Home | History | Annotate | Download | only in Sema
      1 //===--- SemaChecking.cpp - Extra Semantic Checking -----------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 //  This file implements extra semantic analysis beyond what is enforced
     11 //  by the C type system.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "clang/Sema/SemaInternal.h"
     16 #include "clang/AST/ASTContext.h"
     17 #include "clang/AST/CharUnits.h"
     18 #include "clang/AST/DeclCXX.h"
     19 #include "clang/AST/DeclObjC.h"
     20 #include "clang/AST/EvaluatedExprVisitor.h"
     21 #include "clang/AST/Expr.h"
     22 #include "clang/AST/ExprCXX.h"
     23 #include "clang/AST/ExprObjC.h"
     24 #include "clang/AST/ExprOpenMP.h"
     25 #include "clang/AST/StmtCXX.h"
     26 #include "clang/AST/StmtObjC.h"
     27 #include "clang/Analysis/Analyses/FormatString.h"
     28 #include "clang/Basic/CharInfo.h"
     29 #include "clang/Basic/TargetBuiltins.h"
     30 #include "clang/Basic/TargetInfo.h"
     31 #include "clang/Lex/Lexer.h" // TODO: Extract static functions to fix layering.
     32 #include "clang/Sema/Initialization.h"
     33 #include "clang/Sema/Lookup.h"
     34 #include "clang/Sema/ScopeInfo.h"
     35 #include "clang/Sema/Sema.h"
     36 #include "llvm/ADT/STLExtras.h"
     37 #include "llvm/ADT/SmallBitVector.h"
     38 #include "llvm/ADT/SmallString.h"
     39 #include "llvm/Support/ConvertUTF.h"
     40 #include "llvm/Support/raw_ostream.h"
     41 #include <limits>
     42 using namespace clang;
     43 using namespace sema;
     44 
     45 SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL,
     46                                                     unsigned ByteNo) const {
     47   return SL->getLocationOfByte(ByteNo, getSourceManager(), LangOpts,
     48                                Context.getTargetInfo());
     49 }
     50 
     51 /// Checks that a call expression's argument count is the desired number.
     52 /// This is useful when doing custom type-checking.  Returns true on error.
     53 static bool checkArgCount(Sema &S, CallExpr *call, unsigned desiredArgCount) {
     54   unsigned argCount = call->getNumArgs();
     55   if (argCount == desiredArgCount) return false;
     56 
     57   if (argCount < desiredArgCount)
     58     return S.Diag(call->getLocEnd(), diag::err_typecheck_call_too_few_args)
     59         << 0 /*function call*/ << desiredArgCount << argCount
     60         << call->getSourceRange();
     61 
     62   // Highlight all the excess arguments.
     63   SourceRange range(call->getArg(desiredArgCount)->getLocStart(),
     64                     call->getArg(argCount - 1)->getLocEnd());
     65 
     66   return S.Diag(range.getBegin(), diag::err_typecheck_call_too_many_args)
     67     << 0 /*function call*/ << desiredArgCount << argCount
     68     << call->getArg(1)->getSourceRange();
     69 }
     70 
     71 /// Check that the first argument to __builtin_annotation is an integer
     72 /// and the second argument is a non-wide string literal.
     73 static bool SemaBuiltinAnnotation(Sema &S, CallExpr *TheCall) {
     74   if (checkArgCount(S, TheCall, 2))
     75     return true;
     76 
     77   // First argument should be an integer.
     78   Expr *ValArg = TheCall->getArg(0);
     79   QualType Ty = ValArg->getType();
     80   if (!Ty->isIntegerType()) {
     81     S.Diag(ValArg->getLocStart(), diag::err_builtin_annotation_first_arg)
     82       << ValArg->getSourceRange();
     83     return true;
     84   }
     85 
     86   // Second argument should be a constant string.
     87   Expr *StrArg = TheCall->getArg(1)->IgnoreParenCasts();
     88   StringLiteral *Literal = dyn_cast<StringLiteral>(StrArg);
     89   if (!Literal || !Literal->isAscii()) {
     90     S.Diag(StrArg->getLocStart(), diag::err_builtin_annotation_second_arg)
     91       << StrArg->getSourceRange();
     92     return true;
     93   }
     94 
     95   TheCall->setType(Ty);
     96   return false;
     97 }
     98 
     99 /// Check that the argument to __builtin_addressof is a glvalue, and set the
    100 /// result type to the corresponding pointer type.
    101 static bool SemaBuiltinAddressof(Sema &S, CallExpr *TheCall) {
    102   if (checkArgCount(S, TheCall, 1))
    103     return true;
    104 
    105   ExprResult Arg(TheCall->getArg(0));
    106   QualType ResultType = S.CheckAddressOfOperand(Arg, TheCall->getLocStart());
    107   if (ResultType.isNull())
    108     return true;
    109 
    110   TheCall->setArg(0, Arg.get());
    111   TheCall->setType(ResultType);
    112   return false;
    113 }
    114 
    115 static bool SemaBuiltinOverflow(Sema &S, CallExpr *TheCall) {
    116   if (checkArgCount(S, TheCall, 3))
    117     return true;
    118 
    119   // First two arguments should be integers.
    120   for (unsigned I = 0; I < 2; ++I) {
    121     Expr *Arg = TheCall->getArg(I);
    122     QualType Ty = Arg->getType();
    123     if (!Ty->isIntegerType()) {
    124       S.Diag(Arg->getLocStart(), diag::err_overflow_builtin_must_be_int)
    125           << Ty << Arg->getSourceRange();
    126       return true;
    127     }
    128   }
    129 
    130   // Third argument should be a pointer to a non-const integer.
    131   // IRGen correctly handles volatile, restrict, and address spaces, and
    132   // the other qualifiers aren't possible.
    133   {
    134     Expr *Arg = TheCall->getArg(2);
    135     QualType Ty = Arg->getType();
    136     const auto *PtrTy = Ty->getAs<PointerType>();
    137     if (!(PtrTy && PtrTy->getPointeeType()->isIntegerType() &&
    138           !PtrTy->getPointeeType().isConstQualified())) {
    139       S.Diag(Arg->getLocStart(), diag::err_overflow_builtin_must_be_ptr_int)
    140           << Ty << Arg->getSourceRange();
    141       return true;
    142     }
    143   }
    144 
    145   return false;
    146 }
    147 
    148 static void SemaBuiltinMemChkCall(Sema &S, FunctionDecl *FDecl,
    149 		                  CallExpr *TheCall, unsigned SizeIdx,
    150                                   unsigned DstSizeIdx) {
    151   if (TheCall->getNumArgs() <= SizeIdx ||
    152       TheCall->getNumArgs() <= DstSizeIdx)
    153     return;
    154 
    155   const Expr *SizeArg = TheCall->getArg(SizeIdx);
    156   const Expr *DstSizeArg = TheCall->getArg(DstSizeIdx);
    157 
    158   llvm::APSInt Size, DstSize;
    159 
    160   // find out if both sizes are known at compile time
    161   if (!SizeArg->EvaluateAsInt(Size, S.Context) ||
    162       !DstSizeArg->EvaluateAsInt(DstSize, S.Context))
    163     return;
    164 
    165   if (Size.ule(DstSize))
    166     return;
    167 
    168   // confirmed overflow so generate the diagnostic.
    169   IdentifierInfo *FnName = FDecl->getIdentifier();
    170   SourceLocation SL = TheCall->getLocStart();
    171   SourceRange SR = TheCall->getSourceRange();
    172 
    173   S.Diag(SL, diag::warn_memcpy_chk_overflow) << SR << FnName;
    174 }
    175 
    176 static bool SemaBuiltinCallWithStaticChain(Sema &S, CallExpr *BuiltinCall) {
    177   if (checkArgCount(S, BuiltinCall, 2))
    178     return true;
    179 
    180   SourceLocation BuiltinLoc = BuiltinCall->getLocStart();
    181   Expr *Builtin = BuiltinCall->getCallee()->IgnoreImpCasts();
    182   Expr *Call = BuiltinCall->getArg(0);
    183   Expr *Chain = BuiltinCall->getArg(1);
    184 
    185   if (Call->getStmtClass() != Stmt::CallExprClass) {
    186     S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_not_call)
    187         << Call->getSourceRange();
    188     return true;
    189   }
    190 
    191   auto CE = cast<CallExpr>(Call);
    192   if (CE->getCallee()->getType()->isBlockPointerType()) {
    193     S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_block_call)
    194         << Call->getSourceRange();
    195     return true;
    196   }
    197 
    198   const Decl *TargetDecl = CE->getCalleeDecl();
    199   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl))
    200     if (FD->getBuiltinID()) {
    201       S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_builtin_call)
    202           << Call->getSourceRange();
    203       return true;
    204     }
    205 
    206   if (isa<CXXPseudoDestructorExpr>(CE->getCallee()->IgnoreParens())) {
    207     S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_pdtor_call)
    208         << Call->getSourceRange();
    209     return true;
    210   }
    211 
    212   ExprResult ChainResult = S.UsualUnaryConversions(Chain);
    213   if (ChainResult.isInvalid())
    214     return true;
    215   if (!ChainResult.get()->getType()->isPointerType()) {
    216     S.Diag(BuiltinLoc, diag::err_second_argument_to_cwsc_not_pointer)
    217         << Chain->getSourceRange();
    218     return true;
    219   }
    220 
    221   QualType ReturnTy = CE->getCallReturnType(S.Context);
    222   QualType ArgTys[2] = { ReturnTy, ChainResult.get()->getType() };
    223   QualType BuiltinTy = S.Context.getFunctionType(
    224       ReturnTy, ArgTys, FunctionProtoType::ExtProtoInfo());
    225   QualType BuiltinPtrTy = S.Context.getPointerType(BuiltinTy);
    226 
    227   Builtin =
    228       S.ImpCastExprToType(Builtin, BuiltinPtrTy, CK_BuiltinFnToFnPtr).get();
    229 
    230   BuiltinCall->setType(CE->getType());
    231   BuiltinCall->setValueKind(CE->getValueKind());
    232   BuiltinCall->setObjectKind(CE->getObjectKind());
    233   BuiltinCall->setCallee(Builtin);
    234   BuiltinCall->setArg(1, ChainResult.get());
    235 
    236   return false;
    237 }
    238 
    239 static bool SemaBuiltinSEHScopeCheck(Sema &SemaRef, CallExpr *TheCall,
    240                                      Scope::ScopeFlags NeededScopeFlags,
    241                                      unsigned DiagID) {
    242   // Scopes aren't available during instantiation. Fortunately, builtin
    243   // functions cannot be template args so they cannot be formed through template
    244   // instantiation. Therefore checking once during the parse is sufficient.
    245   if (!SemaRef.ActiveTemplateInstantiations.empty())
    246     return false;
    247 
    248   Scope *S = SemaRef.getCurScope();
    249   while (S && !S->isSEHExceptScope())
    250     S = S->getParent();
    251   if (!S || !(S->getFlags() & NeededScopeFlags)) {
    252     auto *DRE = cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
    253     SemaRef.Diag(TheCall->getExprLoc(), DiagID)
    254         << DRE->getDecl()->getIdentifier();
    255     return true;
    256   }
    257 
    258   return false;
    259 }
    260 
    261 ExprResult
    262 Sema::CheckBuiltinFunctionCall(FunctionDecl *FDecl, unsigned BuiltinID,
    263                                CallExpr *TheCall) {
    264   ExprResult TheCallResult(TheCall);
    265 
    266   // Find out if any arguments are required to be integer constant expressions.
    267   unsigned ICEArguments = 0;
    268   ASTContext::GetBuiltinTypeError Error;
    269   Context.GetBuiltinType(BuiltinID, Error, &ICEArguments);
    270   if (Error != ASTContext::GE_None)
    271     ICEArguments = 0;  // Don't diagnose previously diagnosed errors.
    272 
    273   // If any arguments are required to be ICE's, check and diagnose.
    274   for (unsigned ArgNo = 0; ICEArguments != 0; ++ArgNo) {
    275     // Skip arguments not required to be ICE's.
    276     if ((ICEArguments & (1 << ArgNo)) == 0) continue;
    277 
    278     llvm::APSInt Result;
    279     if (SemaBuiltinConstantArg(TheCall, ArgNo, Result))
    280       return true;
    281     ICEArguments &= ~(1 << ArgNo);
    282   }
    283 
    284   switch (BuiltinID) {
    285   case Builtin::BI__builtin___CFStringMakeConstantString:
    286     assert(TheCall->getNumArgs() == 1 &&
    287            "Wrong # arguments to builtin CFStringMakeConstantString");
    288     if (CheckObjCString(TheCall->getArg(0)))
    289       return ExprError();
    290     break;
    291   case Builtin::BI__builtin_stdarg_start:
    292   case Builtin::BI__builtin_va_start:
    293     if (SemaBuiltinVAStart(TheCall))
    294       return ExprError();
    295     break;
    296   case Builtin::BI__va_start: {
    297     switch (Context.getTargetInfo().getTriple().getArch()) {
    298     case llvm::Triple::arm:
    299     case llvm::Triple::thumb:
    300       if (SemaBuiltinVAStartARM(TheCall))
    301         return ExprError();
    302       break;
    303     default:
    304       if (SemaBuiltinVAStart(TheCall))
    305         return ExprError();
    306       break;
    307     }
    308     break;
    309   }
    310   case Builtin::BI__builtin_isgreater:
    311   case Builtin::BI__builtin_isgreaterequal:
    312   case Builtin::BI__builtin_isless:
    313   case Builtin::BI__builtin_islessequal:
    314   case Builtin::BI__builtin_islessgreater:
    315   case Builtin::BI__builtin_isunordered:
    316     if (SemaBuiltinUnorderedCompare(TheCall))
    317       return ExprError();
    318     break;
    319   case Builtin::BI__builtin_fpclassify:
    320     if (SemaBuiltinFPClassification(TheCall, 6))
    321       return ExprError();
    322     break;
    323   case Builtin::BI__builtin_isfinite:
    324   case Builtin::BI__builtin_isinf:
    325   case Builtin::BI__builtin_isinf_sign:
    326   case Builtin::BI__builtin_isnan:
    327   case Builtin::BI__builtin_isnormal:
    328     if (SemaBuiltinFPClassification(TheCall, 1))
    329       return ExprError();
    330     break;
    331   case Builtin::BI__builtin_shufflevector:
    332     return SemaBuiltinShuffleVector(TheCall);
    333     // TheCall will be freed by the smart pointer here, but that's fine, since
    334     // SemaBuiltinShuffleVector guts it, but then doesn't release it.
