Home | History | Annotate | Download | only in Sema
      1 //===--- SemaExpr.cpp - Semantic Analysis for Expressions -----------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 //  This file implements semantic analysis for expressions.
     11 //
     12 //===----------------------------------------------------------------------===//
     13 
     14 #include "clang/Sema/SemaInternal.h"
     15 #include "TreeTransform.h"
     16 #include "clang/AST/ASTConsumer.h"
     17 #include "clang/AST/ASTContext.h"
     18 #include "clang/AST/ASTLambda.h"
     19 #include "clang/AST/ASTMutationListener.h"
     20 #include "clang/AST/CXXInheritance.h"
     21 #include "clang/AST/DeclObjC.h"
     22 #include "clang/AST/DeclTemplate.h"
     23 #include "clang/AST/EvaluatedExprVisitor.h"
     24 #include "clang/AST/Expr.h"
     25 #include "clang/AST/ExprCXX.h"
     26 #include "clang/AST/ExprObjC.h"
     27 #include "clang/AST/ExprOpenMP.h"
     28 #include "clang/AST/RecursiveASTVisitor.h"
     29 #include "clang/AST/TypeLoc.h"
     30 #include "clang/Basic/PartialDiagnostic.h"
     31 #include "clang/Basic/SourceManager.h"
     32 #include "clang/Basic/TargetInfo.h"
     33 #include "clang/Lex/LiteralSupport.h"
     34 #include "clang/Lex/Preprocessor.h"
     35 #include "clang/Sema/AnalysisBasedWarnings.h"
     36 #include "clang/Sema/DeclSpec.h"
     37 #include "clang/Sema/DelayedDiagnostic.h"
     38 #include "clang/Sema/Designator.h"
     39 #include "clang/Sema/Initialization.h"
     40 #include "clang/Sema/Lookup.h"
     41 #include "clang/Sema/ParsedTemplate.h"
     42 #include "clang/Sema/Scope.h"
     43 #include "clang/Sema/ScopeInfo.h"
     44 #include "clang/Sema/SemaFixItUtils.h"
     45 #include "clang/Sema/Template.h"
     46 #include "llvm/Support/ConvertUTF.h"
     47 using namespace clang;
     48 using namespace sema;
     49 
     50 /// \brief Determine whether the use of this declaration is valid, without
     51 /// emitting diagnostics.
     52 bool Sema::CanUseDecl(NamedDecl *D) {
     53   // See if this is an auto-typed variable whose initializer we are parsing.
     54   if (ParsingInitForAutoVars.count(D))
     55     return false;
     56 
     57   // See if this is a deleted function.
     58   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
     59     if (FD->isDeleted())
     60       return false;
     61 
     62     // If the function has a deduced return type, and we can't deduce it,
     63     // then we can't use it either.
     64     if (getLangOpts().CPlusPlus14 && FD->getReturnType()->isUndeducedType() &&
     65         DeduceReturnType(FD, SourceLocation(), /*Diagnose*/ false))
     66       return false;
     67   }
     68 
     69   // See if this function is unavailable.
     70   if (D->getAvailability() == AR_Unavailable &&
     71       cast<Decl>(CurContext)->getAvailability() != AR_Unavailable)
     72     return false;
     73 
     74   return true;
     75 }
     76 
     77 static void DiagnoseUnusedOfDecl(Sema &S, NamedDecl *D, SourceLocation Loc) {
     78   // Warn if this is used but marked unused.
     79   if (D->hasAttr<UnusedAttr>()) {
     80     const Decl *DC = cast_or_null<Decl>(S.getCurObjCLexicalContext());
     81     if (DC && !DC->hasAttr<UnusedAttr>())
     82       S.Diag(Loc, diag::warn_used_but_marked_unused) << D->getDeclName();
     83   }
     84 }
     85 
     86 static bool HasRedeclarationWithoutAvailabilityInCategory(const Decl *D) {
     87   const auto *OMD = dyn_cast<ObjCMethodDecl>(D);
     88   if (!OMD)
     89     return false;
     90   const ObjCInterfaceDecl *OID = OMD->getClassInterface();
     91   if (!OID)
     92     return false;
     93 
     94   for (const ObjCCategoryDecl *Cat : OID->visible_categories())
     95     if (ObjCMethodDecl *CatMeth =
     96             Cat->getMethod(OMD->getSelector(), OMD->isInstanceMethod()))
     97       if (!CatMeth->hasAttr<AvailabilityAttr>())
     98         return true;
     99   return false;
    100 }
    101 
    102 static AvailabilityResult
    103 DiagnoseAvailabilityOfDecl(Sema &S, NamedDecl *D, SourceLocation Loc,
    104                            const ObjCInterfaceDecl *UnknownObjCClass,
    105                            bool ObjCPropertyAccess) {
    106   // See if this declaration is unavailable or deprecated.
    107   std::string Message;
    108   AvailabilityResult Result = D->getAvailability(&Message);
    109 
    110   // For typedefs, if the typedef declaration appears available look
    111   // to the underlying type to see if it is more restrictive.
    112   while (const TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D)) {
    113     if (Result == AR_Available) {
    114       if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
    115         D = TT->getDecl();
    116         Result = D->getAvailability(&Message);
    117         continue;
    118       }
    119     }
    120     break;
    121   }
    122 
    123   // Forward class declarations get their attributes from their definition.
    124   if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(D)) {
    125     if (IDecl->getDefinition()) {
    126       D = IDecl->getDefinition();
    127       Result = D->getAvailability(&Message);
    128     }
    129   }
    130 
    131   if (const EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(D))
    132     if (Result == AR_Available) {
    133       const DeclContext *DC = ECD->getDeclContext();
    134       if (const EnumDecl *TheEnumDecl = dyn_cast<EnumDecl>(DC))
    135         Result = TheEnumDecl->getAvailability(&Message);
    136     }
    137 
    138   const ObjCPropertyDecl *ObjCPDecl = nullptr;
    139   if (Result == AR_Deprecated || Result == AR_Unavailable ||
    140       AR_NotYetIntroduced) {
    141     if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
    142       if (const ObjCPropertyDecl *PD = MD->findPropertyDecl()) {
    143         AvailabilityResult PDeclResult = PD->getAvailability(nullptr);
    144         if (PDeclResult == Result)
    145           ObjCPDecl = PD;
    146       }
    147     }
    148   }
    149 
    150   switch (Result) {
    151     case AR_Available:
    152       break;
    153 
    154     case AR_Deprecated:
    155       if (S.getCurContextAvailability() != AR_Deprecated)
    156         S.EmitAvailabilityWarning(Sema::AD_Deprecation,
    157                                   D, Message, Loc, UnknownObjCClass, ObjCPDecl,
    158                                   ObjCPropertyAccess);
    159       break;
    160 
    161     case AR_NotYetIntroduced: {
    162       // Don't do this for enums, they can't be redeclared.
    163       if (isa<EnumConstantDecl>(D) || isa<EnumDecl>(D))
    164         break;
    165 
    166       bool Warn = !D->getAttr<AvailabilityAttr>()->isInherited();
    167       // Objective-C method declarations in categories are not modelled as
    168       // redeclarations, so manually look for a redeclaration in a category
    169       // if necessary.
    170       if (Warn && HasRedeclarationWithoutAvailabilityInCategory(D))
    171         Warn = false;
    172       // In general, D will point to the most recent redeclaration. However,
    173       // for `@class A;` decls, this isn't true -- manually go through the
    174       // redecl chain in that case.
    175       if (Warn && isa<ObjCInterfaceDecl>(D))
    176         for (Decl *Redecl = D->getMostRecentDecl(); Redecl && Warn;
    177              Redecl = Redecl->getPreviousDecl())
    178           if (!Redecl->hasAttr<AvailabilityAttr>() ||
    179               Redecl->getAttr<AvailabilityAttr>()->isInherited())
    180             Warn = false;
    181 
    182       if (Warn)
    183         S.EmitAvailabilityWarning(Sema::AD_Partial, D, Message, Loc,
    184                                   UnknownObjCClass, ObjCPDecl,
    185                                   ObjCPropertyAccess);
    186       break;
    187     }
    188 
    189     case AR_Unavailable:
    190       if (S.getCurContextAvailability() != AR_Unavailable)
    191         S.EmitAvailabilityWarning(Sema::AD_Unavailable,
    192                                   D, Message, Loc, UnknownObjCClass, ObjCPDecl,
    193                                   ObjCPropertyAccess);
    194       break;
    195 
    196     }
    197     return Result;
    198 }
    199 
    200 /// \brief Emit a note explaining that this function is deleted.
    201 void Sema::NoteDeletedFunction(FunctionDecl *Decl) {
    202   assert(Decl->isDeleted());
    203 
    204   CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Decl);
    205 
    206   if (Method && Method->isDeleted() && Method->isDefaulted()) {
    207     // If the method was explicitly defaulted, point at that declaration.
    208     if (!Method->isImplicit())
    209       Diag(Decl->getLocation(), diag::note_implicitly_deleted);
    210 
    211     // Try to diagnose why this special member function was implicitly
    212     // deleted. This might fail, if that reason no longer applies.
    213     CXXSpecialMember CSM = getSpecialMember(Method);
    214     if (CSM != CXXInvalid)
    215       ShouldDeleteSpecialMember(Method, CSM, /*Diagnose=*/true);
    216 
    217     return;
    218   }
    219 
    220   if (CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(Decl)) {
    221     if (CXXConstructorDecl *BaseCD =
    222             const_cast<CXXConstructorDecl*>(CD->getInheritedConstructor())) {
    223       Diag(Decl->getLocation(), diag::note_inherited_deleted_here);
    224       if (BaseCD->isDeleted()) {
    225         NoteDeletedFunction(BaseCD);
    226       } else {
    227         // FIXME: An explanation of why exactly it can't be inherited
    228         // would be nice.
    229         Diag(BaseCD->getLocation(), diag::note_cannot_inherit);
    230       }
    231       return;
    232     }
    233   }
    234 
    235   Diag(Decl->getLocation(), diag::note_availability_specified_here)
    236     << Decl << true;
    237 }
    238 
    239 /// \brief Determine whether a FunctionDecl was ever declared with an
    240 /// explicit storage class.
    241 static bool hasAnyExplicitStorageClass(const FunctionDecl *D) {
    242   for (auto I : D->redecls()) {
    243     if (I->getStorageClass() != SC_None)
    244       return true;
    245   }
    246   return false;
    247 }
    248 
    249 /// \brief Check whether we're in an extern inline function and referring to a
    250 /// variable or function with internal linkage (C11 6.7.4p3).
    251 ///
    252 /// This is only a warning because we used to silently accept this code, but
    253 /// in many cases it will not behave correctly. This is not enabled in C++ mode
    254 /// because the restriction language is a bit weaker (C++11 [basic.def.odr]p6)
    255 /// and so while there may still be user mistakes, most of the time we can't
    256 /// prove that there are errors.
    257 static void diagnoseUseOfInternalDeclInInlineFunction(Sema &S,
    258                                                       const NamedDecl *D,
    259                                                       SourceLocation Loc) {
    260   // This is disabled under C++; there are too many ways for this to fire in
    261   // contexts where the warning is a false positive, or where it is technically
    262   // correct but benign.
    263   if (S.getLangOpts().CPlusPlus)
    264     return;
    265 
    266   // Check if this is an inlined function or method.
    267   FunctionDecl *Current = S.getCurFunctionDecl();
    268   if (!Current)
    269     return;
    270   if (!Current->isInlined())
    271     return;
    272   if (!Current->isExternallyVisible())
    273     return;
    274 
    275   // Check if the decl has internal linkage.
    276   if (D->getFormalLinkage() != InternalLinkage)
    277     return;
    278 
    279   // Downgrade from ExtWarn to Extension if
    280   //  (1) the supposedly external inline function is in the main file,
    281   //      and probably won't be included anywhere else.
    282   //  (2) the thing we're referencing is a pure function.
    283   //  (3) the thing we're referencing is another inline function.
    284   // This last can give us false negatives, but it's better than warning on
    285   // wrappers for simple C library functions.
    286   const FunctionDecl *UsedFn = dyn_cast<FunctionDecl>(D);
    287   bool DowngradeWarning = S.getSourceManager().isInMainFile(Loc);
    288   if (!DowngradeWarning && UsedFn)
    289     DowngradeWarning = UsedFn->isInlined() || UsedFn->hasAttr<ConstAttr>();
    290 
    291   S.Diag(Loc, DowngradeWarning ? diag::ext_internal_in_extern_inline_quiet
    292                                : diag::ext_internal_in_extern_inline)
    293     << /*IsVar=*/!UsedFn << D;
    294 
    295   S.MaybeSuggestAddingStaticToDecl(Current);
    296 
    297   S.Diag(D->getCanonicalDecl()->getLocation(), diag::note_entity_declared_at)
    298       << D;
    299 }
    300 
    301 void Sema::MaybeSuggestAddingStaticToDecl(const FunctionDecl *Cur) {
    302   const FunctionDecl *First = Cur->getFirstDecl();
    303 
    304   // Suggest "static" on the function, if possible.
    305   if (!hasAnyExplicitStorageClass(First)) {
    306     SourceLocation DeclBegin = First->getSourceRange().getBegin();
    307     Diag(DeclBegin, diag::note_convert_inline_to_static)
    308       << Cur << FixItHint::CreateInsertion(DeclBegin, "static ");
    309   }
    310 }
    311 
    312 /// \brief Determine whether the use of this declaration is valid, and
    313 /// emit any corresponding diagnostics.
    314 ///
    315 /// This routine diagnoses various problems with referencing
    316 /// declarations that can occur when using a declaration. For example,
    317 /// it might warn if a deprecated or unavailable declaration is being
    318 /// used, or produce an error (and return true) if a C++0x deleted
    319 /// function is being used.
    320 ///
    321 /// \returns true if there was an error (this declaration cannot be
    322 /// referenced), false otherwise.
    323 ///
    324 bool Sema::DiagnoseUseOfDecl(NamedDecl *D, SourceLocation Loc,
    325                              const ObjCInterfaceDecl *UnknownObjCClass,
    326                              bool ObjCPropertyAccess) {
    327   if (getLangOpts().CPlusPlus && isa<FunctionDecl>(D)) {
    328     // If there were any diagnostics suppressed by template argument deduction,
    329     // emit them now.
    330     auto Pos = SuppressedDiagnostics.find(D->getCanonicalDecl());
    331     if (Pos != SuppressedDiagnostics.end()) {
    332       for (const PartialDiagnosticAt &Suppressed : Pos->second)
    333         Diag(Suppressed.first, Suppressed.second);
    334 
    335       // Clear out the list of suppressed diagnostics, so that we don't emit
    336       // them again for this specialization. However, we don't obsolete this
    337       // entry from the table, because we want to avoid ever emitting these
    338       // diagnostics again.
    339       Pos->second.clear();
    340     }
    341 
    342     // C++ [basic.start.main]p3:
    343     //   The function 'main' shall not be used within a program.
    344     if (cast<FunctionDecl>(D)->isMain())
    345       Diag(Loc, diag::ext_main_used);
    346   }
    347 
    348   // See if this is an auto-typed variable whose initializer we are parsing.
    349   if (ParsingInitForAutoVars.count(D)) {
    350     const AutoType *AT = cast<VarDecl>(D)->getType()->getContainedAutoType();
    351 
    352     Diag(Loc, diag::err_auto_variable_cannot_appear_in_own_initializer)
    353       << D->getDeclName() << (unsigned)AT->getKeyword();
    354     return true;
    355   }
    356 
    357   // See if this is a deleted function.
    358   if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
    359     if (FD->isDeleted()) {
    360       Diag(Loc, diag::err_deleted_function_use);
    361       NoteDeletedFunction(FD);
    362       return true;
    363     }
    364 
    365     // If the function has a deduced return type, and we can't deduce it,
    366     // then we can't use it either.
    367     if (getLangOpts().CPlusPlus14 && FD->getReturnType()->isUndeducedType() &&
    368         DeduceReturnType(FD, Loc))
    369       return true;
    370   }
    371   DiagnoseAvailabilityOfDecl(*this, D, Loc, UnknownObjCClass,
    372                              ObjCPropertyAccess);
    373 
    374   DiagnoseUnusedOfDecl(*this, D, Loc);
    375 
    376   diagnoseUseOfInternalDeclInInlineFunction(*this, D, Loc);
    377 
    378   return false;
    379 }
    380 
    381 /// \brief Retrieve the message suffix that should be added to a
    382 /// diagnostic complaining about the given function being deleted or
    383 /// unavailable.
    384 std::string Sema::getDeletedOrUnavailableSuffix(const FunctionDecl *FD) {
    385   std::string Message;
    386   if (FD->getAvailability(&Message))
    387     return ": " + Message;
    388 
    389   return std::string();
    390 }
    391 
    392 /// DiagnoseSentinelCalls - This routine checks whether a call or
    393 /// message-send is to a declaration with the sentinel attribute, and
    394 /// if so, it checks that the requirements of the sentinel are
    395 /// satisfied.
    396 void Sema::DiagnoseSentinelCalls(NamedDecl *D, SourceLocation Loc,
    397                                  ArrayRef<Expr *> Args) {
    398   const SentinelAttr *attr = D->getAttr<SentinelAttr>();
    399   if (!attr)
    400     return;
    401 
    402   // The number of formal parameters of the declaration.
    403   unsigned numFormalParams;
    404 
    405   // The kind of declaration.  This is also an index into a %select in
    406   // the diagnostic.
    407   enum CalleeType { CT_Function, CT_Method, CT_Block } calleeType;
    408 
    409   if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
    410     numFormalParams = MD->param_size();
    411     calleeType = CT_Method;
    412   } else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
    413     numFormalParams = FD->param_size();
    414     calleeType = CT_Function;
    415   } else if (isa<VarDecl>(D)) {
    416     QualType type = cast<ValueDecl>(D)->getType();
    417     const FunctionType *fn = nullptr;
    418     if (const PointerType *ptr = type->getAs<PointerType>()) {
    419       fn = ptr->getPointeeType()->getAs<FunctionType>();
    420       if (!fn) return;
    421       calleeType = CT_Function;
    422     } else if (const BlockPointerType *ptr = type->getAs<BlockPointerType>()) {
    423       fn = ptr->getPointeeType()->castAs<FunctionType>();
    424       calleeType = CT_Block;
    425     } else {
    426       return;
    427     }
    428 
    429     if (const FunctionProtoType *proto = dyn_cast<FunctionProtoType>(fn)) {
    430       numFormalParams = proto->getNumParams();
    431     } else {
    432       numFormalParams = 0;
    433     }
    434   } else {
    435     return;
    436   }
    437 
    438   // "nullPos" is the number of formal parameters at the end which
    439   // effectively count as part of the variadic arguments.  This is
    440   // useful if you would prefer to not have *any* formal parameters,
    441   // but the language forces you to have at least one.
    442   unsigned nullPos = attr->getNullPos();
    443   assert((nullPos == 0 || nullPos == 1) && "invalid null position on sentinel");
    444   numFormalParams = (nullPos > numFormalParams ? 0 : numFormalParams - nullPos);
    445 
    446   // The number of arguments which should follow the sentinel.
    447   unsigned numArgsAfterSentinel = attr->getSentinel();
    448 
    449   // If there aren't enough arguments for all the formal parameters,
    450   // the sentinel, and the args after the sentinel, complain.
    451   if (Args.size() < numFormalParams + numArgsAfterSentinel + 1) {
    452     Diag(Loc, diag::warn_not_enough_argument) << D->getDeclName();
    453     Diag(D->getLocation(), diag::note_sentinel_here) << int(calleeType);
    454     return;
    455   }
    456 
    457   // Otherwise, find the sentinel expression.
    458   Expr *sentinelExpr = Args[Args.size() - numArgsAfterSentinel - 1];
    459   if (!sentinelExpr) return;
    460   if (sentinelExpr->isValueDependent()) return;
    461   if (Context.isSentinelNullExpr(sentinelExpr)) return;
    462 
    463   // Pick a reasonable string to insert.  Optimistically use 'nil', 'nullptr',
    464   // or 'NULL' if those are actually defined in the context.  Only use
    465   // 'nil' for ObjC methods, where it's much more likely that the
    466   // variadic arguments form a list of object pointers.
    467   SourceLocation MissingNilLoc
    468     = getLocForEndOfToken(sentinelExpr->getLocEnd());
    469   std::string NullValue;
    470   if (calleeType == CT_Method && PP.isMacroDefined("nil"))
    471     NullValue = "nil";
    472   else if (getLangOpts().CPlusPlus11)
    473     NullValue = "nullptr";
    474   else if (PP.isMacroDefined("NULL"))
    475     NullValue = "NULL";
    476   else
    477     NullValue = "(void*) 0";
    478 
    479   if (MissingNilLoc.isInvalid())
    480     Diag(Loc, diag::warn_missing_sentinel) << int(calleeType);
    481   else
    482     Diag(MissingNilLoc, diag::warn_missing_sentinel)
    483       << int(calleeType)
    484       << FixItHint::CreateInsertion(MissingNilLoc, ", " + NullValue);
    485   Diag(D->getLocation(), diag::note_sentinel_here) << int(calleeType);
    486 }
    487 
    488 SourceRange Sema::getExprRange(Expr *E) const {
    489   return E ? E->getSourceRange() : SourceRange();
    490 }
    491 
    492 //===----------------------------------------------------------------------===//
    493 //  Standard Promotions and Conversions
    494 //===----------------------------------------------------------------------===//
    495 
    496 /// DefaultFunctionArrayConversion (C99 6.3.2.1p3, C99 6.3.2.1p4).
    497 ExprResult Sema::DefaultFunctionArrayConversion(Expr *E, bool Diagnose) {
    498   // Handle any placeholder expressions which made it here.
    499   if (E->getType()->isPlaceholderType()) {
    500     ExprResult result = CheckPlaceholderExpr(E);
    501     if (result.isInvalid()) return ExprError();
    502     E = result.get();
    503   }
    504 
    505   QualType Ty = E->getType();
    506   assert(!Ty.isNull() && "DefaultFunctionArrayConversion - missing type");
    507 
    508   if (Ty->isFunctionType()) {
    509     // If we are here, we are not calling a function but taking
    510     // its address (which is not allowed in OpenCL v1.0 s6.8.a.3).
    511     if (getLangOpts().OpenCL) {
    512       if (Diagnose)
    513         Diag(E->getExprLoc(), diag::err_opencl_taking_function_address);
    514       return ExprError();
    515     }
    516 
    517     if (auto *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParenCasts()))
    518       if (auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl()))
    519         if (!checkAddressOfFunctionIsAvailable(FD, Diagnose, E->getExprLoc()))
    520           return ExprError();
    521 
    522     E = ImpCastExprToType(E, Context.getPointerType(Ty),
    523                           CK_FunctionToPointerDecay).get();
    524   } else if (Ty->isArrayType()) {
    525     // In C90 mode, arrays only promote to pointers if the array expression is
    526     // an lvalue.  The relevant legalese is C90 6.2.2.1p3: "an lvalue that has
    527     // type 'array of type' is converted to an expression that has type 'pointer
    528     // to type'...".  In C99 this was changed to: C99 6.3.2.1p3: "an expression
    529     // that has type 'array of type' ...".  The relevant change is "an lvalue"
    530     // (C90) to "an expression" (C99).
    531     //
    532     // C++ 4.2p1:
    533     // An lvalue or rvalue of type "array of N T" or "array of unknown bound of
    534     // T" can be converted to an rvalue of type "pointer to T".
    535     //
    536     if (getLangOpts().C99 || getLangOpts().CPlusPlus || E->isLValue())
    537       E = ImpCastExprToType(E, Context.getArrayDecayedType(Ty),
    538                             CK_ArrayToPointerDecay).get();
    539   }
    540   return E;
    541 }
    542 
    543 static void CheckForNullPointerDereference(Sema &S, Expr *E) {
    544   // Check to see if we are dereferencing a null pointer.  If so,
    545   // and if not volatile-qualified, this is undefined behavior that the
    546   // optimizer will delete, so warn about it.  People sometimes try to use this
    547   // to get a deterministic trap and are surprised by clang's behavior.  This
    548   // only handles the pattern "*null", which is a very syntactic check.
    549   if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParenCasts()))
    550     if (UO->getOpcode() == UO_Deref &&
    551         UO->getSubExpr()->IgnoreParenCasts()->
    552           isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull) &&
    553         !UO->getType().isVolatileQualified()) {
    554     S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
    555                           S.PDiag(diag::warn_indirection_through_null)
    556                             << UO->getSubExpr()->getSourceRange());
    557     S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO,
    558                         S.PDiag(diag::note_indirection_through_null));
    559   }
    560 }
    561 
    562 static void DiagnoseDirectIsaAccess(Sema &S, const ObjCIvarRefExpr *OIRE,
    563                                     SourceLocation AssignLoc,
    564                                     const Expr* RHS) {
    565   const ObjCIvarDecl *IV = OIRE->getDecl();
    566   if (!IV)
    567     return;
    568 
    569   DeclarationName MemberName = IV->getDeclName();
    570   IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
    571   if (!Member || !Member->isStr("isa"))
    572     return;
    573 
    574   const Expr *Base = OIRE->getBase();
    575   QualType BaseType = Base->getType();
    576   if (OIRE->isArrow())
    577     BaseType = BaseType->getPointeeType();
    578   if (const ObjCObjectType *OTy = BaseType->getAs<ObjCObjectType>())
    579     if (ObjCInterfaceDecl *IDecl = OTy->getInterface()) {
    580       ObjCInterfaceDecl *ClassDeclared = nullptr;
    581       ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(Member, ClassDeclared);
    582       if (!ClassDeclared->getSuperClass()
    583           && (*ClassDeclared->ivar_begin()) == IV) {
    584         if (RHS) {
    585           NamedDecl *ObjectSetClass =
    586             S.LookupSingleName(S.TUScope,
    587                                &S.Context.Idents.get("object_setClass"),
    588                                SourceLocation(), S.LookupOrdinaryName);
    589           if (ObjectSetClass) {
    590             SourceLocation RHSLocEnd = S.getLocForEndOfToken(RHS->getLocEnd());
    591             S.Diag(OIRE->getExprLoc(), diag::warn_objc_isa_assign) <<
    592             FixItHint::CreateInsertion(OIRE->getLocStart(), "object_setClass(") <<
    593             FixItHint::CreateReplacement(SourceRange(OIRE->getOpLoc(),
    594                                                      AssignLoc), ",") <<
    595             FixItHint::CreateInsertion(RHSLocEnd, ")");
    596           }
    597           else
    598             S.Diag(OIRE->getLocation(), diag::warn_objc_isa_assign);
    599         } else {
    600           NamedDecl *ObjectGetClass =
    601             S.LookupSingleName(S.TUScope,
    602                                &S.Context.Idents.get("object_getClass"),
    603                                SourceLocation(), S.LookupOrdinaryName);
    604           if (ObjectGetClass)
    605             S.Diag(OIRE->getExprLoc(), diag::warn_objc_isa_use) <<
    606             FixItHint::CreateInsertion(OIRE->getLocStart(), "object_getClass(") <<
    607             FixItHint::CreateReplacement(
    608                                          SourceRange(OIRE->getOpLoc(),
    609                                                      OIRE->getLocEnd()), ")");
    610           else
    611             S.Diag(OIRE->getLocation(), diag::warn_objc_isa_use);
    612         }
    613         S.Diag(IV->getLocation(), diag::note_ivar_decl);
    614       }
    615     }
    616 }
    617 
    618 ExprResult Sema::DefaultLvalueConversion(Expr *E) {
    619   // Handle any placeholder expressions which made it here.
    620   if (E->getType()->isPlaceholderType()) {
    621     ExprResult result = CheckPlaceholderExpr(E);
    622     if (result.isInvalid()) return ExprError();
    623     E = result.get();
    624   }
    625 
    626   // C++ [conv.lval]p1:
    627   //   A glvalue of a non-function, non-array type T can be
    628   //   converted to a prvalue.
