl && (TC = TryTypoCorrectionForCall(*this, Fn, FDecl, Args))) {
   4502         unsigned diag_id =
   4503             MinArgs == NumParams && !Proto->isVariadic()
   4504                 ? diag::err_typecheck_call_too_many_args_suggest
   4505                 : diag::err_typecheck_call_too_many_args_at_most_suggest;
   4506         diagnoseTypo(TC, PDiag(diag_id) << FnKind << NumParams
   4507                                         << static_cast<unsigned>(Args.size())
   4508                                         << TC.getCorrectionRange());
   4509       } else if (NumParams == 1 && FDecl &&
   4510                  FDecl->getParamDecl(0)->getDeclName())
   4511         Diag(Args[NumParams]->getLocStart(),
   4512              MinArgs == NumParams
   4513                  ? diag::err_typecheck_call_too_many_args_one
   4514                  : diag::err_typecheck_call_too_many_args_at_most_one)
   4515             << FnKind << FDecl->getParamDecl(0)
   4516             << static_cast<unsigned>(Args.size()) << Fn->getSourceRange()
   4517             << SourceRange(Args[NumParams]->getLocStart(),
   4518                            Args.back()->getLocEnd());
   4519       else
   4520         Diag(Args[NumParams]->getLocStart(),
   4521              MinArgs == NumParams
   4522                  ? diag::err_typecheck_call_too_many_args
   4523                  : diag::err_typecheck_call_too_many_args_at_most)
   4524             << FnKind << NumParams << static_cast<unsigned>(Args.size())
   4525             << Fn->getSourceRange()
   4526             << SourceRange(Args[NumParams]->getLocStart(),
   4527                            Args.back()->getLocEnd());
   4528 
   4529       // Emit the location of the prototype.
   4530       if (!TC && FDecl && !FDecl->getBuiltinID() && !IsExecConfig)
   4531         Diag(FDecl->getLocStart(), diag::note_callee_decl)
   4532           << FDecl;
   4533 
   4534       // This deletes the extra arguments.
   4535       Call->setNumArgs(Context, NumParams);
   4536       return true;
   4537     }
   4538   }
   4539   SmallVector<Expr *, 8> AllArgs;
   4540   VariadicCallType CallType = getVariadicCallType(FDecl, Proto, Fn);
   4541 
   4542   Invalid = GatherArgumentsForCall(Call->getLocStart(), FDecl,
   4543                                    Proto, 0, Args, AllArgs, CallType);
   4544   if (Invalid)
   4545     return true;
   4546   unsigned TotalNumArgs = AllArgs.size();
   4547   for (unsigned i = 0; i < TotalNumArgs; ++i)
   4548     Call->setArg(i, AllArgs[i]);
   4549 
   4550   return false;
   4551 }
   4552 
   4553 bool Sema::GatherArgumentsForCall(SourceLocation CallLoc, FunctionDecl *FDecl,
   4554                                   const FunctionProtoType *Proto,
   4555                                   unsigned FirstParam, ArrayRef<Expr *> Args,
   4556                                   SmallVectorImpl<Expr *> &AllArgs,
   4557                                   VariadicCallType CallType, bool AllowExplicit,
   4558                                   bool IsListInitialization) {
   4559   unsigned NumParams = Proto->getNumParams();
   4560   bool Invalid = false;
   4561   size_t ArgIx = 0;
   4562   // Continue to check argument types (even if we have too few/many args).
   4563   for (unsigned i = FirstParam; i < NumParams; i++) {
   4564     QualType ProtoArgType = Proto->getParamType(i);
   4565 
   4566     Expr *Arg;
   4567     ParmVarDecl *Param = FDecl ? FDecl->getParamDecl(i) : nullptr;
   4568     if (ArgIx < Args.size()) {
   4569       Arg = Args[ArgIx++];
   4570 
   4571       if (RequireCompleteType(Arg->getLocStart(),
   4572                               ProtoArgType,
   4573                               diag::err_call_incomplete_argument, Arg))
   4574         return true;
   4575 
   4576       // Strip the unbridged-cast placeholder expression off, if applicable.
   4577       bool CFAudited = false;
   4578       if (Arg->getType() == Context.ARCUnbridgedCastTy &&
   4579           FDecl && FDecl->hasAttr<CFAuditedTransferAttr>() &&
   4580           (!Param || !Param->hasAttr<CFConsumedAttr>()))
   4581         Arg = stripARCUnbridgedCast(Arg);
   4582       else if (getLangOpts().ObjCAutoRefCount &&
   4583                FDecl && FDecl->hasAttr<CFAuditedTransferAttr>() &&
   4584                (!Param || !Param->hasAttr<CFConsumedAttr>()))
   4585         CFAudited = true;
   4586 
   4587       InitializedEntity Entity =
   4588           Param ? InitializedEntity::InitializeParameter(Context, Param,
   4589                                                          ProtoArgType)
   4590                 : InitializedEntity::InitializeParameter(
   4591                       Context, ProtoArgType, Proto->isParamConsumed(i));
   4592 
   4593       // Remember that parameter belongs to a CF audited API.
   4594       if (CFAudited)
   4595         Entity.setParameterCFAudited();
   4596 
   4597       ExprResult ArgE = PerformCopyInitialization(
   4598           Entity, SourceLocation(), Arg, IsListInitialization, AllowExplicit);
   4599       if (ArgE.isInvalid())
   4600         return true;
   4601 
   4602       Arg = ArgE.getAs<Expr>();
   4603     } else {
   4604       assert(Param && "can't use default arguments without a known callee");
   4605 
   4606       ExprResult ArgExpr =
   4607         BuildCXXDefaultArgExpr(CallLoc, FDecl, Param);
   4608       if (ArgExpr.isInvalid())
   4609         return true;
   4610 
   4611       Arg = ArgExpr.getAs<Expr>();
   4612     }
   4613 
   4614     // Check for array bounds violations for each argument to the call. This
   4615     // check only triggers warnings when the argument isn't a more complex Expr
   4616     // with its own checking, such as a BinaryOperator.
   4617     CheckArrayAccess(Arg);
   4618 
   4619     // Check for violations of C99 static array rules (C99 6.7.5.3p7).
   4620     CheckStaticArrayArgument(CallLoc, Param, Arg);
   4621 
   4622     AllArgs.push_back(Arg);
   4623   }
   4624 
   4625   // If this is a variadic call, handle args passed through "...".
   4626   if (CallType != VariadicDoesNotApply) {
   4627     // Assume that extern "C" functions with variadic arguments that
   4628     // return __unknown_anytype aren't *really* variadic.
   4629     if (Proto->getReturnType() == Context.UnknownAnyTy && FDecl &&
   4630         FDecl->isExternC()) {
   4631       for (Expr *A : Args.slice(ArgIx)) {
   4632         QualType paramType; // ignored
   4633         ExprResult arg = checkUnknownAnyArg(CallLoc, A, paramType);
   4634         Invalid |= arg.isInvalid();
   4635         AllArgs.push_back(arg.get());
   4636       }
   4637 
   4638     // Otherwise do argument promotion, (C99 6.5.2.2p7).
   4639     } else {
   4640       for (Expr *A : Args.slice(ArgIx)) {
   4641         ExprResult Arg = DefaultVariadicArgumentPromotion(A, CallType, FDecl);
   4642         Invalid |= Arg.isInvalid();
   4643         AllArgs.push_back(Arg.get());
   4644       }
   4645     }
   4646 
   4647     // Check for array bounds violations.
   4648     for (Expr *A : Args.slice(ArgIx))
   4649       CheckArrayAccess(A);
   4650   }
   4651   return Invalid;
   4652 }
   4653 
   4654 static void DiagnoseCalleeStaticArrayParam(Sema &S, ParmVarDecl *PVD) {
   4655   TypeLoc TL = PVD->getTypeSourceInfo()->getTypeLoc();
   4656   if (DecayedTypeLoc DTL = TL.getAs<DecayedTypeLoc>())
   4657     TL = DTL.getOriginalLoc();
   4658   if (ArrayTypeLoc ATL = TL.getAs<ArrayTypeLoc>())
   4659     S.Diag(PVD->getLocation(), diag::note_callee_static_array)
   4660       << ATL.getLocalSourceRange();
   4661 }
   4662 
   4663 /// CheckStaticArrayArgument - If the given argument corresponds to a static
   4664 /// array parameter, check that it is non-null, and that if it is formed by
   4665 /// array-to-pointer decay, the underlying array is sufficiently large.
   4666 ///
   4667 /// C99 6.7.5.3p7: If the keyword static also appears within the [ and ] of the
   4668 /// array type derivation, then for each call to the function, the value of the
   4669 /// corresponding actual argument shall provide access to the first element of
   4670 /// an array with at least as many elements as specified by the size expression.
   4671 void
   4672 Sema::CheckStaticArrayArgument(SourceLocation CallLoc,
   4673                                ParmVarDecl *Param,
   4674                                const Expr *ArgExpr) {
   4675   // Static array parameters are not supported in C++.
   4676   if (!Param || getLangOpts().CPlusPlus)
   4677     return;
   4678 
   4679   QualType OrigTy = Param->getOriginalType();
   4680 
   4681   const ArrayType *AT = Context.getAsArrayType(OrigTy);
   4682   if (!AT || AT->getSizeModifier() != ArrayType::Static)
   4683     return;
   4684 
   4685   if (ArgExpr->isNullPointerConstant(Context,
   4686                                      Expr::NPC_NeverValueDependent)) {
   4687     Diag(CallLoc, diag::warn_null_arg) << ArgExpr->getSourceRange();
   4688     DiagnoseCalleeStaticArrayParam(*this, Param);
   4689     return;
   4690   }
   4691 
   4692   const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT);
   4693   if (!CAT)
   4694     return;
   4695 
   4696   const ConstantArrayType *ArgCAT =
   4697     Context.getAsConstantArrayType(ArgExpr->IgnoreParenImpCasts()->getType());
   4698   if (!ArgCAT)
   4699     return;
   4700 
   4701   if (ArgCAT->getSize().ult(CAT->getSize())) {
   4702     Diag(CallLoc, diag::warn_static_array_too_small)
   4703       << ArgExpr->getSourceRange()
   4704       << (unsigned) ArgCAT->getSize().getZExtValue()
   4705       << (unsigned) CAT->getSize().getZExtValue();
   4706     DiagnoseCalleeStaticArrayParam(*this, Param);
   4707   }
   4708 }
   4709 
   4710 /// Given a function expression of unknown-any type, try to rebuild it
   4711 /// to have a function type.
   4712 static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *fn);
   4713 
   4714 /// Is the given type a placeholder that we need to lower out
   4715 /// immediately during argument processing?
   4716 static bool isPlaceholderToRemoveAsArg(QualType type) {
   4717   // Placeholders are never sugared.
   4718   const BuiltinType *placeholder = dyn_cast<BuiltinType>(type);
   4719   if (!placeholder) return false;
   4720 
   4721   switch (placeholder->getKind()) {
   4722   // Ignore all the non-placeholder types.
   4723 #define PLACEHOLDER_TYPE(ID, SINGLETON_ID)
   4724 #define BUILTIN_TYPE(ID, SINGLETON_ID) case BuiltinType::ID:
   4725 #include "clang/AST/BuiltinTypes.def"
   4726     return false;
   4727 
   4728   // We cannot lower out overload sets; they might validly be resolved
   4729   // by the call machinery.
   4730   case BuiltinType::Overload:
   4731     return false;
   4732 
   4733   // Unbridged casts in ARC can be handled in some call positions and
   4734   // should be left in place.
   4735   case BuiltinType::ARCUnbridgedCast:
   4736     return false;
   4737 
   4738   // Pseudo-objects should be converted as soon as possible.
   4739   case BuiltinType::PseudoObject:
   4740     return true;
   4741 
   4742   // The debugger mode could theoretically but currently does not try
   4743   // to resolve unknown-typed arguments based on known parameter types.
   4744   case BuiltinType::UnknownAny:
   4745     return true;
   4746 
   4747   // These are always invalid as call arguments and should be reported.
   4748   case BuiltinType::BoundMember:
   4749   case BuiltinType::BuiltinFn:
   4750   case BuiltinType::OMPArraySection:
   4751     return true;
   4752 
   4753   }
   4754   llvm_unreachable("bad builtin type kind");
   4755 }
   4756 
   4757 /// Check an argument list for placeholders that we won't try to
   4758 /// handle later.
   4759 static bool checkArgsForPlaceholders(Sema &S, MultiExprArg args) {
   4760   // Apply this processing to all the arguments at once instead of
   4761   // dying at the first failure.
   4762   bool hasInvalid = false;
   4763   for (size_t i = 0, e = args.size(); i != e; i++) {
   4764     if (isPlaceholderToRemoveAsArg(args[i]->getType())) {
   4765       ExprResult result = S.CheckPlaceholderExpr(args[i]);
   4766       if (result.isInvalid()) hasInvalid = true;
   4767       else args[i] = result.get();
   4768     } else if (hasInvalid) {
   4769       (void)S.CorrectDelayedTyposInExpr(args[i]);
   4770     }
   4771   }
   4772   return hasInvalid;
   4773 }
   4774 
   4775 /// If a builtin function has a pointer argument with no explicit address
   4776 /// space, than it should be able to accept a pointer to any address
   4777 /// space as input.  In order to do this, we need to replace the
   4778 /// standard builtin declaration with one that uses the same address space
   4779 /// as the call.
   4780 ///
   4781 /// \returns nullptr If this builtin is not a candidate for a rewrite i.e.
   4782 ///                  it does not contain any pointer arguments without
   4783 ///                  an address space qualifer.  Otherwise the rewritten
   4784 ///                  FunctionDecl is returned.
   4785 /// TODO: Handle pointer return types.
   4786 static FunctionDecl *rewriteBuiltinFunctionDecl(Sema *Sema, ASTContext &Context,
   4787                                                 const FunctionDecl *FDecl,
   4788                                                 MultiExprArg ArgExprs) {
   4789 
   4790   QualType DeclType = FDecl->getType();
   4791   const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(DeclType);
   4792 
   4793   if (!Context.BuiltinInfo.hasPtrArgsOrResult(FDecl->getBuiltinID()) ||
   4794       !FT || FT->isVariadic() || ArgExprs.size() != FT->getNumParams())
   4795     return nullptr;
   4796 
   4797   bool NeedsNewDecl = false;
   4798   unsigned i = 0;
   4799   SmallVector<QualType, 8> OverloadParams;
   4800 
   4801   for (QualType ParamType : FT->param_types()) {
   4802 
   4803     // Convert array arguments to pointer to simplify type lookup.
   4804     Expr *Arg = Sema->DefaultFunctionArrayLvalueConversion(ArgExprs[i++]).get();
   4805     QualType ArgType = Arg->getType();
   4806     if (!ParamType->isPointerType() ||
   4807         ParamType.getQualifiers().hasAddressSpace() ||
   4808         !ArgType->isPointerType() ||
   4809         !ArgType->getPointeeType().getQualifiers().hasAddressSpace()) {
   4810       OverloadParams.push_back(ParamType);
   4811       continue;
   4812     }
   4813 
   4814     NeedsNewDecl = true;
   4815     unsigned AS = ArgType->getPointeeType().getQualifiers().getAddressSpace();
   4816 
   4817     QualType PointeeType = ParamType->getPointeeType();
   4818     PointeeType = Context.getAddrSpaceQualType(PointeeType, AS);
   4819     OverloadParams.push_back(Context.getPointerType(PointeeType));
   4820   }
   4821 
   4822   if (!NeedsNewDecl)
   4823     return nullptr;
   4824 
   4825   FunctionProtoType::ExtProtoInfo EPI;
   4826   QualType OverloadTy = Context.getFunctionType(FT->getReturnType(),
   4827                                                 OverloadParams, EPI);
   4828   DeclContext *Parent = Context.getTranslationUnitDecl();
   4829   FunctionDecl *OverloadDecl = FunctionDecl::Create(Context, Parent,
   4830                                                     FDecl->getLocation(),
   4831                                                     FDecl->getLocation(),
   4832                                                     FDecl->getIdentifier(),
   4833                                                     OverloadTy,
   4834                                                     /*TInfo=*/nullptr,
   4835                                                     SC_Extern, false,
   4836                                                     /*hasPrototype=*/true);
   4837   SmallVector<ParmVarDecl*, 16> Params;
   4838   FT = cast<FunctionProtoType>(OverloadTy);
   4839   for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
   4840     QualType ParamType = FT->getParamType(i);
   4841     ParmVarDecl *Parm =
   4842         ParmVarDecl::Create(Context, OverloadDecl, SourceLocation(),
   4843                                 SourceLocation(), nullptr, ParamType,
   4844                                 /*TInfo=*/nullptr, SC_None, nullptr);
   4845     Parm->setScopeInfo(0, i);
   4846     Params.push_back(Parm);
   4847   }
   4848   OverloadDecl->setParams(Params);
   4849   return OverloadDecl;
   4850 }
   4851 
   4852 /// ActOnCallExpr - Handle a call to Fn with the specified array of arguments.
   4853 /// This provides the location of the left/right parens and a list of comma
   4854 /// locations.
   4855 ExprResult
   4856 Sema::ActOnCallExpr(Scope *S, Expr *Fn, SourceLocation LParenLoc,
   4857                     MultiExprArg ArgExprs, SourceLocation RParenLoc,
   4858                     Expr *ExecConfig, bool IsExecConfig) {
   4859   // Since this might be a postfix expression, get rid of ParenListExprs.
   4860   ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Fn);
   4861   if (Result.isInvalid()) return ExprError();
   4862   Fn = Result.get();
   4863 
   4864   if (checkArgsForPlaceholders(*this, ArgExprs))
   4865     return ExprError();
   4866 
   4867   if (getLangOpts().CPlusPlus) {
   4868     // If this is a pseudo-destructor expression, build the call immediately.
   4869     if (isa<CXXPseudoDestructorExpr>(Fn)) {
   4870       if (!ArgExprs.empty()) {
   4871         // Pseudo-destructor calls should not have any arguments.
   4872         Diag(Fn->getLocStart(), diag::err_pseudo_dtor_call_with_args)
   4873           << FixItHint::CreateRemoval(
   4874                                     SourceRange(ArgExprs.front()->getLocStart(),
   4875                                                 ArgExprs.back()->getLocEnd()));
   4876       }
   4877 
   4878       return new (Context)
   4879           CallExpr(Context, Fn, None, Context.VoidTy, VK_RValue, RParenLoc);
   4880     }
   4881     if (Fn->getType() == Context.PseudoObjectTy) {
   4882       ExprResult result = CheckPlaceholderExpr(Fn);
   4883       if (result.isInvalid()) return ExprError();
   4884       Fn = result.get();
   4885     }
   4886 
   4887     // Determine whether this is a dependent call inside a C++ template,
   4888     // in which case we won't do any semantic analysis now.
   4889     // FIXME: Will need to cache the results of name lookup (including ADL) in
   4890     // Fn.
   4891     bool Dependent = false;
   4892     if (Fn->isTypeDependent())
   4893       Dependent = true;
   4894     else if (Expr::hasAnyTypeDependentArguments(ArgExprs))
   4895       Dependent = true;
   4896 
   4897     if (Dependent) {
   4898       if (ExecConfig) {
   4899         return new (Context) CUDAKernelCallExpr(
   4900             Context, Fn, cast<CallExpr>(ExecConfig), ArgExprs,
   4901             Context.DependentTy, VK_RValue, RParenLoc);
   4902       } else {
   4903         return new (Context) CallExpr(
   4904             Context, Fn, ArgExprs, Context.DependentTy, VK_RValue, RParenLoc);
   4905       }
   4906     }
   4907 
   4908     // Determine whether this is a call to an object (C++ [over.call.object]).
   4909     if (Fn->getType()->isRecordType())
   4910       return BuildCallToObjectOfClassType(S, Fn, LParenLoc, ArgExprs,
   4911                                           RParenLoc);
   4912 
   4913     if (Fn->getType() == Context.UnknownAnyTy) {
   4914       ExprResult result = rebuildUnknownAnyFunction(*this, Fn);
   4915       if (result.isInvalid()) return ExprError();
   4916       Fn = result.get();
   4917     }
   4918 
   4919     if (Fn->getType() == Context.BoundMemberTy) {
   4920       return BuildCallToMemberFunction(S, Fn, LParenLoc, ArgExprs, RParenLoc);
   4921     }
   4922   }
   4923 
   4924   // Check for overloaded calls.  This can happen even in C due to extensions.
   4925   if (Fn->getType() == Context.OverloadTy) {
   4926     OverloadExpr::FindResult find = OverloadExpr::find(Fn);
   4927 
   4928     // We aren't supposed to apply this logic for if there's an '&' involved.
   4929     if (!find.HasFormOfMemberPointer) {
   4930       OverloadExpr *ovl = find.Expression;
   4931       if (isa<UnresolvedLookupExpr>(ovl)) {
   4932         UnresolvedLookupExpr *ULE = cast<UnresolvedLookupExpr>(ovl);
   4933         return BuildOverloadedCallExpr(S, Fn, ULE, LParenLoc, ArgExprs,
   4934                                        RParenLoc, ExecConfig);
   4935       } else {
   4936         return BuildCallToMemberFunction(S, Fn, LParenLoc, ArgExprs,
   4937                                          RParenLoc);
   4938       }
   4939     }
   4940   }
   4941 
   4942   // If we're directly calling a function, get the appropriate declaration.
   4943   if (Fn->getType() == Context.UnknownAnyTy) {
   4944     ExprResult result = rebuildUnknownAnyFunction(*this, Fn);
   4945     if (result.isInvalid()) return ExprError();
   4946     Fn = result.get();
   4947   }
   4948 
   4949   Expr *NakedFn = Fn->IgnoreParens();
   4950 
   4951   NamedDecl *NDecl = nullptr;
   4952   if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(NakedFn))
   4953     if (UnOp->getOpcode() == UO_AddrOf)
   4954       NakedFn = UnOp->getSubExpr()->IgnoreParens();
   4955 
   4956   if (isa<DeclRefExpr>(NakedFn)) {
   4957     NDecl = cast<DeclRefExpr>(NakedFn)->getDecl();
   4958 
   4959     FunctionDecl *FDecl = dyn_cast<FunctionDecl>(NDecl);
   4960     if (FDecl && FDecl->getBuiltinID()) {
   4961       // Rewrite the function decl for this builtin by replacing paramaters
   4962       // with no explicit address space with the address space of the arguments
   4963       // in ArgExprs.
   4964       if ((FDecl = rewriteBuiltinFunctionDecl(this, Context, FDecl, ArgExprs))) {
   4965         NDecl = FDecl;
   4966         Fn = DeclRefExpr::Create(Context, FDecl->getQualifierLoc(),
   4967                            SourceLocation(), FDecl, false,
   4968                            SourceLocation(), FDecl->getType(),
   4969                            Fn->getValueKind(), FDecl);
   4970       }
   4971     }
   4972   } else if (isa<MemberExpr>(NakedFn))
   4973     NDecl = cast<MemberExpr>(NakedFn)->getMemberDecl();
   4974 
   4975   if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(NDecl)) {
   4976     if (FD->hasAttr<EnableIfAttr>()) {
   4977       if (const EnableIfAttr *Attr = CheckEnableIf(FD, ArgExprs, true)) {
   4978         Diag(Fn->getLocStart(),
   4979              isa<CXXMethodDecl>(FD) ?
   4980                  diag::err_ovl_no_viable_member_function_in_call :
   4981                  diag::err_ovl_no_viable_function_in_call)
   4982           << FD << FD->getSourceRange();
   4983         Diag(FD->getLocation(),
   4984              diag::note_ovl_candidate_disabled_by_enable_if_attr)
   4985             << Attr->getCond()->getSourceRange() << Attr->getMessage();
   4986       }
   4987     }
   4988   }
   4989 
   4990   return BuildResolvedCallExpr(Fn, NDecl, LParenLoc, ArgExprs, RParenLoc,
   4991                                ExecConfig, IsExecConfig);
   4992 }
   4993 
   4994 /// ActOnAsTypeExpr - create a new asType (bitcast) from the arguments.
   4995 ///
   4996 /// __builtin_astype( value, dst type )
   4997 ///
   4998 ExprResult Sema::ActOnAsTypeExpr(Expr *E, ParsedType ParsedDestTy,
   4999                                  SourceLocation BuiltinLoc,
   5000                                  SourceLocation RParenLoc) {
   5001   ExprValueKind VK = VK_RValue;
   5002   ExprObjectKind OK = OK_Ordinary;
   5003   QualType DstTy = GetTypeFromParser(ParsedDestTy);
   5004   QualType SrcTy = E->getType();
   5005   if (Context.getTypeSize(DstTy) != Context.getTypeSize(SrcTy))
   5006     return ExprError(Diag(BuiltinLoc,
   5007                           diag::err_invalid_astype_of_different_size)
   5008                      << DstTy
   5009                      << SrcTy
   5010                      << E->getSourceRange());
   5011   return new (Context) AsTypeExpr(E, DstTy, VK, OK, BuiltinLoc, RParenLoc);
   5012 }
   5013 
   5014 /// ActOnConvertVectorExpr - create a new convert-vector expression from the
   5015 /// provided arguments.
   5016 ///
   5017 /// __builtin_convertvector( value, dst type )
   5018 ///
   5019 ExprResult Sema::ActOnConvertVectorExpr(Expr *E, ParsedType ParsedDestTy,
   5020                                         SourceLocation BuiltinLoc,
   5021                                         SourceLocation RParenLoc) {
   5022   TypeSourceInfo *TInfo;
   5023   GetTypeFromParser(ParsedDestTy, &TInfo);
   5024   return SemaConvertVectorExpr(E, TInfo, BuiltinLoc, RParenLoc);
   5025 }
   5026 
   5027 /// BuildResolvedCallExpr - Build a call to a resolved expression,
   5028 /// i.e. an expression not of \p OverloadTy.  The expression should
   5029 /// unary-convert to an expression of function-pointer or
   5030 /// block-pointer type.
   5031 ///
   5032 /// \param NDecl the declaration being called, if available
   5033 ExprResult
   5034 Sema::BuildResolvedCallExpr(Expr *Fn, NamedDecl *NDecl,
   5035                             SourceLocation LParenLoc,
   5036                             ArrayRef<Expr *> Args,
   5037                             SourceLocation RParenLoc,
   5038                             Expr *Config, bool IsExecConfig) {
   5039   FunctionDecl *FDecl = dyn_cast_or_null<FunctionDecl>(NDecl);
   5040   unsigned BuiltinID = (FDecl ? FDecl->getBuiltinID() : 0);
   5041 
   5042   // Promote the function operand.
   5043   // We special-case function promotion here because we only allow promoting
   5044   // builtin functions to function pointers in the callee of a call.
   5045   ExprResult Result;
   5046   if (BuiltinID &&
   5047       Fn->getType()->isSpecificBuiltinType(BuiltinType::BuiltinFn)) {
   5048     Result = ImpCastExprToType(Fn, Context.getPointerType(FDecl->getType()),
   5049                                CK_BuiltinFnToFnPtr).get();
   5050   } else {
   5051     Result = CallExprUnaryConversions(Fn);
   5052   }
   5053   if (Result.isInvalid())
   5054     return ExprError();
   5055   Fn = Result.get();
   5056 
   5057   // Make the call expr early, before semantic checks.  This guarantees cleanup
   5058   // of arguments and function on error.
   5059   CallExpr *TheCall;
   5060   if (Config)
   5061     TheCall = new (Context) CUDAKernelCallExpr(Context, Fn,
   5062                                                cast<CallExpr>(Config), Args,
   5063                                                Context.BoolTy, VK_RValue,
   5064                                                RParenLoc);
   5065   else
   5066     TheCall = new (Context) CallExpr(Context, Fn, Args, Context.BoolTy,
   5067                                      VK_RValue, RParenLoc);
   5068 
   5069   if (!getLangOpts().CPlusPlus) {
   5070     // C cannot always handle TypoExpr nodes in builtin calls and direct
   5071     // function calls as their argument checking don't necessarily handle
   5072     // dependent types properly, so make sure any TypoExprs have been
   5073     // dealt with.
   5074     ExprResult Result = CorrectDelayedTyposInExpr(TheCall);
   5075     if (!Result.isUsable()) return ExprError();
   5076     TheCall = dyn_cast<CallExpr>(Result.get());
   5077     if (!TheCall) return Result;
   5078     Args = llvm::makeArrayRef(TheCall->getArgs(), TheCall->getNumArgs());
   5079   }
   5080 
   5081   // Bail out early if calling a builtin with custom typechecking.
   5082   if (BuiltinID && Context.BuiltinInfo.hasCustomTypechecking(BuiltinID))
   5083     return CheckBuiltinFunctionCall(FDecl, BuiltinID, TheCall);
   5084 
   5085  retry:
   5086   const FunctionType *FuncT;
   5087   if (const PointerType *PT = Fn->getType()->getAs<PointerType>()) {
   5088     // C99 6.5.2.2p1 - "The expression that denotes the called function shall
   5089     // have type pointer to function".
   5090     FuncT = PT->getPointeeType()->getAs<FunctionType>();
   5091     if (!FuncT)
   5092       return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
   5093                          << Fn->getType() << Fn->getSourceRange());
   5094   } else if (const BlockPointerType *BPT =
   5095                Fn->getType()->getAs<BlockPointerType>()) {
   5096     FuncT = BPT->getPointeeType()->castAs<FunctionType>();
   5097   } else {
   5098     // Handle calls to expressions of unknown-any type.
   5099     if (Fn->getType() == Context.UnknownAnyTy) {
   5100       ExprResult rewrite = rebuildUnknownAnyFunction(*this, Fn);
   5101       if (rewrite.isInvalid()) return ExprError();
   5102       Fn = rewrite.get();
   5103       TheCall->setCallee(Fn);
   5104       goto retry;
   5105     }
   5106 
   5107     return ExprError(Diag(LParenLoc, diag::err_typecheck_call_not_function)
   5108       << Fn->getType() << Fn->getSourceRange());
   5109   }
   5110 
   5111   if (getLangOpts().CUDA) {
   5112     if (Config) {
   5113       // CUDA: Kernel calls must be to global functions
   5114       if (FDecl && !FDecl->hasAttr<CUDAGlobalAttr>())
   5115         return ExprError(Diag(LParenLoc,diag::err_kern_call_not_global_function)
   5116             << FDecl->getName() << Fn->getSourceRange());
   5117 
   5118       // CUDA: Kernel function must have 'void' return type
   5119       if (!FuncT->getReturnType()->isVoidType())
   5120         return ExprError(Diag(LParenLoc, diag::err_kern_type_not_void_return)
   5121             << Fn->getType() << Fn->getSourceRange());
   5122     } else {
   5123       // CUDA: Calls to global functions must be configured
   5124       if (FDecl && FDecl->hasAttr<CUDAGlobalAttr>())
   5125         return ExprError(Diag(LParenLoc, diag::err_global_call_not_config)
   5126             << FDecl->getName() << Fn->getSourceRange());
   5127     }
   5128   }
   5129 
   5130   // Check for a valid return type
   5131   if (CheckCallReturnType(FuncT->getReturnType(), Fn->getLocStart(), TheCall,
   5132                           FDecl))
   5133     return ExprError();
   5134 
   5135   // We know the result type of the call, set it.
   5136   TheCall->setType(FuncT->getCallResultType(Context));
   5137   TheCall->setValueKind(Expr::getValueKindForType(FuncT->getReturnType()));
   5138 
   5139   const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FuncT);
   5140   if (Proto) {
   5141     if (ConvertArgumentsForCall(TheCall, Fn, FDecl, Proto, Args, RParenLoc,
   5142                                 IsExecConfig))
   5143       return ExprError();
   5144   } else {
   5145     assert(isa<FunctionNoProtoType>(FuncT) && "Unknown FunctionType!");
   5146 
   5147     if (FDecl) {
   5148       // Check if we have too few/too many template arguments, based
   5149       // on our knowledge of the function definition.
   5150       const FunctionDecl *Def = nullptr;
   5151       if (FDecl->hasBody(Def) && Args.size() != Def->param_size()) {
   5152         Proto = Def->getType()->getAs<FunctionProtoType>();
   5153        if (!Proto || !(Proto->isVariadic() && Args.size() >= Def->param_size()))
   5154           Diag(RParenLoc, diag::warn_call_wrong_number_of_arguments)
   5155           << (Args.size() > Def->param_size()) << FDecl << Fn->getSourceRange();
   5156       }
   5157 
   5158       // If the function we're calling isn't a function prototype, but we have
   5159       // a function prototype from a prior declaratiom, use that prototype.
   5160       if (!FDecl->hasPrototype())
   5161         Proto = FDecl->getType()->getAs<FunctionProtoType>();
   5162     }
   5163 
   5164     // Promote the arguments (C99 6.5.2.2p6).
   5165     for (unsigned i = 0, e = Args.size(); i != e; i++) {
   5166       Expr *Arg = Args[i];
   5167 
   5168       if (Proto && i < Proto->getNumParams()) {
   5169         InitializedEntity Entity = InitializedEntity::InitializeParameter(
   5170             Context, Proto->getParamType(i), Proto->isParamConsumed(i));
   5171         ExprResult ArgE =
   5172             PerformCopyInitialization(Entity, SourceLocation(), Arg);
   5173         if (ArgE.isInvalid())
   5174           return true;
   5175 
   5176         Arg = ArgE.getAs<Expr>();
   5177 
   5178       } else {
   5179         ExprResult ArgE = DefaultArgumentPromotion(Arg);
   5180 
   5181         if (ArgE.isInvalid())
   5182           return true;
   5183 
   5184         Arg = ArgE.getAs<Expr>();
   5185       }
   5186 
   5187       if (RequireCompleteType(Arg->getLocStart(),
   5188                               Arg->getType(),
   5189                               diag::err_call_incomplete_argument, Arg))
   5190         return ExprError();
   5191 
   5192       TheCall->setArg(i, Arg);
   5193     }
   5194   }
   5195 
   5196   if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
   5197     if (!Method->isStatic())
   5198       return ExprError(Diag(LParenLoc, diag::err_member_call_without_object)
   5199         << Fn->getSourceRange());
   5200 
   5201   // Check for sentinels
   5202   if (NDecl)
   5203     DiagnoseSentinelCalls(NDecl, LParenLoc, Args);
   5204 
   5205   // Do special checking on direct calls to functions.
   5206   if (FDecl) {
   5207     if (CheckFunctionCall(FDecl, TheCall, Proto))
   5208       return ExprError();
   5209 
   5210     if (BuiltinID)
   5211       return CheckBuiltinFunctionCall(FDecl, BuiltinID, TheCall);
   5212   } else if (NDecl) {
   5213     if (CheckPointerCall(NDecl, TheCall, Proto))
   5214       return ExprError();
   5215   } else {
   5216     if (CheckOtherCall(TheCall, Proto))
   5217       return ExprError();
   5218   }
   5219 
   5220   return MaybeBindToTemporary(TheCall);
   5221 }
   5222 
   5223 ExprResult
   5224 Sema::ActOnCompoundLiteral(SourceLocation LParenLoc, ParsedType Ty,
   5225                            SourceLocation RParenLoc, Expr *InitExpr) {
   5226   assert(Ty && "ActOnCompoundLiteral(): missing type");
   5227   assert(InitExpr && "ActOnCompoundLiteral(): missing expression");
   5228 
   5229   TypeSourceInfo *TInfo;
   5230   QualType literalType = GetTypeFromParser(Ty, &TInfo);
   5231   if (!TInfo)
   5232     TInfo = Context.getTrivialTypeSourceInfo(literalType);
   5233 
   5234   return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, InitExpr);
   5235 }
   5236 
   5237 ExprResult
   5238 Sema::BuildCompoundLiteralExpr(SourceLocation LParenLoc, TypeSourceInfo *TInfo,
   5239                                SourceLocation RParenLoc, Expr *LiteralExpr) {
   5240   QualType literalType = TInfo->getType();
   5241 
   5242   if (literalType->isArrayType()) {
   5243     if (RequireCompleteType(LParenLoc, Context.getBaseElementType(literalType),
   5244           diag::err_illegal_decl_array_incomplete_type,
   5245           SourceRange(LParenLoc,
   5246                       LiteralExpr->getSourceRange().getEnd())))
   5247       return ExprError();
   5248     if (literalType->isVariableArrayType())
   5249       return ExprError(Diag(LParenLoc, diag::err_variable_object_no_init)
   5250         << SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd()));
   5251   } else if (!literalType->isDependentType() &&
   5252              RequireCompleteType(LParenLoc, literalType,
   5253                diag::err_typecheck_decl_incomplete_type,
   5254                SourceRange(LParenLoc, LiteralExpr->getSourceRange().getEnd())))
   5255     return ExprError();
   5256 
   5257   InitializedEntity Entity
   5258     = InitializedEntity::InitializeCompoundLiteralInit(TInfo);
   5259   InitializationKind Kind
   5260     = InitializationKind::CreateCStyleCast(LParenLoc,
   5261                                            SourceRange(LParenLoc, RParenLoc),
   5262                                            /*InitList=*/true);
   5263   InitializationSequence InitSeq(*this, Entity, Kind, LiteralExpr);
   5264   ExprResult Result = InitSeq.Perform(*this, Entity, Kind, LiteralExpr,
   5265                                       &literalType);
   5266   if (Result.isInvalid())
   5267     return ExprError();
   5268   LiteralExpr = Result.get();
   5269 
   5270   bool isFileScope = getCurFunctionOrMethodDecl() == nullptr;
   5271   if (isFileScope &&
   5272       !LiteralExpr->isTypeDependent() &&
   5273       !LiteralExpr->isValueDependent() &&
   5274       !literalType->isDependentType()) { // 6.5.2.5p3
   5275     if (CheckForConstantInitializer(LiteralExpr, literalType))
   5276       return ExprError();
   5277   }
   5278 
   5279   // In C, compound literals are l-values for some reason.
   5280   ExprValueKind VK = getLangOpts().CPlusPlus ? VK_RValue : VK_LValue;
   5281 
   5282   return MaybeBindToTemporary(
   5283            new (Context) CompoundLiteralExpr(LParenLoc, TInfo, literalType,
   5284                                              VK, LiteralExpr, isFileScope));
   5285 }
   5286 
   5287 ExprResult
   5288 Sema::ActOnInitList(SourceLocation LBraceLoc, MultiExprArg InitArgList,
   5289                     SourceLocation RBraceLoc) {
   5290   // Immediately handle non-overload placeholders.  Overloads can be
   5291   // resolved contextually, but everything else here can't.
   5292   for (unsigned I = 0, E = InitArgList.size(); I != E; ++I) {
   5293     if (InitArgList[I]->getType()->isNonOverloadPlaceholderType()) {
   5294       ExprResult result = CheckPlaceholderExpr(InitArgList[I]);
   5295 
   5296       // Ignore failures; dropping the entire initializer list because
   5297       // of one failure would be terrible for indexing/etc.
   5298       if (result.isInvalid()) continue;
   5299 
   5300       InitArgList[I] = result.get();
   5301     }
   5302   }
   5303 
   5304   // Semantic analysis for initializers is done by ActOnDeclarator() and
   5305   // CheckInitializer() - it requires knowledge of the object being intialized.
   5306 
   5307   InitListExpr *E = new (Context) InitListExpr(Context, LBraceLoc, InitArgList,
   5308                                                RBraceLoc);
   5309   E->setType(Context.VoidTy); // FIXME: just a place holder for now.
   5310   return E;
   5311 }
   5312 
   5313 /// Do an explicit extend of the given block pointer if we're in ARC.
   5314 void Sema::maybeExtendBlockObject(ExprResult &E) {
   5315   assert(E.get()->getType()->isBlockPointerType());
   5316   assert(E.get()->isRValue());
   5317 
   5318   // Only do this in an r-value context.
   5319   if (!getLangOpts().ObjCAutoRefCount) return;
   5320 
   5321   E = ImplicitCastExpr::Create(Context, E.get()->getType(),
   5322                                CK_ARCExtendBlockObject, E.get(),
   5323                                /*base path*/ nullptr, VK_RValue);
   5324   ExprNeedsCleanups = true;
   5325 }
   5326 
   5327 /// Prepare a conversion of the given expression to an ObjC object
   5328 /// pointer type.
   5329 CastKind Sema::PrepareCastToObjCObjectPointer(ExprResult &E) {
   5330   QualType type = E.get()->getType();
   5331   if (type->isObjCObjectPointerType()) {
   5332     return CK_BitCast;
   5333   } else if (type->isBlockPointerType()) {
   5334     maybeExtendBlockObject(E);
   5335     return CK_BlockPointerToObjCPointerCast;
   5336   } else {
   5337     assert(type->isPointerType());
   5338     return CK_CPointerToObjCPointerCast;
   5339   }
   5340 }
   5341 
   5342 /// Prepares for a scalar cast, performing all the necessary stages
   5343 /// except the final cast and returning the kind required.
   5344 CastKind Sema::PrepareScalarCast(ExprResult &Src, QualType DestTy) {
   5345   // Both Src and Dest are scalar types, i.e. arithmetic or pointer.
   5346   // Also, callers should have filtered out the invalid cases with
   5347   // pointers.  Everything else should be possible.
   5348 
   5349   QualType SrcTy = Src.get()->getType();
   5350   if (Context.hasSameUnqualifiedType(SrcTy, DestTy))
   5351     return CK_NoOp;
   5352 
   5353   switch (Type::ScalarTypeKind SrcKind = SrcTy->getScalarTypeKind()) {
   5354   case Type::STK_MemberPointer:
   5355     llvm_unreachable("member pointer type in C");
   5356 
   5357   case Type::STK_CPointer:
   5358   case Type::STK_BlockPointer:
   5359   case Type::STK_ObjCObjectPointer:
   5360     switch (DestTy->getScalarTypeKind()) {
   5361     case Type::STK_CPointer: {
   5362       unsigned SrcAS = SrcTy->getPointeeType().getAddressSpace();
   5363       unsigned DestAS = DestTy->getPointeeType().getAddressSpace();
   5364       if (SrcAS != DestAS)
   5365         return CK_AddressSpaceConversion;
   5366       return CK_BitCast;
   5367     }
   5368     case Type::STK_BlockPointer:
   5369       return (SrcKind == Type::STK_BlockPointer
   5370                 ? CK_BitCast : CK_AnyPointerToBlockPointerCast);
   5371     case Type::STK_ObjCObjectPointer:
   5372       if (SrcKind == Type::STK_ObjCObjectPointer)
   5373         return CK_BitCast;
   5374       if (SrcKind == Type::STK_CPointer)
   5375         return CK_CPointerToObjCPointerCast;
   5376       maybeExtendBlockObject(Src);
   5377       return CK_BlockPointerToObjCPointerCast;
   5378     case Type::STK_Bool:
   5379       return CK_PointerToBoolean;
   5380     case Type::STK_Integral:
   5381       return CK_PointerToIntegral;
   5382     case Type::STK_Floating:
   5383     case Type::STK_FloatingComplex:
   5384     case Type::STK_IntegralComplex:
   5385     case Type::STK_MemberPointer:
   5386       llvm_unreachable("illegal cast from pointer");
   5387     }
   5388     llvm_unreachable("Should have returned before this");
   5389 
   5390   case Type::STK_Bool: // casting from bool is like casting from an integer
   5391   case Type::STK_Integral:
   5392     switch (DestTy->getScalarTypeKind()) {
   5393     case Type::STK_CPointer:
   5394     case Type::STK_ObjCObjectPointer:
   5395     case Type::STK_BlockPointer:
   5396       if (Src.get()->isNullPointerConstant(Context,
   5397                                            Expr::NPC_ValueDependentIsNull))
   5398         return CK_NullToPointer;
   5399       return CK_IntegralToPointer;
   5400     case Type::STK_Bool:
   5401       return CK_IntegralToBoolean;
   5402     case Type::STK_Integral:
   5403       return CK_IntegralCast;
   5404     case Type::STK_Floating:
   5405       return CK_IntegralToFloating;
   5406     case Type::STK_IntegralComplex:
   5407       Src = ImpCastExprToType(Src.get(),
   5408                       DestTy->castAs<ComplexType>()->getElementType(),
   5409                       CK_IntegralCast);
   5410       return CK_IntegralRealToComplex;
   5411     case Type::STK_FloatingComplex:
   5412       Src = ImpCastExprToType(Src.get(),
   5413                       DestTy->castAs<ComplexType>()->getElementType(),
   5414                       CK_IntegralToFloating);
   5415       return CK_FloatingRealToComplex;
   5416     case Type::STK_MemberPointer:
   5417       llvm_unreachable("member pointer type in C");
   5418     }
   5419     llvm_unreachable("Should have returned before this");
   5420 
   5421   case Type::STK_Floating:
   5422     switch (DestTy->getScalarTypeKind()) {
   5423     case Type::STK_Floating:
   5424       return CK_FloatingCast;
   5425     case Type::STK_Bool:
   5426       return CK_FloatingToBoolean;
   5427     case Type::STK_Integral:
   5428       return CK_FloatingToIntegral;
   5429     case Type::STK_FloatingComplex:
   5430       Src = ImpCastExprToType(Src.get(),
   5431                               DestTy->castAs<ComplexType>()->getElementType(),
   5432                               CK_FloatingCast);
   5433       return CK_FloatingRealToComplex;
   5434     case Type::STK_IntegralComplex:
   5435       Src = ImpCastExprToType(Src.get(),
   5436                               DestTy->castAs<ComplexType>()->getElementType(),
   5437                               CK_FloatingToIntegral);
   5438       return CK_IntegralRealToComplex;
   5439     case Type::STK_CPointer:
   5440     case Type::STK_ObjCObjectPointer:
   5441     case Type::STK_BlockPointer:
   5442       llvm_unreachable("valid float->pointer cast?");
   5443     case Type::STK_MemberPointer:
   5444       llvm_unreachable("member pointer type in C");
   5445     }
   5446     llvm_unreachable("Should have returned before this");
   5447 
   5448   case Type::STK_FloatingComplex:
   5449     switch (DestTy->getScalarTypeKind()) {
   5450     case Type::STK_FloatingComplex:
   5451       return CK_FloatingComplexCast;
   5452     case Type::STK_IntegralComplex:
   5453       return CK_FloatingComplexToIntegralComplex;
   5454     case Type::STK_Floating: {
   5455       QualType ET = SrcTy->castAs<ComplexType>()->getElementType();
   5456       if (Context.hasSameType(ET, DestTy))
   5457         return CK_FloatingComplexToReal;
   5458       Src = ImpCastExprToType(Src.get(), ET, CK_FloatingComplexToReal);
   5459       return CK_FloatingCast;
   5460     }
   5461     case Type::STK_Bool:
   5462       return CK_FloatingComplexToBoolean;
   5463     case Type::STK_Integral:
   5464       Src = ImpCastExprToType(Src.get(),
   5465                               SrcTy->castAs<ComplexType>()->getElementType(),
   5466                               CK_FloatingComplexToReal);
   5467       return CK_FloatingToIntegral;
   5468     case Type::STK_CPointer:
   5469     case Type::STK_ObjCObjectPointer:
   5470     case Type::STK_BlockPointer:
   5471       llvm_unreachable("valid complex float->pointer cast?");
   5472     case Type::STK_MemberPointer:
   5473       llvm_unreachable("member pointer type in C");
   5474     }
   5475     llvm_unreachable("Should have returned before this");
   5476 
   5477   case Type::STK_IntegralComplex:
   5478     switch (DestTy->getScalarTypeKind()) {
   5479     case Type::STK_FloatingComplex:
   5480       return CK_IntegralComplexToFloatingComplex;
   5481     case Type::STK_IntegralComplex:
   5482       return CK_IntegralComplexCast;
   5483     case Type::STK_Integral: {
   5484       QualType ET = SrcTy->castAs<ComplexType>()->getElementType();
   5485       if (Context.hasSameType(ET, DestTy))
   5486         return CK_IntegralComplexToReal;
   5487       Src = ImpCastExprToType(Src.get(), ET, CK_IntegralComplexToReal);
   5488       return CK_IntegralCast;
   5489     }
   5490     case Type::STK_Bool:
   5491       return CK_IntegralComplexToBoolean;
   5492     case Type::STK_Floating:
   5493       Src = ImpCastExprToType(Src.get(),
   5494                               SrcTy->castAs<ComplexType>()->getElementType(),
   5495                               CK_IntegralComplexToReal);
   5496       return CK_IntegralToFloating;
   5497     case Type::STK_CPointer:
   5498     case Type::STK_ObjCObjectPointer:
   5499     case Type::STK_BlockPointer:
   5500       llvm_unreachable("valid complex int->pointer cast?");
   5501     case Type::STK_MemberPointer:
   5502       llvm_unreachable("member pointer type in C");
   5503     }
   5504     llvm_unreachable("Should have returned before this");
   5505   }
   5506 
   5507   llvm_unreachable("Unhandled scalar cast");
   5508 }
   5509 
   5510 static bool breakDownVectorType(QualType type, uint64_t &len,
   5511                                 QualType &eltType) {
   5512   // Vectors are simple.
   5513   if (const VectorType *vecType = type->getAs<VectorType>()) {
   5514     len = vecType->getNumElements();
   5515     eltType = vecType->getElementType();
   5516     assert(eltType->isScalarType());
   5517     return true;
   5518   }
   5519 
   5520   // We allow lax conversion to and from non-vector types, but only if
   5521   // they're real types (i.e. non-complex, non-pointer scalar types).
   5522   if (!type->isRealType()) return false;
   5523 
   5524   len = 1;
   5525   eltType = type;
   5526   return true;
   5527 }
   5528 
   5529 /// Are the two types lax-compatible vector types?  That is, given
   5530 /// that one of them is a vector, do they have equal storage sizes,
   5531 /// where the storage size is the number of elements times the element
   5532 /// size?
   5533 ///
   5534 /// This will also return false if either of the types is neither a
   5535 /// vector nor a real type.
   5536 bool Sema::areLaxCompatibleVectorTypes(QualType srcTy, QualType destTy) {
   5537   assert(destTy->isVectorType() || srcTy->isVectorType());
   5538 
   5539   // Disallow lax conversions between scalars and ExtVectors (these
   5540   // conversions are allowed for other vector types because common headers
   5541   // depend on them).  Most scalar OP ExtVector cases are handled by the
   5542   // splat path anyway, which does what we want (convert, not bitcast).
   5543   // What this rules out for ExtVectors is crazy things like char4*float.
   5544   if (srcTy->isScalarType() && destTy->isExtVectorType()) return false;
   5545   if (destTy->isScalarType() && srcTy->isExtVectorType()) return false;
   5546 
   5547   uint64_t srcLen, destLen;
   5548   QualType srcEltTy, destEltTy;
   5549   if (!breakDownVectorType(srcTy, srcLen, srcEltTy)) return false;
   5550   if (!breakDownVectorType(destTy, destLen, destEltTy)) return false;
   5551 
   5552   // ASTContext::getTypeSize will return the size rounded up to a
   5553   // power of 2, so instead of using that, we need to use the raw
   5554   // element size multiplied by the element count.
   5555   uint64_t srcEltSize = Context.getTypeSize(srcEltTy);
   5556   uint64_t destEltSize = Context.getTypeSize(destEltTy);
   5557 
   5558   return (srcLen * srcEltSize == destLen * destEltSize);
   5559 }
   5560 
   5561 /// Is this a legal conversion between two types, one of which is
   5562 /// known to be a vector type?
   5563 bool Sema::isLaxVectorConversion(QualType srcTy, QualType destTy) {
   5564   assert(destTy->isVectorType() || srcTy->isVectorType());
   5565 
   5566   if (!Context.getLangOpts().LaxVectorConversions)
   5567     return false;
   5568   return areLaxCompatibleVectorTypes(srcTy, destTy);
   5569 }
   5570 
   5571 bool Sema::CheckVectorCast(SourceRange R, QualType VectorTy, QualType Ty,
   5572                            CastKind &Kind) {
   5573   assert(VectorTy->isVectorType() && "Not a vector type!");
   5574 
   5575   if (Ty->isVectorType() || Ty->isIntegralType(Context)) {
   5576     if (!areLaxCompatibleVectorTypes(Ty, VectorTy))
   5577       return Diag(R.getBegin(),
   5578                   Ty->isVectorType() ?
   5579                   diag::err_invalid_conversion_between_vectors :
   5580                   diag::err_invalid_conversion_between_vector_and_integer)
   5581         << VectorTy << Ty << R;
   5582   } else
   5583     return Diag(R.getBegin(),
   5584                 diag::err_invalid_conversion_between_vector_and_scalar)
   5585       << VectorTy << Ty << R;
   5586 
   5587   Kind = CK_BitCast;
   5588   return false;
   5589 }
   5590 
   5591 ExprResult Sema::CheckExtVectorCast(SourceRange R, QualType DestTy,
   5592                                     Expr *CastExpr, CastKind &Kind) {
   5593   assert(DestTy->isExtVectorType() && "Not an extended vector type!");
   5594 
   5595   QualType SrcTy = CastExpr->getType();
   5596 
   5597   // If SrcTy is a VectorType, the total size must match to explicitly cast to
   5598   // an ExtVectorType.
   5599   // In OpenCL, casts between vectors of different types are not allowed.
   5600   // (See OpenCL 6.2).
   5601   if (SrcTy->isVectorType()) {
   5602     if (!areLaxCompatibleVectorTypes(SrcTy, DestTy)
   5603         || (getLangOpts().OpenCL &&
   5604             (DestTy.getCanonicalType() != SrcTy.getCanonicalType()))) {
   5605       Diag(R.getBegin(),diag::err_invalid_conversion_between_ext_vectors)
   5606         << DestTy << SrcTy << R;
   5607       return ExprError();
   5608     }
   5609     Kind = CK_BitCast;
   5610     return CastExpr;
   5611   }
   5612 
   5613   // All non-pointer scalars can be cast to ExtVector type.  The appropriate
   5614   // conversion will take place first from scalar to elt type, and then
   5615   // splat from elt type to vector.
   5616   if (SrcTy->isPointerType())
   5617     return Diag(R.getBegin(),
   5618                 diag::err_invalid_conversion_between_vector_and_scalar)
   5619       << DestTy << SrcTy << R;
   5620 
   5621   QualType DestElemTy = DestTy->getAs<ExtVectorType>()->getElementType();
   5622   ExprResult CastExprRes = CastExpr;
   5623   CastKind CK = PrepareScalarCast(CastExprRes, DestElemTy);
   5624   if (CastExprRes.isInvalid())
   5625     return ExprError();
   5626   CastExpr = ImpCastExprToType(CastExprRes.get(), DestElemTy, CK).get();
   5627 
   5628   Kind = CK_VectorSplat;
   5629   return CastExpr;
   5630 }
   5631 
   5632 ExprResult
   5633 Sema::ActOnCastExpr(Scope *S, SourceLocation LParenLoc,
   5634                     Declarator &D, ParsedType &Ty,
   5635                     SourceLocation RParenLoc, Expr *CastExpr) {
   5636   assert(!D.isInvalidType() && (CastExpr != nullptr) &&
   5637          "ActOnCastExpr(): missing type or expr");
   5638 
   5639   TypeSourceInfo *castTInfo = GetTypeForDeclaratorCast(D, CastExpr->getType());
   5640   if (D.isInvalidType())
   5641     return ExprError();
   5642 
   5643   if (getLangOpts().CPlusPlus) {
   5644     // Check that there are no default arguments (C++ only).
   5645     CheckExtraCXXDefaultArguments(D);
   5646   } else {
   5647     // Make sure any TypoExprs have been dealt with.
   5648     ExprResult Res = CorrectDelayedTyposInExpr(CastExpr);
   5649     if (!Res.isUsable())
   5650       return ExprError();
   5651     CastExpr = Res.get();
   5652   }
   5653 
   5654   checkUnusedDeclAttributes(D);
   5655 
   5656   QualType castType = castTInfo->getType();
   5657   Ty = CreateParsedType(castType, castTInfo);
   5658 
   5659   bool isVectorLiteral = false;
   5660 
   5661   // Check for an altivec or OpenCL literal,
   5662   // i.e. all the elements are integer constants.
   5663   ParenExpr *PE = dyn_cast<ParenExpr>(CastExpr);
   5664   ParenListExpr *PLE = dyn_cast<ParenListExpr>(CastExpr);
   5665   if ((getLangOpts().AltiVec || getLangOpts().ZVector || getLangOpts().OpenCL)
   5666        && castType->isVectorType() && (PE || PLE)) {
   5667     if (PLE && PLE->getNumExprs() == 0) {
   5668       Diag(PLE->getExprLoc(), diag::err_altivec_empty_initializer);
   5669       return ExprError();
   5670     }
   5671     if (PE || PLE->getNumExprs() == 1) {
   5672       Expr *E = (PE ? PE->getSubExpr() : PLE->getExpr(0));
   5673       if (!E->getType()->isVectorType())
   5674         isVectorLiteral = true;
   5675     }
   5676     else
   5677       isVectorLiteral = true;
   5678   }
   5679 
   5680   // If this is a vector initializer, '(' type ')' '(' init, ..., init ')'
   5681   // then handle it as such.
   5682   if (isVectorLiteral)
   5683     return BuildVectorLiteral(LParenLoc, RParenLoc, CastExpr, castTInfo);
   5684 
   5685   // If the Expr being casted is a ParenListExpr, handle it specially.
   5686   // This is not an AltiVec-style cast, so turn the ParenListExpr into a
   5687   // sequence of BinOp comma operators.
   5688   if (isa<ParenListExpr>(CastExpr)) {
   5689     ExprResult Result = MaybeConvertParenListExprToParenExpr(S, CastExpr);
   5690     if (Result.isInvalid()) return ExprError();
   5691     CastExpr = Result.get();
   5692   }
   5693 
   5694   if (getLangOpts().CPlusPlus && !castType->isVoidType() &&
   5695       !getSourceManager().isInSystemMacro(LParenLoc))
   5696     Diag(LParenLoc, diag::warn_old_style_cast) << CastExpr->getSourceRange();
   5697 
   5698   CheckTollFreeBridgeCast(castType, CastExpr);
   5699 
   5700   CheckObjCBridgeRelatedCast(castType, CastExpr);
   5701 
   5702   return BuildCStyleCastExpr(LParenLoc, castTInfo, RParenLoc, CastExpr);
   5703 }
   5704 
   5705 ExprResult Sema::BuildVectorLiteral(SourceLocation LParenLoc,
   5706                                     SourceLocation RParenLoc, Expr *E,
   5707                                     TypeSourceInfo *TInfo) {
   5708   assert((isa<ParenListExpr>(E) || isa<ParenExpr>(E)) &&
   5709          "Expected paren or paren list expression");
   5710 
   5711   Expr **exprs;
   5712   unsigned numExprs;
   5713   Expr *subExpr;
   5714   SourceLocation LiteralLParenLoc, LiteralRParenLoc;
   5715   if (ParenListExpr *PE = dyn_cast<ParenListExpr>(E)) {
   5716     LiteralLParenLoc = PE->getLParenLoc();
   5717     LiteralRParenLoc = PE->getRParenLoc();
   5718     exprs = PE->getExprs();
   5719     numExprs = PE->getNumExprs();
   5720   } else { // isa<ParenExpr> by assertion at function entrance
   5721     LiteralLParenLoc = cast<ParenExpr>(E)->getLParen();
   5722     LiteralRParenLoc = cast<ParenExpr>(E)->getRParen();
   5723     subExpr = cast<ParenExpr>(E)->getSubExpr();
   5724     exprs = &subExpr;
   5725     numExprs = 1;
   5726   }
   5727 
   5728   QualType Ty = TInfo->getType();
   5729   assert(Ty->isVectorType() && "Expected vector type");
   5730 
   5731   SmallVector<Expr *, 8> initExprs;
   5732   const VectorType *VTy = Ty->getAs<VectorType>();
   5733   unsigned numElems = Ty->getAs<VectorType>()->getNumElements();
   5734 
   5735   // '(...)' form of vector initialization in AltiVec: the number of
   5736   // initializers must be one or must match the size of the vector.
   5737   // If a single value is specified in the initializer then it will be
   5738   // replicated to all the components of the vector
   5739   if (VTy->getVectorKind() == VectorType::AltiVecVector) {
   5740     // The number of initializers must be one or must match the size of the
   5741     // vector. If a single value is specified in the initializer then it will
   5742     // be replicated to all the components of the vector
   5743     if (numExprs == 1) {
   5744       QualType ElemTy = Ty->getAs<VectorType>()->getElementType();
   5745       ExprResult Literal = DefaultLvalueConversion(exprs[0]);
   5746       if (Literal.isInvalid())
   5747         return ExprError();
   5748       Literal = ImpCastExprToType(Literal.get(), ElemTy,
   5749                                   PrepareScalarCast(Literal, ElemTy));
   5750       return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.get());
   5751     }
   5752     else if (numExprs < numElems) {
   5753       Diag(E->getExprLoc(),
   5754            diag::err_incorrect_number_of_vector_initializers);
   5755       return ExprError();
   5756     }
   5757     else
   5758       initExprs.append(exprs, exprs + numExprs);
   5759   }
   5760   else {
   5761     // For OpenCL, when the number of initializers is a single value,
   5762     // it will be replicated to all components of the vector.
   5763     if (getLangOpts().OpenCL &&
   5764         VTy->getVectorKind() == VectorType::GenericVector &&
   5765         numExprs == 1) {
   5766         QualType ElemTy = Ty->getAs<VectorType>()->getElementType();
   5767         ExprResult Literal = DefaultLvalueConversion(exprs[0]);
   5768         if (Literal.isInvalid())
   5769           return ExprError();
   5770         Literal = ImpCastExprToType(Literal.get(), ElemTy,
   5771                                     PrepareScalarCast(Literal, ElemTy));
   5772         return BuildCStyleCastExpr(LParenLoc, TInfo, RParenLoc, Literal.get());
   5773     }
   5774 
   5775     initExprs.append(exprs, exprs + numExprs);
   5776   }
   5777   // FIXME: This means that pretty-printing the final AST will produce curly
   5778   // braces instead of the original commas.