    335   case Builtin::BI__builtin_prefetch:
    336     if (SemaBuiltinPrefetch(TheCall))
    337       return ExprError();
    338     break;
    339   case Builtin::BI__assume:
    340   case Builtin::BI__builtin_assume:
    341     if (SemaBuiltinAssume(TheCall))
    342       return ExprError();
    343     break;
    344   case Builtin::BI__builtin_assume_aligned:
    345     if (SemaBuiltinAssumeAligned(TheCall))
    346       return ExprError();
    347     break;
    348   case Builtin::BI__builtin_object_size:
    349     if (SemaBuiltinConstantArgRange(TheCall, 1, 0, 3))
    350       return ExprError();
    351     break;
    352   case Builtin::BI__builtin_longjmp:
    353     if (SemaBuiltinLongjmp(TheCall))
    354       return ExprError();
    355     break;
    356   case Builtin::BI__builtin_setjmp:
    357     if (SemaBuiltinSetjmp(TheCall))
    358       return ExprError();
    359     break;
    360   case Builtin::BI_setjmp:
    361   case Builtin::BI_setjmpex:
    362     if (checkArgCount(*this, TheCall, 1))
    363       return true;
    364     break;
    365 
    366   case Builtin::BI__builtin_classify_type:
    367     if (checkArgCount(*this, TheCall, 1)) return true;
    368     TheCall->setType(Context.IntTy);
    369     break;
    370   case Builtin::BI__builtin_constant_p:
    371     if (checkArgCount(*this, TheCall, 1)) return true;
    372     TheCall->setType(Context.IntTy);
    373     break;
    374   case Builtin::BI__sync_fetch_and_add:
    375   case Builtin::BI__sync_fetch_and_add_1:
    376   case Builtin::BI__sync_fetch_and_add_2:
    377   case Builtin::BI__sync_fetch_and_add_4:
    378   case Builtin::BI__sync_fetch_and_add_8:
    379   case Builtin::BI__sync_fetch_and_add_16:
    380   case Builtin::BI__sync_fetch_and_sub:
    381   case Builtin::BI__sync_fetch_and_sub_1:
    382   case Builtin::BI__sync_fetch_and_sub_2:
    383   case Builtin::BI__sync_fetch_and_sub_4:
    384   case Builtin::BI__sync_fetch_and_sub_8:
    385   case Builtin::BI__sync_fetch_and_sub_16:
    386   case Builtin::BI__sync_fetch_and_or:
    387   case Builtin::BI__sync_fetch_and_or_1:
    388   case Builtin::BI__sync_fetch_and_or_2:
    389   case Builtin::BI__sync_fetch_and_or_4:
    390   case Builtin::BI__sync_fetch_and_or_8:
    391   case Builtin::BI__sync_fetch_and_or_16:
    392   case Builtin::BI__sync_fetch_and_and:
    393   case Builtin::BI__sync_fetch_and_and_1:
    394   case Builtin::BI__sync_fetch_and_and_2:
    395   case Builtin::BI__sync_fetch_and_and_4:
    396   case Builtin::BI__sync_fetch_and_and_8:
    397   case Builtin::BI__sync_fetch_and_and_16:
    398   case Builtin::BI__sync_fetch_and_xor:
    399   case Builtin::BI__sync_fetch_and_xor_1:
    400   case Builtin::BI__sync_fetch_and_xor_2:
    401   case Builtin::BI__sync_fetch_and_xor_4:
    402   case Builtin::BI__sync_fetch_and_xor_8:
    403   case Builtin::BI__sync_fetch_and_xor_16:
    404   case Builtin::BI__sync_fetch_and_nand:
    405   case Builtin::BI__sync_fetch_and_nand_1:
    406   case Builtin::BI__sync_fetch_and_nand_2:
    407   case Builtin::BI__sync_fetch_and_nand_4:
    408   case Builtin::BI__sync_fetch_and_nand_8:
    409   case Builtin::BI__sync_fetch_and_nand_16:
    410   case Builtin::BI__sync_add_and_fetch:
    411   case Builtin::BI__sync_add_and_fetch_1:
    412   case Builtin::BI__sync_add_and_fetch_2:
    413   case Builtin::BI__sync_add_and_fetch_4:
    414   case Builtin::BI__sync_add_and_fetch_8:
    415   case Builtin::BI__sync_add_and_fetch_16:
    416   case Builtin::BI__sync_sub_and_fetch:
    417   case Builtin::BI__sync_sub_and_fetch_1:
    418   case Builtin::BI__sync_sub_and_fetch_2:
    419   case Builtin::BI__sync_sub_and_fetch_4:
    420   case Builtin::BI__sync_sub_and_fetch_8:
    421   case Builtin::BI__sync_sub_and_fetch_16:
    422   case Builtin::BI__sync_and_and_fetch:
    423   case Builtin::BI__sync_and_and_fetch_1:
    424   case Builtin::BI__sync_and_and_fetch_2:
    425   case Builtin::BI__sync_and_and_fetch_4:
    426   case Builtin::BI__sync_and_and_fetch_8:
    427   case Builtin::BI__sync_and_and_fetch_16:
    428   case Builtin::BI__sync_or_and_fetch:
    429   case Builtin::BI__sync_or_and_fetch_1:
    430   case Builtin::BI__sync_or_and_fetch_2:
    431   case Builtin::BI__sync_or_and_fetch_4:
    432   case Builtin::BI__sync_or_and_fetch_8:
    433   case Builtin::BI__sync_or_and_fetch_16:
    434   case Builtin::BI__sync_xor_and_fetch:
    435   case Builtin::BI__sync_xor_and_fetch_1:
    436   case Builtin::BI__sync_xor_and_fetch_2:
    437   case Builtin::BI__sync_xor_and_fetch_4:
    438   case Builtin::BI__sync_xor_and_fetch_8:
    439   case Builtin::BI__sync_xor_and_fetch_16:
    440   case Builtin::BI__sync_nand_and_fetch:
    441   case Builtin::BI__sync_nand_and_fetch_1:
    442   case Builtin::BI__sync_nand_and_fetch_2:
    443   case Builtin::BI__sync_nand_and_fetch_4:
    444   case Builtin::BI__sync_nand_and_fetch_8:
    445   case Builtin::BI__sync_nand_and_fetch_16:
    446   case Builtin::BI__sync_val_compare_and_swap:
    447   case Builtin::BI__sync_val_compare_and_swap_1:
    448   case Builtin::BI__sync_val_compare_and_swap_2:
    449   case Builtin::BI__sync_val_compare_and_swap_4:
    450   case Builtin::BI__sync_val_compare_and_swap_8:
    451   case Builtin::BI__sync_val_compare_and_swap_16:
    452   case Builtin::BI__sync_bool_compare_and_swap:
    453   case Builtin::BI__sync_bool_compare_and_swap_1:
    454   case Builtin::BI__sync_bool_compare_and_swap_2:
    455   case Builtin::BI__sync_bool_compare_and_swap_4:
    456   case Builtin::BI__sync_bool_compare_and_swap_8:
    457   case Builtin::BI__sync_bool_compare_and_swap_16:
    458   case Builtin::BI__sync_lock_test_and_set:
    459   case Builtin::BI__sync_lock_test_and_set_1:
    460   case Builtin::BI__sync_lock_test_and_set_2:
    461   case Builtin::BI__sync_lock_test_and_set_4:
    462   case Builtin::BI__sync_lock_test_and_set_8:
    463   case Builtin::BI__sync_lock_test_and_set_16:
    464   case Builtin::BI__sync_lock_release:
    465   case Builtin::BI__sync_lock_release_1:
    466   case Builtin::BI__sync_lock_release_2:
    467   case Builtin::BI__sync_lock_release_4:
    468   case Builtin::BI__sync_lock_release_8:
    469   case Builtin::BI__sync_lock_release_16:
    470   case Builtin::BI__sync_swap:
    471   case Builtin::BI__sync_swap_1:
    472   case Builtin::BI__sync_swap_2:
    473   case Builtin::BI__sync_swap_4:
    474   case Builtin::BI__sync_swap_8:
    475   case Builtin::BI__sync_swap_16:
    476     return SemaBuiltinAtomicOverloaded(TheCallResult);
    477   case Builtin::BI__builtin_nontemporal_load:
    478   case Builtin::BI__builtin_nontemporal_store:
    479     return SemaBuiltinNontemporalOverloaded(TheCallResult);
    480 #define BUILTIN(ID, TYPE, ATTRS)
    481 #define ATOMIC_BUILTIN(ID, TYPE, ATTRS) \
    482   case Builtin::BI##ID: \
    483     return SemaAtomicOpsOverloaded(TheCallResult, AtomicExpr::AO##ID);
    484 #include "clang/Basic/Builtins.def"
    485   case Builtin::BI__builtin_annotation:
    486     if (SemaBuiltinAnnotation(*this, TheCall))
    487       return ExprError();
    488     break;
    489   case Builtin::BI__builtin_addressof:
    490     if (SemaBuiltinAddressof(*this, TheCall))
    491       return ExprError();
    492     break;
    493   case Builtin::BI__builtin_add_overflow:
    494   case Builtin::BI__builtin_sub_overflow:
    495   case Builtin::BI__builtin_mul_overflow:
    496     if (SemaBuiltinOverflow(*this, TheCall))
    497       return ExprError();
    498     break;
    499   case Builtin::BI__builtin_operator_new:
    500   case Builtin::BI__builtin_operator_delete:
    501     if (!getLangOpts().CPlusPlus) {
    502       Diag(TheCall->getExprLoc(), diag::err_builtin_requires_language)
    503         << (BuiltinID == Builtin::BI__builtin_operator_new
    504                 ? "__builtin_operator_new"
    505                 : "__builtin_operator_delete")
    506         << "C++";
    507       return ExprError();
    508     }
    509     // CodeGen assumes it can find the global new and delete to call,
    510     // so ensure that they are declared.
    511     DeclareGlobalNewDelete();
    512     break;
    513 
    514   // check secure string manipulation functions where overflows
    515   // are detectable at compile time
    516   case Builtin::BI__builtin___memcpy_chk:
    517   case Builtin::BI__builtin___memmove_chk:
    518   case Builtin::BI__builtin___memset_chk:
    519   case Builtin::BI__builtin___strlcat_chk:
    520   case Builtin::BI__builtin___strlcpy_chk:
    521   case Builtin::BI__builtin___strncat_chk:
    522   case Builtin::BI__builtin___strncpy_chk:
    523   case Builtin::BI__builtin___stpncpy_chk:
    524     SemaBuiltinMemChkCall(*this, FDecl, TheCall, 2, 3);
    525     break;
    526   case Builtin::BI__builtin___memccpy_chk:
    527     SemaBuiltinMemChkCall(*this, FDecl, TheCall, 3, 4);
    528     break;
    529   case Builtin::BI__builtin___snprintf_chk:
    530   case Builtin::BI__builtin___vsnprintf_chk:
    531     SemaBuiltinMemChkCall(*this, FDecl, TheCall, 1, 3);
    532     break;
    533 
    534   case Builtin::BI__builtin_call_with_static_chain:
    535     if (SemaBuiltinCallWithStaticChain(*this, TheCall))
    536       return ExprError();
    537     break;
    538 
    539   case Builtin::BI__exception_code:
    540   case Builtin::BI_exception_code: {
    541     if (SemaBuiltinSEHScopeCheck(*this, TheCall, Scope::SEHExceptScope,
    542                                  diag::err_seh___except_block))
    543       return ExprError();
    544     break;
    545   }
    546   case Builtin::BI__exception_info:
    547   case Builtin::BI_exception_info: {
    548     if (SemaBuiltinSEHScopeCheck(*this, TheCall, Scope::SEHFilterScope,
    549                                  diag::err_seh___except_filter))
    550       return ExprError();
    551     break;
    552   }
    553 
    554   case Builtin::BI__GetExceptionInfo:
    555     if (checkArgCount(*this, TheCall, 1))
    556       return ExprError();
    557 
    558     if (CheckCXXThrowOperand(
    559             TheCall->getLocStart(),
    560             Context.getExceptionObjectType(FDecl->getParamDecl(0)->getType()),
    561             TheCall))
    562       return ExprError();
    563 
    564     TheCall->setType(Context.VoidPtrTy);
    565     break;
    566 
    567   }
    568 
    569   // Since the target specific builtins for each arch overlap, only check those
    570   // of the arch we are compiling for.
    571   if (Context.BuiltinInfo.isTSBuiltin(BuiltinID)) {
    572     switch (Context.getTargetInfo().getTriple().getArch()) {
    573       case llvm::Triple::arm:
    574       case llvm::Triple::armeb:
    575       case llvm::Triple::thumb:
    576       case llvm::Triple::thumbeb:
    577         if (CheckARMBuiltinFunctionCall(BuiltinID, TheCall))
    578           return ExprError();
    579         break;
    580       case llvm::Triple::aarch64:
    581       case llvm::Triple::aarch64_be:
    582         if (CheckAArch64BuiltinFunctionCall(BuiltinID, TheCall))
    583           return ExprError();
    584         break;
    585       case llvm::Triple::mips:
    586       case llvm::Triple::mipsel:
    587       case llvm::Triple::mips64:
    588       case llvm::Triple::mips64el:
    589         if (CheckMipsBuiltinFunctionCall(BuiltinID, TheCall))
    590           return ExprError();
    591         break;
    592       case llvm::Triple::systemz:
    593         if (CheckSystemZBuiltinFunctionCall(BuiltinID, TheCall))
    594           return ExprError();
    595         break;
    596       case llvm::Triple::x86:
    597       case llvm::Triple::x86_64:
    598         if (CheckX86BuiltinFunctionCall(BuiltinID, TheCall))
    599           return ExprError();
    600         break;
    601       case llvm::Triple::ppc:
    602       case llvm::Triple::ppc64:
    603       case llvm::Triple::ppc64le:
    604         if (CheckPPCBuiltinFunctionCall(BuiltinID, TheCall))
    605           return ExprError();
    606         break;
    607       default:
    608         break;
    609     }
    610   }
    611 
    612   return TheCallResult;
    613 }
    614 
    615 // Get the valid immediate range for the specified NEON type code.