    629   if (!E->isGLValue()) return E;
    630 
    631   QualType T = E->getType();
    632   assert(!T.isNull() && "r-value conversion on typeless expression?");
    633 
    634   // We don't want to throw lvalue-to-rvalue casts on top of
    635   // expressions of certain types in C++.
    636   if (getLangOpts().CPlusPlus &&
    637       (E->getType() == Context.OverloadTy ||
    638        T->isDependentType() ||
    639        T->isRecordType()))
    640     return E;
    641 
    642   // The C standard is actually really unclear on this point, and
    643   // DR106 tells us what the result should be but not why.  It's
    644   // generally best to say that void types just doesn't undergo
    645   // lvalue-to-rvalue at all.  Note that expressions of unqualified
    646   // 'void' type are never l-values, but qualified void can be.
    647   if (T->isVoidType())
    648     return E;
    649 
    650   // OpenCL usually rejects direct accesses to values of 'half' type.
    651   if (getLangOpts().OpenCL && !getOpenCLOptions().cl_khr_fp16 &&
    652       T->isHalfType()) {
    653     Diag(E->getExprLoc(), diag::err_opencl_half_load_store)
    654       << 0 << T;
    655     return ExprError();
    656   }
    657 
    658   CheckForNullPointerDereference(*this, E);
    659   if (const ObjCIsaExpr *OISA = dyn_cast<ObjCIsaExpr>(E->IgnoreParenCasts())) {
    660     NamedDecl *ObjectGetClass = LookupSingleName(TUScope,
    661                                      &Context.Idents.get("object_getClass"),
    662                                      SourceLocation(), LookupOrdinaryName);
    663     if (ObjectGetClass)
    664       Diag(E->getExprLoc(), diag::warn_objc_isa_use) <<
    665         FixItHint::CreateInsertion(OISA->getLocStart(), "object_getClass(") <<
    666         FixItHint::CreateReplacement(
    667                     SourceRange(OISA->getOpLoc(), OISA->getIsaMemberLoc()), ")");
    668     else
    669       Diag(E->getExprLoc(), diag::warn_objc_isa_use);
    670   }
    671   else if (const ObjCIvarRefExpr *OIRE =
    672             dyn_cast<ObjCIvarRefExpr>(E->IgnoreParenCasts()))
    673     DiagnoseDirectIsaAccess(*this, OIRE, SourceLocation(), /* Expr*/nullptr);
    674 
    675   // C++ [conv.lval]p1:
    676   //   [...] If T is a non-class type, the type of the prvalue is the
    677   //   cv-unqualified version of T. Otherwise, the type of the
    678   //   rvalue is T.
    679   //
    680   // C99 6.3.2.1p2:
    681   //   If the lvalue has qualified type, the value has the unqualified
    682   //   version of the type of the lvalue; otherwise, the value has the
    683   //   type of the lvalue.
    684   if (T.hasQualifiers())
    685     T = T.getUnqualifiedType();
    686 
    687   // Under the MS ABI, lock down the inheritance model now.
    688   if (T->isMemberPointerType() &&
    689       Context.getTargetInfo().getCXXABI().isMicrosoft())
    690     (void)isCompleteType(E->getExprLoc(), T);
    691 
    692   UpdateMarkingForLValueToRValue(E);
    693 
    694   // Loading a __weak object implicitly retains the value, so we need a cleanup to
    695   // balance that.
    696   if (getLangOpts().ObjCAutoRefCount &&
    697       E->getType().getObjCLifetime() == Qualifiers::OCL_Weak)
    698     ExprNeedsCleanups = true;
    699 
    700   ExprResult Res = ImplicitCastExpr::Create(Context, T, CK_LValueToRValue, E,
    701                                             nullptr, VK_RValue);
    702 
    703   // C11 6.3.2.1p2:
    704   //   ... if the lvalue has atomic type, the value has the non-atomic version
    705   //   of the type of the lvalue ...
    706   if (const AtomicType *Atomic = T->getAs<AtomicType>()) {
    707     T = Atomic->getValueType().getUnqualifiedType();
    708     Res = ImplicitCastExpr::Create(Context, T, CK_AtomicToNonAtomic, Res.get(),
    709                                    nullptr, VK_RValue);
    710   }
    711 
    712   return Res;
    713 }
    714 
    715 ExprResult Sema::DefaultFunctionArrayLvalueConversion(Expr *E, bool Diagnose) {
    716   ExprResult Res = DefaultFunctionArrayConversion(E, Diagnose);
    717   if (Res.isInvalid())
    718     return ExprError();
    719   Res = DefaultLvalueConversion(Res.get());
    720   if (Res.isInvalid())
    721     return ExprError();
    722   return Res;
    723 }
    724 
    725 /// CallExprUnaryConversions - a special case of an unary conversion
    726 /// performed on a function designator of a call expression.
    727 ExprResult Sema::CallExprUnaryConversions(Expr *E) {
    728   QualType Ty = E->getType();
    729   ExprResult Res = E;
    730   // Only do implicit cast for a function type, but not for a pointer
    731   // to function type.
    732   if (Ty->isFunctionType()) {
    733     Res = ImpCastExprToType(E, Context.getPointerType(Ty),
    734                             CK_FunctionToPointerDecay).get();
    735     if (Res.isInvalid())
    736       return ExprError();
    737   }
    738   Res = DefaultLvalueConversion(Res.get());
    739   if (Res.isInvalid())
    740     return ExprError();
    741   return Res.get();
    742 }
    743 
    744 /// UsualUnaryConversions - Performs various conversions that are common to most
    745 /// operators (C99 6.3). The conversions of array and function types are
    746 /// sometimes suppressed. For example, the array->pointer conversion doesn't
    747 /// apply if the array is an argument to the sizeof or address (&) operators.
    748 /// In these instances, this routine should *not* be called.
    749 ExprResult Sema::UsualUnaryConversions(Expr *E) {
    750   // First, convert to an r-value.
    751   ExprResult Res = DefaultFunctionArrayLvalueConversion(E);
    752   if (Res.isInvalid())
    753     return ExprError();
    754   E = Res.get();
    755 
    756   QualType Ty = E->getType();
    757   assert(!Ty.isNull() && "UsualUnaryConversions - missing type");
    758 
    759   // Half FP have to be promoted to float unless it is natively supported
    760   if (Ty->isHalfType() && !getLangOpts().NativeHalfType)
    761     return ImpCastExprToType(Res.get(), Context.FloatTy, CK_FloatingCast);
    762 
    763   // Try to perform integral promotions if the object has a theoretically
    764   // promotable type.
    765   if (Ty->isIntegralOrUnscopedEnumerationType()) {
    766     // C99 6.3.1.1p2:
    767     //
    768     //   The following may be used in an expression wherever an int or
    769     //   unsigned int may be used:
    770     //     - an object or expression with an integer type whose integer
    771     //       conversion rank is less than or equal to the rank of int
    772     //       and unsigned int.
    773     //     - A bit-field of type _Bool, int, signed int, or unsigned int.
    774     //
    775     //   If an int can represent all values of the original type, the
    776     //   value is converted to an int; otherwise, it is converted to an
    777     //   unsigned int. These are called the integer promotions. All
    778     //   other types are unchanged by the integer promotions.
    779 
    780     QualType PTy = Context.isPromotableBitField(E);
    781     if (!PTy.isNull()) {
    782       E = ImpCastExprToType(E, PTy, CK_IntegralCast).get();
    783       return E;
    784     }
    785     if (Ty->isPromotableIntegerType()) {
    786       QualType PT = Context.getPromotedIntegerType(Ty);
    787       E = ImpCastExprToType(E, PT, CK_IntegralCast).get();
    788       return E;
    789     }
    790   }
    791   return E;
    792 }
    793 
    794 /// DefaultArgumentPromotion (C99 6.5.2.2p6). Used for function calls that
    795 /// do not have a prototype. Arguments that have type float or __fp16
    796 /// are promoted to double. All other argument types are converted by
    797 /// UsualUnaryConversions().
    798 ExprResult Sema::DefaultArgumentPromotion(Expr *E) {
    799   QualType Ty = E->getType();
    800   assert(!Ty.isNull() && "DefaultArgumentPromotion - missing type");
    801 
    802   ExprResult Res = UsualUnaryConversions(E);
    803   if (Res.isInvalid())
    804     return ExprError();
    805   E = Res.get();
    806 
    807   // If this is a 'float' or '__fp16' (CVR qualified or typedef) promote to
    808   // double.
    809   const BuiltinType *BTy = Ty->getAs<BuiltinType>();
    810   if (BTy && (BTy->getKind() == BuiltinType::Half ||
    811               BTy->getKind() == BuiltinType::Float))
    812     E = ImpCastExprToType(E, Context.DoubleTy, CK_FloatingCast).get();
    813 
    814   // C++ performs lvalue-to-rvalue conversion as a default argument
    815   // promotion, even on class types, but note:
    816   //   C++11 [conv.lval]p2:
    817   //     When an lvalue-to-rvalue conversion occurs in an unevaluated
    818   //     operand or a subexpression thereof the value contained in the
    819   //     referenced object is not accessed. Otherwise, if the glvalue
    820   //     has a class type, the conversion copy-initializes a temporary
    821   //     of type T from the glvalue and the result of the conversion
    822   //     is a prvalue for the temporary.
    823   // FIXME: add some way to gate this entire thing for correctness in
    824   // potentially potentially evaluated contexts.
    825   if (getLangOpts().CPlusPlus && E->isGLValue() && !isUnevaluatedContext()) {
    826     ExprResult Temp = PerformCopyInitialization(
    827                        InitializedEntity::InitializeTemporary(E->getType()),
    828                                                 E->getExprLoc(), E);
    829     if (Temp.isInvalid())
    830       return ExprError();
    831     E = Temp.get();
    832   }
    833 
    834   return E;
    835 }
    836 
    837 /// Determine the degree of POD-ness for an expression.
    838 /// Incomplete types are considered POD, since this check can be performed
    839 /// when we're in an unevaluated context.
    840 Sema::VarArgKind Sema::isValidVarArgType(const QualType &Ty) {
    841   if (Ty->isIncompleteType()) {
    842     // C++11 [expr.call]p7:
    843     //   After these conversions, if the argument does not have arithmetic,
    844     //   enumeration, pointer, pointer to member, or class type, the program
    845     //   is ill-formed.
    846     //
    847     // Since we've already performed array-to-pointer and function-to-pointer
    848     // decay, the only such type in C++ is cv void. This also handles
    849     // initializer lists as variadic arguments.
    850     if (Ty->isVoidType())
    851       return VAK_Invalid;
    852 
    853     if (Ty->isObjCObjectType())
    854       return VAK_Invalid;
    855     return VAK_Valid;
    856   }
    857 
    858   if (Ty.isCXX98PODType(Context))
    859     return VAK_Valid;
    860 
    861   // C++11 [expr.call]p7:
    862   //   Passing a potentially-evaluated argument of class type (Clause 9)
    863   //   having a non-trivial copy constructor, a non-trivial move constructor,
    864   //   or a non-trivial destructor, with no corresponding parameter,
    865   //   is conditionally-supported with implementation-defined semantics.
    866   if (getLangOpts().CPlusPlus11 && !Ty->isDependentType())
    867     if (CXXRecordDecl *Record = Ty->getAsCXXRecordDecl())
    868       if (!Record->hasNonTrivialCopyConstructor() &&
    869           !Record->hasNonTrivialMoveConstructor() &&
    870           !Record->hasNonTrivialDestructor())
    871         return VAK_ValidInCXX11;
    872 
    873   if (getLangOpts().ObjCAutoRefCount && Ty->isObjCLifetimeType())
    874     return VAK_Valid;
    875 
    876   if (Ty->isObjCObjectType())
    877     return VAK_Invalid;
    878 
    879   if (getLangOpts().MSVCCompat)
    880     return VAK_MSVCUndefined;
    881 
    882   // FIXME: In C++11, these cases are conditionally-supported, meaning we're
    883   // permitted to reject them. We should consider doing so.
    884   return VAK_Undefined;
    885 }
    886 
    887 void Sema::checkVariadicArgument(const Expr *E, VariadicCallType CT) {
    888   // Don't allow one to pass an Objective-C interface to a vararg.
    889   const QualType &Ty = E->getType();
    890   VarArgKind VAK = isValidVarArgType(Ty);
    891 
    892   // Complain about passing non-POD types through varargs.
    893   switch (VAK) {
    894   case VAK_ValidInCXX11:
    895     DiagRuntimeBehavior(
    896         E->getLocStart(), nullptr,
    897         PDiag(diag::warn_cxx98_compat_pass_non_pod_arg_to_vararg)
    898           << Ty << CT);
    899     // Fall through.
    900   case VAK_Valid:
    901     if (Ty->isRecordType()) {
    902       // This is unlikely to be what the user intended. If the class has a
    903       // 'c_str' member function, the user probably meant to call that.
    904       DiagRuntimeBehavior(E->getLocStart(), nullptr,
    905                           PDiag(diag::warn_pass_class_arg_to_vararg)
    906                             << Ty << CT << hasCStrMethod(E) << ".c_str()");
    907     }
    908     break;
    909 
    910   case VAK_Undefined:
    911   case VAK_MSVCUndefined:
    912     DiagRuntimeBehavior(
    913         E->getLocStart(), nullptr,
    914         PDiag(diag::warn_cannot_pass_non_pod_arg_to_vararg)
    915           << getLangOpts().CPlusPlus11 << Ty << CT);
    916     break;
    917 
    918   case VAK_Invalid:
    919     if (Ty->isObjCObjectType())
    920       DiagRuntimeBehavior(
    921           E->getLocStart(), nullptr,
    922           PDiag(diag::err_cannot_pass_objc_interface_to_vararg)
    923             << Ty << CT);
    924     else
    925       Diag(E->getLocStart(), diag::err_cannot_pass_to_vararg)
    926         << isa<InitListExpr>(E) << Ty << CT;
    927     break;
    928   }
    929 }
    930 
    931 /// DefaultVariadicArgumentPromotion - Like DefaultArgumentPromotion, but
    932 /// will create a trap if the resulting type is not a POD type.
    933 ExprResult Sema::DefaultVariadicArgumentPromotion(Expr *E, VariadicCallType CT,
    934                                                   FunctionDecl *FDecl) {
    935   if (const BuiltinType *PlaceholderTy = E->getType()->getAsPlaceholderType()) {
    936     // Strip the unbridged-cast placeholder expression off, if applicable.
    937     if (PlaceholderTy->getKind() == BuiltinType::ARCUnbridgedCast &&
    938         (CT == VariadicMethod ||
    939          (FDecl && FDecl->hasAttr<CFAuditedTransferAttr>()))) {
    940       E = stripARCUnbridgedCast(E);
    941 
    942     // Otherwise, do normal placeholder checking.
    943     } else {
    944       ExprResult ExprRes = CheckPlaceholderExpr(E);
    945       if (ExprRes.isInvalid())
    946         return ExprError();
    947       E = ExprRes.get();
    948     }
    949   }
    950 
    951   ExprResult ExprRes = DefaultArgumentPromotion(E);
    952   if (ExprRes.isInvalid())
    953     return ExprError();
    954   E = ExprRes.get();
    955 
    956   // Diagnostics regarding non-POD argument types are
    957   // emitted along with format string checking in Sema::CheckFunctionCall().
    958   if (isValidVarArgType(E->getType()) == VAK_Undefined) {
    959     // Turn this into a trap.
    960     CXXScopeSpec SS;
    961     SourceLocation TemplateKWLoc;
    962     UnqualifiedId Name;
    963     Name.setIdentifier(PP.getIdentifierInfo("__builtin_trap"),
    964                        E->getLocStart());
    965     ExprResult TrapFn = ActOnIdExpression(TUScope, SS, TemplateKWLoc,
    966                                           Name, true, false);
    967     if (TrapFn.isInvalid())
    968       return ExprError();
    969 
    970     ExprResult Call = ActOnCallExpr(TUScope, TrapFn.get(),
    971                                     E->getLocStart(), None,
    972                                     E->getLocEnd());
    973     if (Call.isInvalid())
    974       return ExprError();
    975 
    976     ExprResult Comma = ActOnBinOp(TUScope, E->getLocStart(), tok::comma,
    977                                   Call.get(), E);
    978     if (Comma.isInvalid())
    979       return ExprError();
    980     return Comma.get();
    981   }
    982 
    983   if (!getLangOpts().CPlusPlus &&
    984       RequireCompleteType(E->getExprLoc(), E->getType(),
    985                           diag::err_call_incomplete_argument))
    986     return ExprError();
    987 
    988   return E;
    989 }
    990 
    991 /// \brief Converts an integer to complex float type.  Helper function of
    992 /// UsualArithmeticConversions()
    993 ///
    994 /// \return false if the integer expression is an integer type and is
    995 /// successfully converted to the complex type.
    996 static bool handleIntegerToComplexFloatConversion(Sema &S, ExprResult &IntExpr,
    997                                                   ExprResult &ComplexExpr,
    998                                                   QualType IntTy,
    999                                                   QualType ComplexTy,
   1000                                                   bool SkipCast) {
   1001   if (IntTy->isComplexType() || IntTy->isRealFloatingType()) return true;
   1002   if (SkipCast) return false;
   1003   if (IntTy->isIntegerType()) {
   1004     QualType fpTy = cast<ComplexType>(ComplexTy)->getElementType();
   1005     IntExpr = S.ImpCastExprToType(IntExpr.get(), fpTy, CK_IntegralToFloating);
   1006     IntExpr = S.ImpCastExprToType(IntExpr.get(), ComplexTy,
   1007                                   CK_FloatingRealToComplex);
   1008   } else {
   1009     assert(IntTy->isComplexIntegerType());
   1010     IntExpr = S.ImpCastExprToType(IntExpr.get(), ComplexTy,
   1011                                   CK_IntegralComplexToFloatingComplex);
   1012   }
   1013   return false;
   1014 }
   1015 
   1016 /// \brief Handle arithmetic conversion with complex types.  Helper function of
   1017 /// UsualArithmeticConversions()
   1018 static QualType handleComplexFloatConversion(Sema &S, ExprResult &LHS,
   1019                                              ExprResult &RHS, QualType LHSType,
   1020                                              QualType RHSType,
   1021                                              bool IsCompAssign) {
   1022   // if we have an integer operand, the result is the complex type.
   1023   if (!handleIntegerToComplexFloatConversion(S, RHS, LHS, RHSType, LHSType,
   1024                                              /*skipCast*/false))
   1025     return LHSType;
   1026   if (!handleIntegerToComplexFloatConversion(S, LHS, RHS, LHSType, RHSType,
   1027                                              /*skipCast*/IsCompAssign))
   1028     return RHSType;
   1029 
   1030   // This handles complex/complex, complex/float, or float/complex.
   1031   // When both operands are complex, the shorter operand is converted to the
   1032   // type of the longer, and that is the type of the result. This corresponds
   1033   // to what is done when combining two real floating-point operands.
   1034   // The fun begins when size promotion occur across type domains.
   1035   // From H&S 6.3.4: When one operand is complex and the other is a real
   1036   // floating-point type, the less precise type is converted, within it's
   1037   // real or complex domain, to the precision of the other type. For example,
   1038   // when combining a "long double" with a "double _Complex", the
   1039   // "double _Complex" is promoted to "long double _Complex".
   1040 
   1041   // Compute the rank of the two types, regardless of whether they are complex.
   1042   int Order = S.Context.getFloatingTypeOrder(LHSType, RHSType);
   1043 
   1044   auto *LHSComplexType = dyn_cast<ComplexType>(LHSType);
   1045   auto *RHSComplexType = dyn_cast<ComplexType>(RHSType);
   1046   QualType LHSElementType =
   1047       LHSComplexType ? LHSComplexType->getElementType() : LHSType;
   1048   QualType RHSElementType =
   1049       RHSComplexType ? RHSComplexType->getElementType() : RHSType;
   1050 
   1051   QualType ResultType = S.Context.getComplexType(LHSElementType);
   1052   if (Order < 0) {
   1053     // Promote the precision of the LHS if not an assignment.
   1054     ResultType = S.Context.getComplexType(RHSElementType);
   1055     if (!IsCompAssign) {
   1056       if (LHSComplexType)
   1057         LHS =
   1058             S.ImpCastExprToType(LHS.get(), ResultType, CK_FloatingComplexCast);
   1059       else
   1060         LHS = S.ImpCastExprToType(LHS.get(), RHSElementType, CK_FloatingCast);
   1061     }
   1062   } else if (Order > 0) {
   1063     // Promote the precision of the RHS.
   1064     if (RHSComplexType)
   1065       RHS = S.ImpCastExprToType(RHS.get(), ResultType, CK_FloatingComplexCast);
   1066     else
   1067       RHS = S.ImpCastExprToType(RHS.get(), LHSElementType, CK_FloatingCast);
   1068   }
   1069   return ResultType;
   1070 }
   1071 
   1072 /// \brief Hande arithmetic conversion from integer to float.  Helper function
   1073 /// of UsualArithmeticConversions()
   1074 static QualType handleIntToFloatConversion(Sema &S, ExprResult &FloatExpr,
   1075                                            ExprResult &IntExpr,
   1076                                            QualType FloatTy, QualType IntTy,
   1077                                            bool ConvertFloat, bool ConvertInt) {
   1078   if (IntTy->isIntegerType()) {
   1079     if (ConvertInt)
   1080       // Convert intExpr to the lhs floating point type.
   1081       IntExpr = S.ImpCastExprToType(IntExpr.get(), FloatTy,
   1082                                     CK_IntegralToFloating);
   1083     return FloatTy;
   1084   }
   1085 
   1086   // Convert both sides to the appropriate complex float.
   1087   assert(IntTy->isComplexIntegerType());
   1088   QualType result = S.Context.getComplexType(FloatTy);
   1089 
   1090   // _Complex int -> _Complex float
   1091   if (ConvertInt)
   1092     IntExpr = S.ImpCastExprToType(IntExpr.get(), result,
   1093                                   CK_IntegralComplexToFloatingComplex);
   1094 
   1095   // float -> _Complex float
   1096   if (ConvertFloat)
   1097     FloatExpr = S.ImpCastExprToType(FloatExpr.get(), result,
   1098                                     CK_FloatingRealToComplex);
   1099 
   1100   return result;
   1101 }
   1102 
   1103 /// \brief Handle arithmethic conversion with floating point types.  Helper
   1104 /// function of UsualArithmeticConversions()
   1105 static QualType handleFloatConversion(Sema &S, ExprResult &LHS,
   1106                                       ExprResult &RHS, QualType LHSType,
   1107                                       QualType RHSType, bool IsCompAssign) {
   1108   bool LHSFloat = LHSType->isRealFloatingType();
   1109   bool RHSFloat = RHSType->isRealFloatingType();
   1110 
   1111   // If we have two real floating types, convert the smaller operand
   1112   // to the bigger result.
   1113   if (LHSFloat && RHSFloat) {
   1114     int order = S.Context.getFloatingTypeOrder(LHSType, RHSType);
   1115     if (order > 0) {
   1116       RHS = S.ImpCastExprToType(RHS.get(), LHSType, CK_FloatingCast);
   1117       return LHSType;
   1118     }
   1119 
   1120     assert(order < 0 && "illegal float comparison");
   1121     if (!IsCompAssign)
   1122       LHS = S.ImpCastExprToType(LHS.get(), RHSType, CK_FloatingCast);
   1123     return RHSType;
   1124   }
   1125 
   1126   if (LHSFloat) {
   1127     // Half FP has to be promoted to float unless it is natively supported
   1128     if (LHSType->isHalfType() && !S.getLangOpts().NativeHalfType)
   1129       LHSType = S.Context.FloatTy;
   1130 
   1131     return handleIntToFloatConversion(S, LHS, RHS, LHSType, RHSType,
   1132                                       /*convertFloat=*/!IsCompAssign,
   1133                                       /*convertInt=*/ true);
   1134   }
   1135   assert(RHSFloat);
   1136   return handleIntToFloatConversion(S, RHS, LHS, RHSType, LHSType,
   1137                                     /*convertInt=*/ true,
   1138                                     /*convertFloat=*/!IsCompAssign);
   1139 }
   1140 
   1141 typedef ExprResult PerformCastFn(Sema &S, Expr *operand, QualType toType);
   1142 
   1143 namespace {
   1144 /// These helper callbacks are placed in an anonymous namespace to
   1145 /// permit their use as function template parameters.
   1146 ExprResult doIntegralCast(Sema &S, Expr *op, QualType toType) {
   1147   return S.ImpCastExprToType(op, toType, CK_IntegralCast);
   1148 }
   1149 
   1150 ExprResult doComplexIntegralCast(Sema &S, Expr *op, QualType toType) {
   1151   return S.ImpCastExprToType(op, S.Context.getComplexType(toType),
   1152                              CK_IntegralComplexCast);
   1153 }
   1154 }
   1155 
   1156 /// \brief Handle integer arithmetic conversions.  Helper function of
   1157 /// UsualArithmeticConversions()
   1158 template <PerformCastFn doLHSCast, PerformCastFn doRHSCast>
   1159 static QualType handleIntegerConversion(Sema &S, ExprResult &LHS,
   1160                                         ExprResult &RHS, QualType LHSType,
   1161                                         QualType RHSType, bool IsCompAssign) {
   1162   // The rules for this case are in C99 6.3.1.8
   1163   int order = S.Context.getIntegerTypeOrder(LHSType, RHSType);
   1164   bool LHSSigned = LHSType->hasSignedIntegerRepresentation();
   1165   bool RHSSigned = RHSType->hasSignedIntegerRepresentation();
   1166   if (LHSSigned == RHSSigned) {
   1167     // Same signedness; use the higher-ranked type
   1168     if (order >= 0) {
   1169       RHS = (*doRHSCast)(S, RHS.get(), LHSType);
   1170       return LHSType;
   1171     } else if (!IsCompAssign)
   1172       LHS = (*doLHSCast)(S, LHS.get(), RHSType);
   1173     return RHSType;
   1174   } else if (order != (LHSSigned ? 1 : -1)) {
   1175     // The unsigned type has greater than or equal rank to the
   1176     // signed type, so use the unsigned type
   1177     if (RHSSigned) {
   1178       RHS = (*doRHSCast)(S, RHS.get(), LHSType);
   1179       return LHSType;
   1180     } else if (!IsCompAssign)
   1181       LHS = (*doLHSCast)(S, LHS.get(), RHSType);
   1182     return RHSType;
   1183   } else if (S.Context.getIntWidth(LHSType) != S.Context.getIntWidth(RHSType)) {
   1184     // The two types are different widths; if we are here, that
   1185     // means the signed type is larger than the unsigned type, so
   1186     // use the signed type.
   1187     if (LHSSigned) {
   1188       RHS = (*doRHSCast)(S, RHS.get(), LHSType);
   1189       return LHSType;
   1190     } else if (!IsCompAssign)
   1191       LHS = (*doLHSCast)(S, LHS.get(), RHSType);
   1192     return RHSType;
   1193   } else {
   1194     // The signed type is higher-ranked than the unsigned type,
   1195     // but isn't actually any bigger (like unsigned int and long
   1196     // on most 32-bit systems).  Use the unsigned type corresponding
   1197     // to the signed type.