   5779   InitListExpr *initE = new (Context) InitListExpr(Context, LiteralLParenLoc,
   5780                                                    initExprs, LiteralRParenLoc);
   5781   initE->setType(Ty);
   5782   return BuildCompoundLiteralExpr(LParenLoc, TInfo, RParenLoc, initE);
   5783 }
   5784 
   5785 /// This is not an AltiVec-style cast or or C++ direct-initialization, so turn
   5786 /// the ParenListExpr into a sequence of comma binary operators.
   5787 ExprResult
   5788 Sema::MaybeConvertParenListExprToParenExpr(Scope *S, Expr *OrigExpr) {
   5789   ParenListExpr *E = dyn_cast<ParenListExpr>(OrigExpr);
   5790   if (!E)
   5791     return OrigExpr;
   5792 
   5793   ExprResult Result(E->getExpr(0));
   5794 
   5795   for (unsigned i = 1, e = E->getNumExprs(); i != e && !Result.isInvalid(); ++i)
   5796     Result = ActOnBinOp(S, E->getExprLoc(), tok::comma, Result.get(),
   5797                         E->getExpr(i));
   5798 
   5799   if (Result.isInvalid()) return ExprError();
   5800 
   5801   return ActOnParenExpr(E->getLParenLoc(), E->getRParenLoc(), Result.get());
   5802 }
   5803 
   5804 ExprResult Sema::ActOnParenListExpr(SourceLocation L,
   5805                                     SourceLocation R,
   5806                                     MultiExprArg Val) {
   5807   Expr *expr = new (Context) ParenListExpr(Context, L, Val, R);
   5808   return expr;
   5809 }
   5810 
   5811 /// \brief Emit a specialized diagnostic when one expression is a null pointer
   5812 /// constant and the other is not a pointer.  Returns true if a diagnostic is
   5813 /// emitted.
   5814 bool Sema::DiagnoseConditionalForNull(Expr *LHSExpr, Expr *RHSExpr,
   5815                                       SourceLocation QuestionLoc) {
   5816   Expr *NullExpr = LHSExpr;
   5817   Expr *NonPointerExpr = RHSExpr;
   5818   Expr::NullPointerConstantKind NullKind =
   5819       NullExpr->isNullPointerConstant(Context,
   5820                                       Expr::NPC_ValueDependentIsNotNull);
   5821 
   5822   if (NullKind == Expr::NPCK_NotNull) {
   5823     NullExpr = RHSExpr;
   5824     NonPointerExpr = LHSExpr;
   5825     NullKind =
   5826         NullExpr->isNullPointerConstant(Context,
   5827                                         Expr::NPC_ValueDependentIsNotNull);
   5828   }
   5829 
   5830   if (NullKind == Expr::NPCK_NotNull)
   5831     return false;
   5832 
   5833   if (NullKind == Expr::NPCK_ZeroExpression)
   5834     return false;
   5835 
   5836   if (NullKind == Expr::NPCK_ZeroLiteral) {
   5837     // In this case, check to make sure that we got here from a "NULL"
   5838     // string in the source code.
   5839     NullExpr = NullExpr->IgnoreParenImpCasts();
   5840     SourceLocation loc = NullExpr->getExprLoc();
   5841     if (!findMacroSpelling(loc, "NULL"))
   5842       return false;
   5843   }
   5844 
   5845   int DiagType = (NullKind == Expr::NPCK_CXX11_nullptr);
   5846   Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands_null)
   5847       << NonPointerExpr->getType() << DiagType
   5848       << NonPointerExpr->getSourceRange();
   5849   return true;
   5850 }
   5851 
   5852 /// \brief Return false if the condition expression is valid, true otherwise.
   5853 static bool checkCondition(Sema &S, Expr *Cond, SourceLocation QuestionLoc) {
   5854   QualType CondTy = Cond->getType();
   5855 
   5856   // OpenCL v1.1 s6.3.i says the condition cannot be a floating point type.
   5857   if (S.getLangOpts().OpenCL && CondTy->isFloatingType()) {
   5858     S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_nonfloat)
   5859       << CondTy << Cond->getSourceRange();
   5860     return true;
   5861   }
   5862 
   5863   // C99 6.5.15p2
   5864   if (CondTy->isScalarType()) return false;
   5865 
   5866   S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_scalar)
   5867     << CondTy << Cond->getSourceRange();
   5868   return true;
   5869 }
   5870 
   5871 /// \brief Handle when one or both operands are void type.
   5872 static QualType checkConditionalVoidType(Sema &S, ExprResult &LHS,
   5873                                          ExprResult &RHS) {
   5874     Expr *LHSExpr = LHS.get();
   5875     Expr *RHSExpr = RHS.get();
   5876 
   5877     if (!LHSExpr->getType()->isVoidType())
   5878       S.Diag(RHSExpr->getLocStart(), diag::ext_typecheck_cond_one_void)
   5879         << RHSExpr->getSourceRange();
   5880     if (!RHSExpr->getType()->isVoidType())
   5881       S.Diag(LHSExpr->getLocStart(), diag::ext_typecheck_cond_one_void)
   5882         << LHSExpr->getSourceRange();
   5883     LHS = S.ImpCastExprToType(LHS.get(), S.Context.VoidTy, CK_ToVoid);
   5884     RHS = S.ImpCastExprToType(RHS.get(), S.Context.VoidTy, CK_ToVoid);
   5885     return S.Context.VoidTy;
   5886 }
   5887 
   5888 /// \brief Return false if the NullExpr can be promoted to PointerTy,
   5889 /// true otherwise.
   5890 static bool checkConditionalNullPointer(Sema &S, ExprResult &NullExpr,
   5891                                         QualType PointerTy) {
   5892   if ((!PointerTy->isAnyPointerType() && !PointerTy->isBlockPointerType()) ||
   5893       !NullExpr.get()->isNullPointerConstant(S.Context,
   5894                                             Expr::NPC_ValueDependentIsNull))
   5895     return true;
   5896 
   5897   NullExpr = S.ImpCastExprToType(NullExpr.get(), PointerTy, CK_NullToPointer);
   5898   return false;
   5899 }
   5900 
   5901 /// \brief Checks compatibility between two pointers and return the resulting
   5902 /// type.
   5903 static QualType checkConditionalPointerCompatibility(Sema &S, ExprResult &LHS,
   5904                                                      ExprResult &RHS,
   5905                                                      SourceLocation Loc) {
   5906   QualType LHSTy = LHS.get()->getType();
   5907   QualType RHSTy = RHS.get()->getType();
   5908 
   5909   if (S.Context.hasSameType(LHSTy, RHSTy)) {
   5910     // Two identical pointers types are always compatible.
   5911     return LHSTy;
   5912   }
   5913 
   5914   QualType lhptee, rhptee;
   5915 
   5916   // Get the pointee types.
   5917   bool IsBlockPointer = false;
   5918   if (const BlockPointerType *LHSBTy = LHSTy->getAs<BlockPointerType>()) {
   5919     lhptee = LHSBTy->getPointeeType();
   5920     rhptee = RHSTy->castAs<BlockPointerType>()->getPointeeType();
   5921     IsBlockPointer = true;
   5922   } else {
   5923     lhptee = LHSTy->castAs<PointerType>()->getPointeeType();
   5924     rhptee = RHSTy->castAs<PointerType>()->getPointeeType();
   5925   }
   5926 
   5927   // C99 6.5.15p6: If both operands are pointers to compatible types or to
   5928   // differently qualified versions of compatible types, the result type is
   5929   // a pointer to an appropriately qualified version of the composite
   5930   // type.
   5931 
   5932   // Only CVR-qualifiers exist in the standard, and the differently-qualified
   5933   // clause doesn't make sense for our extensions. E.g. address space 2 should
   5934   // be incompatible with address space 3: they may live on different devices or
   5935   // anything.
   5936   Qualifiers lhQual = lhptee.getQualifiers();
   5937   Qualifiers rhQual = rhptee.getQualifiers();
   5938 
   5939   unsigned MergedCVRQual = lhQual.getCVRQualifiers() | rhQual.getCVRQualifiers();
   5940   lhQual.removeCVRQualifiers();
   5941   rhQual.removeCVRQualifiers();
   5942 
   5943   lhptee = S.Context.getQualifiedType(lhptee.getUnqualifiedType(), lhQual);
   5944   rhptee = S.Context.getQualifiedType(rhptee.getUnqualifiedType(), rhQual);
   5945 
   5946   QualType CompositeTy = S.Context.mergeTypes(lhptee, rhptee);
   5947 
   5948   if (CompositeTy.isNull()) {
   5949     S.Diag(Loc, diag::ext_typecheck_cond_incompatible_pointers)
   5950       << LHSTy << RHSTy << LHS.get()->getSourceRange()
   5951       << RHS.get()->getSourceRange();
   5952     // In this situation, we assume void* type. No especially good
   5953     // reason, but this is what gcc does, and we do have to pick
   5954     // to get a consistent AST.
   5955     QualType incompatTy = S.Context.getPointerType(S.Context.VoidTy);
   5956     LHS = S.ImpCastExprToType(LHS.get(), incompatTy, CK_BitCast);
   5957     RHS = S.ImpCastExprToType(RHS.get(), incompatTy, CK_BitCast);
   5958     return incompatTy;
   5959   }
   5960 
   5961   // The pointer types are compatible.
   5962   QualType ResultTy = CompositeTy.withCVRQualifiers(MergedCVRQual);
   5963   if (IsBlockPointer)
   5964     ResultTy = S.Context.getBlockPointerType(ResultTy);
   5965   else
   5966     ResultTy = S.Context.getPointerType(ResultTy);
   5967 
   5968   LHS = S.ImpCastExprToType(LHS.get(), ResultTy, CK_BitCast);
   5969   RHS = S.ImpCastExprToType(RHS.get(), ResultTy, CK_BitCast);
   5970   return ResultTy;
   5971 }
   5972 
   5973 /// \brief Return the resulting type when the operands are both block pointers.
   5974 static QualType checkConditionalBlockPointerCompatibility(Sema &S,
   5975                                                           ExprResult &LHS,
   5976                                                           ExprResult &RHS,
   5977                                                           SourceLocation Loc) {
   5978   QualType LHSTy = LHS.get()->getType();
   5979   QualType RHSTy = RHS.get()->getType();
   5980 
   5981   if (!LHSTy->isBlockPointerType() || !RHSTy->isBlockPointerType()) {
   5982     if (LHSTy->isVoidPointerType() || RHSTy->isVoidPointerType()) {
   5983       QualType destType = S.Context.getPointerType(S.Context.VoidTy);
   5984       LHS = S.ImpCastExprToType(LHS.get(), destType, CK_BitCast);
   5985       RHS = S.ImpCastExprToType(RHS.get(), destType, CK_BitCast);
   5986       return destType;
   5987     }
   5988     S.Diag(Loc, diag::err_typecheck_cond_incompatible_operands)
   5989       << LHSTy << RHSTy << LHS.get()->getSourceRange()
   5990       << RHS.get()->getSourceRange();
   5991     return QualType();
   5992   }
   5993 
   5994   // We have 2 block pointer types.
   5995   return checkConditionalPointerCompatibility(S, LHS, RHS, Loc);
   5996 }
   5997 
   5998 /// \brief Return the resulting type when the operands are both pointers.
   5999 static QualType
   6000 checkConditionalObjectPointersCompatibility(Sema &S, ExprResult &LHS,
   6001                                             ExprResult &RHS,
   6002                                             SourceLocation Loc) {
   6003   // get the pointer types
   6004   QualType LHSTy = LHS.get()->getType();
   6005   QualType RHSTy = RHS.get()->getType();
   6006 
   6007   // get the "pointed to" types
   6008   QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
   6009   QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
   6010 
   6011   // ignore qualifiers on void (C99 6.5.15p3, clause 6)
   6012   if (lhptee->isVoidType() && rhptee->isIncompleteOrObjectType()) {
   6013     // Figure out necessary qualifiers (C99 6.5.15p6)
   6014     QualType destPointee
   6015       = S.Context.getQualifiedType(lhptee, rhptee.getQualifiers());
   6016     QualType destType = S.Context.getPointerType(destPointee);
   6017     // Add qualifiers if necessary.
   6018     LHS = S.ImpCastExprToType(LHS.get(), destType, CK_NoOp);
   6019     // Promote to void*.
   6020     RHS = S.ImpCastExprToType(RHS.get(), destType, CK_BitCast);
   6021     return destType;
   6022   }
   6023   if (rhptee->isVoidType() && lhptee->isIncompleteOrObjectType()) {
   6024     QualType destPointee
   6025       = S.Context.getQualifiedType(rhptee, lhptee.getQualifiers());
   6026     QualType destType = S.Context.getPointerType(destPointee);
   6027     // Add qualifiers if necessary.
   6028     RHS = S.ImpCastExprToType(RHS.get(), destType, CK_NoOp);
   6029     // Promote to void*.
   6030     LHS = S.ImpCastExprToType(LHS.get(), destType, CK_BitCast);
   6031     return destType;
   6032   }
   6033 
   6034   return checkConditionalPointerCompatibility(S, LHS, RHS, Loc);
   6035 }
   6036 
   6037 /// \brief Return false if the first expression is not an integer and the second
   6038 /// expression is not a pointer, true otherwise.
   6039 static bool checkPointerIntegerMismatch(Sema &S, ExprResult &Int,
   6040                                         Expr* PointerExpr, SourceLocation Loc,
   6041                                         bool IsIntFirstExpr) {
   6042   if (!PointerExpr->getType()->isPointerType() ||
   6043       !Int.get()->getType()->isIntegerType())
   6044     return false;
   6045 
   6046   Expr *Expr1 = IsIntFirstExpr ? Int.get() : PointerExpr;
   6047   Expr *Expr2 = IsIntFirstExpr ? PointerExpr : Int.get();
   6048 
   6049   S.Diag(Loc, diag::ext_typecheck_cond_pointer_integer_mismatch)
   6050     << Expr1->getType() << Expr2->getType()
   6051     << Expr1->getSourceRange() << Expr2->getSourceRange();
   6052   Int = S.ImpCastExprToType(Int.get(), PointerExpr->getType(),
   6053                             CK_IntegralToPointer);
   6054   return true;
   6055 }
   6056 
   6057 /// \brief Simple conversion between integer and floating point types.
   6058 ///
   6059 /// Used when handling the OpenCL conditional operator where the
   6060 /// condition is a vector while the other operands are scalar.
   6061 ///
   6062 /// OpenCL v1.1 s6.3.i and s6.11.6 together require that the scalar
   6063 /// types are either integer or floating type. Between the two
   6064 /// operands, the type with the higher rank is defined as the "result
   6065 /// type". The other operand needs to be promoted to the same type. No
   6066 /// other type promotion is allowed. We cannot use
   6067 /// UsualArithmeticConversions() for this purpose, since it always
   6068 /// promotes promotable types.
   6069 static QualType OpenCLArithmeticConversions(Sema &S, ExprResult &LHS,
   6070                                             ExprResult &RHS,
   6071                                             SourceLocation QuestionLoc) {
   6072   LHS = S.DefaultFunctionArrayLvalueConversion(LHS.get());
   6073   if (LHS.isInvalid())
   6074     return QualType();
   6075   RHS = S.DefaultFunctionArrayLvalueConversion(RHS.get());
   6076   if (RHS.isInvalid())
   6077     return QualType();
   6078 
   6079   // For conversion purposes, we ignore any qualifiers.
   6080   // For example, "const float" and "float" are equivalent.
   6081   QualType LHSType =
   6082     S.Context.getCanonicalType(LHS.get()->getType()).getUnqualifiedType();
   6083   QualType RHSType =
   6084     S.Context.getCanonicalType(RHS.get()->getType()).getUnqualifiedType();
   6085 
   6086   if (!LHSType->isIntegerType() && !LHSType->isRealFloatingType()) {
   6087     S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_int_float)
   6088       << LHSType << LHS.get()->getSourceRange();
   6089     return QualType();
   6090   }
   6091 
   6092   if (!RHSType->isIntegerType() && !RHSType->isRealFloatingType()) {
   6093     S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_int_float)
   6094       << RHSType << RHS.get()->getSourceRange();
   6095     return QualType();
   6096   }
   6097 
   6098   // If both types are identical, no conversion is needed.
   6099   if (LHSType == RHSType)
   6100     return LHSType;
   6101 
   6102   // Now handle "real" floating types (i.e. float, double, long double).
   6103   if (LHSType->isRealFloatingType() || RHSType->isRealFloatingType())
   6104     return handleFloatConversion(S, LHS, RHS, LHSType, RHSType,
   6105                                  /*IsCompAssign = */ false);
   6106 
   6107   // Finally, we have two differing integer types.
   6108   return handleIntegerConversion<doIntegralCast, doIntegralCast>
   6109   (S, LHS, RHS, LHSType, RHSType, /*IsCompAssign = */ false);
   6110 }
   6111 
   6112 /// \brief Convert scalar operands to a vector that matches the
   6113 ///        condition in length.
   6114 ///
   6115 /// Used when handling the OpenCL conditional operator where the
   6116 /// condition is a vector while the other operands are scalar.
   6117 ///
   6118 /// We first compute the "result type" for the scalar operands
   6119 /// according to OpenCL v1.1 s6.3.i. Both operands are then converted
   6120 /// into a vector of that type where the length matches the condition
   6121 /// vector type. s6.11.6 requires that the element types of the result
   6122 /// and the condition must have the same number of bits.
   6123 static QualType
   6124 OpenCLConvertScalarsToVectors(Sema &S, ExprResult &LHS, ExprResult &RHS,
   6125                               QualType CondTy, SourceLocation QuestionLoc) {
   6126   QualType ResTy = OpenCLArithmeticConversions(S, LHS, RHS, QuestionLoc);
   6127   if (ResTy.isNull()) return QualType();
   6128 
   6129   const VectorType *CV = CondTy->getAs<VectorType>();
   6130   assert(CV);
   6131 
   6132   // Determine the vector result type
   6133   unsigned NumElements = CV->getNumElements();
   6134   QualType VectorTy = S.Context.getExtVectorType(ResTy, NumElements);
   6135 
   6136   // Ensure that all types have the same number of bits
   6137   if (S.Context.getTypeSize(CV->getElementType())
   6138       != S.Context.getTypeSize(ResTy)) {
   6139     // Since VectorTy is created internally, it does not pretty print
   6140     // with an OpenCL name. Instead, we just print a description.
   6141     std::string EleTyName = ResTy.getUnqualifiedType().getAsString();
   6142     SmallString<64> Str;
   6143     llvm::raw_svector_ostream OS(Str);
   6144     OS << "(vector of " << NumElements << " '" << EleTyName << "' values)";
   6145     S.Diag(QuestionLoc, diag::err_conditional_vector_element_size)
   6146       << CondTy << OS.str();
   6147     return QualType();
   6148   }
   6149 
   6150   // Convert operands to the vector result type
   6151   LHS = S.ImpCastExprToType(LHS.get(), VectorTy, CK_VectorSplat);
   6152   RHS = S.ImpCastExprToType(RHS.get(), VectorTy, CK_VectorSplat);
   6153 
   6154   return VectorTy;
   6155 }
   6156 
   6157 /// \brief Return false if this is a valid OpenCL condition vector
   6158 static bool checkOpenCLConditionVector(Sema &S, Expr *Cond,
   6159                                        SourceLocation QuestionLoc) {
   6160   // OpenCL v1.1 s6.11.6 says the elements of the vector must be of
   6161   // integral type.
   6162   const VectorType *CondTy = Cond->getType()->getAs<VectorType>();
   6163   assert(CondTy);
   6164   QualType EleTy = CondTy->getElementType();
   6165   if (EleTy->isIntegerType()) return false;
   6166 
   6167   S.Diag(QuestionLoc, diag::err_typecheck_cond_expect_nonfloat)
   6168     << Cond->getType() << Cond->getSourceRange();
   6169   return true;
   6170 }
   6171 
   6172 /// \brief Return false if the vector condition type and the vector
   6173 ///        result type are compatible.
   6174 ///
   6175 /// OpenCL v1.1 s6.11.6 requires that both vector types have the same
   6176 /// number of elements, and their element types have the same number
   6177 /// of bits.
   6178 static bool checkVectorResult(Sema &S, QualType CondTy, QualType VecResTy,
   6179                               SourceLocation QuestionLoc) {
   6180   const VectorType *CV = CondTy->getAs<VectorType>();
   6181   const VectorType *RV = VecResTy->getAs<VectorType>();
   6182   assert(CV && RV);
   6183 
   6184   if (CV->getNumElements() != RV->getNumElements()) {
   6185     S.Diag(QuestionLoc, diag::err_conditional_vector_size)
   6186       << CondTy << VecResTy;
   6187     return true;
   6188   }
   6189 
   6190   QualType CVE = CV->getElementType();
   6191   QualType RVE = RV->getElementType();
   6192 
   6193   if (S.Context.getTypeSize(CVE) != S.Context.getTypeSize(RVE)) {
   6194     S.Diag(QuestionLoc, diag::err_conditional_vector_element_size)
   6195       << CondTy << VecResTy;
   6196     return true;
   6197   }
   6198 
   6199   return false;
   6200 }
   6201 
   6202 /// \brief Return the resulting type for the conditional operator in
   6203 ///        OpenCL (aka "ternary selection operator", OpenCL v1.1
   6204 ///        s6.3.i) when the condition is a vector type.
   6205 static QualType
   6206 OpenCLCheckVectorConditional(Sema &S, ExprResult &Cond,
   6207                              ExprResult &LHS, ExprResult &RHS,
   6208                              SourceLocation QuestionLoc) {
   6209   Cond = S.DefaultFunctionArrayLvalueConversion(Cond.get());
   6210   if (Cond.isInvalid())
   6211     return QualType();
   6212   QualType CondTy = Cond.get()->getType();
   6213 
   6214   if (checkOpenCLConditionVector(S, Cond.get(), QuestionLoc))
   6215     return QualType();
   6216 
   6217   // If either operand is a vector then find the vector type of the
   6218   // result as specified in OpenCL v1.1 s6.3.i.
   6219   if (LHS.get()->getType()->isVectorType() ||
   6220       RHS.get()->getType()->isVectorType()) {
   6221     QualType VecResTy = S.CheckVectorOperands(LHS, RHS, QuestionLoc,
   6222                                               /*isCompAssign*/false,
   6223                                               /*AllowBothBool*/true,
   6224                                               /*AllowBoolConversions*/false);
   6225     if (VecResTy.isNull()) return QualType();
   6226     // The result type must match the condition type as specified in
   6227     // OpenCL v1.1 s6.11.6.
   6228     if (checkVectorResult(S, CondTy, VecResTy, QuestionLoc))
   6229       return QualType();
   6230     return VecResTy;
   6231   }
   6232 
   6233   // Both operands are scalar.
   6234   return OpenCLConvertScalarsToVectors(S, LHS, RHS, CondTy, QuestionLoc);
   6235 }
   6236 
   6237 /// Note that LHS is not null here, even if this is the gnu "x ?: y" extension.
   6238 /// In that case, LHS = cond.
   6239 /// C99 6.5.15
   6240 QualType Sema::CheckConditionalOperands(ExprResult &Cond, ExprResult &LHS,
   6241                                         ExprResult &RHS, ExprValueKind &VK,
   6242                                         ExprObjectKind &OK,
   6243                                         SourceLocation QuestionLoc) {
   6244 
   6245   ExprResult LHSResult = CheckPlaceholderExpr(LHS.get());
   6246   if (!LHSResult.isUsable()) return QualType();
   6247   LHS = LHSResult;
   6248 
   6249   ExprResult RHSResult = CheckPlaceholderExpr(RHS.get());
   6250   if (!RHSResult.isUsable()) return QualType();
   6251   RHS = RHSResult;
   6252 
   6253   // C++ is sufficiently different to merit its own checker.
   6254   if (getLangOpts().CPlusPlus)
   6255     return CXXCheckConditionalOperands(Cond, LHS, RHS, VK, OK, QuestionLoc);
   6256 
   6257   VK = VK_RValue;
   6258   OK = OK_Ordinary;
   6259 
   6260   // The OpenCL operator with a vector condition is sufficiently
   6261   // different to merit its own checker.
   6262   if (getLangOpts().OpenCL && Cond.get()->getType()->isVectorType())
   6263     return OpenCLCheckVectorConditional(*this, Cond, LHS, RHS, QuestionLoc);
   6264 
   6265   // First, check the condition.
   6266   Cond = UsualUnaryConversions(Cond.get());
   6267   if (Cond.isInvalid())
   6268     return QualType();
   6269   if (checkCondition(*this, Cond.get(), QuestionLoc))
   6270     return QualType();
   6271 
   6272   // Now check the two expressions.
   6273   if (LHS.get()->getType()->isVectorType() ||
   6274       RHS.get()->getType()->isVectorType())
   6275     return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/false,
   6276                                /*AllowBothBool*/true,
   6277                                /*AllowBoolConversions*/false);
   6278 
   6279   QualType ResTy = UsualArithmeticConversions(LHS, RHS);
   6280   if (LHS.isInvalid() || RHS.isInvalid())
   6281     return QualType();
   6282 
   6283   QualType LHSTy = LHS.get()->getType();
   6284   QualType RHSTy = RHS.get()->getType();
   6285 
   6286   // If both operands have arithmetic type, do the usual arithmetic conversions
   6287   // to find a common type: C99 6.5.15p3,5.
   6288   if (LHSTy->isArithmeticType() && RHSTy->isArithmeticType()) {
   6289     LHS = ImpCastExprToType(LHS.get(), ResTy, PrepareScalarCast(LHS, ResTy));
   6290     RHS = ImpCastExprToType(RHS.get(), ResTy, PrepareScalarCast(RHS, ResTy));
   6291 
   6292     return ResTy;
   6293   }
   6294 
   6295   // If both operands are the same structure or union type, the result is that
   6296   // type.
   6297   if (const RecordType *LHSRT = LHSTy->getAs<RecordType>()) {    // C99 6.5.15p3
   6298     if (const RecordType *RHSRT = RHSTy->getAs<RecordType>())
   6299       if (LHSRT->getDecl() == RHSRT->getDecl())
   6300         // "If both the operands have structure or union type, the result has
   6301         // that type."  This implies that CV qualifiers are dropped.
   6302         return LHSTy.getUnqualifiedType();
   6303     // FIXME: Type of conditional expression must be complete in C mode.
   6304   }
   6305 
   6306   // C99 6.5.15p5: "If both operands have void type, the result has void type."
   6307   // The following || allows only one side to be void (a GCC-ism).
   6308   if (LHSTy->isVoidType() || RHSTy->isVoidType()) {
   6309     return checkConditionalVoidType(*this, LHS, RHS);
   6310   }
   6311 
   6312   // C99 6.5.15p6 - "if one operand is a null pointer constant, the result has
   6313   // the type of the other operand."
   6314   if (!checkConditionalNullPointer(*this, RHS, LHSTy)) return LHSTy;
   6315   if (!checkConditionalNullPointer(*this, LHS, RHSTy)) return RHSTy;
   6316 
   6317   // All objective-c pointer type analysis is done here.
   6318   QualType compositeType = FindCompositeObjCPointerType(LHS, RHS,
   6319                                                         QuestionLoc);
   6320   if (LHS.isInvalid() || RHS.isInvalid())
   6321     return QualType();
   6322   if (!compositeType.isNull())
   6323     return compositeType;
   6324 
   6325 
   6326   // Handle block pointer types.
   6327   if (LHSTy->isBlockPointerType() || RHSTy->isBlockPointerType())
   6328     return checkConditionalBlockPointerCompatibility(*this, LHS, RHS,
   6329                                                      QuestionLoc);
   6330 
   6331   // Check constraints for C object pointers types (C99 6.5.15p3,6).
   6332   if (LHSTy->isPointerType() && RHSTy->isPointerType())
   6333     return checkConditionalObjectPointersCompatibility(*this, LHS, RHS,
   6334                                                        QuestionLoc);
   6335 
   6336   // GCC compatibility: soften pointer/integer mismatch.  Note that
   6337   // null pointers have been filtered out by this point.
   6338   if (checkPointerIntegerMismatch(*this, LHS, RHS.get(), QuestionLoc,
   6339       /*isIntFirstExpr=*/true))
   6340     return RHSTy;
   6341   if (checkPointerIntegerMismatch(*this, RHS, LHS.get(), QuestionLoc,
   6342       /*isIntFirstExpr=*/false))
   6343     return LHSTy;
   6344 
   6345   // Emit a better diagnostic if one of the expressions is a null pointer
   6346   // constant and the other is not a pointer type. In this case, the user most
   6347   // likely forgot to take the address of the other expression.
   6348   if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc))
   6349     return QualType();
   6350 
   6351   // Otherwise, the operands are not compatible.
   6352   Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands)
   6353     << LHSTy << RHSTy << LHS.get()->getSourceRange()
   6354     << RHS.get()->getSourceRange();
   6355   return QualType();
   6356 }
   6357 
   6358 /// FindCompositeObjCPointerType - Helper method to find composite type of
   6359 /// two objective-c pointer types of the two input expressions.
   6360 QualType Sema::FindCompositeObjCPointerType(ExprResult &LHS, ExprResult &RHS,
   6361                                             SourceLocation QuestionLoc) {
   6362   QualType LHSTy = LHS.get()->getType();
   6363   QualType RHSTy = RHS.get()->getType();
   6364 
   6365   // Handle things like Class and struct objc_class*.  Here we case the result
   6366   // to the pseudo-builtin, because that will be implicitly cast back to the
   6367   // redefinition type if an attempt is made to access its fields.
   6368   if (LHSTy->isObjCClassType() &&
   6369       (Context.hasSameType(RHSTy, Context.getObjCClassRedefinitionType()))) {
   6370     RHS = ImpCastExprToType(RHS.get(), LHSTy, CK_CPointerToObjCPointerCast);
   6371     return LHSTy;
   6372   }
   6373   if (RHSTy->isObjCClassType() &&
   6374       (Context.hasSameType(LHSTy, Context.getObjCClassRedefinitionType()))) {
   6375     LHS = ImpCastExprToType(LHS.get(), RHSTy, CK_CPointerToObjCPointerCast);
   6376     return RHSTy;
   6377   }
   6378   // And the same for struct objc_object* / id
   6379   if (LHSTy->isObjCIdType() &&
   6380       (Context.hasSameType(RHSTy, Context.getObjCIdRedefinitionType()))) {
   6381     RHS = ImpCastExprToType(RHS.get(), LHSTy, CK_CPointerToObjCPointerCast);
   6382     return LHSTy;
   6383   }
   6384   if (RHSTy->isObjCIdType() &&
   6385       (Context.hasSameType(LHSTy, Context.getObjCIdRedefinitionType()))) {
   6386     LHS = ImpCastExprToType(LHS.get(), RHSTy, CK_CPointerToObjCPointerCast);
   6387     return RHSTy;
   6388   }
   6389   // And the same for struct objc_selector* / SEL
   6390   if (Context.isObjCSelType(LHSTy) &&
   6391       (Context.hasSameType(RHSTy, Context.getObjCSelRedefinitionType()))) {
   6392     RHS = ImpCastExprToType(RHS.get(), LHSTy, CK_BitCast);
   6393     return LHSTy;
   6394   }
   6395   if (Context.isObjCSelType(RHSTy) &&
   6396       (Context.hasSameType(LHSTy, Context.getObjCSelRedefinitionType()))) {
   6397     LHS = ImpCastExprToType(LHS.get(), RHSTy, CK_BitCast);
   6398     return RHSTy;
   6399   }
   6400   // Check constraints for Objective-C object pointers types.
   6401   if (LHSTy->isObjCObjectPointerType() && RHSTy->isObjCObjectPointerType()) {
   6402 
   6403     if (Context.getCanonicalType(LHSTy) == Context.getCanonicalType(RHSTy)) {
   6404       // Two identical object pointer types are always compatible.
   6405       return LHSTy;
   6406     }
   6407     const ObjCObjectPointerType *LHSOPT = LHSTy->castAs<ObjCObjectPointerType>();
   6408     const ObjCObjectPointerType *RHSOPT = RHSTy->castAs<ObjCObjectPointerType>();
   6409     QualType compositeType = LHSTy;
   6410 
   6411     // If both operands are interfaces and either operand can be
   6412     // assigned to the other, use that type as the composite
   6413     // type. This allows
   6414     //   xxx ? (A*) a : (B*) b
   6415     // where B is a subclass of A.
   6416     //
   6417     // Additionally, as for assignment, if either type is 'id'
   6418     // allow silent coercion. Finally, if the types are
   6419     // incompatible then make sure to use 'id' as the composite
   6420     // type so the result is acceptable for sending messages to.
   6421 
   6422     // FIXME: Consider unifying with 'areComparableObjCPointerTypes'.
   6423     // It could return the composite type.
   6424     if (!(compositeType =
   6425           Context.areCommonBaseCompatible(LHSOPT, RHSOPT)).isNull()) {
   6426       // Nothing more to do.
   6427     } else if (Context.canAssignObjCInterfaces(LHSOPT, RHSOPT)) {
   6428       compositeType = RHSOPT->isObjCBuiltinType() ? RHSTy : LHSTy;
   6429     } else if (Context.canAssignObjCInterfaces(RHSOPT, LHSOPT)) {
   6430       compositeType = LHSOPT->isObjCBuiltinType() ? LHSTy : RHSTy;
   6431     } else if ((LHSTy->isObjCQualifiedIdType() ||
   6432                 RHSTy->isObjCQualifiedIdType()) &&
   6433                Context.ObjCQualifiedIdTypesAreCompatible(LHSTy, RHSTy, true)) {
   6434       // Need to handle "id<xx>" explicitly.
   6435       // GCC allows qualified id and any Objective-C type to devolve to
   6436       // id. Currently localizing to here until clear this should be
   6437       // part of ObjCQualifiedIdTypesAreCompatible.
   6438       compositeType = Context.getObjCIdType();
   6439     } else if (LHSTy->isObjCIdType() || RHSTy->isObjCIdType()) {
   6440       compositeType = Context.getObjCIdType();
   6441     } else {
   6442       Diag(QuestionLoc, diag::ext_typecheck_cond_incompatible_operands)
   6443       << LHSTy << RHSTy
   6444       << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
   6445       QualType incompatTy = Context.getObjCIdType();
   6446       LHS = ImpCastExprToType(LHS.get(), incompatTy, CK_BitCast);
   6447       RHS = ImpCastExprToType(RHS.get(), incompatTy, CK_BitCast);
   6448       return incompatTy;
   6449     }
   6450     // The object pointer types are compatible.
   6451     LHS = ImpCastExprToType(LHS.get(), compositeType, CK_BitCast);
   6452     RHS = ImpCastExprToType(RHS.get(), compositeType, CK_BitCast);
   6453     return compositeType;
   6454   }
   6455   // Check Objective-C object pointer types and 'void *'
   6456   if (LHSTy->isVoidPointerType() && RHSTy->isObjCObjectPointerType()) {
   6457     if (getLangOpts().ObjCAutoRefCount) {
   6458       // ARC forbids the implicit conversion of object pointers to 'void *',
   6459       // so these types are not compatible.
   6460       Diag(QuestionLoc, diag::err_cond_voidptr_arc) << LHSTy << RHSTy
   6461           << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
   6462       LHS = RHS = true;
   6463       return QualType();
   6464     }
   6465     QualType lhptee = LHSTy->getAs<PointerType>()->getPointeeType();
   6466     QualType rhptee = RHSTy->getAs<ObjCObjectPointerType>()->getPointeeType();
   6467     QualType destPointee
   6468     = Context.getQualifiedType(lhptee, rhptee.getQualifiers());
   6469     QualType destType = Context.getPointerType(destPointee);
   6470     // Add qualifiers if necessary.
   6471     LHS = ImpCastExprToType(LHS.get(), destType, CK_NoOp);
   6472     // Promote to void*.
   6473     RHS = ImpCastExprToType(RHS.get(), destType, CK_BitCast);
   6474     return destType;
   6475   }
   6476   if (LHSTy->isObjCObjectPointerType() && RHSTy->isVoidPointerType()) {
   6477     if (getLangOpts().ObjCAutoRefCount) {
   6478       // ARC forbids the implicit conversion of object pointers to 'void *',
   6479       // so these types are not compatible.
   6480       Diag(QuestionLoc, diag::err_cond_voidptr_arc) << LHSTy << RHSTy
   6481           << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
   6482       LHS = RHS = true;
   6483       return QualType();
   6484     }
   6485     QualType lhptee = LHSTy->getAs<ObjCObjectPointerType>()->getPointeeType();
   6486     QualType rhptee = RHSTy->getAs<PointerType>()->getPointeeType();
   6487     QualType destPointee
   6488     = Context.getQualifiedType(rhptee, lhptee.getQualifiers());
   6489     QualType destType = Context.getPointerType(destPointee);
   6490     // Add qualifiers if necessary.
   6491     RHS = ImpCastExprToType(RHS.get(), destType, CK_NoOp);
   6492     // Promote to void*.
   6493     LHS = ImpCastExprToType(LHS.get(), destType, CK_BitCast);
   6494     return destType;
   6495   }
   6496   return QualType();
   6497 }
   6498 
   6499 /// SuggestParentheses - Emit a note with a fixit hint that wraps
   6500 /// ParenRange in parentheses.
   6501 static void SuggestParentheses(Sema &Self, SourceLocation Loc,
   6502                                const PartialDiagnostic &Note,
   6503                                SourceRange ParenRange) {
   6504   SourceLocation EndLoc = Self.getLocForEndOfToken(ParenRange.getEnd());
   6505   if (ParenRange.getBegin().isFileID() && ParenRange.getEnd().isFileID() &&
   6506       EndLoc.isValid()) {
   6507     Self.Diag(Loc, Note)
   6508       << FixItHint::CreateInsertion(ParenRange.getBegin(), "(")
   6509       << FixItHint::CreateInsertion(EndLoc, ")");
   6510   } else {
   6511     // We can't display the parentheses, so just show the bare note.
   6512     Self.Diag(Loc, Note) << ParenRange;
   6513   }
   6514 }
   6515 
   6516 static bool IsArithmeticOp(BinaryOperatorKind Opc) {
   6517   return BinaryOperator::isAdditiveOp(Opc) ||
   6518          BinaryOperator::isMultiplicativeOp(Opc) ||
   6519          BinaryOperator::isShiftOp(Opc);
   6520 }
   6521 
   6522 /// IsArithmeticBinaryExpr - Returns true if E is an arithmetic binary
   6523 /// expression, either using a built-in or overloaded operator,
   6524 /// and sets *OpCode to the opcode and *RHSExprs to the right-hand side
   6525 /// expression.
   6526 static bool IsArithmeticBinaryExpr(Expr *E, BinaryOperatorKind *Opcode,
   6527                                    Expr **RHSExprs) {
   6528   // Don't strip parenthesis: we should not warn if E is in parenthesis.
   6529   E = E->IgnoreImpCasts();
   6530   E = E->IgnoreConversionOperator();
   6531   E = E->IgnoreImpCasts();
   6532 
   6533   // Built-in binary operator.
   6534   if (BinaryOperator *OP = dyn_cast<BinaryOperator>(E)) {
   6535     if (IsArithmeticOp(OP->getOpcode())) {
   6536       *Opcode = OP->getOpcode();
   6537       *RHSExprs = OP->getRHS();
   6538       return true;
   6539     }
   6540   }
   6541 
   6542   // Overloaded operator.
   6543   if (CXXOperatorCallExpr *Call = dyn_cast<CXXOperatorCallExpr>(E)) {
   6544     if (Call->getNumArgs() != 2)
   6545       return false;
   6546 
   6547     // Make sure this is really a binary operator that is safe to pass into
   6548     // BinaryOperator::getOverloadedOpcode(), e.g. it's not a subscript op.
   6549     OverloadedOperatorKind OO = Call->getOperator();
   6550     if (OO < OO_Plus || OO > OO_Arrow ||
   6551         OO == OO_PlusPlus || OO == OO_MinusMinus)
   6552       return false;
   6553 
   6554     BinaryOperatorKind OpKind = BinaryOperator::getOverloadedOpcode(OO);
   6555     if (IsArithmeticOp(OpKind)) {
   6556       *Opcode = OpKind;
   6557       *RHSExprs = Call->getArg(1);
   6558       return true;
   6559     }
   6560   }
   6561 
   6562   return false;
   6563 }
   6564 
   6565 /// ExprLooksBoolean - Returns true if E looks boolean, i.e. it has boolean type
   6566 /// or is a logical expression such as (x==y) which has int type, but is
   6567 /// commonly interpreted as boolean.
   6568 static bool ExprLooksBoolean(Expr *E) {
   6569   E = E->IgnoreParenImpCasts();
   6570 
   6571   if (E->getType()->isBooleanType())
   6572     return true;
   6573   if (BinaryOperator *OP = dyn_cast<BinaryOperator>(E))
   6574     return OP->isComparisonOp() || OP->isLogicalOp();
   6575   if (UnaryOperator *OP = dyn_cast<UnaryOperator>(E))
   6576     return OP->getOpcode() == UO_LNot;
   6577   if (E->getType()->isPointerType())
   6578     return true;
   6579 
   6580   return false;
   6581 }
   6582 
   6583 /// DiagnoseConditionalPrecedence - Emit a warning when a conditional operator
   6584 /// and binary operator are mixed in a way that suggests the programmer assumed
   6585 /// the conditional operator has higher precedence, for example:
   6586 /// "int x = a + someBinaryCondition ? 1 : 2".
   6587 static void DiagnoseConditionalPrecedence(Sema &Self,
   6588                                           SourceLocation OpLoc,
   6589                                           Expr *Condition,
   6590                                           Expr *LHSExpr,
   6591                                           Expr *RHSExpr) {
   6592   BinaryOperatorKind CondOpcode;
   6593   Expr *CondRHS;
   6594 
   6595   if (!IsArithmeticBinaryExpr(Condition, &CondOpcode, &CondRHS))
   6596     return;
   6597   if (!ExprLooksBoolean(CondRHS))
   6598     return;
   6599 
   6600   // The condition is an arithmetic binary expression, with a right-
   6601   // hand side that looks boolean, so warn.
   6602 
   6603   Self.Diag(OpLoc, diag::warn_precedence_conditional)
   6604       << Condition->getSourceRange()
   6605       << BinaryOperator::getOpcodeStr(CondOpcode);
   6606 
   6607   SuggestParentheses(Self, OpLoc,
   6608     Self.PDiag(diag::note_precedence_silence)
   6609       << BinaryOperator::getOpcodeStr(CondOpcode),
   6610     SourceRange(Condition->getLocStart(), Condition->getLocEnd()));
   6611 
   6612   SuggestParentheses(Self, OpLoc,
   6613     Self.PDiag(diag::note_precedence_conditional_first),
   6614     SourceRange(CondRHS->getLocStart(), RHSExpr->getLocEnd()));
   6615 }
   6616 
   6617 /// ActOnConditionalOp - Parse a ?: operation.  Note that 'LHS' may be null
   6618 /// in the case of a the GNU conditional expr extension.
   6619 ExprResult Sema::ActOnConditionalOp(SourceLocation QuestionLoc,
   6620                                     SourceLocation ColonLoc,
   6621                                     Expr *CondExpr, Expr *LHSExpr,
   6622                                     Expr *RHSExpr) {
   6623   if (!getLangOpts().CPlusPlus) {
   6624     // C cannot handle TypoExpr nodes in the condition because it
   6625     // doesn't handle dependent types properly, so make sure any TypoExprs have
   6626     // been dealt with before checking the operands.
   6627     ExprResult CondResult = CorrectDelayedTyposInExpr(CondExpr);
   6628     if (!CondResult.isUsable()) return ExprError();
   6629     CondExpr = CondResult.get();
   6630   }
   6631 
   6632   // If this is the gnu "x ?: y" extension, analyze the types as though the LHS
   6633   // was the condition.
   6634   OpaqueValueExpr *opaqueValue = nullptr;
   6635   Expr *commonExpr = nullptr;
   6636   if (!LHSExpr) {
   6637     commonExpr = CondExpr;
   6638     // Lower out placeholder types first.  This is important so that we don't
   6639     // try to capture a placeholder. This happens in few cases in C++; such
   6640     // as Objective-C++'s dictionary subscripting syntax.
   6641     if (commonExpr->hasPlaceholderType()) {
   6642       ExprResult result = CheckPlaceholderExpr(commonExpr);
   6643       if (!result.isUsable()) return ExprError();
   6644       commonExpr = result.get();
   6645     }
   6646     // We usually want to apply unary conversions *before* saving, except
   6647     // in the special case of a C++ l-value conditional.
   6648     if (!(getLangOpts().CPlusPlus
   6649           && !commonExpr->isTypeDependent()
   6650           && commonExpr->getValueKind() == RHSExpr->getValueKind()
   6651           && commonExpr->isGLValue()
   6652           && commonExpr->isOrdinaryOrBitFieldObject()
   6653           && RHSExpr->isOrdinaryOrBitFieldObject()
   6654           && Context.hasSameType(commonExpr->getType(), RHSExpr->getType()))) {
   6655       ExprResult commonRes = UsualUnaryConversions(commonExpr);
   6656       if (commonRes.isInvalid())
   6657         return ExprError();
   6658       commonExpr = commonRes.get();
   6659     }
   6660 
   6661     opaqueValue = new (Context) OpaqueValueExpr(commonExpr->getExprLoc(),
   6662                                                 commonExpr->getType(),
   6663                                                 commonExpr->getValueKind(),
   6664                                                 commonExpr->getObjectKind(),
   6665                                                 commonExpr);
   6666     LHSExpr = CondExpr = opaqueValue;
   6667   }
   6668 
   6669   ExprValueKind VK = VK_RValue;
   6670   ExprObjectKind OK = OK_Ordinary;
   6671   ExprResult Cond = CondExpr, LHS = LHSExpr, RHS = RHSExpr;
   6672   QualType result = CheckConditionalOperands(Cond, LHS, RHS,
   6673                                              VK, OK, QuestionLoc);
   6674   if (result.isNull() || Cond.isInvalid() || LHS.isInvalid() ||
   6675       RHS.isInvalid())
   6676     return ExprError();
   6677 
   6678   DiagnoseConditionalPrecedence(*this, QuestionLoc, Cond.get(), LHS.get(),
   6679                                 RHS.get());
   6680 
   6681   CheckBoolLikeConversion(Cond.get(), QuestionLoc);
   6682 
   6683   if (!commonExpr)
   6684     return new (Context)
   6685         ConditionalOperator(Cond.get(), QuestionLoc, LHS.get(), ColonLoc,
   6686                             RHS.get(), result, VK, OK);
   6687 
   6688   return new (Context) BinaryConditionalOperator(
   6689       commonExpr, opaqueValue, Cond.get(), LHS.get(), RHS.get(), QuestionLoc,
   6690       ColonLoc, result, VK, OK);
   6691 }
   6692 
   6693 // checkPointerTypesForAssignment - This is a very tricky routine (despite
   6694 // being closely modeled after the C99 spec:-). The odd characteristic of this
   6695 // routine is it effectively iqnores the qualifiers on the top level pointee.
   6696 // This circumvents the usual type rules specified in 6.2.7p1 & 6.7.5.[1-3].
   6697 // FIXME: add a couple examples in this comment.
   6698 static Sema::AssignConvertType
   6699 checkPointerTypesForAssignment(Sema &S, QualType LHSType, QualType RHSType) {
   6700   assert(LHSType.isCanonical() && "LHS not canonicalized!");
   6701   assert(RHSType.isCanonical() && "RHS not canonicalized!");
   6702 
   6703   // get the "pointed to" type (ignoring qualifiers at the top level)
   6704   const Type *lhptee, *rhptee;
   6705   Qualifiers lhq, rhq;
   6706   std::tie(lhptee, lhq) =
   6707       cast<PointerType>(LHSType)->getPointeeType().split().asPair();
   6708   std::tie(rhptee, rhq) =
   6709       cast<PointerType>(RHSType)->getPointeeType().split().asPair();
   6710 
   6711   Sema::AssignConvertType ConvTy = Sema::Compatible;
   6712 
   6713   // C99 6.5.16.1p1: This following citation is common to constraints
   6714   // 3 & 4 (below). ...and the type *pointed to* by the left has all the
   6715   // qualifiers of the type *pointed to* by the right;
   6716 
   6717   // As a special case, 'non-__weak A *' -> 'non-__weak const *' is okay.
   6718   if (lhq.getObjCLifetime() != rhq.getObjCLifetime() &&
   6719       lhq.compatiblyIncludesObjCLifetime(rhq)) {
   6720     // Ignore lifetime for further calculation.
   6721     lhq.removeObjCLifetime();
   6722     rhq.removeObjCLifetime();
   6723   }
   6724 
   6725   if (!lhq.compatiblyIncludes(rhq)) {
   6726     // Treat address-space mismatches as fatal.  TODO: address subspaces
   6727     if (!lhq.isAddressSpaceSupersetOf(rhq))
   6728       ConvTy = Sema::IncompatiblePointerDiscardsQualifiers;
   6729 
   6730     // It's okay to add or remove GC or lifetime qualifiers when converting to
   6731     // and from void*.
   6732     else if (lhq.withoutObjCGCAttr().withoutObjCLifetime()
   6733                         .compatiblyIncludes(
   6734                                 rhq.withoutObjCGCAttr().withoutObjCLifetime())
   6735              && (lhptee->isVoidType() || rhptee->isVoidType()))
   6736       ; // keep old
   6737 
   6738     // Treat lifetime mismatches as fatal.
   6739     else if (lhq.getObjCLifetime() != rhq.getObjCLifetime())
   6740       ConvTy = Sema::IncompatiblePointerDiscardsQualifiers;
   6741 
   6742     // For GCC compatibility, other qualifier mismatches are treated
   6743     // as still compatible in C.
   6744     else ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
   6745   }
   6746 
   6747   // C99 6.5.16.1p1 (constraint 4): If one operand is a pointer to an object or
   6748   // incomplete type and the other is a pointer to a qualified or unqualified
   6749   // version of void...
   6750   if (lhptee->isVoidType()) {
   6751     if (rhptee->isIncompleteOrObjectType())
   6752       return ConvTy;
   6753 
   6754     // As an extension, we allow cast to/from void* to function pointer.
   6755     assert(rhptee->isFunctionType());
   6756     return Sema::FunctionVoidPointer;
   6757   }
   6758 
   6759   if (rhptee->isVoidType()) {
   6760     if (lhptee->isIncompleteOrObjectType())
   6761       return ConvTy;
   6762 
   6763     // As an extension, we allow cast to/from void* to function pointer.
   6764     assert(lhptee->isFunctionType());
   6765     return Sema::FunctionVoidPointer;
   6766   }
   6767 
   6768   // C99 6.5.16.1p1 (constraint 3): both operands are pointers to qualified or
   6769   // unqualified versions of compatible types, ...
   6770   QualType ltrans = QualType(lhptee, 0), rtrans = QualType(rhptee, 0);
   6771   if (!S.Context.typesAreCompatible(ltrans, rtrans)) {
   6772     // Check if the pointee types are compatible ignoring the sign.
   6773     // We explicitly check for char so that we catch "char" vs
   6774     // "unsigned char" on systems where "char" is unsigned.
   6775     if (lhptee->isCharType())
   6776       ltrans = S.Context.UnsignedCharTy;
   6777     else if (lhptee->hasSignedIntegerRepresentation())
   6778       ltrans = S.Context.getCorrespondingUnsignedType(ltrans);
   6779 
   6780     if (rhptee->isCharType())
   6781       rtrans = S.Context.UnsignedCharTy;
   6782     else if (rhptee->hasSignedIntegerRepresentation())
   6783       rtrans = S.Context.getCorrespondingUnsignedType(rtrans);
   6784 
   6785     if (ltrans == rtrans) {
   6786       // Types are compatible ignoring the sign. Qualifier incompatibility
   6787       // takes priority over sign incompatibility because the sign
   6788       // warning can be disabled.
   6789       if (ConvTy != Sema::Compatible)
   6790         return ConvTy;
   6791 
   6792       return Sema::IncompatiblePointerSign;
   6793     }
   6794 
   6795     // If we are a multi-level pointer, it's possible that our issue is simply
   6796     // one of qualification - e.g. char ** -> const char ** is not allowed. If
   6797     // the eventual target type is the same and the pointers have the same
   6798     // level of indirection, this must be the issue.
   6799     if (isa<PointerType>(lhptee) && isa<PointerType>(rhptee)) {
   6800       do {
   6801         lhptee = cast<PointerType>(lhptee)->getPointeeType().getTypePtr();
   6802         rhptee = cast<PointerType>(rhptee)->getPointeeType().getTypePtr();
   6803       } while (isa<PointerType>(lhptee) && isa<PointerType>(rhptee));
   6804 
   6805       if (lhptee == rhptee)
   6806         return Sema::IncompatibleNestedPointerQualifiers;
   6807     }
   6808 
   6809     // General pointer incompatibility takes priority over qualifiers.
   6810     return Sema::IncompatiblePointer;
   6811   }
   6812   if (!S.getLangOpts().CPlusPlus &&
   6813       S.IsNoReturnConversion(ltrans, rtrans, ltrans))
   6814     return Sema::IncompatiblePointer;
   6815   return ConvTy;
   6816 }
   6817 
   6818 /// checkBlockPointerTypesForAssignment - This routine determines whether two
   6819 /// block pointer types are compatible or whether a block and normal pointer
   6820 /// are compatible. It is more restrict than comparing two function pointer
   6821 // types.
   6822 static Sema::AssignConvertType
   6823 checkBlockPointerTypesForAssignment(Sema &S, QualType LHSType,
   6824                                     QualType RHSType) {
   6825   assert(LHSType.isCanonical() && "LHS not canonicalized!");
   6826   assert(RHSType.isCanonical() && "RHS not canonicalized!");
   6827 
   6828   QualType lhptee, rhptee;
   6829 
   6830   // get the "pointed to" type (ignoring qualifiers at the top level)
   6831   lhptee = cast<BlockPointerType>(LHSType)->getPointeeType();
   6832   rhptee = cast<BlockPointerType>(RHSType)->getPointeeType();
   6833 
   6834   // In C++, the types have to match exactly.
   6835   if (S.getLangOpts().CPlusPlus)
   6836     return Sema::IncompatibleBlockPointer;
   6837 
   6838   Sema::AssignConvertType ConvTy = Sema::Compatible;
   6839 
   6840   // For blocks we enforce that qualifiers are identical.
   6841   if (lhptee.getLocalQualifiers() != rhptee.getLocalQualifiers())
   6842     ConvTy = Sema::CompatiblePointerDiscardsQualifiers;
   6843 
   6844   if (!S.Context.typesAreBlockPointerCompatible(LHSType, RHSType))
   6845     return Sema::IncompatibleBlockPointer;
   6846 
   6847   return ConvTy;
   6848 }
   6849 
   6850 /// checkObjCPointerTypesForAssignment - Compares two objective-c pointer types
   6851 /// for assignment compatibility.
   6852 static Sema::AssignConvertType
   6853 checkObjCPointerTypesForAssignment(Sema &S, QualType LHSType,
   6854                                    QualType RHSType) {
   6855   assert(LHSType.isCanonical() && "LHS was not canonicalized!");
   6856   assert(RHSType.isCanonical() && "RHS was not canonicalized!");
   6857 
   6858   if (LHSType->isObjCBuiltinType()) {
   6859     // Class is not compatible with ObjC object pointers.
   6860     if (LHSType->isObjCClassType() && !RHSType->isObjCBuiltinType() &&
   6861         !RHSType->isObjCQualifiedClassType())
   6862       return Sema::IncompatiblePointer;
   6863     return Sema::Compatible;
   6864   }
   6865   if (RHSType->isObjCBuiltinType()) {
   6866     if (RHSType->isObjCClassType() && !LHSType->isObjCBuiltinType() &&
   6867         !LHSType->isObjCQualifiedClassType())
   6868       return Sema::IncompatiblePointer;
   6869     return Sema::Compatible;
   6870   }
   6871   QualType lhptee = LHSType->getAs<ObjCObjectPointerType>()->getPointeeType();
   6872   QualType rhptee = RHSType->getAs<ObjCObjectPointerType>()->getPointeeType();
   6873 
   6874   if (!lhptee.isAtLeastAsQualifiedAs(rhptee) &&
   6875       // make an exception for id<P>
   6876       !LHSType->isObjCQualifiedIdType())
   6877     return Sema::CompatiblePointerDiscardsQualifiers;
   6878 
   6879   if (S.Context.typesAreCompatible(LHSType, RHSType))
   6880     return Sema::Compatible;
   6881   if (LHSType->isObjCQualifiedIdType() || RHSType->isObjCQualifiedIdType())
   6882     return Sema::IncompatibleObjCQualifiedId;
   6883   return Sema::IncompatiblePointer;
   6884 }
   6885 
   6886 Sema::AssignConvertType
   6887 Sema::CheckAssignmentConstraints(SourceLocation Loc,
   6888                                  QualType LHSType, QualType RHSType) {
   6889   // Fake up an opaque expression.  We don't actually care about what
   6890   // cast operations are required, so if CheckAssignmentConstraints
   6891   // adds casts to this they'll be wasted, but fortunately that doesn't
   6892   // usually happen on valid code.
   6893   OpaqueValueExpr RHSExpr(Loc, RHSType, VK_RValue);
   6894   ExprResult RHSPtr = &RHSExpr;
   6895   CastKind K = CK_Invalid;
   6896 
   6897   return CheckAssignmentConstraints(LHSType, RHSPtr, K, /*ConvertRHS=*/false);
   6898 }
   6899 
   6900 /// CheckAssignmentConstraints (C99 6.5.16) - This routine currently
   6901 /// has code to accommodate several GCC extensions when type checking
   6902 /// pointers. Here are some objectionable examples that GCC considers warnings:
   6903 ///
   6904 ///  int a, *pint;
   6905 ///  short *pshort;
   6906 ///  struct foo *pfoo;
   6907 ///
   6908 ///  pint = pshort; // warning: assignment from incompatible pointer type
   6909 ///  a = pint; // warning: assignment makes integer from pointer without a cast
   6910 ///  pint = a; // warning: assignment makes pointer from integer without a cast
   6911 ///  pint = pfoo; // warning: assignment from incompatible pointer type
   6912 ///
   6913 /// As a result, the code for dealing with pointers is more complex than the
   6914 /// C99 spec dictates.
   6915 ///
   6916 /// Sets 'Kind' for any result kind except Incompatible.
   6917 Sema::AssignConvertType
   6918 Sema::CheckAssignmentConstraints(QualType LHSType, ExprResult &RHS,
   6919                                  CastKind &Kind, bool ConvertRHS) {
   6920   QualType RHSType = RHS.get()->getType();
   6921   QualType OrigLHSType = LHSType;
   6922 
   6923   // Get canonical types.  We're not formatting these types, just comparing
   6924   // them.
   6925   LHSType = Context.getCanonicalType(LHSType).getUnqualifiedType();
   6926   RHSType = Context.getCanonicalType(RHSType).getUnqualifiedType();
   6927 
   6928   // Common case: no conversion required.
   6929   if (LHSType == RHSType) {
   6930     Kind = CK_NoOp;
   6931     return Compatible;
   6932   }
   6933 
   6934   // If we have an atomic type, try a non-atomic assignment, then just add an
   6935   // atomic qualification step.
   6936   if (const AtomicType *AtomicTy = dyn_cast<AtomicType>(LHSType)) {
   6937     Sema::AssignConvertType result =
   6938       CheckAssignmentConstraints(AtomicTy->getValueType(), RHS, Kind);
   6939     if (result != Compatible)
   6940       return result;
   6941     if (Kind != CK_NoOp && ConvertRHS)
   6942       RHS = ImpCastExprToType(RHS.get(), AtomicTy->getValueType(), Kind);
   6943     Kind = CK_NonAtomicToAtomic;
   6944     return Compatible;
   6945   }
   6946 
   6947   // If the left-hand side is a reference type, then we are in a
   6948   // (rare!) case where we've allowed the use of references in C,
   6949   // e.g., as a parameter type in a built-in function. In this case,
   6950   // just make sure that the type referenced is compatible with the
   6951   // right-hand side type. The caller is responsible for adjusting
   6952   // LHSType so that the resulting expression does not have reference
   6953   // type.
   6954   if (const ReferenceType *LHSTypeRef = LHSType->getAs<ReferenceType>()) {
   6955     if (Context.typesAreCompatible(LHSTypeRef->getPointeeType(), RHSType)) {
   6956       Kind = CK_LValueBitCast;
   6957       return Compatible;
   6958     }
   6959     return Incompatible;
   6960   }
   6961 
   6962   // Allow scalar to ExtVector assignments, and assignments of an ExtVector type
   6963   // to the same ExtVector type.
   6964   if (LHSType->isExtVectorType()) {
   6965     if (RHSType->isExtVectorType())
   6966       return Incompatible;
   6967     if (RHSType->isArithmeticType()) {
   6968       // CK_VectorSplat does T -> vector T, so first cast to the
   6969       // element type.
   6970       QualType elType = cast<ExtVectorType>(LHSType)->getElementType();
   6971       if (elType != RHSType && ConvertRHS) {
   6972         Kind = PrepareScalarCast(RHS, elType);
   6973         RHS = ImpCastExprToType(RHS.get(), elType, Kind);
   6974       }
   6975       Kind = CK_VectorSplat;
   6976       return Compatible;
   6977     }
   6978   }
   6979 
   6980   // Conversions to or from vector type.