    616 static unsigned RFT(unsigned t, bool shift = false, bool ForceQuad = false) {
    617   NeonTypeFlags Type(t);
    618   int IsQuad = ForceQuad ? true : Type.isQuad();
    619   switch (Type.getEltType()) {
    620   case NeonTypeFlags::Int8:
    621   case NeonTypeFlags::Poly8:
    622     return shift ? 7 : (8 << IsQuad) - 1;
    623   case NeonTypeFlags::Int16:
    624   case NeonTypeFlags::Poly16:
    625     return shift ? 15 : (4 << IsQuad) - 1;
    626   case NeonTypeFlags::Int32:
    627     return shift ? 31 : (2 << IsQuad) - 1;
    628   case NeonTypeFlags::Int64:
    629   case NeonTypeFlags::Poly64:
    630     return shift ? 63 : (1 << IsQuad) - 1;
    631   case NeonTypeFlags::Poly128:
    632     return shift ? 127 : (1 << IsQuad) - 1;
    633   case NeonTypeFlags::Float16:
    634     assert(!shift && "cannot shift float types!");
    635     return (4 << IsQuad) - 1;
    636   case NeonTypeFlags::Float32:
    637     assert(!shift && "cannot shift float types!");
    638     return (2 << IsQuad) - 1;
    639   case NeonTypeFlags::Float64:
    640     assert(!shift && "cannot shift float types!");
    641     return (1 << IsQuad) - 1;
    642   }
    643   llvm_unreachable("Invalid NeonTypeFlag!");
    644 }
    645 
    646 /// getNeonEltType - Return the QualType corresponding to the elements of
    647 /// the vector type specified by the NeonTypeFlags.  This is used to check
    648 /// the pointer arguments for Neon load/store intrinsics.
    649 static QualType getNeonEltType(NeonTypeFlags Flags, ASTContext &Context,
    650                                bool IsPolyUnsigned, bool IsInt64Long) {
    651   switch (Flags.getEltType()) {
    652   case NeonTypeFlags::Int8:
    653     return Flags.isUnsigned() ? Context.UnsignedCharTy : Context.SignedCharTy;
    654   case NeonTypeFlags::Int16:
    655     return Flags.isUnsigned() ? Context.UnsignedShortTy : Context.ShortTy;
    656   case NeonTypeFlags::Int32:
    657     return Flags.isUnsigned() ? Context.UnsignedIntTy : Context.IntTy;
    658   case NeonTypeFlags::Int64:
    659     if (IsInt64Long)
    660       return Flags.isUnsigned() ? Context.UnsignedLongTy : Context.LongTy;
    661     else
    662       return Flags.isUnsigned() ? Context.UnsignedLongLongTy
    663                                 : Context.LongLongTy;
    664   case NeonTypeFlags::Poly8:
    665     return IsPolyUnsigned ? Context.UnsignedCharTy : Context.SignedCharTy;
    666   case NeonTypeFlags::Poly16:
    667     return IsPolyUnsigned ? Context.UnsignedShortTy : Context.ShortTy;
    668   case NeonTypeFlags::Poly64:
    669     if (IsInt64Long)
    670       return Context.UnsignedLongTy;
    671     else
    672       return Context.UnsignedLongLongTy;
    673   case NeonTypeFlags::Poly128:
    674     break;
    675   case NeonTypeFlags::Float16:
    676     return Context.HalfTy;
    677   case NeonTypeFlags::Float32:
    678     return Context.FloatTy;
    679   case NeonTypeFlags::Float64:
    680     return Context.DoubleTy;
    681   }
    682   llvm_unreachable("Invalid NeonTypeFlag!");
    683 }
    684 
    685 bool Sema::CheckNeonBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
    686   llvm::APSInt Result;
    687   uint64_t mask = 0;
    688   unsigned TV = 0;
    689   int PtrArgNum = -1;
    690   bool HasConstPtr = false;
    691   switch (BuiltinID) {
    692 #define GET_NEON_OVERLOAD_CHECK
    693 #include "clang/Basic/arm_neon.inc"
    694 #undef GET_NEON_OVERLOAD_CHECK
    695   }
    696 
    697   // For NEON intrinsics which are overloaded on vector element type, validate
    698   // the immediate which specifies which variant to emit.
    699   unsigned ImmArg = TheCall->getNumArgs()-1;
    700   if (mask) {
    701     if (SemaBuiltinConstantArg(TheCall, ImmArg, Result))
    702       return true;
    703 
    704     TV = Result.getLimitedValue(64);
    705     if ((TV > 63) || (mask & (1ULL << TV)) == 0)
    706       return Diag(TheCall->getLocStart(), diag::err_invalid_neon_type_code)
    707         << TheCall->getArg(ImmArg)->getSourceRange();
    708   }
    709 
    710   if (PtrArgNum >= 0) {
    711     // Check that pointer arguments have the specified type.
    712     Expr *Arg = TheCall->getArg(PtrArgNum);
    713     if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg))
    714       Arg = ICE->getSubExpr();
    715     ExprResult RHS = DefaultFunctionArrayLvalueConversion(Arg);
    716     QualType RHSTy = RHS.get()->getType();
    717 
    718     llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
    719     bool IsPolyUnsigned = Arch == llvm::Triple::aarch64;
    720     bool IsInt64Long =
    721         Context.getTargetInfo().getInt64Type() == TargetInfo::SignedLong;
    722     QualType EltTy =
    723         getNeonEltType(NeonTypeFlags(TV), Context, IsPolyUnsigned, IsInt64Long);
    724     if (HasConstPtr)
    725       EltTy = EltTy.withConst();
    726     QualType LHSTy = Context.getPointerType(EltTy);
    727     AssignConvertType ConvTy;
    728     ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
    729     if (RHS.isInvalid())
    730       return true;
    731     if (DiagnoseAssignmentResult(ConvTy, Arg->getLocStart(), LHSTy, RHSTy,
    732                                  RHS.get(), AA_Assigning))
    733       return true;
    734   }
    735 
    736   // For NEON intrinsics which take an immediate value as part of the
    737   // instruction, range check them here.
    738   unsigned i = 0, l = 0, u = 0;
    739   switch (BuiltinID) {
    740   default:
    741     return false;
    742 #define GET_NEON_IMMEDIATE_CHECK
    743 #include "clang/Basic/arm_neon.inc"
    744 #undef GET_NEON_IMMEDIATE_CHECK
    745   }
    746 
    747   return SemaBuiltinConstantArgRange(TheCall, i, l, u + l);
    748 }
    749 
    750 bool Sema::CheckARMBuiltinExclusiveCall(unsigned BuiltinID, CallExpr *TheCall,
    751                                         unsigned MaxWidth) {
    752   assert((BuiltinID == ARM::BI__builtin_arm_ldrex ||
    753           BuiltinID == ARM::BI__builtin_arm_ldaex ||
    754           BuiltinID == ARM::BI__builtin_arm_strex ||
    755           BuiltinID == ARM::BI__builtin_arm_stlex ||
    756           BuiltinID == AArch64::BI__builtin_arm_ldrex ||
    757           BuiltinID == AArch64::BI__builtin_arm_ldaex ||
    758           BuiltinID == AArch64::BI__builtin_arm_strex ||
    759           BuiltinID == AArch64::BI__builtin_arm_stlex) &&
    760          "unexpected ARM builtin");
    761   bool IsLdrex = BuiltinID == ARM::BI__builtin_arm_ldrex ||
    762                  BuiltinID == ARM::BI__builtin_arm_ldaex ||
    763                  BuiltinID == AArch64::BI__builtin_arm_ldrex ||
    764                  BuiltinID == AArch64::BI__builtin_arm_ldaex;
    765 
    766   DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
    767 
    768   // Ensure that we have the proper number of arguments.
    769   if (checkArgCount(*this, TheCall, IsLdrex ? 1 : 2))
    770     return true;
    771 
    772   // Inspect the pointer argument of the atomic builtin.  This should always be
    773   // a pointer type, whose element is an integral scalar or pointer type.
    774   // Because it is a pointer type, we don't have to worry about any implicit
    775   // casts here.
    776   Expr *PointerArg = TheCall->getArg(IsLdrex ? 0 : 1);
    777   ExprResult PointerArgRes = DefaultFunctionArrayLvalueConversion(PointerArg);
    778   if (PointerArgRes.isInvalid())
    779     return true;
    780   PointerArg = PointerArgRes.get();
    781 
    782   const PointerType *pointerType = PointerArg->getType()->getAs<PointerType>();
    783   if (!pointerType) {
    784     Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
    785       << PointerArg->getType() << PointerArg->getSourceRange();
    786     return true;
    787   }
    788 
    789   // ldrex takes a "const volatile T*" and strex takes a "volatile T*". Our next
    790   // task is to insert the appropriate casts into the AST. First work out just
    791   // what the appropriate type is.
    792   QualType ValType = pointerType->getPointeeType();
    793   QualType AddrType = ValType.getUnqualifiedType().withVolatile();
    794   if (IsLdrex)
    795     AddrType.addConst();
    796 
    797   // Issue a warning if the cast is dodgy.
    798   CastKind CastNeeded = CK_NoOp;
    799   if (!AddrType.isAtLeastAsQualifiedAs(ValType)) {
    800     CastNeeded = CK_BitCast;
    801     Diag(DRE->getLocStart(), diag::ext_typecheck_convert_discards_qualifiers)
    802       << PointerArg->getType()
    803       << Context.getPointerType(AddrType)
    804       << AA_Passing << PointerArg->getSourceRange();
    805   }
    806 
    807   // Finally, do the cast and replace the argument with the corrected version.
    808   AddrType = Context.getPointerType(AddrType);
    809   PointerArgRes = ImpCastExprToType(PointerArg, AddrType, CastNeeded);
    810   if (PointerArgRes.isInvalid())
    811     return true;
    812   PointerArg = PointerArgRes.get();
    813 
    814   TheCall->setArg(IsLdrex ? 0 : 1, PointerArg);
    815 
    816   // In general, we allow ints, floats and pointers to be loaded and stored.
    817   if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
    818       !ValType->isBlockPointerType() && !ValType->isFloatingType()) {
    819     Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer_intfltptr)
    820       << PointerArg->getType() << PointerArg->getSourceRange();
    821     return true;
    822   }
    823 
    824   // But ARM doesn't have instructions to deal with 128-bit versions.
    825   if (Context.getTypeSize(ValType) > MaxWidth) {
    826     assert(MaxWidth == 64 && "Diagnostic unexpectedly inaccurate");
    827     Diag(DRE->getLocStart(), diag::err_atomic_exclusive_builtin_pointer_size)
    828       << PointerArg->getType() << PointerArg->getSourceRange();
    829     return true;
    830   }
    831 
    832   switch (ValType.getObjCLifetime()) {
    833   case Qualifiers::OCL_None:
    834   case Qualifiers::OCL_ExplicitNone:
    835     // okay
    836     break;
    837 
    838   case Qualifiers::OCL_Weak:
    839   case Qualifiers::OCL_Strong:
    840   case Qualifiers::OCL_Autoreleasing:
    841     Diag(DRE->getLocStart(), diag::err_arc_atomic_ownership)
    842       << ValType << PointerArg->getSourceRange();
    843     return true;
    844   }
    845 
    846 
    847   if (IsLdrex) {
    848     TheCall->setType(ValType);
    849     return false;
    850   }
    851 
    852   // Initialize the argument to be stored.
    853   ExprResult ValArg = TheCall->getArg(0);
    854   InitializedEntity Entity = InitializedEntity::InitializeParameter(
    855       Context, ValType, /*consume*/ false);
    856   ValArg = PerformCopyInitialization(Entity, SourceLocation(), ValArg);
    857   if (ValArg.isInvalid())
    858     return true;
    859   TheCall->setArg(0, ValArg.get());
    860 
    861   // __builtin_arm_strex always returns an int. It's marked as such in the .def,
    862   // but the custom checker bypasses all default analysis.
    863   TheCall->setType(Context.IntTy);
    864   return false;
    865 }
    866 
    867 bool Sema::CheckARMBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
    868   llvm::APSInt Result;
    869 
    870   if (BuiltinID == ARM::BI__builtin_arm_ldrex ||
    871       BuiltinID == ARM::BI__builtin_arm_ldaex ||
    872       BuiltinID == ARM::BI__builtin_arm_strex ||
    873       BuiltinID == ARM::BI__builtin_arm_stlex) {
    874     return CheckARMBuiltinExclusiveCall(BuiltinID, TheCall, 64);
    875   }
    876 
    877   if (BuiltinID == ARM::BI__builtin_arm_prefetch) {
    878     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1) ||
    879       SemaBuiltinConstantArgRange(TheCall, 2, 0, 1);
    880   }
    881 
    882   if (BuiltinID == ARM::BI__builtin_arm_rsr64 ||
    883       BuiltinID == ARM::BI__builtin_arm_wsr64)
    884     return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 3, false);
    885 
    886   if (BuiltinID == ARM::BI__builtin_arm_rsr ||
    887       BuiltinID == ARM::BI__builtin_arm_rsrp ||
    888       BuiltinID == ARM::BI__builtin_arm_wsr ||
    889       BuiltinID == ARM::BI__builtin_arm_wsrp)
    890     return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 5, true);
    891 
    892   if (CheckNeonBuiltinFunctionCall(BuiltinID, TheCall))
    893     return true;
    894 
    895   // For intrinsics which take an immediate value as part of the instruction,
    896   // range check them here.
    897   unsigned i = 0, l = 0, u = 0;
    898   switch (BuiltinID) {
    899   default: return false;
    900   case ARM::BI__builtin_arm_ssat: i = 1; l = 1; u = 31; break;
    901   case ARM::BI__builtin_arm_usat: i = 1; u = 31; break;
    902   case ARM::BI__builtin_arm_vcvtr_f:
    903   case ARM::BI__builtin_arm_vcvtr_d: i = 1; u = 1; break;
    904   case ARM::BI__builtin_arm_dmb:
    905   case ARM::BI__builtin_arm_dsb:
    906   case ARM::BI__builtin_arm_isb:
    907   case ARM::BI__builtin_arm_dbg: l = 0; u = 15; break;
    908   }
    909 
    910   // FIXME: VFP Intrinsics should error if VFP not present.