   1198     QualType result =
   1199       S.Context.getCorrespondingUnsignedType(LHSSigned ? LHSType : RHSType);
   1200     RHS = (*doRHSCast)(S, RHS.get(), result);
   1201     if (!IsCompAssign)
   1202       LHS = (*doLHSCast)(S, LHS.get(), result);
   1203     return result;
   1204   }
   1205 }
   1206 
   1207 /// \brief Handle conversions with GCC complex int extension.  Helper function
   1208 /// of UsualArithmeticConversions()
   1209 static QualType handleComplexIntConversion(Sema &S, ExprResult &LHS,
   1210                                            ExprResult &RHS, QualType LHSType,
   1211                                            QualType RHSType,
   1212                                            bool IsCompAssign) {
   1213   const ComplexType *LHSComplexInt = LHSType->getAsComplexIntegerType();
   1214   const ComplexType *RHSComplexInt = RHSType->getAsComplexIntegerType();
   1215 
   1216   if (LHSComplexInt && RHSComplexInt) {
   1217     QualType LHSEltType = LHSComplexInt->getElementType();
   1218     QualType RHSEltType = RHSComplexInt->getElementType();
   1219     QualType ScalarType =
   1220       handleIntegerConversion<doComplexIntegralCast, doComplexIntegralCast>
   1221         (S, LHS, RHS, LHSEltType, RHSEltType, IsCompAssign);
   1222 
   1223     return S.Context.getComplexType(ScalarType);
   1224   }
   1225 
   1226   if (LHSComplexInt) {
   1227     QualType LHSEltType = LHSComplexInt->getElementType();
   1228     QualType ScalarType =
   1229       handleIntegerConversion<doComplexIntegralCast, doIntegralCast>
   1230         (S, LHS, RHS, LHSEltType, RHSType, IsCompAssign);
   1231     QualType ComplexType = S.Context.getComplexType(ScalarType);
   1232     RHS = S.ImpCastExprToType(RHS.get(), ComplexType,
   1233                               CK_IntegralRealToComplex);
   1234 
   1235     return ComplexType;
   1236   }
   1237 
   1238   assert(RHSComplexInt);
   1239 
   1240   QualType RHSEltType = RHSComplexInt->getElementType();
   1241   QualType ScalarType =
   1242     handleIntegerConversion<doIntegralCast, doComplexIntegralCast>
   1243       (S, LHS, RHS, LHSType, RHSEltType, IsCompAssign);
   1244   QualType ComplexType = S.Context.getComplexType(ScalarType);
   1245 
   1246   if (!IsCompAssign)
   1247     LHS = S.ImpCastExprToType(LHS.get(), ComplexType,
   1248                               CK_IntegralRealToComplex);
   1249   return ComplexType;
   1250 }
   1251 
   1252 /// UsualArithmeticConversions - Performs various conversions that are common to
   1253 /// binary operators (C99 6.3.1.8). If both operands aren't arithmetic, this
   1254 /// routine returns the first non-arithmetic type found. The client is
   1255 /// responsible for emitting appropriate error diagnostics.
   1256 QualType Sema::UsualArithmeticConversions(ExprResult &LHS, ExprResult &RHS,
   1257                                           bool IsCompAssign) {
   1258   if (!IsCompAssign) {
   1259     LHS = UsualUnaryConversions(LHS.get());
   1260     if (LHS.isInvalid())
   1261       return QualType();
   1262   }
   1263 
   1264   RHS = UsualUnaryConversions(RHS.get());
   1265   if (RHS.isInvalid())
   1266     return QualType();
   1267 
   1268   // For conversion purposes, we ignore any qualifiers.
   1269   // For example, "const float" and "float" are equivalent.
   1270   QualType LHSType =
   1271     Context.getCanonicalType(LHS.get()->getType()).getUnqualifiedType();
   1272   QualType RHSType =
   1273     Context.getCanonicalType(RHS.get()->getType()).getUnqualifiedType();
   1274 
   1275   // For conversion purposes, we ignore any atomic qualifier on the LHS.
   1276   if (const AtomicType *AtomicLHS = LHSType->getAs<AtomicType>())
   1277     LHSType = AtomicLHS->getValueType();
   1278 
   1279   // If both types are identical, no conversion is needed.
   1280   if (LHSType == RHSType)
   1281     return LHSType;
   1282 
   1283   // If either side is a non-arithmetic type (e.g. a pointer), we are done.
   1284   // The caller can deal with this (e.g. pointer + int).
   1285   if (!LHSType->isArithmeticType() || !RHSType->isArithmeticType())
   1286     return QualType();
   1287 
   1288   // Apply unary and bitfield promotions to the LHS's type.
   1289   QualType LHSUnpromotedType = LHSType;
   1290   if (LHSType->isPromotableIntegerType())
   1291     LHSType = Context.getPromotedIntegerType(LHSType);
   1292   QualType LHSBitfieldPromoteTy = Context.isPromotableBitField(LHS.get());
   1293   if (!LHSBitfieldPromoteTy.isNull())
   1294     LHSType = LHSBitfieldPromoteTy;
   1295   if (LHSType != LHSUnpromotedType && !IsCompAssign)
   1296     LHS = ImpCastExprToType(LHS.get(), LHSType, CK_IntegralCast);
   1297 
   1298   // If both types are identical, no conversion is needed.
   1299   if (LHSType == RHSType)
   1300     return LHSType;
   1301 
   1302   // At this point, we have two different arithmetic types.
   1303 
   1304   // Handle complex types first (C99 6.3.1.8p1).
   1305   if (LHSType->isComplexType() || RHSType->isComplexType())
   1306     return handleComplexFloatConversion(*this, LHS, RHS, LHSType, RHSType,
   1307                                         IsCompAssign);
   1308 
   1309   // Now handle "real" floating types (i.e. float, double, long double).
   1310   if (LHSType->isRealFloatingType() || RHSType->isRealFloatingType())
   1311     return handleFloatConversion(*this, LHS, RHS, LHSType, RHSType,
   1312                                  IsCompAssign);
   1313 
   1314   // Handle GCC complex int extension.
   1315   if (LHSType->isComplexIntegerType() || RHSType->isComplexIntegerType())
   1316     return handleComplexIntConversion(*this, LHS, RHS, LHSType, RHSType,
   1317                                       IsCompAssign);
   1318 
   1319   // Finally, we have two differing integer types.
   1320   return handleIntegerConversion<doIntegralCast, doIntegralCast>
   1321            (*this, LHS, RHS, LHSType, RHSType, IsCompAssign);
   1322 }
   1323 
   1324 
   1325 //===----------------------------------------------------------------------===//
   1326 //  Semantic Analysis for various Expression Types
   1327 //===----------------------------------------------------------------------===//
   1328 
   1329 
   1330 ExprResult
   1331 Sema::ActOnGenericSelectionExpr(SourceLocation KeyLoc,
   1332                                 SourceLocation DefaultLoc,
   1333                                 SourceLocation RParenLoc,
   1334                                 Expr *ControllingExpr,
   1335                                 ArrayRef<ParsedType> ArgTypes,
   1336                                 ArrayRef<Expr *> ArgExprs) {
   1337   unsigned NumAssocs = ArgTypes.size();
   1338   assert(NumAssocs == ArgExprs.size());
   1339 
   1340   TypeSourceInfo **Types = new TypeSourceInfo*[NumAssocs];
   1341   for (unsigned i = 0; i < NumAssocs; ++i) {
   1342     if (ArgTypes[i])
   1343       (void) GetTypeFromParser(ArgTypes[i], &Types[i]);
   1344     else
   1345       Types[i] = nullptr;
   1346   }
   1347 
   1348   ExprResult ER = CreateGenericSelectionExpr(KeyLoc, DefaultLoc, RParenLoc,
   1349                                              ControllingExpr,
   1350                                              llvm::makeArrayRef(Types, NumAssocs),
   1351                                              ArgExprs);
   1352   delete [] Types;
   1353   return ER;
   1354 }
   1355 
   1356 ExprResult
   1357 Sema::CreateGenericSelectionExpr(SourceLocation KeyLoc,
   1358                                  SourceLocation DefaultLoc,
   1359                                  SourceLocation RParenLoc,
   1360                                  Expr *ControllingExpr,
   1361                                  ArrayRef<TypeSourceInfo *> Types,
   1362                                  ArrayRef<Expr *> Exprs) {
   1363   unsigned NumAssocs = Types.size();
   1364   assert(NumAssocs == Exprs.size());
   1365 
   1366   // Decay and strip qualifiers for the controlling expression type, and handle
   1367   // placeholder type replacement. See committee discussion from WG14 DR423.
   1368   ExprResult R = DefaultFunctionArrayLvalueConversion(ControllingExpr);
   1369   if (R.isInvalid())
   1370     return ExprError();
   1371   ControllingExpr = R.get();
   1372 
   1373   // The controlling expression is an unevaluated operand, so side effects are
   1374   // likely unintended.
   1375   if (ActiveTemplateInstantiations.empty() &&
   1376       ControllingExpr->HasSideEffects(Context, false))
   1377     Diag(ControllingExpr->getExprLoc(),
   1378          diag::warn_side_effects_unevaluated_context);
   1379 
   1380   bool TypeErrorFound = false,
   1381        IsResultDependent = ControllingExpr->isTypeDependent(),
   1382        ContainsUnexpandedParameterPack
   1383          = ControllingExpr->containsUnexpandedParameterPack();
   1384 
   1385   for (unsigned i = 0; i < NumAssocs; ++i) {
   1386     if (Exprs[i]->containsUnexpandedParameterPack())
   1387       ContainsUnexpandedParameterPack = true;
   1388 
   1389     if (Types[i]) {
   1390       if (Types[i]->getType()->containsUnexpandedParameterPack())
   1391         ContainsUnexpandedParameterPack = true;
   1392 
   1393       if (Types[i]->getType()->isDependentType()) {
   1394         IsResultDependent = true;
   1395       } else {
   1396         // C11 6.5.1.1p2 "The type name in a generic association shall specify a
   1397         // complete object type other than a variably modified type."
   1398         unsigned D = 0;
   1399         if (Types[i]->getType()->isIncompleteType())
   1400           D = diag::err_assoc_type_incomplete;
   1401         else if (!Types[i]->getType()->isObjectType())
   1402           D = diag::err_assoc_type_nonobject;
   1403         else if (Types[i]->getType()->isVariablyModifiedType())
   1404           D = diag::err_assoc_type_variably_modified;
   1405 
   1406         if (D != 0) {
   1407           Diag(Types[i]->getTypeLoc().getBeginLoc(), D)
   1408             << Types[i]->getTypeLoc().getSourceRange()
   1409             << Types[i]->getType();
   1410           TypeErrorFound = true;
   1411         }
   1412 
   1413         // C11 6.5.1.1p2 "No two generic associations in the same generic
   1414         // selection shall specify compatible types."
   1415         for (unsigned j = i+1; j < NumAssocs; ++j)
   1416           if (Types[j] && !Types[j]->getType()->isDependentType() &&
   1417               Context.typesAreCompatible(Types[i]->getType(),
   1418                                          Types[j]->getType())) {
   1419             Diag(Types[j]->getTypeLoc().getBeginLoc(),
   1420                  diag::err_assoc_compatible_types)
   1421               << Types[j]->getTypeLoc().getSourceRange()
   1422               << Types[j]->getType()
   1423               << Types[i]->getType();
   1424             Diag(Types[i]->getTypeLoc().getBeginLoc(),
   1425                  diag::note_compat_assoc)
   1426               << Types[i]->getTypeLoc().getSourceRange()
   1427               << Types[i]->getType();
   1428             TypeErrorFound = true;
   1429           }
   1430       }
   1431     }
   1432   }
   1433   if (TypeErrorFound)
   1434     return ExprError();
   1435 
   1436   // If we determined that the generic selection is result-dependent, don't
   1437   // try to compute the result expression.
   1438   if (IsResultDependent)
   1439     return new (Context) GenericSelectionExpr(
   1440         Context, KeyLoc, ControllingExpr, Types, Exprs, DefaultLoc, RParenLoc,
   1441         ContainsUnexpandedParameterPack);
   1442 
   1443   SmallVector<unsigned, 1> CompatIndices;
   1444   unsigned DefaultIndex = -1U;
   1445   for (unsigned i = 0; i < NumAssocs; ++i) {
   1446     if (!Types[i])
   1447       DefaultIndex = i;
   1448     else if (Context.typesAreCompatible(ControllingExpr->getType(),
   1449                                         Types[i]->getType()))
   1450       CompatIndices.push_back(i);
   1451   }
   1452 
   1453   // C11 6.5.1.1p2 "The controlling expression of a generic selection shall have
   1454   // type compatible with at most one of the types named in its generic
   1455   // association list."
   1456   if (CompatIndices.size() > 1) {
   1457     // We strip parens here because the controlling expression is typically
   1458     // parenthesized in macro definitions.
   1459     ControllingExpr = ControllingExpr->IgnoreParens();
   1460     Diag(ControllingExpr->getLocStart(), diag::err_generic_sel_multi_match)
   1461       << ControllingExpr->getSourceRange() << ControllingExpr->getType()
   1462       << (unsigned) CompatIndices.size();
   1463     for (unsigned I : CompatIndices) {
   1464       Diag(Types[I]->getTypeLoc().getBeginLoc(),
   1465            diag::note_compat_assoc)
   1466         << Types[I]->getTypeLoc().getSourceRange()
   1467         << Types[I]->getType();
   1468     }
   1469     return ExprError();
   1470   }
   1471 
   1472   // C11 6.5.1.1p2 "If a generic selection has no default generic association,
   1473   // its controlling expression shall have type compatible with exactly one of
   1474   // the types named in its generic association list."
   1475   if (DefaultIndex == -1U && CompatIndices.size() == 0) {
   1476     // We strip parens here because the controlling expression is typically
   1477     // parenthesized in macro definitions.
   1478     ControllingExpr = ControllingExpr->IgnoreParens();
   1479     Diag(ControllingExpr->getLocStart(), diag::err_generic_sel_no_match)
   1480       << ControllingExpr->getSourceRange() << ControllingExpr->getType();
   1481     return ExprError();
   1482   }
   1483 
   1484   // C11 6.5.1.1p3 "If a generic selection has a generic association with a
   1485   // type name that is compatible with the type of the controlling expression,
   1486   // then the result expression of the generic selection is the expression
   1487   // in that generic association. Otherwise, the result expression of the
   1488   // generic selection is the expression in the default generic association."
   1489   unsigned ResultIndex =
   1490     CompatIndices.size() ? CompatIndices[0] : DefaultIndex;
   1491 
   1492   return new (Context) GenericSelectionExpr(
   1493       Context, KeyLoc, ControllingExpr, Types, Exprs, DefaultLoc, RParenLoc,
   1494       ContainsUnexpandedParameterPack, ResultIndex);
   1495 }
   1496 
   1497 /// getUDSuffixLoc - Create a SourceLocation for a ud-suffix, given the
   1498 /// location of the token and the offset of the ud-suffix within it.
   1499 static SourceLocation getUDSuffixLoc(Sema &S, SourceLocation TokLoc,
   1500                                      unsigned Offset) {
   1501   return Lexer::AdvanceToTokenCharacter(TokLoc, Offset, S.getSourceManager(),
   1502                                         S.getLangOpts());
   1503 }
   1504 
   1505 /// BuildCookedLiteralOperatorCall - A user-defined literal was found. Look up
   1506 /// the corresponding cooked (non-raw) literal operator, and build a call to it.
   1507 static ExprResult BuildCookedLiteralOperatorCall(Sema &S, Scope *Scope,
   1508                                                  IdentifierInfo *UDSuffix,
   1509                                                  SourceLocation UDSuffixLoc,
   1510                                                  ArrayRef<Expr*> Args,
   1511                                                  SourceLocation LitEndLoc) {
   1512   assert(Args.size() <= 2 && "too many arguments for literal operator");
   1513 
   1514   QualType ArgTy[2];
   1515   for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) {
   1516     ArgTy[ArgIdx] = Args[ArgIdx]->getType();
   1517     if (ArgTy[ArgIdx]->isArrayType())
   1518       ArgTy[ArgIdx] = S.Context.getArrayDecayedType(ArgTy[ArgIdx]);
   1519   }
   1520 
   1521   DeclarationName OpName =
   1522     S.Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
   1523   DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
   1524   OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
   1525 
   1526   LookupResult R(S, OpName, UDSuffixLoc, Sema::LookupOrdinaryName);
   1527   if (S.LookupLiteralOperator(Scope, R, llvm::makeArrayRef(ArgTy, Args.size()),
   1528                               /*AllowRaw*/false, /*AllowTemplate*/false,
   1529                               /*AllowStringTemplate*/false) == Sema::LOLR_Error)
   1530     return ExprError();
   1531 
   1532   return S.BuildLiteralOperatorCall(R, OpNameInfo, Args, LitEndLoc);
   1533 }
   1534 
   1535 /// ActOnStringLiteral - The specified tokens were lexed as pasted string
   1536 /// fragments (e.g. "foo" "bar" L"baz").  The result string has to handle string
   1537 /// concatenation ([C99 5.1.1.2, translation phase #6]), so it may come from
   1538 /// multiple tokens.  However, the common case is that StringToks points to one
   1539 /// string.
   1540 ///
   1541 ExprResult
   1542 Sema::ActOnStringLiteral(ArrayRef<Token> StringToks, Scope *UDLScope) {
   1543   assert(!StringToks.empty() && "Must have at least one string!");
   1544 
   1545   StringLiteralParser Literal(StringToks, PP);
   1546   if (Literal.hadError)
   1547     return ExprError();
   1548 
   1549   SmallVector<SourceLocation, 4> StringTokLocs;
   1550   for (const Token &Tok : StringToks)
   1551     StringTokLocs.push_back(Tok.getLocation());
   1552 
   1553   QualType CharTy = Context.CharTy;
   1554   StringLiteral::StringKind Kind = StringLiteral::Ascii;
   1555   if (Literal.isWide()) {
   1556     CharTy = Context.getWideCharType();
   1557     Kind = StringLiteral::Wide;
   1558   } else if (Literal.isUTF8()) {
   1559     Kind = StringLiteral::UTF8;
   1560   } else if (Literal.isUTF16()) {
   1561     CharTy = Context.Char16Ty;
   1562     Kind = StringLiteral::UTF16;
   1563   } else if (Literal.isUTF32()) {
   1564     CharTy = Context.Char32Ty;
   1565     Kind = StringLiteral::UTF32;
   1566   } else if (Literal.isPascal()) {
   1567     CharTy = Context.UnsignedCharTy;
   1568   }
   1569 
   1570   QualType CharTyConst = CharTy;
   1571   // A C++ string literal has a const-qualified element type (C++ 2.13.4p1).
   1572   if (getLangOpts().CPlusPlus || getLangOpts().ConstStrings)
   1573     CharTyConst.addConst();
   1574 
   1575   // Get an array type for the string, according to C99 6.4.5.  This includes
   1576   // the nul terminator character as well as the string length for pascal
   1577   // strings.
   1578   QualType StrTy = Context.getConstantArrayType(CharTyConst,
   1579                                  llvm::APInt(32, Literal.GetNumStringChars()+1),
   1580                                  ArrayType::Normal, 0);
   1581 
   1582   // OpenCL v1.1 s6.5.3: a string literal is in the constant address space.
   1583   if (getLangOpts().OpenCL) {
   1584     StrTy = Context.getAddrSpaceQualType(StrTy, LangAS::opencl_constant);
   1585   }
   1586 
   1587   // Pass &StringTokLocs[0], StringTokLocs.size() to factory!
   1588   StringLiteral *Lit = StringLiteral::Create(Context, Literal.GetString(),
   1589                                              Kind, Literal.Pascal, StrTy,
   1590                                              &StringTokLocs[0],
   1591                                              StringTokLocs.size());
   1592   if (Literal.getUDSuffix().empty())
   1593     return Lit;
   1594 
   1595   // We're building a user-defined literal.
   1596   IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
   1597   SourceLocation UDSuffixLoc =
   1598     getUDSuffixLoc(*this, StringTokLocs[Literal.getUDSuffixToken()],
   1599                    Literal.getUDSuffixOffset());
   1600 
   1601   // Make sure we're allowed user-defined literals here.
   1602   if (!UDLScope)
   1603     return ExprError(Diag(UDSuffixLoc, diag::err_invalid_string_udl));
   1604 
   1605   // C++11 [lex.ext]p5: The literal L is treated as a call of the form
   1606   //   operator "" X (str, len)
   1607   QualType SizeType = Context.getSizeType();
   1608 
   1609   DeclarationName OpName =
   1610     Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
   1611   DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
   1612   OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
   1613 
   1614   QualType ArgTy[] = {
   1615     Context.getArrayDecayedType(StrTy), SizeType
   1616   };
   1617 
   1618   LookupResult R(*this, OpName, UDSuffixLoc, LookupOrdinaryName);
   1619   switch (LookupLiteralOperator(UDLScope, R, ArgTy,
   1620                                 /*AllowRaw*/false, /*AllowTemplate*/false,
   1621                                 /*AllowStringTemplate*/true)) {
   1622 
   1623   case LOLR_Cooked: {
   1624     llvm::APInt Len(Context.getIntWidth(SizeType), Literal.GetNumStringChars());
   1625     IntegerLiteral *LenArg = IntegerLiteral::Create(Context, Len, SizeType,
   1626                                                     StringTokLocs[0]);
   1627     Expr *Args[] = { Lit, LenArg };
   1628 
   1629     return BuildLiteralOperatorCall(R, OpNameInfo, Args, StringTokLocs.back());
   1630   }
   1631 
   1632   case LOLR_StringTemplate: {
   1633     TemplateArgumentListInfo ExplicitArgs;
   1634 
   1635     unsigned CharBits = Context.getIntWidth(CharTy);
   1636     bool CharIsUnsigned = CharTy->isUnsignedIntegerType();
   1637     llvm::APSInt Value(CharBits, CharIsUnsigned);
   1638 
   1639     TemplateArgument TypeArg(CharTy);
   1640     TemplateArgumentLocInfo TypeArgInfo(Context.getTrivialTypeSourceInfo(CharTy));
   1641     ExplicitArgs.addArgument(TemplateArgumentLoc(TypeArg, TypeArgInfo));
   1642 
   1643     for (unsigned I = 0, N = Lit->getLength(); I != N; ++I) {
   1644       Value = Lit->getCodeUnit(I);
   1645       TemplateArgument Arg(Context, Value, CharTy);
   1646       TemplateArgumentLocInfo ArgInfo;
   1647       ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo));
   1648     }
   1649     return BuildLiteralOperatorCall(R, OpNameInfo, None, StringTokLocs.back(),
   1650                                     &ExplicitArgs);
   1651   }
   1652   case LOLR_Raw:
   1653   case LOLR_Template:
   1654     llvm_unreachable("unexpected literal operator lookup result");
   1655   case LOLR_Error:
   1656     return ExprError();
   1657   }
   1658   llvm_unreachable("unexpected literal operator lookup result");
   1659 }
   1660 
   1661 ExprResult
   1662 Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
   1663                        SourceLocation Loc,
   1664                        const CXXScopeSpec *SS) {
   1665   DeclarationNameInfo NameInfo(D->getDeclName(), Loc);
   1666   return BuildDeclRefExpr(D, Ty, VK, NameInfo, SS);
   1667 }
   1668 
   1669 /// BuildDeclRefExpr - Build an expression that references a
   1670 /// declaration that does not require a closure capture.
   1671 ExprResult
   1672 Sema::BuildDeclRefExpr(ValueDecl *D, QualType Ty, ExprValueKind VK,
   1673                        const DeclarationNameInfo &NameInfo,
   1674                        const CXXScopeSpec *SS, NamedDecl *FoundD,
   1675                        const TemplateArgumentListInfo *TemplateArgs) {
   1676   if (getLangOpts().CUDA)
   1677     if (const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext))
   1678       if (const FunctionDecl *Callee = dyn_cast<FunctionDecl>(D)) {
   1679         if (CheckCUDATarget(Caller, Callee)) {
   1680           Diag(NameInfo.getLoc(), diag::err_ref_bad_target)
   1681             << IdentifyCUDATarget(Callee) << D->getIdentifier()
   1682             << IdentifyCUDATarget(Caller);
   1683           Diag(D->getLocation(), diag::note_previous_decl)
   1684             << D->getIdentifier();
   1685           return ExprError();
   1686         }
   1687       }
   1688 
   1689   bool RefersToCapturedVariable =
   1690       isa<VarDecl>(D) &&
   1691       NeedToCaptureVariable(cast<VarDecl>(D), NameInfo.getLoc());
   1692 
   1693   DeclRefExpr *E;
   1694   if (isa<VarTemplateSpecializationDecl>(D)) {
   1695     VarTemplateSpecializationDecl *VarSpec =
   1696         cast<VarTemplateSpecializationDecl>(D);
   1697 
   1698     E = DeclRefExpr::Create(Context, SS ? SS->getWithLocInContext(Context)
   1699                                         : NestedNameSpecifierLoc(),
   1700                             VarSpec->getTemplateKeywordLoc(), D,
   1701                             RefersToCapturedVariable, NameInfo.getLoc(), Ty, VK,
   1702                             FoundD, TemplateArgs);
   1703   } else {
   1704     assert(!TemplateArgs && "No template arguments for non-variable"
   1705                             " template specialization references");
   1706     E = DeclRefExpr::Create(Context, SS ? SS->getWithLocInContext(Context)
   1707                                         : NestedNameSpecifierLoc(),
   1708                             SourceLocation(), D, RefersToCapturedVariable,
   1709                             NameInfo, Ty, VK, FoundD);
   1710   }
   1711 
   1712   MarkDeclRefReferenced(E);
   1713 
   1714   if (getLangOpts().ObjCWeak && isa<VarDecl>(D) &&
   1715       Ty.getObjCLifetime() == Qualifiers::OCL_Weak &&
   1716       !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, E->getLocStart()))
   1717       recordUseOfEvaluatedWeak(E);
   1718 
   1719   // Just in case we're building an illegal pointer-to-member.
   1720   FieldDecl *FD = dyn_cast<FieldDecl>(D);
   1721   if (FD && FD->isBitField())
   1722     E->setObjectKind(OK_BitField);
   1723 
   1724   return E;
   1725 }
   1726 
   1727 /// Decomposes the given name into a DeclarationNameInfo, its location, and
   1728 /// possibly a list of template arguments.
   1729 ///
   1730 /// If this produces template arguments, it is permitted to call
   1731 /// DecomposeTemplateName.
   1732 ///
   1733 /// This actually loses a lot of source location information for
   1734 /// non-standard name kinds; we should consider preserving that in
   1735 /// some way.
   1736 void
   1737 Sema::DecomposeUnqualifiedId(const UnqualifiedId &Id,
   1738                              TemplateArgumentListInfo &Buffer,
   1739                              DeclarationNameInfo &NameInfo,
   1740                              const TemplateArgumentListInfo *&TemplateArgs) {
   1741   if (Id.getKind() == UnqualifiedId::IK_TemplateId) {
   1742     Buffer.setLAngleLoc(Id.TemplateId->LAngleLoc);
   1743     Buffer.setRAngleLoc(Id.TemplateId->RAngleLoc);
   1744 
   1745     ASTTemplateArgsPtr TemplateArgsPtr(Id.TemplateId->getTemplateArgs(),
   1746                                        Id.TemplateId->NumArgs);
   1747     translateTemplateArguments(TemplateArgsPtr, Buffer);
   1748 
   1749     TemplateName TName = Id.TemplateId->Template.get();
   1750     SourceLocation TNameLoc = Id.TemplateId->TemplateNameLoc;
   1751     NameInfo = Context.getNameForTemplate(TName, TNameLoc);
   1752     TemplateArgs = &Buffer;
   1753   } else {
   1754     NameInfo = GetNameFromUnqualifiedId(Id);
   1755     TemplateArgs = nullptr;
   1756   }
   1757 }
   1758 
   1759 static void emitEmptyLookupTypoDiagnostic(
   1760     const TypoCorrection &TC, Sema &SemaRef, const CXXScopeSpec &SS,
   1761     DeclarationName Typo, SourceLocation TypoLoc, ArrayRef<Expr *> Args,
   1762     unsigned DiagnosticID, unsigned DiagnosticSuggestID) {
   1763   DeclContext *Ctx =
   1764       SS.isEmpty() ? nullptr : SemaRef.computeDeclContext(SS, false);
   1765   if (!TC) {
   1766     // Emit a special diagnostic for failed member lookups.