   6981   if (LHSType->isVectorType() || RHSType->isVectorType()) {
   6982     if (LHSType->isVectorType() && RHSType->isVectorType()) {
   6983       // Allow assignments of an AltiVec vector type to an equivalent GCC
   6984       // vector type and vice versa
   6985       if (Context.areCompatibleVectorTypes(LHSType, RHSType)) {
   6986         Kind = CK_BitCast;
   6987         return Compatible;
   6988       }
   6989 
   6990       // If we are allowing lax vector conversions, and LHS and RHS are both
   6991       // vectors, the total size only needs to be the same. This is a bitcast;
   6992       // no bits are changed but the result type is different.
   6993       if (isLaxVectorConversion(RHSType, LHSType)) {
   6994         Kind = CK_BitCast;
   6995         return IncompatibleVectors;
   6996       }
   6997     }
   6998     return Incompatible;
   6999   }
   7000 
   7001   // Arithmetic conversions.
   7002   if (LHSType->isArithmeticType() && RHSType->isArithmeticType() &&
   7003       !(getLangOpts().CPlusPlus && LHSType->isEnumeralType())) {
   7004     if (ConvertRHS)
   7005       Kind = PrepareScalarCast(RHS, LHSType);
   7006     return Compatible;
   7007   }
   7008 
   7009   // Conversions to normal pointers.
   7010   if (const PointerType *LHSPointer = dyn_cast<PointerType>(LHSType)) {
   7011     // U* -> T*
   7012     if (isa<PointerType>(RHSType)) {
   7013       unsigned AddrSpaceL = LHSPointer->getPointeeType().getAddressSpace();
   7014       unsigned AddrSpaceR = RHSType->getPointeeType().getAddressSpace();
   7015       Kind = AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion : CK_BitCast;
   7016       return checkPointerTypesForAssignment(*this, LHSType, RHSType);
   7017     }
   7018 
   7019     // int -> T*
   7020     if (RHSType->isIntegerType()) {
   7021       Kind = CK_IntegralToPointer; // FIXME: null?
   7022       return IntToPointer;
   7023     }
   7024 
   7025     // C pointers are not compatible with ObjC object pointers,
   7026     // with two exceptions:
   7027     if (isa<ObjCObjectPointerType>(RHSType)) {
   7028       //  - conversions to void*
   7029       if (LHSPointer->getPointeeType()->isVoidType()) {
   7030         Kind = CK_BitCast;
   7031         return Compatible;
   7032       }
   7033 
   7034       //  - conversions from 'Class' to the redefinition type
   7035       if (RHSType->isObjCClassType() &&
   7036           Context.hasSameType(LHSType,
   7037                               Context.getObjCClassRedefinitionType())) {
   7038         Kind = CK_BitCast;
   7039         return Compatible;
   7040       }
   7041 
   7042       Kind = CK_BitCast;
   7043       return IncompatiblePointer;
   7044     }
   7045 
   7046     // U^ -> void*
   7047     if (RHSType->getAs<BlockPointerType>()) {
   7048       if (LHSPointer->getPointeeType()->isVoidType()) {
   7049         Kind = CK_BitCast;
   7050         return Compatible;
   7051       }
   7052     }
   7053 
   7054     return Incompatible;
   7055   }
   7056 
   7057   // Conversions to block pointers.
   7058   if (isa<BlockPointerType>(LHSType)) {
   7059     // U^ -> T^
   7060     if (RHSType->isBlockPointerType()) {
   7061       Kind = CK_BitCast;
   7062       return checkBlockPointerTypesForAssignment(*this, LHSType, RHSType);
   7063     }
   7064 
   7065     // int or null -> T^
   7066     if (RHSType->isIntegerType()) {
   7067       Kind = CK_IntegralToPointer; // FIXME: null
   7068       return IntToBlockPointer;
   7069     }
   7070 
   7071     // id -> T^
   7072     if (getLangOpts().ObjC1 && RHSType->isObjCIdType()) {
   7073       Kind = CK_AnyPointerToBlockPointerCast;
   7074       return Compatible;
   7075     }
   7076 
   7077     // void* -> T^
   7078     if (const PointerType *RHSPT = RHSType->getAs<PointerType>())
   7079       if (RHSPT->getPointeeType()->isVoidType()) {
   7080         Kind = CK_AnyPointerToBlockPointerCast;
   7081         return Compatible;
   7082       }
   7083 
   7084     return Incompatible;
   7085   }
   7086 
   7087   // Conversions to Objective-C pointers.
   7088   if (isa<ObjCObjectPointerType>(LHSType)) {
   7089     // A* -> B*
   7090     if (RHSType->isObjCObjectPointerType()) {
   7091       Kind = CK_BitCast;
   7092       Sema::AssignConvertType result =
   7093         checkObjCPointerTypesForAssignment(*this, LHSType, RHSType);
   7094       if (getLangOpts().ObjCAutoRefCount &&
   7095           result == Compatible &&
   7096           !CheckObjCARCUnavailableWeakConversion(OrigLHSType, RHSType))
   7097         result = IncompatibleObjCWeakRef;
   7098       return result;
   7099     }
   7100 
   7101     // int or null -> A*
   7102     if (RHSType->isIntegerType()) {
   7103       Kind = CK_IntegralToPointer; // FIXME: null
   7104       return IntToPointer;
   7105     }
   7106 
   7107     // In general, C pointers are not compatible with ObjC object pointers,
   7108     // with two exceptions:
   7109     if (isa<PointerType>(RHSType)) {
   7110       Kind = CK_CPointerToObjCPointerCast;
   7111 
   7112       //  - conversions from 'void*'
   7113       if (RHSType->isVoidPointerType()) {
   7114         return Compatible;
   7115       }
   7116 
   7117       //  - conversions to 'Class' from its redefinition type
   7118       if (LHSType->isObjCClassType() &&
   7119           Context.hasSameType(RHSType,
   7120                               Context.getObjCClassRedefinitionType())) {
   7121         return Compatible;
   7122       }
   7123 
   7124       return IncompatiblePointer;
   7125     }
   7126 
   7127     // Only under strict condition T^ is compatible with an Objective-C pointer.
   7128     if (RHSType->isBlockPointerType() &&
   7129         LHSType->isBlockCompatibleObjCPointerType(Context)) {
   7130       if (ConvertRHS)
   7131         maybeExtendBlockObject(RHS);
   7132       Kind = CK_BlockPointerToObjCPointerCast;
   7133       return Compatible;
   7134     }
   7135 
   7136     return Incompatible;
   7137   }
   7138 
   7139   // Conversions from pointers that are not covered by the above.
   7140   if (isa<PointerType>(RHSType)) {
   7141     // T* -> _Bool
   7142     if (LHSType == Context.BoolTy) {
   7143       Kind = CK_PointerToBoolean;
   7144       return Compatible;
   7145     }
   7146 
   7147     // T* -> int
   7148     if (LHSType->isIntegerType()) {
   7149       Kind = CK_PointerToIntegral;
   7150       return PointerToInt;
   7151     }
   7152 
   7153     return Incompatible;
   7154   }
   7155 
   7156   // Conversions from Objective-C pointers that are not covered by the above.
   7157   if (isa<ObjCObjectPointerType>(RHSType)) {
   7158     // T* -> _Bool
   7159     if (LHSType == Context.BoolTy) {
   7160       Kind = CK_PointerToBoolean;
   7161       return Compatible;
   7162     }
   7163 
   7164     // T* -> int
   7165     if (LHSType->isIntegerType()) {
   7166       Kind = CK_PointerToIntegral;
   7167       return PointerToInt;
   7168     }
   7169 
   7170     return Incompatible;
   7171   }
   7172 
   7173   // struct A -> struct B
   7174   if (isa<TagType>(LHSType) && isa<TagType>(RHSType)) {
   7175     if (Context.typesAreCompatible(LHSType, RHSType)) {
   7176       Kind = CK_NoOp;
   7177       return Compatible;
   7178     }
   7179   }
   7180 
   7181   return Incompatible;
   7182 }
   7183 
   7184 /// \brief Constructs a transparent union from an expression that is
   7185 /// used to initialize the transparent union.
   7186 static void ConstructTransparentUnion(Sema &S, ASTContext &C,
   7187                                       ExprResult &EResult, QualType UnionType,
   7188                                       FieldDecl *Field) {
   7189   // Build an initializer list that designates the appropriate member
   7190   // of the transparent union.
   7191   Expr *E = EResult.get();
   7192   InitListExpr *Initializer = new (C) InitListExpr(C, SourceLocation(),
   7193                                                    E, SourceLocation());
   7194   Initializer->setType(UnionType);
   7195   Initializer->setInitializedFieldInUnion(Field);
   7196 
   7197   // Build a compound literal constructing a value of the transparent
   7198   // union type from this initializer list.
   7199   TypeSourceInfo *unionTInfo = C.getTrivialTypeSourceInfo(UnionType);
   7200   EResult = new (C) CompoundLiteralExpr(SourceLocation(), unionTInfo, UnionType,
   7201                                         VK_RValue, Initializer, false);
   7202 }
   7203 
   7204 Sema::AssignConvertType
   7205 Sema::CheckTransparentUnionArgumentConstraints(QualType ArgType,
   7206                                                ExprResult &RHS) {
   7207   QualType RHSType = RHS.get()->getType();
   7208 
   7209   // If the ArgType is a Union type, we want to handle a potential
   7210   // transparent_union GCC extension.
   7211   const RecordType *UT = ArgType->getAsUnionType();
   7212   if (!UT || !UT->getDecl()->hasAttr<TransparentUnionAttr>())
   7213     return Incompatible;
   7214 
   7215   // The field to initialize within the transparent union.
   7216   RecordDecl *UD = UT->getDecl();
   7217   FieldDecl *InitField = nullptr;
   7218   // It's compatible if the expression matches any of the fields.
   7219   for (auto *it : UD->fields()) {
   7220     if (it->getType()->isPointerType()) {
   7221       // If the transparent union contains a pointer type, we allow:
   7222       // 1) void pointer
   7223       // 2) null pointer constant
   7224       if (RHSType->isPointerType())
   7225         if (RHSType->castAs<PointerType>()->getPointeeType()->isVoidType()) {
   7226           RHS = ImpCastExprToType(RHS.get(), it->getType(), CK_BitCast);
   7227           InitField = it;
   7228           break;
   7229         }
   7230 
   7231       if (RHS.get()->isNullPointerConstant(Context,
   7232                                            Expr::NPC_ValueDependentIsNull)) {
   7233         RHS = ImpCastExprToType(RHS.get(), it->getType(),
   7234                                 CK_NullToPointer);
   7235         InitField = it;
   7236         break;
   7237       }
   7238     }
   7239 
   7240     CastKind Kind = CK_Invalid;
   7241     if (CheckAssignmentConstraints(it->getType(), RHS, Kind)
   7242           == Compatible) {
   7243       RHS = ImpCastExprToType(RHS.get(), it->getType(), Kind);
   7244       InitField = it;
   7245       break;
   7246     }
   7247   }
   7248 
   7249   if (!InitField)
   7250     return Incompatible;
   7251 
   7252   ConstructTransparentUnion(*this, Context, RHS, ArgType, InitField);
   7253   return Compatible;
   7254 }
   7255 
   7256 Sema::AssignConvertType
   7257 Sema::CheckSingleAssignmentConstraints(QualType LHSType, ExprResult &CallerRHS,
   7258                                        bool Diagnose,
   7259                                        bool DiagnoseCFAudited,
   7260                                        bool ConvertRHS) {
   7261   // If ConvertRHS is false, we want to leave the caller's RHS untouched. Sadly,
   7262   // we can't avoid *all* modifications at the moment, so we need some somewhere
   7263   // to put the updated value.
   7264   ExprResult LocalRHS = CallerRHS;
   7265   ExprResult &RHS = ConvertRHS ? CallerRHS : LocalRHS;
   7266 
   7267   if (getLangOpts().CPlusPlus) {
   7268     if (!LHSType->isRecordType() && !LHSType->isAtomicType()) {
   7269       // C++ 5.17p3: If the left operand is not of class type, the
   7270       // expression is implicitly converted (C++ 4) to the
   7271       // cv-unqualified type of the left operand.
   7272       ExprResult Res;
   7273       if (Diagnose) {
   7274         Res = PerformImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
   7275                                         AA_Assigning);
   7276       } else {
   7277         ImplicitConversionSequence ICS =
   7278             TryImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
   7279                                   /*SuppressUserConversions=*/false,
   7280                                   /*AllowExplicit=*/false,
   7281                                   /*InOverloadResolution=*/false,
   7282                                   /*CStyle=*/false,
   7283                                   /*AllowObjCWritebackConversion=*/false);
   7284         if (ICS.isFailure())
   7285           return Incompatible;
   7286         Res = PerformImplicitConversion(RHS.get(), LHSType.getUnqualifiedType(),
   7287                                         ICS, AA_Assigning);
   7288       }
   7289       if (Res.isInvalid())
   7290         return Incompatible;
   7291       Sema::AssignConvertType result = Compatible;
   7292       if (getLangOpts().ObjCAutoRefCount &&
   7293           !CheckObjCARCUnavailableWeakConversion(LHSType,
   7294                                                  RHS.get()->getType()))
   7295         result = IncompatibleObjCWeakRef;
   7296       RHS = Res;
   7297       return result;
   7298     }
   7299 
   7300     // FIXME: Currently, we fall through and treat C++ classes like C
   7301     // structures.
   7302     // FIXME: We also fall through for atomics; not sure what should
   7303     // happen there, though.
   7304   } else if (RHS.get()->getType() == Context.OverloadTy) {
   7305     // As a set of extensions to C, we support overloading on functions. These
   7306     // functions need to be resolved here.
   7307     DeclAccessPair DAP;
   7308     if (FunctionDecl *FD = ResolveAddressOfOverloadedFunction(
   7309             RHS.get(), LHSType, /*Complain=*/false, DAP))
   7310       RHS = FixOverloadedFunctionReference(RHS.get(), DAP, FD);
   7311     else
   7312       return Incompatible;
   7313   }
   7314 
   7315   // C99 6.5.16.1p1: the left operand is a pointer and the right is
   7316   // a null pointer constant.
   7317   if ((LHSType->isPointerType() || LHSType->isObjCObjectPointerType() ||
   7318        LHSType->isBlockPointerType()) &&
   7319       RHS.get()->isNullPointerConstant(Context,
   7320                                        Expr::NPC_ValueDependentIsNull)) {
   7321     CastKind Kind;
   7322     CXXCastPath Path;
   7323     CheckPointerConversion(RHS.get(), LHSType, Kind, Path, false);
   7324     if (ConvertRHS)
   7325       RHS = ImpCastExprToType(RHS.get(), LHSType, Kind, VK_RValue, &Path);
   7326     return Compatible;
   7327   }
   7328 
   7329   // This check seems unnatural, however it is necessary to ensure the proper
   7330   // conversion of functions/arrays. If the conversion were done for all
   7331   // DeclExpr's (created by ActOnIdExpression), it would mess up the unary
   7332   // expressions that suppress this implicit conversion (&, sizeof).
   7333   //
   7334   // Suppress this for references: C++ 8.5.3p5.
   7335   if (!LHSType->isReferenceType()) {
   7336     // FIXME: We potentially allocate here even if ConvertRHS is false.
   7337     RHS = DefaultFunctionArrayLvalueConversion(RHS.get(), Diagnose);
   7338     if (RHS.isInvalid())
   7339       return Incompatible;
   7340   }
   7341 
   7342   Expr *PRE = RHS.get()->IgnoreParenCasts();
   7343   if (ObjCProtocolExpr *OPE = dyn_cast<ObjCProtocolExpr>(PRE)) {
   7344     ObjCProtocolDecl *PDecl = OPE->getProtocol();
   7345     if (PDecl && !PDecl->hasDefinition()) {
   7346       Diag(PRE->getExprLoc(), diag::warn_atprotocol_protocol) << PDecl->getName();
   7347       Diag(PDecl->getLocation(), diag::note_entity_declared_at) << PDecl;
   7348     }
   7349   }
   7350 
   7351   CastKind Kind = CK_Invalid;
   7352   Sema::AssignConvertType result =
   7353     CheckAssignmentConstraints(LHSType, RHS, Kind, ConvertRHS);
   7354 
   7355   // C99 6.5.16.1p2: The value of the right operand is converted to the
   7356   // type of the assignment expression.
   7357   // CheckAssignmentConstraints allows the left-hand side to be a reference,
   7358   // so that we can use references in built-in functions even in C.
   7359   // The getNonReferenceType() call makes sure that the resulting expression
   7360   // does not have reference type.
   7361   if (result != Incompatible && RHS.get()->getType() != LHSType) {
   7362     QualType Ty = LHSType.getNonLValueExprType(Context);
   7363     Expr *E = RHS.get();
   7364     if (getLangOpts().ObjCAutoRefCount)
   7365       CheckObjCARCConversion(SourceRange(), Ty, E, CCK_ImplicitConversion,
   7366                              DiagnoseCFAudited);
   7367     if (getLangOpts().ObjC1 &&
   7368         (CheckObjCBridgeRelatedConversions(E->getLocStart(),
   7369                                           LHSType, E->getType(), E) ||
   7370          ConversionToObjCStringLiteralCheck(LHSType, E))) {
   7371       RHS = E;
   7372       return Compatible;
   7373     }
   7374 
   7375     if (ConvertRHS)
   7376       RHS = ImpCastExprToType(E, Ty, Kind);
   7377   }
   7378   return result;
   7379 }
   7380 
   7381 QualType Sema::InvalidOperands(SourceLocation Loc, ExprResult &LHS,
   7382                                ExprResult &RHS) {
   7383   Diag(Loc, diag::err_typecheck_invalid_operands)
   7384     << LHS.get()->getType() << RHS.get()->getType()
   7385     << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
   7386   return QualType();
   7387 }
   7388 
   7389 /// Try to convert a value of non-vector type to a vector type by converting
   7390 /// the type to the element type of the vector and then performing a splat.
   7391 /// If the language is OpenCL, we only use conversions that promote scalar
   7392 /// rank; for C, Obj-C, and C++ we allow any real scalar conversion except
   7393 /// for float->int.
   7394 ///
   7395 /// \param scalar - if non-null, actually perform the conversions
   7396 /// \return true if the operation fails (but without diagnosing the failure)
   7397 static bool tryVectorConvertAndSplat(Sema &S, ExprResult *scalar,
   7398                                      QualType scalarTy,
   7399                                      QualType vectorEltTy,
   7400                                      QualType vectorTy) {
   7401   // The conversion to apply to the scalar before splatting it,
   7402   // if necessary.
   7403   CastKind scalarCast = CK_Invalid;
   7404 
   7405   if (vectorEltTy->isIntegralType(S.Context)) {
   7406     if (!scalarTy->isIntegralType(S.Context))
   7407       return true;
   7408     if (S.getLangOpts().OpenCL &&
   7409         S.Context.getIntegerTypeOrder(vectorEltTy, scalarTy) < 0)
   7410       return true;
   7411     scalarCast = CK_IntegralCast;
   7412   } else if (vectorEltTy->isRealFloatingType()) {
   7413     if (scalarTy->isRealFloatingType()) {
   7414       if (S.getLangOpts().OpenCL &&
   7415           S.Context.getFloatingTypeOrder(vectorEltTy, scalarTy) < 0)
   7416         return true;
   7417       scalarCast = CK_FloatingCast;
   7418     }
   7419     else if (scalarTy->isIntegralType(S.Context))
   7420       scalarCast = CK_IntegralToFloating;
   7421     else
   7422       return true;
   7423   } else {
   7424     return true;
   7425   }
   7426 
   7427   // Adjust scalar if desired.
   7428   if (scalar) {
   7429     if (scalarCast != CK_Invalid)
   7430       *scalar = S.ImpCastExprToType(scalar->get(), vectorEltTy, scalarCast);
   7431     *scalar = S.ImpCastExprToType(scalar->get(), vectorTy, CK_VectorSplat);
   7432   }
   7433   return false;
   7434 }
   7435 
   7436 QualType Sema::CheckVectorOperands(ExprResult &LHS, ExprResult &RHS,
   7437                                    SourceLocation Loc, bool IsCompAssign,
   7438                                    bool AllowBothBool,
   7439                                    bool AllowBoolConversions) {
   7440   if (!IsCompAssign) {
   7441     LHS = DefaultFunctionArrayLvalueConversion(LHS.get());
   7442     if (LHS.isInvalid())
   7443       return QualType();
   7444   }
   7445   RHS = DefaultFunctionArrayLvalueConversion(RHS.get());
   7446   if (RHS.isInvalid())
   7447     return QualType();
   7448 
   7449   // For conversion purposes, we ignore any qualifiers.
   7450   // For example, "const float" and "float" are equivalent.
   7451   QualType LHSType = LHS.get()->getType().getUnqualifiedType();
   7452   QualType RHSType = RHS.get()->getType().getUnqualifiedType();
   7453 
   7454   const VectorType *LHSVecType = LHSType->getAs<VectorType>();
   7455   const VectorType *RHSVecType = RHSType->getAs<VectorType>();
   7456   assert(LHSVecType || RHSVecType);
   7457 
   7458   // AltiVec-style "vector bool op vector bool" combinations are allowed
   7459   // for some operators but not others.
   7460   if (!AllowBothBool &&
   7461       LHSVecType && LHSVecType->getVectorKind() == VectorType::AltiVecBool &&
   7462       RHSVecType && RHSVecType->getVectorKind() == VectorType::AltiVecBool)
   7463     return InvalidOperands(Loc, LHS, RHS);
   7464 
   7465   // If the vector types are identical, return.
   7466   if (Context.hasSameType(LHSType, RHSType))
   7467     return LHSType;
   7468 
   7469   // If we have compatible AltiVec and GCC vector types, use the AltiVec type.
   7470   if (LHSVecType && RHSVecType &&
   7471       Context.areCompatibleVectorTypes(LHSType, RHSType)) {
   7472     if (isa<ExtVectorType>(LHSVecType)) {
   7473       RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
   7474       return LHSType;
   7475     }
   7476 
   7477     if (!IsCompAssign)
   7478       LHS = ImpCastExprToType(LHS.get(), RHSType, CK_BitCast);
   7479     return RHSType;
   7480   }
   7481 
   7482   // AllowBoolConversions says that bool and non-bool AltiVec vectors
   7483   // can be mixed, with the result being the non-bool type.  The non-bool
   7484   // operand must have integer element type.
   7485   if (AllowBoolConversions && LHSVecType && RHSVecType &&
   7486       LHSVecType->getNumElements() == RHSVecType->getNumElements() &&
   7487       (Context.getTypeSize(LHSVecType->getElementType()) ==
   7488        Context.getTypeSize(RHSVecType->getElementType()))) {
   7489     if (LHSVecType->getVectorKind() == VectorType::AltiVecVector &&
   7490         LHSVecType->getElementType()->isIntegerType() &&
   7491         RHSVecType->getVectorKind() == VectorType::AltiVecBool) {
   7492       RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
   7493       return LHSType;
   7494     }
   7495     if (!IsCompAssign &&
   7496         LHSVecType->getVectorKind() == VectorType::AltiVecBool &&
   7497         RHSVecType->getVectorKind() == VectorType::AltiVecVector &&
   7498         RHSVecType->getElementType()->isIntegerType()) {
   7499       LHS = ImpCastExprToType(LHS.get(), RHSType, CK_BitCast);
   7500       return RHSType;
   7501     }
   7502   }
   7503 
   7504   // If there's an ext-vector type and a scalar, try to convert the scalar to
   7505   // the vector element type and splat.
   7506   if (!RHSVecType && isa<ExtVectorType>(LHSVecType)) {
   7507     if (!tryVectorConvertAndSplat(*this, &RHS, RHSType,
   7508                                   LHSVecType->getElementType(), LHSType))
   7509       return LHSType;
   7510   }
   7511   if (!LHSVecType && isa<ExtVectorType>(RHSVecType)) {
   7512     if (!tryVectorConvertAndSplat(*this, (IsCompAssign ? nullptr : &LHS),
   7513                                   LHSType, RHSVecType->getElementType(),
   7514                                   RHSType))
   7515       return RHSType;
   7516   }
   7517 
   7518   // If we're allowing lax vector conversions, only the total (data) size
   7519   // needs to be the same.
   7520   // FIXME: Should we really be allowing this?
   7521   // FIXME: We really just pick the LHS type arbitrarily?
   7522   if (isLaxVectorConversion(RHSType, LHSType)) {
   7523     QualType resultType = LHSType;
   7524     RHS = ImpCastExprToType(RHS.get(), resultType, CK_BitCast);
   7525     return resultType;
   7526   }
   7527 
   7528   // Okay, the expression is invalid.
   7529 
   7530   // If there's a non-vector, non-real operand, diagnose that.
   7531   if ((!RHSVecType && !RHSType->isRealType()) ||
   7532       (!LHSVecType && !LHSType->isRealType())) {
   7533     Diag(Loc, diag::err_typecheck_vector_not_convertable_non_scalar)
   7534       << LHSType << RHSType
   7535       << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
   7536     return QualType();
   7537   }
   7538 
   7539   // OpenCL V1.1 6.2.6.p1:
   7540   // If the operands are of more than one vector type, then an error shall
   7541   // occur. Implicit conversions between vector types are not permitted, per
   7542   // section 6.2.1.
   7543   if (getLangOpts().OpenCL &&
   7544       RHSVecType && isa<ExtVectorType>(RHSVecType) &&
   7545       LHSVecType && isa<ExtVectorType>(LHSVecType)) {
   7546     Diag(Loc, diag::err_opencl_implicit_vector_conversion) << LHSType
   7547                                                            << RHSType;
   7548     return QualType();
   7549   }
   7550 
   7551   // Otherwise, use the generic diagnostic.
   7552   Diag(Loc, diag::err_typecheck_vector_not_convertable)
   7553     << LHSType << RHSType
   7554     << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
   7555   return QualType();
   7556 }
   7557 
   7558 // checkArithmeticNull - Detect when a NULL constant is used improperly in an
   7559 // expression.  These are mainly cases where the null pointer is used as an
   7560 // integer instead of a pointer.
   7561 static void checkArithmeticNull(Sema &S, ExprResult &LHS, ExprResult &RHS,
   7562                                 SourceLocation Loc, bool IsCompare) {
   7563   // The canonical way to check for a GNU null is with isNullPointerConstant,
   7564   // but we use a bit of a hack here for speed; this is a relatively
   7565   // hot path, and isNullPointerConstant is slow.
   7566   bool LHSNull = isa<GNUNullExpr>(LHS.get()->IgnoreParenImpCasts());
   7567   bool RHSNull = isa<GNUNullExpr>(RHS.get()->IgnoreParenImpCasts());
   7568 
   7569   QualType NonNullType = LHSNull ? RHS.get()->getType() : LHS.get()->getType();
   7570 
   7571   // Avoid analyzing cases where the result will either be invalid (and
   7572   // diagnosed as such) or entirely valid and not something to warn about.
   7573   if ((!LHSNull && !RHSNull) || NonNullType->isBlockPointerType() ||
   7574       NonNullType->isMemberPointerType() || NonNullType->isFunctionType())
   7575     return;
   7576 
   7577   // Comparison operations would not make sense with a null pointer no matter
   7578   // what the other expression is.
   7579   if (!IsCompare) {
   7580     S.Diag(Loc, diag::warn_null_in_arithmetic_operation)
   7581         << (LHSNull ? LHS.get()->getSourceRange() : SourceRange())
   7582         << (RHSNull ? RHS.get()->getSourceRange() : SourceRange());
   7583     return;
   7584   }
   7585 
   7586   // The rest of the operations only make sense with a null pointer
   7587   // if the other expression is a pointer.
   7588   if (LHSNull == RHSNull || NonNullType->isAnyPointerType() ||
   7589       NonNullType->canDecayToPointerType())
   7590     return;
   7591 
   7592   S.Diag(Loc, diag::warn_null_in_comparison_operation)
   7593       << LHSNull /* LHS is NULL */ << NonNullType
   7594       << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
   7595 }
   7596 
   7597 static void DiagnoseBadDivideOrRemainderValues(Sema& S, ExprResult &LHS,
   7598                                                ExprResult &RHS,
   7599                                                SourceLocation Loc, bool IsDiv) {
   7600   // Check for division/remainder by zero.
   7601   llvm::APSInt RHSValue;
   7602   if (!RHS.get()->isValueDependent() &&
   7603       RHS.get()->EvaluateAsInt(RHSValue, S.Context) && RHSValue == 0)
   7604     S.DiagRuntimeBehavior(Loc, RHS.get(),
   7605                           S.PDiag(diag::warn_remainder_division_by_zero)
   7606                             << IsDiv << RHS.get()->getSourceRange());
   7607 }
   7608 
   7609 QualType Sema::CheckMultiplyDivideOperands(ExprResult &LHS, ExprResult &RHS,
   7610                                            SourceLocation Loc,
   7611                                            bool IsCompAssign, bool IsDiv) {
   7612   checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
   7613 
   7614   if (LHS.get()->getType()->isVectorType() ||
   7615       RHS.get()->getType()->isVectorType())
   7616     return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign,
   7617                                /*AllowBothBool*/getLangOpts().AltiVec,
   7618                                /*AllowBoolConversions*/false);
   7619 
   7620   QualType compType = UsualArithmeticConversions(LHS, RHS, IsCompAssign);
   7621   if (LHS.isInvalid() || RHS.isInvalid())
   7622     return QualType();
   7623 
   7624 
   7625   if (compType.isNull() || !compType->isArithmeticType())
   7626     return InvalidOperands(Loc, LHS, RHS);
   7627   if (IsDiv)
   7628     DiagnoseBadDivideOrRemainderValues(*this, LHS, RHS, Loc, IsDiv);
   7629   return compType;
   7630 }
   7631 
   7632 QualType Sema::CheckRemainderOperands(
   7633   ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign) {
   7634   checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
   7635 
   7636   if (LHS.get()->getType()->isVectorType() ||
   7637       RHS.get()->getType()->isVectorType()) {
   7638     if (LHS.get()->getType()->hasIntegerRepresentation() &&
   7639         RHS.get()->getType()->hasIntegerRepresentation())
   7640       return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign,
   7641                                  /*AllowBothBool*/getLangOpts().AltiVec,
   7642                                  /*AllowBoolConversions*/false);
   7643     return InvalidOperands(Loc, LHS, RHS);
   7644   }
   7645 
   7646   QualType compType = UsualArithmeticConversions(LHS, RHS, IsCompAssign);
   7647   if (LHS.isInvalid() || RHS.isInvalid())
   7648     return QualType();
   7649 
   7650   if (compType.isNull() || !compType->isIntegerType())
   7651     return InvalidOperands(Loc, LHS, RHS);
   7652   DiagnoseBadDivideOrRemainderValues(*this, LHS, RHS, Loc, false /* IsDiv */);
   7653   return compType;
   7654 }
   7655 
   7656 /// \brief Diagnose invalid arithmetic on two void pointers.
   7657 static void diagnoseArithmeticOnTwoVoidPointers(Sema &S, SourceLocation Loc,
   7658                                                 Expr *LHSExpr, Expr *RHSExpr) {
   7659   S.Diag(Loc, S.getLangOpts().CPlusPlus
   7660                 ? diag::err_typecheck_pointer_arith_void_type
   7661                 : diag::ext_gnu_void_ptr)
   7662     << 1 /* two pointers */ << LHSExpr->getSourceRange()
   7663                             << RHSExpr->getSourceRange();
   7664 }
   7665 
   7666 /// \brief Diagnose invalid arithmetic on a void pointer.
   7667 static void diagnoseArithmeticOnVoidPointer(Sema &S, SourceLocation Loc,
   7668                                             Expr *Pointer) {
   7669   S.Diag(Loc, S.getLangOpts().CPlusPlus
   7670                 ? diag::err_typecheck_pointer_arith_void_type
   7671                 : diag::ext_gnu_void_ptr)
   7672     << 0 /* one pointer */ << Pointer->getSourceRange();
   7673 }
   7674 
   7675 /// \brief Diagnose invalid arithmetic on two function pointers.
   7676 static void diagnoseArithmeticOnTwoFunctionPointers(Sema &S, SourceLocation Loc,
   7677                                                     Expr *LHS, Expr *RHS) {
   7678   assert(LHS->getType()->isAnyPointerType());
   7679   assert(RHS->getType()->isAnyPointerType());
   7680   S.Diag(Loc, S.getLangOpts().CPlusPlus
   7681                 ? diag::err_typecheck_pointer_arith_function_type
   7682                 : diag::ext_gnu_ptr_func_arith)
   7683     << 1 /* two pointers */ << LHS->getType()->getPointeeType()
   7684     // We only show the second type if it differs from the first.
   7685     << (unsigned)!S.Context.hasSameUnqualifiedType(LHS->getType(),
   7686                                                    RHS->getType())
   7687     << RHS->getType()->getPointeeType()
   7688     << LHS->getSourceRange() << RHS->getSourceRange();
   7689 }
   7690 
   7691 /// \brief Diagnose invalid arithmetic on a function pointer.
   7692 static void diagnoseArithmeticOnFunctionPointer(Sema &S, SourceLocation Loc,
   7693                                                 Expr *Pointer) {
   7694   assert(Pointer->getType()->isAnyPointerType());
   7695   S.Diag(Loc, S.getLangOpts().CPlusPlus
   7696                 ? diag::err_typecheck_pointer_arith_function_type
   7697                 : diag::ext_gnu_ptr_func_arith)
   7698     << 0 /* one pointer */ << Pointer->getType()->getPointeeType()
   7699     << 0 /* one pointer, so only one type */
   7700     << Pointer->getSourceRange();
   7701 }
   7702 
   7703 /// \brief Emit error if Operand is incomplete pointer type
   7704 ///
   7705 /// \returns True if pointer has incomplete type
   7706 static bool checkArithmeticIncompletePointerType(Sema &S, SourceLocation Loc,
   7707                                                  Expr *Operand) {
   7708   QualType ResType = Operand->getType();
   7709   if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
   7710     ResType = ResAtomicType->getValueType();
   7711 
   7712   assert(ResType->isAnyPointerType() && !ResType->isDependentType());
   7713   QualType PointeeTy = ResType->getPointeeType();
   7714   return S.RequireCompleteType(Loc, PointeeTy,
   7715                                diag::err_typecheck_arithmetic_incomplete_type,
   7716                                PointeeTy, Operand->getSourceRange());
   7717 }
   7718 
   7719 /// \brief Check the validity of an arithmetic pointer operand.
   7720 ///
   7721 /// If the operand has pointer type, this code will check for pointer types
   7722 /// which are invalid in arithmetic operations. These will be diagnosed
   7723 /// appropriately, including whether or not the use is supported as an
   7724 /// extension.
   7725 ///
   7726 /// \returns True when the operand is valid to use (even if as an extension).
   7727 static bool checkArithmeticOpPointerOperand(Sema &S, SourceLocation Loc,
   7728                                             Expr *Operand) {
   7729   QualType ResType = Operand->getType();
   7730   if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
   7731     ResType = ResAtomicType->getValueType();
   7732 
   7733   if (!ResType->isAnyPointerType()) return true;
   7734 
   7735   QualType PointeeTy = ResType->getPointeeType();
   7736   if (PointeeTy->isVoidType()) {
   7737     diagnoseArithmeticOnVoidPointer(S, Loc, Operand);
   7738     return !S.getLangOpts().CPlusPlus;
   7739   }
   7740   if (PointeeTy->isFunctionType()) {
   7741     diagnoseArithmeticOnFunctionPointer(S, Loc, Operand);
   7742     return !S.getLangOpts().CPlusPlus;
   7743   }
   7744 
   7745   if (checkArithmeticIncompletePointerType(S, Loc, Operand)) return false;
   7746 
   7747   return true;
   7748 }
   7749 
   7750 /// \brief Check the validity of a binary arithmetic operation w.r.t. pointer
   7751 /// operands.
   7752 ///
   7753 /// This routine will diagnose any invalid arithmetic on pointer operands much
   7754 /// like \see checkArithmeticOpPointerOperand. However, it has special logic
   7755 /// for emitting a single diagnostic even for operations where both LHS and RHS
   7756 /// are (potentially problematic) pointers.
   7757 ///
   7758 /// \returns True when the operand is valid to use (even if as an extension).
   7759 static bool checkArithmeticBinOpPointerOperands(Sema &S, SourceLocation Loc,
   7760                                                 Expr *LHSExpr, Expr *RHSExpr) {
   7761   bool isLHSPointer = LHSExpr->getType()->isAnyPointerType();
   7762   bool isRHSPointer = RHSExpr->getType()->isAnyPointerType();
   7763   if (!isLHSPointer && !isRHSPointer) return true;
   7764 
   7765   QualType LHSPointeeTy, RHSPointeeTy;
   7766   if (isLHSPointer) LHSPointeeTy = LHSExpr->getType()->getPointeeType();
   7767   if (isRHSPointer) RHSPointeeTy = RHSExpr->getType()->getPointeeType();
   7768 
   7769   // if both are pointers check if operation is valid wrt address spaces
   7770   if (S.getLangOpts().OpenCL && isLHSPointer && isRHSPointer) {
   7771     const PointerType *lhsPtr = LHSExpr->getType()->getAs<PointerType>();
   7772     const PointerType *rhsPtr = RHSExpr->getType()->getAs<PointerType>();
   7773     if (!lhsPtr->isAddressSpaceOverlapping(*rhsPtr)) {
   7774       S.Diag(Loc,
   7775              diag::err_typecheck_op_on_nonoverlapping_address_space_pointers)
   7776           << LHSExpr->getType() << RHSExpr->getType() << 1 /*arithmetic op*/
   7777           << LHSExpr->getSourceRange() << RHSExpr->getSourceRange();
   7778       return false;
   7779     }
   7780   }
   7781 
   7782   // Check for arithmetic on pointers to incomplete types.
   7783   bool isLHSVoidPtr = isLHSPointer && LHSPointeeTy->isVoidType();
   7784   bool isRHSVoidPtr = isRHSPointer && RHSPointeeTy->isVoidType();
   7785   if (isLHSVoidPtr || isRHSVoidPtr) {
   7786     if (!isRHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, LHSExpr);
   7787     else if (!isLHSVoidPtr) diagnoseArithmeticOnVoidPointer(S, Loc, RHSExpr);
   7788     else diagnoseArithmeticOnTwoVoidPointers(S, Loc, LHSExpr, RHSExpr);
   7789 
   7790     return !S.getLangOpts().CPlusPlus;
   7791   }
   7792 
   7793   bool isLHSFuncPtr = isLHSPointer && LHSPointeeTy->isFunctionType();
   7794   bool isRHSFuncPtr = isRHSPointer && RHSPointeeTy->isFunctionType();
   7795   if (isLHSFuncPtr || isRHSFuncPtr) {
   7796     if (!isRHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc, LHSExpr);
   7797     else if (!isLHSFuncPtr) diagnoseArithmeticOnFunctionPointer(S, Loc,
   7798                                                                 RHSExpr);
   7799     else diagnoseArithmeticOnTwoFunctionPointers(S, Loc, LHSExpr, RHSExpr);
   7800 
   7801     return !S.getLangOpts().CPlusPlus;
   7802   }
   7803 
   7804   if (isLHSPointer && checkArithmeticIncompletePointerType(S, Loc, LHSExpr))
   7805     return false;
   7806   if (isRHSPointer && checkArithmeticIncompletePointerType(S, Loc, RHSExpr))
   7807     return false;
   7808 
   7809   return true;
   7810 }
   7811 
   7812 /// diagnoseStringPlusInt - Emit a warning when adding an integer to a string
   7813 /// literal.
   7814 static void diagnoseStringPlusInt(Sema &Self, SourceLocation OpLoc,
   7815                                   Expr *LHSExpr, Expr *RHSExpr) {
   7816   StringLiteral* StrExpr = dyn_cast<StringLiteral>(LHSExpr->IgnoreImpCasts());
   7817   Expr* IndexExpr = RHSExpr;
   7818   if (!StrExpr) {
   7819     StrExpr = dyn_cast<StringLiteral>(RHSExpr->IgnoreImpCasts());
   7820     IndexExpr = LHSExpr;
   7821   }
   7822 
   7823   bool IsStringPlusInt = StrExpr &&
   7824       IndexExpr->getType()->isIntegralOrUnscopedEnumerationType();
   7825   if (!IsStringPlusInt || IndexExpr->isValueDependent())
   7826     return;
   7827 
   7828   llvm::APSInt index;
   7829   if (IndexExpr->EvaluateAsInt(index, Self.getASTContext())) {
   7830     unsigned StrLenWithNull = StrExpr->getLength() + 1;
   7831     if (index.isNonNegative() &&
   7832         index <= llvm::APSInt(llvm::APInt(index.getBitWidth(), StrLenWithNull),
   7833                               index.isUnsigned()))
   7834       return;
   7835   }
   7836 
   7837   SourceRange DiagRange(LHSExpr->getLocStart(), RHSExpr->getLocEnd());
   7838   Self.Diag(OpLoc, diag::warn_string_plus_int)
   7839       << DiagRange << IndexExpr->IgnoreImpCasts()->getType();
   7840 
   7841   // Only print a fixit for "str" + int, not for int + "str".
   7842   if (IndexExpr == RHSExpr) {
   7843     SourceLocation EndLoc = Self.getLocForEndOfToken(RHSExpr->getLocEnd());
   7844     Self.Diag(OpLoc, diag::note_string_plus_scalar_silence)
   7845         << FixItHint::CreateInsertion(LHSExpr->getLocStart(), "&")
   7846         << FixItHint::CreateReplacement(SourceRange(OpLoc), "[")
   7847         << FixItHint::CreateInsertion(EndLoc, "]");
   7848   } else
   7849     Self.Diag(OpLoc, diag::note_string_plus_scalar_silence);
   7850 }
   7851 
   7852 /// \brief Emit a warning when adding a char literal to a string.
   7853 static void diagnoseStringPlusChar(Sema &Self, SourceLocation OpLoc,
   7854                                    Expr *LHSExpr, Expr *RHSExpr) {
   7855   const Expr *StringRefExpr = LHSExpr;
   7856   const CharacterLiteral *CharExpr =
   7857       dyn_cast<CharacterLiteral>(RHSExpr->IgnoreImpCasts());
   7858 
   7859   if (!CharExpr) {
   7860     CharExpr = dyn_cast<CharacterLiteral>(LHSExpr->IgnoreImpCasts());
   7861     StringRefExpr = RHSExpr;
   7862   }
   7863 
   7864   if (!CharExpr || !StringRefExpr)
   7865     return;
   7866 
   7867   const QualType StringType = StringRefExpr->getType();
   7868 
   7869   // Return if not a PointerType.
   7870   if (!StringType->isAnyPointerType())
   7871     return;
   7872 
   7873   // Return if not a CharacterType.
   7874   if (!StringType->getPointeeType()->isAnyCharacterType())
   7875     return;
   7876 
   7877   ASTContext &Ctx = Self.getASTContext();
   7878   SourceRange DiagRange(LHSExpr->getLocStart(), RHSExpr->getLocEnd());
   7879 
   7880   const QualType CharType = CharExpr->getType();
   7881   if (!CharType->isAnyCharacterType() &&
   7882       CharType->isIntegerType() &&
   7883       llvm::isUIntN(Ctx.getCharWidth(), CharExpr->getValue())) {
   7884     Self.Diag(OpLoc, diag::warn_string_plus_char)
   7885         << DiagRange << Ctx.CharTy;
   7886   } else {
   7887     Self.Diag(OpLoc, diag::warn_string_plus_char)
   7888         << DiagRange << CharExpr->getType();
   7889   }
   7890 
   7891   // Only print a fixit for str + char, not for char + str.
   7892   if (isa<CharacterLiteral>(RHSExpr->IgnoreImpCasts())) {
   7893     SourceLocation EndLoc = Self.getLocForEndOfToken(RHSExpr->getLocEnd());
   7894     Self.Diag(OpLoc, diag::note_string_plus_scalar_silence)
   7895         << FixItHint::CreateInsertion(LHSExpr->getLocStart(), "&")
   7896         << FixItHint::CreateReplacement(SourceRange(OpLoc), "[")
   7897         << FixItHint::CreateInsertion(EndLoc, "]");
   7898   } else {
   7899     Self.Diag(OpLoc, diag::note_string_plus_scalar_silence);
   7900   }
   7901 }
   7902 
   7903 /// \brief Emit error when two pointers are incompatible.
   7904 static void diagnosePointerIncompatibility(Sema &S, SourceLocation Loc,
   7905                                            Expr *LHSExpr, Expr *RHSExpr) {
   7906   assert(LHSExpr->getType()->isAnyPointerType());
   7907   assert(RHSExpr->getType()->isAnyPointerType());
   7908   S.Diag(Loc, diag::err_typecheck_sub_ptr_compatible)
   7909     << LHSExpr->getType() << RHSExpr->getType() << LHSExpr->getSourceRange()
   7910     << RHSExpr->getSourceRange();
   7911 }
   7912 
   7913 // C99 6.5.6
   7914 QualType Sema::CheckAdditionOperands(ExprResult &LHS, ExprResult &RHS,
   7915                                      SourceLocation Loc, BinaryOperatorKind Opc,
   7916                                      QualType* CompLHSTy) {
   7917   checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
   7918 
   7919   if (LHS.get()->getType()->isVectorType() ||
   7920       RHS.get()->getType()->isVectorType()) {
   7921     QualType compType = CheckVectorOperands(
   7922         LHS, RHS, Loc, CompLHSTy,
   7923         /*AllowBothBool*/getLangOpts().AltiVec,
   7924         /*AllowBoolConversions*/getLangOpts().ZVector);
   7925     if (CompLHSTy) *CompLHSTy = compType;
   7926     return compType;
   7927   }
   7928 
   7929   QualType compType = UsualArithmeticConversions(LHS, RHS, CompLHSTy);
   7930   if (LHS.isInvalid() || RHS.isInvalid())
   7931     return QualType();
   7932 
   7933   // Diagnose "string literal" '+' int and string '+' "char literal".
   7934   if (Opc == BO_Add) {
   7935     diagnoseStringPlusInt(*this, Loc, LHS.get(), RHS.get());
   7936     diagnoseStringPlusChar(*this, Loc, LHS.get(), RHS.get());
   7937   }
   7938 
   7939   // handle the common case first (both operands are arithmetic).
   7940   if (!compType.isNull() && compType->isArithmeticType()) {
   7941     if (CompLHSTy) *CompLHSTy = compType;
   7942     return compType;
   7943   }
   7944 
   7945   // Type-checking.  Ultimately the pointer's going to be in PExp;
   7946   // note that we bias towards the LHS being the pointer.
   7947   Expr *PExp = LHS.get(), *IExp = RHS.get();
   7948 
   7949   bool isObjCPointer;
   7950   if (PExp->getType()->isPointerType()) {
   7951     isObjCPointer = false;
   7952   } else if (PExp->getType()->isObjCObjectPointerType()) {
   7953     isObjCPointer = true;
   7954   } else {
   7955     std::swap(PExp, IExp);
   7956     if (PExp->getType()->isPointerType()) {
   7957       isObjCPointer = false;
   7958     } else if (PExp->getType()->isObjCObjectPointerType()) {
   7959       isObjCPointer = true;
   7960     } else {
   7961       return InvalidOperands(Loc, LHS, RHS);
   7962     }
   7963   }
   7964   assert(PExp->getType()->isAnyPointerType());
   7965 
   7966   if (!IExp->getType()->isIntegerType())
   7967     return InvalidOperands(Loc, LHS, RHS);
   7968 
   7969   if (!checkArithmeticOpPointerOperand(*this, Loc, PExp))
   7970     return QualType();
   7971 
   7972   if (isObjCPointer && checkArithmeticOnObjCPointer(*this, Loc, PExp))
   7973     return QualType();
   7974 
   7975   // Check array bounds for pointer arithemtic
   7976   CheckArrayAccess(PExp, IExp);
   7977 
   7978   if (CompLHSTy) {
   7979     QualType LHSTy = Context.isPromotableBitField(LHS.get());
   7980     if (LHSTy.isNull()) {
   7981       LHSTy = LHS.get()->getType();
   7982       if (LHSTy->isPromotableIntegerType())
   7983         LHSTy = Context.getPromotedIntegerType(LHSTy);
   7984     }
   7985     *CompLHSTy = LHSTy;
   7986   }
   7987 
   7988   return PExp->getType();
   7989 }
   7990 
   7991 // C99 6.5.6
   7992 QualType Sema::CheckSubtractionOperands(ExprResult &LHS, ExprResult &RHS,
   7993                                         SourceLocation Loc,
   7994                                         QualType* CompLHSTy) {
   7995   checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
   7996 
   7997   if (LHS.get()->getType()->isVectorType() ||
   7998       RHS.get()->getType()->isVectorType()) {
   7999     QualType compType = CheckVectorOperands(
   8000         LHS, RHS, Loc, CompLHSTy,
   8001         /*AllowBothBool*/getLangOpts().AltiVec,
   8002         /*AllowBoolConversions*/getLangOpts().ZVector);
   8003     if (CompLHSTy) *CompLHSTy = compType;
   8004     return compType;
   8005   }
   8006 
   8007   QualType compType = UsualArithmeticConversions(LHS, RHS, CompLHSTy);
   8008   if (LHS.isInvalid() || RHS.isInvalid())
   8009     return QualType();
   8010 
   8011   // Enforce type constraints: C99 6.5.6p3.
   8012 
   8013   // Handle the common case first (both operands are arithmetic).
   8014   if (!compType.isNull() && compType->isArithmeticType()) {
   8015     if (CompLHSTy) *CompLHSTy = compType;
   8016     return compType;
   8017   }
   8018 
   8019   // Either ptr - int   or   ptr - ptr.
   8020   if (LHS.get()->getType()->isAnyPointerType()) {
   8021     QualType lpointee = LHS.get()->getType()->getPointeeType();
   8022 
   8023     // Diagnose bad cases where we step over interface counts.
   8024     if (LHS.get()->getType()->isObjCObjectPointerType() &&
   8025         checkArithmeticOnObjCPointer(*this, Loc, LHS.get()))
   8026       return QualType();
   8027 
   8028     // The result type of a pointer-int computation is the pointer type.
   8029     if (RHS.get()->getType()->isIntegerType()) {
   8030       if (!checkArithmeticOpPointerOperand(*this, Loc, LHS.get()))
   8031         return QualType();
   8032 
   8033       // Check array bounds for pointer arithemtic
   8034       CheckArrayAccess(LHS.get(), RHS.get(), /*ArraySubscriptExpr*/nullptr,
   8035                        /*AllowOnePastEnd*/true, /*IndexNegated*/true);
   8036 
   8037       if (CompLHSTy) *CompLHSTy = LHS.get()->getType();
   8038       return LHS.get()->getType();
   8039     }
   8040 
   8041     // Handle pointer-pointer subtractions.
   8042     if (const PointerType *RHSPTy
   8043           = RHS.get()->getType()->getAs<PointerType>()) {
   8044       QualType rpointee = RHSPTy->getPointeeType();
   8045 
   8046       if (getLangOpts().CPlusPlus) {
   8047         // Pointee types must be the same: C++ [expr.add]
   8048         if (!Context.hasSameUnqualifiedType(lpointee, rpointee)) {
   8049           diagnosePointerIncompatibility(*this, Loc, LHS.get(), RHS.get());
   8050         }
   8051       } else {
   8052         // Pointee types must be compatible C99 6.5.6p3
   8053         if (!Context.typesAreCompatible(
   8054                 Context.getCanonicalType(lpointee).getUnqualifiedType(),
   8055                 Context.getCanonicalType(rpointee).getUnqualifiedType())) {
   8056           diagnosePointerIncompatibility(*this, Loc, LHS.get(), RHS.get());
   8057           return QualType();
   8058         }
   8059       }
   8060 
   8061       if (!checkArithmeticBinOpPointerOperands(*this, Loc,
   8062                                                LHS.get(), RHS.get()))
   8063         return QualType();
   8064 
   8065       // The pointee type may have zero size.  As an extension, a structure or
   8066       // union may have zero size or an array may have zero length.  In this
   8067       // case subtraction does not make sense.
   8068       if (!rpointee->isVoidType() && !rpointee->isFunctionType()) {
   8069         CharUnits ElementSize = Context.getTypeSizeInChars(rpointee);
   8070         if (ElementSize.isZero()) {
   8071           Diag(Loc,diag::warn_sub_ptr_zero_size_types)
   8072             << rpointee.getUnqualifiedType()
   8073             << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
   8074         }
   8075       }
   8076 
   8077       if (CompLHSTy) *CompLHSTy = LHS.get()->getType();
   8078       return Context.getPointerDiffType();
   8079     }
   8080   }
   8081 
   8082   return InvalidOperands(Loc, LHS, RHS);
   8083 }
   8084 
   8085 static bool isScopedEnumerationType(QualType T) {
   8086   if (const EnumType *ET = T->getAs<EnumType>())
   8087     return ET->getDecl()->isScoped();
   8088   return false;
   8089 }
   8090 
   8091 static void DiagnoseBadShiftValues(Sema& S, ExprResult &LHS, ExprResult &RHS,
   8092                                    SourceLocation Loc, BinaryOperatorKind Opc,
   8093                                    QualType LHSType) {
   8094   // OpenCL 6.3j: shift values are effectively % word size of LHS (more defined),
   8095   // so skip remaining warnings as we don't want to modify values within Sema.
   8096   if (S.getLangOpts().OpenCL)
   8097     return;
   8098 
   8099   llvm::APSInt Right;
   8100   // Check right/shifter operand
   8101   if (RHS.get()->isValueDependent() ||
   8102       !RHS.get()->EvaluateAsInt(Right, S.Context))
   8103     return;
   8104 
   8105   if (Right.isNegative()) {
   8106     S.DiagRuntimeBehavior(Loc, RHS.get(),
   8107                           S.PDiag(diag::warn_shift_negative)
   8108                             << RHS.get()->getSourceRange());
   8109     return;
   8110   }
   8111   llvm::APInt LeftBits(Right.getBitWidth(),
   8112                        S.Context.getTypeSize(LHS.get()->getType()));
   8113   if (Right.uge(LeftBits)) {
   8114     S.DiagRuntimeBehavior(Loc, RHS.get(),
   8115                           S.PDiag(diag::warn_shift_gt_typewidth)
   8116                             << RHS.get()->getSourceRange());
   8117     return;
   8118   }
   8119   if (Opc != BO_Shl)
   8120     return;
   8121 
   8122   // When left shifting an ICE which is signed, we can check for overflow which
   8123   // according to C++ has undefined behavior ([expr.shift] 5.8/2). Unsigned
   8124   // integers have defined behavior modulo one more than the maximum value
   8125   // representable in the result type, so never warn for those.
   8126   llvm::APSInt Left;
   8127   if (LHS.get()->isValueDependent() ||
   8128       LHSType->hasUnsignedIntegerRepresentation() ||
   8129       !LHS.get()->EvaluateAsInt(Left, S.Context))
   8130     return;
   8131 
   8132   // If LHS does not have a signed type and non-negative value
   8133   // then, the behavior is undefined. Warn about it.
   8134   if (Left.isNegative()) {
   8135     S.DiagRuntimeBehavior(Loc, LHS.get(),
   8136                           S.PDiag(diag::warn_shift_lhs_negative)
   8137                             << LHS.get()->getSourceRange());
   8138     return;
   8139   }
   8140 
   8141   llvm::APInt ResultBits =
   8142       static_cast<llvm::APInt&>(Right) + Left.getMinSignedBits();
   8143   if (LeftBits.uge(ResultBits))
   8144     return;
   8145   llvm::APSInt Result = Left.extend(ResultBits.getLimitedValue());
   8146   Result = Result.shl(Right);
   8147 
   8148   // Print the bit representation of the signed integer as an unsigned
   8149   // hexadecimal number.
   8150   SmallString<40> HexResult;
   8151   Result.toString(HexResult, 16, /*Signed =*/false, /*Literal =*/true);
   8152 
   8153   // If we are only missing a sign bit, this is less likely to result in actual
   8154   // bugs -- if the result is cast back to an unsigned type, it will have the
   8155   // expected value. Thus we place this behind a different warning that can be
   8156   // turned off separately if needed.
   8157   if (LeftBits == ResultBits - 1) {
   8158     S.Diag(Loc, diag::warn_shift_result_sets_sign_bit)
   8159         << HexResult << LHSType
   8160         << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
   8161     return;
   8162   }
   8163 
   8164   S.Diag(Loc, diag::warn_shift_result_gt_typewidth)
   8165     << HexResult.str() << Result.getMinSignedBits() << LHSType
   8166     << Left.getBitWidth() << LHS.get()->getSourceRange()
   8167     << RHS.get()->getSourceRange();
   8168 }
   8169 
   8170 /// \brief Return the resulting type when an OpenCL vector is shifted
   8171 ///        by a scalar or vector shift amount.
   8172 static QualType checkOpenCLVectorShift(Sema &S,
   8173                                        ExprResult &LHS, ExprResult &RHS,
   8174                                        SourceLocation Loc, bool IsCompAssign) {
   8175   // OpenCL v1.1 s6.3.j says RHS can be a vector only if LHS is a vector.
   8176   if (!LHS.get()->getType()->isVectorType()) {
   8177     S.Diag(Loc, diag::err_shift_rhs_only_vector)
   8178       << RHS.get()->getType() << LHS.get()->getType()
   8179       << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
   8180     return QualType();
   8181   }
   8182 
   8183   if (!IsCompAssign) {
   8184     LHS = S.UsualUnaryConversions(LHS.get());
   8185     if (LHS.isInvalid()) return QualType();
   8186   }
   8187 
   8188   RHS = S.UsualUnaryConversions(RHS.get());
   8189   if (RHS.isInvalid()) return QualType();
   8190 
   8191   QualType LHSType = LHS.get()->getType();
   8192   const VectorType *LHSVecTy = LHSType->getAs<VectorType>();
   8193   QualType LHSEleType = LHSVecTy->getElementType();
   8194 
   8195   // Note that RHS might not be a vector.
   8196   QualType RHSType = RHS.get()->getType();
   8197   const VectorType *RHSVecTy = RHSType->getAs<VectorType>();
   8198   QualType RHSEleType = RHSVecTy ? RHSVecTy->getElementType() : RHSType;
   8199 
   8200   // OpenCL v1.1 s6.3.j says that the operands need to be integers.
   8201   if (!LHSEleType->isIntegerType()) {
   8202     S.Diag(Loc, diag::err_typecheck_expect_int)
   8203       << LHS.get()->getType() << LHS.get()->getSourceRange();
   8204     return QualType();
   8205   }
   8206 
   8207   if (!RHSEleType->isIntegerType()) {
   8208     S.Diag(Loc, diag::err_typecheck_expect_int)
   8209       << RHS.get()->getType() << RHS.get()->getSourceRange();
   8210     return QualType();
   8211   }
   8212 
   8213   if (RHSVecTy) {
   8214     // OpenCL v1.1 s6.3.j says that for vector types, the operators
   8215     // are applied component-wise. So if RHS is a vector, then ensure
   8216     // that the number of elements is the same as LHS...
   8217     if (RHSVecTy->getNumElements() != LHSVecTy->getNumElements()) {
   8218       S.Diag(Loc, diag::err_typecheck_vector_lengths_not_equal)
   8219         << LHS.get()->getType() << RHS.get()->getType()
   8220         << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
   8221       return QualType();
   8222     }
   8223   } else {
   8224     // ...else expand RHS to match the number of elements in LHS.
   8225     QualType VecTy =
   8226       S.Context.getExtVectorType(RHSEleType, LHSVecTy->getNumElements());
   8227     RHS = S.ImpCastExprToType(RHS.get(), VecTy, CK_VectorSplat);
   8228   }
   8229 
   8230   return LHSType;
   8231 }
   8232 
   8233 // C99 6.5.7
   8234 QualType Sema::CheckShiftOperands(ExprResult &LHS, ExprResult &RHS,
   8235                                   SourceLocation Loc, BinaryOperatorKind Opc,
   8236                                   bool IsCompAssign) {
   8237   checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
   8238 
   8239   // Vector shifts promote their scalar inputs to vector type.
   8240   if (LHS.get()->getType()->isVectorType() ||
   8241       RHS.get()->getType()->isVectorType()) {
   8242     if (LangOpts.OpenCL)
   8243       return checkOpenCLVectorShift(*this, LHS, RHS, Loc, IsCompAssign);
   8244     if (LangOpts.ZVector) {
   8245       // The shift operators for the z vector extensions work basically
   8246       // like OpenCL shifts, except that neither the LHS nor the RHS is
   8247       // allowed to be a "vector bool".
   8248       if (auto LHSVecType = LHS.get()->getType()->getAs<VectorType>())
   8249         if (LHSVecType->getVectorKind() == VectorType::AltiVecBool)
   8250           return InvalidOperands(Loc, LHS, RHS);
   8251       if (auto RHSVecType = RHS.get()->getType()->getAs<VectorType>())
   8252         if (RHSVecType->getVectorKind() == VectorType::AltiVecBool)
   8253           return InvalidOperands(Loc, LHS, RHS);
   8254       return checkOpenCLVectorShift(*this, LHS, RHS, Loc, IsCompAssign);
   8255     }
   8256     return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign,
   8257                                /*AllowBothBool*/true,
   8258                                /*AllowBoolConversions*/false);
   8259   }
   8260 
   8261   // Shifts don't perform usual arithmetic conversions, they just do integer
   8262   // promotions on each operand. C99 6.5.7p3
   8263 
   8264   // For the LHS, do usual unary conversions, but then reset them away
   8265   // if this is a compound assignment.