    911   return SemaBuiltinConstantArgRange(TheCall, i, l, u + l);
    912 }
    913 
    914 bool Sema::CheckAArch64BuiltinFunctionCall(unsigned BuiltinID,
    915                                          CallExpr *TheCall) {
    916   llvm::APSInt Result;
    917 
    918   if (BuiltinID == AArch64::BI__builtin_arm_ldrex ||
    919       BuiltinID == AArch64::BI__builtin_arm_ldaex ||
    920       BuiltinID == AArch64::BI__builtin_arm_strex ||
    921       BuiltinID == AArch64::BI__builtin_arm_stlex) {
    922     return CheckARMBuiltinExclusiveCall(BuiltinID, TheCall, 128);
    923   }
    924 
    925   if (BuiltinID == AArch64::BI__builtin_arm_prefetch) {
    926     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1) ||
    927       SemaBuiltinConstantArgRange(TheCall, 2, 0, 2) ||
    928       SemaBuiltinConstantArgRange(TheCall, 3, 0, 1) ||
    929       SemaBuiltinConstantArgRange(TheCall, 4, 0, 1);
    930   }
    931 
    932   if (BuiltinID == AArch64::BI__builtin_arm_rsr64 ||
    933       BuiltinID == AArch64::BI__builtin_arm_wsr64)
    934     return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 5, false);
    935 
    936   if (BuiltinID == AArch64::BI__builtin_arm_rsr ||
    937       BuiltinID == AArch64::BI__builtin_arm_rsrp ||
    938       BuiltinID == AArch64::BI__builtin_arm_wsr ||
    939       BuiltinID == AArch64::BI__builtin_arm_wsrp)
    940     return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 5, true);
    941 
    942   if (CheckNeonBuiltinFunctionCall(BuiltinID, TheCall))
    943     return true;
    944 
    945   // For intrinsics which take an immediate value as part of the instruction,
    946   // range check them here.
    947   unsigned i = 0, l = 0, u = 0;
    948   switch (BuiltinID) {
    949   default: return false;
    950   case AArch64::BI__builtin_arm_dmb:
    951   case AArch64::BI__builtin_arm_dsb:
    952   case AArch64::BI__builtin_arm_isb: l = 0; u = 15; break;
    953   }
    954 
    955   return SemaBuiltinConstantArgRange(TheCall, i, l, u + l);
    956 }
    957 
    958 bool Sema::CheckMipsBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
    959   unsigned i = 0, l = 0, u = 0;
    960   switch (BuiltinID) {
    961   default: return false;
    962   case Mips::BI__builtin_mips_wrdsp: i = 1; l = 0; u = 63; break;
    963   case Mips::BI__builtin_mips_rddsp: i = 0; l = 0; u = 63; break;
    964   case Mips::BI__builtin_mips_append: i = 2; l = 0; u = 31; break;
    965   case Mips::BI__builtin_mips_balign: i = 2; l = 0; u = 3; break;
    966   case Mips::BI__builtin_mips_precr_sra_ph_w: i = 2; l = 0; u = 31; break;
    967   case Mips::BI__builtin_mips_precr_sra_r_ph_w: i = 2; l = 0; u = 31; break;
    968   case Mips::BI__builtin_mips_prepend: i = 2; l = 0; u = 31; break;
    969   }
    970 
    971   return SemaBuiltinConstantArgRange(TheCall, i, l, u);
    972 }
    973 
    974 bool Sema::CheckPPCBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
    975   unsigned i = 0, l = 0, u = 0;
    976   bool Is64BitBltin = BuiltinID == PPC::BI__builtin_divde ||
    977                       BuiltinID == PPC::BI__builtin_divdeu ||
    978                       BuiltinID == PPC::BI__builtin_bpermd;
    979   bool IsTarget64Bit = Context.getTargetInfo()
    980                               .getTypeWidth(Context
    981                                             .getTargetInfo()
    982                                             .getIntPtrType()) == 64;
    983   bool IsBltinExtDiv = BuiltinID == PPC::BI__builtin_divwe ||
    984                        BuiltinID == PPC::BI__builtin_divweu ||
    985                        BuiltinID == PPC::BI__builtin_divde ||
    986                        BuiltinID == PPC::BI__builtin_divdeu;
    987 
    988   if (Is64BitBltin && !IsTarget64Bit)
    989       return Diag(TheCall->getLocStart(), diag::err_64_bit_builtin_32_bit_tgt)
    990              << TheCall->getSourceRange();
    991 
    992   if ((IsBltinExtDiv && !Context.getTargetInfo().hasFeature("extdiv")) ||
    993       (BuiltinID == PPC::BI__builtin_bpermd &&
    994        !Context.getTargetInfo().hasFeature("bpermd")))
    995     return Diag(TheCall->getLocStart(), diag::err_ppc_builtin_only_on_pwr7)
    996            << TheCall->getSourceRange();
    997 
    998   switch (BuiltinID) {
    999   default: return false;
   1000   case PPC::BI__builtin_altivec_crypto_vshasigmaw:
   1001   case PPC::BI__builtin_altivec_crypto_vshasigmad:
   1002     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1) ||
   1003            SemaBuiltinConstantArgRange(TheCall, 2, 0, 15);
   1004   case PPC::BI__builtin_tbegin:
   1005   case PPC::BI__builtin_tend: i = 0; l = 0; u = 1; break;
   1006   case PPC::BI__builtin_tsr: i = 0; l = 0; u = 7; break;
   1007   case PPC::BI__builtin_tabortwc:
   1008   case PPC::BI__builtin_tabortdc: i = 0; l = 0; u = 31; break;
   1009   case PPC::BI__builtin_tabortwci:
   1010   case PPC::BI__builtin_tabortdci:
   1011     return SemaBuiltinConstantArgRange(TheCall, 0, 0, 31) ||
   1012            SemaBuiltinConstantArgRange(TheCall, 2, 0, 31);
   1013   }
   1014   return SemaBuiltinConstantArgRange(TheCall, i, l, u);
   1015 }
   1016 
   1017 bool Sema::CheckSystemZBuiltinFunctionCall(unsigned BuiltinID,
   1018                                            CallExpr *TheCall) {
   1019   if (BuiltinID == SystemZ::BI__builtin_tabort) {
   1020     Expr *Arg = TheCall->getArg(0);
   1021     llvm::APSInt AbortCode(32);
   1022     if (Arg->isIntegerConstantExpr(AbortCode, Context) &&
   1023         AbortCode.getSExtValue() >= 0 && AbortCode.getSExtValue() < 256)
   1024       return Diag(Arg->getLocStart(), diag::err_systemz_invalid_tabort_code)
   1025              << Arg->getSourceRange();
   1026   }
   1027 
   1028   // For intrinsics which take an immediate value as part of the instruction,
   1029   // range check them here.
   1030   unsigned i = 0, l = 0, u = 0;
   1031   switch (BuiltinID) {
   1032   default: return false;
   1033   case SystemZ::BI__builtin_s390_lcbb: i = 1; l = 0; u = 15; break;
   1034   case SystemZ::BI__builtin_s390_verimb:
   1035   case SystemZ::BI__builtin_s390_verimh:
   1036   case SystemZ::BI__builtin_s390_verimf:
   1037   case SystemZ::BI__builtin_s390_verimg: i = 3; l = 0; u = 255; break;
   1038   case SystemZ::BI__builtin_s390_vfaeb:
   1039   case SystemZ::BI__builtin_s390_vfaeh:
   1040   case SystemZ::BI__builtin_s390_vfaef:
   1041   case SystemZ::BI__builtin_s390_vfaebs:
   1042   case SystemZ::BI__builtin_s390_vfaehs:
   1043   case SystemZ::BI__builtin_s390_vfaefs:
   1044   case SystemZ::BI__builtin_s390_vfaezb:
   1045   case SystemZ::BI__builtin_s390_vfaezh:
   1046   case SystemZ::BI__builtin_s390_vfaezf:
   1047   case SystemZ::BI__builtin_s390_vfaezbs:
   1048   case SystemZ::BI__builtin_s390_vfaezhs:
   1049   case SystemZ::BI__builtin_s390_vfaezfs: i = 2; l = 0; u = 15; break;
   1050   case SystemZ::BI__builtin_s390_vfidb:
   1051     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15) ||
   1052            SemaBuiltinConstantArgRange(TheCall, 2, 0, 15);
   1053   case SystemZ::BI__builtin_s390_vftcidb: i = 1; l = 0; u = 4095; break;
   1054   case SystemZ::BI__builtin_s390_vlbb: i = 1; l = 0; u = 15; break;
   1055   case SystemZ::BI__builtin_s390_vpdi: i = 2; l = 0; u = 15; break;
   1056   case SystemZ::BI__builtin_s390_vsldb: i = 2; l = 0; u = 15; break;
   1057   case SystemZ::BI__builtin_s390_vstrcb:
   1058   case SystemZ::BI__builtin_s390_vstrch:
   1059   case SystemZ::BI__builtin_s390_vstrcf:
   1060   case SystemZ::BI__builtin_s390_vstrczb:
   1061   case SystemZ::BI__builtin_s390_vstrczh:
   1062   case SystemZ::BI__builtin_s390_vstrczf:
   1063   case SystemZ::BI__builtin_s390_vstrcbs:
   1064   case SystemZ::BI__builtin_s390_vstrchs:
   1065   case SystemZ::BI__builtin_s390_vstrcfs:
   1066   case SystemZ::BI__builtin_s390_vstrczbs:
   1067   case SystemZ::BI__builtin_s390_vstrczhs:
   1068   case SystemZ::BI__builtin_s390_vstrczfs: i = 3; l = 0; u = 15; break;
   1069   }
   1070   return SemaBuiltinConstantArgRange(TheCall, i, l, u);
   1071 }
   1072 
   1073 /// SemaBuiltinCpuSupports - Handle __builtin_cpu_supports(char *).
   1074 /// This checks that the target supports __builtin_cpu_supports and
   1075 /// that the string argument is constant and valid.
   1076 static bool SemaBuiltinCpuSupports(Sema &S, CallExpr *TheCall) {
   1077   Expr *Arg = TheCall->getArg(0);
   1078 
   1079   // Check if the argument is a string literal.
   1080   if (!isa<StringLiteral>(Arg->IgnoreParenImpCasts()))
   1081     return S.Diag(TheCall->getLocStart(), diag::err_expr_not_string_literal)
   1082            << Arg->getSourceRange();
   1083 
   1084   // Check the contents of the string.
   1085   StringRef Feature =
   1086       cast<StringLiteral>(Arg->IgnoreParenImpCasts())->getString();
   1087   if (!S.Context.getTargetInfo().validateCpuSupports(Feature))
   1088     return S.Diag(TheCall->getLocStart(), diag::err_invalid_cpu_supports)
   1089            << Arg->getSourceRange();
   1090   return false;
   1091 }
   1092 
   1093 bool Sema::CheckX86BuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
   1094   unsigned i = 0, l = 0, u = 0;
   1095   switch (BuiltinID) {
   1096   default: return false;
   1097   case X86::BI__builtin_cpu_supports:
   1098     return SemaBuiltinCpuSupports(*this, TheCall);
   1099   case X86::BI__builtin_ms_va_start:
   1100     return SemaBuiltinMSVAStart(TheCall);
   1101   case X86::BI_mm_prefetch: i = 1; l = 0; u = 3; break;
   1102   case X86::BI__builtin_ia32_sha1rnds4: i = 2, l = 0; u = 3; break;
   1103   case X86::BI__builtin_ia32_vpermil2pd:
   1104   case X86::BI__builtin_ia32_vpermil2pd256:
   1105   case X86::BI__builtin_ia32_vpermil2ps:
   1106   case X86::BI__builtin_ia32_vpermil2ps256: i = 3, l = 0; u = 3; break;
   1107   case X86::BI__builtin_ia32_cmpb128_mask:
   1108   case X86::BI__builtin_ia32_cmpw128_mask:
   1109   case X86::BI__builtin_ia32_cmpd128_mask:
   1110   case X86::BI__builtin_ia32_cmpq128_mask:
   1111   case X86::BI__builtin_ia32_cmpb256_mask:
   1112   case X86::BI__builtin_ia32_cmpw256_mask:
   1113   case X86::BI__builtin_ia32_cmpd256_mask:
   1114   case X86::BI__builtin_ia32_cmpq256_mask:
   1115   case X86::BI__builtin_ia32_cmpb512_mask:
   1116   case X86::BI__builtin_ia32_cmpw512_mask:
   1117   case X86::BI__builtin_ia32_cmpd512_mask:
   1118   case X86::BI__builtin_ia32_cmpq512_mask:
   1119   case X86::BI__builtin_ia32_ucmpb128_mask:
   1120   case X86::BI__builtin_ia32_ucmpw128_mask:
   1121   case X86::BI__builtin_ia32_ucmpd128_mask:
   1122   case X86::BI__builtin_ia32_ucmpq128_mask:
   1123   case X86::BI__builtin_ia32_ucmpb256_mask:
   1124   case X86::BI__builtin_ia32_ucmpw256_mask:
   1125   case X86::BI__builtin_ia32_ucmpd256_mask:
   1126   case X86::BI__builtin_ia32_ucmpq256_mask:
   1127   case X86::BI__builtin_ia32_ucmpb512_mask:
   1128   case X86::BI__builtin_ia32_ucmpw512_mask:
   1129   case X86::BI__builtin_ia32_ucmpd512_mask:
   1130   case X86::BI__builtin_ia32_ucmpq512_mask: i = 2; l = 0; u = 7; break;
   1131   case X86::BI__builtin_ia32_roundps:
   1132   case X86::BI__builtin_ia32_roundpd:
   1133   case X86::BI__builtin_ia32_roundps256:
   1134   case X86::BI__builtin_ia32_roundpd256: i = 1, l = 0; u = 15; break;
   1135   case X86::BI__builtin_ia32_roundss:
   1136   case X86::BI__builtin_ia32_roundsd: i = 2, l = 0; u = 15; break;
   1137   case X86::BI__builtin_ia32_cmpps:
   1138   case X86::BI__builtin_ia32_cmpss:
   1139   case X86::BI__builtin_ia32_cmppd:
   1140   case X86::BI__builtin_ia32_cmpsd:
   1141   case X86::BI__builtin_ia32_cmpps256:
   1142   case X86::BI__builtin_ia32_cmppd256:
   1143   case X86::BI__builtin_ia32_cmpps512_mask:
   1144   case X86::BI__builtin_ia32_cmppd512_mask: i = 2; l = 0; u = 31; break;
   1145   case X86::BI__builtin_ia32_vpcomub:
   1146   case X86::BI__builtin_ia32_vpcomuw:
   1147   case X86::BI__builtin_ia32_vpcomud:
   1148   case X86::BI__builtin_ia32_vpcomuq:
   1149   case X86::BI__builtin_ia32_vpcomb:
   1150   case X86::BI__builtin_ia32_vpcomw:
   1151   case X86::BI__builtin_ia32_vpcomd:
   1152   case X86::BI__builtin_ia32_vpcomq: i = 2; l = 0; u = 7; break;
   1153   }
   1154   return SemaBuiltinConstantArgRange(TheCall, i, l, u);
   1155 }
   1156 
   1157 /// Given a FunctionDecl's FormatAttr, attempts to populate the FomatStringInfo
   1158 /// parameter with the FormatAttr's correct format_idx and firstDataArg.