   1767     // FIXME: computing the declaration context might fail here (?)
   1768     if (Ctx)
   1769       SemaRef.Diag(TypoLoc, diag::err_no_member) << Typo << Ctx
   1770                                                  << SS.getRange();
   1771     else
   1772       SemaRef.Diag(TypoLoc, DiagnosticID) << Typo;
   1773     return;
   1774   }
   1775 
   1776   std::string CorrectedStr = TC.getAsString(SemaRef.getLangOpts());
   1777   bool DroppedSpecifier =
   1778       TC.WillReplaceSpecifier() && Typo.getAsString() == CorrectedStr;
   1779   unsigned NoteID =
   1780       (TC.getCorrectionDecl() && isa<ImplicitParamDecl>(TC.getCorrectionDecl()))
   1781           ? diag::note_implicit_param_decl
   1782           : diag::note_previous_decl;
   1783   if (!Ctx)
   1784     SemaRef.diagnoseTypo(TC, SemaRef.PDiag(DiagnosticSuggestID) << Typo,
   1785                          SemaRef.PDiag(NoteID));
   1786   else
   1787     SemaRef.diagnoseTypo(TC, SemaRef.PDiag(diag::err_no_member_suggest)
   1788                                  << Typo << Ctx << DroppedSpecifier
   1789                                  << SS.getRange(),
   1790                          SemaRef.PDiag(NoteID));
   1791 }
   1792 
   1793 /// Diagnose an empty lookup.
   1794 ///
   1795 /// \return false if new lookup candidates were found
   1796 bool
   1797 Sema::DiagnoseEmptyLookup(Scope *S, CXXScopeSpec &SS, LookupResult &R,
   1798                           std::unique_ptr<CorrectionCandidateCallback> CCC,
   1799                           TemplateArgumentListInfo *ExplicitTemplateArgs,
   1800                           ArrayRef<Expr *> Args, TypoExpr **Out) {
   1801   DeclarationName Name = R.getLookupName();
   1802 
   1803   unsigned diagnostic = diag::err_undeclared_var_use;
   1804   unsigned diagnostic_suggest = diag::err_undeclared_var_use_suggest;
   1805   if (Name.getNameKind() == DeclarationName::CXXOperatorName ||
   1806       Name.getNameKind() == DeclarationName::CXXLiteralOperatorName ||
   1807       Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
   1808     diagnostic = diag::err_undeclared_use;
   1809     diagnostic_suggest = diag::err_undeclared_use_suggest;
   1810   }
   1811 
   1812   // If the original lookup was an unqualified lookup, fake an
   1813   // unqualified lookup.  This is useful when (for example) the
   1814   // original lookup would not have found something because it was a
   1815   // dependent name.
   1816   DeclContext *DC = SS.isEmpty() ? CurContext : nullptr;
   1817   while (DC) {
   1818     if (isa<CXXRecordDecl>(DC)) {
   1819       LookupQualifiedName(R, DC);
   1820 
   1821       if (!R.empty()) {
   1822         // Don't give errors about ambiguities in this lookup.
   1823         R.suppressDiagnostics();
   1824 
   1825         // During a default argument instantiation the CurContext points
   1826         // to a CXXMethodDecl; but we can't apply a this-> fixit inside a
   1827         // function parameter list, hence add an explicit check.
   1828         bool isDefaultArgument = !ActiveTemplateInstantiations.empty() &&
   1829                               ActiveTemplateInstantiations.back().Kind ==
   1830             ActiveTemplateInstantiation::DefaultFunctionArgumentInstantiation;
   1831         CXXMethodDecl *CurMethod = dyn_cast<CXXMethodDecl>(CurContext);
   1832         bool isInstance = CurMethod &&
   1833                           CurMethod->isInstance() &&
   1834                           DC == CurMethod->getParent() && !isDefaultArgument;
   1835 
   1836         // Give a code modification hint to insert 'this->'.
   1837         // TODO: fixit for inserting 'Base<T>::' in the other cases.
   1838         // Actually quite difficult!
   1839         if (getLangOpts().MSVCCompat)
   1840           diagnostic = diag::ext_found_via_dependent_bases_lookup;
   1841         if (isInstance) {
   1842           Diag(R.getNameLoc(), diagnostic) << Name
   1843             << FixItHint::CreateInsertion(R.getNameLoc(), "this->");
   1844           CheckCXXThisCapture(R.getNameLoc());
   1845         } else {
   1846           Diag(R.getNameLoc(), diagnostic) << Name;
   1847         }
   1848 
   1849         // Do we really want to note all of these?
   1850         for (NamedDecl *D : R)
   1851           Diag(D->getLocation(), diag::note_dependent_var_use);
   1852 
   1853         // Return true if we are inside a default argument instantiation
   1854         // and the found name refers to an instance member function, otherwise
   1855         // the function calling DiagnoseEmptyLookup will try to create an
   1856         // implicit member call and this is wrong for default argument.
   1857         if (isDefaultArgument && ((*R.begin())->isCXXInstanceMember())) {
   1858           Diag(R.getNameLoc(), diag::err_member_call_without_object);
   1859           return true;
   1860         }
   1861 
   1862         // Tell the callee to try to recover.
   1863         return false;
   1864       }
   1865 
   1866       R.clear();
   1867     }
   1868 
   1869     // In Microsoft mode, if we are performing lookup from within a friend
   1870     // function definition declared at class scope then we must set
   1871     // DC to the lexical parent to be able to search into the parent
   1872     // class.
   1873     if (getLangOpts().MSVCCompat && isa<FunctionDecl>(DC) &&
   1874         cast<FunctionDecl>(DC)->getFriendObjectKind() &&
   1875         DC->getLexicalParent()->isRecord())
   1876       DC = DC->getLexicalParent();
   1877     else
   1878       DC = DC->getParent();
   1879   }
   1880 
   1881   // We didn't find anything, so try to correct for a typo.
   1882   TypoCorrection Corrected;
   1883   if (S && Out) {
   1884     SourceLocation TypoLoc = R.getNameLoc();
   1885     assert(!ExplicitTemplateArgs &&
   1886            "Diagnosing an empty lookup with explicit template args!");
   1887     *Out = CorrectTypoDelayed(
   1888         R.getLookupNameInfo(), R.getLookupKind(), S, &SS, std::move(CCC),
   1889         [=](const TypoCorrection &TC) {
   1890           emitEmptyLookupTypoDiagnostic(TC, *this, SS, Name, TypoLoc, Args,
   1891                                         diagnostic, diagnostic_suggest);
   1892         },
   1893         nullptr, CTK_ErrorRecovery);
   1894     if (*Out)
   1895       return true;
   1896   } else if (S && (Corrected =
   1897                        CorrectTypo(R.getLookupNameInfo(), R.getLookupKind(), S,
   1898                                    &SS, std::move(CCC), CTK_ErrorRecovery))) {
   1899     std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
   1900     bool DroppedSpecifier =
   1901         Corrected.WillReplaceSpecifier() && Name.getAsString() == CorrectedStr;
   1902     R.setLookupName(Corrected.getCorrection());
   1903 
   1904     bool AcceptableWithRecovery = false;
   1905     bool AcceptableWithoutRecovery = false;
   1906     NamedDecl *ND = Corrected.getCorrectionDecl();
   1907     if (ND) {
   1908       if (Corrected.isOverloaded()) {
   1909         OverloadCandidateSet OCS(R.getNameLoc(),
   1910                                  OverloadCandidateSet::CSK_Normal);
   1911         OverloadCandidateSet::iterator Best;
   1912         for (NamedDecl *CD : Corrected) {
   1913           if (FunctionTemplateDecl *FTD =
   1914                    dyn_cast<FunctionTemplateDecl>(CD))
   1915             AddTemplateOverloadCandidate(
   1916                 FTD, DeclAccessPair::make(FTD, AS_none), ExplicitTemplateArgs,
   1917                 Args, OCS);
   1918           else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(CD))
   1919             if (!ExplicitTemplateArgs || ExplicitTemplateArgs->size() == 0)
   1920               AddOverloadCandidate(FD, DeclAccessPair::make(FD, AS_none),
   1921                                    Args, OCS);
   1922         }
   1923         switch (OCS.BestViableFunction(*this, R.getNameLoc(), Best)) {
   1924         case OR_Success:
   1925           ND = Best->Function;
   1926           Corrected.setCorrectionDecl(ND);
   1927           break;
   1928         default:
   1929           // FIXME: Arbitrarily pick the first declaration for the note.
   1930           Corrected.setCorrectionDecl(ND);
   1931           break;
   1932         }
   1933       }
   1934       R.addDecl(ND);
   1935       if (getLangOpts().CPlusPlus && ND->isCXXClassMember()) {
   1936         CXXRecordDecl *Record = nullptr;
   1937         if (Corrected.getCorrectionSpecifier()) {
   1938           const Type *Ty = Corrected.getCorrectionSpecifier()->getAsType();
   1939           Record = Ty->getAsCXXRecordDecl();
   1940         }
   1941         if (!Record)
   1942           Record = cast<CXXRecordDecl>(
   1943               ND->getDeclContext()->getRedeclContext());
   1944         R.setNamingClass(Record);
   1945       }
   1946 
   1947       AcceptableWithRecovery =
   1948           isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND);
   1949       // FIXME: If we ended up with a typo for a type name or
   1950       // Objective-C class name, we're in trouble because the parser
   1951       // is in the wrong place to recover. Suggest the typo
   1952       // correction, but don't make it a fix-it since we're not going
   1953       // to recover well anyway.
   1954       AcceptableWithoutRecovery =
   1955           isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND);
   1956     } else {
   1957       // FIXME: We found a keyword. Suggest it, but don't provide a fix-it
   1958       // because we aren't able to recover.
   1959       AcceptableWithoutRecovery = true;
   1960     }
   1961 
   1962     if (AcceptableWithRecovery || AcceptableWithoutRecovery) {
   1963       unsigned NoteID = (Corrected.getCorrectionDecl() &&
   1964                          isa<ImplicitParamDecl>(Corrected.getCorrectionDecl()))
   1965                             ? diag::note_implicit_param_decl
   1966                             : diag::note_previous_decl;
   1967       if (SS.isEmpty())
   1968         diagnoseTypo(Corrected, PDiag(diagnostic_suggest) << Name,
   1969                      PDiag(NoteID), AcceptableWithRecovery);
   1970       else
   1971         diagnoseTypo(Corrected, PDiag(diag::err_no_member_suggest)
   1972                                   << Name << computeDeclContext(SS, false)
   1973                                   << DroppedSpecifier << SS.getRange(),
   1974                      PDiag(NoteID), AcceptableWithRecovery);
   1975 
   1976       // Tell the callee whether to try to recover.
   1977       return !AcceptableWithRecovery;
   1978     }
   1979   }
   1980   R.clear();
   1981 
   1982   // Emit a special diagnostic for failed member lookups.
   1983   // FIXME: computing the declaration context might fail here (?)
   1984   if (!SS.isEmpty()) {
   1985     Diag(R.getNameLoc(), diag::err_no_member)
   1986       << Name << computeDeclContext(SS, false)
   1987       << SS.getRange();
   1988     return true;
   1989   }
   1990 
   1991   // Give up, we can't recover.
   1992   Diag(R.getNameLoc(), diagnostic) << Name;
   1993   return true;
   1994 }
   1995 
   1996 /// In Microsoft mode, if we are inside a template class whose parent class has
   1997 /// dependent base classes, and we can't resolve an unqualified identifier, then
   1998 /// assume the identifier is a member of a dependent base class.  We can only
   1999 /// recover successfully in static methods, instance methods, and other contexts
   2000 /// where 'this' is available.  This doesn't precisely match MSVC's
   2001 /// instantiation model, but it's close enough.
   2002 static Expr *
   2003 recoverFromMSUnqualifiedLookup(Sema &S, ASTContext &Context,
   2004                                DeclarationNameInfo &NameInfo,
   2005                                SourceLocation TemplateKWLoc,
   2006                                const TemplateArgumentListInfo *TemplateArgs) {
   2007   // Only try to recover from lookup into dependent bases in static methods or
   2008   // contexts where 'this' is available.
   2009   QualType ThisType = S.getCurrentThisType();
   2010   const CXXRecordDecl *RD = nullptr;
   2011   if (!ThisType.isNull())
   2012     RD = ThisType->getPointeeType()->getAsCXXRecordDecl();
   2013   else if (auto *MD = dyn_cast<CXXMethodDecl>(S.CurContext))
   2014     RD = MD->getParent();
   2015   if (!RD || !RD->hasAnyDependentBases())
   2016     return nullptr;
   2017 
   2018   // Diagnose this as unqualified lookup into a dependent base class.  If 'this'
   2019   // is available, suggest inserting 'this->' as a fixit.
   2020   SourceLocation Loc = NameInfo.getLoc();
   2021   auto DB = S.Diag(Loc, diag::ext_undeclared_unqual_id_with_dependent_base);
   2022   DB << NameInfo.getName() << RD;
   2023 
   2024   if (!ThisType.isNull()) {
   2025     DB << FixItHint::CreateInsertion(Loc, "this->");
   2026     return CXXDependentScopeMemberExpr::Create(
   2027         Context, /*This=*/nullptr, ThisType, /*IsArrow=*/true,
   2028         /*Op=*/SourceLocation(), NestedNameSpecifierLoc(), TemplateKWLoc,
   2029         /*FirstQualifierInScope=*/nullptr, NameInfo, TemplateArgs);
   2030   }
   2031 
   2032   // Synthesize a fake NNS that points to the derived class.  This will
   2033   // perform name lookup during template instantiation.
   2034   CXXScopeSpec SS;
   2035   auto *NNS =
   2036       NestedNameSpecifier::Create(Context, nullptr, true, RD->getTypeForDecl());
   2037   SS.MakeTrivial(Context, NNS, SourceRange(Loc, Loc));
   2038   return DependentScopeDeclRefExpr::Create(
   2039       Context, SS.getWithLocInContext(Context), TemplateKWLoc, NameInfo,
   2040       TemplateArgs);
   2041 }
   2042 
   2043 ExprResult
   2044 Sema::ActOnIdExpression(Scope *S, CXXScopeSpec &SS,
   2045                         SourceLocation TemplateKWLoc, UnqualifiedId &Id,
   2046                         bool HasTrailingLParen, bool IsAddressOfOperand,
   2047                         std::unique_ptr<CorrectionCandidateCallback> CCC,
   2048                         bool IsInlineAsmIdentifier, Token *KeywordReplacement) {
   2049   assert(!(IsAddressOfOperand && HasTrailingLParen) &&
   2050          "cannot be direct & operand and have a trailing lparen");
   2051   if (SS.isInvalid())
   2052     return ExprError();
   2053 
   2054   TemplateArgumentListInfo TemplateArgsBuffer;
   2055 
   2056   // Decompose the UnqualifiedId into the following data.
   2057   DeclarationNameInfo NameInfo;
   2058   const TemplateArgumentListInfo *TemplateArgs;
   2059   DecomposeUnqualifiedId(Id, TemplateArgsBuffer, NameInfo, TemplateArgs);
   2060 
   2061   DeclarationName Name = NameInfo.getName();
   2062   IdentifierInfo *II = Name.getAsIdentifierInfo();
   2063   SourceLocation NameLoc = NameInfo.getLoc();
   2064 
   2065   // C++ [temp.dep.expr]p3:
   2066   //   An id-expression is type-dependent if it contains:
   2067   //     -- an identifier that was declared with a dependent type,
   2068   //        (note: handled after lookup)
   2069   //     -- a template-id that is dependent,
   2070   //        (note: handled in BuildTemplateIdExpr)
   2071   //     -- a conversion-function-id that specifies a dependent type,
   2072   //     -- a nested-name-specifier that contains a class-name that
   2073   //        names a dependent type.
   2074   // Determine whether this is a member of an unknown specialization;
   2075   // we need to handle these differently.
   2076   bool DependentID = false;
   2077   if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName &&
   2078       Name.getCXXNameType()->isDependentType()) {
   2079     DependentID = true;
   2080   } else if (SS.isSet()) {
   2081     if (DeclContext *DC = computeDeclContext(SS, false)) {
   2082       if (RequireCompleteDeclContext(SS, DC))
   2083         return ExprError();
   2084     } else {
   2085       DependentID = true;
   2086     }
   2087   }
   2088 
   2089   if (DependentID)
   2090     return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
   2091                                       IsAddressOfOperand, TemplateArgs);
   2092 
   2093   // Perform the required lookup.
   2094   LookupResult R(*this, NameInfo,
   2095                  (Id.getKind() == UnqualifiedId::IK_ImplicitSelfParam)
   2096                   ? LookupObjCImplicitSelfParam : LookupOrdinaryName);
   2097   if (TemplateArgs) {
   2098     // Lookup the template name again to correctly establish the context in
   2099     // which it was found. This is really unfortunate as we already did the
   2100     // lookup to determine that it was a template name in the first place. If
   2101     // this becomes a performance hit, we can work harder to preserve those
   2102     // results until we get here but it's likely not worth it.
   2103     bool MemberOfUnknownSpecialization;
   2104     LookupTemplateName(R, S, SS, QualType(), /*EnteringContext=*/false,
   2105                        MemberOfUnknownSpecialization);
   2106 
   2107     if (MemberOfUnknownSpecialization ||
   2108         (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation))
   2109       return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
   2110                                         IsAddressOfOperand, TemplateArgs);
   2111   } else {
   2112     bool IvarLookupFollowUp = II && !SS.isSet() && getCurMethodDecl();
   2113     LookupParsedName(R, S, &SS, !IvarLookupFollowUp);
   2114 
   2115     // If the result might be in a dependent base class, this is a dependent
   2116     // id-expression.
   2117     if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation)
   2118       return ActOnDependentIdExpression(SS, TemplateKWLoc, NameInfo,
   2119                                         IsAddressOfOperand, TemplateArgs);
   2120 
   2121     // If this reference is in an Objective-C method, then we need to do
   2122     // some special Objective-C lookup, too.
   2123     if (IvarLookupFollowUp) {
   2124       ExprResult E(LookupInObjCMethod(R, S, II, true));
   2125       if (E.isInvalid())
   2126         return ExprError();
   2127 
   2128       if (Expr *Ex = E.getAs<Expr>())
   2129         return Ex;
   2130     }
   2131   }
   2132 
   2133   if (R.isAmbiguous())
   2134     return ExprError();
   2135 
   2136   // This could be an implicitly declared function reference (legal in C90,
   2137   // extension in C99, forbidden in C++).
   2138   if (R.empty() && HasTrailingLParen && II && !getLangOpts().CPlusPlus) {
   2139     NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *II, S);
   2140     if (D) R.addDecl(D);
   2141   }
   2142 
   2143   // Determine whether this name might be a candidate for
   2144   // argument-dependent lookup.
   2145   bool ADL = UseArgumentDependentLookup(SS, R, HasTrailingLParen);
   2146 
   2147   if (R.empty() && !ADL) {
   2148     if (SS.isEmpty() && getLangOpts().MSVCCompat) {
   2149       if (Expr *E = recoverFromMSUnqualifiedLookup(*this, Context, NameInfo,
   2150                                                    TemplateKWLoc, TemplateArgs))
   2151         return E;
   2152     }
   2153 
   2154     // Don't diagnose an empty lookup for inline assembly.
   2155     if (IsInlineAsmIdentifier)
   2156       return ExprError();
   2157 
   2158     // If this name wasn't predeclared and if this is not a function
   2159     // call, diagnose the problem.
   2160     TypoExpr *TE = nullptr;
   2161     auto DefaultValidator = llvm::make_unique<CorrectionCandidateCallback>(
   2162         II, SS.isValid() ? SS.getScopeRep() : nullptr);
   2163     DefaultValidator->IsAddressOfOperand = IsAddressOfOperand;
   2164     assert((!CCC || CCC->IsAddressOfOperand == IsAddressOfOperand) &&
   2165            "Typo correction callback misconfigured");
   2166     if (CCC) {
   2167       // Make sure the callback knows what the typo being diagnosed is.
   2168       CCC->setTypoName(II);
   2169       if (SS.isValid())
   2170         CCC->setTypoNNS(SS.getScopeRep());
   2171     }
   2172     if (DiagnoseEmptyLookup(S, SS, R,
   2173                             CCC ? std::move(CCC) : std::move(DefaultValidator),
   2174                             nullptr, None, &TE)) {
   2175       if (TE && KeywordReplacement) {
   2176         auto &State = getTypoExprState(TE);
   2177         auto BestTC = State.Consumer->getNextCorrection();
   2178         if (BestTC.isKeyword()) {
   2179           auto *II = BestTC.getCorrectionAsIdentifierInfo();
   2180           if (State.DiagHandler)
   2181             State.DiagHandler(BestTC);
   2182           KeywordReplacement->startToken();
   2183           KeywordReplacement->setKind(II->getTokenID());
   2184           KeywordReplacement->setIdentifierInfo(II);
   2185           KeywordReplacement->setLocation(BestTC.getCorrectionRange().getBegin());
   2186           // Clean up the state associated with the TypoExpr, since it has
   2187           // now been diagnosed (without a call to CorrectDelayedTyposInExpr).
   2188           clearDelayedTypo(TE);
   2189           // Signal that a correction to a keyword was performed by returning a
   2190           // valid-but-null ExprResult.
   2191           return (Expr*)nullptr;
   2192         }
   2193         State.Consumer->resetCorrectionStream();
   2194       }
   2195       return TE ? TE : ExprError();
   2196     }
   2197 
   2198     assert(!R.empty() &&
   2199            "DiagnoseEmptyLookup returned false but added no results");
   2200 
   2201     // If we found an Objective-C instance variable, let
   2202     // LookupInObjCMethod build the appropriate expression to
   2203     // reference the ivar.
   2204     if (ObjCIvarDecl *Ivar = R.getAsSingle<ObjCIvarDecl>()) {
   2205       R.clear();
   2206       ExprResult E(LookupInObjCMethod(R, S, Ivar->getIdentifier()));
   2207       // In a hopelessly buggy code, Objective-C instance variable
   2208       // lookup fails and no expression will be built to reference it.
   2209       if (!E.isInvalid() && !E.get())
   2210         return ExprError();
   2211       return E;
   2212     }
   2213   }
   2214 
   2215   // This is guaranteed from this point on.
   2216   assert(!R.empty() || ADL);
   2217 
   2218   // Check whether this might be a C++ implicit instance member access.
   2219   // C++ [class.mfct.non-static]p3:
   2220   //   When an id-expression that is not part of a class member access
   2221   //   syntax and not used to form a pointer to member is used in the
   2222   //   body of a non-static member function of class X, if name lookup
   2223   //   resolves the name in the id-expression to a non-static non-type
   2224   //   member of some class C, the id-expression is transformed into a
   2225   //   class member access expression using (*this) as the
   2226   //   postfix-expression to the left of the . operator.
   2227   //
   2228   // But we don't actually need to do this for '&' operands if R
   2229   // resolved to a function or overloaded function set, because the
   2230   // expression is ill-formed if it actually works out to be a
   2231   // non-static member function:
   2232   //
   2233   // C++ [expr.ref]p4:
   2234   //   Otherwise, if E1.E2 refers to a non-static member function. . .
   2235   //   [t]he expression can be used only as the left-hand operand of a
   2236   //   member function call.
   2237   //
   2238   // There are other safeguards against such uses, but it's important
   2239   // to get this right here so that we don't end up making a
   2240   // spuriously dependent expression if we're inside a dependent
   2241   // instance method.
   2242   if (!R.empty() && (*R.begin())->isCXXClassMember()) {
   2243     bool MightBeImplicitMember;
   2244     if (!IsAddressOfOperand)
   2245       MightBeImplicitMember = true;
   2246     else if (!SS.isEmpty())
   2247       MightBeImplicitMember = false;
   2248     else if (R.isOverloadedResult())
   2249       MightBeImplicitMember = false;
   2250     else if (R.isUnresolvableResult())
   2251       MightBeImplicitMember = true;
   2252     else
   2253       MightBeImplicitMember = isa<FieldDecl>(R.getFoundDecl()) ||
   2254                               isa<IndirectFieldDecl>(R.getFoundDecl()) ||
   2255                               isa<MSPropertyDecl>(R.getFoundDecl());
   2256 
   2257     if (MightBeImplicitMember)
   2258       return BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc,
   2259                                              R, TemplateArgs, S);
   2260   }
   2261 
   2262   if (TemplateArgs || TemplateKWLoc.isValid()) {
   2263 
   2264     // In C++1y, if this is a variable template id, then check it
   2265     // in BuildTemplateIdExpr().
   2266     // The single lookup result must be a variable template declaration.
   2267     if (Id.getKind() == UnqualifiedId::IK_TemplateId && Id.TemplateId &&
   2268         Id.TemplateId->Kind == TNK_Var_template) {
   2269       assert(R.getAsSingle<VarTemplateDecl>() &&
   2270              "There should only be one declaration found.");
   2271     }
   2272 
   2273     return BuildTemplateIdExpr(SS, TemplateKWLoc, R, ADL, TemplateArgs);
   2274   }
   2275 
   2276   return BuildDeclarationNameExpr(SS, R, ADL);
   2277 }
   2278 
   2279 /// BuildQualifiedDeclarationNameExpr - Build a C++ qualified
   2280 /// declaration name, generally during template instantiation.
   2281 /// There's a large number of things which don't need to be done along
   2282 /// this path.
   2283 ExprResult Sema::BuildQualifiedDeclarationNameExpr(
   2284     CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo,
   2285     bool IsAddressOfOperand, const Scope *S, TypeSourceInfo **RecoveryTSI) {
   2286   DeclContext *DC = computeDeclContext(SS, false);
   2287   if (!DC)
   2288     return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
   2289                                      NameInfo, /*TemplateArgs=*/nullptr);
   2290 
   2291   if (RequireCompleteDeclContext(SS, DC))
   2292     return ExprError();
   2293 
   2294   LookupResult R(*this, NameInfo, LookupOrdinaryName);
   2295   LookupQualifiedName(R, DC);
   2296 
   2297   if (R.isAmbiguous())
   2298     return ExprError();
   2299 
   2300   if (R.getResultKind() == LookupResult::NotFoundInCurrentInstantiation)
   2301     return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
   2302                                      NameInfo, /*TemplateArgs=*/nullptr);
   2303 
   2304   if (R.empty()) {
   2305     Diag(NameInfo.getLoc(), diag::err_no_member)
   2306       << NameInfo.getName() << DC << SS.getRange();
   2307     return ExprError();
   2308   }
   2309 
   2310   if (const TypeDecl *TD = R.getAsSingle<TypeDecl>()) {
   2311     // Diagnose a missing typename if this resolved unambiguously to a type in
   2312     // a dependent context.  If we can recover with a type, downgrade this to
   2313     // a warning in Microsoft compatibility mode.
   2314     unsigned DiagID = diag::err_typename_missing;
   2315     if (RecoveryTSI && getLangOpts().MSVCCompat)
   2316       DiagID = diag::ext_typename_missing;
   2317     SourceLocation Loc = SS.getBeginLoc();
   2318     auto D = Diag(Loc, DiagID);
   2319     D << SS.getScopeRep() << NameInfo.getName().getAsString()
   2320       << SourceRange(Loc, NameInfo.getEndLoc());
   2321 
   2322     // Don't recover if the caller isn't expecting us to or if we're in a SFINAE
   2323     // context.
   2324     if (!RecoveryTSI)
   2325       return ExprError();
   2326 
   2327     // Only issue the fixit if we're prepared to recover.
   2328     D << FixItHint::CreateInsertion(Loc, "typename ");
   2329 
   2330     // Recover by pretending this was an elaborated type.