   8266   ExprResult OldLHS = LHS;
   8267   LHS = UsualUnaryConversions(LHS.get());
   8268   if (LHS.isInvalid())
   8269     return QualType();
   8270   QualType LHSType = LHS.get()->getType();
   8271   if (IsCompAssign) LHS = OldLHS;
   8272 
   8273   // The RHS is simpler.
   8274   RHS = UsualUnaryConversions(RHS.get());
   8275   if (RHS.isInvalid())
   8276     return QualType();
   8277   QualType RHSType = RHS.get()->getType();
   8278 
   8279   // C99 6.5.7p2: Each of the operands shall have integer type.
   8280   if (!LHSType->hasIntegerRepresentation() ||
   8281       !RHSType->hasIntegerRepresentation())
   8282     return InvalidOperands(Loc, LHS, RHS);
   8283 
   8284   // C++0x: Don't allow scoped enums. FIXME: Use something better than
   8285   // hasIntegerRepresentation() above instead of this.
   8286   if (isScopedEnumerationType(LHSType) ||
   8287       isScopedEnumerationType(RHSType)) {
   8288     return InvalidOperands(Loc, LHS, RHS);
   8289   }
   8290   // Sanity-check shift operands
   8291   DiagnoseBadShiftValues(*this, LHS, RHS, Loc, Opc, LHSType);
   8292 
   8293   // "The type of the result is that of the promoted left operand."
   8294   return LHSType;
   8295 }
   8296 
   8297 static bool IsWithinTemplateSpecialization(Decl *D) {
   8298   if (DeclContext *DC = D->getDeclContext()) {
   8299     if (isa<ClassTemplateSpecializationDecl>(DC))
   8300       return true;
   8301     if (FunctionDecl *FD = dyn_cast<FunctionDecl>(DC))
   8302       return FD->isFunctionTemplateSpecialization();
   8303   }
   8304   return false;
   8305 }
   8306 
   8307 /// If two different enums are compared, raise a warning.
   8308 static void checkEnumComparison(Sema &S, SourceLocation Loc, Expr *LHS,
   8309                                 Expr *RHS) {
   8310   QualType LHSStrippedType = LHS->IgnoreParenImpCasts()->getType();
   8311   QualType RHSStrippedType = RHS->IgnoreParenImpCasts()->getType();
   8312 
   8313   const EnumType *LHSEnumType = LHSStrippedType->getAs<EnumType>();
   8314   if (!LHSEnumType)
   8315     return;
   8316   const EnumType *RHSEnumType = RHSStrippedType->getAs<EnumType>();
   8317   if (!RHSEnumType)
   8318     return;
   8319 
   8320   // Ignore anonymous enums.
   8321   if (!LHSEnumType->getDecl()->getIdentifier())
   8322     return;
   8323   if (!RHSEnumType->getDecl()->getIdentifier())
   8324     return;
   8325 
   8326   if (S.Context.hasSameUnqualifiedType(LHSStrippedType, RHSStrippedType))
   8327     return;
   8328 
   8329   S.Diag(Loc, diag::warn_comparison_of_mixed_enum_types)
   8330       << LHSStrippedType << RHSStrippedType
   8331       << LHS->getSourceRange() << RHS->getSourceRange();
   8332 }
   8333 
   8334 /// \brief Diagnose bad pointer comparisons.
   8335 static void diagnoseDistinctPointerComparison(Sema &S, SourceLocation Loc,
   8336                                               ExprResult &LHS, ExprResult &RHS,
   8337                                               bool IsError) {
   8338   S.Diag(Loc, IsError ? diag::err_typecheck_comparison_of_distinct_pointers
   8339                       : diag::ext_typecheck_comparison_of_distinct_pointers)
   8340     << LHS.get()->getType() << RHS.get()->getType()
   8341     << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
   8342 }
   8343 
   8344 /// \brief Returns false if the pointers are converted to a composite type,
   8345 /// true otherwise.
   8346 static bool convertPointersToCompositeType(Sema &S, SourceLocation Loc,
   8347                                            ExprResult &LHS, ExprResult &RHS) {
   8348   // C++ [expr.rel]p2:
   8349   //   [...] Pointer conversions (4.10) and qualification
   8350   //   conversions (4.4) are performed on pointer operands (or on
   8351   //   a pointer operand and a null pointer constant) to bring
   8352   //   them to their composite pointer type. [...]
   8353   //
   8354   // C++ [expr.eq]p1 uses the same notion for (in)equality
   8355   // comparisons of pointers.
   8356 
   8357   // C++ [expr.eq]p2:
   8358   //   In addition, pointers to members can be compared, or a pointer to
   8359   //   member and a null pointer constant. Pointer to member conversions
   8360   //   (4.11) and qualification conversions (4.4) are performed to bring
   8361   //   them to a common type. If one operand is a null pointer constant,
   8362   //   the common type is the type of the other operand. Otherwise, the
   8363   //   common type is a pointer to member type similar (4.4) to the type
   8364   //   of one of the operands, with a cv-qualification signature (4.4)
   8365   //   that is the union of the cv-qualification signatures of the operand
   8366   //   types.
   8367 
   8368   QualType LHSType = LHS.get()->getType();
   8369   QualType RHSType = RHS.get()->getType();
   8370   assert((LHSType->isPointerType() && RHSType->isPointerType()) ||
   8371          (LHSType->isMemberPointerType() && RHSType->isMemberPointerType()));
   8372 
   8373   bool NonStandardCompositeType = false;
   8374   bool *BoolPtr = S.isSFINAEContext() ? nullptr : &NonStandardCompositeType;
   8375   QualType T = S.FindCompositePointerType(Loc, LHS, RHS, BoolPtr);
   8376   if (T.isNull()) {
   8377     diagnoseDistinctPointerComparison(S, Loc, LHS, RHS, /*isError*/true);
   8378     return true;
   8379   }
   8380 
   8381   if (NonStandardCompositeType)
   8382     S.Diag(Loc, diag::ext_typecheck_comparison_of_distinct_pointers_nonstandard)
   8383       << LHSType << RHSType << T << LHS.get()->getSourceRange()
   8384       << RHS.get()->getSourceRange();
   8385 
   8386   LHS = S.ImpCastExprToType(LHS.get(), T, CK_BitCast);
   8387   RHS = S.ImpCastExprToType(RHS.get(), T, CK_BitCast);
   8388   return false;
   8389 }
   8390 
   8391 static void diagnoseFunctionPointerToVoidComparison(Sema &S, SourceLocation Loc,
   8392                                                     ExprResult &LHS,
   8393                                                     ExprResult &RHS,
   8394                                                     bool IsError) {
   8395   S.Diag(Loc, IsError ? diag::err_typecheck_comparison_of_fptr_to_void
   8396                       : diag::ext_typecheck_comparison_of_fptr_to_void)
   8397     << LHS.get()->getType() << RHS.get()->getType()
   8398     << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
   8399 }
   8400 
   8401 static bool isObjCObjectLiteral(ExprResult &E) {
   8402   switch (E.get()->IgnoreParenImpCasts()->getStmtClass()) {
   8403   case Stmt::ObjCArrayLiteralClass:
   8404   case Stmt::ObjCDictionaryLiteralClass:
   8405   case Stmt::ObjCStringLiteralClass:
   8406   case Stmt::ObjCBoxedExprClass:
   8407     return true;
   8408   default:
   8409     // Note that ObjCBoolLiteral is NOT an object literal!
   8410     return false;
   8411   }
   8412 }
   8413 
   8414 static bool hasIsEqualMethod(Sema &S, const Expr *LHS, const Expr *RHS) {
   8415   const ObjCObjectPointerType *Type =
   8416     LHS->getType()->getAs<ObjCObjectPointerType>();
   8417 
   8418   // If this is not actually an Objective-C object, bail out.
   8419   if (!Type)
   8420     return false;
   8421 
   8422   // Get the LHS object's interface type.
   8423   QualType InterfaceType = Type->getPointeeType();
   8424 
   8425   // If the RHS isn't an Objective-C object, bail out.
   8426   if (!RHS->getType()->isObjCObjectPointerType())
   8427     return false;
   8428 
   8429   // Try to find the -isEqual: method.
   8430   Selector IsEqualSel = S.NSAPIObj->getIsEqualSelector();
   8431   ObjCMethodDecl *Method = S.LookupMethodInObjectType(IsEqualSel,
   8432                                                       InterfaceType,
   8433                                                       /*instance=*/true);
   8434   if (!Method) {
   8435     if (Type->isObjCIdType()) {
   8436       // For 'id', just check the global pool.
   8437       Method = S.LookupInstanceMethodInGlobalPool(IsEqualSel, SourceRange(),
   8438                                                   /*receiverId=*/true);
   8439     } else {
   8440       // Check protocols.
   8441       Method = S.LookupMethodInQualifiedType(IsEqualSel, Type,
   8442                                              /*instance=*/true);
   8443     }
   8444   }
   8445 
   8446   if (!Method)
   8447     return false;
   8448 
   8449   QualType T = Method->parameters()[0]->getType();
   8450   if (!T->isObjCObjectPointerType())
   8451     return false;
   8452 
   8453   QualType R = Method->getReturnType();
   8454   if (!R->isScalarType())
   8455     return false;
   8456 
   8457   return true;
   8458 }
   8459 
   8460 Sema::ObjCLiteralKind Sema::CheckLiteralKind(Expr *FromE) {
   8461   FromE = FromE->IgnoreParenImpCasts();
   8462   switch (FromE->getStmtClass()) {
   8463     default:
   8464       break;
   8465     case Stmt::ObjCStringLiteralClass:
   8466       // "string literal"
   8467       return LK_String;
   8468     case Stmt::ObjCArrayLiteralClass:
   8469       // "array literal"
   8470       return LK_Array;
   8471     case Stmt::ObjCDictionaryLiteralClass:
   8472       // "dictionary literal"
   8473       return LK_Dictionary;
   8474     case Stmt::BlockExprClass:
   8475       return LK_Block;
   8476     case Stmt::ObjCBoxedExprClass: {
   8477       Expr *Inner = cast<ObjCBoxedExpr>(FromE)->getSubExpr()->IgnoreParens();
   8478       switch (Inner->getStmtClass()) {
   8479         case Stmt::IntegerLiteralClass:
   8480         case Stmt::FloatingLiteralClass:
   8481         case Stmt::CharacterLiteralClass:
   8482         case Stmt::ObjCBoolLiteralExprClass:
   8483         case Stmt::CXXBoolLiteralExprClass:
   8484           // "numeric literal"
   8485           return LK_Numeric;
   8486         case Stmt::ImplicitCastExprClass: {
   8487           CastKind CK = cast<CastExpr>(Inner)->getCastKind();
   8488           // Boolean literals can be represented by implicit casts.
   8489           if (CK == CK_IntegralToBoolean || CK == CK_IntegralCast)
   8490             return LK_Numeric;
   8491           break;
   8492         }
   8493         default:
   8494           break;
   8495       }
   8496       return LK_Boxed;
   8497     }
   8498   }
   8499   return LK_None;
   8500 }
   8501 
   8502 static void diagnoseObjCLiteralComparison(Sema &S, SourceLocation Loc,
   8503                                           ExprResult &LHS, ExprResult &RHS,
   8504                                           BinaryOperator::Opcode Opc){
   8505   Expr *Literal;
   8506   Expr *Other;
   8507   if (isObjCObjectLiteral(LHS)) {
   8508     Literal = LHS.get();
   8509     Other = RHS.get();
   8510   } else {
   8511     Literal = RHS.get();
   8512     Other = LHS.get();
   8513   }
   8514 
   8515   // Don't warn on comparisons against nil.
   8516   Other = Other->IgnoreParenCasts();
   8517   if (Other->isNullPointerConstant(S.getASTContext(),
   8518                                    Expr::NPC_ValueDependentIsNotNull))
   8519     return;
   8520 
   8521   // This should be kept in sync with warn_objc_literal_comparison.
   8522   // LK_String should always be after the other literals, since it has its own
   8523   // warning flag.
   8524   Sema::ObjCLiteralKind LiteralKind = S.CheckLiteralKind(Literal);
   8525   assert(LiteralKind != Sema::LK_Block);
   8526   if (LiteralKind == Sema::LK_None) {
   8527     llvm_unreachable("Unknown Objective-C object literal kind");
   8528   }
   8529 
   8530   if (LiteralKind == Sema::LK_String)
   8531     S.Diag(Loc, diag::warn_objc_string_literal_comparison)
   8532       << Literal->getSourceRange();
   8533   else
   8534     S.Diag(Loc, diag::warn_objc_literal_comparison)
   8535       << LiteralKind << Literal->getSourceRange();
   8536 
   8537   if (BinaryOperator::isEqualityOp(Opc) &&
   8538       hasIsEqualMethod(S, LHS.get(), RHS.get())) {
   8539     SourceLocation Start = LHS.get()->getLocStart();
   8540     SourceLocation End = S.getLocForEndOfToken(RHS.get()->getLocEnd());
   8541     CharSourceRange OpRange =
   8542       CharSourceRange::getCharRange(Loc, S.getLocForEndOfToken(Loc));
   8543 
   8544     S.Diag(Loc, diag::note_objc_literal_comparison_isequal)
   8545       << FixItHint::CreateInsertion(Start, Opc == BO_EQ ? "[" : "![")
   8546       << FixItHint::CreateReplacement(OpRange, " isEqual:")
   8547       << FixItHint::CreateInsertion(End, "]");
   8548   }
   8549 }
   8550 
   8551 static void diagnoseLogicalNotOnLHSofComparison(Sema &S, ExprResult &LHS,
   8552                                                 ExprResult &RHS,
   8553                                                 SourceLocation Loc,
   8554                                                 BinaryOperatorKind Opc) {
   8555   // Check that left hand side is !something.
   8556   UnaryOperator *UO = dyn_cast<UnaryOperator>(LHS.get()->IgnoreImpCasts());
   8557   if (!UO || UO->getOpcode() != UO_LNot) return;
   8558 
   8559   // Only check if the right hand side is non-bool arithmetic type.
   8560   if (RHS.get()->isKnownToHaveBooleanValue()) return;
   8561 
   8562   // Make sure that the something in !something is not bool.
   8563   Expr *SubExpr = UO->getSubExpr()->IgnoreImpCasts();
   8564   if (SubExpr->isKnownToHaveBooleanValue()) return;
   8565 
   8566   // Emit warning.
   8567   S.Diag(UO->getOperatorLoc(), diag::warn_logical_not_on_lhs_of_comparison)
   8568       << Loc;
   8569 
   8570   // First note suggest !(x < y)
   8571   SourceLocation FirstOpen = SubExpr->getLocStart();
   8572   SourceLocation FirstClose = RHS.get()->getLocEnd();
   8573   FirstClose = S.getLocForEndOfToken(FirstClose);
   8574   if (FirstClose.isInvalid())
   8575     FirstOpen = SourceLocation();
   8576   S.Diag(UO->getOperatorLoc(), diag::note_logical_not_fix)
   8577       << FixItHint::CreateInsertion(FirstOpen, "(")
   8578       << FixItHint::CreateInsertion(FirstClose, ")");
   8579 
   8580   // Second note suggests (!x) < y
   8581   SourceLocation SecondOpen = LHS.get()->getLocStart();
   8582   SourceLocation SecondClose = LHS.get()->getLocEnd();
   8583   SecondClose = S.getLocForEndOfToken(SecondClose);
   8584   if (SecondClose.isInvalid())
   8585     SecondOpen = SourceLocation();
   8586   S.Diag(UO->getOperatorLoc(), diag::note_logical_not_silence_with_parens)
   8587       << FixItHint::CreateInsertion(SecondOpen, "(")
   8588       << FixItHint::CreateInsertion(SecondClose, ")");
   8589 }
   8590 
   8591 // Get the decl for a simple expression: a reference to a variable,
   8592 // an implicit C++ field reference, or an implicit ObjC ivar reference.
   8593 static ValueDecl *getCompareDecl(Expr *E) {
   8594   if (DeclRefExpr* DR = dyn_cast<DeclRefExpr>(E))
   8595     return DR->getDecl();
   8596   if (ObjCIvarRefExpr* Ivar = dyn_cast<ObjCIvarRefExpr>(E)) {
   8597     if (Ivar->isFreeIvar())
   8598       return Ivar->getDecl();
   8599   }
   8600   if (MemberExpr* Mem = dyn_cast<MemberExpr>(E)) {
   8601     if (Mem->isImplicitAccess())
   8602       return Mem->getMemberDecl();
   8603   }
   8604   return nullptr;
   8605 }
   8606 
   8607 // C99 6.5.8, C++ [expr.rel]
   8608 QualType Sema::CheckCompareOperands(ExprResult &LHS, ExprResult &RHS,
   8609                                     SourceLocation Loc, BinaryOperatorKind Opc,
   8610                                     bool IsRelational) {
   8611   checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/true);
   8612 
   8613   // Handle vector comparisons separately.
   8614   if (LHS.get()->getType()->isVectorType() ||
   8615       RHS.get()->getType()->isVectorType())
   8616     return CheckVectorCompareOperands(LHS, RHS, Loc, IsRelational);
   8617 
   8618   QualType LHSType = LHS.get()->getType();
   8619   QualType RHSType = RHS.get()->getType();
   8620 
   8621   Expr *LHSStripped = LHS.get()->IgnoreParenImpCasts();
   8622   Expr *RHSStripped = RHS.get()->IgnoreParenImpCasts();
   8623 
   8624   checkEnumComparison(*this, Loc, LHS.get(), RHS.get());
   8625   diagnoseLogicalNotOnLHSofComparison(*this, LHS, RHS, Loc, Opc);
   8626 
   8627   if (!LHSType->hasFloatingRepresentation() &&
   8628       !(LHSType->isBlockPointerType() && IsRelational) &&
   8629       !LHS.get()->getLocStart().isMacroID() &&
   8630       !RHS.get()->getLocStart().isMacroID() &&
   8631       ActiveTemplateInstantiations.empty()) {
   8632     // For non-floating point types, check for self-comparisons of the form
   8633     // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
   8634     // often indicate logic errors in the program.
   8635     //
   8636     // NOTE: Don't warn about comparison expressions resulting from macro
   8637     // expansion. Also don't warn about comparisons which are only self
   8638     // comparisons within a template specialization. The warnings should catch
   8639     // obvious cases in the definition of the template anyways. The idea is to
   8640     // warn when the typed comparison operator will always evaluate to the same
   8641     // result.
   8642     ValueDecl *DL = getCompareDecl(LHSStripped);
   8643     ValueDecl *DR = getCompareDecl(RHSStripped);
   8644     if (DL && DR && DL == DR && !IsWithinTemplateSpecialization(DL)) {
   8645       DiagRuntimeBehavior(Loc, nullptr, PDiag(diag::warn_comparison_always)
   8646                           << 0 // self-
   8647                           << (Opc == BO_EQ
   8648                               || Opc == BO_LE
   8649                               || Opc == BO_GE));
   8650     } else if (DL && DR && LHSType->isArrayType() && RHSType->isArrayType() &&
   8651                !DL->getType()->isReferenceType() &&
   8652                !DR->getType()->isReferenceType()) {
   8653         // what is it always going to eval to?
   8654         char always_evals_to;
   8655         switch(Opc) {
   8656         case BO_EQ: // e.g. array1 == array2
   8657           always_evals_to = 0; // false
   8658           break;
   8659         case BO_NE: // e.g. array1 != array2
   8660           always_evals_to = 1; // true
   8661           break;
   8662         default:
   8663           // best we can say is 'a constant'
   8664           always_evals_to = 2; // e.g. array1 <= array2
   8665           break;
   8666         }
   8667         DiagRuntimeBehavior(Loc, nullptr, PDiag(diag::warn_comparison_always)
   8668                             << 1 // array
   8669                             << always_evals_to);
   8670     }
   8671 
   8672     if (isa<CastExpr>(LHSStripped))
   8673       LHSStripped = LHSStripped->IgnoreParenCasts();
   8674     if (isa<CastExpr>(RHSStripped))
   8675       RHSStripped = RHSStripped->IgnoreParenCasts();
   8676 
   8677     // Warn about comparisons against a string constant (unless the other
   8678     // operand is null), the user probably wants strcmp.
   8679     Expr *literalString = nullptr;
   8680     Expr *literalStringStripped = nullptr;
   8681     if ((isa<StringLiteral>(LHSStripped) || isa<ObjCEncodeExpr>(LHSStripped)) &&
   8682         !RHSStripped->isNullPointerConstant(Context,
   8683                                             Expr::NPC_ValueDependentIsNull)) {
   8684       literalString = LHS.get();
   8685       literalStringStripped = LHSStripped;
   8686     } else if ((isa<StringLiteral>(RHSStripped) ||
   8687                 isa<ObjCEncodeExpr>(RHSStripped)) &&
   8688                !LHSStripped->isNullPointerConstant(Context,
   8689                                             Expr::NPC_ValueDependentIsNull)) {
   8690       literalString = RHS.get();
   8691       literalStringStripped = RHSStripped;
   8692     }
   8693 
   8694     if (literalString) {
   8695       DiagRuntimeBehavior(Loc, nullptr,
   8696         PDiag(diag::warn_stringcompare)
   8697           << isa<ObjCEncodeExpr>(literalStringStripped)
   8698           << literalString->getSourceRange());
   8699     }
   8700   }
   8701 
   8702   // C99 6.5.8p3 / C99 6.5.9p4
   8703   UsualArithmeticConversions(LHS, RHS);
   8704   if (LHS.isInvalid() || RHS.isInvalid())
   8705     return QualType();
   8706 
   8707   LHSType = LHS.get()->getType();
   8708   RHSType = RHS.get()->getType();
   8709 
   8710   // The result of comparisons is 'bool' in C++, 'int' in C.
   8711   QualType ResultTy = Context.getLogicalOperationType();
   8712 
   8713   if (IsRelational) {
   8714     if (LHSType->isRealType() && RHSType->isRealType())
   8715       return ResultTy;
   8716   } else {
   8717     // Check for comparisons of floating point operands using != and ==.
   8718     if (LHSType->hasFloatingRepresentation())
   8719       CheckFloatComparison(Loc, LHS.get(), RHS.get());
   8720 
   8721     if (LHSType->isArithmeticType() && RHSType->isArithmeticType())
   8722       return ResultTy;
   8723   }
   8724 
   8725   const Expr::NullPointerConstantKind LHSNullKind =
   8726       LHS.get()->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull);
   8727   const Expr::NullPointerConstantKind RHSNullKind =
   8728       RHS.get()->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull);
   8729   bool LHSIsNull = LHSNullKind != Expr::NPCK_NotNull;
   8730   bool RHSIsNull = RHSNullKind != Expr::NPCK_NotNull;
   8731 
   8732   if (!IsRelational && LHSIsNull != RHSIsNull) {
   8733     bool IsEquality = Opc == BO_EQ;
   8734     if (RHSIsNull)
   8735       DiagnoseAlwaysNonNullPointer(LHS.get(), RHSNullKind, IsEquality,
   8736                                    RHS.get()->getSourceRange());
   8737     else
   8738       DiagnoseAlwaysNonNullPointer(RHS.get(), LHSNullKind, IsEquality,
   8739                                    LHS.get()->getSourceRange());
   8740   }
   8741 
   8742   // All of the following pointer-related warnings are GCC extensions, except
   8743   // when handling null pointer constants.
   8744   if (LHSType->isPointerType() && RHSType->isPointerType()) { // C99 6.5.8p2
   8745     QualType LCanPointeeTy =
   8746       LHSType->castAs<PointerType>()->getPointeeType().getCanonicalType();
   8747     QualType RCanPointeeTy =
   8748       RHSType->castAs<PointerType>()->getPointeeType().getCanonicalType();
   8749 
   8750     if (getLangOpts().CPlusPlus) {
   8751       if (LCanPointeeTy == RCanPointeeTy)
   8752         return ResultTy;
   8753       if (!IsRelational &&
   8754           (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
   8755         // Valid unless comparison between non-null pointer and function pointer
   8756         // This is a gcc extension compatibility comparison.
   8757         // In a SFINAE context, we treat this as a hard error to maintain
   8758         // conformance with the C++ standard.
   8759         if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
   8760             && !LHSIsNull && !RHSIsNull) {
   8761           diagnoseFunctionPointerToVoidComparison(
   8762               *this, Loc, LHS, RHS, /*isError*/ (bool)isSFINAEContext());
   8763 
   8764           if (isSFINAEContext())
   8765             return QualType();
   8766 
   8767           RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
   8768           return ResultTy;
   8769         }
   8770       }
   8771 
   8772       if (convertPointersToCompositeType(*this, Loc, LHS, RHS))
   8773         return QualType();
   8774       else
   8775         return ResultTy;
   8776     }
   8777     // C99 6.5.9p2 and C99 6.5.8p2
   8778     if (Context.typesAreCompatible(LCanPointeeTy.getUnqualifiedType(),
   8779                                    RCanPointeeTy.getUnqualifiedType())) {
   8780       // Valid unless a relational comparison of function pointers
   8781       if (IsRelational && LCanPointeeTy->isFunctionType()) {
   8782         Diag(Loc, diag::ext_typecheck_ordered_comparison_of_function_pointers)
   8783           << LHSType << RHSType << LHS.get()->getSourceRange()
   8784           << RHS.get()->getSourceRange();
   8785       }
   8786     } else if (!IsRelational &&
   8787                (LCanPointeeTy->isVoidType() || RCanPointeeTy->isVoidType())) {
   8788       // Valid unless comparison between non-null pointer and function pointer
   8789       if ((LCanPointeeTy->isFunctionType() || RCanPointeeTy->isFunctionType())
   8790           && !LHSIsNull && !RHSIsNull)
   8791         diagnoseFunctionPointerToVoidComparison(*this, Loc, LHS, RHS,
   8792                                                 /*isError*/false);
   8793     } else {
   8794       // Invalid
   8795       diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS, /*isError*/false);
   8796     }
   8797     if (LCanPointeeTy != RCanPointeeTy) {
   8798       // Treat NULL constant as a special case in OpenCL.
   8799       if (getLangOpts().OpenCL && !LHSIsNull && !RHSIsNull) {
   8800         const PointerType *LHSPtr = LHSType->getAs<PointerType>();
   8801         if (!LHSPtr->isAddressSpaceOverlapping(*RHSType->getAs<PointerType>())) {
   8802           Diag(Loc,
   8803                diag::err_typecheck_op_on_nonoverlapping_address_space_pointers)
   8804               << LHSType << RHSType << 0 /* comparison */
   8805               << LHS.get()->getSourceRange() << RHS.get()->getSourceRange();
   8806         }
   8807       }
   8808       unsigned AddrSpaceL = LCanPointeeTy.getAddressSpace();
   8809       unsigned AddrSpaceR = RCanPointeeTy.getAddressSpace();
   8810       CastKind Kind = AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion
   8811                                                : CK_BitCast;
   8812       if (LHSIsNull && !RHSIsNull)
   8813         LHS = ImpCastExprToType(LHS.get(), RHSType, Kind);
   8814       else
   8815         RHS = ImpCastExprToType(RHS.get(), LHSType, Kind);
   8816     }
   8817     return ResultTy;
   8818   }
   8819 
   8820   if (getLangOpts().CPlusPlus) {
   8821     // Comparison of nullptr_t with itself.
   8822     if (LHSType->isNullPtrType() && RHSType->isNullPtrType())
   8823       return ResultTy;
   8824 
   8825     // Comparison of pointers with null pointer constants and equality
   8826     // comparisons of member pointers to null pointer constants.
   8827     if (RHSIsNull &&
   8828         ((LHSType->isAnyPointerType() || LHSType->isNullPtrType()) ||
   8829          (!IsRelational &&
   8830           (LHSType->isMemberPointerType() || LHSType->isBlockPointerType())))) {
   8831       RHS = ImpCastExprToType(RHS.get(), LHSType,
   8832                         LHSType->isMemberPointerType()
   8833                           ? CK_NullToMemberPointer
   8834                           : CK_NullToPointer);
   8835       return ResultTy;
   8836     }
   8837     if (LHSIsNull &&
   8838         ((RHSType->isAnyPointerType() || RHSType->isNullPtrType()) ||
   8839          (!IsRelational &&
   8840           (RHSType->isMemberPointerType() || RHSType->isBlockPointerType())))) {
   8841       LHS = ImpCastExprToType(LHS.get(), RHSType,
   8842                         RHSType->isMemberPointerType()
   8843                           ? CK_NullToMemberPointer
   8844                           : CK_NullToPointer);
   8845       return ResultTy;
   8846     }
   8847 
   8848     // Comparison of member pointers.
   8849     if (!IsRelational &&
   8850         LHSType->isMemberPointerType() && RHSType->isMemberPointerType()) {
   8851       if (convertPointersToCompositeType(*this, Loc, LHS, RHS))
   8852         return QualType();
   8853       else
   8854         return ResultTy;
   8855     }
   8856 
   8857     // Handle scoped enumeration types specifically, since they don't promote
   8858     // to integers.
   8859     if (LHS.get()->getType()->isEnumeralType() &&
   8860         Context.hasSameUnqualifiedType(LHS.get()->getType(),
   8861                                        RHS.get()->getType()))
   8862       return ResultTy;
   8863   }
   8864 
   8865   // Handle block pointer types.
   8866   if (!IsRelational && LHSType->isBlockPointerType() &&
   8867       RHSType->isBlockPointerType()) {
   8868     QualType lpointee = LHSType->castAs<BlockPointerType>()->getPointeeType();
   8869     QualType rpointee = RHSType->castAs<BlockPointerType>()->getPointeeType();
   8870 
   8871     if (!LHSIsNull && !RHSIsNull &&
   8872         !Context.typesAreCompatible(lpointee, rpointee)) {
   8873       Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
   8874         << LHSType << RHSType << LHS.get()->getSourceRange()
   8875         << RHS.get()->getSourceRange();
   8876     }
   8877     RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
   8878     return ResultTy;
   8879   }
   8880 
   8881   // Allow block pointers to be compared with null pointer constants.
   8882   if (!IsRelational
   8883       && ((LHSType->isBlockPointerType() && RHSType->isPointerType())
   8884           || (LHSType->isPointerType() && RHSType->isBlockPointerType()))) {
   8885     if (!LHSIsNull && !RHSIsNull) {
   8886       if (!((RHSType->isPointerType() && RHSType->castAs<PointerType>()
   8887              ->getPointeeType()->isVoidType())
   8888             || (LHSType->isPointerType() && LHSType->castAs<PointerType>()
   8889                 ->getPointeeType()->isVoidType())))
   8890         Diag(Loc, diag::err_typecheck_comparison_of_distinct_blocks)
   8891           << LHSType << RHSType << LHS.get()->getSourceRange()
   8892           << RHS.get()->getSourceRange();
   8893     }
   8894     if (LHSIsNull && !RHSIsNull)
   8895       LHS = ImpCastExprToType(LHS.get(), RHSType,
   8896                               RHSType->isPointerType() ? CK_BitCast
   8897                                 : CK_AnyPointerToBlockPointerCast);
   8898     else
   8899       RHS = ImpCastExprToType(RHS.get(), LHSType,
   8900                               LHSType->isPointerType() ? CK_BitCast
   8901                                 : CK_AnyPointerToBlockPointerCast);
   8902     return ResultTy;
   8903   }
   8904 
   8905   if (LHSType->isObjCObjectPointerType() ||
   8906       RHSType->isObjCObjectPointerType()) {
   8907     const PointerType *LPT = LHSType->getAs<PointerType>();
   8908     const PointerType *RPT = RHSType->getAs<PointerType>();
   8909     if (LPT || RPT) {
   8910       bool LPtrToVoid = LPT ? LPT->getPointeeType()->isVoidType() : false;
   8911       bool RPtrToVoid = RPT ? RPT->getPointeeType()->isVoidType() : false;
   8912 
   8913       if (!LPtrToVoid && !RPtrToVoid &&
   8914           !Context.typesAreCompatible(LHSType, RHSType)) {
   8915         diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS,
   8916                                           /*isError*/false);
   8917       }
   8918       if (LHSIsNull && !RHSIsNull) {
   8919         Expr *E = LHS.get();
   8920         if (getLangOpts().ObjCAutoRefCount)
   8921           CheckObjCARCConversion(SourceRange(), RHSType, E, CCK_ImplicitConversion);
   8922         LHS = ImpCastExprToType(E, RHSType,
   8923                                 RPT ? CK_BitCast :CK_CPointerToObjCPointerCast);
   8924       }
   8925       else {
   8926         Expr *E = RHS.get();
   8927         if (getLangOpts().ObjCAutoRefCount)
   8928           CheckObjCARCConversion(SourceRange(), LHSType, E, CCK_ImplicitConversion, false,
   8929                                  Opc);
   8930         RHS = ImpCastExprToType(E, LHSType,
   8931                                 LPT ? CK_BitCast :CK_CPointerToObjCPointerCast);
   8932       }
   8933       return ResultTy;
   8934     }
   8935     if (LHSType->isObjCObjectPointerType() &&
   8936         RHSType->isObjCObjectPointerType()) {
   8937       if (!Context.areComparableObjCPointerTypes(LHSType, RHSType))
   8938         diagnoseDistinctPointerComparison(*this, Loc, LHS, RHS,
   8939                                           /*isError*/false);
   8940       if (isObjCObjectLiteral(LHS) || isObjCObjectLiteral(RHS))
   8941         diagnoseObjCLiteralComparison(*this, Loc, LHS, RHS, Opc);
   8942 
   8943       if (LHSIsNull && !RHSIsNull)
   8944         LHS = ImpCastExprToType(LHS.get(), RHSType, CK_BitCast);
   8945       else
   8946         RHS = ImpCastExprToType(RHS.get(), LHSType, CK_BitCast);
   8947       return ResultTy;
   8948     }
   8949   }
   8950   if ((LHSType->isAnyPointerType() && RHSType->isIntegerType()) ||
   8951       (LHSType->isIntegerType() && RHSType->isAnyPointerType())) {
   8952     unsigned DiagID = 0;
   8953     bool isError = false;
   8954     if (LangOpts.DebuggerSupport) {
   8955       // Under a debugger, allow the comparison of pointers to integers,
   8956       // since users tend to want to compare addresses.
   8957     } else if ((LHSIsNull && LHSType->isIntegerType()) ||
   8958         (RHSIsNull && RHSType->isIntegerType())) {
   8959       if (IsRelational && !getLangOpts().CPlusPlus)
   8960         DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_and_zero;
   8961     } else if (IsRelational && !getLangOpts().CPlusPlus)
   8962       DiagID = diag::ext_typecheck_ordered_comparison_of_pointer_integer;
   8963     else if (getLangOpts().CPlusPlus) {
   8964       DiagID = diag::err_typecheck_comparison_of_pointer_integer;
   8965       isError = true;
   8966     } else
   8967       DiagID = diag::ext_typecheck_comparison_of_pointer_integer;
   8968 
   8969     if (DiagID) {
   8970       Diag(Loc, DiagID)
   8971         << LHSType << RHSType << LHS.get()->getSourceRange()
   8972         << RHS.get()->getSourceRange();
   8973       if (isError)
   8974         return QualType();
   8975     }
   8976 
   8977     if (LHSType->isIntegerType())
   8978       LHS = ImpCastExprToType(LHS.get(), RHSType,
   8979                         LHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
   8980     else
   8981       RHS = ImpCastExprToType(RHS.get(), LHSType,
   8982                         RHSIsNull ? CK_NullToPointer : CK_IntegralToPointer);
   8983     return ResultTy;
   8984   }
   8985 
   8986   // Handle block pointers.
   8987   if (!IsRelational && RHSIsNull
   8988       && LHSType->isBlockPointerType() && RHSType->isIntegerType()) {
   8989     RHS = ImpCastExprToType(RHS.get(), LHSType, CK_NullToPointer);
   8990     return ResultTy;
   8991   }
   8992   if (!IsRelational && LHSIsNull
   8993       && LHSType->isIntegerType() && RHSType->isBlockPointerType()) {
   8994     LHS = ImpCastExprToType(LHS.get(), RHSType, CK_NullToPointer);
   8995     return ResultTy;
   8996   }
   8997 
   8998   return InvalidOperands(Loc, LHS, RHS);
   8999 }
   9000 
   9001 
   9002 // Return a signed type that is of identical size and number of elements.
   9003 // For floating point vectors, return an integer type of identical size
   9004 // and number of elements.
   9005 QualType Sema::GetSignedVectorType(QualType V) {
   9006   const VectorType *VTy = V->getAs<VectorType>();
   9007   unsigned TypeSize = Context.getTypeSize(VTy->getElementType());
   9008   if (TypeSize == Context.getTypeSize(Context.CharTy))
   9009     return Context.getExtVectorType(Context.CharTy, VTy->getNumElements());
   9010   else if (TypeSize == Context.getTypeSize(Context.ShortTy))
   9011     return Context.getExtVectorType(Context.ShortTy, VTy->getNumElements());
   9012   else if (TypeSize == Context.getTypeSize(Context.IntTy))
   9013     return Context.getExtVectorType(Context.IntTy, VTy->getNumElements());
   9014   else if (TypeSize == Context.getTypeSize(Context.LongTy))
   9015     return Context.getExtVectorType(Context.LongTy, VTy->getNumElements());
   9016   assert(TypeSize == Context.getTypeSize(Context.LongLongTy) &&
   9017          "Unhandled vector element size in vector compare");
   9018   return Context.getExtVectorType(Context.LongLongTy, VTy->getNumElements());
   9019 }
   9020 
   9021 /// CheckVectorCompareOperands - vector comparisons are a clang extension that
   9022 /// operates on extended vector types.  Instead of producing an IntTy result,
   9023 /// like a scalar comparison, a vector comparison produces a vector of integer
   9024 /// types.
   9025 QualType Sema::CheckVectorCompareOperands(ExprResult &LHS, ExprResult &RHS,
   9026                                           SourceLocation Loc,
   9027                                           bool IsRelational) {
   9028   // Check to make sure we're operating on vectors of the same type and width,
   9029   // Allowing one side to be a scalar of element type.
   9030   QualType vType = CheckVectorOperands(LHS, RHS, Loc, /*isCompAssign*/false,
   9031                               /*AllowBothBool*/true,
   9032                               /*AllowBoolConversions*/getLangOpts().ZVector);
   9033   if (vType.isNull())
   9034     return vType;
   9035 
   9036   QualType LHSType = LHS.get()->getType();
   9037 
   9038   // If AltiVec, the comparison results in a numeric type, i.e.
   9039   // bool for C++, int for C
   9040   if (getLangOpts().AltiVec &&
   9041       vType->getAs<VectorType>()->getVectorKind() == VectorType::AltiVecVector)
   9042     return Context.getLogicalOperationType();
   9043 
   9044   // For non-floating point types, check for self-comparisons of the form
   9045   // x == x, x != x, x < x, etc.  These always evaluate to a constant, and
   9046   // often indicate logic errors in the program.
   9047   if (!LHSType->hasFloatingRepresentation() &&
   9048       ActiveTemplateInstantiations.empty()) {
   9049     if (DeclRefExpr* DRL
   9050           = dyn_cast<DeclRefExpr>(LHS.get()->IgnoreParenImpCasts()))
   9051       if (DeclRefExpr* DRR
   9052             = dyn_cast<DeclRefExpr>(RHS.get()->IgnoreParenImpCasts()))
   9053         if (DRL->getDecl() == DRR->getDecl())
   9054           DiagRuntimeBehavior(Loc, nullptr,
   9055                               PDiag(diag::warn_comparison_always)
   9056                                 << 0 // self-
   9057                                 << 2 // "a constant"
   9058                               );
   9059   }
   9060 
   9061   // Check for comparisons of floating point operands using != and ==.
   9062   if (!IsRelational && LHSType->hasFloatingRepresentation()) {
   9063     assert (RHS.get()->getType()->hasFloatingRepresentation());
   9064     CheckFloatComparison(Loc, LHS.get(), RHS.get());
   9065   }
   9066 
   9067   // Return a signed type for the vector.
   9068   return GetSignedVectorType(LHSType);
   9069 }
   9070 
   9071 QualType Sema::CheckVectorLogicalOperands(ExprResult &LHS, ExprResult &RHS,
   9072                                           SourceLocation Loc) {
   9073   // Ensure that either both operands are of the same vector type, or
   9074   // one operand is of a vector type and the other is of its element type.
   9075   QualType vType = CheckVectorOperands(LHS, RHS, Loc, false,
   9076                                        /*AllowBothBool*/true,
   9077                                        /*AllowBoolConversions*/false);
   9078   if (vType.isNull())
   9079     return InvalidOperands(Loc, LHS, RHS);
   9080   if (getLangOpts().OpenCL && getLangOpts().OpenCLVersion < 120 &&
   9081       vType->hasFloatingRepresentation())
   9082     return InvalidOperands(Loc, LHS, RHS);
   9083 
   9084   return GetSignedVectorType(LHS.get()->getType());
   9085 }
   9086 
   9087 inline QualType Sema::CheckBitwiseOperands(
   9088   ExprResult &LHS, ExprResult &RHS, SourceLocation Loc, bool IsCompAssign) {
   9089   checkArithmeticNull(*this, LHS, RHS, Loc, /*isCompare=*/false);
   9090 
   9091   if (LHS.get()->getType()->isVectorType() ||
   9092       RHS.get()->getType()->isVectorType()) {
   9093     if (LHS.get()->getType()->hasIntegerRepresentation() &&
   9094         RHS.get()->getType()->hasIntegerRepresentation())
   9095       return CheckVectorOperands(LHS, RHS, Loc, IsCompAssign,
   9096                         /*AllowBothBool*/true,
   9097                         /*AllowBoolConversions*/getLangOpts().ZVector);
   9098     return InvalidOperands(Loc, LHS, RHS);
   9099   }
   9100 
   9101   ExprResult LHSResult = LHS, RHSResult = RHS;
   9102   QualType compType = UsualArithmeticConversions(LHSResult, RHSResult,
   9103                                                  IsCompAssign);
   9104   if (LHSResult.isInvalid() || RHSResult.isInvalid())
   9105     return QualType();
   9106   LHS = LHSResult.get();
   9107   RHS = RHSResult.get();
   9108 
   9109   if (!compType.isNull() && compType->isIntegralOrUnscopedEnumerationType())
   9110     return compType;
   9111   return InvalidOperands(Loc, LHS, RHS);
   9112 }
   9113 
   9114 // C99 6.5.[13,14]
   9115 inline QualType Sema::CheckLogicalOperands(ExprResult &LHS, ExprResult &RHS,
   9116                                            SourceLocation Loc,
   9117                                            BinaryOperatorKind Opc) {
   9118   // Check vector operands differently.
   9119   if (LHS.get()->getType()->isVectorType() || RHS.get()->getType()->isVectorType())
   9120     return CheckVectorLogicalOperands(LHS, RHS, Loc);
   9121 
   9122   // Diagnose cases where the user write a logical and/or but probably meant a
   9123   // bitwise one.  We do this when the LHS is a non-bool integer and the RHS
   9124   // is a constant.
   9125   if (LHS.get()->getType()->isIntegerType() &&
   9126       !LHS.get()->getType()->isBooleanType() &&
   9127       RHS.get()->getType()->isIntegerType() && !RHS.get()->isValueDependent() &&
   9128       // Don't warn in macros or template instantiations.
   9129       !Loc.isMacroID() && ActiveTemplateInstantiations.empty()) {
   9130     // If the RHS can be constant folded, and if it constant folds to something
   9131     // that isn't 0 or 1 (which indicate a potential logical operation that
   9132     // happened to fold to true/false) then warn.
   9133     // Parens on the RHS are ignored.
   9134     llvm::APSInt Result;
   9135     if (RHS.get()->EvaluateAsInt(Result, Context))
   9136       if ((getLangOpts().Bool && !RHS.get()->getType()->isBooleanType() &&
   9137            !RHS.get()->getExprLoc().isMacroID()) ||
   9138           (Result != 0 && Result != 1)) {
   9139         Diag(Loc, diag::warn_logical_instead_of_bitwise)
   9140           << RHS.get()->getSourceRange()
   9141           << (Opc == BO_LAnd ? "&&" : "||");
   9142         // Suggest replacing the logical operator with the bitwise version
   9143         Diag(Loc, diag::note_logical_instead_of_bitwise_change_operator)
   9144             << (Opc == BO_LAnd ? "&" : "|")
   9145             << FixItHint::CreateReplacement(SourceRange(
   9146                                                  Loc, getLocForEndOfToken(Loc)),
   9147                                             Opc == BO_LAnd ? "&" : "|");
   9148         if (Opc == BO_LAnd)
   9149           // Suggest replacing "Foo() && kNonZero" with "Foo()"
   9150           Diag(Loc, diag::note_logical_instead_of_bitwise_remove_constant)
   9151               << FixItHint::CreateRemoval(
   9152                   SourceRange(getLocForEndOfToken(LHS.get()->getLocEnd()),
   9153                               RHS.get()->getLocEnd()));
   9154       }
   9155   }
   9156 
   9157   if (!Context.getLangOpts().CPlusPlus) {
   9158     // OpenCL v1.1 s6.3.g: The logical operators and (&&), or (||) do
   9159     // not operate on the built-in scalar and vector float types.
   9160     if (Context.getLangOpts().OpenCL &&
   9161         Context.getLangOpts().OpenCLVersion < 120) {
   9162       if (LHS.get()->getType()->isFloatingType() ||
   9163           RHS.get()->getType()->isFloatingType())
   9164         return InvalidOperands(Loc, LHS, RHS);
   9165     }
   9166 
   9167     LHS = UsualUnaryConversions(LHS.get());
   9168     if (LHS.isInvalid())
   9169       return QualType();
   9170 
   9171     RHS = UsualUnaryConversions(RHS.get());
   9172     if (RHS.isInvalid())
   9173       return QualType();
   9174 
   9175     if (!LHS.get()->getType()->isScalarType() ||
   9176         !RHS.get()->getType()->isScalarType())
   9177       return InvalidOperands(Loc, LHS, RHS);
   9178 
   9179     return Context.IntTy;
   9180   }
   9181 
   9182   // The following is safe because we only use this method for
   9183   // non-overloadable operands.
   9184 
   9185   // C++ [expr.log.and]p1
   9186   // C++ [expr.log.or]p1
   9187   // The operands are both contextually converted to type bool.
   9188   ExprResult LHSRes = PerformContextuallyConvertToBool(LHS.get());
   9189   if (LHSRes.isInvalid())
   9190     return InvalidOperands(Loc, LHS, RHS);
   9191   LHS = LHSRes;
   9192 
   9193   ExprResult RHSRes = PerformContextuallyConvertToBool(RHS.get());
   9194   if (RHSRes.isInvalid())
   9195     return InvalidOperands(Loc, LHS, RHS);
   9196   RHS = RHSRes;
   9197 
   9198   // C++ [expr.log.and]p2
   9199   // C++ [expr.log.or]p2
   9200   // The result is a bool.
   9201   return Context.BoolTy;
   9202 }
   9203 
   9204 static bool IsReadonlyMessage(Expr *E, Sema &S) {
   9205   const MemberExpr *ME = dyn_cast<MemberExpr>(E);
   9206   if (!ME) return false;
   9207   if (!isa<FieldDecl>(ME->getMemberDecl())) return false;
   9208   ObjCMessageExpr *Base =
   9209     dyn_cast<ObjCMessageExpr>(ME->getBase()->IgnoreParenImpCasts());
   9210   if (!Base) return false;
   9211   return Base->getMethodDecl() != nullptr;
   9212 }
   9213 
   9214 /// Is the given expression (which must be 'const') a reference to a
   9215 /// variable which was originally non-const, but which has become
   9216 /// 'const' due to being captured within a block?
   9217 enum NonConstCaptureKind { NCCK_None, NCCK_Block, NCCK_Lambda };
   9218 static NonConstCaptureKind isReferenceToNonConstCapture(Sema &S, Expr *E) {
   9219   assert(E->isLValue() && E->getType().isConstQualified());
   9220   E = E->IgnoreParens();
   9221 
   9222   // Must be a reference to a declaration from an enclosing scope.
   9223   DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
   9224   if (!DRE) return NCCK_None;
   9225   if (!DRE->refersToEnclosingVariableOrCapture()) return NCCK_None;
   9226 
   9227   // The declaration must be a variable which is not declared 'const'.
   9228   VarDecl *var = dyn_cast<VarDecl>(DRE->getDecl());
   9229   if (!var) return NCCK_None;
   9230   if (var->getType().isConstQualified()) return NCCK_None;
   9231   assert(var->hasLocalStorage() && "capture added 'const' to non-local?");
   9232 
   9233   // Decide whether the first capture was for a block or a lambda.
   9234   DeclContext *DC = S.CurContext, *Prev = nullptr;
   9235   while (DC != var->getDeclContext()) {
   9236     Prev = DC;
   9237     DC = DC->getParent();
   9238   }
   9239   // Unless we have an init-capture, we've gone one step too far.
   9240   if (!var->isInitCapture())
   9241     DC = Prev;
   9242   return (isa<BlockDecl>(DC) ? NCCK_Block : NCCK_Lambda);
   9243 }
   9244 
   9245 static bool IsTypeModifiable(QualType Ty, bool IsDereference) {
   9246   Ty = Ty.getNonReferenceType();
   9247   if (IsDereference && Ty->isPointerType())
   9248     Ty = Ty->getPointeeType();
   9249   return !Ty.isConstQualified();
   9250 }
   9251 
   9252 /// Emit the "read-only variable not assignable" error and print notes to give
   9253 /// more information about why the variable is not assignable, such as pointing
   9254 /// to the declaration of a const variable, showing that a method is const, or
   9255 /// that the function is returning a const reference.
   9256 static void DiagnoseConstAssignment(Sema &S, const Expr *E,
   9257                                     SourceLocation Loc) {
   9258   // Update err_typecheck_assign_const and note_typecheck_assign_const
   9259   // when this enum is changed.
   9260   enum {
   9261     ConstFunction,
   9262     ConstVariable,
   9263     ConstMember,
   9264     ConstMethod,
   9265     ConstUnknown,  // Keep as last element
   9266   };
   9267 
   9268   SourceRange ExprRange = E->getSourceRange();
   9269 
   9270   // Only emit one error on the first const found.  All other consts will emit
   9271   // a note to the error.
   9272   bool DiagnosticEmitted = false;
   9273 
   9274   // Track if the current expression is the result of a derefence, and if the
   9275   // next checked expression is the result of a derefence.
   9276   bool IsDereference = false;
   9277   bool NextIsDereference = false;
   9278 
   9279   // Loop to process MemberExpr chains.
   9280   while (true) {
   9281     IsDereference = NextIsDereference;
   9282     NextIsDereference = false;
   9283 
   9284     E = E->IgnoreParenImpCasts();
   9285     if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
   9286       NextIsDereference = ME->isArrow();
   9287       const ValueDecl *VD = ME->getMemberDecl();
   9288       if (const FieldDecl *Field = dyn_cast<FieldDecl>(VD)) {
   9289         // Mutable fields can be modified even if the class is const.
   9290         if (Field->isMutable()) {
   9291           assert(DiagnosticEmitted && "Expected diagnostic not emitted.");
   9292           break;
   9293         }
   9294 
   9295         if (!IsTypeModifiable(Field->getType(), IsDereference)) {
   9296           if (!DiagnosticEmitted) {
   9297             S.Diag(Loc, diag::err_typecheck_assign_const)
   9298                 << ExprRange << ConstMember << false /*static*/ << Field
   9299                 << Field->getType();
   9300             DiagnosticEmitted = true;
   9301           }
   9302           S.Diag(VD->getLocation(), diag::note_typecheck_assign_const)
   9303               << ConstMember << false /*static*/ << Field << Field->getType()
   9304               << Field->getSourceRange();
   9305         }
   9306         E = ME->getBase();
   9307         continue;
   9308       } else if (const VarDecl *VDecl = dyn_cast<VarDecl>(VD)) {
   9309         if (VDecl->getType().isConstQualified()) {
   9310           if (!DiagnosticEmitted) {
   9311             S.Diag(Loc, diag::err_typecheck_assign_const)
   9312                 << ExprRange << ConstMember << true /*static*/ << VDecl
   9313                 << VDecl->getType();
   9314             DiagnosticEmitted = true;
   9315           }
   9316           S.Diag(VD->getLocation(), diag::note_typecheck_assign_const)
   9317               << ConstMember << true /*static*/ << VDecl << VDecl->getType()
   9318               << VDecl->getSourceRange();
   9319         }
   9320         // Static fields do not inherit constness from parents.
   9321         break;
   9322       }
   9323       break;
   9324     } // End MemberExpr
   9325     break;
   9326   }
   9327 
   9328   if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
   9329     // Function calls
   9330     const FunctionDecl *FD = CE->getDirectCallee();
   9331     if (FD && !IsTypeModifiable(FD->getReturnType(), IsDereference)) {
   9332       if (!DiagnosticEmitted) {
   9333         S.Diag(Loc, diag::err_typecheck_assign_const) << ExprRange
   9334                                                       << ConstFunction << FD;
   9335         DiagnosticEmitted = true;
   9336       }
   9337       S.Diag(FD->getReturnTypeSourceRange().getBegin(),
   9338              diag::note_typecheck_assign_const)
   9339           << ConstFunction << FD << FD->getReturnType()
   9340           << FD->getReturnTypeSourceRange();
   9341     }
   9342   } else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
   9343     // Point to variable declaration.
   9344     if (const ValueDecl *VD = DRE->getDecl()) {
   9345       if (!IsTypeModifiable(VD->getType(), IsDereference)) {
   9346         if (!DiagnosticEmitted) {
   9347           S.Diag(Loc, diag::err_typecheck_assign_const)
   9348               << ExprRange << ConstVariable << VD << VD->getType();
   9349           DiagnosticEmitted = true;
   9350         }
   9351         S.Diag(VD->getLocation(), diag::note_typecheck_assign_const)
   9352             << ConstVariable << VD << VD->getType() << VD->getSourceRange();
   9353       }
   9354     }
   9355   } else if (isa<CXXThisExpr>(E)) {
   9356     if (const DeclContext *DC = S.getFunctionLevelDeclContext()) {
   9357       if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
   9358         if (MD->isConst()) {
   9359           if (!DiagnosticEmitted) {
   9360             S.Diag(Loc, diag::err_typecheck_assign_const) << ExprRange
   9361                                                           << ConstMethod << MD;
   9362             DiagnosticEmitted = true;
   9363           }
   9364           S.Diag(MD->getLocation(), diag::note_typecheck_assign_const)
   9365               << ConstMethod << MD << MD->getSourceRange();
   9366         }
   9367       }
   9368     }
   9369   }
   9370 
   9371   if (DiagnosticEmitted)
   9372     return;
   9373 
   9374   // Can't determine a more specific message, so display the generic error.
   9375   S.Diag(Loc, diag::err_typecheck_assign_const) << ExprRange << ConstUnknown;
   9376 }
   9377 
   9378 /// CheckForModifiableLvalue - Verify that E is a modifiable lvalue.  If not,
   9379 /// emit an error and return true.  If so, return false.
   9380 static bool CheckForModifiableLvalue(Expr *E, SourceLocation Loc, Sema &S) {
   9381   assert(!E->hasPlaceholderType(BuiltinType::PseudoObject));
   9382   SourceLocation OrigLoc = Loc;
   9383   Expr::isModifiableLvalueResult IsLV = E->isModifiableLvalue(S.Context,
   9384                                                               &Loc);
   9385   if (IsLV == Expr::MLV_ClassTemporary && IsReadonlyMessage(E, S))
   9386     IsLV = Expr::MLV_InvalidMessageExpression;
   9387   if (IsLV == Expr::MLV_Valid)
   9388     return false;
   9389 
   9390   unsigned DiagID = 0;
   9391   bool NeedType = false;
   9392   switch (IsLV) { // C99 6.5.16p2
   9393   case Expr::MLV_ConstQualified:
   9394     // Use a specialized diagnostic when we're assigning to an object
   9395     // from an enclosing function or block.
   9396     if (NonConstCaptureKind NCCK = isReferenceToNonConstCapture(S, E)) {
   9397       if (NCCK == NCCK_Block)
   9398         DiagID = diag::err_block_decl_ref_not_modifiable_lvalue;
   9399       else
   9400         DiagID = diag::err_lambda_decl_ref_not_modifiable_lvalue;
   9401       break;
   9402     }
   9403 
   9404     // In ARC, use some specialized diagnostics for occasions where we
   9405     // infer 'const'.  These are always pseudo-strong variables.
   9406     if (S.getLangOpts().ObjCAutoRefCount) {
   9407       DeclRefExpr *declRef = dyn_cast<DeclRefExpr>(E->IgnoreParenCasts());
   9408       if (declRef && isa<VarDecl>(declRef->getDecl())) {
   9409         VarDecl *var = cast<VarDecl>(declRef->getDecl());
   9410 
   9411         // Use the normal diagnostic if it's pseudo-__strong but the
   9412         // user actually wrote 'const'.
   9413         if (var->isARCPseudoStrong() &&
   9414             (!var->getTypeSourceInfo() ||
   9415              !var->getTypeSourceInfo()->getType().isConstQualified())) {
   9416           // There are two pseudo-strong cases:
   9417           //  - self
   9418           ObjCMethodDecl *method = S.getCurMethodDecl();
   9419           if (method && var == method->getSelfDecl())
   9420             DiagID = method->isClassMethod()
   9421               ? diag::err_typecheck_arc_assign_self_class_method
   9422               : diag::err_typecheck_arc_assign_self;
   9423 
   9424           //  - fast enumeration variables
   9425           else
   9426             DiagID = diag::err_typecheck_arr_assign_enumeration;
   9427 
   9428           SourceRange Assign;
   9429           if (Loc != OrigLoc)
   9430             Assign = SourceRange(OrigLoc, OrigLoc);
   9431           S.Diag(Loc, DiagID) << E->getSourceRange() << Assign;
   9432           // We need to preserve the AST regardless, so migration tool
   9433           // can do its job.
   9434           return false;
   9435         }
   9436       }
   9437     }
   9438 
   9439     // If none of the special cases above are triggered, then this is a
   9440     // simple const assignment.
   9441     if (DiagID == 0) {
   9442       DiagnoseConstAssignment(S, E, Loc);
   9443       return true;
   9444     }
   9445 
   9446     break;
   9447   case Expr::MLV_ConstAddrSpace:
   9448     DiagnoseConstAssignment(S, E, Loc);
   9449     return true;
   9450   case Expr::MLV_ArrayType:
   9451   case Expr::MLV_ArrayTemporary:
   9452     DiagID = diag::err_typecheck_array_not_modifiable_lvalue;
   9453     NeedType = true;
   9454     break;
   9455   case Expr::MLV_NotObjectType:
   9456     DiagID = diag::err_typecheck_non_object_not_modifiable_lvalue;
   9457     NeedType = true;
   9458     break;
   9459   case Expr::MLV_LValueCast:
   9460     DiagID = diag::err_typecheck_lvalue_casts_not_supported;
   9461     break;
   9462   case Expr::MLV_Valid:
   9463     llvm_unreachable("did not take early return for MLV_Valid");
   9464   case Expr::MLV_InvalidExpression:
   9465   case Expr::MLV_MemberFunction:
   9466   case Expr::MLV_ClassTemporary:
   9467     DiagID = diag::err_typecheck_expression_not_modifiable_lvalue;
   9468     break;
   9469   case Expr::MLV_IncompleteType:
   9470   case Expr::MLV_IncompleteVoidType:
   9471     return S.RequireCompleteType(Loc, E->getType(),
   9472              diag::err_typecheck_incomplete_type_not_modifiable_lvalue, E);
   9473   case Expr::MLV_DuplicateVectorComponents:
   9474     DiagID = diag::err_typecheck_duplicate_vector_components_not_mlvalue;
   9475     break;
   9476   case Expr::MLV_NoSetterProperty:
   9477     llvm_unreachable("readonly properties should be processed differently");
   9478   case Expr::MLV_InvalidMessageExpression:
   9479     DiagID = diag::error_readonly_message_assignment;
   9480     break;
   9481   case Expr::MLV_SubObjCPropertySetting:
   9482     DiagID = diag::error_no_subobject_property_setting;
   9483     break;
   9484   }
   9485 
   9486   SourceRange Assign;
   9487   if (Loc != OrigLoc)
   9488     Assign = SourceRange(OrigLoc, OrigLoc);
   9489   if (NeedType)
   9490     S.Diag(Loc, DiagID) << E->getType() << E->getSourceRange() << Assign;
   9491   else
   9492     S.Diag(Loc, DiagID) << E->getSourceRange() << Assign;
   9493   return true;
   9494 }
   9495 
   9496 static void CheckIdentityFieldAssignment(Expr *LHSExpr, Expr *RHSExpr,
   9497                                          SourceLocation Loc,
   9498                                          Sema &Sema) {
   9499   // C / C++ fields
   9500   MemberExpr *ML = dyn_cast<MemberExpr>(LHSExpr);
   9501   MemberExpr *MR = dyn_cast<MemberExpr>(RHSExpr);
   9502   if (ML && MR && ML->getMemberDecl() == MR->getMemberDecl()) {
   9503     if (isa<CXXThisExpr>(ML->getBase()) && isa<CXXThisExpr>(MR->getBase()))
   9504       Sema.Diag(Loc, diag::warn_identity_field_assign) << 0;
   9505   }
   9506 
   9507   // Objective-C instance variables
   9508   ObjCIvarRefExpr *OL = dyn_cast<ObjCIvarRefExpr>(LHSExpr);
   9509   ObjCIvarRefExpr *OR = dyn_cast<ObjCIvarRefExpr>(RHSExpr);
   9510   if (OL && OR && OL->getDecl() == OR->getDecl()) {
   9511     DeclRefExpr *RL = dyn_cast<DeclRefExpr>(OL->getBase()->IgnoreImpCasts());
   9512     DeclRefExpr *RR = dyn_cast<DeclRefExpr>(OR->getBase()->IgnoreImpCasts());
   9513     if (RL && RR && RL->getDecl() == RR->getDecl())
   9514       Sema.Diag(Loc, diag::warn_identity_field_assign) << 1;
   9515   }
   9516 }
   9517 
   9518 // C99 6.5.16.1
   9519 QualType Sema::CheckAssignmentOperands(Expr *LHSExpr, ExprResult &RHS,
   9520                                        SourceLocation Loc,
   9521                                        QualType CompoundType) {
   9522   assert(!LHSExpr->hasPlaceholderType(BuiltinType::PseudoObject));
   9523 
   9524   // Verify that LHS is a modifiable lvalue, and emit error if not.