   1159 /// Returns true when the format fits the function and the FormatStringInfo has
   1160 /// been populated.
   1161 bool Sema::getFormatStringInfo(const FormatAttr *Format, bool IsCXXMember,
   1162                                FormatStringInfo *FSI) {
   1163   FSI->HasVAListArg = Format->getFirstArg() == 0;
   1164   FSI->FormatIdx = Format->getFormatIdx() - 1;
   1165   FSI->FirstDataArg = FSI->HasVAListArg ? 0 : Format->getFirstArg() - 1;
   1166 
   1167   // The way the format attribute works in GCC, the implicit this argument
   1168   // of member functions is counted. However, it doesn't appear in our own
   1169   // lists, so decrement format_idx in that case.
   1170   if (IsCXXMember) {
   1171     if(FSI->FormatIdx == 0)
   1172       return false;
   1173     --FSI->FormatIdx;
   1174     if (FSI->FirstDataArg != 0)
   1175       --FSI->FirstDataArg;
   1176   }
   1177   return true;
   1178 }
   1179 
   1180 /// Checks if a the given expression evaluates to null.
   1181 ///
   1182 /// \brief Returns true if the value evaluates to null.
   1183 static bool CheckNonNullExpr(Sema &S, const Expr *Expr) {
   1184   // If the expression has non-null type, it doesn't evaluate to null.
   1185   if (auto nullability
   1186         = Expr->IgnoreImplicit()->getType()->getNullability(S.Context)) {
   1187     if (*nullability == NullabilityKind::NonNull)
   1188       return false;
   1189   }
   1190 
   1191   // As a special case, transparent unions initialized with zero are
   1192   // considered null for the purposes of the nonnull attribute.
   1193   if (const RecordType *UT = Expr->getType()->getAsUnionType()) {
   1194     if (UT->getDecl()->hasAttr<TransparentUnionAttr>())
   1195       if (const CompoundLiteralExpr *CLE =
   1196           dyn_cast<CompoundLiteralExpr>(Expr))
   1197         if (const InitListExpr *ILE =
   1198             dyn_cast<InitListExpr>(CLE->getInitializer()))
   1199           Expr = ILE->getInit(0);
   1200   }
   1201 
   1202   bool Result;
   1203   return (!Expr->isValueDependent() &&
   1204           Expr->EvaluateAsBooleanCondition(Result, S.Context) &&
   1205           !Result);
   1206 }
   1207 
   1208 static void CheckNonNullArgument(Sema &S,
   1209                                  const Expr *ArgExpr,
   1210                                  SourceLocation CallSiteLoc) {
   1211   if (CheckNonNullExpr(S, ArgExpr))
   1212     S.DiagRuntimeBehavior(CallSiteLoc, ArgExpr,
   1213            S.PDiag(diag::warn_null_arg) << ArgExpr->getSourceRange());
   1214 }
   1215 
   1216 bool Sema::GetFormatNSStringIdx(const FormatAttr *Format, unsigned &Idx) {
   1217   FormatStringInfo FSI;
   1218   if ((GetFormatStringType(Format) == FST_NSString) &&
   1219       getFormatStringInfo(Format, false, &FSI)) {
   1220     Idx = FSI.FormatIdx;
   1221     return true;
   1222   }
   1223   return false;
   1224 }
   1225 /// \brief Diagnose use of %s directive in an NSString which is being passed
   1226 /// as formatting string to formatting method.
   1227 static void
   1228 DiagnoseCStringFormatDirectiveInCFAPI(Sema &S,
   1229                                         const NamedDecl *FDecl,
   1230                                         Expr **Args,
   1231                                         unsigned NumArgs) {
   1232   unsigned Idx = 0;
   1233   bool Format = false;
   1234   ObjCStringFormatFamily SFFamily = FDecl->getObjCFStringFormattingFamily();
   1235   if (SFFamily == ObjCStringFormatFamily::SFF_CFString) {
   1236     Idx = 2;
   1237     Format = true;
   1238   }
   1239   else
   1240     for (const auto *I : FDecl->specific_attrs<FormatAttr>()) {
   1241       if (S.GetFormatNSStringIdx(I, Idx)) {
   1242         Format = true;
   1243         break;
   1244       }
   1245     }
   1246   if (!Format || NumArgs <= Idx)
   1247     return;
   1248   const Expr *FormatExpr = Args[Idx];
   1249   if (const CStyleCastExpr *CSCE = dyn_cast<CStyleCastExpr>(FormatExpr))
   1250     FormatExpr = CSCE->getSubExpr();
   1251   const StringLiteral *FormatString;
   1252   if (const ObjCStringLiteral *OSL =
   1253       dyn_cast<ObjCStringLiteral>(FormatExpr->IgnoreParenImpCasts()))
   1254     FormatString = OSL->getString();
   1255   else
   1256     FormatString = dyn_cast<StringLiteral>(FormatExpr->IgnoreParenImpCasts());
   1257   if (!FormatString)
   1258     return;
   1259   if (S.FormatStringHasSArg(FormatString)) {
   1260     S.Diag(FormatExpr->getExprLoc(), diag::warn_objc_cdirective_format_string)
   1261       << "%s" << 1 << 1;
   1262     S.Diag(FDecl->getLocation(), diag::note_entity_declared_at)
   1263       << FDecl->getDeclName();
   1264   }
   1265 }
   1266 
   1267 /// Determine whether the given type has a non-null nullability annotation.
   1268 static bool isNonNullType(ASTContext &ctx, QualType type) {
   1269   if (auto nullability = type->getNullability(ctx))
   1270     return *nullability == NullabilityKind::NonNull;
   1271 
   1272   return false;
   1273 }
   1274 
   1275 static void CheckNonNullArguments(Sema &S,
   1276                                   const NamedDecl *FDecl,
   1277                                   const FunctionProtoType *Proto,
   1278                                   ArrayRef<const Expr *> Args,
   1279                                   SourceLocation CallSiteLoc) {
   1280   assert((FDecl || Proto) && "Need a function declaration or prototype");
   1281 
   1282   // Check the attributes attached to the method/function itself.
   1283   llvm::SmallBitVector NonNullArgs;
   1284   if (FDecl) {
   1285     // Handle the nonnull attribute on the function/method declaration itself.
   1286     for (const auto *NonNull : FDecl->specific_attrs<NonNullAttr>()) {
   1287       if (!NonNull->args_size()) {
   1288         // Easy case: all pointer arguments are nonnull.
   1289         for (const auto *Arg : Args)
   1290           if (S.isValidPointerAttrType(Arg->getType()))
   1291             CheckNonNullArgument(S, Arg, CallSiteLoc);
   1292         return;
   1293       }
   1294 
   1295       for (unsigned Val : NonNull->args()) {
   1296         if (Val >= Args.size())
   1297           continue;
   1298         if (NonNullArgs.empty())
   1299           NonNullArgs.resize(Args.size());
   1300         NonNullArgs.set(Val);
   1301       }
   1302     }
   1303   }
   1304 
   1305   if (FDecl && (isa<FunctionDecl>(FDecl) || isa<ObjCMethodDecl>(FDecl))) {
   1306     // Handle the nonnull attribute on the parameters of the
   1307     // function/method.
   1308     ArrayRef<ParmVarDecl*> parms;
   1309     if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(FDecl))
   1310       parms = FD->parameters();
   1311     else
   1312       parms = cast<ObjCMethodDecl>(FDecl)->parameters();
   1313 
   1314     unsigned ParamIndex = 0;
   1315     for (ArrayRef<ParmVarDecl*>::iterator I = parms.begin(), E = parms.end();
   1316          I != E; ++I, ++ParamIndex) {
   1317       const ParmVarDecl *PVD = *I;
   1318       if (PVD->hasAttr<NonNullAttr>() ||
   1319           isNonNullType(S.Context, PVD->getType())) {
   1320         if (NonNullArgs.empty())
   1321           NonNullArgs.resize(Args.size());
   1322 
   1323         NonNullArgs.set(ParamIndex);
   1324       }
   1325     }
   1326   } else {
   1327     // If we have a non-function, non-method declaration but no
   1328     // function prototype, try to dig out the function prototype.
   1329     if (!Proto) {
   1330       if (const ValueDecl *VD = dyn_cast<ValueDecl>(FDecl)) {
   1331         QualType type = VD->getType().getNonReferenceType();
   1332         if (auto pointerType = type->getAs<PointerType>())
   1333           type = pointerType->getPointeeType();
   1334         else if (auto blockType = type->getAs<BlockPointerType>())
   1335           type = blockType->getPointeeType();
   1336         // FIXME: data member pointers?
   1337 
   1338         // Dig out the function prototype, if there is one.
   1339         Proto = type->getAs<FunctionProtoType>();
   1340       }
   1341     }
   1342 
   1343     // Fill in non-null argument information from the nullability
   1344     // information on the parameter types (if we have them).
   1345     if (Proto) {
   1346       unsigned Index = 0;
   1347       for (auto paramType : Proto->getParamTypes()) {
   1348         if (isNonNullType(S.Context, paramType)) {
   1349           if (NonNullArgs.empty())
   1350             NonNullArgs.resize(Args.size());
   1351 
   1352           NonNullArgs.set(Index);
   1353         }
   1354 
   1355         ++Index;
   1356       }
   1357     }
   1358   }
   1359 
   1360   // Check for non-null arguments.
   1361   for (unsigned ArgIndex = 0, ArgIndexEnd = NonNullArgs.size();
   1362        ArgIndex != ArgIndexEnd; ++ArgIndex) {
   1363     if (NonNullArgs[ArgIndex])
   1364       CheckNonNullArgument(S, Args[ArgIndex], CallSiteLoc);
   1365   }
   1366 }
   1367 
   1368 /// Handles the checks for format strings, non-POD arguments to vararg
   1369 /// functions, and NULL arguments passed to non-NULL parameters.
   1370 void Sema::checkCall(NamedDecl *FDecl, const FunctionProtoType *Proto,
   1371                      ArrayRef<const Expr *> Args, bool IsMemberFunction,
   1372                      SourceLocation Loc, SourceRange Range,
   1373                      VariadicCallType CallType) {
   1374   // FIXME: We should check as much as we can in the template definition.
   1375   if (CurContext->isDependentContext())
   1376     return;
   1377 
   1378   // Printf and scanf checking.
   1379   llvm::SmallBitVector CheckedVarArgs;
   1380   if (FDecl) {
   1381     for (const auto *I : FDecl->specific_attrs<FormatAttr>()) {
   1382       // Only create vector if there are format attributes.
   1383       CheckedVarArgs.resize(Args.size());
   1384 
   1385       CheckFormatArguments(I, Args, IsMemberFunction, CallType, Loc, Range,
   1386                            CheckedVarArgs);
   1387     }
   1388   }
   1389 
   1390   // Refuse POD arguments that weren't caught by the format string
   1391   // checks above.
   1392   if (CallType != VariadicDoesNotApply) {
   1393     unsigned NumParams = Proto ? Proto->getNumParams()
   1394                        : FDecl && isa<FunctionDecl>(FDecl)
   1395                            ? cast<FunctionDecl>(FDecl)->getNumParams()
   1396                        : FDecl && isa<ObjCMethodDecl>(FDecl)
   1397                            ? cast<ObjCMethodDecl>(FDecl)->param_size()
   1398                        : 0;
   1399 
   1400     for (unsigned ArgIdx = NumParams; ArgIdx < Args.size(); ++ArgIdx) {
   1401       // Args[ArgIdx] can be null in malformed code.
   1402       if (const Expr *Arg = Args[ArgIdx]) {
   1403         if (CheckedVarArgs.empty() || !CheckedVarArgs[ArgIdx])
   1404           checkVariadicArgument(Arg, CallType);
   1405       }
   1406     }
   1407   }
   1408 
   1409   if (FDecl || Proto) {
   1410     CheckNonNullArguments(*this, FDecl, Proto, Args, Loc);
   1411 
   1412     // Type safety checking.
   1413     if (FDecl) {
   1414       for (const auto *I : FDecl->specific_attrs<ArgumentWithTypeTagAttr>())
   1415         CheckArgumentWithTypeTag(I, Args.data());
   1416     }
   1417   }
   1418 }
   1419 
   1420 /// CheckConstructorCall - Check a constructor call for correctness and safety
   1421 /// properties not enforced by the C type system.
   1422 void Sema::CheckConstructorCall(FunctionDecl *FDecl,
   1423                                 ArrayRef<const Expr *> Args,
   1424                                 const FunctionProtoType *Proto,
   1425                                 SourceLocation Loc) {
   1426   VariadicCallType CallType =
   1427     Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
   1428   checkCall(FDecl, Proto, Args, /*IsMemberFunction=*/true, Loc, SourceRange(),
   1429             CallType);
   1430 }
   1431 
   1432 /// CheckFunctionCall - Check a direct function call for various correctness
   1433 /// and safety properties not strictly enforced by the C type system.
   1434 bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall,
   1435                              const FunctionProtoType *Proto) {
   1436   bool IsMemberOperatorCall = isa<CXXOperatorCallExpr>(TheCall) &&
   1437                               isa<CXXMethodDecl>(FDecl);
   1438   bool IsMemberFunction = isa<CXXMemberCallExpr>(TheCall) ||
   1439                           IsMemberOperatorCall;
   1440   VariadicCallType CallType = getVariadicCallType(FDecl, Proto,
   1441                                                   TheCall->getCallee());
   1442   Expr** Args = TheCall->getArgs();
   1443   unsigned NumArgs = TheCall->getNumArgs();
   1444   if (IsMemberOperatorCall) {
   1445     // If this is a call to a member operator, hide the first argument
   1446     // from checkCall.