   2331     QualType Ty = Context.getTypeDeclType(TD);
   2332     TypeLocBuilder TLB;
   2333     TLB.pushTypeSpec(Ty).setNameLoc(NameInfo.getLoc());
   2334 
   2335     QualType ET = getElaboratedType(ETK_None, SS, Ty);
   2336     ElaboratedTypeLoc QTL = TLB.push<ElaboratedTypeLoc>(ET);
   2337     QTL.setElaboratedKeywordLoc(SourceLocation());
   2338     QTL.setQualifierLoc(SS.getWithLocInContext(Context));
   2339 
   2340     *RecoveryTSI = TLB.getTypeSourceInfo(Context, ET);
   2341 
   2342     return ExprEmpty();
   2343   }
   2344 
   2345   // Defend against this resolving to an implicit member access. We usually
   2346   // won't get here if this might be a legitimate a class member (we end up in
   2347   // BuildMemberReferenceExpr instead), but this can be valid if we're forming
   2348   // a pointer-to-member or in an unevaluated context in C++11.
   2349   if (!R.empty() && (*R.begin())->isCXXClassMember() && !IsAddressOfOperand)
   2350     return BuildPossibleImplicitMemberExpr(SS,
   2351                                            /*TemplateKWLoc=*/SourceLocation(),
   2352                                            R, /*TemplateArgs=*/nullptr, S);
   2353 
   2354   return BuildDeclarationNameExpr(SS, R, /* ADL */ false);
   2355 }
   2356 
   2357 /// LookupInObjCMethod - The parser has read a name in, and Sema has
   2358 /// detected that we're currently inside an ObjC method.  Perform some
   2359 /// additional lookup.
   2360 ///
   2361 /// Ideally, most of this would be done by lookup, but there's
   2362 /// actually quite a lot of extra work involved.
   2363 ///
   2364 /// Returns a null sentinel to indicate trivial success.
   2365 ExprResult
   2366 Sema::LookupInObjCMethod(LookupResult &Lookup, Scope *S,
   2367                          IdentifierInfo *II, bool AllowBuiltinCreation) {
   2368   SourceLocation Loc = Lookup.getNameLoc();
   2369   ObjCMethodDecl *CurMethod = getCurMethodDecl();
   2370 
   2371   // Check for error condition which is already reported.
   2372   if (!CurMethod)
   2373     return ExprError();
   2374 
   2375   // There are two cases to handle here.  1) scoped lookup could have failed,
   2376   // in which case we should look for an ivar.  2) scoped lookup could have
   2377   // found a decl, but that decl is outside the current instance method (i.e.
   2378   // a global variable).  In these two cases, we do a lookup for an ivar with
   2379   // this name, if the lookup sucedes, we replace it our current decl.
   2380 
   2381   // If we're in a class method, we don't normally want to look for
   2382   // ivars.  But if we don't find anything else, and there's an
   2383   // ivar, that's an error.
   2384   bool IsClassMethod = CurMethod->isClassMethod();
   2385 
   2386   bool LookForIvars;
   2387   if (Lookup.empty())
   2388     LookForIvars = true;
   2389   else if (IsClassMethod)
   2390     LookForIvars = false;
   2391   else
   2392     LookForIvars = (Lookup.isSingleResult() &&
   2393                     Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod());
   2394   ObjCInterfaceDecl *IFace = nullptr;
   2395   if (LookForIvars) {
   2396     IFace = CurMethod->getClassInterface();
   2397     ObjCInterfaceDecl *ClassDeclared;
   2398     ObjCIvarDecl *IV = nullptr;
   2399     if (IFace && (IV = IFace->lookupInstanceVariable(II, ClassDeclared))) {
   2400       // Diagnose using an ivar in a class method.
   2401       if (IsClassMethod)
   2402         return ExprError(Diag(Loc, diag::error_ivar_use_in_class_method)
   2403                          << IV->getDeclName());
   2404 
   2405       // If we're referencing an invalid decl, just return this as a silent
   2406       // error node.  The error diagnostic was already emitted on the decl.
   2407       if (IV->isInvalidDecl())
   2408         return ExprError();
   2409 
   2410       // Check if referencing a field with __attribute__((deprecated)).
   2411       if (DiagnoseUseOfDecl(IV, Loc))
   2412         return ExprError();
   2413 
   2414       // Diagnose the use of an ivar outside of the declaring class.
   2415       if (IV->getAccessControl() == ObjCIvarDecl::Private &&
   2416           !declaresSameEntity(ClassDeclared, IFace) &&
   2417           !getLangOpts().DebuggerSupport)
   2418         Diag(Loc, diag::error_private_ivar_access) << IV->getDeclName();
   2419 
   2420       // FIXME: This should use a new expr for a direct reference, don't
   2421       // turn this into Self->ivar, just return a BareIVarExpr or something.
   2422       IdentifierInfo &II = Context.Idents.get("self");
   2423       UnqualifiedId SelfName;
   2424       SelfName.setIdentifier(&II, SourceLocation());
   2425       SelfName.setKind(UnqualifiedId::IK_ImplicitSelfParam);
   2426       CXXScopeSpec SelfScopeSpec;
   2427       SourceLocation TemplateKWLoc;
   2428       ExprResult SelfExpr = ActOnIdExpression(S, SelfScopeSpec, TemplateKWLoc,
   2429                                               SelfName, false, false);
   2430       if (SelfExpr.isInvalid())
   2431         return ExprError();
   2432 
   2433       SelfExpr = DefaultLvalueConversion(SelfExpr.get());
   2434       if (SelfExpr.isInvalid())
   2435         return ExprError();
   2436 
   2437       MarkAnyDeclReferenced(Loc, IV, true);
   2438 
   2439       ObjCMethodFamily MF = CurMethod->getMethodFamily();
   2440       if (MF != OMF_init && MF != OMF_dealloc && MF != OMF_finalize &&
   2441           !IvarBacksCurrentMethodAccessor(IFace, CurMethod, IV))
   2442         Diag(Loc, diag::warn_direct_ivar_access) << IV->getDeclName();
   2443 
   2444       ObjCIvarRefExpr *Result = new (Context)
   2445           ObjCIvarRefExpr(IV, IV->getUsageType(SelfExpr.get()->getType()), Loc,
   2446                           IV->getLocation(), SelfExpr.get(), true, true);
   2447 
   2448       if (getLangOpts().ObjCAutoRefCount) {
   2449         if (IV->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
   2450           if (!Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, Loc))
   2451             recordUseOfEvaluatedWeak(Result);
   2452         }
   2453         if (CurContext->isClosure())
   2454           Diag(Loc, diag::warn_implicitly_retains_self)
   2455             << FixItHint::CreateInsertion(Loc, "self->");
   2456       }
   2457 
   2458       return Result;
   2459     }
   2460   } else if (CurMethod->isInstanceMethod()) {
   2461     // We should warn if a local variable hides an ivar.
   2462     if (ObjCInterfaceDecl *IFace = CurMethod->getClassInterface()) {
   2463       ObjCInterfaceDecl *ClassDeclared;
   2464       if (ObjCIvarDecl *IV = IFace->lookupInstanceVariable(II, ClassDeclared)) {
   2465         if (IV->getAccessControl() != ObjCIvarDecl::Private ||
   2466             declaresSameEntity(IFace, ClassDeclared))
   2467           Diag(Loc, diag::warn_ivar_use_hidden) << IV->getDeclName();
   2468       }
   2469     }
   2470   } else if (Lookup.isSingleResult() &&
   2471              Lookup.getFoundDecl()->isDefinedOutsideFunctionOrMethod()) {
   2472     // If accessing a stand-alone ivar in a class method, this is an error.
   2473     if (const ObjCIvarDecl *IV = dyn_cast<ObjCIvarDecl>(Lookup.getFoundDecl()))
   2474       return ExprError(Diag(Loc, diag::error_ivar_use_in_class_method)
   2475                        << IV->getDeclName());
   2476   }
   2477 
   2478   if (Lookup.empty() && II && AllowBuiltinCreation) {
   2479     // FIXME. Consolidate this with similar code in LookupName.
   2480     if (unsigned BuiltinID = II->getBuiltinID()) {
   2481       if (!(getLangOpts().CPlusPlus &&
   2482             Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID))) {
   2483         NamedDecl *D = LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID,
   2484                                            S, Lookup.isForRedeclaration(),
   2485                                            Lookup.getNameLoc());
   2486         if (D) Lookup.addDecl(D);
   2487       }
   2488     }
   2489   }
   2490   // Sentinel value saying that we didn't do anything special.
   2491   return ExprResult((Expr *)nullptr);
   2492 }
   2493 
   2494 /// \brief Cast a base object to a member's actual type.
   2495 ///
   2496 /// Logically this happens in three phases:
   2497 ///
   2498 /// * First we cast from the base type to the naming class.
   2499 ///   The naming class is the class into which we were looking
   2500 ///   when we found the member;  it's the qualifier type if a
   2501 ///   qualifier was provided, and otherwise it's the base type.
   2502 ///
   2503 /// * Next we cast from the naming class to the declaring class.
   2504 ///   If the member we found was brought into a class's scope by
   2505 ///   a using declaration, this is that class;  otherwise it's
   2506 ///   the class declaring the member.
   2507 ///
   2508 /// * Finally we cast from the declaring class to the "true"
   2509 ///   declaring class of the member.  This conversion does not
   2510 ///   obey access control.
   2511 ExprResult
   2512 Sema::PerformObjectMemberConversion(Expr *From,
   2513                                     NestedNameSpecifier *Qualifier,
   2514                                     NamedDecl *FoundDecl,
   2515                                     NamedDecl *Member) {
   2516   CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Member->getDeclContext());
   2517   if (!RD)
   2518     return From;
   2519 
   2520   QualType DestRecordType;
   2521   QualType DestType;
   2522   QualType FromRecordType;
   2523   QualType FromType = From->getType();
   2524   bool PointerConversions = false;
   2525   if (isa<FieldDecl>(Member)) {
   2526     DestRecordType = Context.getCanonicalType(Context.getTypeDeclType(RD));
   2527 
   2528     if (FromType->getAs<PointerType>()) {
   2529       DestType = Context.getPointerType(DestRecordType);
   2530       FromRecordType = FromType->getPointeeType();
   2531       PointerConversions = true;
   2532     } else {
   2533       DestType = DestRecordType;
   2534       FromRecordType = FromType;
   2535     }
   2536   } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Member)) {
   2537     if (Method->isStatic())
   2538       return From;
   2539 
   2540     DestType = Method->getThisType(Context);
   2541     DestRecordType = DestType->getPointeeType();
   2542 
   2543     if (FromType->getAs<PointerType>()) {
   2544       FromRecordType = FromType->getPointeeType();
   2545       PointerConversions = true;
   2546     } else {
   2547       FromRecordType = FromType;
   2548       DestType = DestRecordType;
   2549     }
   2550   } else {
   2551     // No conversion necessary.
   2552     return From;
   2553   }
   2554 
   2555   if (DestType->isDependentType() || FromType->isDependentType())
   2556     return From;
   2557 
   2558   // If the unqualified types are the same, no conversion is necessary.
   2559   if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
   2560     return From;
   2561 
   2562   SourceRange FromRange = From->getSourceRange();
   2563   SourceLocation FromLoc = FromRange.getBegin();
   2564 
   2565   ExprValueKind VK = From->getValueKind();
   2566 
   2567   // C++ [class.member.lookup]p8:
   2568   //   [...] Ambiguities can often be resolved by qualifying a name with its
   2569   //   class name.
   2570   //
   2571   // If the member was a qualified name and the qualified referred to a
   2572   // specific base subobject type, we'll cast to that intermediate type
   2573   // first and then to the object in which the member is declared. That allows
   2574   // one to resolve ambiguities in, e.g., a diamond-shaped hierarchy such as:
   2575   //
   2576   //   class Base { public: int x; };
   2577   //   class Derived1 : public Base { };
   2578   //   class Derived2 : public Base { };
   2579   //   class VeryDerived : public Derived1, public Derived2 { void f(); };
   2580   //
   2581   //   void VeryDerived::f() {
   2582   //     x = 17; // error: ambiguous base subobjects
   2583   //     Derived1::x = 17; // okay, pick the Base subobject of Derived1
   2584   //   }
   2585   if (Qualifier && Qualifier->getAsType()) {
   2586     QualType QType = QualType(Qualifier->getAsType(), 0);
   2587     assert(QType->isRecordType() && "lookup done with non-record type");
   2588 
   2589     QualType QRecordType = QualType(QType->getAs<RecordType>(), 0);
   2590 
   2591     // In C++98, the qualifier type doesn't actually have to be a base
   2592     // type of the object type, in which case we just ignore it.
   2593     // Otherwise build the appropriate casts.
   2594     if (IsDerivedFrom(FromLoc, FromRecordType, QRecordType)) {
   2595       CXXCastPath BasePath;
   2596       if (CheckDerivedToBaseConversion(FromRecordType, QRecordType,
   2597                                        FromLoc, FromRange, &BasePath))
   2598         return ExprError();
   2599 
   2600       if (PointerConversions)
   2601         QType = Context.getPointerType(QType);
   2602       From = ImpCastExprToType(From, QType, CK_UncheckedDerivedToBase,
   2603                                VK, &BasePath).get();
   2604 
   2605       FromType = QType;
   2606       FromRecordType = QRecordType;
   2607 
   2608       // If the qualifier type was the same as the destination type,
   2609       // we're done.
   2610       if (Context.hasSameUnqualifiedType(FromRecordType, DestRecordType))
   2611         return From;
   2612     }
   2613   }
   2614 
   2615   bool IgnoreAccess = false;
   2616 
   2617   // If we actually found the member through a using declaration, cast
   2618   // down to the using declaration's type.
   2619   //
   2620   // Pointer equality is fine here because only one declaration of a
   2621   // class ever has member declarations.
   2622   if (FoundDecl->getDeclContext() != Member->getDeclContext()) {
   2623     assert(isa<UsingShadowDecl>(FoundDecl));
   2624     QualType URecordType = Context.getTypeDeclType(
   2625                            cast<CXXRecordDecl>(FoundDecl->getDeclContext()));
   2626 
   2627     // We only need to do this if the naming-class to declaring-class
   2628     // conversion is non-trivial.
   2629     if (!Context.hasSameUnqualifiedType(FromRecordType, URecordType)) {
   2630       assert(IsDerivedFrom(FromLoc, FromRecordType, URecordType));
   2631       CXXCastPath BasePath;
   2632       if (CheckDerivedToBaseConversion(FromRecordType, URecordType,
   2633                                        FromLoc, FromRange, &BasePath))
   2634         return ExprError();
   2635 
   2636       QualType UType = URecordType;
   2637       if (PointerConversions)
   2638         UType = Context.getPointerType(UType);
   2639       From = ImpCastExprToType(From, UType, CK_UncheckedDerivedToBase,
   2640                                VK, &BasePath).get();
   2641       FromType = UType;
   2642       FromRecordType = URecordType;
   2643     }
   2644 
   2645     // We don't do access control for the conversion from the
   2646     // declaring class to the true declaring class.
   2647     IgnoreAccess = true;
   2648   }
   2649 
   2650   CXXCastPath BasePath;
   2651   if (CheckDerivedToBaseConversion(FromRecordType, DestRecordType,
   2652                                    FromLoc, FromRange, &BasePath,
   2653                                    IgnoreAccess))
   2654     return ExprError();
   2655 
   2656   return ImpCastExprToType(From, DestType, CK_UncheckedDerivedToBase,
   2657                            VK, &BasePath);
   2658 }
   2659 
   2660 bool Sema::UseArgumentDependentLookup(const CXXScopeSpec &SS,
   2661                                       const LookupResult &R,
   2662                                       bool HasTrailingLParen) {
   2663   // Only when used directly as the postfix-expression of a call.
   2664   if (!HasTrailingLParen)
   2665     return false;
   2666 
   2667   // Never if a scope specifier was provided.
   2668   if (SS.isSet())
   2669     return false;
   2670 
   2671   // Only in C++ or ObjC++.
   2672   if (!getLangOpts().CPlusPlus)
   2673     return false;
   2674 
   2675   // Turn off ADL when we find certain kinds of declarations during
   2676   // normal lookup:
   2677   for (NamedDecl *D : R) {
   2678     // C++0x [basic.lookup.argdep]p3:
   2679     //     -- a declaration of a class member
   2680     // Since using decls preserve this property, we check this on the
   2681     // original decl.
   2682     if (D->isCXXClassMember())
   2683       return false;
   2684 
   2685     // C++0x [basic.lookup.argdep]p3:
   2686     //     -- a block-scope function declaration that is not a
   2687     //        using-declaration
   2688     // NOTE: we also trigger this for function templates (in fact, we
   2689     // don't check the decl type at all, since all other decl types
   2690     // turn off ADL anyway).
   2691     if (isa<UsingShadowDecl>(D))
   2692       D = cast<UsingShadowDecl>(D)->getTargetDecl();
   2693     else if (D->getLexicalDeclContext()->isFunctionOrMethod())
   2694       return false;
   2695 
   2696     // C++0x [basic.lookup.argdep]p3:
   2697     //     -- a declaration that is neither a function or a function
   2698     //        template
   2699     // And also for builtin functions.
   2700     if (isa<FunctionDecl>(D)) {
   2701       FunctionDecl *FDecl = cast<FunctionDecl>(D);
   2702 
   2703       // But also builtin functions.
   2704       if (FDecl->getBuiltinID() && FDecl->isImplicit())
   2705         return false;
   2706     } else if (!isa<FunctionTemplateDecl>(D))
   2707       return false;
   2708   }
   2709 
   2710   return true;
   2711 }
   2712 
   2713 
   2714 /// Diagnoses obvious problems with the use of the given declaration
   2715 /// as an expression.  This is only actually called for lookups that
   2716 /// were not overloaded, and it doesn't promise that the declaration
   2717 /// will in fact be used.
   2718 static bool CheckDeclInExpr(Sema &S, SourceLocation Loc, NamedDecl *D) {
   2719   if (isa<TypedefNameDecl>(D)) {
   2720     S.Diag(Loc, diag::err_unexpected_typedef) << D->getDeclName();
   2721     return true;
   2722   }
   2723 
   2724   if (isa<ObjCInterfaceDecl>(D)) {
   2725     S.Diag(Loc, diag::err_unexpected_interface) << D->getDeclName();
   2726     return true;
   2727   }
   2728 
   2729   if (isa<NamespaceDecl>(D)) {
   2730     S.Diag(Loc, diag::err_unexpected_namespace) << D->getDeclName();
   2731     return true;
   2732   }
   2733 
   2734   return false;
   2735 }
   2736 
   2737 ExprResult Sema::BuildDeclarationNameExpr(const CXXScopeSpec &SS,
   2738                                           LookupResult &R, bool NeedsADL,
   2739                                           bool AcceptInvalidDecl) {
   2740   // If this is a single, fully-resolved result and we don't need ADL,
   2741   // just build an ordinary singleton decl ref.
   2742   if (!NeedsADL && R.isSingleResult() && !R.getAsSingle<FunctionTemplateDecl>())
   2743     return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(), R.getFoundDecl(),
   2744                                     R.getRepresentativeDecl(), nullptr,
   2745                                     AcceptInvalidDecl);
   2746 
   2747   // We only need to check the declaration if there's exactly one
   2748   // result, because in the overloaded case the results can only be
   2749   // functions and function templates.
   2750   if (R.isSingleResult() &&
   2751       CheckDeclInExpr(*this, R.getNameLoc(), R.getFoundDecl()))
   2752     return ExprError();
   2753 
   2754   // Otherwise, just build an unresolved lookup expression.  Suppress
   2755   // any lookup-related diagnostics; we'll hash these out later, when
   2756   // we've picked a target.
   2757   R.suppressDiagnostics();
   2758 
   2759   UnresolvedLookupExpr *ULE
   2760     = UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
   2761                                    SS.getWithLocInContext(Context),
   2762                                    R.getLookupNameInfo(),
   2763                                    NeedsADL, R.isOverloadedResult(),
   2764                                    R.begin(), R.end());
   2765 
   2766   return ULE;
   2767 }
   2768 
   2769 /// \brief Complete semantic analysis for a reference to the given declaration.
   2770 ExprResult Sema::BuildDeclarationNameExpr(
   2771     const CXXScopeSpec &SS, const DeclarationNameInfo &NameInfo, NamedDecl *D,
   2772     NamedDecl *FoundD, const TemplateArgumentListInfo *TemplateArgs,
   2773     bool AcceptInvalidDecl) {
   2774   assert(D && "Cannot refer to a NULL declaration");
   2775   assert(!isa<FunctionTemplateDecl>(D) &&
   2776          "Cannot refer unambiguously to a function template");
   2777 
   2778   SourceLocation Loc = NameInfo.getLoc();
   2779   if (CheckDeclInExpr(*this, Loc, D))
   2780     return ExprError();
   2781 
   2782   if (TemplateDecl *Template = dyn_cast<TemplateDecl>(D)) {
   2783     // Specifically diagnose references to class templates that are missing
   2784     // a template argument list.
   2785     Diag(Loc, diag::err_template_decl_ref) << (isa<VarTemplateDecl>(D) ? 1 : 0)
   2786                                            << Template << SS.getRange();
   2787     Diag(Template->getLocation(), diag::note_template_decl_here);
   2788     return ExprError();
   2789   }
   2790 
   2791   // Make sure that we're referring to a value.
   2792   ValueDecl *VD = dyn_cast<ValueDecl>(D);
   2793   if (!VD) {
   2794     Diag(Loc, diag::err_ref_non_value)
   2795       << D << SS.getRange();
   2796     Diag(D->getLocation(), diag::note_declared_at);
   2797     return ExprError();
   2798   }
   2799 
   2800   // Check whether this declaration can be used. Note that we suppress
   2801   // this check when we're going to perform argument-dependent lookup
   2802   // on this function name, because this might not be the function
   2803   // that overload resolution actually selects.
   2804   if (DiagnoseUseOfDecl(VD, Loc))
   2805     return ExprError();
   2806 
   2807   // Only create DeclRefExpr's for valid Decl's.
   2808   if (VD->isInvalidDecl() && !AcceptInvalidDecl)
   2809     return ExprError();
   2810 
   2811   // Handle members of anonymous structs and unions.  If we got here,
   2812   // and the reference is to a class member indirect field, then this
   2813   // must be the subject of a pointer-to-member expression.
   2814   if (IndirectFieldDecl *indirectField = dyn_cast<IndirectFieldDecl>(VD))
   2815     if (!indirectField->isCXXClassMember())
   2816       return BuildAnonymousStructUnionMemberReference(SS, NameInfo.getLoc(),
   2817                                                       indirectField);
   2818 
   2819   {
   2820     QualType type = VD->getType();
   2821     ExprValueKind valueKind = VK_RValue;
   2822 
   2823     switch (D->getKind()) {
   2824     // Ignore all the non-ValueDecl kinds.
   2825 #define ABSTRACT_DECL(kind)
   2826 #define VALUE(type, base)
   2827 #define DECL(type, base) \
   2828     case Decl::type:
   2829 #include "clang/AST/DeclNodes.inc"
   2830       llvm_unreachable("invalid value decl kind");
   2831 
   2832     // These shouldn't make it here.
   2833     case Decl::ObjCAtDefsField:
   2834     case Decl::ObjCIvar:
   2835       llvm_unreachable("forming non-member reference to ivar?");
   2836 
   2837     // Enum constants are always r-values and never references.
   2838     // Unresolved using declarations are dependent.
   2839     case Decl::EnumConstant:
   2840     case Decl::UnresolvedUsingValue:
   2841       valueKind = VK_RValue;
   2842       break;
   2843 
   2844     // Fields and indirect fields that got here must be for
   2845     // pointer-to-member expressions; we just call them l-values for
   2846     // internal consistency, because this subexpression doesn't really
   2847     // exist in the high-level semantics.
   2848     case Decl::Field:
   2849     case Decl::IndirectField:
   2850       assert(getLangOpts().CPlusPlus &&
   2851              "building reference to field in C?");
   2852 
   2853       // These can't have reference type in well-formed programs, but
   2854       // for internal consistency we do this anyway.
   2855       type = type.getNonReferenceType();
   2856       valueKind = VK_LValue;
   2857       break;
   2858 
   2859     // Non-type template parameters are either l-values or r-values
   2860     // depending on the type.
   2861     case Decl::NonTypeTemplateParm: {
   2862       if (const ReferenceType *reftype = type->getAs<ReferenceType>()) {
   2863         type = reftype->getPointeeType();
   2864         valueKind = VK_LValue; // even if the parameter is an r-value reference
   2865         break;
   2866       }
   2867 
   2868       // For non-references, we need to strip qualifiers just in case
   2869       // the template parameter was declared as 'const int' or whatever.
   2870       valueKind = VK_RValue;
   2871       type = type.getUnqualifiedType();
   2872       break;
   2873     }
   2874 
   2875     case Decl::Var:
   2876     case Decl::VarTemplateSpecialization:
   2877     case Decl::VarTemplatePartialSpecialization:
   2878       // In C, "extern void blah;" is valid and is an r-value.
   2879       if (!getLangOpts().CPlusPlus &&
   2880           !type.hasQualifiers() &&
   2881           type->isVoidType()) {
   2882         valueKind = VK_RValue;
   2883         break;
   2884       }
   2885       // fallthrough
   2886 
   2887     case Decl::ImplicitParam:
   2888     case Decl::ParmVar: {
   2889       // These are always l-values.
   2890       valueKind = VK_LValue;
   2891       type = type.getNonReferenceType();
   2892 
   2893       // FIXME: Does the addition of const really only apply in
   2894       // potentially-evaluated contexts? Since the variable isn't actually
   2895       // captured in an unevaluated context, it seems that the answer is no.
   2896       if (!isUnevaluatedContext()) {
   2897         QualType CapturedType = getCapturedDeclRefType(cast<VarDecl>(VD), Loc);
   2898         if (!CapturedType.isNull())
   2899           type = CapturedType;
   2900       }
   2901 
   2902       break;
   2903     }
   2904 
   2905     case Decl::Function: {
   2906       if (unsigned BID = cast<FunctionDecl>(VD)->getBuiltinID()) {
   2907         if (!Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
   2908           type = Context.BuiltinFnTy;
   2909           valueKind = VK_RValue;
   2910           break;
   2911         }
   2912       }
   2913 
   2914       const FunctionType *fty = type->castAs<FunctionType>();
   2915 
   2916       // If we're referring to a function with an __unknown_anytype
   2917       // result type, make the entire expression __unknown_anytype.
   2918       if (fty->getReturnType() == Context.UnknownAnyTy) {
   2919         type = Context.UnknownAnyTy;
   2920         valueKind = VK_RValue;
   2921         break;
   2922       }
   2923 
   2924       // Functions are l-values in C++.
   2925       if (getLangOpts().CPlusPlus) {
   2926         valueKind = VK_LValue;
   2927         break;
   2928       }
   2929 
   2930       // C99 DR 316 says that, if a function type comes from a
   2931       // function definition (without a prototype), that type is only
   2932       // used for checking compatibility. Therefore, when referencing
   2933       // the function, we pretend that we don't have the full function
   2934       // type.
   2935       if (!cast<FunctionDecl>(VD)->hasPrototype() &&
   2936           isa<FunctionProtoType>(fty))
   2937         type = Context.getFunctionNoProtoType(fty->getReturnType(),
   2938                                               fty->getExtInfo());
   2939 
   2940       // Functions are r-values in C.
   2941       valueKind = VK_RValue;
   2942       break;
   2943     }
   2944 
   2945     case Decl::MSProperty:
   2946       valueKind = VK_LValue;
   2947       break;
   2948 
   2949     case Decl::CXXMethod:
   2950       // If we're referring to a method with an __unknown_anytype
   2951       // result type, make the entire expression __unknown_anytype.