   9525   if (CheckForModifiableLvalue(LHSExpr, Loc, *this))
   9526     return QualType();
   9527 
   9528   QualType LHSType = LHSExpr->getType();
   9529   QualType RHSType = CompoundType.isNull() ? RHS.get()->getType() :
   9530                                              CompoundType;
   9531   AssignConvertType ConvTy;
   9532   if (CompoundType.isNull()) {
   9533     Expr *RHSCheck = RHS.get();
   9534 
   9535     CheckIdentityFieldAssignment(LHSExpr, RHSCheck, Loc, *this);
   9536 
   9537     QualType LHSTy(LHSType);
   9538     ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
   9539     if (RHS.isInvalid())
   9540       return QualType();
   9541     // Special case of NSObject attributes on c-style pointer types.
   9542     if (ConvTy == IncompatiblePointer &&
   9543         ((Context.isObjCNSObjectType(LHSType) &&
   9544           RHSType->isObjCObjectPointerType()) ||
   9545          (Context.isObjCNSObjectType(RHSType) &&
   9546           LHSType->isObjCObjectPointerType())))
   9547       ConvTy = Compatible;
   9548 
   9549     if (ConvTy == Compatible &&
   9550         LHSType->isObjCObjectType())
   9551         Diag(Loc, diag::err_objc_object_assignment)
   9552           << LHSType;
   9553 
   9554     // If the RHS is a unary plus or minus, check to see if they = and + are
   9555     // right next to each other.  If so, the user may have typo'd "x =+ 4"
   9556     // instead of "x += 4".
   9557     if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(RHSCheck))
   9558       RHSCheck = ICE->getSubExpr();
   9559     if (UnaryOperator *UO = dyn_cast<UnaryOperator>(RHSCheck)) {
   9560       if ((UO->getOpcode() == UO_Plus ||
   9561            UO->getOpcode() == UO_Minus) &&
   9562           Loc.isFileID() && UO->getOperatorLoc().isFileID() &&
   9563           // Only if the two operators are exactly adjacent.
   9564           Loc.getLocWithOffset(1) == UO->getOperatorLoc() &&
   9565           // And there is a space or other character before the subexpr of the
   9566           // unary +/-.  We don't want to warn on "x=-1".
   9567           Loc.getLocWithOffset(2) != UO->getSubExpr()->getLocStart() &&
   9568           UO->getSubExpr()->getLocStart().isFileID()) {
   9569         Diag(Loc, diag::warn_not_compound_assign)
   9570           << (UO->getOpcode() == UO_Plus ? "+" : "-")
   9571           << SourceRange(UO->getOperatorLoc(), UO->getOperatorLoc());
   9572       }
   9573     }
   9574 
   9575     if (ConvTy == Compatible) {
   9576       if (LHSType.getObjCLifetime() == Qualifiers::OCL_Strong) {
   9577         // Warn about retain cycles where a block captures the LHS, but
   9578         // not if the LHS is a simple variable into which the block is
   9579         // being stored...unless that variable can be captured by reference!
   9580         const Expr *InnerLHS = LHSExpr->IgnoreParenCasts();
   9581         const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InnerLHS);
   9582         if (!DRE || DRE->getDecl()->hasAttr<BlocksAttr>())
   9583           checkRetainCycles(LHSExpr, RHS.get());
   9584 
   9585         // It is safe to assign a weak reference into a strong variable.
   9586         // Although this code can still have problems:
   9587         //   id x = self.weakProp;
   9588         //   id y = self.weakProp;
   9589         // we do not warn to warn spuriously when 'x' and 'y' are on separate
   9590         // paths through the function. This should be revisited if
   9591         // -Wrepeated-use-of-weak is made flow-sensitive.
   9592         if (!Diags.isIgnored(diag::warn_arc_repeated_use_of_weak,
   9593                              RHS.get()->getLocStart()))
   9594           getCurFunction()->markSafeWeakUse(RHS.get());
   9595 
   9596       } else if (getLangOpts().ObjCAutoRefCount) {
   9597         checkUnsafeExprAssigns(Loc, LHSExpr, RHS.get());
   9598       }
   9599     }
   9600   } else {
   9601     // Compound assignment "x += y"
   9602     ConvTy = CheckAssignmentConstraints(Loc, LHSType, RHSType);
   9603   }
   9604 
   9605   if (DiagnoseAssignmentResult(ConvTy, Loc, LHSType, RHSType,
   9606                                RHS.get(), AA_Assigning))
   9607     return QualType();
   9608 
   9609   CheckForNullPointerDereference(*this, LHSExpr);
   9610 
   9611   // C99 6.5.16p3: The type of an assignment expression is the type of the
   9612   // left operand unless the left operand has qualified type, in which case
   9613   // it is the unqualified version of the type of the left operand.
   9614   // C99 6.5.16.1p2: In simple assignment, the value of the right operand
   9615   // is converted to the type of the assignment expression (above).
   9616   // C++ 5.17p1: the type of the assignment expression is that of its left
   9617   // operand.
   9618   return (getLangOpts().CPlusPlus
   9619           ? LHSType : LHSType.getUnqualifiedType());
   9620 }
   9621 
   9622 // C99 6.5.17
   9623 static QualType CheckCommaOperands(Sema &S, ExprResult &LHS, ExprResult &RHS,
   9624                                    SourceLocation Loc) {
   9625   LHS = S.CheckPlaceholderExpr(LHS.get());
   9626   RHS = S.CheckPlaceholderExpr(RHS.get());
   9627   if (LHS.isInvalid() || RHS.isInvalid())
   9628     return QualType();
   9629 
   9630   // C's comma performs lvalue conversion (C99 6.3.2.1) on both its
   9631   // operands, but not unary promotions.
   9632   // C++'s comma does not do any conversions at all (C++ [expr.comma]p1).
   9633 
   9634   // So we treat the LHS as a ignored value, and in C++ we allow the
   9635   // containing site to determine what should be done with the RHS.
   9636   LHS = S.IgnoredValueConversions(LHS.get());
   9637   if (LHS.isInvalid())
   9638     return QualType();
   9639 
   9640   S.DiagnoseUnusedExprResult(LHS.get());
   9641 
   9642   if (!S.getLangOpts().CPlusPlus) {
   9643     RHS = S.DefaultFunctionArrayLvalueConversion(RHS.get());
   9644     if (RHS.isInvalid())
   9645       return QualType();
   9646     if (!RHS.get()->getType()->isVoidType())
   9647       S.RequireCompleteType(Loc, RHS.get()->getType(),
   9648                             diag::err_incomplete_type);
   9649   }
   9650 
   9651   return RHS.get()->getType();
   9652 }
   9653 
   9654 /// CheckIncrementDecrementOperand - unlike most "Check" methods, this routine
   9655 /// doesn't need to call UsualUnaryConversions or UsualArithmeticConversions.
   9656 static QualType CheckIncrementDecrementOperand(Sema &S, Expr *Op,
   9657                                                ExprValueKind &VK,
   9658                                                ExprObjectKind &OK,
   9659                                                SourceLocation OpLoc,
   9660                                                bool IsInc, bool IsPrefix) {
   9661   if (Op->isTypeDependent())
   9662     return S.Context.DependentTy;
   9663 
   9664   QualType ResType = Op->getType();
   9665   // Atomic types can be used for increment / decrement where the non-atomic
   9666   // versions can, so ignore the _Atomic() specifier for the purpose of
   9667   // checking.
   9668   if (const AtomicType *ResAtomicType = ResType->getAs<AtomicType>())
   9669     ResType = ResAtomicType->getValueType();
   9670 
   9671   assert(!ResType.isNull() && "no type for increment/decrement expression");
   9672 
   9673   if (S.getLangOpts().CPlusPlus && ResType->isBooleanType()) {
   9674     // Decrement of bool is not allowed.
   9675     if (!IsInc) {
   9676       S.Diag(OpLoc, diag::err_decrement_bool) << Op->getSourceRange();
   9677       return QualType();
   9678     }
   9679     // Increment of bool sets it to true, but is deprecated.
   9680     S.Diag(OpLoc, S.getLangOpts().CPlusPlus1z ? diag::ext_increment_bool
   9681                                               : diag::warn_increment_bool)
   9682       << Op->getSourceRange();
   9683   } else if (S.getLangOpts().CPlusPlus && ResType->isEnumeralType()) {
   9684     // Error on enum increments and decrements in C++ mode
   9685     S.Diag(OpLoc, diag::err_increment_decrement_enum) << IsInc << ResType;
   9686     return QualType();
   9687   } else if (ResType->isRealType()) {
   9688     // OK!
   9689   } else if (ResType->isPointerType()) {
   9690     // C99 6.5.2.4p2, 6.5.6p2
   9691     if (!checkArithmeticOpPointerOperand(S, OpLoc, Op))
   9692       return QualType();
   9693   } else if (ResType->isObjCObjectPointerType()) {
   9694     // On modern runtimes, ObjC pointer arithmetic is forbidden.
   9695     // Otherwise, we just need a complete type.
   9696     if (checkArithmeticIncompletePointerType(S, OpLoc, Op) ||
   9697         checkArithmeticOnObjCPointer(S, OpLoc, Op))
   9698       return QualType();
   9699   } else if (ResType->isAnyComplexType()) {
   9700     // C99 does not support ++/-- on complex types, we allow as an extension.
   9701     S.Diag(OpLoc, diag::ext_integer_increment_complex)
   9702       << ResType << Op->getSourceRange();
   9703   } else if (ResType->isPlaceholderType()) {
   9704     ExprResult PR = S.CheckPlaceholderExpr(Op);
   9705     if (PR.isInvalid()) return QualType();
   9706     return CheckIncrementDecrementOperand(S, PR.get(), VK, OK, OpLoc,
   9707                                           IsInc, IsPrefix);
   9708   } else if (S.getLangOpts().AltiVec && ResType->isVectorType()) {
   9709     // OK! ( C/C++ Language Extensions for CBEA(Version 2.6) 10.3 )
   9710   } else if (S.getLangOpts().ZVector && ResType->isVectorType() &&
   9711              (ResType->getAs<VectorType>()->getVectorKind() !=
   9712               VectorType::AltiVecBool)) {
   9713     // The z vector extensions allow ++ and -- for non-bool vectors.
   9714   } else if(S.getLangOpts().OpenCL && ResType->isVectorType() &&
   9715             ResType->getAs<VectorType>()->getElementType()->isIntegerType()) {
   9716     // OpenCL V1.2 6.3 says dec/inc ops operate on integer vector types.
   9717   } else {
   9718     S.Diag(OpLoc, diag::err_typecheck_illegal_increment_decrement)
   9719       << ResType << int(IsInc) << Op->getSourceRange();
   9720     return QualType();
   9721   }
   9722   // At this point, we know we have a real, complex or pointer type.
   9723   // Now make sure the operand is a modifiable lvalue.
   9724   if (CheckForModifiableLvalue(Op, OpLoc, S))
   9725     return QualType();
   9726   // In C++, a prefix increment is the same type as the operand. Otherwise
   9727   // (in C or with postfix), the increment is the unqualified type of the
   9728   // operand.
   9729   if (IsPrefix && S.getLangOpts().CPlusPlus) {
   9730     VK = VK_LValue;
   9731     OK = Op->getObjectKind();
   9732     return ResType;
   9733   } else {
   9734     VK = VK_RValue;
   9735     return ResType.getUnqualifiedType();
   9736   }
   9737 }
   9738 
   9739 
   9740 /// getPrimaryDecl - Helper function for CheckAddressOfOperand().
   9741 /// This routine allows us to typecheck complex/recursive expressions
   9742 /// where the declaration is needed for type checking. We only need to
   9743 /// handle cases when the expression references a function designator
   9744 /// or is an lvalue. Here are some examples:
   9745 ///  - &(x) => x
   9746 ///  - &*****f => f for f a function designator.
   9747 ///  - &s.xx => s
   9748 ///  - &s.zz[1].yy -> s, if zz is an array
   9749 ///  - *(x + 1) -> x, if x is an array
   9750 ///  - &"123"[2] -> 0
   9751 ///  - & __real__ x -> x
   9752 static ValueDecl *getPrimaryDecl(Expr *E) {
   9753   switch (E->getStmtClass()) {
   9754   case Stmt::DeclRefExprClass:
   9755     return cast<DeclRefExpr>(E)->getDecl();
   9756   case Stmt::MemberExprClass:
   9757     // If this is an arrow operator, the address is an offset from
   9758     // the base's value, so the object the base refers to is
   9759     // irrelevant.
   9760     if (cast<MemberExpr>(E)->isArrow())
   9761       return nullptr;
   9762     // Otherwise, the expression refers to a part of the base
   9763     return getPrimaryDecl(cast<MemberExpr>(E)->getBase());
   9764   case Stmt::ArraySubscriptExprClass: {
   9765     // FIXME: This code shouldn't be necessary!  We should catch the implicit
   9766     // promotion of register arrays earlier.
   9767     Expr* Base = cast<ArraySubscriptExpr>(E)->getBase();
   9768     if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Base)) {
   9769       if (ICE->getSubExpr()->getType()->isArrayType())
   9770         return getPrimaryDecl(ICE->getSubExpr());
   9771     }
   9772     return nullptr;
   9773   }
   9774   case Stmt::UnaryOperatorClass: {
   9775     UnaryOperator *UO = cast<UnaryOperator>(E);
   9776 
   9777     switch(UO->getOpcode()) {
   9778     case UO_Real:
   9779     case UO_Imag:
   9780     case UO_Extension:
   9781       return getPrimaryDecl(UO->getSubExpr());
   9782     default:
   9783       return nullptr;
   9784     }
   9785   }
   9786   case Stmt::ParenExprClass:
   9787     return getPrimaryDecl(cast<ParenExpr>(E)->getSubExpr());
   9788   case Stmt::ImplicitCastExprClass:
   9789     // If the result of an implicit cast is an l-value, we care about
   9790     // the sub-expression; otherwise, the result here doesn't matter.
   9791     return getPrimaryDecl(cast<ImplicitCastExpr>(E)->getSubExpr());
   9792   default:
   9793     return nullptr;
   9794   }
   9795 }
   9796 
   9797 namespace {
   9798   enum {
   9799     AO_Bit_Field = 0,
   9800     AO_Vector_Element = 1,
   9801     AO_Property_Expansion = 2,
   9802     AO_Register_Variable = 3,
   9803     AO_No_Error = 4
   9804   };
   9805 }
   9806 /// \brief Diagnose invalid operand for address of operations.
   9807 ///
   9808 /// \param Type The type of operand which cannot have its address taken.
   9809 static void diagnoseAddressOfInvalidType(Sema &S, SourceLocation Loc,
   9810                                          Expr *E, unsigned Type) {
   9811   S.Diag(Loc, diag::err_typecheck_address_of) << Type << E->getSourceRange();
   9812 }
   9813 
   9814 /// CheckAddressOfOperand - The operand of & must be either a function
   9815 /// designator or an lvalue designating an object. If it is an lvalue, the
   9816 /// object cannot be declared with storage class register or be a bit field.
   9817 /// Note: The usual conversions are *not* applied to the operand of the &
   9818 /// operator (C99 6.3.2.1p[2-4]), and its result is never an lvalue.
   9819 /// In C++, the operand might be an overloaded function name, in which case
   9820 /// we allow the '&' but retain the overloaded-function type.
   9821 QualType Sema::CheckAddressOfOperand(ExprResult &OrigOp, SourceLocation OpLoc) {
   9822   if (const BuiltinType *PTy = OrigOp.get()->getType()->getAsPlaceholderType()){
   9823     if (PTy->getKind() == BuiltinType::Overload) {
   9824       Expr *E = OrigOp.get()->IgnoreParens();
   9825       if (!isa<OverloadExpr>(E)) {
   9826         assert(cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf);
   9827         Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof_addrof_function)
   9828           << OrigOp.get()->getSourceRange();
   9829         return QualType();
   9830       }
   9831 
   9832       OverloadExpr *Ovl = cast<OverloadExpr>(E);
   9833       if (isa<UnresolvedMemberExpr>(Ovl))
   9834         if (!ResolveSingleFunctionTemplateSpecialization(Ovl)) {
   9835           Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
   9836             << OrigOp.get()->getSourceRange();
   9837           return QualType();
   9838         }
   9839 
   9840       return Context.OverloadTy;
   9841     }
   9842 
   9843     if (PTy->getKind() == BuiltinType::UnknownAny)
   9844       return Context.UnknownAnyTy;
   9845 
   9846     if (PTy->getKind() == BuiltinType::BoundMember) {
   9847       Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
   9848         << OrigOp.get()->getSourceRange();
   9849       return QualType();
   9850     }
   9851 
   9852     OrigOp = CheckPlaceholderExpr(OrigOp.get());
   9853     if (OrigOp.isInvalid()) return QualType();
   9854   }
   9855 
   9856   if (OrigOp.get()->isTypeDependent())
   9857     return Context.DependentTy;
   9858 
   9859   assert(!OrigOp.get()->getType()->isPlaceholderType());
   9860 
   9861   // Make sure to ignore parentheses in subsequent checks
   9862   Expr *op = OrigOp.get()->IgnoreParens();
   9863 
   9864   // OpenCL v1.0 s6.8.a.3: Pointers to functions are not allowed.
   9865   if (LangOpts.OpenCL && op->getType()->isFunctionType()) {
   9866     Diag(op->getExprLoc(), diag::err_opencl_taking_function_address);
   9867     return QualType();
   9868   }
   9869 
   9870   if (getLangOpts().C99) {
   9871     // Implement C99-only parts of addressof rules.
   9872     if (UnaryOperator* uOp = dyn_cast<UnaryOperator>(op)) {
   9873       if (uOp->getOpcode() == UO_Deref)
   9874         // Per C99 6.5.3.2, the address of a deref always returns a valid result
   9875         // (assuming the deref expression is valid).
   9876         return uOp->getSubExpr()->getType();
   9877     }
   9878     // Technically, there should be a check for array subscript
   9879     // expressions here, but the result of one is always an lvalue anyway.
   9880   }
   9881   ValueDecl *dcl = getPrimaryDecl(op);
   9882 
   9883   if (auto *FD = dyn_cast_or_null<FunctionDecl>(dcl))
   9884     if (!checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
   9885                                            op->getLocStart()))
   9886       return QualType();
   9887 
   9888   Expr::LValueClassification lval = op->ClassifyLValue(Context);
   9889   unsigned AddressOfError = AO_No_Error;
   9890 
   9891   if (lval == Expr::LV_ClassTemporary || lval == Expr::LV_ArrayTemporary) {
   9892     bool sfinae = (bool)isSFINAEContext();
   9893     Diag(OpLoc, isSFINAEContext() ? diag::err_typecheck_addrof_temporary
   9894                                   : diag::ext_typecheck_addrof_temporary)
   9895       << op->getType() << op->getSourceRange();
   9896     if (sfinae)
   9897       return QualType();
   9898     // Materialize the temporary as an lvalue so that we can take its address.
   9899     OrigOp = op = new (Context)
   9900         MaterializeTemporaryExpr(op->getType(), OrigOp.get(), true);
   9901   } else if (isa<ObjCSelectorExpr>(op)) {
   9902     return Context.getPointerType(op->getType());
   9903   } else if (lval == Expr::LV_MemberFunction) {
   9904     // If it's an instance method, make a member pointer.
   9905     // The expression must have exactly the form &A::foo.
   9906 
   9907     // If the underlying expression isn't a decl ref, give up.
   9908     if (!isa<DeclRefExpr>(op)) {
   9909       Diag(OpLoc, diag::err_invalid_form_pointer_member_function)
   9910         << OrigOp.get()->getSourceRange();
   9911       return QualType();
   9912     }
   9913     DeclRefExpr *DRE = cast<DeclRefExpr>(op);
   9914     CXXMethodDecl *MD = cast<CXXMethodDecl>(DRE->getDecl());
   9915 
   9916     // The id-expression was parenthesized.
   9917     if (OrigOp.get() != DRE) {
   9918       Diag(OpLoc, diag::err_parens_pointer_member_function)
   9919         << OrigOp.get()->getSourceRange();
   9920 
   9921     // The method was named without a qualifier.
   9922     } else if (!DRE->getQualifier()) {
   9923       if (MD->getParent()->getName().empty())
   9924         Diag(OpLoc, diag::err_unqualified_pointer_member_function)
   9925           << op->getSourceRange();
   9926       else {
   9927         SmallString<32> Str;
   9928         StringRef Qual = (MD->getParent()->getName() + "::").toStringRef(Str);
   9929         Diag(OpLoc, diag::err_unqualified_pointer_member_function)
   9930           << op->getSourceRange()
   9931           << FixItHint::CreateInsertion(op->getSourceRange().getBegin(), Qual);
   9932       }
   9933     }
   9934 
   9935     // Taking the address of a dtor is illegal per C++ [class.dtor]p2.
   9936     if (isa<CXXDestructorDecl>(MD))
   9937       Diag(OpLoc, diag::err_typecheck_addrof_dtor) << op->getSourceRange();
   9938 
   9939     QualType MPTy = Context.getMemberPointerType(
   9940         op->getType(), Context.getTypeDeclType(MD->getParent()).getTypePtr());
   9941     // Under the MS ABI, lock down the inheritance model now.
   9942     if (Context.getTargetInfo().getCXXABI().isMicrosoft())
   9943       (void)isCompleteType(OpLoc, MPTy);
   9944     return MPTy;
   9945   } else if (lval != Expr::LV_Valid && lval != Expr::LV_IncompleteVoidType) {
   9946     // C99 6.5.3.2p1
   9947     // The operand must be either an l-value or a function designator
   9948     if (!op->getType()->isFunctionType()) {
   9949       // Use a special diagnostic for loads from property references.
   9950       if (isa<PseudoObjectExpr>(op)) {
   9951         AddressOfError = AO_Property_Expansion;
   9952       } else {
   9953         Diag(OpLoc, diag::err_typecheck_invalid_lvalue_addrof)
   9954           << op->getType() << op->getSourceRange();
   9955         return QualType();
   9956       }
   9957     }
   9958   } else if (op->getObjectKind() == OK_BitField) { // C99 6.5.3.2p1
   9959     // The operand cannot be a bit-field
   9960     AddressOfError = AO_Bit_Field;
   9961   } else if (op->getObjectKind() == OK_VectorComponent) {
   9962     // The operand cannot be an element of a vector
   9963     AddressOfError = AO_Vector_Element;
   9964   } else if (dcl) { // C99 6.5.3.2p1
   9965     // We have an lvalue with a decl. Make sure the decl is not declared
   9966     // with the register storage-class specifier.
   9967     if (const VarDecl *vd = dyn_cast<VarDecl>(dcl)) {
   9968       // in C++ it is not error to take address of a register
   9969       // variable (c++03 7.1.1P3)
   9970       if (vd->getStorageClass() == SC_Register &&
   9971           !getLangOpts().CPlusPlus) {
   9972         AddressOfError = AO_Register_Variable;
   9973       }
   9974     } else if (isa<MSPropertyDecl>(dcl)) {
   9975       AddressOfError = AO_Property_Expansion;
   9976     } else if (isa<FunctionTemplateDecl>(dcl)) {
   9977       return Context.OverloadTy;
   9978     } else if (isa<FieldDecl>(dcl) || isa<IndirectFieldDecl>(dcl)) {
   9979       // Okay: we can take the address of a field.
   9980       // Could be a pointer to member, though, if there is an explicit
   9981       // scope qualifier for the class.
   9982       if (isa<DeclRefExpr>(op) && cast<DeclRefExpr>(op)->getQualifier()) {
   9983         DeclContext *Ctx = dcl->getDeclContext();
   9984         if (Ctx && Ctx->isRecord()) {
   9985           if (dcl->getType()->isReferenceType()) {
   9986             Diag(OpLoc,
   9987                  diag::err_cannot_form_pointer_to_member_of_reference_type)
   9988               << dcl->getDeclName() << dcl->getType();
   9989             return QualType();
   9990           }
   9991 
   9992           while (cast<RecordDecl>(Ctx)->isAnonymousStructOrUnion())
   9993             Ctx = Ctx->getParent();
   9994 
   9995           QualType MPTy = Context.getMemberPointerType(
   9996               op->getType(),
   9997               Context.getTypeDeclType(cast<RecordDecl>(Ctx)).getTypePtr());
   9998           // Under the MS ABI, lock down the inheritance model now.
   9999           if (Context.getTargetInfo().getCXXABI().isMicrosoft())
   10000             (void)isCompleteType(OpLoc, MPTy);
   10001           return MPTy;
   10002         }
   10003       }
   10004     } else if (!isa<FunctionDecl>(dcl) && !isa<NonTypeTemplateParmDecl>(dcl))
   10005       llvm_unreachable("Unknown/unexpected decl type");
   10006   }
   10007 
   10008   if (AddressOfError != AO_No_Error) {
   10009     diagnoseAddressOfInvalidType(*this, OpLoc, op, AddressOfError);
   10010     return QualType();
   10011   }
   10012 
   10013   if (lval == Expr::LV_IncompleteVoidType) {
   10014     // Taking the address of a void variable is technically illegal, but we
   10015     // allow it in cases which are otherwise valid.
   10016     // Example: "extern void x; void* y = &x;".
   10017     Diag(OpLoc, diag::ext_typecheck_addrof_void) << op->getSourceRange();
   10018   }
   10019 
   10020   // If the operand has type "type", the result has type "pointer to type".
   10021   if (op->getType()->isObjCObjectType())
   10022     return Context.getObjCObjectPointerType(op->getType());
   10023   return Context.getPointerType(op->getType());
   10024 }
   10025 
   10026 static void RecordModifiableNonNullParam(Sema &S, const Expr *Exp) {
   10027   const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Exp);
   10028   if (!DRE)
   10029     return;
   10030   const Decl *D = DRE->getDecl();
   10031   if (!D)
   10032     return;
   10033   const ParmVarDecl *Param = dyn_cast<ParmVarDecl>(D);
   10034   if (!Param)
   10035     return;
   10036   if (const FunctionDecl* FD = dyn_cast<FunctionDecl>(Param->getDeclContext()))
   10037     if (!FD->hasAttr<NonNullAttr>() && !Param->hasAttr<NonNullAttr>())
   10038       return;
   10039   if (FunctionScopeInfo *FD = S.getCurFunction())
   10040     if (!FD->ModifiedNonNullParams.count(Param))
   10041       FD->ModifiedNonNullParams.insert(Param);
   10042 }
   10043 
   10044 /// CheckIndirectionOperand - Type check unary indirection (prefix '*').
   10045 static QualType CheckIndirectionOperand(Sema &S, Expr *Op, ExprValueKind &VK,
   10046                                         SourceLocation OpLoc) {
   10047   if (Op->isTypeDependent())
   10048     return S.Context.DependentTy;
   10049 
   10050   ExprResult ConvResult = S.UsualUnaryConversions(Op);
   10051   if (ConvResult.isInvalid())
   10052     return QualType();
   10053   Op = ConvResult.get();
   10054   QualType OpTy = Op->getType();
   10055   QualType Result;
   10056 
   10057   if (isa<CXXReinterpretCastExpr>(Op)) {
   10058     QualType OpOrigType = Op->IgnoreParenCasts()->getType();
   10059     S.CheckCompatibleReinterpretCast(OpOrigType, OpTy, /*IsDereference*/true,
   10060                                      Op->getSourceRange());
   10061   }
   10062 
   10063   if (const PointerType *PT = OpTy->getAs<PointerType>())
   10064     Result = PT->getPointeeType();
   10065   else if (const ObjCObjectPointerType *OPT =
   10066              OpTy->getAs<ObjCObjectPointerType>())
   10067     Result = OPT->getPointeeType();
   10068   else {
   10069     ExprResult PR = S.CheckPlaceholderExpr(Op);
   10070     if (PR.isInvalid()) return QualType();
   10071     if (PR.get() != Op)
   10072       return CheckIndirectionOperand(S, PR.get(), VK, OpLoc);
   10073   }
   10074 
   10075   if (Result.isNull()) {
   10076     S.Diag(OpLoc, diag::err_typecheck_indirection_requires_pointer)
   10077       << OpTy << Op->getSourceRange();
   10078     return QualType();
   10079   }
   10080 
   10081   // Note that per both C89 and C99, indirection is always legal, even if Result
   10082   // is an incomplete type or void.  It would be possible to warn about
   10083   // dereferencing a void pointer, but it's completely well-defined, and such a
   10084   // warning is unlikely to catch any mistakes. In C++, indirection is not valid
   10085   // for pointers to 'void' but is fine for any other pointer type:
   10086   //
   10087   // C++ [expr.unary.op]p1:
   10088   //   [...] the expression to which [the unary * operator] is applied shall
   10089   //   be a pointer to an object type, or a pointer to a function type
   10090   if (S.getLangOpts().CPlusPlus && Result->isVoidType())
   10091     S.Diag(OpLoc, diag::ext_typecheck_indirection_through_void_pointer)
   10092       << OpTy << Op->getSourceRange();
   10093 
   10094   // Dereferences are usually l-values...
   10095   VK = VK_LValue;
   10096 
   10097   // ...except that certain expressions are never l-values in C.
   10098   if (!S.getLangOpts().CPlusPlus && Result.isCForbiddenLValueType())
   10099     VK = VK_RValue;
   10100 
   10101   return Result;
   10102 }
   10103 
   10104 BinaryOperatorKind Sema::ConvertTokenKindToBinaryOpcode(tok::TokenKind Kind) {
   10105   BinaryOperatorKind Opc;
   10106   switch (Kind) {
   10107   default: llvm_unreachable("Unknown binop!");
   10108   case tok::periodstar:           Opc = BO_PtrMemD; break;
   10109   case tok::arrowstar:            Opc = BO_PtrMemI; break;
   10110   case tok::star:                 Opc = BO_Mul; break;
   10111   case tok::slash:                Opc = BO_Div; break;
   10112   case tok::percent:              Opc = BO_Rem; break;
   10113   case tok::plus:                 Opc = BO_Add; break;
   10114   case tok::minus:                Opc = BO_Sub; break;
   10115   case tok::lessless:             Opc = BO_Shl; break;
   10116   case tok::greatergreater:       Opc = BO_Shr; break;
   10117   case tok::lessequal:            Opc = BO_LE; break;
   10118   case tok::less:                 Opc = BO_LT; break;
   10119   case tok::greaterequal:         Opc = BO_GE; break;
   10120   case tok::greater:              Opc = BO_GT; break;
   10121   case tok::exclaimequal:         Opc = BO_NE; break;
   10122   case tok::equalequal:           Opc = BO_EQ; break;
   10123   case tok::amp:                  Opc = BO_And; break;
   10124   case tok::caret:                Opc = BO_Xor; break;
   10125   case tok::pipe:                 Opc = BO_Or; break;
   10126   case tok::ampamp:               Opc = BO_LAnd; break;
   10127   case tok::pipepipe:             Opc = BO_LOr; break;
   10128   case tok::equal:                Opc = BO_Assign; break;
   10129   case tok::starequal:            Opc = BO_MulAssign; break;
   10130   case tok::slashequal:           Opc = BO_DivAssign; break;
   10131   case tok::percentequal:         Opc = BO_RemAssign; break;
   10132   case tok::plusequal:            Opc = BO_AddAssign; break;
   10133   case tok::minusequal:           Opc = BO_SubAssign; break;
   10134   case tok::lesslessequal:        Opc = BO_ShlAssign; break;
   10135   case tok::greatergreaterequal:  Opc = BO_ShrAssign; break;
   10136   case tok::ampequal:             Opc = BO_AndAssign; break;
   10137   case tok::caretequal:           Opc = BO_XorAssign; break;
   10138   case tok::pipeequal:            Opc = BO_OrAssign; break;
   10139   case tok::comma:                Opc = BO_Comma; break;
   10140   }
   10141   return Opc;
   10142 }
   10143 
   10144 static inline UnaryOperatorKind ConvertTokenKindToUnaryOpcode(
   10145   tok::TokenKind Kind) {
   10146   UnaryOperatorKind Opc;
   10147   switch (Kind) {
   10148   default: llvm_unreachable("Unknown unary op!");
   10149   case tok::plusplus:     Opc = UO_PreInc; break;
   10150   case tok::minusminus:   Opc = UO_PreDec; break;
   10151   case tok::amp:          Opc = UO_AddrOf; break;
   10152   case tok::star:         Opc = UO_Deref; break;
   10153   case tok::plus:         Opc = UO_Plus; break;
   10154   case tok::minus:        Opc = UO_Minus; break;
   10155   case tok::tilde:        Opc = UO_Not; break;
   10156   case tok::exclaim:      Opc = UO_LNot; break;
   10157   case tok::kw___real:    Opc = UO_Real; break;
   10158   case tok::kw___imag:    Opc = UO_Imag; break;
   10159   case tok::kw___extension__: Opc = UO_Extension; break;
   10160   }
   10161   return Opc;
   10162 }
   10163 
   10164 /// DiagnoseSelfAssignment - Emits a warning if a value is assigned to itself.
   10165 /// This warning is only emitted for builtin assignment operations. It is also
   10166 /// suppressed in the event of macro expansions.
   10167 static void DiagnoseSelfAssignment(Sema &S, Expr *LHSExpr, Expr *RHSExpr,
   10168                                    SourceLocation OpLoc) {
   10169   if (!S.ActiveTemplateInstantiations.empty())
   10170     return;
   10171   if (OpLoc.isInvalid() || OpLoc.isMacroID())
   10172     return;
   10173   LHSExpr = LHSExpr->IgnoreParenImpCasts();
   10174   RHSExpr = RHSExpr->IgnoreParenImpCasts();
   10175   const DeclRefExpr *LHSDeclRef = dyn_cast<DeclRefExpr>(LHSExpr);
   10176   const DeclRefExpr *RHSDeclRef = dyn_cast<DeclRefExpr>(RHSExpr);
   10177   if (!LHSDeclRef || !RHSDeclRef ||
   10178       LHSDeclRef->getLocation().isMacroID() ||
   10179       RHSDeclRef->getLocation().isMacroID())
   10180     return;
   10181   const ValueDecl *LHSDecl =
   10182     cast<ValueDecl>(LHSDeclRef->getDecl()->getCanonicalDecl());
   10183   const ValueDecl *RHSDecl =
   10184     cast<ValueDecl>(RHSDeclRef->getDecl()->getCanonicalDecl());
   10185   if (LHSDecl != RHSDecl)
   10186     return;
   10187   if (LHSDecl->getType().isVolatileQualified())
   10188     return;
   10189   if (const ReferenceType *RefTy = LHSDecl->getType()->getAs<ReferenceType>())
   10190     if (RefTy->getPointeeType().isVolatileQualified())
   10191       return;
   10192 
   10193   S.Diag(OpLoc, diag::warn_self_assignment)
   10194       << LHSDeclRef->getType()
   10195       << LHSExpr->getSourceRange() << RHSExpr->getSourceRange();
   10196 }
   10197 
   10198 /// Check if a bitwise-& is performed on an Objective-C pointer.  This
   10199 /// is usually indicative of introspection within the Objective-C pointer.
   10200 static void checkObjCPointerIntrospection(Sema &S, ExprResult &L, ExprResult &R,
   10201                                           SourceLocation OpLoc) {
   10202   if (!S.getLangOpts().ObjC1)
   10203     return;
   10204 
   10205   const Expr *ObjCPointerExpr = nullptr, *OtherExpr = nullptr;
   10206   const Expr *LHS = L.get();
   10207   const Expr *RHS = R.get();
   10208 
   10209   if (LHS->IgnoreParenCasts()->getType()->isObjCObjectPointerType()) {
   10210     ObjCPointerExpr = LHS;
   10211     OtherExpr = RHS;
   10212   }
   10213   else if (RHS->IgnoreParenCasts()->getType()->isObjCObjectPointerType()) {
   10214     ObjCPointerExpr = RHS;
   10215     OtherExpr = LHS;
   10216   }
   10217 
   10218   // This warning is deliberately made very specific to reduce false
   10219   // positives with logic that uses '&' for hashing.  This logic mainly
   10220   // looks for code trying to introspect into tagged pointers, which
   10221   // code should generally never do.
   10222   if (ObjCPointerExpr && isa<IntegerLiteral>(OtherExpr->IgnoreParenCasts())) {
   10223     unsigned Diag = diag::warn_objc_pointer_masking;
   10224     // Determine if we are introspecting the result of performSelectorXXX.
   10225     const Expr *Ex = ObjCPointerExpr->IgnoreParenCasts();
   10226     // Special case messages to -performSelector and friends, which
   10227     // can return non-pointer values boxed in a pointer value.
   10228     // Some clients may wish to silence warnings in this subcase.
   10229     if (const ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(Ex)) {
   10230       Selector S = ME->getSelector();
   10231       StringRef SelArg0 = S.getNameForSlot(0);
   10232       if (SelArg0.startswith("performSelector"))
   10233         Diag = diag::warn_objc_pointer_masking_performSelector;
   10234     }
   10235 
   10236     S.Diag(OpLoc, Diag)
   10237       << ObjCPointerExpr->getSourceRange();
   10238   }
   10239 }
   10240 
   10241 static NamedDecl *getDeclFromExpr(Expr *E) {
   10242   if (!E)
   10243     return nullptr;
   10244   if (auto *DRE = dyn_cast<DeclRefExpr>(E))
   10245     return DRE->getDecl();
   10246   if (auto *ME = dyn_cast<MemberExpr>(E))
   10247     return ME->getMemberDecl();
   10248   if (auto *IRE = dyn_cast<ObjCIvarRefExpr>(E))
   10249     return IRE->getDecl();
   10250   return nullptr;
   10251 }
   10252 
   10253 /// CreateBuiltinBinOp - Creates a new built-in binary operation with
   10254 /// operator @p Opc at location @c TokLoc. This routine only supports
   10255 /// built-in operations; ActOnBinOp handles overloaded operators.
   10256 ExprResult Sema::CreateBuiltinBinOp(SourceLocation OpLoc,
   10257                                     BinaryOperatorKind Opc,
   10258                                     Expr *LHSExpr, Expr *RHSExpr) {
   10259   if (getLangOpts().CPlusPlus11 && isa<InitListExpr>(RHSExpr)) {
   10260     // The syntax only allows initializer lists on the RHS of assignment,
   10261     // so we don't need to worry about accepting invalid code for
   10262     // non-assignment operators.
   10263     // C++11 5.17p9:
   10264     //   The meaning of x = {v} [...] is that of x = T(v) [...]. The meaning
   10265     //   of x = {} is x = T().
   10266     InitializationKind Kind =
   10267         InitializationKind::CreateDirectList(RHSExpr->getLocStart());
   10268     InitializedEntity Entity =
   10269         InitializedEntity::InitializeTemporary(LHSExpr->getType());
   10270     InitializationSequence InitSeq(*this, Entity, Kind, RHSExpr);
   10271     ExprResult Init = InitSeq.Perform(*this, Entity, Kind, RHSExpr);
   10272     if (Init.isInvalid())
   10273       return Init;
   10274     RHSExpr = Init.get();
   10275   }
   10276 
   10277   ExprResult LHS = LHSExpr, RHS = RHSExpr;
   10278   QualType ResultTy;     // Result type of the binary operator.
   10279   // The following two variables are used for compound assignment operators
   10280   QualType CompLHSTy;    // Type of LHS after promotions for computation
   10281   QualType CompResultTy; // Type of computation result
   10282   ExprValueKind VK = VK_RValue;
   10283   ExprObjectKind OK = OK_Ordinary;
   10284 
   10285   if (!getLangOpts().CPlusPlus) {
   10286     // C cannot handle TypoExpr nodes on either side of a binop because it
   10287     // doesn't handle dependent types properly, so make sure any TypoExprs have
   10288     // been dealt with before checking the operands.
   10289     LHS = CorrectDelayedTyposInExpr(LHSExpr);
   10290     RHS = CorrectDelayedTyposInExpr(RHSExpr, [Opc, LHS](Expr *E) {
   10291       if (Opc != BO_Assign)
   10292         return ExprResult(E);
   10293       // Avoid correcting the RHS to the same Expr as the LHS.
   10294       Decl *D = getDeclFromExpr(E);
   10295       return (D && D == getDeclFromExpr(LHS.get())) ? ExprError() : E;
   10296     });
   10297     if (!LHS.isUsable() || !RHS.isUsable())
   10298       return ExprError();
   10299   }
   10300 
   10301   if (getLangOpts().OpenCL) {
   10302     // OpenCLC v2.0 s6.13.11.1 allows atomic variables to be initialized by
   10303     // the ATOMIC_VAR_INIT macro.
   10304     if (LHSExpr->getType()->isAtomicType() ||
   10305         RHSExpr->getType()->isAtomicType()) {
   10306       SourceRange SR(LHSExpr->getLocStart(), RHSExpr->getLocEnd());
   10307       if (BO_Assign == Opc)
   10308         Diag(OpLoc, diag::err_atomic_init_constant) << SR;
   10309       else
   10310         ResultTy = InvalidOperands(OpLoc, LHS, RHS);
   10311       return ExprError();
   10312     }
   10313   }
   10314 
   10315   switch (Opc) {
   10316   case BO_Assign:
   10317     ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, QualType());
   10318     if (getLangOpts().CPlusPlus &&
   10319         LHS.get()->getObjectKind() != OK_ObjCProperty) {
   10320       VK = LHS.get()->getValueKind();
   10321       OK = LHS.get()->getObjectKind();
   10322     }
   10323     if (!ResultTy.isNull()) {
   10324       DiagnoseSelfAssignment(*this, LHS.get(), RHS.get(), OpLoc);
   10325       DiagnoseSelfMove(LHS.get(), RHS.get(), OpLoc);
   10326     }
   10327     RecordModifiableNonNullParam(*this, LHS.get());
   10328     break;
   10329   case BO_PtrMemD:
   10330   case BO_PtrMemI:
   10331     ResultTy = CheckPointerToMemberOperands(LHS, RHS, VK, OpLoc,
   10332                                             Opc == BO_PtrMemI);
   10333     break;
   10334   case BO_Mul:
   10335   case BO_Div:
   10336     ResultTy = CheckMultiplyDivideOperands(LHS, RHS, OpLoc, false,
   10337                                            Opc == BO_Div);
   10338     break;
   10339   case BO_Rem:
   10340     ResultTy = CheckRemainderOperands(LHS, RHS, OpLoc);
   10341     break;
   10342   case BO_Add:
   10343     ResultTy = CheckAdditionOperands(LHS, RHS, OpLoc, Opc);
   10344     break;
   10345   case BO_Sub:
   10346     ResultTy = CheckSubtractionOperands(LHS, RHS, OpLoc);
   10347     break;
   10348   case BO_Shl:
   10349   case BO_Shr:
   10350     ResultTy = CheckShiftOperands(LHS, RHS, OpLoc, Opc);
   10351     break;
   10352   case BO_LE:
   10353   case BO_LT:
   10354   case BO_GE:
   10355   case BO_GT:
   10356     ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc, true);
   10357     break;
   10358   case BO_EQ:
   10359   case BO_NE:
   10360     ResultTy = CheckCompareOperands(LHS, RHS, OpLoc, Opc, false);
   10361     break;
   10362   case BO_And:
   10363     checkObjCPointerIntrospection(*this, LHS, RHS, OpLoc);
   10364   case BO_Xor:
   10365   case BO_Or:
   10366     ResultTy = CheckBitwiseOperands(LHS, RHS, OpLoc);
   10367     break;
   10368   case BO_LAnd:
   10369   case BO_LOr:
   10370     ResultTy = CheckLogicalOperands(LHS, RHS, OpLoc, Opc);
   10371     break;
   10372   case BO_MulAssign:
   10373   case BO_DivAssign:
   10374     CompResultTy = CheckMultiplyDivideOperands(LHS, RHS, OpLoc, true,
   10375                                                Opc == BO_DivAssign);
   10376     CompLHSTy = CompResultTy;
   10377     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
   10378       ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
   10379     break;
   10380   case BO_RemAssign:
   10381     CompResultTy = CheckRemainderOperands(LHS, RHS, OpLoc, true);
   10382     CompLHSTy = CompResultTy;
   10383     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
   10384       ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
   10385     break;
   10386   case BO_AddAssign:
   10387     CompResultTy = CheckAdditionOperands(LHS, RHS, OpLoc, Opc, &CompLHSTy);
   10388     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
   10389       ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
   10390     break;
   10391   case BO_SubAssign:
   10392     CompResultTy = CheckSubtractionOperands(LHS, RHS, OpLoc, &CompLHSTy);
   10393     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
   10394       ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
   10395     break;
   10396   case BO_ShlAssign:
   10397   case BO_ShrAssign:
   10398     CompResultTy = CheckShiftOperands(LHS, RHS, OpLoc, Opc, true);
   10399     CompLHSTy = CompResultTy;
   10400     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
   10401       ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
   10402     break;
   10403   case BO_AndAssign:
   10404   case BO_OrAssign: // fallthrough
   10405     DiagnoseSelfAssignment(*this, LHS.get(), RHS.get(), OpLoc);
   10406   case BO_XorAssign:
   10407     CompResultTy = CheckBitwiseOperands(LHS, RHS, OpLoc, true);
   10408     CompLHSTy = CompResultTy;
   10409     if (!CompResultTy.isNull() && !LHS.isInvalid() && !RHS.isInvalid())
   10410       ResultTy = CheckAssignmentOperands(LHS.get(), RHS, OpLoc, CompResultTy);
   10411     break;
   10412   case BO_Comma:
   10413     ResultTy = CheckCommaOperands(*this, LHS, RHS, OpLoc);
   10414     if (getLangOpts().CPlusPlus && !RHS.isInvalid()) {
   10415       VK = RHS.get()->getValueKind();
   10416       OK = RHS.get()->getObjectKind();
   10417     }
   10418     break;
   10419   }
   10420   if (ResultTy.isNull() || LHS.isInvalid() || RHS.isInvalid())
   10421     return ExprError();
   10422 
   10423   // Check for array bounds violations for both sides of the BinaryOperator
   10424   CheckArrayAccess(LHS.get());
   10425   CheckArrayAccess(RHS.get());
   10426 
   10427   if (const ObjCIsaExpr *OISA = dyn_cast<ObjCIsaExpr>(LHS.get()->IgnoreParenCasts())) {
   10428     NamedDecl *ObjectSetClass = LookupSingleName(TUScope,
   10429                                                  &Context.Idents.get("object_setClass"),
   10430                                                  SourceLocation(), LookupOrdinaryName);
   10431     if (ObjectSetClass && isa<ObjCIsaExpr>(LHS.get())) {
   10432       SourceLocation RHSLocEnd = getLocForEndOfToken(RHS.get()->getLocEnd());
   10433       Diag(LHS.get()->getExprLoc(), diag::warn_objc_isa_assign) <<
   10434       FixItHint::CreateInsertion(LHS.get()->getLocStart(), "object_setClass(") <<
   10435       FixItHint::CreateReplacement(SourceRange(OISA->getOpLoc(), OpLoc), ",") <<
   10436       FixItHint::CreateInsertion(RHSLocEnd, ")");
   10437     }
   10438     else
   10439       Diag(LHS.get()->getExprLoc(), diag::warn_objc_isa_assign);
   10440   }
   10441   else if (const ObjCIvarRefExpr *OIRE =
   10442            dyn_cast<ObjCIvarRefExpr>(LHS.get()->IgnoreParenCasts()))
   10443     DiagnoseDirectIsaAccess(*this, OIRE, OpLoc, RHS.get());
   10444 
   10445   if (CompResultTy.isNull())
   10446     return new (Context) BinaryOperator(LHS.get(), RHS.get(), Opc, ResultTy, VK,
   10447                                         OK, OpLoc, FPFeatures.fp_contract);
   10448   if (getLangOpts().CPlusPlus && LHS.get()->getObjectKind() !=
   10449       OK_ObjCProperty) {
   10450     VK = VK_LValue;
   10451     OK = LHS.get()->getObjectKind();
   10452   }
   10453   return new (Context) CompoundAssignOperator(
   10454       LHS.get(), RHS.get(), Opc, ResultTy, VK, OK, CompLHSTy, CompResultTy,
   10455       OpLoc, FPFeatures.fp_contract);
   10456 }
   10457 
   10458 /// DiagnoseBitwisePrecedence - Emit a warning when bitwise and comparison
   10459 /// operators are mixed in a way that suggests that the programmer forgot that
   10460 /// comparison operators have higher precedence. The most typical example of
   10461 /// such code is "flags & 0x0020 != 0", which is equivalent to "flags & 1".
   10462 static void DiagnoseBitwisePrecedence(Sema &Self, BinaryOperatorKind Opc,
   10463                                       SourceLocation OpLoc, Expr *LHSExpr,
   10464                                       Expr *RHSExpr) {
   10465   BinaryOperator *LHSBO = dyn_cast<BinaryOperator>(LHSExpr);
   10466   BinaryOperator *RHSBO = dyn_cast<BinaryOperator>(RHSExpr);
   10467 
   10468   // Check that one of the sides is a comparison operator and the other isn't.
   10469   bool isLeftComp = LHSBO && LHSBO->isComparisonOp();
   10470   bool isRightComp = RHSBO && RHSBO->isComparisonOp();
   10471   if (isLeftComp == isRightComp)
   10472     return;
   10473 
   10474   // Bitwise operations are sometimes used as eager logical ops.
   10475   // Don't diagnose this.
   10476   bool isLeftBitwise = LHSBO && LHSBO->isBitwiseOp();
   10477   bool isRightBitwise = RHSBO && RHSBO->isBitwiseOp();
   10478   if (isLeftBitwise || isRightBitwise)
   10479     return;
   10480 
   10481   SourceRange DiagRange = isLeftComp ? SourceRange(LHSExpr->getLocStart(),
   10482                                                    OpLoc)
   10483                                      : SourceRange(OpLoc, RHSExpr->getLocEnd());
   10484   StringRef OpStr = isLeftComp ? LHSBO->getOpcodeStr() : RHSBO->getOpcodeStr();
   10485   SourceRange ParensRange = isLeftComp ?
   10486       SourceRange(LHSBO->getRHS()->getLocStart(), RHSExpr->getLocEnd())
   10487     : SourceRange(LHSExpr->getLocStart(), RHSBO->getLHS()->getLocEnd());
   10488 
   10489   Self.Diag(OpLoc, diag::warn_precedence_bitwise_rel)
   10490     << DiagRange << BinaryOperator::getOpcodeStr(Opc) << OpStr;
   10491   SuggestParentheses(Self, OpLoc,
   10492     Self.PDiag(diag::note_precedence_silence) << OpStr,
   10493     (isLeftComp ? LHSExpr : RHSExpr)->getSourceRange());
   10494   SuggestParentheses(Self, OpLoc,
   10495     Self.PDiag(diag::note_precedence_bitwise_first)
   10496       << BinaryOperator::getOpcodeStr(Opc),
   10497     ParensRange);
   10498 }
   10499 
   10500 /// \brief It accepts a '&&' expr that is inside a '||' one.
   10501 /// Emit a diagnostic together with a fixit hint that wraps the '&&' expression
   10502 /// in parentheses.
   10503 static void
   10504 EmitDiagnosticForLogicalAndInLogicalOr(Sema &Self, SourceLocation OpLoc,
   10505                                        BinaryOperator *Bop) {
   10506   assert(Bop->getOpcode() == BO_LAnd);
   10507   Self.Diag(Bop->getOperatorLoc(), diag::warn_logical_and_in_logical_or)
   10508       << Bop->getSourceRange() << OpLoc;
   10509   SuggestParentheses(Self, Bop->getOperatorLoc(),
   10510     Self.PDiag(diag::note_precedence_silence)
   10511       << Bop->getOpcodeStr(),
   10512     Bop->getSourceRange());
   10513 }
   10514 
   10515 /// \brief Returns true if the given expression can be evaluated as a constant
   10516 /// 'true'.
   10517 static bool EvaluatesAsTrue(Sema &S, Expr *E) {
   10518   bool Res;
   10519   return !E->isValueDependent() &&
   10520          E->EvaluateAsBooleanCondition(Res, S.getASTContext()) && Res;
   10521 }
   10522 
   10523 /// \brief Returns true if the given expression can be evaluated as a constant
   10524 /// 'false'.
   10525 static bool EvaluatesAsFalse(Sema &S, Expr *E) {
   10526   bool Res;
   10527   return !E->isValueDependent() &&
   10528          E->EvaluateAsBooleanCondition(Res, S.getASTContext()) && !Res;
   10529 }
   10530 
   10531 /// \brief Look for '&&' in the left hand of a '||' expr.
   10532 static void DiagnoseLogicalAndInLogicalOrLHS(Sema &S, SourceLocation OpLoc,
   10533                                              Expr *LHSExpr, Expr *RHSExpr) {
   10534   if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(LHSExpr)) {
   10535     if (Bop->getOpcode() == BO_LAnd) {
   10536       // If it's "a && b || 0" don't warn since the precedence doesn't matter.
   10537       if (EvaluatesAsFalse(S, RHSExpr))
   10538         return;
   10539       // If it's "1 && a || b" don't warn since the precedence doesn't matter.
   10540       if (!EvaluatesAsTrue(S, Bop->getLHS()))
   10541         return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
   10542     } else if (Bop->getOpcode() == BO_LOr) {
   10543       if (BinaryOperator *RBop = dyn_cast<BinaryOperator>(Bop->getRHS())) {
   10544         // If it's "a || b && 1 || c" we didn't warn earlier for
   10545         // "a || b && 1", but warn now.
   10546         if (RBop->getOpcode() == BO_LAnd && EvaluatesAsTrue(S, RBop->getRHS()))
   10547           return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, RBop);
   10548       }
   10549     }
   10550   }
   10551 }
   10552 
   10553 /// \brief Look for '&&' in the right hand of a '||' expr.
   10554 static void DiagnoseLogicalAndInLogicalOrRHS(Sema &S, SourceLocation OpLoc,
   10555                                              Expr *LHSExpr, Expr *RHSExpr) {
   10556   if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(RHSExpr)) {
   10557     if (Bop->getOpcode() == BO_LAnd) {
   10558       // If it's "0 || a && b" don't warn since the precedence doesn't matter.
   10559       if (EvaluatesAsFalse(S, LHSExpr))
   10560         return;
   10561       // If it's "a || b && 1" don't warn since the precedence doesn't matter.
   10562       if (!EvaluatesAsTrue(S, Bop->getRHS()))
   10563         return EmitDiagnosticForLogicalAndInLogicalOr(S, OpLoc, Bop);
   10564     }
   10565   }
   10566 }
   10567 
   10568 /// \brief Look for bitwise op in the left or right hand of a bitwise op with
   10569 /// lower precedence and emit a diagnostic together with a fixit hint that wraps
   10570 /// the '&' expression in parentheses.
   10571 static void DiagnoseBitwiseOpInBitwiseOp(Sema &S, BinaryOperatorKind Opc,
   10572                                          SourceLocation OpLoc, Expr *SubExpr) {
   10573   if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(SubExpr)) {
   10574     if (Bop->isBitwiseOp() && Bop->getOpcode() < Opc) {
   10575       S.Diag(Bop->getOperatorLoc(), diag::warn_bitwise_op_in_bitwise_op)
   10576         << Bop->getOpcodeStr() << BinaryOperator::getOpcodeStr(Opc)
   10577         << Bop->getSourceRange() << OpLoc;
   10578       SuggestParentheses(S, Bop->getOperatorLoc(),
   10579         S.PDiag(diag::note_precedence_silence)
   10580           << Bop->getOpcodeStr(),
   10581         Bop->getSourceRange());
   10582     }
   10583   }
   10584 }
   10585 
   10586 static void DiagnoseAdditionInShift(Sema &S, SourceLocation OpLoc,
   10587                                     Expr *SubExpr, StringRef Shift) {
   10588   if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(SubExpr)) {
   10589     if (Bop->getOpcode() == BO_Add || Bop->getOpcode() == BO_Sub) {
   10590       StringRef Op = Bop->getOpcodeStr();
   10591       S.Diag(Bop->getOperatorLoc(), diag::warn_addition_in_bitshift)
   10592           << Bop->getSourceRange() << OpLoc << Shift << Op;
   10593       SuggestParentheses(S, Bop->getOperatorLoc(),
   10594           S.PDiag(diag::note_precedence_silence) << Op,
   10595           Bop->getSourceRange());
   10596     }
   10597   }
   10598 }
   10599 
   10600 static void DiagnoseShiftCompare(Sema &S, SourceLocation OpLoc,
   10601                                  Expr *LHSExpr, Expr *RHSExpr) {
   10602   CXXOperatorCallExpr *OCE = dyn_cast<CXXOperatorCallExpr>(LHSExpr);
   10603   if (!OCE)
   10604     return;
   10605 
   10606   FunctionDecl *FD = OCE->getDirectCallee();
   10607   if (!FD || !FD->isOverloadedOperator())
   10608     return;
   10609 
   10610   OverloadedOperatorKind Kind = FD->getOverloadedOperator();
   10611   if (Kind != OO_LessLess && Kind != OO_GreaterGreater)
   10612     return;
   10613 
   10614   S.Diag(OpLoc, diag::warn_overloaded_shift_in_comparison)
   10615       << LHSExpr->getSourceRange() << RHSExpr->getSourceRange()
   10616       << (Kind == OO_LessLess);
   10617   SuggestParentheses(S, OCE->getOperatorLoc(),
   10618                      S.PDiag(diag::note_precedence_silence)
   10619                          << (Kind == OO_LessLess ? "<<" : ">>"),
   10620                      OCE->getSourceRange());
   10621   SuggestParentheses(S, OpLoc,
   10622                      S.PDiag(diag::note_evaluate_comparison_first),
   10623                      SourceRange(OCE->getArg(1)->getLocStart(),
   10624                                  RHSExpr->getLocEnd()));
   10625 }
   10626 
   10627 /// DiagnoseBinOpPrecedence - Emit warnings for expressions with tricky
   10628 /// precedence.
   10629 static void DiagnoseBinOpPrecedence(Sema &Self, BinaryOperatorKind Opc,
   10630                                     SourceLocation OpLoc, Expr *LHSExpr,
   10631                                     Expr *RHSExpr){
   10632   // Diagnose "arg1 'bitwise' arg2 'eq' arg3".
   10633   if (BinaryOperator::isBitwiseOp(Opc))
   10634     DiagnoseBitwisePrecedence(Self, Opc, OpLoc, LHSExpr, RHSExpr);
   10635 
   10636   // Diagnose "arg1 & arg2 | arg3"
   10637   if ((Opc == BO_Or || Opc == BO_Xor) &&
   10638       !OpLoc.isMacroID()/* Don't warn in macros. */) {
   10639     DiagnoseBitwiseOpInBitwiseOp(Self, Opc, OpLoc, LHSExpr);
   10640     DiagnoseBitwiseOpInBitwiseOp(Self, Opc, OpLoc, RHSExpr);
   10641   }
   10642 
   10643   // Warn about arg1 || arg2 && arg3, as GCC 4.3+ does.
   10644   // We don't warn for 'assert(a || b && "bad")' since this is safe.
   10645   if (Opc == BO_LOr && !OpLoc.isMacroID()/* Don't warn in macros. */) {
   10646     DiagnoseLogicalAndInLogicalOrLHS(Self, OpLoc, LHSExpr, RHSExpr);
   10647     DiagnoseLogicalAndInLogicalOrRHS(Self, OpLoc, LHSExpr, RHSExpr);
   10648   }
   10649 
   10650   if ((Opc == BO_Shl && LHSExpr->getType()->isIntegralType(Self.getASTContext()))
   10651       || Opc == BO_Shr) {
   10652     StringRef Shift = BinaryOperator::getOpcodeStr(Opc);
   10653     DiagnoseAdditionInShift(Self, OpLoc, LHSExpr, Shift);
   10654     DiagnoseAdditionInShift(Self, OpLoc, RHSExpr, Shift);
   10655   }
   10656 
   10657   // Warn on overloaded shift operators and comparisons, such as:
   10658   // cout << 5 == 4;
   10659   if (BinaryOperator::isComparisonOp(Opc))
   10660     DiagnoseShiftCompare(Self, OpLoc, LHSExpr, RHSExpr);
   10661 }
   10662 
   10663 // Binary Operators.  'Tok' is the token for the operator.
   10664 ExprResult Sema::ActOnBinOp(Scope *S, SourceLocation TokLoc,
   10665                             tok::TokenKind Kind,
   10666                             Expr *LHSExpr, Expr *RHSExpr) {
   10667   BinaryOperatorKind Opc = ConvertTokenKindToBinaryOpcode(Kind);
   10668   assert(LHSExpr && "ActOnBinOp(): missing left expression");
   10669   assert(RHSExpr && "ActOnBinOp(): missing right expression");
   10670 
   10671   // Emit warnings for tricky precedence issues, e.g. "bitfield & 0x4 == 0"
   10672   DiagnoseBinOpPrecedence(*this, Opc, TokLoc, LHSExpr, RHSExpr);
   10673 
   10674   return BuildBinOp(S, TokLoc, Opc, LHSExpr, RHSExpr);
   10675 }
   10676 
   10677 /// Build an overloaded binary operator expression in the given scope.