   1447     // FIXME: Our choice of AST representation here is less than ideal.
   1448     ++Args;
   1449     --NumArgs;
   1450   }
   1451   checkCall(FDecl, Proto, llvm::makeArrayRef(Args, NumArgs),
   1452             IsMemberFunction, TheCall->getRParenLoc(),
   1453             TheCall->getCallee()->getSourceRange(), CallType);
   1454 
   1455   IdentifierInfo *FnInfo = FDecl->getIdentifier();
   1456   // None of the checks below are needed for functions that don't have
   1457   // simple names (e.g., C++ conversion functions).
   1458   if (!FnInfo)
   1459     return false;
   1460 
   1461   CheckAbsoluteValueFunction(TheCall, FDecl, FnInfo);
   1462   if (getLangOpts().ObjC1)
   1463     DiagnoseCStringFormatDirectiveInCFAPI(*this, FDecl, Args, NumArgs);
   1464 
   1465   unsigned CMId = FDecl->getMemoryFunctionKind();
   1466   if (CMId == 0)
   1467     return false;
   1468 
   1469   // Handle memory setting and copying functions.
   1470   if (CMId == Builtin::BIstrlcpy || CMId == Builtin::BIstrlcat)
   1471     CheckStrlcpycatArguments(TheCall, FnInfo);
   1472   else if (CMId == Builtin::BIstrncat)
   1473     CheckStrncatArguments(TheCall, FnInfo);
   1474   else
   1475     CheckMemaccessArguments(TheCall, CMId, FnInfo);
   1476 
   1477   return false;
   1478 }
   1479 
   1480 bool Sema::CheckObjCMethodCall(ObjCMethodDecl *Method, SourceLocation lbrac,
   1481                                ArrayRef<const Expr *> Args) {
   1482   VariadicCallType CallType =
   1483       Method->isVariadic() ? VariadicMethod : VariadicDoesNotApply;
   1484 
   1485   checkCall(Method, nullptr, Args,
   1486             /*IsMemberFunction=*/false, lbrac, Method->getSourceRange(),
   1487             CallType);
   1488 
   1489   return false;
   1490 }
   1491 
   1492 bool Sema::CheckPointerCall(NamedDecl *NDecl, CallExpr *TheCall,
   1493                             const FunctionProtoType *Proto) {
   1494   QualType Ty;
   1495   if (const auto *V = dyn_cast<VarDecl>(NDecl))
   1496     Ty = V->getType().getNonReferenceType();
   1497   else if (const auto *F = dyn_cast<FieldDecl>(NDecl))
   1498     Ty = F->getType().getNonReferenceType();
   1499   else
   1500     return false;
   1501 
   1502   if (!Ty->isBlockPointerType() && !Ty->isFunctionPointerType() &&
   1503       !Ty->isFunctionProtoType())
   1504     return false;
   1505 
   1506   VariadicCallType CallType;
   1507   if (!Proto || !Proto->isVariadic()) {
   1508     CallType = VariadicDoesNotApply;
   1509   } else if (Ty->isBlockPointerType()) {
   1510     CallType = VariadicBlock;
   1511   } else { // Ty->isFunctionPointerType()
   1512     CallType = VariadicFunction;
   1513   }
   1514 
   1515   checkCall(NDecl, Proto,
   1516             llvm::makeArrayRef(TheCall->getArgs(), TheCall->getNumArgs()),
   1517             /*IsMemberFunction=*/false, TheCall->getRParenLoc(),
   1518             TheCall->getCallee()->getSourceRange(), CallType);
   1519 
   1520   return false;
   1521 }
   1522 
   1523 /// Checks function calls when a FunctionDecl or a NamedDecl is not available,
   1524 /// such as function pointers returned from functions.
   1525 bool Sema::CheckOtherCall(CallExpr *TheCall, const FunctionProtoType *Proto) {
   1526   VariadicCallType CallType = getVariadicCallType(/*FDecl=*/nullptr, Proto,
   1527                                                   TheCall->getCallee());
   1528   checkCall(/*FDecl=*/nullptr, Proto,
   1529             llvm::makeArrayRef(TheCall->getArgs(), TheCall->getNumArgs()),
   1530             /*IsMemberFunction=*/false, TheCall->getRParenLoc(),
   1531             TheCall->getCallee()->getSourceRange(), CallType);
   1532 
   1533   return false;
   1534 }
   1535 
   1536 static bool isValidOrderingForOp(int64_t Ordering, AtomicExpr::AtomicOp Op) {
   1537   if (Ordering < AtomicExpr::AO_ABI_memory_order_relaxed ||
   1538       Ordering > AtomicExpr::AO_ABI_memory_order_seq_cst)
   1539     return false;
   1540 
   1541   switch (Op) {
   1542   case AtomicExpr::AO__c11_atomic_init:
   1543     llvm_unreachable("There is no ordering argument for an init");
   1544 
   1545   case AtomicExpr::AO__c11_atomic_load:
   1546   case AtomicExpr::AO__atomic_load_n:
   1547   case AtomicExpr::AO__atomic_load:
   1548     return Ordering != AtomicExpr::AO_ABI_memory_order_release &&
   1549            Ordering != AtomicExpr::AO_ABI_memory_order_acq_rel;
   1550 
   1551   case AtomicExpr::AO__c11_atomic_store:
   1552   case AtomicExpr::AO__atomic_store:
   1553   case AtomicExpr::AO__atomic_store_n:
   1554     return Ordering != AtomicExpr::AO_ABI_memory_order_consume &&
   1555            Ordering != AtomicExpr::AO_ABI_memory_order_acquire &&
   1556            Ordering != AtomicExpr::AO_ABI_memory_order_acq_rel;
   1557 
   1558   default:
   1559     return true;
   1560   }
   1561 }
   1562 
   1563 ExprResult Sema::SemaAtomicOpsOverloaded(ExprResult TheCallResult,
   1564                                          AtomicExpr::AtomicOp Op) {
   1565   CallExpr *TheCall = cast<CallExpr>(TheCallResult.get());
   1566   DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
   1567 
   1568   // All these operations take one of the following forms:
   1569   enum {
   1570     // C    __c11_atomic_init(A *, C)
   1571     Init,
   1572     // C    __c11_atomic_load(A *, int)
   1573     Load,
   1574     // void __atomic_load(A *, CP, int)
   1575     Copy,
   1576     // C    __c11_atomic_add(A *, M, int)
   1577     Arithmetic,
   1578     // C    __atomic_exchange_n(A *, CP, int)
   1579     Xchg,
   1580     // void __atomic_exchange(A *, C *, CP, int)
   1581     GNUXchg,
   1582     // bool __c11_atomic_compare_exchange_strong(A *, C *, CP, int, int)
   1583     C11CmpXchg,
   1584     // bool __atomic_compare_exchange(A *, C *, CP, bool, int, int)
   1585     GNUCmpXchg
   1586   } Form = Init;
   1587   const unsigned NumArgs[] = { 2, 2, 3, 3, 3, 4, 5, 6 };
   1588   const unsigned NumVals[] = { 1, 0, 1, 1, 1, 2, 2, 3 };
   1589   // where:
   1590   //   C is an appropriate type,
   1591   //   A is volatile _Atomic(C) for __c11 builtins and is C for GNU builtins,
   1592   //   CP is C for __c11 builtins and GNU _n builtins and is C * otherwise,
   1593   //   M is C if C is an integer, and ptrdiff_t if C is a pointer, and
   1594   //   the int parameters are for orderings.
   1595 
   1596   static_assert(AtomicExpr::AO__c11_atomic_init == 0 &&
   1597                     AtomicExpr::AO__c11_atomic_fetch_xor + 1 ==
   1598                         AtomicExpr::AO__atomic_load,
   1599                 "need to update code for modified C11 atomics");
   1600   bool IsC11 = Op >= AtomicExpr::AO__c11_atomic_init &&
   1601                Op <= AtomicExpr::AO__c11_atomic_fetch_xor;
   1602   bool IsN = Op == AtomicExpr::AO__atomic_load_n ||
   1603              Op == AtomicExpr::AO__atomic_store_n ||
   1604              Op == AtomicExpr::AO__atomic_exchange_n ||
   1605              Op == AtomicExpr::AO__atomic_compare_exchange_n;
   1606   bool IsAddSub = false;
   1607 
   1608   switch (Op) {
   1609   case AtomicExpr::AO__c11_atomic_init:
   1610     Form = Init;
   1611     break;
   1612 
   1613   case AtomicExpr::AO__c11_atomic_load:
   1614   case AtomicExpr::AO__atomic_load_n:
   1615     Form = Load;
   1616     break;
   1617 
   1618   case AtomicExpr::AO__c11_atomic_store:
   1619   case AtomicExpr::AO__atomic_load:
   1620   case AtomicExpr::AO__atomic_store:
   1621   case AtomicExpr::AO__atomic_store_n:
   1622     Form = Copy;
   1623     break;
   1624 
   1625   case AtomicExpr::AO__c11_atomic_fetch_add:
   1626   case AtomicExpr::AO__c11_atomic_fetch_sub:
   1627   case AtomicExpr::AO__atomic_fetch_add:
   1628   case AtomicExpr::AO__atomic_fetch_sub:
   1629   case AtomicExpr::AO__atomic_add_fetch:
   1630   case AtomicExpr::AO__atomic_sub_fetch:
   1631     IsAddSub = true;
   1632     // Fall through.
   1633   case AtomicExpr::AO__c11_atomic_fetch_and:
   1634   case AtomicExpr::AO__c11_atomic_fetch_or:
   1635   case AtomicExpr::AO__c11_atomic_fetch_xor:
   1636   case AtomicExpr::AO__atomic_fetch_and:
   1637   case AtomicExpr::AO__atomic_fetch_or:
   1638   case AtomicExpr::AO__atomic_fetch_xor:
   1639   case AtomicExpr::AO__atomic_fetch_nand:
   1640   case AtomicExpr::AO__atomic_and_fetch:
   1641   case AtomicExpr::AO__atomic_or_fetch:
   1642   case AtomicExpr::AO__atomic_xor_fetch:
   1643   case AtomicExpr::AO__atomic_nand_fetch:
   1644     Form = Arithmetic;
   1645     break;
   1646 
   1647   case AtomicExpr::AO__c11_atomic_exchange:
   1648   case AtomicExpr::AO__atomic_exchange_n:
   1649     Form = Xchg;
   1650     break;
   1651 
   1652   case AtomicExpr::AO__atomic_exchange:
   1653     Form = GNUXchg;
   1654     break;
   1655 
   1656   case AtomicExpr::AO__c11_atomic_compare_exchange_strong:
   1657   case AtomicExpr::AO__c11_atomic_compare_exchange_weak:
   1658     Form = C11CmpXchg;
   1659     break;
   1660 
   1661   case AtomicExpr::AO__atomic_compare_exchange:
   1662   case AtomicExpr::AO__atomic_compare_exchange_n:
   1663     Form = GNUCmpXchg;
   1664     break;
   1665   }
   1666 
   1667   // Check we have the right number of arguments.
   1668   if (TheCall->getNumArgs() < NumArgs[Form]) {
   1669     Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
   1670       << 0 << NumArgs[Form] << TheCall->getNumArgs()
   1671       << TheCall->getCallee()->getSourceRange();
   1672     return ExprError();
   1673   } else if (TheCall->getNumArgs() > NumArgs[Form]) {
   1674     Diag(TheCall->getArg(NumArgs[Form])->getLocStart(),
   1675          diag::err_typecheck_call_too_many_args)
   1676       << 0 << NumArgs[Form] << TheCall->getNumArgs()
   1677       << TheCall->getCallee()->getSourceRange();
   1678     return ExprError();
   1679   }
   1680 
   1681   // Inspect the first argument of the atomic operation.
   1682   Expr *Ptr = TheCall->getArg(0);
   1683   Ptr = DefaultFunctionArrayLvalueConversion(Ptr).get();
   1684   const PointerType *pointerType = Ptr->getType()->getAs<PointerType>();
   1685   if (!pointerType) {
   1686     Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
   1687       << Ptr->getType() << Ptr->getSourceRange();
   1688     return ExprError();
   1689   }
   1690 
   1691   // For a __c11 builtin, this should be a pointer to an _Atomic type.
   1692   QualType AtomTy = pointerType->getPointeeType(); // 'A'
   1693   QualType ValType = AtomTy; // 'C'
   1694   if (IsC11) {
   1695     if (!AtomTy->isAtomicType()) {
   1696       Diag(DRE->getLocStart(), diag::err_atomic_op_needs_atomic)
   1697         << Ptr->getType() << Ptr->getSourceRange();
   1698       return ExprError();
   1699     }
   1700     if (AtomTy.isConstQualified()) {
   1701       Diag(DRE->getLocStart(), diag::err_atomic_op_needs_non_const_atomic)
   1702         << Ptr->getType() << Ptr->getSourceRange();
   1703       return ExprError();
   1704     }
   1705     ValType = AtomTy->getAs<AtomicType>()->getValueType();
   1706   } else if (Form != Load && Op != AtomicExpr::AO__atomic_load) {
   1707     if (ValType.isConstQualified()) {
   1708       Diag(DRE->getLocStart(), diag::err_atomic_op_needs_non_const_pointer)
   1709         << Ptr->getType() << Ptr->getSourceRange();
   1710       return ExprError();
   1711     }
   1712   }
   1713 
   1714   // For an arithmetic operation, the implied arithmetic must be well-formed.
   1715   if (Form == Arithmetic) {
   1716     // gcc does not enforce these rules for GNU atomics, but we do so for sanity.
   1717     if (IsAddSub && !ValType->isIntegerType() && !ValType->isPointerType()) {
   1718       Diag(DRE->getLocStart(), diag::err_atomic_op_needs_atomic_int_or_ptr)
   1719         << IsC11 << Ptr->getType() << Ptr->getSourceRange();
   1720       return ExprError();
   1721     }
   1722     if (!IsAddSub && !ValType->isIntegerType()) {
   1723       Diag(DRE->getLocStart(), diag::err_atomic_op_bitwise_needs_atomic_int)
   1724         << IsC11 << Ptr->getType() << Ptr->getSourceRange();
   1725       return ExprError();
   1726     }
   1727     if (IsC11 && ValType->isPointerType() &&
   1728         RequireCompleteType(Ptr->getLocStart(), ValType->getPointeeType(),
   1729                             diag::err_incomplete_type)) {
   1730       return ExprError();
   1731     }
   1732   } else if (IsN && !ValType->isIntegerType() && !ValType->isPointerType()) {
   1733     // For __atomic_*_n operations, the value type must be a scalar integral or
   1734     // pointer type which is 1, 2, 4, 8 or 16 bytes in length.