   2952       // This should only be possible with a type written directly.
   2953       if (const FunctionProtoType *proto
   2954             = dyn_cast<FunctionProtoType>(VD->getType()))
   2955         if (proto->getReturnType() == Context.UnknownAnyTy) {
   2956           type = Context.UnknownAnyTy;
   2957           valueKind = VK_RValue;
   2958           break;
   2959         }
   2960 
   2961       // C++ methods are l-values if static, r-values if non-static.
   2962       if (cast<CXXMethodDecl>(VD)->isStatic()) {
   2963         valueKind = VK_LValue;
   2964         break;
   2965       }
   2966       // fallthrough
   2967 
   2968     case Decl::CXXConversion:
   2969     case Decl::CXXDestructor:
   2970     case Decl::CXXConstructor:
   2971       valueKind = VK_RValue;
   2972       break;
   2973     }
   2974 
   2975     return BuildDeclRefExpr(VD, type, valueKind, NameInfo, &SS, FoundD,
   2976                             TemplateArgs);
   2977   }
   2978 }
   2979 
   2980 static void ConvertUTF8ToWideString(unsigned CharByteWidth, StringRef Source,
   2981                                     SmallString<32> &Target) {
   2982   Target.resize(CharByteWidth * (Source.size() + 1));
   2983   char *ResultPtr = &Target[0];
   2984   const UTF8 *ErrorPtr;
   2985   bool success = ConvertUTF8toWide(CharByteWidth, Source, ResultPtr, ErrorPtr);
   2986   (void)success;
   2987   assert(success);
   2988   Target.resize(ResultPtr - &Target[0]);
   2989 }
   2990 
   2991 ExprResult Sema::BuildPredefinedExpr(SourceLocation Loc,
   2992                                      PredefinedExpr::IdentType IT) {
   2993   // Pick the current block, lambda, captured statement or function.
   2994   Decl *currentDecl = nullptr;
   2995   if (const BlockScopeInfo *BSI = getCurBlock())
   2996     currentDecl = BSI->TheDecl;
   2997   else if (const LambdaScopeInfo *LSI = getCurLambda())
   2998     currentDecl = LSI->CallOperator;
   2999   else if (const CapturedRegionScopeInfo *CSI = getCurCapturedRegion())
   3000     currentDecl = CSI->TheCapturedDecl;
   3001   else
   3002     currentDecl = getCurFunctionOrMethodDecl();
   3003 
   3004   if (!currentDecl) {
   3005     Diag(Loc, diag::ext_predef_outside_function);
   3006     currentDecl = Context.getTranslationUnitDecl();
   3007   }
   3008 
   3009   QualType ResTy;
   3010   StringLiteral *SL = nullptr;
   3011   if (cast<DeclContext>(currentDecl)->isDependentContext())
   3012     ResTy = Context.DependentTy;
   3013   else {
   3014     // Pre-defined identifiers are of type char[x], where x is the length of
   3015     // the string.
   3016     auto Str = PredefinedExpr::ComputeName(IT, currentDecl);
   3017     unsigned Length = Str.length();
   3018 
   3019     llvm::APInt LengthI(32, Length + 1);
   3020     if (IT == PredefinedExpr::LFunction) {
   3021       ResTy = Context.WideCharTy.withConst();
   3022       SmallString<32> RawChars;
   3023       ConvertUTF8ToWideString(Context.getTypeSizeInChars(ResTy).getQuantity(),
   3024                               Str, RawChars);
   3025       ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal,
   3026                                            /*IndexTypeQuals*/ 0);
   3027       SL = StringLiteral::Create(Context, RawChars, StringLiteral::Wide,
   3028                                  /*Pascal*/ false, ResTy, Loc);
   3029     } else {
   3030       ResTy = Context.CharTy.withConst();
   3031       ResTy = Context.getConstantArrayType(ResTy, LengthI, ArrayType::Normal,
   3032                                            /*IndexTypeQuals*/ 0);
   3033       SL = StringLiteral::Create(Context, Str, StringLiteral::Ascii,
   3034                                  /*Pascal*/ false, ResTy, Loc);
   3035     }
   3036   }
   3037 
   3038   return new (Context) PredefinedExpr(Loc, ResTy, IT, SL);
   3039 }
   3040 
   3041 ExprResult Sema::ActOnPredefinedExpr(SourceLocation Loc, tok::TokenKind Kind) {
   3042   PredefinedExpr::IdentType IT;
   3043 
   3044   switch (Kind) {
   3045   default: llvm_unreachable("Unknown simple primary expr!");
   3046   case tok::kw___func__: IT = PredefinedExpr::Func; break; // [C99 6.4.2.2]
   3047   case tok::kw___FUNCTION__: IT = PredefinedExpr::Function; break;
   3048   case tok::kw___FUNCDNAME__: IT = PredefinedExpr::FuncDName; break; // [MS]
   3049   case tok::kw___FUNCSIG__: IT = PredefinedExpr::FuncSig; break; // [MS]
   3050   case tok::kw_L__FUNCTION__: IT = PredefinedExpr::LFunction; break;
   3051   case tok::kw___PRETTY_FUNCTION__: IT = PredefinedExpr::PrettyFunction; break;
   3052   }
   3053 
   3054   return BuildPredefinedExpr(Loc, IT);
   3055 }
   3056 
   3057 ExprResult Sema::ActOnCharacterConstant(const Token &Tok, Scope *UDLScope) {
   3058   SmallString<16> CharBuffer;
   3059   bool Invalid = false;
   3060   StringRef ThisTok = PP.getSpelling(Tok, CharBuffer, &Invalid);
   3061   if (Invalid)
   3062     return ExprError();
   3063 
   3064   CharLiteralParser Literal(ThisTok.begin(), ThisTok.end(), Tok.getLocation(),
   3065                             PP, Tok.getKind());
   3066   if (Literal.hadError())
   3067     return ExprError();
   3068 
   3069   QualType Ty;
   3070   if (Literal.isWide())
   3071     Ty = Context.WideCharTy; // L'x' -> wchar_t in C and C++.
   3072   else if (Literal.isUTF16())
   3073     Ty = Context.Char16Ty; // u'x' -> char16_t in C11 and C++11.
   3074   else if (Literal.isUTF32())
   3075     Ty = Context.Char32Ty; // U'x' -> char32_t in C11 and C++11.
   3076   else if (!getLangOpts().CPlusPlus || Literal.isMultiChar())
   3077     Ty = Context.IntTy;   // 'x' -> int in C, 'wxyz' -> int in C++.
   3078   else
   3079     Ty = Context.CharTy;  // 'x' -> char in C++
   3080 
   3081   CharacterLiteral::CharacterKind Kind = CharacterLiteral::Ascii;
   3082   if (Literal.isWide())
   3083     Kind = CharacterLiteral::Wide;
   3084   else if (Literal.isUTF16())
   3085     Kind = CharacterLiteral::UTF16;
   3086   else if (Literal.isUTF32())
   3087     Kind = CharacterLiteral::UTF32;
   3088 
   3089   Expr *Lit = new (Context) CharacterLiteral(Literal.getValue(), Kind, Ty,
   3090                                              Tok.getLocation());
   3091 
   3092   if (Literal.getUDSuffix().empty())
   3093     return Lit;
   3094 
   3095   // We're building a user-defined literal.
   3096   IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
   3097   SourceLocation UDSuffixLoc =
   3098     getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset());
   3099 
   3100   // Make sure we're allowed user-defined literals here.
   3101   if (!UDLScope)
   3102     return ExprError(Diag(UDSuffixLoc, diag::err_invalid_character_udl));
   3103 
   3104   // C++11 [lex.ext]p6: The literal L is treated as a call of the form
   3105   //   operator "" X (ch)
   3106   return BuildCookedLiteralOperatorCall(*this, UDLScope, UDSuffix, UDSuffixLoc,
   3107                                         Lit, Tok.getLocation());
   3108 }
   3109 
   3110 ExprResult Sema::ActOnIntegerConstant(SourceLocation Loc, uint64_t Val) {
   3111   unsigned IntSize = Context.getTargetInfo().getIntWidth();
   3112   return IntegerLiteral::Create(Context, llvm::APInt(IntSize, Val),
   3113                                 Context.IntTy, Loc);
   3114 }
   3115 
   3116 static Expr *BuildFloatingLiteral(Sema &S, NumericLiteralParser &Literal,
   3117                                   QualType Ty, SourceLocation Loc) {
   3118   const llvm::fltSemantics &Format = S.Context.getFloatTypeSemantics(Ty);
   3119 
   3120   using llvm::APFloat;
   3121   APFloat Val(Format);
   3122 
   3123   APFloat::opStatus result = Literal.GetFloatValue(Val);
   3124 
   3125   // Overflow is always an error, but underflow is only an error if
   3126   // we underflowed to zero (APFloat reports denormals as underflow).
   3127   if ((result & APFloat::opOverflow) ||
   3128       ((result & APFloat::opUnderflow) && Val.isZero())) {
   3129     unsigned diagnostic;
   3130     SmallString<20> buffer;
   3131     if (result & APFloat::opOverflow) {
   3132       diagnostic = diag::warn_float_overflow;
   3133       APFloat::getLargest(Format).toString(buffer);
   3134     } else {
   3135       diagnostic = diag::warn_float_underflow;
   3136       APFloat::getSmallest(Format).toString(buffer);
   3137     }
   3138 
   3139     S.Diag(Loc, diagnostic)
   3140       << Ty
   3141       << StringRef(buffer.data(), buffer.size());
   3142   }
   3143 
   3144   bool isExact = (result == APFloat::opOK);
   3145   return FloatingLiteral::Create(S.Context, Val, isExact, Ty, Loc);
   3146 }
   3147 
   3148 bool Sema::CheckLoopHintExpr(Expr *E, SourceLocation Loc) {
   3149   assert(E && "Invalid expression");
   3150 
   3151   if (E->isValueDependent())
   3152     return false;
   3153 
   3154   QualType QT = E->getType();
   3155   if (!QT->isIntegerType() || QT->isBooleanType() || QT->isCharType()) {
   3156     Diag(E->getExprLoc(), diag::err_pragma_loop_invalid_argument_type) << QT;
   3157     return true;
   3158   }
   3159 
   3160   llvm::APSInt ValueAPS;
   3161   ExprResult R = VerifyIntegerConstantExpression(E, &ValueAPS);
   3162 
   3163   if (R.isInvalid())
   3164     return true;
   3165 
   3166   bool ValueIsPositive = ValueAPS.isStrictlyPositive();
   3167   if (!ValueIsPositive || ValueAPS.getActiveBits() > 31) {
   3168     Diag(E->getExprLoc(), diag::err_pragma_loop_invalid_argument_value)
   3169         << ValueAPS.toString(10) << ValueIsPositive;
   3170     return true;
   3171   }
   3172 
   3173   return false;
   3174 }
   3175 
   3176 ExprResult Sema::ActOnNumericConstant(const Token &Tok, Scope *UDLScope) {
   3177   // Fast path for a single digit (which is quite common).  A single digit
   3178   // cannot have a trigraph, escaped newline, radix prefix, or suffix.
   3179   if (Tok.getLength() == 1) {
   3180     const char Val = PP.getSpellingOfSingleCharacterNumericConstant(Tok);
   3181     return ActOnIntegerConstant(Tok.getLocation(), Val-'0');
   3182   }
   3183 
   3184   SmallString<128> SpellingBuffer;
   3185   // NumericLiteralParser wants to overread by one character.  Add padding to
   3186   // the buffer in case the token is copied to the buffer.  If getSpelling()
   3187   // returns a StringRef to the memory buffer, it should have a null char at
   3188   // the EOF, so it is also safe.
   3189   SpellingBuffer.resize(Tok.getLength() + 1);
   3190 
   3191   // Get the spelling of the token, which eliminates trigraphs, etc.
   3192   bool Invalid = false;
   3193   StringRef TokSpelling = PP.getSpelling(Tok, SpellingBuffer, &Invalid);
   3194   if (Invalid)
   3195     return ExprError();
   3196 
   3197   NumericLiteralParser Literal(TokSpelling, Tok.getLocation(), PP);
   3198   if (Literal.hadError)
   3199     return ExprError();
   3200 
   3201   if (Literal.hasUDSuffix()) {
   3202     // We're building a user-defined literal.
   3203     IdentifierInfo *UDSuffix = &Context.Idents.get(Literal.getUDSuffix());
   3204     SourceLocation UDSuffixLoc =
   3205       getUDSuffixLoc(*this, Tok.getLocation(), Literal.getUDSuffixOffset());
   3206 
   3207     // Make sure we're allowed user-defined literals here.
   3208     if (!UDLScope)
   3209       return ExprError(Diag(UDSuffixLoc, diag::err_invalid_numeric_udl));
   3210 
   3211     QualType CookedTy;
   3212     if (Literal.isFloatingLiteral()) {
   3213       // C++11 [lex.ext]p4: If S contains a literal operator with parameter type
   3214       // long double, the literal is treated as a call of the form
   3215       //   operator "" X (f L)
   3216       CookedTy = Context.LongDoubleTy;
   3217     } else {
   3218       // C++11 [lex.ext]p3: If S contains a literal operator with parameter type
   3219       // unsigned long long, the literal is treated as a call of the form
   3220       //   operator "" X (n ULL)
   3221       CookedTy = Context.UnsignedLongLongTy;
   3222     }
   3223 
   3224     DeclarationName OpName =
   3225       Context.DeclarationNames.getCXXLiteralOperatorName(UDSuffix);
   3226     DeclarationNameInfo OpNameInfo(OpName, UDSuffixLoc);
   3227     OpNameInfo.setCXXLiteralOperatorNameLoc(UDSuffixLoc);
   3228 
   3229     SourceLocation TokLoc = Tok.getLocation();
   3230 
   3231     // Perform literal operator lookup to determine if we're building a raw
   3232     // literal or a cooked one.
   3233     LookupResult R(*this, OpName, UDSuffixLoc, LookupOrdinaryName);
   3234     switch (LookupLiteralOperator(UDLScope, R, CookedTy,
   3235                                   /*AllowRaw*/true, /*AllowTemplate*/true,
   3236                                   /*AllowStringTemplate*/false)) {
   3237     case LOLR_Error:
   3238       return ExprError();
   3239 
   3240     case LOLR_Cooked: {
   3241       Expr *Lit;
   3242       if (Literal.isFloatingLiteral()) {
   3243         Lit = BuildFloatingLiteral(*this, Literal, CookedTy, Tok.getLocation());
   3244       } else {
   3245         llvm::APInt ResultVal(Context.getTargetInfo().getLongLongWidth(), 0);
   3246         if (Literal.GetIntegerValue(ResultVal))
   3247           Diag(Tok.getLocation(), diag::err_integer_literal_too_large)
   3248               << /* Unsigned */ 1;
   3249         Lit = IntegerLiteral::Create(Context, ResultVal, CookedTy,
   3250                                      Tok.getLocation());
   3251       }
   3252       return BuildLiteralOperatorCall(R, OpNameInfo, Lit, TokLoc);
   3253     }
   3254 
   3255     case LOLR_Raw: {
   3256       // C++11 [lit.ext]p3, p4: If S contains a raw literal operator, the
   3257       // literal is treated as a call of the form
   3258       //   operator "" X ("n")
   3259       unsigned Length = Literal.getUDSuffixOffset();
   3260       QualType StrTy = Context.getConstantArrayType(
   3261           Context.CharTy.withConst(), llvm::APInt(32, Length + 1),
   3262           ArrayType::Normal, 0);
   3263       Expr *Lit = StringLiteral::Create(
   3264           Context, StringRef(TokSpelling.data(), Length), StringLiteral::Ascii,
   3265           /*Pascal*/false, StrTy, &TokLoc, 1);
   3266       return BuildLiteralOperatorCall(R, OpNameInfo, Lit, TokLoc);
   3267     }
   3268 
   3269     case LOLR_Template: {
   3270       // C++11 [lit.ext]p3, p4: Otherwise (S contains a literal operator
   3271       // template), L is treated as a call fo the form
   3272       //   operator "" X <'c1', 'c2', ... 'ck'>()
   3273       // where n is the source character sequence c1 c2 ... ck.
   3274       TemplateArgumentListInfo ExplicitArgs;
   3275       unsigned CharBits = Context.getIntWidth(Context.CharTy);
   3276       bool CharIsUnsigned = Context.CharTy->isUnsignedIntegerType();
   3277       llvm::APSInt Value(CharBits, CharIsUnsigned);
   3278       for (unsigned I = 0, N = Literal.getUDSuffixOffset(); I != N; ++I) {
   3279         Value = TokSpelling[I];
   3280         TemplateArgument Arg(Context, Value, Context.CharTy);
   3281         TemplateArgumentLocInfo ArgInfo;
   3282         ExplicitArgs.addArgument(TemplateArgumentLoc(Arg, ArgInfo));
   3283       }
   3284       return BuildLiteralOperatorCall(R, OpNameInfo, None, TokLoc,
   3285                                       &ExplicitArgs);
   3286     }
   3287     case LOLR_StringTemplate:
   3288       llvm_unreachable("unexpected literal operator lookup result");
   3289     }
   3290   }
   3291 
   3292   Expr *Res;
   3293 
   3294   if (Literal.isFloatingLiteral()) {
   3295     QualType Ty;
   3296     if (Literal.isFloat)
   3297       Ty = Context.FloatTy;
   3298     else if (!Literal.isLong)
   3299       Ty = Context.DoubleTy;
   3300     else
   3301       Ty = Context.LongDoubleTy;
   3302 
   3303     Res = BuildFloatingLiteral(*this, Literal, Ty, Tok.getLocation());
   3304 
   3305     if (Ty == Context.DoubleTy) {
   3306       if (getLangOpts().SinglePrecisionConstants) {
   3307         Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).get();
   3308       } else if (getLangOpts().OpenCL &&
   3309                  !((getLangOpts().OpenCLVersion >= 120) ||
   3310                    getOpenCLOptions().cl_khr_fp64)) {
   3311         Diag(Tok.getLocation(), diag::warn_double_const_requires_fp64);
   3312         Res = ImpCastExprToType(Res, Context.FloatTy, CK_FloatingCast).get();
   3313       }
   3314     }
   3315   } else if (!Literal.isIntegerLiteral()) {
   3316     return ExprError();
   3317   } else {
   3318     QualType Ty;
   3319 
   3320     // 'long long' is a C99 or C++11 feature.
   3321     if (!getLangOpts().C99 && Literal.isLongLong) {
   3322       if (getLangOpts().CPlusPlus)
   3323         Diag(Tok.getLocation(),
   3324              getLangOpts().CPlusPlus11 ?
   3325              diag::warn_cxx98_compat_longlong : diag::ext_cxx11_longlong);
   3326       else
   3327         Diag(Tok.getLocation(), diag::ext_c99_longlong);
   3328     }
   3329 
   3330     // Get the value in the widest-possible width.
   3331     unsigned MaxWidth = Context.getTargetInfo().getIntMaxTWidth();
   3332     llvm::APInt ResultVal(MaxWidth, 0);
   3333 
   3334     if (Literal.GetIntegerValue(ResultVal)) {
   3335       // If this value didn't fit into uintmax_t, error and force to ull.
   3336       Diag(Tok.getLocation(), diag::err_integer_literal_too_large)
   3337           << /* Unsigned */ 1;
   3338       Ty = Context.UnsignedLongLongTy;
   3339       assert(Context.getTypeSize(Ty) == ResultVal.getBitWidth() &&
   3340              "long long is not intmax_t?");
   3341     } else {
   3342       // If this value fits into a ULL, try to figure out what else it fits into
   3343       // according to the rules of C99 6.4.4.1p5.
   3344 
   3345       // Octal, Hexadecimal, and integers with a U suffix are allowed to
   3346       // be an unsigned int.
   3347       bool AllowUnsigned = Literal.isUnsigned || Literal.getRadix() != 10;
   3348 
   3349       // Check from smallest to largest, picking the smallest type we can.
   3350       unsigned Width = 0;
   3351 
   3352       // Microsoft specific integer suffixes are explicitly sized.
   3353       if (Literal.MicrosoftInteger) {
   3354         if (Literal.MicrosoftInteger == 8 && !Literal.isUnsigned) {
   3355           Width = 8;
   3356           Ty = Context.CharTy;
   3357         } else {
   3358           Width = Literal.MicrosoftInteger;
   3359           Ty = Context.getIntTypeForBitwidth(Width,
   3360                                              /*Signed=*/!Literal.isUnsigned);
   3361         }
   3362       }
   3363 
   3364       if (Ty.isNull() && !Literal.isLong && !Literal.isLongLong) {
   3365         // Are int/unsigned possibilities?
   3366         unsigned IntSize = Context.getTargetInfo().getIntWidth();
   3367 
   3368         // Does it fit in a unsigned int?
   3369         if (ResultVal.isIntN(IntSize)) {
   3370           // Does it fit in a signed int?
   3371           if (!Literal.isUnsigned && ResultVal[IntSize-1] == 0)
   3372             Ty = Context.IntTy;
   3373           else if (AllowUnsigned)
   3374             Ty = Context.UnsignedIntTy;
   3375           Width = IntSize;
   3376         }
   3377       }
   3378 
   3379       // Are long/unsigned long possibilities?
   3380       if (Ty.isNull() && !Literal.isLongLong) {
   3381         unsigned LongSize = Context.getTargetInfo().getLongWidth();
   3382 
   3383         // Does it fit in a unsigned long?
   3384         if (ResultVal.isIntN(LongSize)) {
   3385           // Does it fit in a signed long?
   3386           if (!Literal.isUnsigned && ResultVal[LongSize-1] == 0)
   3387             Ty = Context.LongTy;
   3388           else if (AllowUnsigned)
   3389             Ty = Context.UnsignedLongTy;
   3390           // Check according to the rules of C90 6.1.3.2p5. C++03 [lex.icon]p2
   3391           // is compatible.
   3392           else if (!getLangOpts().C99 && !getLangOpts().CPlusPlus11) {
   3393             const unsigned LongLongSize =
   3394                 Context.getTargetInfo().getLongLongWidth();
   3395             Diag(Tok.getLocation(),
   3396                  getLangOpts().CPlusPlus
   3397                      ? Literal.isLong
   3398                            ? diag::warn_old_implicitly_unsigned_long_cxx
   3399                            : /*C++98 UB*/ diag::
   3400                                  ext_old_implicitly_unsigned_long_cxx
   3401                      : diag::warn_old_implicitly_unsigned_long)
   3402                 << (LongLongSize > LongSize ? /*will have type 'long long'*/ 0
   3403                                             : /*will be ill-formed*/ 1);
   3404             Ty = Context.UnsignedLongTy;
   3405           }
   3406           Width = LongSize;
   3407         }
   3408       }
   3409 
   3410       // Check long long if needed.
   3411       if (Ty.isNull()) {
   3412         unsigned LongLongSize = Context.getTargetInfo().getLongLongWidth();
   3413 
   3414         // Does it fit in a unsigned long long?
   3415         if (ResultVal.isIntN(LongLongSize)) {
   3416           // Does it fit in a signed long long?
   3417           // To be compatible with MSVC, hex integer literals ending with the
   3418           // LL or i64 suffix are always signed in Microsoft mode.
   3419           if (!Literal.isUnsigned && (ResultVal[LongLongSize-1] == 0 ||
   3420               (getLangOpts().MicrosoftExt && Literal.isLongLong)))
   3421             Ty = Context.LongLongTy;
   3422           else if (AllowUnsigned)
   3423             Ty = Context.UnsignedLongLongTy;
   3424           Width = LongLongSize;
   3425         }
   3426       }
   3427 
   3428       // If we still couldn't decide a type, we probably have something that
   3429       // does not fit in a signed long long, but has no U suffix.
   3430       if (Ty.isNull()) {
   3431         Diag(Tok.getLocation(), diag::ext_integer_literal_too_large_for_signed);
   3432         Ty = Context.UnsignedLongLongTy;
   3433         Width = Context.getTargetInfo().getLongLongWidth();
   3434       }
   3435 
   3436       if (ResultVal.getBitWidth() != Width)
   3437         ResultVal = ResultVal.trunc(Width);
   3438     }
   3439     Res = IntegerLiteral::Create(Context, ResultVal, Ty, Tok.getLocation());
   3440   }
   3441 
   3442   // If this is an imaginary literal, create the ImaginaryLiteral wrapper.
   3443   if (Literal.isImaginary)
   3444     Res = new (Context) ImaginaryLiteral(Res,
   3445                                         Context.getComplexType(Res->getType()));
   3446 
   3447   return Res;
   3448 }
   3449 
   3450 ExprResult Sema::ActOnParenExpr(SourceLocation L, SourceLocation R, Expr *E) {
   3451   assert(E && "ActOnParenExpr() missing expr");
   3452   return new (Context) ParenExpr(L, R, E);
   3453 }
   3454 
   3455 static bool CheckVecStepTraitOperandType(Sema &S, QualType T,
   3456                                          SourceLocation Loc,
   3457                                          SourceRange ArgRange) {
   3458   // [OpenCL 1.1 6.11.12] "The vec_step built-in function takes a built-in
   3459   // scalar or vector data type argument..."
   3460   // Every built-in scalar type (OpenCL 1.1 6.1.1) is either an arithmetic
   3461   // type (C99 6.2.5p18) or void.
   3462   if (!(T->isArithmeticType() || T->isVoidType() || T->isVectorType())) {
   3463     S.Diag(Loc, diag::err_vecstep_non_scalar_vector_type)
   3464       << T << ArgRange;
   3465     return true;
   3466   }
   3467 
   3468   assert((T->isVoidType() || !T->isIncompleteType()) &&
   3469          "Scalar types should always be complete");
   3470   return false;
   3471 }
   3472 
   3473 static bool CheckExtensionTraitOperandType(Sema &S, QualType T,
   3474                                            SourceLocation Loc,
   3475                                            SourceRange ArgRange,
   3476                                            UnaryExprOrTypeTrait TraitKind) {
   3477   // Invalid types must be hard errors for SFINAE in C++.
   3478   if (S.LangOpts.CPlusPlus)
   3479     return true;
   3480 
   3481   // C99 6.5.3.4p1:
   3482   if (T->isFunctionType() &&
   3483       (TraitKind == UETT_SizeOf || TraitKind == UETT_AlignOf)) {
   3484     // sizeof(function)/alignof(function) is allowed as an extension.
   3485     S.Diag(Loc, diag::ext_sizeof_alignof_function_type)
   3486       << TraitKind << ArgRange;
   3487     return false;
   3488   }
   3489 
   3490   // Allow sizeof(void)/alignof(void) as an extension, unless in OpenCL where
   3491   // this is an error (OpenCL v1.1 s6.3.k)
   3492   if (T->isVoidType()) {
   3493     unsigned DiagID = S.LangOpts.OpenCL ? diag::err_opencl_sizeof_alignof_type
   3494                                         : diag::ext_sizeof_alignof_void_type;
   3495     S.Diag(Loc, DiagID) << TraitKind << ArgRange;
   3496     return false;
   3497   }
   3498 
   3499   return true;
   3500 }
   3501 
   3502 static bool CheckObjCTraitOperandConstraints(Sema &S, QualType T,
   3503                                              SourceLocation Loc,
   3504                                              SourceRange ArgRange,
   3505                                              UnaryExprOrTypeTrait TraitKind) {
   3506   // Reject sizeof(interface) and sizeof(interface<proto>) if the
   3507   // runtime doesn't allow it.
   3508   if (!S.LangOpts.ObjCRuntime.allowsSizeofAlignof() && T->isObjCObjectType()) {
   3509     S.Diag(Loc, diag::err_sizeof_nonfragile_interface)
   3510       << T << (TraitKind == UETT_SizeOf)
   3511       << ArgRange;
   3512     return true;
   3513   }
   3514 
   3515   return false;
   3516 }
   3517 
   3518 /// \brief Check whether E is a pointer from a decayed array type (the decayed
   3519 /// pointer type is equal to T) and emit a warning if it is.