   10678 static ExprResult BuildOverloadedBinOp(Sema &S, Scope *Sc, SourceLocation OpLoc,
   10679                                        BinaryOperatorKind Opc,
   10680                                        Expr *LHS, Expr *RHS) {
   10681   // Find all of the overloaded operators visible from this
   10682   // point. We perform both an operator-name lookup from the local
   10683   // scope and an argument-dependent lookup based on the types of
   10684   // the arguments.
   10685   UnresolvedSet<16> Functions;
   10686   OverloadedOperatorKind OverOp
   10687     = BinaryOperator::getOverloadedOperator(Opc);
   10688   if (Sc && OverOp != OO_None && OverOp != OO_Equal)
   10689     S.LookupOverloadedOperatorName(OverOp, Sc, LHS->getType(),
   10690                                    RHS->getType(), Functions);
   10691 
   10692   // Build the (potentially-overloaded, potentially-dependent)
   10693   // binary operation.
   10694   return S.CreateOverloadedBinOp(OpLoc, Opc, Functions, LHS, RHS);
   10695 }
   10696 
   10697 ExprResult Sema::BuildBinOp(Scope *S, SourceLocation OpLoc,
   10698                             BinaryOperatorKind Opc,
   10699                             Expr *LHSExpr, Expr *RHSExpr) {
   10700   // We want to end up calling one of checkPseudoObjectAssignment
   10701   // (if the LHS is a pseudo-object), BuildOverloadedBinOp (if
   10702   // both expressions are overloadable or either is type-dependent),
   10703   // or CreateBuiltinBinOp (in any other case).  We also want to get
   10704   // any placeholder types out of the way.
   10705 
   10706   // Handle pseudo-objects in the LHS.
   10707   if (const BuiltinType *pty = LHSExpr->getType()->getAsPlaceholderType()) {
   10708     // Assignments with a pseudo-object l-value need special analysis.
   10709     if (pty->getKind() == BuiltinType::PseudoObject &&
   10710         BinaryOperator::isAssignmentOp(Opc))
   10711       return checkPseudoObjectAssignment(S, OpLoc, Opc, LHSExpr, RHSExpr);
   10712 
   10713     // Don't resolve overloads if the other type is overloadable.
   10714     if (pty->getKind() == BuiltinType::Overload) {
   10715       // We can't actually test that if we still have a placeholder,
   10716       // though.  Fortunately, none of the exceptions we see in that
   10717       // code below are valid when the LHS is an overload set.  Note
   10718       // that an overload set can be dependently-typed, but it never
   10719       // instantiates to having an overloadable type.
   10720       ExprResult resolvedRHS = CheckPlaceholderExpr(RHSExpr);
   10721       if (resolvedRHS.isInvalid()) return ExprError();
   10722       RHSExpr = resolvedRHS.get();
   10723 
   10724       if (RHSExpr->isTypeDependent() ||
   10725           RHSExpr->getType()->isOverloadableType())
   10726         return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
   10727     }
   10728 
   10729     ExprResult LHS = CheckPlaceholderExpr(LHSExpr);
   10730     if (LHS.isInvalid()) return ExprError();
   10731     LHSExpr = LHS.get();
   10732   }
   10733 
   10734   // Handle pseudo-objects in the RHS.
   10735   if (const BuiltinType *pty = RHSExpr->getType()->getAsPlaceholderType()) {
   10736     // An overload in the RHS can potentially be resolved by the type
   10737     // being assigned to.
   10738     if (Opc == BO_Assign && pty->getKind() == BuiltinType::Overload) {
   10739       if (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent())
   10740         return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
   10741 
   10742       if (LHSExpr->getType()->isOverloadableType())
   10743         return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
   10744 
   10745       return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr);
   10746     }
   10747 
   10748     // Don't resolve overloads if the other type is overloadable.
   10749     if (pty->getKind() == BuiltinType::Overload &&
   10750         LHSExpr->getType()->isOverloadableType())
   10751       return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
   10752 
   10753     ExprResult resolvedRHS = CheckPlaceholderExpr(RHSExpr);
   10754     if (!resolvedRHS.isUsable()) return ExprError();
   10755     RHSExpr = resolvedRHS.get();
   10756   }
   10757 
   10758   if (getLangOpts().CPlusPlus) {
   10759     // If either expression is type-dependent, always build an
   10760     // overloaded op.
   10761     if (LHSExpr->isTypeDependent() || RHSExpr->isTypeDependent())
   10762       return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
   10763 
   10764     // Otherwise, build an overloaded op if either expression has an
   10765     // overloadable type.
   10766     if (LHSExpr->getType()->isOverloadableType() ||
   10767         RHSExpr->getType()->isOverloadableType())
   10768       return BuildOverloadedBinOp(*this, S, OpLoc, Opc, LHSExpr, RHSExpr);
   10769   }
   10770 
   10771   // Build a built-in binary operation.
   10772   return CreateBuiltinBinOp(OpLoc, Opc, LHSExpr, RHSExpr);
   10773 }
   10774 
   10775 ExprResult Sema::CreateBuiltinUnaryOp(SourceLocation OpLoc,
   10776                                       UnaryOperatorKind Opc,
   10777                                       Expr *InputExpr) {
   10778   ExprResult Input = InputExpr;
   10779   ExprValueKind VK = VK_RValue;
   10780   ExprObjectKind OK = OK_Ordinary;
   10781   QualType resultType;
   10782   if (getLangOpts().OpenCL) {
   10783     // The only legal unary operation for atomics is '&'.
   10784     if (Opc != UO_AddrOf && InputExpr->getType()->isAtomicType()) {
   10785       return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
   10786                        << InputExpr->getType()
   10787                        << Input.get()->getSourceRange());
   10788     }
   10789   }
   10790   switch (Opc) {
   10791   case UO_PreInc:
   10792   case UO_PreDec:
   10793   case UO_PostInc:
   10794   case UO_PostDec:
   10795     resultType = CheckIncrementDecrementOperand(*this, Input.get(), VK, OK,
   10796                                                 OpLoc,
   10797                                                 Opc == UO_PreInc ||
   10798                                                 Opc == UO_PostInc,
   10799                                                 Opc == UO_PreInc ||
   10800                                                 Opc == UO_PreDec);
   10801     break;
   10802   case UO_AddrOf:
   10803     resultType = CheckAddressOfOperand(Input, OpLoc);
   10804     RecordModifiableNonNullParam(*this, InputExpr);
   10805     break;
   10806   case UO_Deref: {
   10807     Input = DefaultFunctionArrayLvalueConversion(Input.get());
   10808     if (Input.isInvalid()) return ExprError();
   10809     resultType = CheckIndirectionOperand(*this, Input.get(), VK, OpLoc);
   10810     break;
   10811   }
   10812   case UO_Plus:
   10813   case UO_Minus:
   10814     Input = UsualUnaryConversions(Input.get());
   10815     if (Input.isInvalid()) return ExprError();
   10816     resultType = Input.get()->getType();
   10817     if (resultType->isDependentType())
   10818       break;
   10819     if (resultType->isArithmeticType()) // C99 6.5.3.3p1
   10820       break;
   10821     else if (resultType->isVectorType() &&
   10822              // The z vector extensions don't allow + or - with bool vectors.
   10823              (!Context.getLangOpts().ZVector ||
   10824               resultType->getAs<VectorType>()->getVectorKind() !=
   10825               VectorType::AltiVecBool))
   10826       break;
   10827     else if (getLangOpts().CPlusPlus && // C++ [expr.unary.op]p6
   10828              Opc == UO_Plus &&
   10829              resultType->isPointerType())
   10830       break;
   10831 
   10832     return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
   10833       << resultType << Input.get()->getSourceRange());
   10834 
   10835   case UO_Not: // bitwise complement
   10836     Input = UsualUnaryConversions(Input.get());
   10837     if (Input.isInvalid())
   10838       return ExprError();
   10839     resultType = Input.get()->getType();
   10840     if (resultType->isDependentType())
   10841       break;
   10842     // C99 6.5.3.3p1. We allow complex int and float as a GCC extension.
   10843     if (resultType->isComplexType() || resultType->isComplexIntegerType())
   10844       // C99 does not support '~' for complex conjugation.
   10845       Diag(OpLoc, diag::ext_integer_complement_complex)
   10846           << resultType << Input.get()->getSourceRange();
   10847     else if (resultType->hasIntegerRepresentation())
   10848       break;
   10849     else if (resultType->isExtVectorType()) {
   10850       if (Context.getLangOpts().OpenCL) {
   10851         // OpenCL v1.1 s6.3.f: The bitwise operator not (~) does not operate
   10852         // on vector float types.
   10853         QualType T = resultType->getAs<ExtVectorType>()->getElementType();
   10854         if (!T->isIntegerType())
   10855           return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
   10856                            << resultType << Input.get()->getSourceRange());
   10857       }
   10858       break;
   10859     } else {
   10860       return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
   10861                        << resultType << Input.get()->getSourceRange());
   10862     }
   10863     break;
   10864 
   10865   case UO_LNot: // logical negation
   10866     // Unlike +/-/~, integer promotions aren't done here (C99 6.5.3.3p5).
   10867     Input = DefaultFunctionArrayLvalueConversion(Input.get());
   10868     if (Input.isInvalid()) return ExprError();
   10869     resultType = Input.get()->getType();
   10870 
   10871     // Though we still have to promote half FP to float...
   10872     if (resultType->isHalfType() && !Context.getLangOpts().NativeHalfType) {
   10873       Input = ImpCastExprToType(Input.get(), Context.FloatTy, CK_FloatingCast).get();
   10874       resultType = Context.FloatTy;
   10875     }
   10876 
   10877     if (resultType->isDependentType())
   10878       break;
   10879     if (resultType->isScalarType() && !isScopedEnumerationType(resultType)) {
   10880       // C99 6.5.3.3p1: ok, fallthrough;
   10881       if (Context.getLangOpts().CPlusPlus) {
   10882         // C++03 [expr.unary.op]p8, C++0x [expr.unary.op]p9:
   10883         // operand contextually converted to bool.
   10884         Input = ImpCastExprToType(Input.get(), Context.BoolTy,
   10885                                   ScalarTypeToBooleanCastKind(resultType));
   10886       } else if (Context.getLangOpts().OpenCL &&
   10887                  Context.getLangOpts().OpenCLVersion < 120) {
   10888         // OpenCL v1.1 6.3.h: The logical operator not (!) does not
   10889         // operate on scalar float types.
   10890         if (!resultType->isIntegerType())
   10891           return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
   10892                            << resultType << Input.get()->getSourceRange());
   10893       }
   10894     } else if (resultType->isExtVectorType()) {
   10895       if (Context.getLangOpts().OpenCL &&
   10896           Context.getLangOpts().OpenCLVersion < 120) {
   10897         // OpenCL v1.1 6.3.h: The logical operator not (!) does not
   10898         // operate on vector float types.
   10899         QualType T = resultType->getAs<ExtVectorType>()->getElementType();
   10900         if (!T->isIntegerType())
   10901           return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
   10902                            << resultType << Input.get()->getSourceRange());
   10903       }
   10904       // Vector logical not returns the signed variant of the operand type.
   10905       resultType = GetSignedVectorType(resultType);
   10906       break;
   10907     } else {
   10908       return ExprError(Diag(OpLoc, diag::err_typecheck_unary_expr)
   10909         << resultType << Input.get()->getSourceRange());
   10910     }
   10911 
   10912     // LNot always has type int. C99 6.5.3.3p5.
   10913     // In C++, it's bool. C++ 5.3.1p8
   10914     resultType = Context.getLogicalOperationType();
   10915     break;
   10916   case UO_Real:
   10917   case UO_Imag:
   10918     resultType = CheckRealImagOperand(*this, Input, OpLoc, Opc == UO_Real);
   10919     // _Real maps ordinary l-values into ordinary l-values. _Imag maps ordinary
   10920     // complex l-values to ordinary l-values and all other values to r-values.
   10921     if (Input.isInvalid()) return ExprError();
   10922     if (Opc == UO_Real || Input.get()->getType()->isAnyComplexType()) {
   10923       if (Input.get()->getValueKind() != VK_RValue &&
   10924           Input.get()->getObjectKind() == OK_Ordinary)
   10925         VK = Input.get()->getValueKind();
   10926     } else if (!getLangOpts().CPlusPlus) {
   10927       // In C, a volatile scalar is read by __imag. In C++, it is not.
   10928       Input = DefaultLvalueConversion(Input.get());
   10929     }
   10930     break;
   10931   case UO_Extension:
   10932   case UO_Coawait:
   10933     resultType = Input.get()->getType();
   10934     VK = Input.get()->getValueKind();
   10935     OK = Input.get()->getObjectKind();
   10936     break;
   10937   }
   10938   if (resultType.isNull() || Input.isInvalid())
   10939     return ExprError();
   10940 
   10941   // Check for array bounds violations in the operand of the UnaryOperator,
   10942   // except for the '*' and '&' operators that have to be handled specially
   10943   // by CheckArrayAccess (as there are special cases like &array[arraysize]
   10944   // that are explicitly defined as valid by the standard).
   10945   if (Opc != UO_AddrOf && Opc != UO_Deref)
   10946     CheckArrayAccess(Input.get());
   10947 
   10948   return new (Context)
   10949       UnaryOperator(Input.get(), Opc, resultType, VK, OK, OpLoc);
   10950 }
   10951 
   10952 /// \brief Determine whether the given expression is a qualified member
   10953 /// access expression, of a form that could be turned into a pointer to member
   10954 /// with the address-of operator.
   10955 static bool isQualifiedMemberAccess(Expr *E) {
   10956   if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
   10957     if (!DRE->getQualifier())
   10958       return false;
   10959 
   10960     ValueDecl *VD = DRE->getDecl();
   10961     if (!VD->isCXXClassMember())
   10962       return false;
   10963 
   10964     if (isa<FieldDecl>(VD) || isa<IndirectFieldDecl>(VD))
   10965       return true;
   10966     if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(VD))
   10967       return Method->isInstance();
   10968 
   10969     return false;
   10970   }
   10971 
   10972   if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
   10973     if (!ULE->getQualifier())
   10974       return false;
   10975 
   10976     for (NamedDecl *D : ULE->decls()) {
   10977       if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
   10978         if (Method->isInstance())
   10979           return true;
   10980       } else {
   10981         // Overload set does not contain methods.
   10982         break;
   10983       }
   10984     }
   10985 
   10986     return false;
   10987   }
   10988 
   10989   return false;
   10990 }
   10991 
   10992 ExprResult Sema::BuildUnaryOp(Scope *S, SourceLocation OpLoc,
   10993                               UnaryOperatorKind Opc, Expr *Input) {
   10994   // First things first: handle placeholders so that the
   10995   // overloaded-operator check considers the right type.
   10996   if (const BuiltinType *pty = Input->getType()->getAsPlaceholderType()) {
   10997     // Increment and decrement of pseudo-object references.
   10998     if (pty->getKind() == BuiltinType::PseudoObject &&
   10999         UnaryOperator::isIncrementDecrementOp(Opc))
   11000       return checkPseudoObjectIncDec(S, OpLoc, Opc, Input);
   11001 
   11002     // extension is always a builtin operator.
   11003     if (Opc == UO_Extension)
   11004       return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
   11005 
   11006     // & gets special logic for several kinds of placeholder.
   11007     // The builtin code knows what to do.
   11008     if (Opc == UO_AddrOf &&
   11009         (pty->getKind() == BuiltinType::Overload ||
   11010          pty->getKind() == BuiltinType::UnknownAny ||
   11011          pty->getKind() == BuiltinType::BoundMember))
   11012       return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
   11013 
   11014     // Anything else needs to be handled now.
   11015     ExprResult Result = CheckPlaceholderExpr(Input);
   11016     if (Result.isInvalid()) return ExprError();
   11017     Input = Result.get();
   11018   }
   11019 
   11020   if (getLangOpts().CPlusPlus && Input->getType()->isOverloadableType() &&
   11021       UnaryOperator::getOverloadedOperator(Opc) != OO_None &&
   11022       !(Opc == UO_AddrOf && isQualifiedMemberAccess(Input))) {
   11023     // Find all of the overloaded operators visible from this
   11024     // point. We perform both an operator-name lookup from the local
   11025     // scope and an argument-dependent lookup based on the types of
   11026     // the arguments.
   11027     UnresolvedSet<16> Functions;
   11028     OverloadedOperatorKind OverOp = UnaryOperator::getOverloadedOperator(Opc);
   11029     if (S && OverOp != OO_None)
   11030       LookupOverloadedOperatorName(OverOp, S, Input->getType(), QualType(),
   11031                                    Functions);
   11032 
   11033     return CreateOverloadedUnaryOp(OpLoc, Opc, Functions, Input);
   11034   }
   11035 
   11036   return CreateBuiltinUnaryOp(OpLoc, Opc, Input);
   11037 }
   11038 
   11039 // Unary Operators.  'Tok' is the token for the operator.
   11040 ExprResult Sema::ActOnUnaryOp(Scope *S, SourceLocation OpLoc,
   11041                               tok::TokenKind Op, Expr *Input) {
   11042   return BuildUnaryOp(S, OpLoc, ConvertTokenKindToUnaryOpcode(Op), Input);
   11043 }
   11044 
   11045 /// ActOnAddrLabel - Parse the GNU address of label extension: "&&foo".
   11046 ExprResult Sema::ActOnAddrLabel(SourceLocation OpLoc, SourceLocation LabLoc,
   11047                                 LabelDecl *TheDecl) {
   11048   TheDecl->markUsed(Context);
   11049   // Create the AST node.  The address of a label always has type 'void*'.
   11050   return new (Context) AddrLabelExpr(OpLoc, LabLoc, TheDecl,
   11051                                      Context.getPointerType(Context.VoidTy));
   11052 }
   11053 
   11054 /// Given the last statement in a statement-expression, check whether
   11055 /// the result is a producing expression (like a call to an
   11056 /// ns_returns_retained function) and, if so, rebuild it to hoist the
   11057 /// release out of the full-expression.  Otherwise, return null.
   11058 /// Cannot fail.
   11059 static Expr *maybeRebuildARCConsumingStmt(Stmt *Statement) {
   11060   // Should always be wrapped with one of these.
   11061   ExprWithCleanups *cleanups = dyn_cast<ExprWithCleanups>(Statement);
   11062   if (!cleanups) return nullptr;
   11063 
   11064   ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(cleanups->getSubExpr());
   11065   if (!cast || cast->getCastKind() != CK_ARCConsumeObject)
   11066     return nullptr;
   11067 
   11068   // Splice out the cast.  This shouldn't modify any interesting
   11069   // features of the statement.
   11070   Expr *producer = cast->getSubExpr();
   11071   assert(producer->getType() == cast->getType());
   11072   assert(producer->getValueKind() == cast->getValueKind());
   11073   cleanups->setSubExpr(producer);
   11074   return cleanups;
   11075 }
   11076 
   11077 void Sema::ActOnStartStmtExpr() {
   11078   PushExpressionEvaluationContext(ExprEvalContexts.back().Context);
   11079 }
   11080 
   11081 void Sema::ActOnStmtExprError() {
   11082   // Note that function is also called by TreeTransform when leaving a
   11083   // StmtExpr scope without rebuilding anything.
   11084 
   11085   DiscardCleanupsInEvaluationContext();
   11086   PopExpressionEvaluationContext();
   11087 }
   11088 
   11089 ExprResult
   11090 Sema::ActOnStmtExpr(SourceLocation LPLoc, Stmt *SubStmt,
   11091                     SourceLocation RPLoc) { // "({..})"
   11092   assert(SubStmt && isa<CompoundStmt>(SubStmt) && "Invalid action invocation!");
   11093   CompoundStmt *Compound = cast<CompoundStmt>(SubStmt);
   11094 
   11095   if (hasAnyUnrecoverableErrorsInThisFunction())
   11096     DiscardCleanupsInEvaluationContext();
   11097   assert(!ExprNeedsCleanups && "cleanups within StmtExpr not correctly bound!");
   11098   PopExpressionEvaluationContext();
   11099 
   11100   // FIXME: there are a variety of strange constraints to enforce here, for
   11101   // example, it is not possible to goto into a stmt expression apparently.
   11102   // More semantic analysis is needed.
   11103 
   11104   // If there are sub-stmts in the compound stmt, take the type of the last one
   11105   // as the type of the stmtexpr.
   11106   QualType Ty = Context.VoidTy;
   11107   bool StmtExprMayBindToTemp = false;
   11108   if (!Compound->body_empty()) {
   11109     Stmt *LastStmt = Compound->body_back();
   11110     LabelStmt *LastLabelStmt = nullptr;
   11111     // If LastStmt is a label, skip down through into the body.
   11112     while (LabelStmt *Label = dyn_cast<LabelStmt>(LastStmt)) {
   11113       LastLabelStmt = Label;
   11114       LastStmt = Label->getSubStmt();
   11115     }
   11116 
   11117     if (Expr *LastE = dyn_cast<Expr>(LastStmt)) {
   11118       // Do function/array conversion on the last expression, but not
   11119       // lvalue-to-rvalue.  However, initialize an unqualified type.
   11120       ExprResult LastExpr = DefaultFunctionArrayConversion(LastE);
   11121       if (LastExpr.isInvalid())
   11122         return ExprError();
   11123       Ty = LastExpr.get()->getType().getUnqualifiedType();
   11124 
   11125       if (!Ty->isDependentType() && !LastExpr.get()->isTypeDependent()) {
   11126         // In ARC, if the final expression ends in a consume, splice
   11127         // the consume out and bind it later.  In the alternate case
   11128         // (when dealing with a retainable type), the result
   11129         // initialization will create a produce.  In both cases the
   11130         // result will be +1, and we'll need to balance that out with
   11131         // a bind.
   11132         if (Expr *rebuiltLastStmt
   11133               = maybeRebuildARCConsumingStmt(LastExpr.get())) {
   11134           LastExpr = rebuiltLastStmt;
   11135         } else {
   11136           LastExpr = PerformCopyInitialization(
   11137                             InitializedEntity::InitializeResult(LPLoc,
   11138                                                                 Ty,
   11139                                                                 false),
   11140                                                    SourceLocation(),
   11141                                                LastExpr);
   11142         }
   11143 
   11144         if (LastExpr.isInvalid())
   11145           return ExprError();
   11146         if (LastExpr.get() != nullptr) {
   11147           if (!LastLabelStmt)
   11148             Compound->setLastStmt(LastExpr.get());
   11149           else
   11150             LastLabelStmt->setSubStmt(LastExpr.get());
   11151           StmtExprMayBindToTemp = true;
   11152         }
   11153       }
   11154     }
   11155   }
   11156 
   11157   // FIXME: Check that expression type is complete/non-abstract; statement
   11158   // expressions are not lvalues.
   11159   Expr *ResStmtExpr = new (Context) StmtExpr(Compound, Ty, LPLoc, RPLoc);
   11160   if (StmtExprMayBindToTemp)
   11161     return MaybeBindToTemporary(ResStmtExpr);
   11162   return ResStmtExpr;
   11163 }
   11164 
   11165 ExprResult Sema::BuildBuiltinOffsetOf(SourceLocation BuiltinLoc,
   11166                                       TypeSourceInfo *TInfo,
   11167                                       ArrayRef<OffsetOfComponent> Components,
   11168                                       SourceLocation RParenLoc) {
   11169   QualType ArgTy = TInfo->getType();
   11170   bool Dependent = ArgTy->isDependentType();
   11171   SourceRange TypeRange = TInfo->getTypeLoc().getLocalSourceRange();
   11172 
   11173   // We must have at least one component that refers to the type, and the first
   11174   // one is known to be a field designator.  Verify that the ArgTy represents
   11175   // a struct/union/class.
   11176   if (!Dependent && !ArgTy->isRecordType())
   11177     return ExprError(Diag(BuiltinLoc, diag::err_offsetof_record_type)
   11178                        << ArgTy << TypeRange);
   11179 
   11180   // Type must be complete per C99 7.17p3 because a declaring a variable
   11181   // with an incomplete type would be ill-formed.
   11182   if (!Dependent
   11183       && RequireCompleteType(BuiltinLoc, ArgTy,
   11184                              diag::err_offsetof_incomplete_type, TypeRange))
   11185     return ExprError();
   11186 
   11187   // offsetof with non-identifier designators (e.g. "offsetof(x, a.b[c])") are a
   11188   // GCC extension, diagnose them.
   11189   // FIXME: This diagnostic isn't actually visible because the location is in
   11190   // a system header!
   11191   if (Components.size() != 1)
   11192     Diag(BuiltinLoc, diag::ext_offsetof_extended_field_designator)
   11193       << SourceRange(Components[1].LocStart, Components.back().LocEnd);
   11194 
   11195   bool DidWarnAboutNonPOD = false;
   11196   QualType CurrentType = ArgTy;
   11197   typedef OffsetOfExpr::OffsetOfNode OffsetOfNode;
   11198   SmallVector<OffsetOfNode, 4> Comps;
   11199   SmallVector<Expr*, 4> Exprs;
   11200   for (const OffsetOfComponent &OC : Components) {
   11201     if (OC.isBrackets) {
   11202       // Offset of an array sub-field.  TODO: Should we allow vector elements?
   11203       if (!CurrentType->isDependentType()) {
   11204         const ArrayType *AT = Context.getAsArrayType(CurrentType);
   11205         if(!AT)
   11206           return ExprError(Diag(OC.LocEnd, diag::err_offsetof_array_type)
   11207                            << CurrentType);
   11208         CurrentType = AT->getElementType();
   11209       } else
   11210         CurrentType = Context.DependentTy;
   11211 
   11212       ExprResult IdxRval = DefaultLvalueConversion(static_cast<Expr*>(OC.U.E));
   11213       if (IdxRval.isInvalid())
   11214         return ExprError();
   11215       Expr *Idx = IdxRval.get();
   11216 
   11217       // The expression must be an integral expression.
   11218       // FIXME: An integral constant expression?
   11219       if (!Idx->isTypeDependent() && !Idx->isValueDependent() &&
   11220           !Idx->getType()->isIntegerType())
   11221         return ExprError(Diag(Idx->getLocStart(),
   11222                               diag::err_typecheck_subscript_not_integer)
   11223                          << Idx->getSourceRange());
   11224 
   11225       // Record this array index.
   11226       Comps.push_back(OffsetOfNode(OC.LocStart, Exprs.size(), OC.LocEnd));
   11227       Exprs.push_back(Idx);
   11228       continue;
   11229     }
   11230 
   11231     // Offset of a field.
   11232     if (CurrentType->isDependentType()) {
   11233       // We have the offset of a field, but we can't look into the dependent
   11234       // type. Just record the identifier of the field.
   11235       Comps.push_back(OffsetOfNode(OC.LocStart, OC.U.IdentInfo, OC.LocEnd));
   11236       CurrentType = Context.DependentTy;
   11237       continue;
   11238     }
   11239 
   11240     // We need to have a complete type to look into.
   11241     if (RequireCompleteType(OC.LocStart, CurrentType,
   11242                             diag::err_offsetof_incomplete_type))
   11243       return ExprError();
   11244 
   11245     // Look for the designated field.
   11246     const RecordType *RC = CurrentType->getAs<RecordType>();
   11247     if (!RC)
   11248       return ExprError(Diag(OC.LocEnd, diag::err_offsetof_record_type)
   11249                        << CurrentType);
   11250     RecordDecl *RD = RC->getDecl();
   11251 
   11252     // C++ [lib.support.types]p5:
   11253     //   The macro offsetof accepts a restricted set of type arguments in this
   11254     //   International Standard. type shall be a POD structure or a POD union
   11255     //   (clause 9).
   11256     // C++11 [support.types]p4:
   11257     //   If type is not a standard-layout class (Clause 9), the results are
   11258     //   undefined.
   11259     if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
   11260       bool IsSafe = LangOpts.CPlusPlus11? CRD->isStandardLayout() : CRD->isPOD();
   11261       unsigned DiagID =
   11262         LangOpts.CPlusPlus11? diag::ext_offsetof_non_standardlayout_type
   11263                             : diag::ext_offsetof_non_pod_type;
   11264 
   11265       if (!IsSafe && !DidWarnAboutNonPOD &&
   11266           DiagRuntimeBehavior(BuiltinLoc, nullptr,
   11267                               PDiag(DiagID)
   11268                               << SourceRange(Components[0].LocStart, OC.LocEnd)
   11269                               << CurrentType))
   11270         DidWarnAboutNonPOD = true;
   11271     }
   11272 
   11273     // Look for the field.
   11274     LookupResult R(*this, OC.U.IdentInfo, OC.LocStart, LookupMemberName);
   11275     LookupQualifiedName(R, RD);
   11276     FieldDecl *MemberDecl = R.getAsSingle<FieldDecl>();
   11277     IndirectFieldDecl *IndirectMemberDecl = nullptr;
   11278     if (!MemberDecl) {
   11279       if ((IndirectMemberDecl = R.getAsSingle<IndirectFieldDecl>()))
   11280         MemberDecl = IndirectMemberDecl->getAnonField();
   11281     }
   11282 
   11283     if (!MemberDecl)
   11284       return ExprError(Diag(BuiltinLoc, diag::err_no_member)
   11285                        << OC.U.IdentInfo << RD << SourceRange(OC.LocStart,
   11286                                                               OC.LocEnd));
   11287 
   11288     // C99 7.17p3:
   11289     //   (If the specified member is a bit-field, the behavior is undefined.)
   11290     //
   11291     // We diagnose this as an error.
   11292     if (MemberDecl->isBitField()) {
   11293       Diag(OC.LocEnd, diag::err_offsetof_bitfield)
   11294         << MemberDecl->getDeclName()
   11295         << SourceRange(BuiltinLoc, RParenLoc);
   11296       Diag(MemberDecl->getLocation(), diag::note_bitfield_decl);
   11297       return ExprError();
   11298     }
   11299 
   11300     RecordDecl *Parent = MemberDecl->getParent();
   11301     if (IndirectMemberDecl)
   11302       Parent = cast<RecordDecl>(IndirectMemberDecl->getDeclContext());
   11303 
   11304     // If the member was found in a base class, introduce OffsetOfNodes for
   11305     // the base class indirections.
   11306     CXXBasePaths Paths;
   11307     if (IsDerivedFrom(OC.LocStart, CurrentType, Context.getTypeDeclType(Parent),
   11308                       Paths)) {
   11309       if (Paths.getDetectedVirtual()) {
   11310         Diag(OC.LocEnd, diag::err_offsetof_field_of_virtual_base)
   11311           << MemberDecl->getDeclName()
   11312           << SourceRange(BuiltinLoc, RParenLoc);
   11313         return ExprError();
   11314       }
   11315 
   11316       CXXBasePath &Path = Paths.front();
   11317       for (const CXXBasePathElement &B : Path)
   11318         Comps.push_back(OffsetOfNode(B.Base));
   11319     }
   11320 
   11321     if (IndirectMemberDecl) {
   11322       for (auto *FI : IndirectMemberDecl->chain()) {
   11323         assert(isa<FieldDecl>(FI));
   11324         Comps.push_back(OffsetOfNode(OC.LocStart,
   11325                                      cast<FieldDecl>(FI), OC.LocEnd));
   11326       }
   11327     } else
   11328       Comps.push_back(OffsetOfNode(OC.LocStart, MemberDecl, OC.LocEnd));
   11329 
   11330     CurrentType = MemberDecl->getType().getNonReferenceType();
   11331   }
   11332 
   11333   return OffsetOfExpr::Create(Context, Context.getSizeType(), BuiltinLoc, TInfo,
   11334                               Comps, Exprs, RParenLoc);
   11335 }
   11336 
   11337 ExprResult Sema::ActOnBuiltinOffsetOf(Scope *S,
   11338                                       SourceLocation BuiltinLoc,
   11339                                       SourceLocation TypeLoc,
   11340                                       ParsedType ParsedArgTy,
   11341                                       ArrayRef<OffsetOfComponent> Components,
   11342                                       SourceLocation RParenLoc) {
   11343 
   11344   TypeSourceInfo *ArgTInfo;
   11345   QualType ArgTy = GetTypeFromParser(ParsedArgTy, &ArgTInfo);
   11346   if (ArgTy.isNull())
   11347     return ExprError();
   11348 
   11349   if (!ArgTInfo)
   11350     ArgTInfo = Context.getTrivialTypeSourceInfo(ArgTy, TypeLoc);
   11351 
   11352   return BuildBuiltinOffsetOf(BuiltinLoc, ArgTInfo, Components, RParenLoc);
   11353 }
   11354 
   11355 
   11356 ExprResult Sema::ActOnChooseExpr(SourceLocation BuiltinLoc,
   11357                                  Expr *CondExpr,
   11358                                  Expr *LHSExpr, Expr *RHSExpr,
   11359                                  SourceLocation RPLoc) {
   11360   assert((CondExpr && LHSExpr && RHSExpr) && "Missing type argument(s)");
   11361 
   11362   ExprValueKind VK = VK_RValue;
   11363   ExprObjectKind OK = OK_Ordinary;
   11364   QualType resType;
   11365   bool ValueDependent = false;
   11366   bool CondIsTrue = false;
   11367   if (CondExpr->isTypeDependent() || CondExpr->isValueDependent()) {
   11368     resType = Context.DependentTy;
   11369     ValueDependent = true;
   11370   } else {
   11371     // The conditional expression is required to be a constant expression.
   11372     llvm::APSInt condEval(32);
   11373     ExprResult CondICE
   11374       = VerifyIntegerConstantExpression(CondExpr, &condEval,
   11375           diag::err_typecheck_choose_expr_requires_constant, false);
   11376     if (CondICE.isInvalid())
   11377       return ExprError();
   11378     CondExpr = CondICE.get();
   11379     CondIsTrue = condEval.getZExtValue();
   11380 
   11381     // If the condition is > zero, then the AST type is the same as the LSHExpr.
   11382     Expr *ActiveExpr = CondIsTrue ? LHSExpr : RHSExpr;
   11383 
   11384     resType = ActiveExpr->getType();
   11385     ValueDependent = ActiveExpr->isValueDependent();
   11386     VK = ActiveExpr->getValueKind();
   11387     OK = ActiveExpr->getObjectKind();
   11388   }
   11389 
   11390   return new (Context)
   11391       ChooseExpr(BuiltinLoc, CondExpr, LHSExpr, RHSExpr, resType, VK, OK, RPLoc,
   11392                  CondIsTrue, resType->isDependentType(), ValueDependent);
   11393 }
   11394 
   11395 //===----------------------------------------------------------------------===//
   11396 // Clang Extensions.
   11397 //===----------------------------------------------------------------------===//
   11398 
   11399 /// ActOnBlockStart - This callback is invoked when a block literal is started.
   11400 void Sema::ActOnBlockStart(SourceLocation CaretLoc, Scope *CurScope) {
   11401   BlockDecl *Block = BlockDecl::Create(Context, CurContext, CaretLoc);
   11402 
   11403   if (LangOpts.CPlusPlus) {
   11404     Decl *ManglingContextDecl;
   11405     if (MangleNumberingContext *MCtx =
   11406             getCurrentMangleNumberContext(Block->getDeclContext(),
   11407                                           ManglingContextDecl)) {
   11408       unsigned ManglingNumber = MCtx->getManglingNumber(Block);
   11409       Block->setBlockMangling(ManglingNumber, ManglingContextDecl);
   11410     }
   11411   }
   11412 
   11413   PushBlockScope(CurScope, Block);
   11414   CurContext->addDecl(Block);
   11415   if (CurScope)
   11416     PushDeclContext(CurScope, Block);
   11417   else
   11418     CurContext = Block;
   11419 
   11420   getCurBlock()->HasImplicitReturnType = true;
   11421 
   11422   // Enter a new evaluation context to insulate the block from any
   11423   // cleanups from the enclosing full-expression.
   11424   PushExpressionEvaluationContext(PotentiallyEvaluated);
   11425 }
   11426 
   11427 void Sema::ActOnBlockArguments(SourceLocation CaretLoc, Declarator &ParamInfo,
   11428                                Scope *CurScope) {
   11429   assert(ParamInfo.getIdentifier() == nullptr &&
   11430          "block-id should have no identifier!");
   11431   assert(ParamInfo.getContext() == Declarator::BlockLiteralContext);
   11432   BlockScopeInfo *CurBlock = getCurBlock();
   11433 
   11434   TypeSourceInfo *Sig = GetTypeForDeclarator(ParamInfo, CurScope);
   11435   QualType T = Sig->getType();
   11436 
   11437   // FIXME: We should allow unexpanded parameter packs here, but that would,
   11438   // in turn, make the block expression contain unexpanded parameter packs.
   11439   if (DiagnoseUnexpandedParameterPack(CaretLoc, Sig, UPPC_Block)) {
   11440     // Drop the parameters.
   11441     FunctionProtoType::ExtProtoInfo EPI;
   11442     EPI.HasTrailingReturn = false;
   11443     EPI.TypeQuals |= DeclSpec::TQ_const;
   11444     T = Context.getFunctionType(Context.DependentTy, None, EPI);
   11445     Sig = Context.getTrivialTypeSourceInfo(T);
   11446   }
   11447 
   11448   // GetTypeForDeclarator always produces a function type for a block
   11449   // literal signature.  Furthermore, it is always a FunctionProtoType
   11450   // unless the function was written with a typedef.
   11451   assert(T->isFunctionType() &&
   11452          "GetTypeForDeclarator made a non-function block signature");
   11453 
   11454   // Look for an explicit signature in that function type.
   11455   FunctionProtoTypeLoc ExplicitSignature;
   11456 
   11457   TypeLoc tmp = Sig->getTypeLoc().IgnoreParens();
   11458   if ((ExplicitSignature = tmp.getAs<FunctionProtoTypeLoc>())) {
   11459 
   11460     // Check whether that explicit signature was synthesized by
   11461     // GetTypeForDeclarator.  If so, don't save that as part of the
   11462     // written signature.
   11463     if (ExplicitSignature.getLocalRangeBegin() ==
   11464         ExplicitSignature.getLocalRangeEnd()) {
   11465       // This would be much cheaper if we stored TypeLocs instead of
   11466       // TypeSourceInfos.
   11467       TypeLoc Result = ExplicitSignature.getReturnLoc();
   11468       unsigned Size = Result.getFullDataSize();
   11469       Sig = Context.CreateTypeSourceInfo(Result.getType(), Size);
   11470       Sig->getTypeLoc().initializeFullCopy(Result, Size);
   11471 
   11472       ExplicitSignature = FunctionProtoTypeLoc();
   11473     }
   11474   }
   11475 
   11476   CurBlock->TheDecl->setSignatureAsWritten(Sig);
   11477   CurBlock->FunctionType = T;
   11478 
   11479   const FunctionType *Fn = T->getAs<FunctionType>();
   11480   QualType RetTy = Fn->getReturnType();
   11481   bool isVariadic =
   11482     (isa<FunctionProtoType>(Fn) && cast<FunctionProtoType>(Fn)->isVariadic());
   11483 
   11484   CurBlock->TheDecl->setIsVariadic(isVariadic);
   11485 
   11486   // Context.DependentTy is used as a placeholder for a missing block
   11487   // return type.  TODO:  what should we do with declarators like:
   11488   //   ^ * { ... }
   11489   // If the answer is "apply template argument deduction"....
   11490   if (RetTy != Context.DependentTy) {
   11491     CurBlock->ReturnType = RetTy;
   11492     CurBlock->TheDecl->setBlockMissingReturnType(false);
   11493     CurBlock->HasImplicitReturnType = false;
   11494   }
   11495 
   11496   // Push block parameters from the declarator if we had them.
   11497   SmallVector<ParmVarDecl*, 8> Params;
   11498   if (ExplicitSignature) {
   11499     for (unsigned I = 0, E = ExplicitSignature.getNumParams(); I != E; ++I) {
   11500       ParmVarDecl *Param = ExplicitSignature.getParam(I);
   11501       if (Param->getIdentifier() == nullptr &&
   11502           !Param->isImplicit() &&
   11503           !Param->isInvalidDecl() &&
   11504           !getLangOpts().CPlusPlus)
   11505         Diag(Param->getLocation(), diag::err_parameter_name_omitted);
   11506       Params.push_back(Param);
   11507     }
   11508 
   11509   // Fake up parameter variables if we have a typedef, like
   11510   //   ^ fntype { ... }
   11511   } else if (const FunctionProtoType *Fn = T->getAs<FunctionProtoType>()) {
   11512     for (const auto &I : Fn->param_types()) {
   11513       ParmVarDecl *Param = BuildParmVarDeclForTypedef(
   11514           CurBlock->TheDecl, ParamInfo.getLocStart(), I);
   11515       Params.push_back(Param);
   11516     }
   11517   }
   11518 
   11519   // Set the parameters on the block decl.
   11520   if (!Params.empty()) {
   11521     CurBlock->TheDecl->setParams(Params);
   11522     CheckParmsForFunctionDef(CurBlock->TheDecl->param_begin(),
   11523                              CurBlock->TheDecl->param_end(),
   11524                              /*CheckParameterNames=*/false);
   11525   }
   11526 
   11527   // Finally we can process decl attributes.
   11528   ProcessDeclAttributes(CurScope, CurBlock->TheDecl, ParamInfo);
   11529 
   11530   // Put the parameter variables in scope.
   11531   for (auto AI : CurBlock->TheDecl->params()) {
   11532     AI->setOwningFunction(CurBlock->TheDecl);
   11533 
   11534     // If this has an identifier, add it to the scope stack.
   11535     if (AI->getIdentifier()) {
   11536       CheckShadow(CurBlock->TheScope, AI);
   11537 
   11538       PushOnScopeChains(AI, CurBlock->TheScope);
   11539     }
   11540   }
   11541 }
   11542 
   11543 /// ActOnBlockError - If there is an error parsing a block, this callback
   11544 /// is invoked to pop the information about the block from the action impl.
   11545 void Sema::ActOnBlockError(SourceLocation CaretLoc, Scope *CurScope) {
   11546   // Leave the expression-evaluation context.
   11547   DiscardCleanupsInEvaluationContext();
   11548   PopExpressionEvaluationContext();
   11549 
   11550   // Pop off CurBlock, handle nested blocks.
   11551   PopDeclContext();
   11552   PopFunctionScopeInfo();
   11553 }
   11554 
   11555 /// ActOnBlockStmtExpr - This is called when the body of a block statement
   11556 /// literal was successfully completed.  ^(int x){...}
   11557 ExprResult Sema::ActOnBlockStmtExpr(SourceLocation CaretLoc,
   11558                                     Stmt *Body, Scope *CurScope) {
   11559   // If blocks are disabled, emit an error.
   11560   if (!LangOpts.Blocks)
   11561     Diag(CaretLoc, diag::err_blocks_disable);
   11562 
   11563   // Leave the expression-evaluation context.
   11564   if (hasAnyUnrecoverableErrorsInThisFunction())
   11565     DiscardCleanupsInEvaluationContext();
   11566   assert(!ExprNeedsCleanups && "cleanups within block not correctly bound!");
   11567   PopExpressionEvaluationContext();
   11568 
   11569   BlockScopeInfo *BSI = cast<BlockScopeInfo>(FunctionScopes.back());
   11570 
   11571   if (BSI->HasImplicitReturnType)
   11572     deduceClosureReturnType(*BSI);
   11573 
   11574   PopDeclContext();
   11575 
   11576   QualType RetTy = Context.VoidTy;
   11577   if (!BSI->ReturnType.isNull())
   11578     RetTy = BSI->ReturnType;
   11579 
   11580   bool NoReturn = BSI->TheDecl->hasAttr<NoReturnAttr>();
   11581   QualType BlockTy;
   11582 
   11583   // Set the captured variables on the block.
   11584   // FIXME: Share capture structure between BlockDecl and CapturingScopeInfo!
   11585   SmallVector<BlockDecl::Capture, 4> Captures;
   11586   for (CapturingScopeInfo::Capture &Cap : BSI->Captures) {
   11587     if (Cap.isThisCapture())
   11588       continue;
   11589     BlockDecl::Capture NewCap(Cap.getVariable(), Cap.isBlockCapture(),
   11590                               Cap.isNested(), Cap.getInitExpr());
   11591     Captures.push_back(NewCap);
   11592   }
   11593   BSI->TheDecl->setCaptures(Context, Captures, BSI->CXXThisCaptureIndex != 0);
   11594 
   11595   // If the user wrote a function type in some form, try to use that.
   11596   if (!BSI->FunctionType.isNull()) {
   11597     const FunctionType *FTy = BSI->FunctionType->getAs<FunctionType>();
   11598 
   11599     FunctionType::ExtInfo Ext = FTy->getExtInfo();
   11600     if (NoReturn && !Ext.getNoReturn()) Ext = Ext.withNoReturn(true);
   11601 
   11602     // Turn protoless block types into nullary block types.
   11603     if (isa<FunctionNoProtoType>(FTy)) {
   11604       FunctionProtoType::ExtProtoInfo EPI;
   11605       EPI.ExtInfo = Ext;
   11606       BlockTy = Context.getFunctionType(RetTy, None, EPI);
   11607 
   11608     // Otherwise, if we don't need to change anything about the function type,
   11609     // preserve its sugar structure.
   11610     } else if (FTy->getReturnType() == RetTy &&
   11611                (!NoReturn || FTy->getNoReturnAttr())) {
   11612       BlockTy = BSI->FunctionType;
   11613 
   11614     // Otherwise, make the minimal modifications to the function type.
   11615     } else {
   11616       const FunctionProtoType *FPT = cast<FunctionProtoType>(FTy);
   11617       FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
   11618       EPI.TypeQuals = 0; // FIXME: silently?
   11619       EPI.ExtInfo = Ext;
   11620       BlockTy = Context.getFunctionType(RetTy, FPT->getParamTypes(), EPI);
   11621     }
   11622 
   11623   // If we don't have a function type, just build one from nothing.
   11624   } else {
   11625     FunctionProtoType::ExtProtoInfo EPI;
   11626     EPI.ExtInfo = FunctionType::ExtInfo().withNoReturn(NoReturn);
   11627     BlockTy = Context.getFunctionType(RetTy, None, EPI);
   11628   }
   11629 
   11630   DiagnoseUnusedParameters(BSI->TheDecl->param_begin(),
   11631                            BSI->TheDecl->param_end());
   11632   BlockTy = Context.getBlockPointerType(BlockTy);
   11633 
   11634   // If needed, diagnose invalid gotos and switches in the block.
   11635   if (getCurFunction()->NeedsScopeChecking() &&
   11636       !PP.isCodeCompletionEnabled())
   11637     DiagnoseInvalidJumps(cast<CompoundStmt>(Body));
   11638 
   11639   BSI->TheDecl->setBody(cast<CompoundStmt>(Body));
   11640 
   11641   // Try to apply the named return value optimization. We have to check again
   11642   // if we can do this, though, because blocks keep return statements around
   11643   // to deduce an implicit return type.
   11644   if (getLangOpts().CPlusPlus && RetTy->isRecordType() &&
   11645       !BSI->TheDecl->isDependentContext())
   11646     computeNRVO(Body, BSI);
   11647 
   11648   BlockExpr *Result = new (Context) BlockExpr(BSI->TheDecl, BlockTy);
   11649   AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
   11650   PopFunctionScopeInfo(&WP, Result->getBlockDecl(), Result);
   11651 
   11652   // If the block isn't obviously global, i.e. it captures anything at
   11653   // all, then we need to do a few things in the surrounding context:
   11654   if (Result->getBlockDecl()->hasCaptures()) {
   11655     // First, this expression has a new cleanup object.
   11656     ExprCleanupObjects.push_back(Result->getBlockDecl());
   11657     ExprNeedsCleanups = true;
   11658 
   11659     // It also gets a branch-protected scope if any of the captured
   11660     // variables needs destruction.
   11661     for (const auto &CI : Result->getBlockDecl()->captures()) {
   11662       const VarDecl *var = CI.getVariable();
   11663       if (var->getType().isDestructedType() != QualType::DK_none) {
   11664         getCurFunction()->setHasBranchProtectedScope();
   11665         break;
   11666       }
   11667     }
   11668   }
   11669 
   11670   return Result;
   11671 }
   11672 
   11673 ExprResult Sema::ActOnVAArg(SourceLocation BuiltinLoc,
   11674                                         Expr *E, ParsedType Ty,
   11675                                         SourceLocation RPLoc) {
   11676   TypeSourceInfo *TInfo;
   11677   GetTypeFromParser(Ty, &TInfo);
   11678   return BuildVAArgExpr(BuiltinLoc, E, TInfo, RPLoc);
   11679 }
   11680 
   11681 ExprResult Sema::BuildVAArgExpr(SourceLocation BuiltinLoc,
   11682                                 Expr *E, TypeSourceInfo *TInfo,
   11683                                 SourceLocation RPLoc) {
   11684   Expr *OrigExpr = E;
   11685   bool IsMS = false;
   11686 
   11687   // It might be a __builtin_ms_va_list. (But don't ever mark a va_arg()
   11688   // as Microsoft ABI on an actual Microsoft platform, where
   11689   // __builtin_ms_va_list and __builtin_va_list are the same.)
   11690   if (!E->isTypeDependent() && Context.getTargetInfo().hasBuiltinMSVaList() &&
   11691       Context.getTargetInfo().getBuiltinVaListKind() != TargetInfo::CharPtrBuiltinVaList) {
   11692     QualType MSVaListType = Context.getBuiltinMSVaListType();
   11693     if (Context.hasSameType(MSVaListType, E->getType())) {
   11694       if (CheckForModifiableLvalue(E, BuiltinLoc, *this))
   11695         return ExprError();
   11696       IsMS = true;
   11697     }
   11698   }
   11699 
   11700   // Get the va_list type
   11701   QualType VaListType = Context.getBuiltinVaListType();
   11702   if (!IsMS) {
   11703     if (VaListType->isArrayType()) {
   11704       // Deal with implicit array decay; for example, on x86-64,
   11705       // va_list is an array, but it's supposed to decay to
   11706       // a pointer for va_arg.
   11707       VaListType = Context.getArrayDecayedType(VaListType);
   11708       // Make sure the input expression also decays appropriately.
   11709       ExprResult Result = UsualUnaryConversions(E);
   11710       if (Result.isInvalid())
   11711         return ExprError();
   11712       E = Result.get();
   11713     } else if (VaListType->isRecordType() && getLangOpts().CPlusPlus) {
   11714       // If va_list is a record type and we are compiling in C++ mode,
   11715       // check the argument using reference binding.
   11716       InitializedEntity Entity = InitializedEntity::InitializeParameter(
   11717           Context, Context.getLValueReferenceType(VaListType), false);
   11718       ExprResult Init = PerformCopyInitialization(Entity, SourceLocation(), E);
   11719       if (Init.isInvalid())
   11720         return ExprError();
   11721       E = Init.getAs<Expr>();
   11722     } else {
   11723       // Otherwise, the va_list argument must be an l-value because
   11724       // it is modified by va_arg.
   11725       if (!E->isTypeDependent() &&
   11726           CheckForModifiableLvalue(E, BuiltinLoc, *this))
   11727         return ExprError();
   11728     }
   11729   }
   11730 
   11731   if (!IsMS && !E->isTypeDependent() &&
   11732       !Context.hasSameType(VaListType, E->getType()))
   11733     return ExprError(Diag(E->getLocStart(),
   11734                          diag::err_first_argument_to_va_arg_not_of_type_va_list)
   11735       << OrigExpr->getType() << E->getSourceRange());
   11736 
   11737   if (!TInfo->getType()->isDependentType()) {
   11738     if (RequireCompleteType(TInfo->getTypeLoc().getBeginLoc(), TInfo->getType(),
   11739                             diag::err_second_parameter_to_va_arg_incomplete,
   11740                             TInfo->getTypeLoc()))
   11741       return ExprError();
   11742 
   11743     if (RequireNonAbstractType(TInfo->getTypeLoc().getBeginLoc(),
   11744                                TInfo->getType(),
   11745                                diag::err_second_parameter_to_va_arg_abstract,
   11746                                TInfo->getTypeLoc()))
   11747       return ExprError();
   11748 
   11749     if (!TInfo->getType().isPODType(Context)) {
   11750       Diag(TInfo->getTypeLoc().getBeginLoc(),
   11751            TInfo->getType()->isObjCLifetimeType()
   11752              ? diag::warn_second_parameter_to_va_arg_ownership_qualified
   11753              : diag::warn_second_parameter_to_va_arg_not_pod)
   11754         << TInfo->getType()
   11755         << TInfo->getTypeLoc().getSourceRange();
   11756     }
   11757 
   11758     // Check for va_arg where arguments of the given type will be promoted
   11759     // (i.e. this va_arg is guaranteed to have undefined behavior).
   11760     QualType PromoteType;
   11761     if (TInfo->getType()->isPromotableIntegerType()) {
   11762       PromoteType = Context.getPromotedIntegerType(TInfo->getType());
   11763       if (Context.typesAreCompatible(PromoteType, TInfo->getType()))
   11764         PromoteType = QualType();
   11765     }
   11766     if (TInfo->getType()->isSpecificBuiltinType(BuiltinType::Float))
   11767       PromoteType = Context.DoubleTy;
   11768     if (!PromoteType.isNull())
   11769       DiagRuntimeBehavior(TInfo->getTypeLoc().getBeginLoc(), E,
   11770                   PDiag(diag::warn_second_parameter_to_va_arg_never_compatible)
   11771                           << TInfo->getType()
   11772                           << PromoteType
   11773                           << TInfo->getTypeLoc().getSourceRange());
   11774   }
   11775 
   11776   QualType T = TInfo->getType().getNonLValueExprType(Context);
   11777   return new (Context) VAArgExpr(BuiltinLoc, E, TInfo, RPLoc, T, IsMS);
   11778 }
   11779 
   11780 ExprResult Sema::ActOnGNUNullExpr(SourceLocation TokenLoc) {
   11781   // The type of __null will be int or long, depending on the size of
   11782   // pointers on the target.
   11783   QualType Ty;
   11784   unsigned pw = Context.getTargetInfo().getPointerWidth(0);
   11785   if (pw == Context.getTargetInfo().getIntWidth())
   11786     Ty = Context.IntTy;
   11787   else if (pw == Context.getTargetInfo().getLongWidth())
   11788     Ty = Context.LongTy;
   11789   else if (pw == Context.getTargetInfo().getLongLongWidth())
   11790     Ty = Context.LongLongTy;
   11791   else {
   11792     llvm_unreachable("I don't know size of pointer!");
   11793   }
   11794 
   11795   return new (Context) GNUNullExpr(Ty, TokenLoc);
   11796 }
   11797 
   11798 bool
   11799 Sema::ConversionToObjCStringLiteralCheck(QualType DstType, Expr *&Exp) {
   11800   if (!getLangOpts().ObjC1)
   11801     return false;
   11802 
   11803   const ObjCObjectPointerType *PT = DstType->getAs<ObjCObjectPointerType>();
   11804   if (!PT)
   11805     return false;
   11806 
   11807   if (!PT->isObjCIdType()) {
   11808     // Check if the destination is the 'NSString' interface.
   11809     const ObjCInterfaceDecl *ID = PT->getInterfaceDecl();
   11810     if (!ID || !ID->getIdentifier()->isStr("NSString"))
   11811       return false;
   11812   }
   11813 
   11814   // Ignore any parens, implicit casts (should only be
   11815   // array-to-pointer decays), and not-so-opaque values.  The last is
   11816   // important for making this trigger for property assignments.
   11817   Expr *SrcExpr = Exp->IgnoreParenImpCasts();
   11818   if (OpaqueValueExpr *OV = dyn_cast<OpaqueValueExpr>(SrcExpr))
   11819     if (OV->getSourceExpr())
   11820       SrcExpr = OV->getSourceExpr()->IgnoreParenImpCasts();
   11821 
   11822   StringLiteral *SL = dyn_cast<StringLiteral>(SrcExpr);
   11823   if (!SL || !SL->isAscii())
   11824     return false;
   11825   Diag(SL->getLocStart(), diag::err_missing_atsign_prefix)
   11826     << FixItHint::CreateInsertion(SL->getLocStart(), "@");
   11827   Exp = BuildObjCStringLiteral(SL->getLocStart(), SL).get();
   11828   return true;
   11829 }
   11830 
   11831 static bool maybeDiagnoseAssignmentToFunction(Sema &S, QualType DstType,
   11832                                               const Expr *SrcExpr) {
   11833   if (!DstType->isFunctionPointerType() ||
   11834       !SrcExpr->getType()->isFunctionType())
   11835     return false;
   11836 
   11837   auto *DRE = dyn_cast<DeclRefExpr>(SrcExpr->IgnoreParenImpCasts());
   11838   if (!DRE)
   11839     return false;
   11840 
   11841   auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl());
   11842   if (!FD)
   11843     return false;
   11844 
   11845   return !S.checkAddressOfFunctionIsAvailable(FD,
   11846                                               /*Complain=*/true,
   11847                                               SrcExpr->getLocStart());
   11848 }
   11849 
   11850 bool Sema::DiagnoseAssignmentResult(AssignConvertType ConvTy,
   11851                                     SourceLocation Loc,
   11852                                     QualType DstType, QualType SrcType,
   11853                                     Expr *SrcExpr, AssignmentAction Action,
   11854                                     bool *Complained) {
   11855   if (Complained)
   11856     *Complained = false;
   11857 
   11858   // Decode the result (notice that AST's are still created for extensions).
   11859   bool CheckInferredResultType = false;
   11860   bool isInvalid = false;
   11861   unsigned DiagKind = 0;
   11862   FixItHint Hint;
   11863   ConversionFixItGenerator ConvHints;
   11864   bool MayHaveConvFixit = false;
   11865   bool MayHaveFunctionDiff = false;
   11866   const ObjCInterfaceDecl *IFace = nullptr;
   11867   const ObjCProtocolDecl *PDecl = nullptr;
   11868 
   11869   switch (ConvTy) {
   11870   case Compatible:
   11871       DiagnoseAssignmentEnum(DstType, SrcType, SrcExpr);
   11872       return false;
   11873 
   11874   case PointerToInt:
   11875     DiagKind = diag::ext_typecheck_convert_pointer_int;
   11876     ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
   11877     MayHaveConvFixit = true;
   11878     break;
   11879   case IntToPointer:
   11880     DiagKind = diag::ext_typecheck_convert_int_pointer;
   11881     ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
   11882     MayHaveConvFixit = true;
   11883     break;
   11884   case IncompatiblePointer:
   11885       DiagKind =
   11886         (Action == AA_Passing_CFAudited ?
   11887           diag::err_arc_typecheck_convert_incompatible_pointer :
   11888           diag::ext_typecheck_convert_incompatible_pointer);
   11889     CheckInferredResultType = DstType->isObjCObjectPointerType() &&
   11890       SrcType->isObjCObjectPointerType();
   11891     if (Hint.isNull() && !CheckInferredResultType) {
   11892       ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
   11893     }
   11894     else if (CheckInferredResultType) {
   11895       SrcType = SrcType.getUnqualifiedType();
   11896       DstType = DstType.getUnqualifiedType();
   11897     }
   11898     MayHaveConvFixit = true;
   11899     break;
   11900   case IncompatiblePointerSign:
   11901     DiagKind = diag::ext_typecheck_convert_incompatible_pointer_sign;
   11902     break;
   11903   case FunctionVoidPointer:
   11904     DiagKind = diag::ext_typecheck_convert_pointer_void_func;
   11905     break;
   11906   case IncompatiblePointerDiscardsQualifiers: {
   11907     // Perform array-to-pointer decay if necessary.
   11908     if (SrcType->isArrayType()) SrcType = Context.getArrayDecayedType(SrcType);
   11909 
   11910     Qualifiers lhq = SrcType->getPointeeType().getQualifiers();
   11911     Qualifiers rhq = DstType->getPointeeType().getQualifiers();
   11912     if (lhq.getAddressSpace() != rhq.getAddressSpace()) {
   11913       DiagKind = diag::err_typecheck_incompatible_address_space;
   11914       break;
   11915 
   11916 
   11917     } else if (lhq.getObjCLifetime() != rhq.getObjCLifetime()) {
   11918       DiagKind = diag::err_typecheck_incompatible_ownership;
   11919       break;
   11920     }
   11921 
   11922     llvm_unreachable("unknown error case for discarding qualifiers!");
   11923     // fallthrough
   11924   }
   11925   case CompatiblePointerDiscardsQualifiers:
   11926     // If the qualifiers lost were because we were applying the
   11927     // (deprecated) C++ conversion from a string literal to a char*
   11928     // (or wchar_t*), then there was no error (C++ 4.2p2).  FIXME:
   11929     // Ideally, this check would be performed in
   11930     // checkPointerTypesForAssignment. However, that would require a
   11931     // bit of refactoring (so that the second argument is an
   11932     // expression, rather than a type), which should be done as part
   11933     // of a larger effort to fix checkPointerTypesForAssignment for
   11934     // C++ semantics.