   1735     Diag(DRE->getLocStart(), diag::err_atomic_op_needs_atomic_int_or_ptr)
   1736       << IsC11 << Ptr->getType() << Ptr->getSourceRange();
   1737     return ExprError();
   1738   }
   1739 
   1740   if (!IsC11 && !AtomTy.isTriviallyCopyableType(Context) &&
   1741       !AtomTy->isScalarType()) {
   1742     // For GNU atomics, require a trivially-copyable type. This is not part of
   1743     // the GNU atomics specification, but we enforce it for sanity.
   1744     Diag(DRE->getLocStart(), diag::err_atomic_op_needs_trivial_copy)
   1745       << Ptr->getType() << Ptr->getSourceRange();
   1746     return ExprError();
   1747   }
   1748 
   1749   switch (ValType.getObjCLifetime()) {
   1750   case Qualifiers::OCL_None:
   1751   case Qualifiers::OCL_ExplicitNone:
   1752     // okay
   1753     break;
   1754 
   1755   case Qualifiers::OCL_Weak:
   1756   case Qualifiers::OCL_Strong:
   1757   case Qualifiers::OCL_Autoreleasing:
   1758     // FIXME: Can this happen? By this point, ValType should be known
   1759     // to be trivially copyable.
   1760     Diag(DRE->getLocStart(), diag::err_arc_atomic_ownership)
   1761       << ValType << Ptr->getSourceRange();
   1762     return ExprError();
   1763   }
   1764 
   1765   // atomic_fetch_or takes a pointer to a volatile 'A'.  We shouldn't let the
   1766   // volatile-ness of the pointee-type inject itself into the result or the
   1767   // other operands.
   1768   ValType.removeLocalVolatile();
   1769   QualType ResultType = ValType;
   1770   if (Form == Copy || Form == GNUXchg || Form == Init)
   1771     ResultType = Context.VoidTy;
   1772   else if (Form == C11CmpXchg || Form == GNUCmpXchg)
   1773     ResultType = Context.BoolTy;
   1774 
   1775   // The type of a parameter passed 'by value'. In the GNU atomics, such
   1776   // arguments are actually passed as pointers.
   1777   QualType ByValType = ValType; // 'CP'
   1778   if (!IsC11 && !IsN)
   1779     ByValType = Ptr->getType();
   1780 
   1781   // FIXME: __atomic_load allows the first argument to be a a pointer to const
   1782   // but not the second argument. We need to manually remove possible const
   1783   // qualifiers.
   1784 
   1785   // The first argument --- the pointer --- has a fixed type; we
   1786   // deduce the types of the rest of the arguments accordingly.  Walk
   1787   // the remaining arguments, converting them to the deduced value type.
   1788   for (unsigned i = 1; i != NumArgs[Form]; ++i) {
   1789     QualType Ty;
   1790     if (i < NumVals[Form] + 1) {
   1791       switch (i) {
   1792       case 1:
   1793         // The second argument is the non-atomic operand. For arithmetic, this
   1794         // is always passed by value, and for a compare_exchange it is always
   1795         // passed by address. For the rest, GNU uses by-address and C11 uses
   1796         // by-value.
   1797         assert(Form != Load);
   1798         if (Form == Init || (Form == Arithmetic && ValType->isIntegerType()))
   1799           Ty = ValType;
   1800         else if (Form == Copy || Form == Xchg)
   1801           Ty = ByValType;
   1802         else if (Form == Arithmetic)
   1803           Ty = Context.getPointerDiffType();
   1804         else
   1805           Ty = Context.getPointerType(ValType.getUnqualifiedType());
   1806         break;
   1807       case 2:
   1808         // The third argument to compare_exchange / GNU exchange is a
   1809         // (pointer to a) desired value.
   1810         Ty = ByValType;
   1811         break;
   1812       case 3:
   1813         // The fourth argument to GNU compare_exchange is a 'weak' flag.
   1814         Ty = Context.BoolTy;
   1815         break;
   1816       }
   1817     } else {
   1818       // The order(s) are always converted to int.
   1819       Ty = Context.IntTy;
   1820     }
   1821 
   1822     InitializedEntity Entity =
   1823         InitializedEntity::InitializeParameter(Context, Ty, false);
   1824     ExprResult Arg = TheCall->getArg(i);
   1825     Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
   1826     if (Arg.isInvalid())
   1827       return true;
   1828     TheCall->setArg(i, Arg.get());
   1829   }
   1830 
   1831   // Permute the arguments into a 'consistent' order.
   1832   SmallVector<Expr*, 5> SubExprs;
   1833   SubExprs.push_back(Ptr);
   1834   switch (Form) {
   1835   case Init:
   1836     // Note, AtomicExpr::getVal1() has a special case for this atomic.
   1837     SubExprs.push_back(TheCall->getArg(1)); // Val1
   1838     break;
   1839   case Load:
   1840     SubExprs.push_back(TheCall->getArg(1)); // Order
   1841     break;
   1842   case Copy:
   1843   case Arithmetic:
   1844   case Xchg:
   1845     SubExprs.push_back(TheCall->getArg(2)); // Order
   1846     SubExprs.push_back(TheCall->getArg(1)); // Val1
   1847     break;
   1848   case GNUXchg:
   1849     // Note, AtomicExpr::getVal2() has a special case for this atomic.
   1850     SubExprs.push_back(TheCall->getArg(3)); // Order
   1851     SubExprs.push_back(TheCall->getArg(1)); // Val1
   1852     SubExprs.push_back(TheCall->getArg(2)); // Val2
   1853     break;
   1854   case C11CmpXchg:
   1855     SubExprs.push_back(TheCall->getArg(3)); // Order
   1856     SubExprs.push_back(TheCall->getArg(1)); // Val1
   1857     SubExprs.push_back(TheCall->getArg(4)); // OrderFail
   1858     SubExprs.push_back(TheCall->getArg(2)); // Val2
   1859     break;
   1860   case GNUCmpXchg:
   1861     SubExprs.push_back(TheCall->getArg(4)); // Order
   1862     SubExprs.push_back(TheCall->getArg(1)); // Val1
   1863     SubExprs.push_back(TheCall->getArg(5)); // OrderFail
   1864     SubExprs.push_back(TheCall->getArg(2)); // Val2
   1865     SubExprs.push_back(TheCall->getArg(3)); // Weak
   1866     break;
   1867   }
   1868 
   1869   if (SubExprs.size() >= 2 && Form != Init) {
   1870     llvm::APSInt Result(32);
   1871     if (SubExprs[1]->isIntegerConstantExpr(Result, Context) &&
   1872         !isValidOrderingForOp(Result.getSExtValue(), Op))
   1873       Diag(SubExprs[1]->getLocStart(),
   1874            diag::warn_atomic_op_has_invalid_memory_order)
   1875           << SubExprs[1]->getSourceRange();
   1876   }
   1877 
   1878   AtomicExpr *AE = new (Context) AtomicExpr(TheCall->getCallee()->getLocStart(),
   1879                                             SubExprs, ResultType, Op,
   1880                                             TheCall->getRParenLoc());
   1881 
   1882   if ((Op == AtomicExpr::AO__c11_atomic_load ||
   1883        (Op == AtomicExpr::AO__c11_atomic_store)) &&
   1884       Context.AtomicUsesUnsupportedLibcall(AE))
   1885     Diag(AE->getLocStart(), diag::err_atomic_load_store_uses_lib) <<
   1886     ((Op == AtomicExpr::AO__c11_atomic_load) ? 0 : 1);
   1887 
   1888   return AE;
   1889 }
   1890 
   1891 
   1892 /// checkBuiltinArgument - Given a call to a builtin function, perform
   1893 /// normal type-checking on the given argument, updating the call in
   1894 /// place.  This is useful when a builtin function requires custom
   1895 /// type-checking for some of its arguments but not necessarily all of
   1896 /// them.
   1897 ///
   1898 /// Returns true on error.
   1899 static bool checkBuiltinArgument(Sema &S, CallExpr *E, unsigned ArgIndex) {
   1900   FunctionDecl *Fn = E->getDirectCallee();
   1901   assert(Fn && "builtin call without direct callee!");
   1902 
   1903   ParmVarDecl *Param = Fn->getParamDecl(ArgIndex);
   1904   InitializedEntity Entity =
   1905     InitializedEntity::InitializeParameter(S.Context, Param);
   1906 
   1907   ExprResult Arg = E->getArg(0);
   1908   Arg = S.PerformCopyInitialization(Entity, SourceLocation(), Arg);
   1909   if (Arg.isInvalid())
   1910     return true;
   1911 
   1912   E->setArg(ArgIndex, Arg.get());
   1913   return false;
   1914 }
   1915 
   1916 /// SemaBuiltinAtomicOverloaded - We have a call to a function like
   1917 /// __sync_fetch_and_add, which is an overloaded function based on the pointer
   1918 /// type of its first argument.  The main ActOnCallExpr routines have already
   1919 /// promoted the types of arguments because all of these calls are prototyped as
   1920 /// void(...).
   1921 ///
   1922 /// This function goes through and does final semantic checking for these
   1923 /// builtins,
   1924 ExprResult
   1925 Sema::SemaBuiltinAtomicOverloaded(ExprResult TheCallResult) {
   1926   CallExpr *TheCall = (CallExpr *)TheCallResult.get();
   1927   DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
   1928   FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
   1929 
   1930   // Ensure that we have at least one argument to do type inference from.
   1931   if (TheCall->getNumArgs() < 1) {
   1932     Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
   1933       << 0 << 1 << TheCall->getNumArgs()
   1934       << TheCall->getCallee()->getSourceRange();
   1935     return ExprError();
   1936   }
   1937 
   1938   // Inspect the first argument of the atomic builtin.  This should always be
   1939   // a pointer type, whose element is an integral scalar or pointer type.
   1940   // Because it is a pointer type, we don't have to worry about any implicit
   1941   // casts here.
   1942   // FIXME: We don't allow floating point scalars as input.
   1943   Expr *FirstArg = TheCall->getArg(0);
   1944   ExprResult FirstArgResult = DefaultFunctionArrayLvalueConversion(FirstArg);
   1945   if (FirstArgResult.isInvalid())
   1946     return ExprError();
   1947   FirstArg = FirstArgResult.get();
   1948   TheCall->setArg(0, FirstArg);
   1949 
   1950   const PointerType *pointerType = FirstArg->getType()->getAs<PointerType>();
   1951   if (!pointerType) {
   1952     Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer)
   1953       << FirstArg->getType() << FirstArg->getSourceRange();
   1954     return ExprError();
   1955   }
   1956 
   1957   QualType ValType = pointerType->getPointeeType();
   1958   if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
   1959       !ValType->isBlockPointerType()) {
   1960     Diag(DRE->getLocStart(), diag::err_atomic_builtin_must_be_pointer_intptr)
   1961       << FirstArg->getType() << FirstArg->getSourceRange();
   1962     return ExprError();
   1963   }
   1964 
   1965   switch (ValType.getObjCLifetime()) {
   1966   case Qualifiers::OCL_None:
   1967   case Qualifiers::OCL_ExplicitNone:
   1968     // okay
   1969     break;
   1970 
   1971   case Qualifiers::OCL_Weak:
   1972   case Qualifiers::OCL_Strong:
   1973   case Qualifiers::OCL_Autoreleasing:
   1974     Diag(DRE->getLocStart(), diag::err_arc_atomic_ownership)
   1975       << ValType << FirstArg->getSourceRange();
   1976     return ExprError();
   1977   }
   1978 
   1979   // Strip any qualifiers off ValType.
   1980   ValType = ValType.getUnqualifiedType();
   1981 
   1982   // The majority of builtins return a value, but a few have special return
   1983   // types, so allow them to override appropriately below.
   1984   QualType ResultType = ValType;
   1985 
   1986   // We need to figure out which concrete builtin this maps onto.  For example,
   1987   // __sync_fetch_and_add with a 2 byte object turns into
   1988   // __sync_fetch_and_add_2.
   1989 #define BUILTIN_ROW(x) \
   1990   { Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \
   1991     Builtin::BI##x##_8, Builtin::BI##x##_16 }
   1992 
   1993   static const unsigned BuiltinIndices[][5] = {
   1994     BUILTIN_ROW(__sync_fetch_and_add),
   1995     BUILTIN_ROW(__sync_fetch_and_sub),
   1996     BUILTIN_ROW(__sync_fetch_and_or),
   1997     BUILTIN_ROW(__sync_fetch_and_and),
   1998     BUILTIN_ROW(__sync_fetch_and_xor),
   1999     BUILTIN_ROW(__sync_fetch_and_nand),
   2000 
   2001     BUILTIN_ROW(__sync_add_and_fetch),
   2002     BUILTIN_ROW(__sync_sub_and_fetch),
   2003     BUILTIN_ROW(__sync_and_and_fetch),
   2004     BUILTIN_ROW(__sync_or_and_fetch),
   2005     BUILTIN_ROW(__sync_xor_and_fetch),
   2006     BUILTIN_ROW(__sync_nand_and_fetch),
   2007 
   2008     BUILTIN_ROW(__sync_val_compare_and_swap),
   2009     BUILTIN_ROW(__sync_bool_compare_and_swap),
   2010     BUILTIN_ROW(__sync_lock_test_and_set),
   2011     BUILTIN_ROW(__sync_lock_release),
   2012     BUILTIN_ROW(__sync_swap)
   2013   };
   2014 #undef BUILTIN_ROW
   2015 
   2016   // Determine the index of the size.
   2017   unsigned SizeIndex;
   2018   switch (Context.getTypeSizeInChars(ValType).getQuantity()) {
   2019   case 1: SizeIndex = 0; break;
   2020   case 2: SizeIndex = 1; break;
   2021   case 4: SizeIndex = 2; break;
   2022   case 8: SizeIndex = 3; break;
   2023   case 16: SizeIndex = 4; break;
   2024   default:
   2025     Diag(DRE->getLocStart(), diag::err_atomic_builtin_pointer_size)
   2026       << FirstArg->getType() << FirstArg->getSourceRange();
   2027     return ExprError();
   2028   }
   2029 
   2030   // Each of these builtins has one pointer argument, followed by some number of
   2031   // values (0, 1 or 2) followed by a potentially empty varags list of stuff
   2032   // that we ignore.  Find out which row of BuiltinIndices to read from as well
   2033   // as the number of fixed args.