   3520 static void warnOnSizeofOnArrayDecay(Sema &S, SourceLocation Loc, QualType T,
   3521                                      Expr *E) {
   3522   // Don't warn if the operation changed the type.
   3523   if (T != E->getType())
   3524     return;
   3525 
   3526   // Now look for array decays.
   3527   ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E);
   3528   if (!ICE || ICE->getCastKind() != CK_ArrayToPointerDecay)
   3529     return;
   3530 
   3531   S.Diag(Loc, diag::warn_sizeof_array_decay) << ICE->getSourceRange()
   3532                                              << ICE->getType()
   3533                                              << ICE->getSubExpr()->getType();
   3534 }
   3535 
   3536 /// \brief Check the constraints on expression operands to unary type expression
   3537 /// and type traits.
   3538 ///
   3539 /// Completes any types necessary and validates the constraints on the operand
   3540 /// expression. The logic mostly mirrors the type-based overload, but may modify
   3541 /// the expression as it completes the type for that expression through template
   3542 /// instantiation, etc.
   3543 bool Sema::CheckUnaryExprOrTypeTraitOperand(Expr *E,
   3544                                             UnaryExprOrTypeTrait ExprKind) {
   3545   QualType ExprTy = E->getType();
   3546   assert(!ExprTy->isReferenceType());
   3547 
   3548   if (ExprKind == UETT_VecStep)
   3549     return CheckVecStepTraitOperandType(*this, ExprTy, E->getExprLoc(),
   3550                                         E->getSourceRange());
   3551 
   3552   // Whitelist some types as extensions
   3553   if (!CheckExtensionTraitOperandType(*this, ExprTy, E->getExprLoc(),
   3554                                       E->getSourceRange(), ExprKind))
   3555     return false;
   3556 
   3557   // 'alignof' applied to an expression only requires the base element type of
   3558   // the expression to be complete. 'sizeof' requires the expression's type to
   3559   // be complete (and will attempt to complete it if it's an array of unknown
   3560   // bound).
   3561   if (ExprKind == UETT_AlignOf) {
   3562     if (RequireCompleteType(E->getExprLoc(),
   3563                             Context.getBaseElementType(E->getType()),
   3564                             diag::err_sizeof_alignof_incomplete_type, ExprKind,
   3565                             E->getSourceRange()))
   3566       return true;
   3567   } else {
   3568     if (RequireCompleteExprType(E, diag::err_sizeof_alignof_incomplete_type,
   3569                                 ExprKind, E->getSourceRange()))
   3570       return true;
   3571   }
   3572 
   3573   // Completing the expression's type may have changed it.
   3574   ExprTy = E->getType();
   3575   assert(!ExprTy->isReferenceType());
   3576 
   3577   if (ExprTy->isFunctionType()) {
   3578     Diag(E->getExprLoc(), diag::err_sizeof_alignof_function_type)
   3579       << ExprKind << E->getSourceRange();
   3580     return true;
   3581   }
   3582 
   3583   // The operand for sizeof and alignof is in an unevaluated expression context,
   3584   // so side effects could result in unintended consequences.
   3585   if ((ExprKind == UETT_SizeOf || ExprKind == UETT_AlignOf) &&
   3586       ActiveTemplateInstantiations.empty() && E->HasSideEffects(Context, false))
   3587     Diag(E->getExprLoc(), diag::warn_side_effects_unevaluated_context);
   3588 
   3589   if (CheckObjCTraitOperandConstraints(*this, ExprTy, E->getExprLoc(),
   3590                                        E->getSourceRange(), ExprKind))
   3591     return true;
   3592 
   3593   if (ExprKind == UETT_SizeOf) {
   3594     if (DeclRefExpr *DeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParens())) {
   3595       if (ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(DeclRef->getFoundDecl())) {
   3596         QualType OType = PVD->getOriginalType();
   3597         QualType Type = PVD->getType();
   3598         if (Type->isPointerType() && OType->isArrayType()) {
   3599           Diag(E->getExprLoc(), diag::warn_sizeof_array_param)
   3600             << Type << OType;
   3601           Diag(PVD->getLocation(), diag::note_declared_at);
   3602         }
   3603       }
   3604     }
   3605 
   3606     // Warn on "sizeof(array op x)" and "sizeof(x op array)", where the array
   3607     // decays into a pointer and returns an unintended result. This is most
   3608     // likely a typo for "sizeof(array) op x".
   3609     if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E->IgnoreParens())) {
   3610       warnOnSizeofOnArrayDecay(*this, BO->getOperatorLoc(), BO->getType(),
   3611                                BO->getLHS());
   3612       warnOnSizeofOnArrayDecay(*this, BO->getOperatorLoc(), BO->getType(),
   3613                                BO->getRHS());
   3614     }
   3615   }
   3616 
   3617   return false;
   3618 }
   3619 
   3620 /// \brief Check the constraints on operands to unary expression and type
   3621 /// traits.
   3622 ///
   3623 /// This will complete any types necessary, and validate the various constraints
   3624 /// on those operands.
   3625 ///
   3626 /// The UsualUnaryConversions() function is *not* called by this routine.
   3627 /// C99 6.3.2.1p[2-4] all state:
   3628 ///   Except when it is the operand of the sizeof operator ...
   3629 ///
   3630 /// C++ [expr.sizeof]p4
   3631 ///   The lvalue-to-rvalue, array-to-pointer, and function-to-pointer
   3632 ///   standard conversions are not applied to the operand of sizeof.
   3633 ///
   3634 /// This policy is followed for all of the unary trait expressions.
   3635 bool Sema::CheckUnaryExprOrTypeTraitOperand(QualType ExprType,
   3636                                             SourceLocation OpLoc,
   3637                                             SourceRange ExprRange,
   3638                                             UnaryExprOrTypeTrait ExprKind) {
   3639   if (ExprType->isDependentType())
   3640     return false;
   3641 
   3642   // C++ [expr.sizeof]p2:
   3643   //     When applied to a reference or a reference type, the result
   3644   //     is the size of the referenced type.
   3645   // C++11 [expr.alignof]p3:
   3646   //     When alignof is applied to a reference type, the result
   3647   //     shall be the alignment of the referenced type.
   3648   if (const ReferenceType *Ref = ExprType->getAs<ReferenceType>())
   3649     ExprType = Ref->getPointeeType();
   3650 
   3651   // C11 6.5.3.4/3, C++11 [expr.alignof]p3:
   3652   //   When alignof or _Alignof is applied to an array type, the result
   3653   //   is the alignment of the element type.
   3654   if (ExprKind == UETT_AlignOf || ExprKind == UETT_OpenMPRequiredSimdAlign)
   3655     ExprType = Context.getBaseElementType(ExprType);
   3656 
   3657   if (ExprKind == UETT_VecStep)
   3658     return CheckVecStepTraitOperandType(*this, ExprType, OpLoc, ExprRange);
   3659 
   3660   // Whitelist some types as extensions
   3661   if (!CheckExtensionTraitOperandType(*this, ExprType, OpLoc, ExprRange,
   3662                                       ExprKind))
   3663     return false;
   3664 
   3665   if (RequireCompleteType(OpLoc, ExprType,
   3666                           diag::err_sizeof_alignof_incomplete_type,
   3667                           ExprKind, ExprRange))
   3668     return true;
   3669 
   3670   if (ExprType->isFunctionType()) {
   3671     Diag(OpLoc, diag::err_sizeof_alignof_function_type)
   3672       << ExprKind << ExprRange;
   3673     return true;
   3674   }
   3675 
   3676   if (CheckObjCTraitOperandConstraints(*this, ExprType, OpLoc, ExprRange,
   3677                                        ExprKind))
   3678     return true;
   3679 
   3680   return false;
   3681 }
   3682 
   3683 static bool CheckAlignOfExpr(Sema &S, Expr *E) {
   3684   E = E->IgnoreParens();
   3685 
   3686   // Cannot know anything else if the expression is dependent.
   3687   if (E->isTypeDependent())
   3688     return false;
   3689 
   3690   if (E->getObjectKind() == OK_BitField) {
   3691     S.Diag(E->getExprLoc(), diag::err_sizeof_alignof_typeof_bitfield)
   3692        << 1 << E->getSourceRange();
   3693     return true;
   3694   }
   3695 
   3696   ValueDecl *D = nullptr;
   3697   if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
   3698     D = DRE->getDecl();
   3699   } else if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
   3700     D = ME->getMemberDecl();
   3701   }
   3702 
   3703   // If it's a field, require the containing struct to have a
   3704   // complete definition so that we can compute the layout.
   3705   //
   3706   // This can happen in C++11 onwards, either by naming the member
   3707   // in a way that is not transformed into a member access expression
   3708   // (in an unevaluated operand, for instance), or by naming the member
   3709   // in a trailing-return-type.
   3710   //
   3711   // For the record, since __alignof__ on expressions is a GCC
   3712   // extension, GCC seems to permit this but always gives the
   3713   // nonsensical answer 0.
   3714   //
   3715   // We don't really need the layout here --- we could instead just
   3716   // directly check for all the appropriate alignment-lowing
   3717   // attributes --- but that would require duplicating a lot of
   3718   // logic that just isn't worth duplicating for such a marginal
   3719   // use-case.
   3720   if (FieldDecl *FD = dyn_cast_or_null<FieldDecl>(D)) {
   3721     // Fast path this check, since we at least know the record has a
   3722     // definition if we can find a member of it.
   3723     if (!FD->getParent()->isCompleteDefinition()) {
   3724       S.Diag(E->getExprLoc(), diag::err_alignof_member_of_incomplete_type)
   3725         << E->getSourceRange();
   3726       return true;
   3727     }
   3728 
   3729     // Otherwise, if it's a field, and the field doesn't have
   3730     // reference type, then it must have a complete type (or be a
   3731     // flexible array member, which we explicitly want to
   3732     // white-list anyway), which makes the following checks trivial.
   3733     if (!FD->getType()->isReferenceType())
   3734       return false;
   3735   }
   3736 
   3737   return S.CheckUnaryExprOrTypeTraitOperand(E, UETT_AlignOf);
   3738 }
   3739 
   3740 bool Sema::CheckVecStepExpr(Expr *E) {
   3741   E = E->IgnoreParens();
   3742 
   3743   // Cannot know anything else if the expression is dependent.
   3744   if (E->isTypeDependent())
   3745     return false;
   3746 
   3747   return CheckUnaryExprOrTypeTraitOperand(E, UETT_VecStep);
   3748 }
   3749 
   3750 /// \brief Build a sizeof or alignof expression given a type operand.
   3751 ExprResult
   3752 Sema::CreateUnaryExprOrTypeTraitExpr(TypeSourceInfo *TInfo,
   3753                                      SourceLocation OpLoc,
   3754                                      UnaryExprOrTypeTrait ExprKind,
   3755                                      SourceRange R) {
   3756   if (!TInfo)
   3757     return ExprError();
   3758 
   3759   QualType T = TInfo->getType();
   3760 
   3761   if (!T->isDependentType() &&
   3762       CheckUnaryExprOrTypeTraitOperand(T, OpLoc, R, ExprKind))
   3763     return ExprError();
   3764 
   3765   // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
   3766   return new (Context) UnaryExprOrTypeTraitExpr(
   3767       ExprKind, TInfo, Context.getSizeType(), OpLoc, R.getEnd());
   3768 }
   3769 
   3770 /// \brief Build a sizeof or alignof expression given an expression
   3771 /// operand.
   3772 ExprResult
   3773 Sema::CreateUnaryExprOrTypeTraitExpr(Expr *E, SourceLocation OpLoc,
   3774                                      UnaryExprOrTypeTrait ExprKind) {
   3775   ExprResult PE = CheckPlaceholderExpr(E);
   3776   if (PE.isInvalid())
   3777     return ExprError();
   3778 
   3779   E = PE.get();
   3780 
   3781   // Verify that the operand is valid.
   3782   bool isInvalid = false;
   3783   if (E->isTypeDependent()) {
   3784     // Delay type-checking for type-dependent expressions.
   3785   } else if (ExprKind == UETT_AlignOf) {
   3786     isInvalid = CheckAlignOfExpr(*this, E);
   3787   } else if (ExprKind == UETT_VecStep) {
   3788     isInvalid = CheckVecStepExpr(E);
   3789   } else if (ExprKind == UETT_OpenMPRequiredSimdAlign) {
   3790       Diag(E->getExprLoc(), diag::err_openmp_default_simd_align_expr);
   3791       isInvalid = true;
   3792   } else if (E->refersToBitField()) {  // C99 6.5.3.4p1.
   3793     Diag(E->getExprLoc(), diag::err_sizeof_alignof_typeof_bitfield) << 0;
   3794     isInvalid = true;
   3795   } else {
   3796     isInvalid = CheckUnaryExprOrTypeTraitOperand(E, UETT_SizeOf);
   3797   }
   3798 
   3799   if (isInvalid)
   3800     return ExprError();
   3801 
   3802   if (ExprKind == UETT_SizeOf && E->getType()->isVariableArrayType()) {
   3803     PE = TransformToPotentiallyEvaluated(E);
   3804     if (PE.isInvalid()) return ExprError();
   3805     E = PE.get();
   3806   }
   3807 
   3808   // C99 6.5.3.4p4: the type (an unsigned integer type) is size_t.
   3809   return new (Context) UnaryExprOrTypeTraitExpr(
   3810       ExprKind, E, Context.getSizeType(), OpLoc, E->getSourceRange().getEnd());
   3811 }
   3812 
   3813 /// ActOnUnaryExprOrTypeTraitExpr - Handle @c sizeof(type) and @c sizeof @c
   3814 /// expr and the same for @c alignof and @c __alignof
   3815 /// Note that the ArgRange is invalid if isType is false.
   3816 ExprResult
   3817 Sema::ActOnUnaryExprOrTypeTraitExpr(SourceLocation OpLoc,
   3818                                     UnaryExprOrTypeTrait ExprKind, bool IsType,
   3819                                     void *TyOrEx, SourceRange ArgRange) {
   3820   // If error parsing type, ignore.
   3821   if (!TyOrEx) return ExprError();
   3822 
   3823   if (IsType) {
   3824     TypeSourceInfo *TInfo;
   3825     (void) GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrEx), &TInfo);
   3826     return CreateUnaryExprOrTypeTraitExpr(TInfo, OpLoc, ExprKind, ArgRange);
   3827   }
   3828 
   3829   Expr *ArgEx = (Expr *)TyOrEx;
   3830   ExprResult Result = CreateUnaryExprOrTypeTraitExpr(ArgEx, OpLoc, ExprKind);
   3831   return Result;
   3832 }
   3833 
   3834 static QualType CheckRealImagOperand(Sema &S, ExprResult &V, SourceLocation Loc,
   3835                                      bool IsReal) {
   3836   if (V.get()->isTypeDependent())
   3837     return S.Context.DependentTy;
   3838 
   3839   // _Real and _Imag are only l-values for normal l-values.
   3840   if (V.get()->getObjectKind() != OK_Ordinary) {
   3841     V = S.DefaultLvalueConversion(V.get());
   3842     if (V.isInvalid())
   3843       return QualType();
   3844   }
   3845 
   3846   // These operators return the element type of a complex type.
   3847   if (const ComplexType *CT = V.get()->getType()->getAs<ComplexType>())
   3848     return CT->getElementType();
   3849 
   3850   // Otherwise they pass through real integer and floating point types here.
   3851   if (V.get()->getType()->isArithmeticType())
   3852     return V.get()->getType();
   3853 
   3854   // Test for placeholders.
   3855   ExprResult PR = S.CheckPlaceholderExpr(V.get());
   3856   if (PR.isInvalid()) return QualType();
   3857   if (PR.get() != V.get()) {
   3858     V = PR;
   3859     return CheckRealImagOperand(S, V, Loc, IsReal);
   3860   }
   3861 
   3862   // Reject anything else.
   3863   S.Diag(Loc, diag::err_realimag_invalid_type) << V.get()->getType()
   3864     << (IsReal ? "__real" : "__imag");
   3865   return QualType();
   3866 }
   3867 
   3868 
   3869 
   3870 ExprResult
   3871 Sema::ActOnPostfixUnaryOp(Scope *S, SourceLocation OpLoc,
   3872                           tok::TokenKind Kind, Expr *Input) {
   3873   UnaryOperatorKind Opc;
   3874   switch (Kind) {
   3875   default: llvm_unreachable("Unknown unary op!");
   3876   case tok::plusplus:   Opc = UO_PostInc; break;
   3877   case tok::minusminus: Opc = UO_PostDec; break;
   3878   }
   3879 
   3880   // Since this might is a postfix expression, get rid of ParenListExprs.
   3881   ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Input);
   3882   if (Result.isInvalid()) return ExprError();
   3883   Input = Result.get();
   3884 
   3885   return BuildUnaryOp(S, OpLoc, Opc, Input);
   3886 }
   3887 
   3888 /// \brief Diagnose if arithmetic on the given ObjC pointer is illegal.
   3889 ///
   3890 /// \return true on error
   3891 static bool checkArithmeticOnObjCPointer(Sema &S,
   3892                                          SourceLocation opLoc,
   3893                                          Expr *op) {
   3894   assert(op->getType()->isObjCObjectPointerType());
   3895   if (S.LangOpts.ObjCRuntime.allowsPointerArithmetic() &&
   3896       !S.LangOpts.ObjCSubscriptingLegacyRuntime)
   3897     return false;
   3898 
   3899   S.Diag(opLoc, diag::err_arithmetic_nonfragile_interface)
   3900     << op->getType()->castAs<ObjCObjectPointerType>()->getPointeeType()
   3901     << op->getSourceRange();
   3902   return true;
   3903 }
   3904 
   3905 static bool isMSPropertySubscriptExpr(Sema &S, Expr *Base) {
   3906   auto *BaseNoParens = Base->IgnoreParens();
   3907   if (auto *MSProp = dyn_cast<MSPropertyRefExpr>(BaseNoParens))
   3908     return MSProp->getPropertyDecl()->getType()->isArrayType();
   3909   return isa<MSPropertySubscriptExpr>(BaseNoParens);
   3910 }
   3911 
   3912 ExprResult
   3913 Sema::ActOnArraySubscriptExpr(Scope *S, Expr *base, SourceLocation lbLoc,
   3914                               Expr *idx, SourceLocation rbLoc) {
   3915   if (base && !base->getType().isNull() &&
   3916       base->getType()->isSpecificPlaceholderType(BuiltinType::OMPArraySection))
   3917     return ActOnOMPArraySectionExpr(base, lbLoc, idx, SourceLocation(),
   3918                                     /*Length=*/nullptr, rbLoc);
   3919 
   3920   // Since this might be a postfix expression, get rid of ParenListExprs.
   3921   if (isa<ParenListExpr>(base)) {
   3922     ExprResult result = MaybeConvertParenListExprToParenExpr(S, base);
   3923     if (result.isInvalid()) return ExprError();
   3924     base = result.get();
   3925   }
   3926 
   3927   // Handle any non-overload placeholder types in the base and index
   3928   // expressions.  We can't handle overloads here because the other
   3929   // operand might be an overloadable type, in which case the overload
   3930   // resolution for the operator overload should get the first crack
   3931   // at the overload.
   3932   bool IsMSPropertySubscript = false;
   3933   if (base->getType()->isNonOverloadPlaceholderType()) {
   3934     IsMSPropertySubscript = isMSPropertySubscriptExpr(*this, base);
   3935     if (!IsMSPropertySubscript) {
   3936       ExprResult result = CheckPlaceholderExpr(base);
   3937       if (result.isInvalid())
   3938         return ExprError();
   3939       base = result.get();
   3940     }
   3941   }
   3942   if (idx->getType()->isNonOverloadPlaceholderType()) {
   3943     ExprResult result = CheckPlaceholderExpr(idx);
   3944     if (result.isInvalid()) return ExprError();
   3945     idx = result.get();
   3946   }
   3947 
   3948   // Build an unanalyzed expression if either operand is type-dependent.
   3949   if (getLangOpts().CPlusPlus &&
   3950       (base->isTypeDependent() || idx->isTypeDependent())) {
   3951     return new (Context) ArraySubscriptExpr(base, idx, Context.DependentTy,
   3952                                             VK_LValue, OK_Ordinary, rbLoc);
   3953   }
   3954 
   3955   // MSDN, property (C++)
   3956   // https://msdn.microsoft.com/en-us/library/yhfk0thd(v=vs.120).aspx
   3957   // This attribute can also be used in the declaration of an empty array in a
   3958   // class or structure definition. For example:
   3959   // __declspec(property(get=GetX, put=PutX)) int x[];
   3960   // The above statement indicates that x[] can be used with one or more array
   3961   // indices. In this case, i=p->x[a][b] will be turned into i=p->GetX(a, b),
   3962   // and p->x[a][b] = i will be turned into p->PutX(a, b, i);
   3963   if (IsMSPropertySubscript) {
   3964     // Build MS property subscript expression if base is MS property reference
   3965     // or MS property subscript.
   3966     return new (Context) MSPropertySubscriptExpr(
   3967         base, idx, Context.PseudoObjectTy, VK_LValue, OK_Ordinary, rbLoc);
   3968   }
   3969 
   3970   // Use C++ overloaded-operator rules if either operand has record
   3971   // type.  The spec says to do this if either type is *overloadable*,
   3972   // but enum types can't declare subscript operators or conversion
   3973   // operators, so there's nothing interesting for overload resolution
   3974   // to do if there aren't any record types involved.
   3975   //
   3976   // ObjC pointers have their own subscripting logic that is not tied
   3977   // to overload resolution and so should not take this path.
   3978   if (getLangOpts().CPlusPlus &&
   3979       (base->getType()->isRecordType() ||
   3980        (!base->getType()->isObjCObjectPointerType() &&
   3981         idx->getType()->isRecordType()))) {
   3982     return CreateOverloadedArraySubscriptExpr(lbLoc, rbLoc, base, idx);
   3983   }
   3984 
   3985   return CreateBuiltinArraySubscriptExpr(base, lbLoc, idx, rbLoc);
   3986 }
   3987 
   3988 ExprResult Sema::ActOnOMPArraySectionExpr(Expr *Base, SourceLocation LBLoc,
   3989                                           Expr *LowerBound,
   3990                                           SourceLocation ColonLoc, Expr *Length,
   3991                                           SourceLocation RBLoc) {
   3992   if (Base->getType()->isPlaceholderType() &&
   3993       !Base->getType()->isSpecificPlaceholderType(
   3994           BuiltinType::OMPArraySection)) {
   3995     ExprResult Result = CheckPlaceholderExpr(Base);
   3996     if (Result.isInvalid())
   3997       return ExprError();
   3998     Base = Result.get();
   3999   }
   4000   if (LowerBound && LowerBound->getType()->isNonOverloadPlaceholderType()) {
   4001     ExprResult Result = CheckPlaceholderExpr(LowerBound);
   4002     if (Result.isInvalid())
   4003       return ExprError();
   4004     LowerBound = Result.get();
   4005   }
   4006   if (Length && Length->getType()->isNonOverloadPlaceholderType()) {
   4007     ExprResult Result = CheckPlaceholderExpr(Length);
   4008     if (Result.isInvalid())
   4009       return ExprError();
   4010     Length = Result.get();
   4011   }
   4012 
   4013   // Build an unanalyzed expression if either operand is type-dependent.
   4014   if (Base->isTypeDependent() ||
   4015       (LowerBound &&
   4016        (LowerBound->isTypeDependent() || LowerBound->isValueDependent())) ||
   4017       (Length && (Length->isTypeDependent() || Length->isValueDependent()))) {
   4018     return new (Context)
   4019         OMPArraySectionExpr(Base, LowerBound, Length, Context.DependentTy,
   4020                             VK_LValue, OK_Ordinary, ColonLoc, RBLoc);
   4021   }
   4022 
   4023   // Perform default conversions.
   4024   QualType OriginalTy = OMPArraySectionExpr::getBaseOriginalType(Base);
   4025   QualType ResultTy;
   4026   if (OriginalTy->isAnyPointerType()) {
   4027     ResultTy = OriginalTy->getPointeeType();
   4028   } else if (OriginalTy->isArrayType()) {
   4029     ResultTy = OriginalTy->getAsArrayTypeUnsafe()->getElementType();
   4030   } else {
   4031     return ExprError(
   4032         Diag(Base->getExprLoc(), diag::err_omp_typecheck_section_value)
   4033         << Base->getSourceRange());
   4034   }
   4035   // C99 6.5.2.1p1
   4036   if (LowerBound) {
   4037     auto Res = PerformOpenMPImplicitIntegerConversion(LowerBound->getExprLoc(),
   4038                                                       LowerBound);
   4039     if (Res.isInvalid())
   4040       return ExprError(Diag(LowerBound->getExprLoc(),
   4041                             diag::err_omp_typecheck_section_not_integer)
   4042                        << 0 << LowerBound->getSourceRange());
   4043     LowerBound = Res.get();
   4044 
   4045     if (LowerBound->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
   4046         LowerBound->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
   4047       Diag(LowerBound->getExprLoc(), diag::warn_omp_section_is_char)
   4048           << 0 << LowerBound->getSourceRange();
   4049   }
   4050   if (Length) {
   4051     auto Res =
   4052         PerformOpenMPImplicitIntegerConversion(Length->getExprLoc(), Length);
   4053     if (Res.isInvalid())
   4054       return ExprError(Diag(Length->getExprLoc(),
   4055                             diag::err_omp_typecheck_section_not_integer)
   4056                        << 1 << Length->getSourceRange());
   4057     Length = Res.get();
   4058 
   4059     if (Length->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
   4060         Length->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
   4061       Diag(Length->getExprLoc(), diag::warn_omp_section_is_char)
   4062           << 1 << Length->getSourceRange();
   4063   }
   4064 
   4065   // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
   4066   // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
   4067   // type. Note that functions are not objects, and that (in C99 parlance)
   4068   // incomplete types are not object types.
   4069   if (ResultTy->isFunctionType()) {
   4070     Diag(Base->getExprLoc(), diag::err_omp_section_function_type)
   4071         << ResultTy << Base->getSourceRange();
   4072     return ExprError();
   4073   }
   4074 
   4075   if (RequireCompleteType(Base->getExprLoc(), ResultTy,
   4076                           diag::err_omp_section_incomplete_type, Base))
   4077     return ExprError();
   4078 
   4079   if (LowerBound) {
   4080     llvm::APSInt LowerBoundValue;
   4081     if (LowerBound->EvaluateAsInt(LowerBoundValue, Context)) {
   4082       // OpenMP 4.0, [2.4 Array Sections]
   4083       // The lower-bound and length must evaluate to non-negative integers.
   4084       if (LowerBoundValue.isNegative()) {
   4085         Diag(LowerBound->getExprLoc(), diag::err_omp_section_negative)
   4086             << 0 << LowerBoundValue.toString(/*Radix=*/10, /*Signed=*/true)
   4087             << LowerBound->getSourceRange();
   4088         return ExprError();
   4089       }
   4090     }
   4091   }
   4092 
   4093   if (Length) {
   4094     llvm::APSInt LengthValue;
   4095     if (Length->EvaluateAsInt(LengthValue, Context)) {
   4096       // OpenMP 4.0, [2.4 Array Sections]
   4097       // The lower-bound and length must evaluate to non-negative integers.
   4098       if (LengthValue.isNegative()) {
   4099         Diag(Length->getExprLoc(), diag::err_omp_section_negative)
   4100             << 1 << LengthValue.toString(/*Radix=*/10, /*Signed=*/true)
   4101             << Length->getSourceRange();
   4102         return ExprError();
   4103       }
   4104     }
   4105   } else if (ColonLoc.isValid() &&
   4106              (OriginalTy.isNull() || (!OriginalTy->isConstantArrayType() &&
   4107                                       !OriginalTy->isVariableArrayType()))) {
   4108     // OpenMP 4.0, [2.4 Array Sections]
   4109     // When the size of the array dimension is not known, the length must be
   4110     // specified explicitly.