   11935     if (getLangOpts().CPlusPlus &&
   11936         IsStringLiteralToNonConstPointerConversion(SrcExpr, DstType))
   11937       return false;
   11938     DiagKind = diag::ext_typecheck_convert_discards_qualifiers;
   11939     break;
   11940   case IncompatibleNestedPointerQualifiers:
   11941     DiagKind = diag::ext_nested_pointer_qualifier_mismatch;
   11942     break;
   11943   case IntToBlockPointer:
   11944     DiagKind = diag::err_int_to_block_pointer;
   11945     break;
   11946   case IncompatibleBlockPointer:
   11947     DiagKind = diag::err_typecheck_convert_incompatible_block_pointer;
   11948     break;
   11949   case IncompatibleObjCQualifiedId: {
   11950     if (SrcType->isObjCQualifiedIdType()) {
   11951       const ObjCObjectPointerType *srcOPT =
   11952                 SrcType->getAs<ObjCObjectPointerType>();
   11953       for (auto *srcProto : srcOPT->quals()) {
   11954         PDecl = srcProto;
   11955         break;
   11956       }
   11957       if (const ObjCInterfaceType *IFaceT =
   11958             DstType->getAs<ObjCObjectPointerType>()->getInterfaceType())
   11959         IFace = IFaceT->getDecl();
   11960     }
   11961     else if (DstType->isObjCQualifiedIdType()) {
   11962       const ObjCObjectPointerType *dstOPT =
   11963         DstType->getAs<ObjCObjectPointerType>();
   11964       for (auto *dstProto : dstOPT->quals()) {
   11965         PDecl = dstProto;
   11966         break;
   11967       }
   11968       if (const ObjCInterfaceType *IFaceT =
   11969             SrcType->getAs<ObjCObjectPointerType>()->getInterfaceType())
   11970         IFace = IFaceT->getDecl();
   11971     }
   11972     DiagKind = diag::warn_incompatible_qualified_id;
   11973     break;
   11974   }
   11975   case IncompatibleVectors:
   11976     DiagKind = diag::warn_incompatible_vectors;
   11977     break;
   11978   case IncompatibleObjCWeakRef:
   11979     DiagKind = diag::err_arc_weak_unavailable_assign;
   11980     break;
   11981   case Incompatible:
   11982     if (maybeDiagnoseAssignmentToFunction(*this, DstType, SrcExpr)) {
   11983       if (Complained)
   11984         *Complained = true;
   11985       return true;
   11986     }
   11987 
   11988     DiagKind = diag::err_typecheck_convert_incompatible;
   11989     ConvHints.tryToFixConversion(SrcExpr, SrcType, DstType, *this);
   11990     MayHaveConvFixit = true;
   11991     isInvalid = true;
   11992     MayHaveFunctionDiff = true;
   11993     break;
   11994   }
   11995 
   11996   QualType FirstType, SecondType;
   11997   switch (Action) {
   11998   case AA_Assigning:
   11999   case AA_Initializing:
   12000     // The destination type comes first.
   12001     FirstType = DstType;
   12002     SecondType = SrcType;
   12003     break;
   12004 
   12005   case AA_Returning:
   12006   case AA_Passing:
   12007   case AA_Passing_CFAudited:
   12008   case AA_Converting:
   12009   case AA_Sending:
   12010   case AA_Casting:
   12011     // The source type comes first.
   12012     FirstType = SrcType;
   12013     SecondType = DstType;
   12014     break;
   12015   }
   12016 
   12017   PartialDiagnostic FDiag = PDiag(DiagKind);
   12018   if (Action == AA_Passing_CFAudited)
   12019     FDiag << FirstType << SecondType << AA_Passing << SrcExpr->getSourceRange();
   12020   else
   12021     FDiag << FirstType << SecondType << Action << SrcExpr->getSourceRange();
   12022 
   12023   // If we can fix the conversion, suggest the FixIts.
   12024   assert(ConvHints.isNull() || Hint.isNull());
   12025   if (!ConvHints.isNull()) {
   12026     for (FixItHint &H : ConvHints.Hints)
   12027       FDiag << H;
   12028   } else {
   12029     FDiag << Hint;
   12030   }
   12031   if (MayHaveConvFixit) { FDiag << (unsigned) (ConvHints.Kind); }
   12032 
   12033   if (MayHaveFunctionDiff)
   12034     HandleFunctionTypeMismatch(FDiag, SecondType, FirstType);
   12035 
   12036   Diag(Loc, FDiag);
   12037   if (DiagKind == diag::warn_incompatible_qualified_id &&
   12038       PDecl && IFace && !IFace->hasDefinition())
   12039       Diag(IFace->getLocation(), diag::not_incomplete_class_and_qualified_id)
   12040         << IFace->getName() << PDecl->getName();
   12041 
   12042   if (SecondType == Context.OverloadTy)
   12043     NoteAllOverloadCandidates(OverloadExpr::find(SrcExpr).Expression,
   12044                               FirstType, /*TakingAddress=*/true);
   12045 
   12046   if (CheckInferredResultType)
   12047     EmitRelatedResultTypeNote(SrcExpr);
   12048 
   12049   if (Action == AA_Returning && ConvTy == IncompatiblePointer)
   12050     EmitRelatedResultTypeNoteForReturn(DstType);
   12051 
   12052   if (Complained)
   12053     *Complained = true;
   12054   return isInvalid;
   12055 }
   12056 
   12057 ExprResult Sema::VerifyIntegerConstantExpression(Expr *E,
   12058                                                  llvm::APSInt *Result) {
   12059   class SimpleICEDiagnoser : public VerifyICEDiagnoser {
   12060   public:
   12061     void diagnoseNotICE(Sema &S, SourceLocation Loc, SourceRange SR) override {
   12062       S.Diag(Loc, diag::err_expr_not_ice) << S.LangOpts.CPlusPlus << SR;
   12063     }
   12064   } Diagnoser;
   12065 
   12066   return VerifyIntegerConstantExpression(E, Result, Diagnoser);
   12067 }
   12068 
   12069 ExprResult Sema::VerifyIntegerConstantExpression(Expr *E,
   12070                                                  llvm::APSInt *Result,
   12071                                                  unsigned DiagID,
   12072                                                  bool AllowFold) {
   12073   class IDDiagnoser : public VerifyICEDiagnoser {
   12074     unsigned DiagID;
   12075 
   12076   public:
   12077     IDDiagnoser(unsigned DiagID)
   12078       : VerifyICEDiagnoser(DiagID == 0), DiagID(DiagID) { }
   12079 
   12080     void diagnoseNotICE(Sema &S, SourceLocation Loc, SourceRange SR) override {
   12081       S.Diag(Loc, DiagID) << SR;
   12082     }
   12083   } Diagnoser(DiagID);
   12084 
   12085   return VerifyIntegerConstantExpression(E, Result, Diagnoser, AllowFold);
   12086 }
   12087 
   12088 void Sema::VerifyICEDiagnoser::diagnoseFold(Sema &S, SourceLocation Loc,
   12089                                             SourceRange SR) {
   12090   S.Diag(Loc, diag::ext_expr_not_ice) << SR << S.LangOpts.CPlusPlus;
   12091 }
   12092 
   12093 ExprResult
   12094 Sema::VerifyIntegerConstantExpression(Expr *E, llvm::APSInt *Result,
   12095                                       VerifyICEDiagnoser &Diagnoser,
   12096                                       bool AllowFold) {
   12097   SourceLocation DiagLoc = E->getLocStart();
   12098 
   12099   if (getLangOpts().CPlusPlus11) {
   12100     // C++11 [expr.const]p5:
   12101     //   If an expression of literal class type is used in a context where an
   12102     //   integral constant expression is required, then that class type shall
   12103     //   have a single non-explicit conversion function to an integral or
   12104     //   unscoped enumeration type
   12105     ExprResult Converted;
   12106     class CXX11ConvertDiagnoser : public ICEConvertDiagnoser {
   12107     public:
   12108       CXX11ConvertDiagnoser(bool Silent)
   12109           : ICEConvertDiagnoser(/*AllowScopedEnumerations*/false,
   12110                                 Silent, true) {}
   12111 
   12112       SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc,
   12113                                            QualType T) override {
   12114         return S.Diag(Loc, diag::err_ice_not_integral) << T;
   12115       }
   12116 
   12117       SemaDiagnosticBuilder diagnoseIncomplete(
   12118           Sema &S, SourceLocation Loc, QualType T) override {
   12119         return S.Diag(Loc, diag::err_ice_incomplete_type) << T;
   12120       }
   12121 
   12122       SemaDiagnosticBuilder diagnoseExplicitConv(
   12123           Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
   12124         return S.Diag(Loc, diag::err_ice_explicit_conversion) << T << ConvTy;
   12125       }
   12126 
   12127       SemaDiagnosticBuilder noteExplicitConv(
   12128           Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
   12129         return S.Diag(Conv->getLocation(), diag::note_ice_conversion_here)
   12130                  << ConvTy->isEnumeralType() << ConvTy;
   12131       }
   12132 
   12133       SemaDiagnosticBuilder diagnoseAmbiguous(
   12134           Sema &S, SourceLocation Loc, QualType T) override {
   12135         return S.Diag(Loc, diag::err_ice_ambiguous_conversion) << T;
   12136       }
   12137 
   12138       SemaDiagnosticBuilder noteAmbiguous(
   12139           Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override {
   12140         return S.Diag(Conv->getLocation(), diag::note_ice_conversion_here)
   12141                  << ConvTy->isEnumeralType() << ConvTy;
   12142       }
   12143 
   12144       SemaDiagnosticBuilder diagnoseConversion(
   12145           Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override {
   12146         llvm_unreachable("conversion functions are permitted");
   12147       }
   12148     } ConvertDiagnoser(Diagnoser.Suppress);
   12149 
   12150     Converted = PerformContextualImplicitConversion(DiagLoc, E,
   12151                                                     ConvertDiagnoser);
   12152     if (Converted.isInvalid())
   12153       return Converted;
   12154     E = Converted.get();
   12155     if (!E->getType()->isIntegralOrUnscopedEnumerationType())
   12156       return ExprError();
   12157   } else if (!E->getType()->isIntegralOrUnscopedEnumerationType()) {
   12158     // An ICE must be of integral or unscoped enumeration type.
   12159     if (!Diagnoser.Suppress)
   12160       Diagnoser.diagnoseNotICE(*this, DiagLoc, E->getSourceRange());
   12161     return ExprError();
   12162   }
   12163 
   12164   // Circumvent ICE checking in C++11 to avoid evaluating the expression twice
   12165   // in the non-ICE case.
   12166   if (!getLangOpts().CPlusPlus11 && E->isIntegerConstantExpr(Context)) {
   12167     if (Result)
   12168       *Result = E->EvaluateKnownConstInt(Context);
   12169     return E;
   12170   }
   12171 
   12172   Expr::EvalResult EvalResult;
   12173   SmallVector<PartialDiagnosticAt, 8> Notes;
   12174   EvalResult.Diag = &Notes;
   12175 
   12176   // Try to evaluate the expression, and produce diagnostics explaining why it's
   12177   // not a constant expression as a side-effect.
   12178   bool Folded = E->EvaluateAsRValue(EvalResult, Context) &&
   12179                 EvalResult.Val.isInt() && !EvalResult.HasSideEffects;
   12180 
   12181   // In C++11, we can rely on diagnostics being produced for any expression
   12182   // which is not a constant expression. If no diagnostics were produced, then
   12183   // this is a constant expression.
   12184   if (Folded && getLangOpts().CPlusPlus11 && Notes.empty()) {
   12185     if (Result)
   12186       *Result = EvalResult.Val.getInt();
   12187     return E;
   12188   }
   12189 
   12190   // If our only note is the usual "invalid subexpression" note, just point
   12191   // the caret at its location rather than producing an essentially
   12192   // redundant note.
   12193   if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
   12194         diag::note_invalid_subexpr_in_const_expr) {
   12195     DiagLoc = Notes[0].first;
   12196     Notes.clear();
   12197   }
   12198 
   12199   if (!Folded || !AllowFold) {
   12200     if (!Diagnoser.Suppress) {
   12201       Diagnoser.diagnoseNotICE(*this, DiagLoc, E->getSourceRange());
   12202       for (const PartialDiagnosticAt &Note : Notes)
   12203         Diag(Note.first, Note.second);
   12204     }
   12205 
   12206     return ExprError();
   12207   }
   12208 
   12209   Diagnoser.diagnoseFold(*this, DiagLoc, E->getSourceRange());
   12210   for (const PartialDiagnosticAt &Note : Notes)
   12211     Diag(Note.first, Note.second);
   12212 
   12213   if (Result)
   12214     *Result = EvalResult.Val.getInt();
   12215   return E;
   12216 }
   12217 
   12218 namespace {
   12219   // Handle the case where we conclude a expression which we speculatively
   12220   // considered to be unevaluated is actually evaluated.
   12221   class TransformToPE : public TreeTransform<TransformToPE> {
   12222     typedef TreeTransform<TransformToPE> BaseTransform;
   12223 
   12224   public:
   12225     TransformToPE(Sema &SemaRef) : BaseTransform(SemaRef) { }
   12226 
   12227     // Make sure we redo semantic analysis
   12228     bool AlwaysRebuild() { return true; }
   12229 
   12230     // Make sure we handle LabelStmts correctly.
   12231     // FIXME: This does the right thing, but maybe we need a more general
   12232     // fix to TreeTransform?
   12233     StmtResult TransformLabelStmt(LabelStmt *S) {
   12234       S->getDecl()->setStmt(nullptr);
   12235       return BaseTransform::TransformLabelStmt(S);
   12236     }
   12237 
   12238     // We need to special-case DeclRefExprs referring to FieldDecls which
   12239     // are not part of a member pointer formation; normal TreeTransforming
   12240     // doesn't catch this case because of the way we represent them in the AST.
   12241     // FIXME: This is a bit ugly; is it really the best way to handle this
   12242     // case?
   12243     //
   12244     // Error on DeclRefExprs referring to FieldDecls.
   12245     ExprResult TransformDeclRefExpr(DeclRefExpr *E) {
   12246       if (isa<FieldDecl>(E->getDecl()) &&
   12247           !SemaRef.isUnevaluatedContext())
   12248         return SemaRef.Diag(E->getLocation(),
   12249                             diag::err_invalid_non_static_member_use)
   12250             << E->getDecl() << E->getSourceRange();
   12251 
   12252       return BaseTransform::TransformDeclRefExpr(E);
   12253     }
   12254 
   12255     // Exception: filter out member pointer formation
   12256     ExprResult TransformUnaryOperator(UnaryOperator *E) {
   12257       if (E->getOpcode() == UO_AddrOf && E->getType()->isMemberPointerType())
   12258         return E;
   12259 
   12260       return BaseTransform::TransformUnaryOperator(E);
   12261     }
   12262 
   12263     ExprResult TransformLambdaExpr(LambdaExpr *E) {
   12264       // Lambdas never need to be transformed.
   12265       return E;
   12266     }
   12267   };
   12268 }
   12269 
   12270 ExprResult Sema::TransformToPotentiallyEvaluated(Expr *E) {
   12271   assert(isUnevaluatedContext() &&
   12272          "Should only transform unevaluated expressions");
   12273   ExprEvalContexts.back().Context =
   12274       ExprEvalContexts[ExprEvalContexts.size()-2].Context;
   12275   if (isUnevaluatedContext())
   12276     return E;
   12277   return TransformToPE(*this).TransformExpr(E);
   12278 }
   12279 
   12280 void
   12281 Sema::PushExpressionEvaluationContext(ExpressionEvaluationContext NewContext,
   12282                                       Decl *LambdaContextDecl,
   12283                                       bool IsDecltype) {
   12284   ExprEvalContexts.emplace_back(NewContext, ExprCleanupObjects.size(),
   12285                                 ExprNeedsCleanups, LambdaContextDecl,
   12286                                 IsDecltype);
   12287   ExprNeedsCleanups = false;
   12288   if (!MaybeODRUseExprs.empty())
   12289     std::swap(MaybeODRUseExprs, ExprEvalContexts.back().SavedMaybeODRUseExprs);
   12290 }
   12291 
   12292 void
   12293 Sema::PushExpressionEvaluationContext(ExpressionEvaluationContext NewContext,
   12294                                       ReuseLambdaContextDecl_t,
   12295                                       bool IsDecltype) {
   12296   Decl *ClosureContextDecl = ExprEvalContexts.back().ManglingContextDecl;
   12297   PushExpressionEvaluationContext(NewContext, ClosureContextDecl, IsDecltype);
   12298 }
   12299 
   12300 void Sema::PopExpressionEvaluationContext() {
   12301   ExpressionEvaluationContextRecord& Rec = ExprEvalContexts.back();
   12302   unsigned NumTypos = Rec.NumTypos;
   12303 
   12304   if (!Rec.Lambdas.empty()) {
   12305     if (Rec.isUnevaluated() || Rec.Context == ConstantEvaluated) {
   12306       unsigned D;
   12307       if (Rec.isUnevaluated()) {
   12308         // C++11 [expr.prim.lambda]p2:
   12309         //   A lambda-expression shall not appear in an unevaluated operand
   12310         //   (Clause 5).
   12311         D = diag::err_lambda_unevaluated_operand;
   12312       } else {
   12313         // C++1y [expr.const]p2:
   12314         //   A conditional-expression e is a core constant expression unless the
   12315         //   evaluation of e, following the rules of the abstract machine, would
   12316         //   evaluate [...] a lambda-expression.
   12317         D = diag::err_lambda_in_constant_expression;
   12318       }
   12319       for (const auto *L : Rec.Lambdas)
   12320         Diag(L->getLocStart(), D);
   12321     } else {
   12322       // Mark the capture expressions odr-used. This was deferred
   12323       // during lambda expression creation.
   12324       for (auto *Lambda : Rec.Lambdas) {
   12325         for (auto *C : Lambda->capture_inits())
   12326           MarkDeclarationsReferencedInExpr(C);
   12327       }
   12328     }
   12329   }
   12330 
   12331   // When are coming out of an unevaluated context, clear out any
   12332   // temporaries that we may have created as part of the evaluation of
   12333   // the expression in that context: they aren't relevant because they
   12334   // will never be constructed.
   12335   if (Rec.isUnevaluated() || Rec.Context == ConstantEvaluated) {
   12336     ExprCleanupObjects.erase(ExprCleanupObjects.begin() + Rec.NumCleanupObjects,
   12337                              ExprCleanupObjects.end());
   12338     ExprNeedsCleanups = Rec.ParentNeedsCleanups;
   12339     CleanupVarDeclMarking();
   12340     std::swap(MaybeODRUseExprs, Rec.SavedMaybeODRUseExprs);
   12341   // Otherwise, merge the contexts together.
   12342   } else {
   12343     ExprNeedsCleanups |= Rec.ParentNeedsCleanups;
   12344     MaybeODRUseExprs.insert(Rec.SavedMaybeODRUseExprs.begin(),
   12345                             Rec.SavedMaybeODRUseExprs.end());
   12346   }
   12347 
   12348   // Pop the current expression evaluation context off the stack.
   12349   ExprEvalContexts.pop_back();
   12350 
   12351   if (!ExprEvalContexts.empty())
   12352     ExprEvalContexts.back().NumTypos += NumTypos;
   12353   else
   12354     assert(NumTypos == 0 && "There are outstanding typos after popping the "
   12355                             "last ExpressionEvaluationContextRecord");
   12356 }
   12357 
   12358 void Sema::DiscardCleanupsInEvaluationContext() {
   12359   ExprCleanupObjects.erase(
   12360          ExprCleanupObjects.begin() + ExprEvalContexts.back().NumCleanupObjects,
   12361          ExprCleanupObjects.end());
   12362   ExprNeedsCleanups = false;
   12363   MaybeODRUseExprs.clear();
   12364 }
   12365 
   12366 ExprResult Sema::HandleExprEvaluationContextForTypeof(Expr *E) {
   12367   if (!E->getType()->isVariablyModifiedType())
   12368     return E;
   12369   return TransformToPotentiallyEvaluated(E);
   12370 }
   12371 
   12372 static bool IsPotentiallyEvaluatedContext(Sema &SemaRef) {
   12373   // Do not mark anything as "used" within a dependent context; wait for
   12374   // an instantiation.
   12375   if (SemaRef.CurContext->isDependentContext())
   12376     return false;
   12377 
   12378   switch (SemaRef.ExprEvalContexts.back().Context) {
   12379     case Sema::Unevaluated:
   12380     case Sema::UnevaluatedAbstract:
   12381       // We are in an expression that is not potentially evaluated; do nothing.
   12382       // (Depending on how you read the standard, we actually do need to do
   12383       // something here for null pointer constants, but the standard's
   12384       // definition of a null pointer constant is completely crazy.)
   12385       return false;
   12386 
   12387     case Sema::ConstantEvaluated:
   12388     case Sema::PotentiallyEvaluated:
   12389       // We are in a potentially evaluated expression (or a constant-expression
   12390       // in C++03); we need to do implicit template instantiation, implicitly
   12391       // define class members, and mark most declarations as used.
   12392       return true;
   12393 
   12394     case Sema::PotentiallyEvaluatedIfUsed:
   12395       // Referenced declarations will only be used if the construct in the
   12396       // containing expression is used.
   12397       return false;
   12398   }
   12399   llvm_unreachable("Invalid context");
   12400 }
   12401 
   12402 /// \brief Mark a function referenced, and check whether it is odr-used
   12403 /// (C++ [basic.def.odr]p2, C99 6.9p3)
   12404 void Sema::MarkFunctionReferenced(SourceLocation Loc, FunctionDecl *Func,
   12405                                   bool OdrUse) {
   12406   assert(Func && "No function?");
   12407 
   12408   Func->setReferenced();
   12409 
   12410   // C++11 [basic.def.odr]p3:
   12411   //   A function whose name appears as a potentially-evaluated expression is
   12412   //   odr-used if it is the unique lookup result or the selected member of a
   12413   //   set of overloaded functions [...].
   12414   //
   12415   // We (incorrectly) mark overload resolution as an unevaluated context, so we
   12416   // can just check that here. Skip the rest of this function if we've already
   12417   // marked the function as used.
   12418   if (Func->isUsed(/*CheckUsedAttr=*/false) ||
   12419       !IsPotentiallyEvaluatedContext(*this)) {
   12420     // C++11 [temp.inst]p3:
   12421     //   Unless a function template specialization has been explicitly
   12422     //   instantiated or explicitly specialized, the function template
   12423     //   specialization is implicitly instantiated when the specialization is
   12424     //   referenced in a context that requires a function definition to exist.
   12425     //
   12426     // We consider constexpr function templates to be referenced in a context
   12427     // that requires a definition to exist whenever they are referenced.
   12428     //
   12429     // FIXME: This instantiates constexpr functions too frequently. If this is
   12430     // really an unevaluated context (and we're not just in the definition of a
   12431     // function template or overload resolution or other cases which we
   12432     // incorrectly consider to be unevaluated contexts), and we're not in a
   12433     // subexpression which we actually need to evaluate (for instance, a
   12434     // template argument, array bound or an expression in a braced-init-list),
   12435     // we are not permitted to instantiate this constexpr function definition.
   12436     //
   12437     // FIXME: This also implicitly defines special members too frequently. They
   12438     // are only supposed to be implicitly defined if they are odr-used, but they
   12439     // are not odr-used from constant expressions in unevaluated contexts.
   12440     // However, they cannot be referenced if they are deleted, and they are
   12441     // deleted whenever the implicit definition of the special member would
   12442     // fail.
   12443     if (!Func->isConstexpr() || Func->getBody())
   12444       return;
   12445     CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Func);
   12446     if (!Func->isImplicitlyInstantiable() && (!MD || MD->isUserProvided()))
   12447       return;
   12448   }
   12449 
   12450   // Note that this declaration has been used.
   12451   if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Func)) {
   12452     Constructor = cast<CXXConstructorDecl>(Constructor->getFirstDecl());
   12453     if (Constructor->isDefaulted() && !Constructor->isDeleted()) {
   12454       if (Constructor->isDefaultConstructor()) {
   12455         if (Constructor->isTrivial() && !Constructor->hasAttr<DLLExportAttr>())
   12456           return;
   12457         DefineImplicitDefaultConstructor(Loc, Constructor);
   12458       } else if (Constructor->isCopyConstructor()) {
   12459         DefineImplicitCopyConstructor(Loc, Constructor);
   12460       } else if (Constructor->isMoveConstructor()) {
   12461         DefineImplicitMoveConstructor(Loc, Constructor);
   12462       }
   12463     } else if (Constructor->getInheritedConstructor()) {
   12464       DefineInheritingConstructor(Loc, Constructor);
   12465     }
   12466   } else if (CXXDestructorDecl *Destructor =
   12467                  dyn_cast<CXXDestructorDecl>(Func)) {
   12468     Destructor = cast<CXXDestructorDecl>(Destructor->getFirstDecl());
   12469     if (Destructor->isDefaulted() && !Destructor->isDeleted()) {
   12470       if (Destructor->isTrivial() && !Destructor->hasAttr<DLLExportAttr>())
   12471         return;
   12472       DefineImplicitDestructor(Loc, Destructor);
   12473     }
   12474     if (Destructor->isVirtual() && getLangOpts().AppleKext)
   12475       MarkVTableUsed(Loc, Destructor->getParent());
   12476   } else if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(Func)) {
   12477     if (MethodDecl->isOverloadedOperator() &&
   12478         MethodDecl->getOverloadedOperator() == OO_Equal) {
   12479       MethodDecl = cast<CXXMethodDecl>(MethodDecl->getFirstDecl());
   12480       if (MethodDecl->isDefaulted() && !MethodDecl->isDeleted()) {
   12481         if (MethodDecl->isCopyAssignmentOperator())
   12482           DefineImplicitCopyAssignment(Loc, MethodDecl);
   12483         else
   12484           DefineImplicitMoveAssignment(Loc, MethodDecl);
   12485       }
   12486     } else if (isa<CXXConversionDecl>(MethodDecl) &&
   12487                MethodDecl->getParent()->isLambda()) {
   12488       CXXConversionDecl *Conversion =
   12489           cast<CXXConversionDecl>(MethodDecl->getFirstDecl());
   12490       if (Conversion->isLambdaToBlockPointerConversion())
   12491         DefineImplicitLambdaToBlockPointerConversion(Loc, Conversion);
   12492       else
   12493         DefineImplicitLambdaToFunctionPointerConversion(Loc, Conversion);
   12494     } else if (MethodDecl->isVirtual() && getLangOpts().AppleKext)
   12495       MarkVTableUsed(Loc, MethodDecl->getParent());
   12496   }
   12497 
   12498   // Recursive functions should be marked when used from another function.
   12499   // FIXME: Is this really right?
   12500   if (CurContext == Func) return;
   12501 
   12502   // Resolve the exception specification for any function which is
   12503   // used: CodeGen will need it.
   12504   const FunctionProtoType *FPT = Func->getType()->getAs<FunctionProtoType>();
   12505   if (FPT && isUnresolvedExceptionSpec(FPT->getExceptionSpecType()))
   12506     ResolveExceptionSpec(Loc, FPT);
   12507 
   12508   if (!OdrUse) return;
   12509 
   12510   // Implicit instantiation of function templates and member functions of
   12511   // class templates.
   12512   if (Func->isImplicitlyInstantiable()) {
   12513     bool AlreadyInstantiated = false;
   12514     SourceLocation PointOfInstantiation = Loc;
   12515     if (FunctionTemplateSpecializationInfo *SpecInfo
   12516                               = Func->getTemplateSpecializationInfo()) {
   12517       if (SpecInfo->getPointOfInstantiation().isInvalid())
   12518         SpecInfo->setPointOfInstantiation(Loc);
   12519       else if (SpecInfo->getTemplateSpecializationKind()
   12520                  == TSK_ImplicitInstantiation) {
   12521         AlreadyInstantiated = true;
   12522         PointOfInstantiation = SpecInfo->getPointOfInstantiation();
   12523       }
   12524     } else if (MemberSpecializationInfo *MSInfo
   12525                                 = Func->getMemberSpecializationInfo()) {
   12526       if (MSInfo->getPointOfInstantiation().isInvalid())
   12527         MSInfo->setPointOfInstantiation(Loc);
   12528       else if (MSInfo->getTemplateSpecializationKind()
   12529                  == TSK_ImplicitInstantiation) {
   12530         AlreadyInstantiated = true;
   12531         PointOfInstantiation = MSInfo->getPointOfInstantiation();
   12532       }
   12533     }
   12534 
   12535     if (!AlreadyInstantiated || Func->isConstexpr()) {
   12536       if (isa<CXXRecordDecl>(Func->getDeclContext()) &&
   12537           cast<CXXRecordDecl>(Func->getDeclContext())->isLocalClass() &&
   12538           ActiveTemplateInstantiations.size())
   12539         PendingLocalImplicitInstantiations.push_back(
   12540             std::make_pair(Func, PointOfInstantiation));
   12541       else if (Func->isConstexpr())
   12542         // Do not defer instantiations of constexpr functions, to avoid the
   12543         // expression evaluator needing to call back into Sema if it sees a
   12544         // call to such a function.
   12545         InstantiateFunctionDefinition(PointOfInstantiation, Func);
   12546       else {
   12547         PendingInstantiations.push_back(std::make_pair(Func,
   12548                                                        PointOfInstantiation));
   12549         // Notify the consumer that a function was implicitly instantiated.
   12550         Consumer.HandleCXXImplicitFunctionInstantiation(Func);
   12551       }
   12552     }
   12553   } else {
   12554     // Walk redefinitions, as some of them may be instantiable.
   12555     for (auto i : Func->redecls()) {
   12556       if (!i->isUsed(false) && i->isImplicitlyInstantiable())
   12557         MarkFunctionReferenced(Loc, i);
   12558     }
   12559   }
   12560 
   12561   // Keep track of used but undefined functions.
   12562   if (!Func->isDefined()) {
   12563     if (mightHaveNonExternalLinkage(Func))
   12564       UndefinedButUsed.insert(std::make_pair(Func->getCanonicalDecl(), Loc));
   12565     else if (Func->getMostRecentDecl()->isInlined() &&
   12566              !LangOpts.GNUInline &&
   12567              !Func->getMostRecentDecl()->hasAttr<GNUInlineAttr>())
   12568       UndefinedButUsed.insert(std::make_pair(Func->getCanonicalDecl(), Loc));
   12569   }
   12570 
   12571   // Normally the most current decl is marked used while processing the use and
   12572   // any subsequent decls are marked used by decl merging. This fails with
   12573   // template instantiation since marking can happen at the end of the file
   12574   // and, because of the two phase lookup, this function is called with at
   12575   // decl in the middle of a decl chain. We loop to maintain the invariant
   12576   // that once a decl is used, all decls after it are also used.
   12577   for (FunctionDecl *F = Func->getMostRecentDecl();; F = F->getPreviousDecl()) {
   12578     F->markUsed(Context);
   12579     if (F == Func)
   12580       break;
   12581   }
   12582 }
   12583 
   12584 static void
   12585 diagnoseUncapturableValueReference(Sema &S, SourceLocation loc,
   12586                                    VarDecl *var, DeclContext *DC) {
   12587   DeclContext *VarDC = var->getDeclContext();
   12588 
   12589   //  If the parameter still belongs to the translation unit, then
   12590   //  we're actually just using one parameter in the declaration of
   12591   //  the next.
   12592   if (isa<ParmVarDecl>(var) &&
   12593       isa<TranslationUnitDecl>(VarDC))
   12594     return;
   12595 
   12596   // For C code, don't diagnose about capture if we're not actually in code
   12597   // right now; it's impossible to write a non-constant expression outside of
   12598   // function context, so we'll get other (more useful) diagnostics later.
   12599   //
   12600   // For C++, things get a bit more nasty... it would be nice to suppress this
   12601   // diagnostic for certain cases like using a local variable in an array bound
   12602   // for a member of a local class, but the correct predicate is not obvious.
   12603   if (!S.getLangOpts().CPlusPlus && !S.CurContext->isFunctionOrMethod())
   12604     return;
   12605 
   12606   if (isa<CXXMethodDecl>(VarDC) &&
   12607       cast<CXXRecordDecl>(VarDC->getParent())->isLambda()) {
   12608     S.Diag(loc, diag::err_reference_to_local_var_in_enclosing_lambda)
   12609       << var->getIdentifier();
   12610   } else if (FunctionDecl *fn = dyn_cast<FunctionDecl>(VarDC)) {
   12611     S.Diag(loc, diag::err_reference_to_local_var_in_enclosing_function)
   12612       << var->getIdentifier() << fn->getDeclName();
   12613   } else if (isa<BlockDecl>(VarDC)) {
   12614     S.Diag(loc, diag::err_reference_to_local_var_in_enclosing_block)
   12615       << var->getIdentifier();
   12616   } else {
   12617     // FIXME: Is there any other context where a local variable can be
   12618     // declared?
   12619     S.Diag(loc, diag::err_reference_to_local_var_in_enclosing_context)
   12620       << var->getIdentifier();
   12621   }
   12622 
   12623   S.Diag(var->getLocation(), diag::note_entity_declared_at)
   12624       << var->getIdentifier();
   12625 
   12626   // FIXME: Add additional diagnostic info about class etc. which prevents
   12627   // capture.
   12628 }
   12629 
   12630 
   12631 static bool isVariableAlreadyCapturedInScopeInfo(CapturingScopeInfo *CSI, VarDecl *Var,
   12632                                       bool &SubCapturesAreNested,
   12633                                       QualType &CaptureType,
   12634                                       QualType &DeclRefType) {
   12635    // Check whether we've already captured it.
   12636   if (CSI->CaptureMap.count(Var)) {
   12637     // If we found a capture, any subcaptures are nested.
   12638     SubCapturesAreNested = true;
   12639 
   12640     // Retrieve the capture type for this variable.
   12641     CaptureType = CSI->getCapture(Var).getCaptureType();
   12642 
   12643     // Compute the type of an expression that refers to this variable.
   12644     DeclRefType = CaptureType.getNonReferenceType();
   12645 
   12646     // Similarly to mutable captures in lambda, all the OpenMP captures by copy
   12647     // are mutable in the sense that user can change their value - they are
   12648     // private instances of the captured declarations.
   12649     const CapturingScopeInfo::Capture &Cap = CSI->getCapture(Var);
   12650     if (Cap.isCopyCapture() &&
   12651         !(isa<LambdaScopeInfo>(CSI) && cast<LambdaScopeInfo>(CSI)->Mutable) &&
   12652         !(isa<CapturedRegionScopeInfo>(CSI) &&
   12653           cast<CapturedRegionScopeInfo>(CSI)->CapRegionKind == CR_OpenMP))
   12654       DeclRefType.addConst();
   12655     return true;
   12656   }
   12657   return false;
   12658 }
   12659 
   12660 // Only block literals, captured statements, and lambda expressions can
   12661 // capture; other scopes don't work.
   12662 static DeclContext *getParentOfCapturingContextOrNull(DeclContext *DC, VarDecl *Var,
   12663                                  SourceLocation Loc,
   12664                                  const bool Diagnose, Sema &S) {
   12665   if (isa<BlockDecl>(DC) || isa<CapturedDecl>(DC) || isLambdaCallOperator(DC))
   12666     return getLambdaAwareParentOfDeclContext(DC);
   12667   else if (Var->hasLocalStorage()) {
   12668     if (Diagnose)
   12669        diagnoseUncapturableValueReference(S, Loc, Var, DC);
   12670   }
   12671   return nullptr;
   12672 }
   12673 
   12674 // Certain capturing entities (lambdas, blocks etc.) are not allowed to capture
   12675 // certain types of variables (unnamed, variably modified types etc.)
   12676 // so check for eligibility.
   12677 static bool isVariableCapturable(CapturingScopeInfo *CSI, VarDecl *Var,
   12678                                  SourceLocation Loc,
   12679                                  const bool Diagnose, Sema &S) {
   12680 
   12681   bool IsBlock = isa<BlockScopeInfo>(CSI);
   12682   bool IsLambda = isa<LambdaScopeInfo>(CSI);
   12683 
   12684   // Lambdas are not allowed to capture unnamed variables
   12685   // (e.g. anonymous unions).
   12686   // FIXME: The C++11 rule don't actually state this explicitly, but I'm
   12687   // assuming that's the intent.
   12688   if (IsLambda && !Var->getDeclName()) {
   12689     if (Diagnose) {
   12690       S.Diag(Loc, diag::err_lambda_capture_anonymous_var);
   12691       S.Diag(Var->getLocation(), diag::note_declared_at);
   12692     }
   12693     return false;
   12694   }
   12695 
   12696   // Prohibit variably-modified types in blocks; they're difficult to deal with.
   12697   if (Var->getType()->isVariablyModifiedType() && IsBlock) {
   12698     if (Diagnose) {
   12699       S.Diag(Loc, diag::err_ref_vm_type);
   12700       S.Diag(Var->getLocation(), diag::note_previous_decl)
   12701         << Var->getDeclName();
   12702     }
   12703     return false;
   12704   }
   12705   // Prohibit structs with flexible array members too.
   12706   // We cannot capture what is in the tail end of the struct.
   12707   if (const RecordType *VTTy = Var->getType()->getAs<RecordType>()) {
   12708     if (VTTy->getDecl()->hasFlexibleArrayMember()) {
   12709       if (Diagnose) {
   12710         if (IsBlock)
   12711           S.Diag(Loc, diag::err_ref_flexarray_type);
   12712         else
   12713           S.Diag(Loc, diag::err_lambda_capture_flexarray_type)
   12714             << Var->getDeclName();
   12715         S.Diag(Var->getLocation(), diag::note_previous_decl)
   12716           << Var->getDeclName();
   12717       }
   12718       return false;
   12719     }
   12720   }
   12721   const bool HasBlocksAttr = Var->hasAttr<BlocksAttr>();
   12722   // Lambdas and captured statements are not allowed to capture __block
   12723   // variables; they don't support the expected semantics.
   12724   if (HasBlocksAttr && (IsLambda || isa<CapturedRegionScopeInfo>(CSI))) {
   12725     if (Diagnose) {
   12726       S.Diag(Loc, diag::err_capture_block_variable)
   12727         << Var->getDeclName() << !IsLambda;
   12728       S.Diag(Var->getLocation(), diag::note_previous_decl)
   12729         << Var->getDeclName();
   12730     }
   12731     return false;
   12732   }
   12733 
   12734   return true;
   12735 }
   12736 
   12737 // Returns true if the capture by block was successful.
   12738 static bool captureInBlock(BlockScopeInfo *BSI, VarDecl *Var,
   12739                                  SourceLocation Loc,
   12740                                  const bool BuildAndDiagnose,
   12741                                  QualType &CaptureType,
   12742                                  QualType &DeclRefType,
   12743                                  const bool Nested,
   12744                                  Sema &S) {
   12745   Expr *CopyExpr = nullptr;
   12746   bool ByRef = false;
   12747 
   12748   // Blocks are not allowed to capture arrays.
   12749   if (CaptureType->isArrayType()) {
   12750     if (BuildAndDiagnose) {
   12751       S.Diag(Loc, diag::err_ref_array_type);
   12752       S.Diag(Var->getLocation(), diag::note_previous_decl)
   12753       << Var->getDeclName();
   12754     }
   12755     return false;
   12756   }
   12757 
   12758   // Forbid the block-capture of autoreleasing variables.
   12759   if (CaptureType.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) {
   12760     if (BuildAndDiagnose) {
   12761       S.Diag(Loc, diag::err_arc_autoreleasing_capture)
   12762         << /*block*/ 0;
   12763       S.Diag(Var->getLocation(), diag::note_previous_decl)
   12764         << Var->getDeclName();
   12765     }
   12766     return false;
   12767   }
   12768   const bool HasBlocksAttr = Var->hasAttr<BlocksAttr>();
   12769   if (HasBlocksAttr || CaptureType->isReferenceType()) {
   12770     // Block capture by reference does not change the capture or
   12771     // declaration reference types.
   12772     ByRef = true;
   12773   } else {
   12774     // Block capture by copy introduces 'const'.
   12775     CaptureType = CaptureType.getNonReferenceType().withConst();
   12776     DeclRefType = CaptureType;
   12777 
   12778     if (S.getLangOpts().CPlusPlus && BuildAndDiagnose) {
   12779       if (const RecordType *Record = DeclRefType->getAs<RecordType>()) {
   12780         // The capture logic needs the destructor, so make sure we mark it.
   12781         // Usually this is unnecessary because most local variables have
   12782         // their destructors marked at declaration time, but parameters are
   12783         // an exception because it's technically only the call site that
   12784         // actually requires the destructor.
   12785         if (isa<ParmVarDecl>(Var))
   12786           S.FinalizeVarWithDestructor(Var, Record);
   12787 
   12788         // Enter a new evaluation context to insulate the copy
   12789         // full-expression.
   12790         EnterExpressionEvaluationContext scope(S, S.PotentiallyEvaluated);
   12791 
   12792         // According to the blocks spec, the capture of a variable from
   12793         // the stack requires a const copy constructor.  This is not true
   12794         // of the copy/move done to move a __block variable to the heap.
   12795         Expr *DeclRef = new (S.Context) DeclRefExpr(Var, Nested,
   12796                                                   DeclRefType.withConst(),
   12797                                                   VK_LValue, Loc);
   12798 
   12799         ExprResult Result
   12800           = S.PerformCopyInitialization(
   12801               InitializedEntity::InitializeBlock(Var->getLocation(),
   12802                                                   CaptureType, false),
   12803               Loc, DeclRef);
   12804 
   12805         // Build a full-expression copy expression if initialization
   12806         // succeeded and used a non-trivial constructor.  Recover from
   12807         // errors by pretending that the copy isn't necessary.
   12808         if (!Result.isInvalid() &&
   12809             !cast<CXXConstructExpr>(Result.get())->getConstructor()
   12810                 ->isTrivial()) {
   12811           Result = S.MaybeCreateExprWithCleanups(Result);
   12812           CopyExpr = Result.get();
   12813         }
   12814       }
   12815     }
   12816   }
   12817 
   12818   // Actually capture the variable.
   12819   if (BuildAndDiagnose)
   12820     BSI->addCapture(Var, HasBlocksAttr, ByRef, Nested, Loc,
   12821                     SourceLocation(), CaptureType, CopyExpr);
   12822 
   12823   return true;
   12824 
   12825 }
   12826 
   12827 
   12828 /// \brief Capture the given variable in the captured region.
   12829 static bool captureInCapturedRegion(CapturedRegionScopeInfo *RSI,
   12830                                     VarDecl *Var,
   12831                                     SourceLocation Loc,
   12832                                     const bool BuildAndDiagnose,
   12833                                     QualType &CaptureType,
   12834                                     QualType &DeclRefType,
   12835                                     const bool RefersToCapturedVariable,
   12836                                     Sema &S) {
   12837 
   12838   // By default, capture variables by reference.
   12839   bool ByRef = true;
   12840   // Using an LValue reference type is consistent with Lambdas (see below).
   12841   if (S.getLangOpts().OpenMP) {
   12842     ByRef = S.IsOpenMPCapturedByRef(Var, RSI);
   12843     if (S.IsOpenMPCapturedVar(Var))
   12844       DeclRefType = DeclRefType.getUnqualifiedType();
   12845   }
   12846 
   12847   if (ByRef)
   12848     CaptureType = S.Context.getLValueReferenceType(DeclRefType);
   12849   else
   12850     CaptureType = DeclRefType;
   12851 
   12852   Expr *CopyExpr = nullptr;
   12853   if (BuildAndDiagnose) {
   12854     // The current implementation assumes that all variables are captured
   12855     // by references. Since there is no capture by copy, no expression
   12856     // evaluation will be needed.
   12857     RecordDecl *RD = RSI->TheRecordDecl;
   12858 
   12859     FieldDecl *Field
   12860       = FieldDecl::Create(S.Context, RD, Loc, Loc, nullptr, CaptureType,
   12861                           S.Context.getTrivialTypeSourceInfo(CaptureType, Loc),
   12862                           nullptr, false, ICIS_NoInit);
   12863     Field->setImplicit(true);
   12864     Field->setAccess(AS_private);
   12865     RD->addDecl(Field);
   12866 
   12867     CopyExpr = new (S.Context) DeclRefExpr(Var, RefersToCapturedVariable,
   12868                                             DeclRefType, VK_LValue, Loc);
   12869     Var->setReferenced(true);
   12870     Var->markUsed(S.Context);
   12871   }
   12872 
   12873   // Actually capture the variable.
   12874   if (BuildAndDiagnose)
   12875     RSI->addCapture(Var, /*isBlock*/false, ByRef, RefersToCapturedVariable, Loc,
   12876                     SourceLocation(), CaptureType, CopyExpr);
   12877 
   12878 
   12879   return true;
   12880 }
   12881 
   12882 /// \brief Create a field within the lambda class for the variable
   12883 /// being captured.
   12884 static void addAsFieldToClosureType(Sema &S, LambdaScopeInfo *LSI, VarDecl *Var,
   12885                                     QualType FieldType, QualType DeclRefType,
   12886                                     SourceLocation Loc,
   12887                                     bool RefersToCapturedVariable) {
   12888   CXXRecordDecl *Lambda = LSI->Lambda;
   12889 
   12890   // Build the non-static data member.
   12891   FieldDecl *Field
   12892     = FieldDecl::Create(S.Context, Lambda, Loc, Loc, nullptr, FieldType,
   12893                         S.Context.getTrivialTypeSourceInfo(FieldType, Loc),
   12894                         nullptr, false, ICIS_NoInit);
   12895   Field->setImplicit(true);
   12896   Field->setAccess(AS_private);
   12897   Lambda->addDecl(Field);
   12898 }
   12899 
   12900 /// \brief Capture the given variable in the lambda.
   12901 static bool captureInLambda(LambdaScopeInfo *LSI,
   12902                             VarDecl *Var,
   12903                             SourceLocation Loc,
   12904                             const bool BuildAndDiagnose,
   12905                             QualType &CaptureType,
   12906                             QualType &DeclRefType,
   12907                             const bool RefersToCapturedVariable,
   12908                             const Sema::TryCaptureKind Kind,
   12909                             SourceLocation EllipsisLoc,
   12910                             const bool IsTopScope,
   12911                             Sema &S) {
   12912 
   12913   // Determine whether we are capturing by reference or by value.
   12914   bool ByRef = false;
   12915   if (IsTopScope && Kind != Sema::TryCapture_Implicit) {
   12916     ByRef = (Kind == Sema::TryCapture_ExplicitByRef);
   12917   } else {
   12918     ByRef = (LSI->ImpCaptureStyle == LambdaScopeInfo::ImpCap_LambdaByref);
   12919   }
   12920 
   12921   // Compute the type of the field that will capture this variable.
   12922   if (ByRef) {
   12923     // C++11 [expr.prim.lambda]p15:
   12924     //   An entity is captured by reference if it is implicitly or
   12925     //   explicitly captured but not captured by copy. It is
   12926     //   unspecified whether additional unnamed non-static data
   12927     //   members are declared in the closure type for entities
   12928     //   captured by reference.
   12929     //
   12930     // FIXME: It is not clear whether we want to build an lvalue reference
   12931     // to the DeclRefType or to CaptureType.getNonReferenceType(). GCC appears
   12932     // to do the former, while EDG does the latter. Core issue 1249 will
   12933     // clarify, but for now we follow GCC because it's a more permissive and
   12934     // easily defensible position.
   12935     CaptureType = S.Context.getLValueReferenceType(DeclRefType);
   12936   } else {
   12937     // C++11 [expr.prim.lambda]p14:
   12938     //   For each entity captured by copy, an unnamed non-static
   12939     //   data member is declared in the closure type. The
   12940     //   declaration order of these members is unspecified. The type
   12941     //   of such a data member is the type of the corresponding
   12942     //   captured entity if the entity is not a reference to an
   12943     //   object, or the referenced type otherwise. [Note: If the
   12944     //   captured entity is a reference to a function, the
   12945     //   corresponding data member is also a reference to a
   12946     //   function. - end note ]
   12947     if (const ReferenceType *RefType = CaptureType->getAs<ReferenceType>()){
   12948       if (!RefType->getPointeeType()->isFunctionType())
   12949         CaptureType = RefType->getPointeeType();
   12950     }
   12951 
   12952     // Forbid the lambda copy-capture of autoreleasing variables.
   12953     if (CaptureType.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) {
   12954       if (BuildAndDiagnose) {
   12955         S.Diag(Loc, diag::err_arc_autoreleasing_capture) << /*lambda*/ 1;
   12956         S.Diag(Var->getLocation(), diag::note_previous_decl)
   12957           << Var->getDeclName();
   12958       }
   12959       return false;
   12960     }
   12961 
   12962     // Make sure that by-copy captures are of a complete and non-abstract type.
   12963     if (BuildAndDiagnose) {
   12964       if (!CaptureType->isDependentType() &&
   12965           S.RequireCompleteType(Loc, CaptureType,
   12966                                 diag::err_capture_of_incomplete_type,
   12967                                 Var->getDeclName()))
   12968         return false;
   12969 
   12970       if (S.RequireNonAbstractType(Loc, CaptureType,
   12971                                    diag::err_capture_of_abstract_type))
   12972         return false;
   12973     }
   12974   }
   12975 
   12976   // Capture this variable in the lambda.
   12977   if (BuildAndDiagnose)
   12978     addAsFieldToClosureType(S, LSI, Var, CaptureType, DeclRefType, Loc,
   12979                             RefersToCapturedVariable);
   12980 
   12981   // Compute the type of a reference to this captured variable.
   12982   if (ByRef)
   12983     DeclRefType = CaptureType.getNonReferenceType();
   12984   else {
   12985     // C++ [expr.prim.lambda]p5:
   12986     //   The closure type for a lambda-expression has a public inline
   12987     //   function call operator [...]. This function call operator is
   12988     //   declared const (9.3.1) if and only if the lambda-expressions
   12989     //   parameter-declaration-clause is not followed by mutable.
   12990     DeclRefType = CaptureType.getNonReferenceType();
   12991     if (!LSI->Mutable && !CaptureType->isReferenceType())
   12992       DeclRefType.addConst();
   12993   }
   12994 
   12995   // Add the capture.
   12996   if (BuildAndDiagnose)
   12997     LSI->addCapture(Var, /*IsBlock=*/false, ByRef, RefersToCapturedVariable,
   12998                     Loc, EllipsisLoc, CaptureType, /*CopyExpr=*/nullptr);
   12999 
   13000   return true;
   13001 }
   13002 
   13003 bool Sema::tryCaptureVariable(
   13004     VarDecl *Var, SourceLocation ExprLoc, TryCaptureKind Kind,
   13005     SourceLocation EllipsisLoc, bool BuildAndDiagnose, QualType &CaptureType,
   13006     QualType &DeclRefType, const unsigned *const FunctionScopeIndexToStopAt) {
   13007   // An init-capture is notionally from the context surrounding its
   13008   // declaration, but its parent DC is the lambda class.
   13009   DeclContext *VarDC = Var->getDeclContext();
   13010   if (Var->isInitCapture())
   13011     VarDC = VarDC->getParent();
   13012 
   13013   DeclContext *DC = CurContext;
   13014   const unsigned MaxFunctionScopesIndex = FunctionScopeIndexToStopAt
   13015       ? *FunctionScopeIndexToStopAt : FunctionScopes.size() - 1;
   13016   // We need to sync up the Declaration Context with the
   13017   // FunctionScopeIndexToStopAt
   13018   if (FunctionScopeIndexToStopAt) {
   13019     unsigned FSIndex = FunctionScopes.size() - 1;
   13020     while (FSIndex != MaxFunctionScopesIndex) {
   13021       DC = getLambdaAwareParentOfDeclContext(DC);
   13022       --FSIndex;
   13023     }
   13024   }
   13025 
   13026 
   13027   // If the variable is declared in the current context, there is no need to
   13028   // capture it.
   13029   if (VarDC == DC) return true;
   13030 
   13031   // Capture global variables if it is required to use private copy of this
   13032   // variable.
   13033   bool IsGlobal = !Var->hasLocalStorage();
   13034   if (IsGlobal && !(LangOpts.OpenMP && IsOpenMPCapturedVar(Var)))
   13035     return true;
   13036 
   13037   // Walk up the stack to determine whether we can capture the variable,
   13038   // performing the "simple" checks that don't depend on type. We stop when
   13039   // we've either hit the declared scope of the variable or find an existing
   13040   // capture of that variable.  We start from the innermost capturing-entity
   13041   // (the DC) and ensure that all intervening capturing-entities
   13042   // (blocks/lambdas etc.) between the innermost capturer and the variable`s
   13043   // declcontext can either capture the variable or have already captured
   13044   // the variable.
   13045   CaptureType = Var->getType();
   13046   DeclRefType = CaptureType.getNonReferenceType();
   13047   bool Nested = false;
   13048   bool Explicit = (Kind != TryCapture_Implicit);
   13049   unsigned FunctionScopesIndex = MaxFunctionScopesIndex;
   13050   unsigned OpenMPLevel = 0;
   13051   do {
   13052     // Only block literals, captured statements, and lambda expressions can
   13053     // capture; other scopes don't work.
   13054     DeclContext *ParentDC = getParentOfCapturingContextOrNull(DC, Var,
   13055                                                               ExprLoc,
   13056                                                               BuildAndDiagnose,
   13057                                                               *this);
   13058     // We need to check for the parent *first* because, if we *have*
   13059     // private-captured a global variable, we need to recursively capture it in
   13060     // intermediate blocks, lambdas, etc.
   13061     if (!ParentDC) {
   13062       if (IsGlobal) {
   13063         FunctionScopesIndex = MaxFunctionScopesIndex - 1;
   13064         break;
   13065       }
   13066       return true;
   13067     }
   13068 
   13069     FunctionScopeInfo  *FSI = FunctionScopes[FunctionScopesIndex];
   13070     CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FSI);
   13071 
   13072 
   13073     // Check whether we've already captured it.
   13074     if (isVariableAlreadyCapturedInScopeInfo(CSI, Var, Nested, CaptureType,
   13075                                              DeclRefType))
   13076       break;
   13077     // If we are instantiating a generic lambda call operator body,
   13078     // we do not want to capture new variables.  What was captured
   13079     // during either a lambdas transformation or initial parsing
   13080     // should be used.
   13081     if (isGenericLambdaCallOperatorSpecialization(DC)) {
   13082       if (BuildAndDiagnose) {
   13083         LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(CSI);
   13084         if (LSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None) {
   13085           Diag(ExprLoc, diag::err_lambda_impcap) << Var->getDeclName();
   13086           Diag(Var->getLocation(), diag::note_previous_decl)
   13087              << Var->getDeclName();
   13088           Diag(LSI->Lambda->getLocStart(), diag::note_lambda_decl);
   13089         } else
   13090           diagnoseUncapturableValueReference(*this, ExprLoc, Var, DC);
   13091       }
   13092       return true;
   13093     }
   13094     // Certain capturing entities (lambdas, blocks etc.) are not allowed to capture
   13095     // certain types of variables (unnamed, variably modified types etc.)
   13096     // so check for eligibility.
   13097     if (!isVariableCapturable(CSI, Var, ExprLoc, BuildAndDiagnose, *this))
   13098        return true;
   13099 
   13100     // Try to capture variable-length arrays types.
   13101     if (Var->getType()->isVariablyModifiedType()) {
   13102       // We're going to walk down into the type and look for VLA
   13103       // expressions.
   13104       QualType QTy = Var->getType();
   13105       if (ParmVarDecl *PVD = dyn_cast_or_null<ParmVarDecl>(Var))
   13106         QTy = PVD->getOriginalType();
   13107       do {
   13108         const Type *Ty = QTy.getTypePtr();
   13109         switch (Ty->getTypeClass()) {
   13110 #define TYPE(Class, Base)
   13111 #define ABSTRACT_TYPE(Class, Base)
   13112 #define NON_CANONICAL_TYPE(Class, Base)
   13113 #define DEPENDENT_TYPE(Class, Base) case Type::Class:
   13114 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base)
   13115 #include "clang/AST/TypeNodes.def"
   13116           QTy = QualType();
   13117           break;
   13118         // These types are never variably-modified.
   13119         case Type::Builtin:
   13120         case Type::Complex:
   13121         case Type::Vector:
   13122         case Type::ExtVector:
   13123         case Type::Record:
   13124         case Type::Enum:
   13125         case Type::Elaborated:
   13126         case Type::TemplateSpecialization:
   13127         case Type::ObjCObject:
   13128         case Type::ObjCInterface:
   13129         case Type::ObjCObjectPointer:
   13130           llvm_unreachable("type class is never variably-modified!");
   13131         case Type::Adjusted:
   13132           QTy = cast<AdjustedType>(Ty)->getOriginalType();
   13133           break;
   13134         case Type::Decayed:
   13135           QTy = cast<DecayedType>(Ty)->getPointeeType();
   13136           break;
   13137         case Type::Pointer:
   13138           QTy = cast<PointerType>(Ty)->getPointeeType();
   13139           break;
   13140         case Type::BlockPointer:
   13141           QTy = cast<BlockPointerType>(Ty)->getPointeeType();
   13142           break;
   13143         case Type::LValueReference:
   13144         case Type::RValueReference:
   13145           QTy = cast<ReferenceType>(Ty)->getPointeeType();
   13146           break;
   13147         case Type::MemberPointer:
   13148           QTy = cast<MemberPointerType>(Ty)->getPointeeType();
   13149           break;
   13150         case Type::ConstantArray:
   13151         case Type::IncompleteArray:
   13152           // Losing element qualification here is fine.
   13153           QTy = cast<ArrayType>(Ty)->getElementType();
   13154           break;
   13155         case Type::VariableArray: {
   13156           // Losing element qualification here is fine.
   13157           const VariableArrayType *VAT = cast<VariableArrayType>(Ty);
   13158 
   13159           // Unknown size indication requires no size computation.
   13160           // Otherwise, evaluate and record it.
   13161           if (auto Size = VAT->getSizeExpr()) {
   13162             if (!CSI->isVLATypeCaptured(VAT)) {
   13163               RecordDecl *CapRecord = nullptr;
   13164               if (auto LSI = dyn_cast<LambdaScopeInfo>(CSI)) {
   13165                 CapRecord = LSI->Lambda;
   13166               } else if (auto CRSI = dyn_cast<CapturedRegionScopeInfo>(CSI)) {
   13167                 CapRecord = CRSI->TheRecordDecl;
   13168               }
   13169               if (CapRecord) {
   13170                 auto ExprLoc = Size->getExprLoc();
   13171                 auto SizeType = Context.getSizeType();
   13172                 // Build the non-static data member.
   13173                 auto Field = FieldDecl::Create(
   13174                     Context, CapRecord, ExprLoc, ExprLoc,
   13175                     /*Id*/ nullptr, SizeType, /*TInfo*/ nullptr,
   13176                     /*BW*/ nullptr, /*Mutable*/ false,
   13177                     /*InitStyle*/ ICIS_NoInit);
   13178                 Field->setImplicit(true);
   13179                 Field->setAccess(AS_private);
   13180                 Field->setCapturedVLAType(VAT);
   13181                 CapRecord->addDecl(Field);
   13182 
   13183                 CSI->addVLATypeCapture(ExprLoc, SizeType);
   13184               }
   13185             }
   13186           }
   13187           QTy = VAT->getElementType();
   13188           break;
   13189         }
   13190         case Type::FunctionProto:
   13191         case Type::FunctionNoProto:
   13192           QTy = cast<FunctionType>(Ty)->getReturnType();
   13193           break;
   13194         case Type::Paren:
   13195         case Type::TypeOf:
   13196         case Type::UnaryTransform:
   13197         case Type::Attributed:
   13198         case Type::SubstTemplateTypeParm:
   13199         case Type::PackExpansion:
   13200           // Keep walking after single level desugaring.
   13201           QTy = QTy.getSingleStepDesugaredType(getASTContext());
   13202           break;
   13203         case Type::Typedef:
   13204           QTy = cast<TypedefType>(Ty)->desugar();
   13205           break;
   13206         case Type::Decltype:
   13207           QTy = cast<DecltypeType>(Ty)->desugar();
   13208           break;
   13209         case Type::Auto:
   13210           QTy = cast<AutoType>(Ty)->getDeducedType();
   13211           break;
   13212         case Type::TypeOfExpr:
   13213           QTy = cast<TypeOfExprType>(Ty)->getUnderlyingExpr()->getType();
   13214           break;
   13215         case Type::Atomic:
   13216           QTy = cast<AtomicType>(Ty)->getValueType();
   13217           break;
   13218         }
   13219       } while (!QTy.isNull() && QTy->isVariablyModifiedType());
   13220     }
   13221 
   13222     if (getLangOpts().OpenMP) {
   13223       if (auto *RSI = dyn_cast<CapturedRegionScopeInfo>(CSI)) {
   13224         // OpenMP private variables should not be captured in outer scope, so
   13225         // just break here. Similarly, global variables that are captured in a
   13226         // target region should not be captured outside the scope of the region.
   13227         if (RSI->CapRegionKind == CR_OpenMP) {
   13228           auto isTargetCap = isOpenMPTargetCapturedVar(Var, OpenMPLevel);
   13229           // When we detect target captures we are looking from inside the
   13230           // target region, therefore we need to propagate the capture from the
   13231           // enclosing region. Therefore, the capture is not initially nested.
   13232           if (isTargetCap)
   13233             FunctionScopesIndex--;
   13234 
   13235           if (isTargetCap || isOpenMPPrivateVar(Var, OpenMPLevel)) {
   13236             Nested = !isTargetCap;
   13237             DeclRefType = DeclRefType.getUnqualifiedType();
   13238             CaptureType = Context.getLValueReferenceType(DeclRefType);
   13239             break;
   13240           }
   13241           ++OpenMPLevel;
   13242         }
   13243       }
   13244     }
   13245     if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_None && !Explicit) {
   13246       // No capture-default, and this is not an explicit capture
   13247       // so cannot capture this variable.
   13248       if (BuildAndDiagnose) {
   13249         Diag(ExprLoc, diag::err_lambda_impcap) << Var->getDeclName();
   13250         Diag(Var->getLocation(), diag::note_previous_decl)
   13251           << Var->getDeclName();
   13252         Diag(cast<LambdaScopeInfo>(CSI)->Lambda->getLocStart(),
   13253              diag::note_lambda_decl);
   13254         // FIXME: If we error out because an outer lambda can not implicitly
   13255         // capture a variable that an inner lambda explicitly captures, we
   13256         // should have the inner lambda do the explicit capture - because
   13257         // it makes for cleaner diagnostics later.  This would purely be done
   13258         // so that the diagnostic does not misleadingly claim that a variable
   13259         // can not be captured by a lambda implicitly even though it is captured
   13260         // explicitly.  Suggestion:
   13261         //  - create const bool VariableCaptureWasInitiallyExplicit = Explicit
   13262         //    at the function head
   13263         //  - cache the StartingDeclContext - this must be a lambda
   13264         //  - captureInLambda in the innermost lambda the variable.
   13265       }
   13266       return true;
   13267     }
   13268 
   13269     FunctionScopesIndex--;
   13270     DC = ParentDC;
   13271     Explicit = false;
   13272   } while (!VarDC->Equals(DC));
   13273 
   13274   // Walk back down the scope stack, (e.g. from outer lambda to inner lambda)
   13275   // computing the type of the capture at each step, checking type-specific
   13276   // requirements, and adding captures if requested.
   13277   // If the variable had already been captured previously, we start capturing
   13278   // at the lambda nested within that one.
   13279   for (unsigned I = ++FunctionScopesIndex, N = MaxFunctionScopesIndex + 1; I != N;
   13280        ++I) {
   13281     CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[I]);
   13282 
   13283     if (BlockScopeInfo *BSI = dyn_cast<BlockScopeInfo>(CSI)) {
   13284       if (!captureInBlock(BSI, Var, ExprLoc,
   13285                           BuildAndDiagnose, CaptureType,
   13286                           DeclRefType, Nested, *this))
   13287         return true;
   13288       Nested = true;
   13289     } else if (CapturedRegionScopeInfo *RSI = dyn_cast<CapturedRegionScopeInfo>(CSI)) {
   13290       if (!captureInCapturedRegion(RSI, Var, ExprLoc,
   13291                                    BuildAndDiagnose, CaptureType,
   13292                                    DeclRefType, Nested, *this))
   13293         return true;
   13294       Nested = true;
   13295     } else {
   13296       LambdaScopeInfo *LSI = cast<LambdaScopeInfo>(CSI);
   13297       if (!captureInLambda(LSI, Var, ExprLoc,
   13298                            BuildAndDiagnose, CaptureType,
   13299                            DeclRefType, Nested, Kind, EllipsisLoc,
   13300                             /*IsTopScope*/I == N - 1, *this))
   13301         return true;
   13302       Nested = true;
   13303     }
   13304   }
   13305   return false;
   13306 }
   13307 
   13308 bool Sema::tryCaptureVariable(VarDecl *Var, SourceLocation Loc,
   13309                               TryCaptureKind Kind, SourceLocation EllipsisLoc) {
   13310   QualType CaptureType;
   13311   QualType DeclRefType;
   13312   return tryCaptureVariable(Var, Loc, Kind, EllipsisLoc,
   13313                             /*BuildAndDiagnose=*/true, CaptureType,
   13314                             DeclRefType, nullptr);
   13315 }
   13316 
   13317 bool Sema::NeedToCaptureVariable(VarDecl *Var, SourceLocation Loc) {
   13318   QualType CaptureType;
   13319   QualType DeclRefType;
   13320   return !tryCaptureVariable(Var, Loc, TryCapture_Implicit, SourceLocation(),
   13321                              /*BuildAndDiagnose=*/false, CaptureType,
   13322                              DeclRefType, nullptr);
   13323 }
   13324 
   13325 QualType Sema::getCapturedDeclRefType(VarDecl *Var, SourceLocation Loc) {
   13326   QualType CaptureType;
   13327   QualType DeclRefType;
   13328 
   13329   // Determine whether we can capture this variable.
   13330   if (tryCaptureVariable(Var, Loc, TryCapture_Implicit, SourceLocation(),
   13331                          /*BuildAndDiagnose=*/false, CaptureType,
   13332                          DeclRefType, nullptr))
   13333     return QualType();
   13334 
   13335   return DeclRefType;
   13336 }
   13337 
   13338 
   13339 
   13340 // If either the type of the variable or the initializer is dependent,
   13341 // return false. Otherwise, determine whether the variable is a constant
   13342 // expression. Use this if you need to know if a variable that might or
   13343 // might not be dependent is truly a constant expression.
   13344 static inline bool IsVariableNonDependentAndAConstantExpression(VarDecl *Var,
   13345     ASTContext &Context) {
   13346 
   13347   if (Var->getType()->isDependentType())
   13348     return false;
   13349   const VarDecl *DefVD = nullptr;
   13350   Var->getAnyInitializer(DefVD);
   13351   if (!DefVD)
   13352     return false;
   13353   EvaluatedStmt *Eval = DefVD->ensureEvaluatedStmt();
   13354   Expr *Init = cast<Expr>(Eval->Value);
   13355   if (Init->isValueDependent())
   13356     return false;
   13357   return IsVariableAConstantExpression(Var, Context);
   13358 }
   13359 
   13360 
   13361 void Sema::UpdateMarkingForLValueToRValue(Expr *E) {
   13362   // Per C++11 [basic.def.odr], a variable is odr-used "unless it is
   13363   // an object that satisfies the requirements for appearing in a
   13364   // constant expression (5.19) and the lvalue-to-rvalue conversion (4.1)
   13365   // is immediately applied."  This function handles the lvalue-to-rvalue
   13366   // conversion part.
   13367   MaybeODRUseExprs.erase(E->IgnoreParens());
   13368 
   13369   // If we are in a lambda, check if this DeclRefExpr or MemberExpr refers
   13370   // to a variable that is a constant expression, and if so, identify it as
   13371   // a reference to a variable that does not involve an odr-use of that
   13372   // variable.
   13373   if (LambdaScopeInfo *LSI = getCurLambda()) {
   13374     Expr *SansParensExpr = E->IgnoreParens();
   13375     VarDecl *Var = nullptr;
   13376     if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(SansParensExpr))
   13377       Var = dyn_cast<VarDecl>(DRE->getFoundDecl());
   13378     else if (MemberExpr *ME = dyn_cast<MemberExpr>(SansParensExpr))
   13379       Var = dyn_cast<VarDecl>(ME->getMemberDecl());
   13380 
   13381     if (Var && IsVariableNonDependentAndAConstantExpression(Var, Context))
   13382       LSI->markVariableExprAsNonODRUsed(SansParensExpr);
   13383   }
   13384 }
   13385 
   13386 ExprResult Sema::ActOnConstantExpression(ExprResult Res) {
   13387   Res = CorrectDelayedTyposInExpr(Res);
   13388 
   13389   if (!Res.isUsable())
   13390     return Res;
   13391 
   13392   // If a constant-expression is a reference to a variable where we delay
   13393   // deciding whether it is an odr-use, just assume we will apply the
   13394   // lvalue-to-rvalue conversion.  In the one case where this doesn't happen
   13395   // (a non-type template argument), we have special handling anyway.
   13396   UpdateMarkingForLValueToRValue(Res.get());
   13397   return Res;
   13398 }
   13399 
   13400 void Sema::CleanupVarDeclMarking() {
   13401   for (Expr *E : MaybeODRUseExprs) {
   13402     VarDecl *Var;
   13403     SourceLocation Loc;
   13404     if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
   13405       Var = cast<VarDecl>(DRE->getDecl());
   13406       Loc = DRE->getLocation();
   13407     } else if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
   13408       Var = cast<VarDecl>(ME->getMemberDecl());
   13409       Loc = ME->getMemberLoc();
   13410     } else {
   13411       llvm_unreachable("Unexpected expression");
   13412     }
   13413 
   13414     MarkVarDeclODRUsed(Var, Loc, *this,
   13415                        /*MaxFunctionScopeIndex Pointer*/ nullptr);
   13416   }
   13417 
   13418   MaybeODRUseExprs.clear();
   13419 }
   13420 
   13421 
   13422 static void DoMarkVarDeclReferenced(Sema &SemaRef, SourceLocation Loc,
   13423                                     VarDecl *Var, Expr *E) {
   13424   assert((!E || isa<DeclRefExpr>(E) || isa<MemberExpr>(E)) &&
   13425          "Invalid Expr argument to DoMarkVarDeclReferenced");
   13426   Var->setReferenced();
   13427 
   13428   TemplateSpecializationKind TSK = Var->getTemplateSpecializationKind();
   13429   bool MarkODRUsed = true;
   13430 
   13431   // If the context is not potentially evaluated, this is not an odr-use and
   13432   // does not trigger instantiation.
   13433   if (!IsPotentiallyEvaluatedContext(SemaRef)) {
   13434     if (SemaRef.isUnevaluatedContext())
   13435       return;
   13436 
   13437     // If we don't yet know whether this context is going to end up being an
   13438     // evaluated context, and we're referencing a variable from an enclosing
   13439     // scope, add a potential capture.
   13440     //
   13441     // FIXME: Is this necessary? These contexts are only used for default
   13442     // arguments, where local variables can't be used.
   13443     const bool RefersToEnclosingScope =
   13444         (SemaRef.CurContext != Var->getDeclContext() &&
   13445          Var->getDeclContext()->isFunctionOrMethod() && Var->hasLocalStorage());
   13446     if (RefersToEnclosingScope) {
   13447       if (LambdaScopeInfo *const LSI = SemaRef.getCurLambda()) {
   13448         // If a variable could potentially be odr-used, defer marking it so
   13449         // until we finish analyzing the full expression for any
   13450         // lvalue-to-rvalue
   13451         // or discarded value conversions that would obviate odr-use.
   13452         // Add it to the list of potential captures that will be analyzed
   13453         // later (ActOnFinishFullExpr) for eventual capture and odr-use marking
   13454         // unless the variable is a reference that was initialized by a constant
   13455         // expression (this will never need to be captured or odr-used).
   13456         assert(E && "Capture variable should be used in an expression.");
   13457         if (!Var->getType()->isReferenceType() ||
   13458             !IsVariableNonDependentAndAConstantExpression(Var, SemaRef.Context))
   13459           LSI->addPotentialCapture(E->IgnoreParens());
   13460       }
   13461     }
   13462 
   13463     if (!isTemplateInstantiation(TSK))
   13464       return;
   13465 
   13466     // Instantiate, but do not mark as odr-used, variable templates.
   13467     MarkODRUsed = false;
   13468   }
   13469 
   13470   VarTemplateSpecializationDecl *VarSpec =
   13471       dyn_cast<VarTemplateSpecializationDecl>(Var);
   13472   assert(!isa<VarTemplatePartialSpecializationDecl>(Var) &&
   13473          "Can't instantiate a partial template specialization.");
   13474 
   13475   // Perform implicit instantiation of static data members, static data member
   13476   // templates of class templates, and variable template specializations. Delay
   13477   // instantiations of variable templates, except for those that could be used
   13478   // in a constant expression.
   13479   if (isTemplateInstantiation(TSK)) {
   13480     bool TryInstantiating = TSK == TSK_ImplicitInstantiation;
   13481 
   13482     if (TryInstantiating && !isa<VarTemplateSpecializationDecl>(Var)) {
   13483       if (Var->getPointOfInstantiation().isInvalid()) {
   13484         // This is a modification of an existing AST node. Notify listeners.
   13485         if (ASTMutationListener *L = SemaRef.getASTMutationListener())
   13486           L->StaticDataMemberInstantiated(Var);
   13487       } else if (!Var->isUsableInConstantExpressions(SemaRef.Context))
   13488         // Don't bother trying to instantiate it again, unless we might need
   13489         // its initializer before we get to the end of the TU.
   13490         TryInstantiating = false;
   13491     }
   13492 
   13493     if (Var->getPointOfInstantiation().isInvalid())
   13494       Var->setTemplateSpecializationKind(TSK, Loc);
   13495 
   13496     if (TryInstantiating) {
   13497       SourceLocation PointOfInstantiation = Var->getPointOfInstantiation();
   13498       bool InstantiationDependent = false;
   13499       bool IsNonDependent =
   13500           VarSpec ? !TemplateSpecializationType::anyDependentTemplateArguments(
   13501                         VarSpec->getTemplateArgsInfo(), InstantiationDependent)
   13502                   : true;
   13503 
   13504       // Do not instantiate specializations that are still type-dependent.
   13505       if (IsNonDependent) {
   13506         if (Var->isUsableInConstantExpressions(SemaRef.Context)) {
   13507           // Do not defer instantiations of variables which could be used in a
   13508           // constant expression.
   13509           SemaRef.InstantiateVariableDefinition(PointOfInstantiation, Var);
   13510         } else {
   13511           SemaRef.PendingInstantiations
   13512               .push_back(std::make_pair(Var, PointOfInstantiation));
   13513         }
   13514       }
   13515     }
   13516   }
   13517 
   13518   if(!MarkODRUsed) return;
   13519 
   13520   // Per C++11 [basic.def.odr], a variable is odr-used "unless it satisfies
   13521   // the requirements for appearing in a constant expression (5.19) and, if
   13522   // it is an object, the lvalue-to-rvalue conversion (4.1)
   13523   // is immediately applied."  We check the first part here, and
   13524   // Sema::UpdateMarkingForLValueToRValue deals with the second part.
   13525   // Note that we use the C++11 definition everywhere because nothing in
   13526   // C++03 depends on whether we get the C++03 version correct. The second
   13527   // part does not apply to references, since they are not objects.
   13528   if (E && IsVariableAConstantExpression(Var, SemaRef.Context)) {
   13529     // A reference initialized by a constant expression can never be
   13530     // odr-used, so simply ignore it.
   13531     if (!Var->getType()->isReferenceType())
   13532       SemaRef.MaybeODRUseExprs.insert(E);
   13533   } else
   13534     MarkVarDeclODRUsed(Var, Loc, SemaRef,
   13535                        /*MaxFunctionScopeIndex ptr*/ nullptr);
   13536 }
   13537 
   13538 /// \brief Mark a variable referenced, and check whether it is odr-used
   13539 /// (C++ [basic.def.odr]p2, C99 6.9p3).  Note that this should not be
   13540 /// used directly for normal expressions referring to VarDecl.
   13541 void Sema::MarkVariableReferenced(SourceLocation Loc, VarDecl *Var) {
   13542   DoMarkVarDeclReferenced(*this, Loc, Var, nullptr);
   13543 }
   13544 
   13545 static void MarkExprReferenced(Sema &SemaRef, SourceLocation Loc,
   13546                                Decl *D, Expr *E, bool OdrUse) {
   13547   if (VarDecl *Var = dyn_cast<VarDecl>(D)) {
   13548     DoMarkVarDeclReferenced(SemaRef, Loc, Var, E);
   13549     return;
   13550   }
   13551 
   13552   SemaRef.MarkAnyDeclReferenced(Loc, D, OdrUse);
   13553 
   13554   // If this is a call to a method via a cast, also mark the method in the
   13555   // derived class used in case codegen can devirtualize the call.
   13556   const MemberExpr *ME = dyn_cast<MemberExpr>(E);
   13557   if (!ME)
   13558     return;
   13559   CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ME->getMemberDecl());
   13560   if (!MD)
   13561     return;
   13562   // Only attempt to devirtualize if this is truly a virtual call.
   13563   bool IsVirtualCall = MD->isVirtual() &&
   13564                           ME->performsVirtualDispatch(SemaRef.getLangOpts());
   13565   if (!IsVirtualCall)
   13566     return;
   13567   const Expr *Base = ME->getBase();
   13568   const CXXRecordDecl *MostDerivedClassDecl = Base->getBestDynamicClassType();
   13569   if (!MostDerivedClassDecl)
   13570     return;
   13571   CXXMethodDecl *DM = MD->getCorrespondingMethodInClass(MostDerivedClassDecl);
   13572   if (!DM || DM->isPure())
   13573     return;
   13574   SemaRef.MarkAnyDeclReferenced(Loc, DM, OdrUse);
   13575 }
   13576 
   13577 /// \brief Perform reference-marking and odr-use handling for a DeclRefExpr.
   13578 void Sema::MarkDeclRefReferenced(DeclRefExpr *E) {
   13579   // TODO: update this with DR# once a defect report is filed.
   13580   // C++11 defect. The address of a pure member should not be an ODR use, even
   13581   // if it's a qualified reference.
   13582   bool OdrUse = true;
   13583   if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(E->getDecl()))
   13584     if (Method->isVirtual())
   13585       OdrUse = false;
   13586   MarkExprReferenced(*this, E->getLocation(), E->getDecl(), E, OdrUse);
   13587 }
   13588 
   13589 /// \brief Perform reference-marking and odr-use handling for a MemberExpr.
   13590 void Sema::MarkMemberReferenced(MemberExpr *E) {
   13591   // C++11 [basic.def.odr]p2:
   13592   //   A non-overloaded function whose name appears as a potentially-evaluated
   13593   //   expression or a member of a set of candidate functions, if selected by
   13594   //   overload resolution when referred to from a potentially-evaluated
   13595   //   expression, is odr-used, unless it is a pure virtual function and its
   13596   //   name is not explicitly qualified.
   13597   bool OdrUse = true;
   13598   if (E->performsVirtualDispatch(getLangOpts())) {
   13599     if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(E->getMemberDecl()))
   13600       if (Method->isPure())
   13601         OdrUse = false;
   13602   }
   13603   SourceLocation Loc = E->getMemberLoc().isValid() ?
   13604                             E->getMemberLoc() : E->getLocStart();
   13605   MarkExprReferenced(*this, Loc, E->getMemberDecl(), E, OdrUse);
   13606 }
   13607 
   13608 /// \brief Perform marking for a reference to an arbitrary declaration.  It
   13609 /// marks the declaration referenced, and performs odr-use checking for
   13610 /// functions and variables. This method should not be used when building a
   13611 /// normal expression which refers to a variable.
   13612 void Sema::MarkAnyDeclReferenced(SourceLocation Loc, Decl *D, bool OdrUse) {
   13613   if (OdrUse) {
   13614     if (auto *VD = dyn_cast<VarDecl>(D)) {
   13615       MarkVariableReferenced(Loc, VD);
   13616       return;
   13617     }
   13618   }
   13619   if (auto *FD = dyn_cast<FunctionDecl>(D)) {
   13620     MarkFunctionReferenced(Loc, FD, OdrUse);
   13621     return;
   13622   }
   13623   D->setReferenced();
   13624 }
   13625 
   13626 namespace {
   13627   // Mark all of the declarations referenced
   13628   // FIXME: Not fully implemented yet! We need to have a better understanding
   13629   // of when we're entering
   13630   class MarkReferencedDecls : public RecursiveASTVisitor<MarkReferencedDecls> {
   13631     Sema &S;
   13632     SourceLocation Loc;
   13633 
   13634   public:
   13635     typedef RecursiveASTVisitor<MarkReferencedDecls> Inherited;
   13636 
   13637     MarkReferencedDecls(Sema &S, SourceLocation Loc) : S(S), Loc(Loc) { }
   13638 
   13639     bool TraverseTemplateArgument(const TemplateArgument &Arg);
   13640     bool TraverseRecordType(RecordType *T);
   13641   };
   13642 }
   13643 
   13644 bool MarkReferencedDecls::TraverseTemplateArgument(
   13645     const TemplateArgument &Arg) {
   13646   if (Arg.getKind() == TemplateArgument::Declaration) {
   13647     if (Decl *D = Arg.getAsDecl())
   13648       S.MarkAnyDeclReferenced(Loc, D, true);
   13649   }
   13650 
   13651   return Inherited::TraverseTemplateArgument(Arg);
   13652 }
   13653 
   13654 bool MarkReferencedDecls::TraverseRecordType(RecordType *T) {
   13655   if (ClassTemplateSpecializationDecl *Spec
   13656                   = dyn_cast<ClassTemplateSpecializationDecl>(T->getDecl())) {
   13657     const TemplateArgumentList &Args = Spec->getTemplateArgs();
   13658     return TraverseTemplateArguments(Args.data(), Args.size());
   13659   }
   13660 
   13661   return true;
   13662 }
   13663 
   13664 void Sema::MarkDeclarationsReferencedInType(SourceLocation Loc, QualType T) {
   13665   MarkReferencedDecls Marker(*this, Loc);
   13666   Marker.TraverseType(Context.getCanonicalType(T));
   13667 }
   13668 
   13669 namespace {
   13670   /// \brief Helper class that marks all of the declarations referenced by
   13671   /// potentially-evaluated subexpressions as "referenced".
   13672   class EvaluatedExprMarker : public EvaluatedExprVisitor<EvaluatedExprMarker> {
   13673     Sema &S;
   13674     bool SkipLocalVariables;
   13675 
   13676   public:
   13677     typedef EvaluatedExprVisitor<EvaluatedExprMarker> Inherited;
   13678 
   13679     EvaluatedExprMarker(Sema &S, bool SkipLocalVariables)
   13680       : Inherited(S.Context), S(S), SkipLocalVariables(SkipLocalVariables) { }
   13681 
   13682     void VisitDeclRefExpr(DeclRefExpr *E) {
   13683       // If we were asked not to visit local variables, don't.
   13684       if (SkipLocalVariables) {
   13685         if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl()))
   13686           if (VD->hasLocalStorage())
   13687             return;
   13688       }
   13689 
   13690       S.MarkDeclRefReferenced(E);
   13691     }
   13692 
   13693     void VisitMemberExpr(MemberExpr *E) {
   13694       S.MarkMemberReferenced(E);
   13695       Inherited::VisitMemberExpr(E);
   13696     }
   13697 
   13698     void VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
   13699       S.MarkFunctionReferenced(E->getLocStart(),
   13700             const_cast<CXXDestructorDecl*>(E->getTemporary()->getDestructor()));
   13701       Visit(E->getSubExpr());
   13702     }
   13703 
   13704     void VisitCXXNewExpr(CXXNewExpr *E) {
   13705       if (E->getOperatorNew())
   13706         S.MarkFunctionReferenced(E->getLocStart(), E->getOperatorNew());
   13707       if (E->getOperatorDelete())
   13708         S.MarkFunctionReferenced(E->getLocStart(), E->getOperatorDelete());
   13709       Inherited::VisitCXXNewExpr(E);
   13710     }
   13711 
   13712     void VisitCXXDeleteExpr(CXXDeleteExpr *E) {
   13713       if (E->getOperatorDelete())
   13714         S.MarkFunctionReferenced(E->getLocStart(), E->getOperatorDelete());
   13715       QualType Destroyed = S.Context.getBaseElementType(E->getDestroyedType());
   13716       if (const RecordType *DestroyedRec = Destroyed->getAs<RecordType>()) {
   13717         CXXRecordDecl *Record = cast<CXXRecordDecl>(DestroyedRec->getDecl());
   13718         S.MarkFunctionReferenced(E->getLocStart(),
   13719                                     S.LookupDestructor(Record));
   13720       }
   13721 
   13722       Inherited::VisitCXXDeleteExpr(E);
   13723     }
   13724 
   13725     void VisitCXXConstructExpr(CXXConstructExpr *E) {
   13726       S.MarkFunctionReferenced(E->getLocStart(), E->getConstructor());
   13727       Inherited::VisitCXXConstructExpr(E);
   13728     }
   13729 
   13730     void VisitCXXDefaultArgExpr(CXXDefaultArgExpr *E) {
   13731       Visit(E->getExpr());
   13732     }
   13733 
   13734     void VisitImplicitCastExpr(ImplicitCastExpr *E) {
   13735       Inherited::VisitImplicitCastExpr(E);
   13736 
   13737       if (E->getCastKind() == CK_LValueToRValue)
   13738         S.UpdateMarkingForLValueToRValue(E->getSubExpr());
   13739     }
   13740   };
   13741 }
   13742 
   13743 /// \brief Mark any declarations that appear within this expression or any
   13744 /// potentially-evaluated subexpressions as "referenced".
   13745 ///
   13746 /// \param SkipLocalVariables If true, don't mark local variables as
   13747 /// 'referenced'.
   13748 void Sema::MarkDeclarationsReferencedInExpr(Expr *E,
   13749                                             bool SkipLocalVariables) {
   13750   EvaluatedExprMarker(*this, SkipLocalVariables).Visit(E);
   13751 }
   13752 
   13753 /// \brief Emit a diagnostic that describes an effect on the run-time behavior
   13754 /// of the program being compiled.
   13755 ///
   13756 /// This routine emits the given diagnostic when the code currently being
   13757 /// type-checked is "potentially evaluated", meaning that there is a
   13758 /// possibility that the code will actually be executable. Code in sizeof()
   13759 /// expressions, code used only during overload resolution, etc., are not
   13760 /// potentially evaluated. This routine will suppress such diagnostics or,
   13761 /// in the absolutely nutty case of potentially potentially evaluated
   13762 /// expressions (C++ typeid), queue the diagnostic to potentially emit it
   13763 /// later.
   13764 ///
   13765 /// This routine should be used for all diagnostics that describe the run-time
   13766 /// behavior of a program, such as passing a non-POD value through an ellipsis.
   13767 /// Failure to do so will likely result in spurious diagnostics or failures
   13768 /// during overload resolution or within sizeof/alignof/typeof/typeid.
   13769 bool Sema::DiagRuntimeBehavior(SourceLocation Loc, const Stmt *Statement,
   13770                                const PartialDiagnostic &PD) {
   13771   switch (ExprEvalContexts.back().Context) {
   13772   case Unevaluated:
   13773   case UnevaluatedAbstract:
   13774     // The argument will never be evaluated, so don't complain.
   13775     break;
   13776 
   13777   case ConstantEvaluated:
   13778     // Relevant diagnostics should be produced by constant evaluation.
   13779     break;
   13780 
   13781   case PotentiallyEvaluated:
   13782   case PotentiallyEvaluatedIfUsed:
   13783     if (Statement && getCurFunctionOrMethodDecl()) {
   13784       FunctionScopes.back()->PossiblyUnreachableDiags.
   13785         push_back(sema::PossiblyUnreachableDiag(PD, Loc, Statement));
   13786     }
   13787     else
   13788       Diag(Loc, PD);
   13789 
   13790     return true;
   13791   }
   13792 
   13793   return false;
   13794 }
   13795 
   13796 bool Sema::CheckCallReturnType(QualType ReturnType, SourceLocation Loc,
   13797                                CallExpr *CE, FunctionDecl *FD) {
   13798   if (ReturnType->isVoidType() || !ReturnType->isIncompleteType())
   13799     return false;
   13800 
   13801   // If we're inside a decltype's expression, don't check for a valid return
   13802   // type or construct temporaries until we know whether this is the last call.
   13803   if (ExprEvalContexts.back().IsDecltype) {
   13804     ExprEvalContexts.back().DelayedDecltypeCalls.push_back(CE);
   13805     return false;
   13806   }
   13807 
   13808   class CallReturnIncompleteDiagnoser : public TypeDiagnoser {
   13809     FunctionDecl *FD;
   13810     CallExpr *CE;
   13811 
   13812   public:
   13813     CallReturnIncompleteDiagnoser(FunctionDecl *FD, CallExpr *CE)
   13814       : FD(FD), CE(CE) { }
   13815 
   13816     void diagnose(Sema &S, SourceLocation Loc, QualType T) override {
   13817       if (!FD) {
   13818         S.Diag(Loc, diag::err_call_incomplete_return)
   13819           << T << CE->getSourceRange();
   13820         return;
   13821       }
   13822 
   13823       S.Diag(Loc, diag::err_call_function_incomplete_return)
   13824         << CE->getSourceRange() << FD->getDeclName() << T;
   13825       S.Diag(FD->getLocation(), diag::note_entity_declared_at)
   13826           << FD->getDeclName();
   13827     }
   13828   } Diagnoser(FD, CE);
   13829 
   13830   if (RequireCompleteType(Loc, ReturnType, Diagnoser))
   13831     return true;
   13832 
   13833   return false;
   13834 }
   13835 
   13836 // Diagnose the s/=/==/ and s/\|=/!=/ typos. Note that adding parentheses
   13837 // will prevent this condition from triggering, which is what we want.
   13838 void Sema::DiagnoseAssignmentAsCondition(Expr *E) {
   13839   SourceLocation Loc;
   13840 
   13841   unsigned diagnostic = diag::warn_condition_is_assignment;
   13842   bool IsOrAssign = false;
   13843 
   13844   if (BinaryOperator *Op = dyn_cast<BinaryOperator>(E)) {
   13845     if (Op->getOpcode() != BO_Assign && Op->getOpcode() != BO_OrAssign)
   13846       return;
   13847 
   13848     IsOrAssign = Op->getOpcode() == BO_OrAssign;
   13849 
   13850     // Greylist some idioms by putting them into a warning subcategory.
   13851     if (ObjCMessageExpr *ME
   13852           = dyn_cast<ObjCMessageExpr>(Op->getRHS()->IgnoreParenCasts())) {
   13853       Selector Sel = ME->getSelector();
   13854 
   13855       // self = [<foo> init...]
   13856       if (isSelfExpr(Op->getLHS()) && ME->getMethodFamily() == OMF_init)
   13857         diagnostic = diag::warn_condition_is_idiomatic_assignment;
   13858 
   13859       // <foo> = [<bar> nextObject]
   13860       else if (Sel.isUnarySelector() && Sel.getNameForSlot(0) == "nextObject")
   13861         diagnostic = diag::warn_condition_is_idiomatic_assignment;
   13862     }
   13863 
   13864     Loc = Op->getOperatorLoc();
   13865   } else if (CXXOperatorCallExpr *Op = dyn_cast<CXXOperatorCallExpr>(E)) {
   13866     if (Op->getOperator() != OO_Equal && Op->getOperator() != OO_PipeEqual)
   13867       return;
   13868 
   13869     IsOrAssign = Op->getOperator() == OO_PipeEqual;
   13870     Loc = Op->getOperatorLoc();
   13871   } else if (PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E))
   13872     return DiagnoseAssignmentAsCondition(POE->getSyntacticForm());
   13873   else {
   13874     // Not an assignment.
   13875     return;
   13876   }
   13877 
   13878   Diag(Loc, diagnostic) << E->getSourceRange();
   13879 
   13880   SourceLocation Open = E->getLocStart();
   13881   SourceLocation Close = getLocForEndOfToken(E->getSourceRange().getEnd());
   13882   Diag(Loc, diag::note_condition_assign_silence)
   13883         << FixItHint::CreateInsertion(Open, "(")
   13884         << FixItHint::CreateInsertion(Close, ")");
   13885 
   13886   if (IsOrAssign)
   13887     Diag(Loc, diag::note_condition_or_assign_to_comparison)
   13888       << FixItHint::CreateReplacement(Loc, "!=");
   13889   else
   13890     Diag(Loc, diag::note_condition_assign_to_comparison)
   13891       << FixItHint::CreateReplacement(Loc, "==");
   13892 }
   13893 
   13894 /// \brief Redundant parentheses over an equality comparison can indicate
   13895 /// that the user intended an assignment used as condition.
   13896 void Sema::DiagnoseEqualityWithExtraParens(ParenExpr *ParenE) {
   13897   // Don't warn if the parens came from a macro.
   13898   SourceLocation parenLoc = ParenE->getLocStart();
   13899   if (parenLoc.isInvalid() || parenLoc.isMacroID())
   13900     return;
   13901   // Don't warn for dependent expressions.
   13902   if (ParenE->isTypeDependent())
   13903     return;
   13904 
   13905   Expr *E = ParenE->IgnoreParens();
   13906 
   13907   if (BinaryOperator *opE = dyn_cast<BinaryOperator>(E))
   13908     if (opE->getOpcode() == BO_EQ &&
   13909         opE->getLHS()->IgnoreParenImpCasts()->isModifiableLvalue(Context)
   13910                                                            == Expr::MLV_Valid) {
   13911       SourceLocation Loc = opE->getOperatorLoc();
   13912 
   13913       Diag(Loc, diag::warn_equality_with_extra_parens) << E->getSourceRange();
   13914       SourceRange ParenERange = ParenE->getSourceRange();
   13915       Diag(Loc, diag::note_equality_comparison_silence)
   13916         << FixItHint::CreateRemoval(ParenERange.getBegin())
   13917         << FixItHint::CreateRemoval(ParenERange.getEnd());
   13918       Diag(Loc, diag::note_equality_comparison_to_assign)
   13919         << FixItHint::CreateReplacement(Loc, "=");
   13920     }
   13921 }
   13922 
   13923 ExprResult Sema::CheckBooleanCondition(Expr *E, SourceLocation Loc) {
   13924   DiagnoseAssignmentAsCondition(E);
   13925   if (ParenExpr *parenE = dyn_cast<ParenExpr>(E))
   13926     DiagnoseEqualityWithExtraParens(parenE);
   13927 
   13928   ExprResult result = CheckPlaceholderExpr(E);
   13929   if (result.isInvalid()) return ExprError();
   13930   E = result.get();
   13931 
   13932   if (!E->isTypeDependent()) {
   13933     if (getLangOpts().CPlusPlus)
   13934       return CheckCXXBooleanCondition(E); // C++ 6.4p4
   13935 
   13936     ExprResult ERes = DefaultFunctionArrayLvalueConversion(E);
   13937     if (ERes.isInvalid())
   13938       return ExprError();
   13939     E = ERes.get();
   13940 
   13941     QualType T = E->getType();
   13942     if (!T->isScalarType()) { // C99 6.8.4.1p1
   13943       Diag(Loc, diag::err_typecheck_statement_requires_scalar)
   13944         << T << E->getSourceRange();
   13945       return ExprError();
   13946     }
   13947     CheckBoolLikeConversion(E, Loc);
   13948   }
   13949 
   13950   return E;
   13951 }
   13952 
   13953 ExprResult Sema::ActOnBooleanCondition(Scope *S, SourceLocation Loc,
   13954                                        Expr *SubExpr) {
   13955   if (!SubExpr)
   13956     return ExprError();
   13957 
   13958   return CheckBooleanCondition(SubExpr, Loc);
   13959 }
   13960 
   13961 namespace {
   13962   /// A visitor for rebuilding a call to an __unknown_any expression
   13963   /// to have an appropriate type.
   13964   struct RebuildUnknownAnyFunction
   13965     : StmtVisitor<RebuildUnknownAnyFunction, ExprResult> {
   13966 
   13967     Sema &S;
   13968 
   13969     RebuildUnknownAnyFunction(Sema &S) : S(S) {}
   13970 
   13971     ExprResult VisitStmt(Stmt *S) {
   13972       llvm_unreachable("unexpected statement!");
   13973     }
   13974 
   13975     ExprResult VisitExpr(Expr *E) {
   13976       S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_call)
   13977         << E->getSourceRange();
   13978       return ExprError();
   13979     }
   13980 
   13981     /// Rebuild an expression which simply semantically wraps another
   13982     /// expression which it shares the type and value kind of.
   13983     template <class T> ExprResult rebuildSugarExpr(T *E) {
   13984       ExprResult SubResult = Visit(E->getSubExpr());
   13985       if (SubResult.isInvalid()) return ExprError();
   13986 
   13987       Expr *SubExpr = SubResult.get();
   13988       E->setSubExpr(SubExpr);
   13989       E->setType(SubExpr->getType());
   13990       E->setValueKind(SubExpr->getValueKind());
   13991       assert(E->getObjectKind() == OK_Ordinary);
   13992       return E;
   13993     }
   13994 
   13995     ExprResult VisitParenExpr(ParenExpr *E) {
   13996       return rebuildSugarExpr(E);
   13997     }
   13998 
   13999     ExprResult VisitUnaryExtension(UnaryOperator *E) {
   14000       return rebuildSugarExpr(E);
   14001     }
   14002 
   14003     ExprResult VisitUnaryAddrOf(UnaryOperator *E) {
   14004       ExprResult SubResult = Visit(E->getSubExpr());
   14005       if (SubResult.isInvalid()) return ExprError();
   14006 
   14007       Expr *SubExpr = SubResult.get();
   14008       E->setSubExpr(SubExpr);
   14009       E->setType(S.Context.getPointerType(SubExpr->getType()));
   14010       assert(E->getValueKind() == VK_RValue);
   14011       assert(E->getObjectKind() == OK_Ordinary);
   14012       return E;
   14013     }
   14014 
   14015     ExprResult resolveDecl(Expr *E, ValueDecl *VD) {
   14016       if (!isa<FunctionDecl>(VD)) return VisitExpr(E);
   14017 
   14018       E->setType(VD->getType());
   14019 
   14020       assert(E->getValueKind() == VK_RValue);
   14021       if (S.getLangOpts().CPlusPlus &&
   14022           !(isa<CXXMethodDecl>(VD) &&
   14023             cast<CXXMethodDecl>(VD)->isInstance()))
   14024         E->setValueKind(VK_LValue);
   14025 
   14026       return E;
   14027     }
   14028 
   14029     ExprResult VisitMemberExpr(MemberExpr *E) {
   14030       return resolveDecl(E, E->getMemberDecl());
   14031     }
   14032 
   14033     ExprResult VisitDeclRefExpr(DeclRefExpr *E) {
   14034       return resolveDecl(E, E->getDecl());
   14035     }
   14036   };
   14037 }
   14038 
   14039 /// Given a function expression of unknown-any type, try to rebuild it
   14040 /// to have a function type.
   14041 static ExprResult rebuildUnknownAnyFunction(Sema &S, Expr *FunctionExpr) {
   14042   ExprResult Result = RebuildUnknownAnyFunction(S).Visit(FunctionExpr);
   14043   if (Result.isInvalid()) return ExprError();
   14044   return S.DefaultFunctionArrayConversion(Result.get());
   14045 }
   14046 
   14047 namespace {
   14048   /// A visitor for rebuilding an expression of type __unknown_anytype
   14049   /// into one which resolves the type directly on the referring
   14050   /// expression.  Strict preservation of the original source
   14051   /// structure is not a goal.
   14052   struct RebuildUnknownAnyExpr
   14053     : StmtVisitor<RebuildUnknownAnyExpr, ExprResult> {
   14054 
   14055     Sema &S;
   14056 
   14057     /// The current destination type.
   14058     QualType DestType;
   14059 
   14060     RebuildUnknownAnyExpr(Sema &S, QualType CastType)
   14061       : S(S), DestType(CastType) {}
   14062 
   14063     ExprResult VisitStmt(Stmt *S) {
   14064       llvm_unreachable("unexpected statement!");
   14065     }
   14066 
   14067     ExprResult VisitExpr(Expr *E) {
   14068       S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_expr)
   14069         << E->getSourceRange();
   14070       return ExprError();
   14071     }
   14072 
   14073     ExprResult VisitCallExpr(CallExpr *E);
   14074     ExprResult VisitObjCMessageExpr(ObjCMessageExpr *E);
   14075 
   14076     /// Rebuild an expression which simply semantically wraps another
   14077     /// expression which it shares the type and value kind of.
   14078     template <class T> ExprResult rebuildSugarExpr(T *E) {
   14079       ExprResult SubResult = Visit(E->getSubExpr());
   14080       if (SubResult.isInvalid()) return ExprError();
   14081       Expr *SubExpr = SubResult.get();
   14082       E->setSubExpr(SubExpr);
   14083       E->setType(SubExpr->getType());
   14084       E->setValueKind(SubExpr->getValueKind());
   14085       assert(E->getObjectKind() == OK_Ordinary);
   14086       return E;
   14087     }
   14088 
   14089     ExprResult VisitParenExpr(ParenExpr *E) {
   14090       return rebuildSugarExpr(E);
   14091     }
   14092 
   14093     ExprResult VisitUnaryExtension(UnaryOperator *E) {
   14094       return rebuildSugarExpr(E);
   14095     }
   14096 
   14097     ExprResult VisitUnaryAddrOf(UnaryOperator *E) {
   14098       const PointerType *Ptr = DestType->getAs<PointerType>();
   14099       if (!Ptr) {
   14100         S.Diag(E->getOperatorLoc(), diag::err_unknown_any_addrof)
   14101           << E->getSourceRange();
   14102         return ExprError();
   14103       }
   14104       assert(E->getValueKind() == VK_RValue);
   14105       assert(E->getObjectKind() == OK_Ordinary);
   14106       E->setType(DestType);
   14107 
   14108       // Build the sub-expression as if it were an object of the pointee type.
   14109       DestType = Ptr->getPointeeType();
   14110       ExprResult SubResult = Visit(E->getSubExpr());
   14111       if (SubResult.isInvalid()) return ExprError();
   14112       E->setSubExpr(SubResult.get());
   14113       return E;
   14114     }
   14115 
   14116     ExprResult VisitImplicitCastExpr(ImplicitCastExpr *E);
   14117 
   14118     ExprResult resolveDecl(Expr *E, ValueDecl *VD);
   14119 
   14120     ExprResult VisitMemberExpr(MemberExpr *E) {
   14121       return resolveDecl(E, E->getMemberDecl());
   14122     }
   14123 
   14124     ExprResult VisitDeclRefExpr(DeclRefExpr *E) {
   14125       return resolveDecl(E, E->getDecl());
   14126     }
   14127   };
   14128 }
   14129 
   14130 /// Rebuilds a call expression which yielded __unknown_anytype.
   14131 ExprResult RebuildUnknownAnyExpr::VisitCallExpr(CallExpr *E) {
   14132   Expr *CalleeExpr = E->getCallee();
   14133 
   14134   enum FnKind {
   14135     FK_MemberFunction,
   14136     FK_FunctionPointer,
   14137     FK_BlockPointer
   14138   };
   14139 
   14140   FnKind Kind;
   14141   QualType CalleeType = CalleeExpr->getType();
   14142   if (CalleeType == S.Context.BoundMemberTy) {
   14143     assert(isa<CXXMemberCallExpr>(E) || isa<CXXOperatorCallExpr>(E));
   14144     Kind = FK_MemberFunction;
   14145     CalleeType = Expr::findBoundMemberType(CalleeExpr);
   14146   } else if (const PointerType *Ptr = CalleeType->getAs<PointerType>()) {
   14147     CalleeType = Ptr->getPointeeType();
   14148     Kind = FK_FunctionPointer;
   14149   } else {
   14150     CalleeType = CalleeType->castAs<BlockPointerType>()->getPointeeType();
   14151     Kind = FK_BlockPointer;
   14152   }
   14153   const FunctionType *FnType = CalleeType->castAs<FunctionType>();
   14154 
   14155   // Verify that this is a legal result type of a function.
   14156   if (DestType->isArrayType() || DestType->isFunctionType()) {
   14157     unsigned diagID = diag::err_func_returning_array_function;
   14158     if (Kind == FK_BlockPointer)
   14159       diagID = diag::err_block_returning_array_function;
   14160 
   14161     S.Diag(E->getExprLoc(), diagID)
   14162       << DestType->isFunctionType() << DestType;
   14163     return ExprError();
   14164   }
   14165 
   14166   // Otherwise, go ahead and set DestType as the call's result.
   14167   E->setType(DestType.getNonLValueExprType(S.Context));
   14168   E->setValueKind(Expr::getValueKindForType(DestType));
   14169   assert(E->getObjectKind() == OK_Ordinary);
   14170 
   14171   // Rebuild the function type, replacing the result type with DestType.
   14172   const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FnType);
   14173   if (Proto) {
   14174     // __unknown_anytype(...) is a special case used by the debugger when
   14175     // it has no idea what a function's signature is.
   14176     //
   14177     // We want to build this call essentially under the K&R
   14178     // unprototyped rules, but making a FunctionNoProtoType in C++
   14179     // would foul up all sorts of assumptions.  However, we cannot
   14180     // simply pass all arguments as variadic arguments, nor can we
   14181     // portably just call the function under a non-variadic type; see
   14182     // the comment on IR-gen's TargetInfo::isNoProtoCallVariadic.
   14183     // However, it turns out that in practice it is generally safe to
   14184     // call a function declared as "A foo(B,C,D);" under the prototype
   14185     // "A foo(B,C,D,...);".  The only known exception is with the
   14186     // Windows ABI, where any variadic function is implicitly cdecl
   14187     // regardless of its normal CC.  Therefore we change the parameter
   14188     // types to match the types of the arguments.
   14189     //
   14190     // This is a hack, but it is far superior to moving the
   14191     // corresponding target-specific code from IR-gen to Sema/AST.
   14192 
   14193     ArrayRef<QualType> ParamTypes = Proto->getParamTypes();
   14194     SmallVector<QualType, 8> ArgTypes;
   14195     if (ParamTypes.empty() && Proto->isVariadic()) { // the special case
   14196       ArgTypes.reserve(E->getNumArgs());
   14197       for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) {
   14198         Expr *Arg = E->getArg(i);
   14199         QualType ArgType = Arg->getType();
   14200         if (E->isLValue()) {
   14201           ArgType = S.Context.getLValueReferenceType(ArgType);
   14202         } else if (E->isXValue()) {
   14203           ArgType = S.Context.getRValueReferenceType(ArgType);
   14204         }
   14205         ArgTypes.push_back(ArgType);
   14206       }
   14207       ParamTypes = ArgTypes;
   14208     }
   14209     DestType = S.Context.getFunctionType(DestType, ParamTypes,
   14210                                          Proto->getExtProtoInfo());
   14211   } else {
   14212     DestType = S.Context.getFunctionNoProtoType(DestType,
   14213                                                 FnType->getExtInfo());
   14214   }
   14215 
   14216   // Rebuild the appropriate pointer-to-function type.
   14217   switch (Kind) {
   14218   case FK_MemberFunction:
   14219     // Nothing to do.
   14220     break;
   14221 
   14222   case FK_FunctionPointer:
   14223     DestType = S.Context.getPointerType(DestType);
   14224     break;
   14225 
   14226   case FK_BlockPointer:
   14227     DestType = S.Context.getBlockPointerType(DestType);
   14228     break;
   14229   }
   14230 
   14231   // Finally, we can recurse.
   14232   ExprResult CalleeResult = Visit(CalleeExpr);
   14233   if (!CalleeResult.isUsable()) return ExprError();
   14234   E->setCallee(CalleeResult.get());
   14235 
   14236   // Bind a temporary if necessary.
   14237   return S.MaybeBindToTemporary(E);
   14238 }
   14239 
   14240 ExprResult RebuildUnknownAnyExpr::VisitObjCMessageExpr(ObjCMessageExpr *E) {
   14241   // Verify that this is a legal result type of a call.
   14242   if (DestType->isArrayType() || DestType->isFunctionType()) {
   14243     S.Diag(E->getExprLoc(), diag::err_func_returning_array_function)
   14244       << DestType->isFunctionType() << DestType;
   14245     return ExprError();
   14246   }
   14247 
   14248   // Rewrite the method result type if available.
   14249   if (ObjCMethodDecl *Method = E->getMethodDecl()) {
   14250     assert(Method->getReturnType() == S.Context.UnknownAnyTy);
   14251     Method->setReturnType(DestType);
   14252   }
   14253 
   14254   // Change the type of the message.
   14255   E->setType(DestType.getNonReferenceType());
   14256   E->setValueKind(Expr::getValueKindForType(DestType));
   14257 
   14258   return S.MaybeBindToTemporary(E);
   14259 }
   14260 
   14261 ExprResult RebuildUnknownAnyExpr::VisitImplicitCastExpr(ImplicitCastExpr *E) {
   14262   // The only case we should ever see here is a function-to-pointer decay.
   14263   if (E->getCastKind() == CK_FunctionToPointerDecay) {
   14264     assert(E->getValueKind() == VK_RValue);
   14265     assert(E->getObjectKind() == OK_Ordinary);
   14266 
   14267     E->setType(DestType);
   14268 
   14269     // Rebuild the sub-expression as the pointee (function) type.
   14270     DestType = DestType->castAs<PointerType>()->getPointeeType();
   14271 
   14272     ExprResult Result = Visit(E->getSubExpr());
   14273     if (!Result.isUsable()) return ExprError();
   14274 
   14275     E->setSubExpr(Result.get());
   14276     return E;
   14277   } else if (E->getCastKind() == CK_LValueToRValue) {
   14278     assert(E->getValueKind() == VK_RValue);
   14279     assert(E->getObjectKind() == OK_Ordinary);
   14280 
   14281     assert(isa<BlockPointerType>(E->getType()));
   14282 
   14283     E->setType(DestType);
   14284 
   14285     // The sub-expression has to be a lvalue reference, so rebuild it as such.
   14286     DestType = S.Context.getLValueReferenceType(DestType);
   14287 
   14288     ExprResult Result = Visit(E->getSubExpr());
   14289     if (!Result.isUsable()) return ExprError();
   14290 
   14291     E->setSubExpr(Result.get());
   14292     return E;
   14293   } else {
   14294     llvm_unreachable("Unhandled cast type!");
   14295   }
   14296 }
   14297 
   14298 ExprResult RebuildUnknownAnyExpr::resolveDecl(Expr *E, ValueDecl *VD) {
   14299   ExprValueKind ValueKind = VK_LValue;
   14300   QualType Type = DestType;
   14301 
   14302   // We know how to make this work for certain kinds of decls:
   14303 
   14304   //  - functions
   14305   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(VD)) {
   14306     if (const PointerType *Ptr = Type->getAs<PointerType>()) {
   14307       DestType = Ptr->getPointeeType();
   14308       ExprResult Result = resolveDecl(E, VD);
   14309       if (Result.isInvalid()) return ExprError();
   14310       return S.ImpCastExprToType(Result.get(), Type,
   14311                                  CK_FunctionToPointerDecay, VK_RValue);
   14312     }
   14313 
   14314     if (!Type->isFunctionType()) {
   14315       S.Diag(E->getExprLoc(), diag::err_unknown_any_function)
   14316         << VD << E->getSourceRange();
   14317       return ExprError();
   14318     }
   14319     if (const FunctionProtoType *FT = Type->getAs<FunctionProtoType>()) {
   14320       // We must match the FunctionDecl's type to the hack introduced in
   14321       // RebuildUnknownAnyExpr::VisitCallExpr to vararg functions of unknown
   14322       // type. See the lengthy commentary in that routine.
   14323       QualType FDT = FD->getType();
   14324       const FunctionType *FnType = FDT->castAs<FunctionType>();
   14325       const FunctionProtoType *Proto = dyn_cast_or_null<FunctionProtoType>(FnType);
   14326       DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
   14327       if (DRE && Proto && Proto->getParamTypes().empty() && Proto->isVariadic()) {
   14328         SourceLocation Loc = FD->getLocation();
   14329         FunctionDecl *NewFD = FunctionDecl::Create(FD->getASTContext(),
   14330                                       FD->getDeclContext(),
   14331                                       Loc, Loc, FD->getNameInfo().getName(),
   14332                                       DestType, FD->getTypeSourceInfo(),
   14333                                       SC_None, false/*isInlineSpecified*/,
   14334                                       FD->hasPrototype(),
   14335                                       false/*isConstexprSpecified*/);
   14336 
   14337         if (FD->getQualifier())
   14338           NewFD->setQualifierInfo(FD->getQualifierLoc());
   14339 
   14340         SmallVector<ParmVarDecl*, 16> Params;
   14341         for (const auto &AI : FT->param_types()) {
   14342           ParmVarDecl *Param =
   14343             S.BuildParmVarDeclForTypedef(FD, Loc, AI);
   14344           Param->setScopeInfo(0, Params.size());
   14345           Params.push_back(Param);
   14346         }
   14347         NewFD->setParams(Params);
   14348         DRE->setDecl(NewFD);
   14349         VD = DRE->getDecl();
   14350       }
   14351     }
   14352 
   14353     if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
   14354       if (MD->isInstance()) {
   14355         ValueKind = VK_RValue;
   14356         Type = S.Context.BoundMemberTy;
   14357       }
   14358 
   14359     // Function references aren't l-values in C.
   14360     if (!S.getLangOpts().CPlusPlus)
   14361       ValueKind = VK_RValue;
   14362 
   14363   //  - variables
   14364   } else if (isa<VarDecl>(VD)) {
   14365     if (const ReferenceType *RefTy = Type->getAs<ReferenceType>()) {
   14366       Type = RefTy->getPointeeType();
   14367     } else if (Type->isFunctionType()) {
   14368       S.Diag(E->getExprLoc(), diag::err_unknown_any_var_function_type)
   14369         << VD << E->getSourceRange();
   14370       return ExprError();
   14371     }
   14372 
   14373   //  - nothing else
   14374   } else {
   14375     S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_decl)
   14376       << VD << E->getSourceRange();
   14377     return ExprError();
   14378   }
   14379 
   14380   // Modifying the declaration like this is friendly to IR-gen but
   14381   // also really dangerous.
   14382   VD->setType(DestType);
   14383   E->setType(Type);
   14384   E->setValueKind(ValueKind);
   14385   return E;
   14386 }
   14387 
   14388 /// Check a cast of an unknown-any type.  We intentionally only
   14389 /// trigger this for C-style casts.
   14390 ExprResult Sema::checkUnknownAnyCast(SourceRange TypeRange, QualType CastType,
   14391                                      Expr *CastExpr, CastKind &CastKind,
   14392                                      ExprValueKind &VK, CXXCastPath &Path) {
   14393   // Rewrite the casted expression from scratch.
   14394   ExprResult result = RebuildUnknownAnyExpr(*this, CastType).Visit(CastExpr);
   14395   if (!result.isUsable()) return ExprError();
   14396 
   14397   CastExpr = result.get();
   14398   VK = CastExpr->getValueKind();
   14399   CastKind = CK_NoOp;
   14400 
   14401   return CastExpr;
   14402 }
   14403 
   14404 ExprResult Sema::forceUnknownAnyToType(Expr *E, QualType ToType) {
   14405   return RebuildUnknownAnyExpr(*this, ToType).Visit(E);
   14406 }
   14407 
   14408 ExprResult Sema::checkUnknownAnyArg(SourceLocation callLoc,
   14409                                     Expr *arg, QualType &paramType) {
   14410   // If the syntactic form of the argument is not an explicit cast of
   14411   // any sort, just do default argument promotion.
   14412   ExplicitCastExpr *castArg = dyn_cast<ExplicitCastExpr>(arg->IgnoreParens());
   14413   if (!castArg) {
   14414     ExprResult result = DefaultArgumentPromotion(arg);
   14415     if (result.isInvalid()) return ExprError();
   14416     paramType = result.get()->getType();
   14417     return result;
   14418   }
   14419 
   14420   // Otherwise, use the type that was written in the explicit cast.
   14421   assert(!arg->hasPlaceholderType());
   14422   paramType = castArg->getTypeAsWritten();
   14423 
   14424   // Copy-initialize a parameter of that type.
   14425   InitializedEntity entity =
   14426     InitializedEntity::InitializeParameter(Context, paramType,
   14427                                            /*consumed*/ false);
   14428   return PerformCopyInitialization(entity, callLoc, arg);
   14429 }
   14430 
   14431 static ExprResult diagnoseUnknownAnyExpr(Sema &S, Expr *E) {
   14432   Expr *orig = E;
   14433   unsigned diagID = diag::err_uncasted_use_of_unknown_any;
   14434   while (true) {
   14435     E = E->IgnoreParenImpCasts();
   14436     if (CallExpr *call = dyn_cast<CallExpr>(E)) {
   14437       E = call->getCallee();
   14438       diagID = diag::err_uncasted_call_of_unknown_any;
   14439     } else {
   14440       break;
   14441     }
   14442   }
   14443 
   14444   SourceLocation loc;
   14445   NamedDecl *d;
   14446   if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(E)) {
   14447     loc = ref->getLocation();
   14448     d = ref->getDecl();
   14449   } else if (MemberExpr *mem = dyn_cast<MemberExpr>(E)) {
   14450     loc = mem->getMemberLoc();
   14451     d = mem->getMemberDecl();
   14452   } else if (ObjCMessageExpr *msg = dyn_cast<ObjCMessageExpr>(E)) {
   14453     diagID = diag::err_uncasted_call_of_unknown_any;
   14454     loc = msg->getSelectorStartLoc();
   14455     d = msg->getMethodDecl();
   14456     if (!d) {
   14457       S.Diag(loc, diag::err_uncasted_send_to_unknown_any_method)
   14458         << static_cast<unsigned>(msg->isClassMessage()) << msg->getSelector()
   14459         << orig->getSourceRange();
   14460       return ExprError();
   14461     }
   14462   } else {
   14463     S.Diag(E->getExprLoc(), diag::err_unsupported_unknown_any_expr)
   14464       << E->getSourceRange();
   14465     return ExprError();
   14466   }
   14467 
   14468   S.Diag(loc, diagID) << d << orig->getSourceRange();
   14469 
   14470   // Never recoverable.
   14471   return ExprError();
   14472 }
   14473 
   14474 /// Check for operands with placeholder types and complain if found.
   14475 /// Returns true if there was an error and no recovery was possible.
   14476 ExprResult Sema::CheckPlaceholderExpr(Expr *E) {
   14477   if (!getLangOpts().CPlusPlus) {
   14478     // C cannot handle TypoExpr nodes on either side of a binop because it
   14479     // doesn't handle dependent types properly, so make sure any TypoExprs have
   14480     // been dealt with before checking the operands.
   14481     ExprResult Result = CorrectDelayedTyposInExpr(E);
   14482     if (!Result.isUsable()) return ExprError();
   14483     E = Result.get();
   14484   }
   14485 
   14486   const BuiltinType *placeholderType = E->getType()->getAsPlaceholderType();
   14487   if (!placeholderType) return E;
   14488 
   14489   switch (placeholderType->getKind()) {
   14490 
   14491   // Overloaded expressions.
   14492   case BuiltinType::Overload: {
   14493     // Try to resolve a single function template specialization.
   14494     // This is obligatory.
   14495     ExprResult result = E;
   14496     if (ResolveAndFixSingleFunctionTemplateSpecialization(result, false)) {
   14497       return result;
   14498 
   14499     // If that failed, try to recover with a call.
   14500     } else {
   14501       tryToRecoverWithCall(result, PDiag(diag::err_ovl_unresolvable),
   14502                            /*complain*/ true);
   14503       return result;
   14504     }
   14505   }
   14506 
   14507   // Bound member functions.
   14508   case BuiltinType::BoundMember: {
   14509     ExprResult result = E;
   14510     const Expr *BME = E->IgnoreParens();
   14511     PartialDiagnostic PD = PDiag(diag::err_bound_member_function);
   14512     // Try to give a nicer diagnostic if it is a bound member that we recognize.
   14513     if (isa<CXXPseudoDestructorExpr>(BME)) {
   14514       PD = PDiag(diag::err_dtor_expr_without_call) << /*pseudo-destructor*/ 1;
   14515     } else if (const auto *ME = dyn_cast<MemberExpr>(BME)) {
   14516       if (ME->getMemberNameInfo().getName().getNameKind() ==
   14517           DeclarationName::CXXDestructorName)
   14518         PD = PDiag(diag::err_dtor_expr_without_call) << /*destructor*/ 0;
   14519     }
   14520     tryToRecoverWithCall(result, PD,
   14521                          /*complain*/ true);
   14522     return result;
   14523   }
   14524 
   14525   // ARC unbridged casts.
   14526   case BuiltinType::ARCUnbridgedCast: {
   14527     Expr *realCast = stripARCUnbridgedCast(E);
   14528     diagnoseARCUnbridgedCast(realCast);
   14529     return realCast;
   14530   }
   14531 
   14532   // Expressions of unknown type.
   14533   case BuiltinType::UnknownAny:
   14534     return diagnoseUnknownAnyExpr(*this, E);
   14535 
   14536   // Pseudo-objects.
   14537   case BuiltinType::PseudoObject:
   14538     return checkPseudoObjectRValue(E);
   14539 
   14540   case BuiltinType::BuiltinFn: {
   14541     // Accept __noop without parens by implicitly converting it to a call expr.
   14542     auto *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts());
   14543     if (DRE) {
   14544       auto *FD = cast<FunctionDecl>(DRE->getDecl());
   14545       if (FD->getBuiltinID() == Builtin::BI__noop) {
   14546         E = ImpCastExprToType(E, Context.getPointerType(FD->getType()),
   14547                               CK_BuiltinFnToFnPtr).get();
   14548         return new (Context) CallExpr(Context, E, None, Context.IntTy,
   14549                                       VK_RValue, SourceLocation());
   14550       }
   14551     }
   14552 
   14553     Diag(E->getLocStart(), diag::err_builtin_fn_use);
   14554     return ExprError();
   14555   }
   14556 
   14557   // Expressions of unknown type.
   14558   case BuiltinType::OMPArraySection:
   14559     Diag(E->getLocStart(), diag::err_omp_array_section_use);
   14560     return ExprError();
   14561 
   14562   // Everything else should be impossible.
   14563 #define BUILTIN_TYPE(Id, SingletonId) \
   14564   case BuiltinType::Id:
   14565 #define PLACEHOLDER_TYPE(Id, SingletonId)
   14566 #include "clang/AST/BuiltinTypes.def"
   14567     break;
   14568   }
   14569 
   14570   llvm_unreachable("invalid placeholder type!");
   14571 }
   14572 
   14573 bool Sema::CheckCaseExpression(Expr *E) {
   14574   if (E->isTypeDependent())
   14575     return true;
   14576   if (E->isValueDependent() || E->isIntegerConstantExpr(Context))
   14577     return E->getType()->isIntegralOrEnumerationType();
   14578   return false;
   14579 }
   14580 
   14581 /// ActOnObjCBoolLiteral - Parse {__objc_yes,__objc_no} literals.
   14582 ExprResult
   14583 Sema::ActOnObjCBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) {
   14584   assert((Kind == tok::kw___objc_yes || Kind == tok::kw___objc_no) &&
   14585          "Unknown Objective-C Boolean value!");
   14586   QualType BoolT = Context.ObjCBuiltinBoolTy;
   14587   if (!Context.getBOOLDecl()) {
   14588     LookupResult Result(*this, &Context.Idents.get("BOOL"), OpLoc,
   14589                         Sema::LookupOrdinaryName);
   14590     if (LookupName(Result, getCurScope()) && Result.isSingleResult()) {
   14591       NamedDecl *ND = Result.getFoundDecl();
   14592       if (TypedefDecl *TD = dyn_cast<TypedefDecl>(ND))
   14593         Context.setBOOLDecl(TD);
   14594     }
   14595   }
   14596   if (Context.getBOOLDecl())
   14597     BoolT = Context.getBOOLType();
   14598   return new (Context)
   14599       ObjCBoolLiteralExpr(Kind == tok::kw___objc_yes, BoolT, OpLoc);
   14600 }
   14601