   4111     Diag(ColonLoc, diag::err_omp_section_length_undefined)
   4112         << (!OriginalTy.isNull() && OriginalTy->isArrayType());
   4113     return ExprError();
   4114   }
   4115 
   4116   return new (Context)
   4117       OMPArraySectionExpr(Base, LowerBound, Length, Context.OMPArraySectionTy,
   4118                           VK_LValue, OK_Ordinary, ColonLoc, RBLoc);
   4119 }
   4120 
   4121 ExprResult
   4122 Sema::CreateBuiltinArraySubscriptExpr(Expr *Base, SourceLocation LLoc,
   4123                                       Expr *Idx, SourceLocation RLoc) {
   4124   Expr *LHSExp = Base;
   4125   Expr *RHSExp = Idx;
   4126 
   4127   // Perform default conversions.
   4128   if (!LHSExp->getType()->getAs<VectorType>()) {
   4129     ExprResult Result = DefaultFunctionArrayLvalueConversion(LHSExp);
   4130     if (Result.isInvalid())
   4131       return ExprError();
   4132     LHSExp = Result.get();
   4133   }
   4134   ExprResult Result = DefaultFunctionArrayLvalueConversion(RHSExp);
   4135   if (Result.isInvalid())
   4136     return ExprError();
   4137   RHSExp = Result.get();
   4138 
   4139   QualType LHSTy = LHSExp->getType(), RHSTy = RHSExp->getType();
   4140   ExprValueKind VK = VK_LValue;
   4141   ExprObjectKind OK = OK_Ordinary;
   4142 
   4143   // C99 6.5.2.1p2: the expression e1[e2] is by definition precisely equivalent
   4144   // to the expression *((e1)+(e2)). This means the array "Base" may actually be
   4145   // in the subscript position. As a result, we need to derive the array base
   4146   // and index from the expression types.
   4147   Expr *BaseExpr, *IndexExpr;
   4148   QualType ResultType;
   4149   if (LHSTy->isDependentType() || RHSTy->isDependentType()) {
   4150     BaseExpr = LHSExp;
   4151     IndexExpr = RHSExp;
   4152     ResultType = Context.DependentTy;
   4153   } else if (const PointerType *PTy = LHSTy->getAs<PointerType>()) {
   4154     BaseExpr = LHSExp;
   4155     IndexExpr = RHSExp;
   4156     ResultType = PTy->getPointeeType();
   4157   } else if (const ObjCObjectPointerType *PTy =
   4158                LHSTy->getAs<ObjCObjectPointerType>()) {
   4159     BaseExpr = LHSExp;
   4160     IndexExpr = RHSExp;
   4161 
   4162     // Use custom logic if this should be the pseudo-object subscript
   4163     // expression.
   4164     if (!LangOpts.isSubscriptPointerArithmetic())
   4165       return BuildObjCSubscriptExpression(RLoc, BaseExpr, IndexExpr, nullptr,
   4166                                           nullptr);
   4167 
   4168     ResultType = PTy->getPointeeType();
   4169   } else if (const PointerType *PTy = RHSTy->getAs<PointerType>()) {
   4170      // Handle the uncommon case of "123[Ptr]".
   4171     BaseExpr = RHSExp;
   4172     IndexExpr = LHSExp;
   4173     ResultType = PTy->getPointeeType();
   4174   } else if (const ObjCObjectPointerType *PTy =
   4175                RHSTy->getAs<ObjCObjectPointerType>()) {
   4176      // Handle the uncommon case of "123[Ptr]".
   4177     BaseExpr = RHSExp;
   4178     IndexExpr = LHSExp;
   4179     ResultType = PTy->getPointeeType();
   4180     if (!LangOpts.isSubscriptPointerArithmetic()) {
   4181       Diag(LLoc, diag::err_subscript_nonfragile_interface)
   4182         << ResultType << BaseExpr->getSourceRange();
   4183       return ExprError();
   4184     }
   4185   } else if (const VectorType *VTy = LHSTy->getAs<VectorType>()) {
   4186     BaseExpr = LHSExp;    // vectors: V[123]
   4187     IndexExpr = RHSExp;
   4188     VK = LHSExp->getValueKind();
   4189     if (VK != VK_RValue)
   4190       OK = OK_VectorComponent;
   4191 
   4192     // FIXME: need to deal with const...
   4193     ResultType = VTy->getElementType();
   4194   } else if (LHSTy->isArrayType()) {
   4195     // If we see an array that wasn't promoted by
   4196     // DefaultFunctionArrayLvalueConversion, it must be an array that
   4197     // wasn't promoted because of the C90 rule that doesn't
   4198     // allow promoting non-lvalue arrays.  Warn, then
   4199     // force the promotion here.
   4200     Diag(LHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
   4201         LHSExp->getSourceRange();
   4202     LHSExp = ImpCastExprToType(LHSExp, Context.getArrayDecayedType(LHSTy),
   4203                                CK_ArrayToPointerDecay).get();
   4204     LHSTy = LHSExp->getType();
   4205 
   4206     BaseExpr = LHSExp;
   4207     IndexExpr = RHSExp;
   4208     ResultType = LHSTy->getAs<PointerType>()->getPointeeType();
   4209   } else if (RHSTy->isArrayType()) {
   4210     // Same as previous, except for 123[f().a] case
   4211     Diag(RHSExp->getLocStart(), diag::ext_subscript_non_lvalue) <<
   4212         RHSExp->getSourceRange();
   4213     RHSExp = ImpCastExprToType(RHSExp, Context.getArrayDecayedType(RHSTy),
   4214                                CK_ArrayToPointerDecay).get();
   4215     RHSTy = RHSExp->getType();
   4216 
   4217     BaseExpr = RHSExp;
   4218     IndexExpr = LHSExp;
   4219     ResultType = RHSTy->getAs<PointerType>()->getPointeeType();
   4220   } else {
   4221     return ExprError(Diag(LLoc, diag::err_typecheck_subscript_value)
   4222        << LHSExp->getSourceRange() << RHSExp->getSourceRange());
   4223   }
   4224   // C99 6.5.2.1p1
   4225   if (!IndexExpr->getType()->isIntegerType() && !IndexExpr->isTypeDependent())
   4226     return ExprError(Diag(LLoc, diag::err_typecheck_subscript_not_integer)
   4227                      << IndexExpr->getSourceRange());
   4228 
   4229   if ((IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_S) ||
   4230        IndexExpr->getType()->isSpecificBuiltinType(BuiltinType::Char_U))
   4231          && !IndexExpr->isTypeDependent())
   4232     Diag(LLoc, diag::warn_subscript_is_char) << IndexExpr->getSourceRange();
   4233 
   4234   // C99 6.5.2.1p1: "shall have type "pointer to *object* type". Similarly,
   4235   // C++ [expr.sub]p1: The type "T" shall be a completely-defined object
   4236   // type. Note that Functions are not objects, and that (in C99 parlance)
   4237   // incomplete types are not object types.
   4238   if (ResultType->isFunctionType()) {
   4239     Diag(BaseExpr->getLocStart(), diag::err_subscript_function_type)
   4240       << ResultType << BaseExpr->getSourceRange();
   4241     return ExprError();
   4242   }
   4243 
   4244   if (ResultType->isVoidType() && !getLangOpts().CPlusPlus) {
   4245     // GNU extension: subscripting on pointer to void
   4246     Diag(LLoc, diag::ext_gnu_subscript_void_type)
   4247       << BaseExpr->getSourceRange();
   4248 
   4249     // C forbids expressions of unqualified void type from being l-values.
   4250     // See IsCForbiddenLValueType.
   4251     if (!ResultType.hasQualifiers()) VK = VK_RValue;
   4252   } else if (!ResultType->isDependentType() &&
   4253       RequireCompleteType(LLoc, ResultType,
   4254                           diag::err_subscript_incomplete_type, BaseExpr))
   4255     return ExprError();
   4256 
   4257   assert(VK == VK_RValue || LangOpts.CPlusPlus ||
   4258          !ResultType.isCForbiddenLValueType());
   4259 
   4260   return new (Context)
   4261       ArraySubscriptExpr(LHSExp, RHSExp, ResultType, VK, OK, RLoc);
   4262 }
   4263 
   4264 ExprResult Sema::BuildCXXDefaultArgExpr(SourceLocation CallLoc,
   4265                                         FunctionDecl *FD,
   4266                                         ParmVarDecl *Param) {
   4267   if (Param->hasUnparsedDefaultArg()) {
   4268     Diag(CallLoc,
   4269          diag::err_use_of_default_argument_to_function_declared_later) <<
   4270       FD << cast<CXXRecordDecl>(FD->getDeclContext())->getDeclName();
   4271     Diag(UnparsedDefaultArgLocs[Param],
   4272          diag::note_default_argument_declared_here);
   4273     return ExprError();
   4274   }
   4275 
   4276   if (Param->hasUninstantiatedDefaultArg()) {
   4277     Expr *UninstExpr = Param->getUninstantiatedDefaultArg();
   4278 
   4279     EnterExpressionEvaluationContext EvalContext(*this, PotentiallyEvaluated,
   4280                                                  Param);
   4281 
   4282     // Instantiate the expression.
   4283     MultiLevelTemplateArgumentList MutiLevelArgList
   4284       = getTemplateInstantiationArgs(FD, nullptr, /*RelativeToPrimary=*/true);
   4285 
   4286     InstantiatingTemplate Inst(*this, CallLoc, Param,
   4287                                MutiLevelArgList.getInnermost());
   4288     if (Inst.isInvalid())
   4289       return ExprError();
   4290 
   4291     ExprResult Result;
   4292     {
   4293       // C++ [dcl.fct.default]p5:
   4294       //   The names in the [default argument] expression are bound, and
   4295       //   the semantic constraints are checked, at the point where the
   4296       //   default argument expression appears.
   4297       ContextRAII SavedContext(*this, FD);
   4298       LocalInstantiationScope Local(*this);
   4299       Result = SubstExpr(UninstExpr, MutiLevelArgList);
   4300     }
   4301     if (Result.isInvalid())
   4302       return ExprError();
   4303 
   4304     // Check the expression as an initializer for the parameter.
   4305     InitializedEntity Entity
   4306       = InitializedEntity::InitializeParameter(Context, Param);
   4307     InitializationKind Kind
   4308       = InitializationKind::CreateCopy(Param->getLocation(),
   4309              /*FIXME:EqualLoc*/UninstExpr->getLocStart());
   4310     Expr *ResultE = Result.getAs<Expr>();
   4311 
   4312     InitializationSequence InitSeq(*this, Entity, Kind, ResultE);
   4313     Result = InitSeq.Perform(*this, Entity, Kind, ResultE);
   4314     if (Result.isInvalid())
   4315       return ExprError();
   4316 
   4317     Expr *Arg = Result.getAs<Expr>();
   4318     CheckCompletedExpr(Arg, Param->getOuterLocStart());
   4319     // Build the default argument expression.
   4320     return CXXDefaultArgExpr::Create(Context, CallLoc, Param, Arg);
   4321   }
   4322 
   4323   // If the default expression creates temporaries, we need to
   4324   // push them to the current stack of expression temporaries so they'll
   4325   // be properly destroyed.
   4326   // FIXME: We should really be rebuilding the default argument with new
   4327   // bound temporaries; see the comment in PR5810.
   4328   // We don't need to do that with block decls, though, because
   4329   // blocks in default argument expression can never capture anything.
   4330   if (isa<ExprWithCleanups>(Param->getInit())) {
   4331     // Set the "needs cleanups" bit regardless of whether there are
   4332     // any explicit objects.
   4333     ExprNeedsCleanups = true;
   4334 
   4335     // Append all the objects to the cleanup list.  Right now, this
   4336     // should always be a no-op, because blocks in default argument
   4337     // expressions should never be able to capture anything.
   4338     assert(!cast<ExprWithCleanups>(Param->getInit())->getNumObjects() &&
   4339            "default argument expression has capturing blocks?");
   4340   }
   4341 
   4342   // We already type-checked the argument, so we know it works.
   4343   // Just mark all of the declarations in this potentially-evaluated expression
   4344   // as being "referenced".
   4345   MarkDeclarationsReferencedInExpr(Param->getDefaultArg(),
   4346                                    /*SkipLocalVariables=*/true);
   4347   return CXXDefaultArgExpr::Create(Context, CallLoc, Param);
   4348 }
   4349 
   4350 
   4351 Sema::VariadicCallType
   4352 Sema::getVariadicCallType(FunctionDecl *FDecl, const FunctionProtoType *Proto,
   4353                           Expr *Fn) {
   4354   if (Proto && Proto->isVariadic()) {
   4355     if (dyn_cast_or_null<CXXConstructorDecl>(FDecl))
   4356       return VariadicConstructor;
   4357     else if (Fn && Fn->getType()->isBlockPointerType())
   4358       return VariadicBlock;
   4359     else if (FDecl) {
   4360       if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(FDecl))
   4361         if (Method->isInstance())
   4362           return VariadicMethod;
   4363     } else if (Fn && Fn->getType() == Context.BoundMemberTy)
   4364       return VariadicMethod;
   4365     return VariadicFunction;
   4366   }
   4367   return VariadicDoesNotApply;
   4368 }
   4369 
   4370 namespace {
   4371 class FunctionCallCCC : public FunctionCallFilterCCC {
   4372 public:
   4373   FunctionCallCCC(Sema &SemaRef, const IdentifierInfo *FuncName,
   4374                   unsigned NumArgs, MemberExpr *ME)
   4375       : FunctionCallFilterCCC(SemaRef, NumArgs, false, ME),
   4376         FunctionName(FuncName) {}
   4377 
   4378   bool ValidateCandidate(const TypoCorrection &candidate) override {
   4379     if (!candidate.getCorrectionSpecifier() ||
   4380         candidate.getCorrectionAsIdentifierInfo() != FunctionName) {
   4381       return false;
   4382     }
   4383 
   4384     return FunctionCallFilterCCC::ValidateCandidate(candidate);
   4385   }
   4386 
   4387 private:
   4388   const IdentifierInfo *const FunctionName;
   4389 };
   4390 }
   4391 
   4392 static TypoCorrection TryTypoCorrectionForCall(Sema &S, Expr *Fn,
   4393                                                FunctionDecl *FDecl,
   4394                                                ArrayRef<Expr *> Args) {
   4395   MemberExpr *ME = dyn_cast<MemberExpr>(Fn);
   4396   DeclarationName FuncName = FDecl->getDeclName();
   4397   SourceLocation NameLoc = ME ? ME->getMemberLoc() : Fn->getLocStart();
   4398 
   4399   if (TypoCorrection Corrected = S.CorrectTypo(
   4400           DeclarationNameInfo(FuncName, NameLoc), Sema::LookupOrdinaryName,
   4401           S.getScopeForContext(S.CurContext), nullptr,
   4402           llvm::make_unique<FunctionCallCCC>(S, FuncName.getAsIdentifierInfo(),
   4403                                              Args.size(), ME),
   4404           Sema::CTK_ErrorRecovery)) {
   4405     if (NamedDecl *ND = Corrected.getCorrectionDecl()) {
   4406       if (Corrected.isOverloaded()) {
   4407         OverloadCandidateSet OCS(NameLoc, OverloadCandidateSet::CSK_Normal);
   4408         OverloadCandidateSet::iterator Best;
   4409         for (NamedDecl *CD : Corrected) {
   4410           if (FunctionDecl *FD = dyn_cast<FunctionDecl>(CD))
   4411             S.AddOverloadCandidate(FD, DeclAccessPair::make(FD, AS_none), Args,
   4412                                    OCS);
   4413         }
   4414         switch (OCS.BestViableFunction(S, NameLoc, Best)) {
   4415         case OR_Success:
   4416           ND = Best->Function;
   4417           Corrected.setCorrectionDecl(ND);
   4418           break;
   4419         default:
   4420           break;
   4421         }
   4422       }
   4423       if (isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND)) {
   4424         return Corrected;
   4425       }
   4426     }
   4427   }
   4428   return TypoCorrection();
   4429 }
   4430 
   4431 /// ConvertArgumentsForCall - Converts the arguments specified in
   4432 /// Args/NumArgs to the parameter types of the function FDecl with
   4433 /// function prototype Proto. Call is the call expression itself, and
   4434 /// Fn is the function expression. For a C++ member function, this
   4435 /// routine does not attempt to convert the object argument. Returns
   4436 /// true if the call is ill-formed.
   4437 bool
   4438 Sema::ConvertArgumentsForCall(CallExpr *Call, Expr *Fn,
   4439                               FunctionDecl *FDecl,
   4440                               const FunctionProtoType *Proto,
   4441                               ArrayRef<Expr *> Args,
   4442                               SourceLocation RParenLoc,
   4443                               bool IsExecConfig) {
   4444   // Bail out early if calling a builtin with custom typechecking.
   4445   if (FDecl)
   4446     if (unsigned ID = FDecl->getBuiltinID())
   4447       if (Context.BuiltinInfo.hasCustomTypechecking(ID))
   4448         return false;
   4449 
   4450   // C99 6.5.2.2p7 - the arguments are implicitly converted, as if by
   4451   // assignment, to the types of the corresponding parameter, ...
   4452   unsigned NumParams = Proto->getNumParams();
   4453   bool Invalid = false;
   4454   unsigned MinArgs = FDecl ? FDecl->getMinRequiredArguments() : NumParams;
   4455   unsigned FnKind = Fn->getType()->isBlockPointerType()
   4456                        ? 1 /* block */
   4457                        : (IsExecConfig ? 3 /* kernel function (exec config) */
   4458                                        : 0 /* function */);
   4459 
   4460   // If too few arguments are available (and we don't have default
   4461   // arguments for the remaining parameters), don't make the call.
   4462   if (Args.size() < NumParams) {
   4463     if (Args.size() < MinArgs) {
   4464       TypoCorrection TC;
   4465       if (FDecl && (TC = TryTypoCorrectionForCall(*this, Fn, FDecl, Args))) {
   4466         unsigned diag_id =
   4467             MinArgs == NumParams && !Proto->isVariadic()
   4468                 ? diag::err_typecheck_call_too_few_args_suggest
   4469                 : diag::err_typecheck_call_too_few_args_at_least_suggest;
   4470         diagnoseTypo(TC, PDiag(diag_id) << FnKind << MinArgs
   4471                                         << static_cast<unsigned>(Args.size())
   4472                                         << TC.getCorrectionRange());
   4473       } else if (MinArgs == 1 && FDecl && FDecl->getParamDecl(0)->getDeclName())
   4474         Diag(RParenLoc,
   4475              MinArgs == NumParams && !Proto->isVariadic()
   4476                  ? diag::err_typecheck_call_too_few_args_one
   4477                  : diag::err_typecheck_call_too_few_args_at_least_one)
   4478             << FnKind << FDecl->getParamDecl(0) << Fn->getSourceRange();
   4479       else
   4480         Diag(RParenLoc, MinArgs == NumParams && !Proto->isVariadic()
   4481                             ? diag::err_typecheck_call_too_few_args
   4482                             : diag::err_typecheck_call_too_few_args_at_least)
   4483             << FnKind << MinArgs << static_cast<unsigned>(Args.size())
   4484             << Fn->getSourceRange();
   4485 
   4486       // Emit the location of the prototype.
   4487       if (!TC && FDecl && !FDecl->getBuiltinID() && !IsExecConfig)
   4488         Diag(FDecl->getLocStart(), diag::note_callee_decl)
   4489           << FDecl;
   4490 
   4491       return true;
   4492     }
   4493     Call->setNumArgs(Context, NumParams);
   4494   }
   4495 
   4496   // If too many are passed and not variadic, error on the extras and drop
   4497   // them.
   4498   if (Args.size() > NumParams) {
   4499     if (!Proto->isVariadic()) {
   4500       TypoCorrection TC;
   4501       if (FDecl && (TC = TryTypoCorrectionForCall(*this, Fn, FDecl, Args))) {
   4502         unsigned diag_id =
   4503             MinArgs == NumParams && !Proto->isVariadic()
   4504                 ? diag::err_typecheck_call_too_many_args_suggest
   4505                 : diag::err_typecheck_call_too_many_args_at_most_suggest;
   4506         diagnoseTypo(TC, PDiag(diag_id) << FnKind << NumParams
   4507                                         << static_cast<unsigned>(Args.size())
   4508                                         << TC.getCorrectionRange());
   4509       } else if (NumParams == 1 && FDecl &&
   4510                  FDecl->getParamDecl(0)->getDeclName())
   4511         Diag(Args[NumParams]->getLocStart(),
   4512              MinArgs == NumParams
   4513                  ? diag::err_typecheck_call_too_many_args_one
   4514                  : diag::err_typecheck_call_too_many_args_at_most_one)
   4515             << FnKind << FDecl->getParamDecl(0)
   4516             << static_cast<unsigned>(Args.size()) << Fn->getSourceRange()
   4517             << SourceRange(Args[NumParams]->getLocStart(),
   4518                            Args.back()->getLocEnd());
   4519       else
   4520         Diag(Args[NumParams]->getLocStart(),
   4521              MinArgs == NumParams
   4522                  ? diag::err_typecheck_call_too_many_args
   4523                  : diag::err_typecheck_call_too_many_args_at_most)
   4524             << FnKind << NumParams << static_cast<unsigned>(Args.size())
   4525             << Fn->getSourceRange()
   4526             << SourceRange(Args[NumParams]->getLocStart(),
   4527                            Args.back()->getLocEnd());
   4528 
   4529       // Emit the location of the prototype.
   4530       if (!TC && FDecl && !FDecl->getBuiltinID() && !IsExecConfig)
   4531         Diag(FDecl->getLocStart(), diag::note_callee_decl)
   4532           << FDecl;
   4533 
   4534       // This deletes the extra arguments.
   4535       Call->setNumArgs(Context, NumParams);
   4536       return true;
   4537     }
   4538   }
   4539   SmallVector<Expr *, 8> AllArgs;
   4540   VariadicCallType CallType = getVariadicCallType(FDecl, Proto, Fn);
   4541 
   4542   Invalid = GatherArgumentsForCall(Call->getLocStart(), FDecl,
   4543                                    Proto, 0, Args, AllArgs, CallType);
   4544   if (Invalid)
   4545     return true;
   4546   unsigned TotalNumArgs = AllArgs.size();
   4547   for (unsigned i = 0; i < TotalNumArgs; ++i)
   4548     Call->setArg(i, AllArgs[i]);
   4549 
   4550   return false;
   4551 }
   4552 
   4553 bool Sema::GatherArgumentsForCall(SourceLocation CallLoc, FunctionDecl *FDecl,
   4554                                   const FunctionProtoType *Proto,
   4555                                   unsigned FirstParam, ArrayRef<Expr *> Args,
   4556                                   SmallVectorImpl<Expr *> &AllArgs,
   4557                                   VariadicCallType CallType, bool AllowExplicit,
   4558                                   bool IsListInitialization) {
   4559   unsigned NumParams = Proto->getNumParams();
   4560   bool Invalid = false;
   4561   size_t ArgIx = 0;
   4562   // Continue to check argument types (even if we have too few/many args).
   4563   for (unsigned i = FirstParam; i < NumParams; i++) {
   4564     QualType ProtoArgType = Proto->getParamType(i);
   4565 
   4566     Expr *Arg;
   4567     ParmVarDecl *Param = FDecl ? FDecl->getParamDecl(i) : nullptr;
   4568     if (ArgIx < Args.size()) {
   4569       Arg = Args[ArgIx++];
   4570 
   4571       if (RequireCompleteType(Arg->getLocStart(),
   4572                               ProtoArgType,
   4573                               diag::err_call_incomplete_argument, Arg))
   4574         return true;
   4575 
   4576       // Strip the unbridged-cast placeholder expression off, if applicable.
   4577       bool CFAudited = false;
   4578       if (Arg->getType() == Context.ARCUnbridgedCastTy &&
   4579           FDecl && FDecl->hasAttr<CFAuditedTransferAttr>() &&
   4580           (!Param || !Param->hasAttr<CFConsumedAttr>()))
   4581         Arg = stripARCUnbridgedCast(Arg);
   4582       else if (getLangOpts().ObjCAutoRefCount &&
   4583                FDecl && FDecl->hasAttr<CFAuditedTransferAttr>() &&
   4584                (!Param || !Param->hasAttr<CFConsumedAttr>()))
   4585         CFAudited = true;
   4586 
   4587       InitializedEntity Entity =
   4588           Param ? InitializedEntity::InitializeParameter(Context, Param,
   4589                                                          ProtoArgType)
   4590                 : InitializedEntity::InitializeParameter(
   4591                       Context, ProtoArgType, Proto->isParamConsumed(i));
   4592 
   4593       // Remember that parameter belongs to a CF audited API.
   4594       if (CFAudited)
   4595         Entity.setParameterCFAudited();
   4596 
   4597       ExprResult ArgE = PerformCopyInitialization(
   4598           Entity, SourceLocation(), Arg, IsListInitialization, AllowExplicit);
   4599       if (ArgE.isInvalid())
   4600         return true;
   4601 
   4602       Arg = ArgE.getAs<Expr>();
   4603     } else {
   4604       assert(Param && "can't use default arguments without a known callee");
   4605 
   4606       ExprResult ArgExpr =
   4607         BuildCXXDefaultArgExpr(CallLoc, FDecl, Param);
   4608       if (ArgExpr.isInvalid())
   4609         return true;
   4610 
   4611       Arg = ArgExpr.getAs<Expr>();
   4612     }
   4613 
   4614     // Check for array bounds violations for each argument to the call. This
   4615     // check only triggers warnings when the argument isn't a more complex Expr
   4616     // with its own checking, such as a BinaryOperator.
   4617     CheckArrayAccess(Arg);
   4618 
   4619     // Check for violations of C99 static array rules (C99 6.7.5.3p7).
   4620     CheckStaticArrayArgument(CallLoc, Param, Arg);
   4621 
   4622     AllArgs.push_back(Arg);
   4623   }
   4624 
   4625   // If this is a variadic call, handle args passed through "...".
   4626   if (CallType != VariadicDoesNotApply) {
   4627     // Assume that extern "C" functions with variadic arguments that
   4628     // return __unknown_anytype aren't *really* variadic.
   4629     if (Proto->getReturnType() == Context.UnknownAnyTy && FDecl &&
   4630         FDecl->isExternC()) {
   4631       for (Expr *A : Args.slice(ArgIx)) {
   4632         QualType paramType; // ignored
   4633         ExprResult arg = checkUnknownAnyArg(CallLoc, A, paramType);
   4634         Invalid |= arg.isInvalid();
   4635         AllArgs.push_back(arg.get());
   4636       }
   4637 
   4638     // Otherwise do argument promotion, (C99 6.5.2.2p7).
   4639     } else {
   4640       for (Expr *A : Args.slice(ArgIx)) {
   4641         ExprResult Arg = DefaultVariadicArgumentPromotion(A, CallType, FDecl);
   4642         Invalid |= Arg.isInvalid();
   4643         AllArgs.push_back(Arg.get());
   4644       }
   4645     }
   4646 
   4647     // Check for array bounds violations.
   4648     for (Expr *A : Args.slice(ArgIx))
   4649       CheckArrayAccess(A);
   4650   }
   4651   return Invalid;
   4652 }
   4653 
   4654 static void DiagnoseCalleeStaticArrayParam(Sema &S, ParmVarDecl *PVD) {
   4655   TypeLoc TL = PVD->getTypeSourceInfo()->getTypeLoc();
   4656   if (DecayedTypeLoc DTL = TL.getAs<DecayedTypeLoc>())
   4657     TL = DTL.getOriginalLoc();