   2034   unsigned BuiltinID = FDecl->getBuiltinID();
   2035   unsigned BuiltinIndex, NumFixed = 1;
   2036   bool WarnAboutSemanticsChange = false;
   2037   switch (BuiltinID) {
   2038   default: llvm_unreachable("Unknown overloaded atomic builtin!");
   2039   case Builtin::BI__sync_fetch_and_add:
   2040   case Builtin::BI__sync_fetch_and_add_1:
   2041   case Builtin::BI__sync_fetch_and_add_2:
   2042   case Builtin::BI__sync_fetch_and_add_4:
   2043   case Builtin::BI__sync_fetch_and_add_8:
   2044   case Builtin::BI__sync_fetch_and_add_16:
   2045     BuiltinIndex = 0;
   2046     break;
   2047 
   2048   case Builtin::BI__sync_fetch_and_sub:
   2049   case Builtin::BI__sync_fetch_and_sub_1:
   2050   case Builtin::BI__sync_fetch_and_sub_2:
   2051   case Builtin::BI__sync_fetch_and_sub_4:
   2052   case Builtin::BI__sync_fetch_and_sub_8:
   2053   case Builtin::BI__sync_fetch_and_sub_16:
   2054     BuiltinIndex = 1;
   2055     break;
   2056 
   2057   case Builtin::BI__sync_fetch_and_or:
   2058   case Builtin::BI__sync_fetch_and_or_1:
   2059   case Builtin::BI__sync_fetch_and_or_2:
   2060   case Builtin::BI__sync_fetch_and_or_4:
   2061   case Builtin::BI__sync_fetch_and_or_8:
   2062   case Builtin::BI__sync_fetch_and_or_16:
   2063     BuiltinIndex = 2;
   2064     break;
   2065 
   2066   case Builtin::BI__sync_fetch_and_and:
   2067   case Builtin::BI__sync_fetch_and_and_1:
   2068   case Builtin::BI__sync_fetch_and_and_2:
   2069   case Builtin::BI__sync_fetch_and_and_4:
   2070   case Builtin::BI__sync_fetch_and_and_8:
   2071   case Builtin::BI__sync_fetch_and_and_16:
   2072     BuiltinIndex = 3;
   2073     break;
   2074 
   2075   case Builtin::BI__sync_fetch_and_xor:
   2076   case Builtin::BI__sync_fetch_and_xor_1:
   2077   case Builtin::BI__sync_fetch_and_xor_2:
   2078   case Builtin::BI__sync_fetch_and_xor_4:
   2079   case Builtin::BI__sync_fetch_and_xor_8:
   2080   case Builtin::BI__sync_fetch_and_xor_16:
   2081     BuiltinIndex = 4;
   2082     break;
   2083 
   2084   case Builtin::BI__sync_fetch_and_nand:
   2085   case Builtin::BI__sync_fetch_and_nand_1:
   2086   case Builtin::BI__sync_fetch_and_nand_2:
   2087   case Builtin::BI__sync_fetch_and_nand_4:
   2088   case Builtin::BI__sync_fetch_and_nand_8:
   2089   case Builtin::BI__sync_fetch_and_nand_16:
   2090     BuiltinIndex = 5;
   2091     WarnAboutSemanticsChange = true;
   2092     break;
   2093 
   2094   case Builtin::BI__sync_add_and_fetch:
   2095   case Builtin::BI__sync_add_and_fetch_1:
   2096   case Builtin::BI__sync_add_and_fetch_2:
   2097   case Builtin::BI__sync_add_and_fetch_4:
   2098   case Builtin::BI__sync_add_and_fetch_8:
   2099   case Builtin::BI__sync_add_and_fetch_16:
   2100     BuiltinIndex = 6;
   2101     break;
   2102 
   2103   case Builtin::BI__sync_sub_and_fetch:
   2104   case Builtin::BI__sync_sub_and_fetch_1:
   2105   case Builtin::BI__sync_sub_and_fetch_2:
   2106   case Builtin::BI__sync_sub_and_fetch_4:
   2107   case Builtin::BI__sync_sub_and_fetch_8:
   2108   case Builtin::BI__sync_sub_and_fetch_16:
   2109     BuiltinIndex = 7;
   2110     break;
   2111 
   2112   case Builtin::BI__sync_and_and_fetch:
   2113   case Builtin::BI__sync_and_and_fetch_1:
   2114   case Builtin::BI__sync_and_and_fetch_2:
   2115   case Builtin::BI__sync_and_and_fetch_4:
   2116   case Builtin::BI__sync_and_and_fetch_8:
   2117   case Builtin::BI__sync_and_and_fetch_16:
   2118     BuiltinIndex = 8;
   2119     break;
   2120 
   2121   case Builtin::BI__sync_or_and_fetch:
   2122   case Builtin::BI__sync_or_and_fetch_1:
   2123   case Builtin::BI__sync_or_and_fetch_2:
   2124   case Builtin::BI__sync_or_and_fetch_4:
   2125   case Builtin::BI__sync_or_and_fetch_8:
   2126   case Builtin::BI__sync_or_and_fetch_16:
   2127     BuiltinIndex = 9;
   2128     break;
   2129 
   2130   case Builtin::BI__sync_xor_and_fetch:
   2131   case Builtin::BI__sync_xor_and_fetch_1:
   2132   case Builtin::BI__sync_xor_and_fetch_2:
   2133   case Builtin::BI__sync_xor_and_fetch_4:
   2134   case Builtin::BI__sync_xor_and_fetch_8:
   2135   case Builtin::BI__sync_xor_and_fetch_16:
   2136     BuiltinIndex = 10;
   2137     break;
   2138 
   2139   case Builtin::BI__sync_nand_and_fetch:
   2140   case Builtin::BI__sync_nand_and_fetch_1:
   2141   case Builtin::BI__sync_nand_and_fetch_2:
   2142   case Builtin::BI__sync_nand_and_fetch_4:
   2143   case Builtin::BI__sync_nand_and_fetch_8:
   2144   case Builtin::BI__sync_nand_and_fetch_16:
   2145     BuiltinIndex = 11;
   2146     WarnAboutSemanticsChange = true;
   2147     break;
   2148 
   2149   case Builtin::BI__sync_val_compare_and_swap:
   2150   case Builtin::BI__sync_val_compare_and_swap_1:
   2151   case Builtin::BI__sync_val_compare_and_swap_2:
   2152   case Builtin::BI__sync_val_compare_and_swap_4:
   2153   case Builtin::BI__sync_val_compare_and_swap_8:
   2154   case Builtin::BI__sync_val_compare_and_swap_16:
   2155     BuiltinIndex = 12;
   2156     NumFixed = 2;
   2157     break;
   2158 
   2159   case Builtin::BI__sync_bool_compare_and_swap:
   2160   case Builtin::BI__sync_bool_compare_and_swap_1:
   2161   case Builtin::BI__sync_bool_compare_and_swap_2:
   2162   case Builtin::BI__sync_bool_compare_and_swap_4:
   2163   case Builtin::BI__sync_bool_compare_and_swap_8:
   2164   case Builtin::BI__sync_bool_compare_and_swap_16:
   2165     BuiltinIndex = 13;
   2166     NumFixed = 2;
   2167     ResultType = Context.BoolTy;
   2168     break;
   2169 
   2170   case Builtin::BI__sync_lock_test_and_set:
   2171   case Builtin::BI__sync_lock_test_and_set_1:
   2172   case Builtin::BI__sync_lock_test_and_set_2:
   2173   case Builtin::BI__sync_lock_test_and_set_4:
   2174   case Builtin::BI__sync_lock_test_and_set_8:
   2175   case Builtin::BI__sync_lock_test_and_set_16:
   2176     BuiltinIndex = 14;
   2177     break;
   2178 
   2179   case Builtin::BI__sync_lock_release:
   2180   case Builtin::BI__sync_lock_release_1:
   2181   case Builtin::BI__sync_lock_release_2:
   2182   case Builtin::BI__sync_lock_release_4:
   2183   case Builtin::BI__sync_lock_release_8:
   2184   case Builtin::BI__sync_lock_release_16:
   2185     BuiltinIndex = 15;
   2186     NumFixed = 0;
   2187     ResultType = Context.VoidTy;
   2188     break;
   2189 
   2190   case Builtin::BI__sync_swap:
   2191   case Builtin::BI__sync_swap_1:
   2192   case Builtin::BI__sync_swap_2:
   2193   case Builtin::BI__sync_swap_4:
   2194   case Builtin::BI__sync_swap_8:
   2195   case Builtin::BI__sync_swap_16:
   2196     BuiltinIndex = 16;
   2197     break;
   2198   }
   2199 
   2200   // Now that we know how many fixed arguments we expect, first check that we
   2201   // have at least that many.
   2202   if (TheCall->getNumArgs() < 1+NumFixed) {
   2203     Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args_at_least)
   2204       << 0 << 1+NumFixed << TheCall->getNumArgs()
   2205       << TheCall->getCallee()->getSourceRange();
   2206     return ExprError();
   2207   }
   2208 
   2209   if (WarnAboutSemanticsChange) {
   2210     Diag(TheCall->getLocEnd(), diag::warn_sync_fetch_and_nand_semantics_change)
   2211       << TheCall->getCallee()->getSourceRange();
   2212   }
   2213 
   2214   // Get the decl for the concrete builtin from this, we can tell what the
   2215   // concrete integer type we should convert to is.
   2216   unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex];
   2217   const char *NewBuiltinName = Context.BuiltinInfo.getName(NewBuiltinID);
   2218   FunctionDecl *NewBuiltinDecl;
   2219   if (NewBuiltinID == BuiltinID)
   2220     NewBuiltinDecl = FDecl;
   2221   else {
   2222     // Perform builtin lookup to avoid redeclaring it.
   2223     DeclarationName DN(&Context.Idents.get(NewBuiltinName));
   2224     LookupResult Res(*this, DN, DRE->getLocStart(), LookupOrdinaryName);
   2225     LookupName(Res, TUScope, /*AllowBuiltinCreation=*/true);
   2226     assert(Res.getFoundDecl());
   2227     NewBuiltinDecl = dyn_cast<FunctionDecl>(Res.getFoundDecl());
   2228     if (!NewBuiltinDecl)
   2229       return ExprError();
   2230   }
   2231 
   2232   // The first argument --- the pointer --- has a fixed type; we
   2233   // deduce the types of the rest of the arguments accordingly.  Walk
   2234   // the remaining arguments, converting them to the deduced value type.
   2235   for (unsigned i = 0; i != NumFixed; ++i) {
   2236     ExprResult Arg = TheCall->getArg(i+1);
   2237 
   2238     // GCC does an implicit conversion to the pointer or integer ValType.  This
   2239     // can fail in some cases (1i -> int**), check for this error case now.
   2240     // Initialize the argument.
   2241     InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
   2242                                                    ValType, /*consume*/ false);
   2243     Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
   2244     if (Arg.isInvalid())
   2245       return ExprError();
   2246 
   2247     // Okay, we have something that *can* be converted to the right type.  Check
   2248     // to see if there is a potentially weird extension going on here.  This can
   2249     // happen when you do an atomic operation on something like an char* and
   2250     // pass in 42.  The 42 gets converted to char.  This is even more strange
   2251     // for things like 45.123 -> char, etc.
   2252     // FIXME: Do this check.
   2253     TheCall->setArg(i+1, Arg.get());
   2254   }
   2255 
   2256   ASTContext& Context = this->getASTContext();
   2257 
   2258   // Create a new DeclRefExpr to refer to the new decl.
   2259   DeclRefExpr* NewDRE = DeclRefExpr::Create(
   2260       Context,
   2261       DRE->getQualifierLoc(),
   2262       SourceLocation(),
   2263       NewBuiltinDecl,
   2264       /*enclosing*/ false,
   2265       DRE->getLocation(),
   2266       Context.BuiltinFnTy,
   2267       DRE->getValueKind());
   2268 
   2269   // Set the callee in the CallExpr.
   2270   // FIXME: This loses syntactic information.
   2271   QualType CalleePtrTy = Context.getPointerType(NewBuiltinDecl->getType());
   2272   ExprResult PromotedCall = ImpCastExprToType(NewDRE, CalleePtrTy,
   2273                                               CK_BuiltinFnToFnPtr);
   2274   TheCall->setCallee(PromotedCall.get());
   2275 
   2276   // Change the result type of the call to match the original value type. This
   2277   // is arbitrary, but the codegen for these builtins ins design to handle it
   2278   // gracefully.
   2279   TheCall->setType(ResultType);
   2280 
   2281   return TheCallResult;
   2282 }
   2283 
   2284 /// SemaBuiltinNontemporalOverloaded - We have a call to
   2285 /// __builtin_nontemporal_store or __builtin_nontemporal_load, which is an
   2286 /// overloaded function based on the pointer type of its last argument.
   2287 ///
   2288 /// This function goes through and does final semantic checking for these
   2289 /// builtins.
   2290 ExprResult Sema::SemaBuiltinNontemporalOverloaded(ExprResult TheCallResult) {
   2291   CallExpr *TheCall = (CallExpr *)TheCallResult.get();
   2292   DeclRefExpr *DRE =
   2293       cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
   2294   FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
   2295   unsigned BuiltinID = FDecl->getBuiltinID();
   2296   assert((BuiltinID == Builtin::BI__builtin_nontemporal_store ||
   2297           BuiltinID == Builtin::BI__builtin_nontemporal_load) &&
   2298          "Unexpected nontemporal load/store builtin!");
   2299   bool isStore = BuiltinID == Builtin::BI__builtin_nontemporal_store;
   2300   unsigned numArgs = isStore ? 2 : 1;
   2301 
   2302   // Ensure that we have the proper number of arguments.
   2303   if (checkArgCount(*this, TheCall, numArgs))
   2304     return ExprError();
   2305 
   2306   // Inspect the last argument of the nontemporal builtin.  This should always
   2307   // be a pointer type, from which we imply the type of the memory access.
   2308   // Because it is a pointer type, we don't have to worry about any implicit
   2309   // casts here.
   2310   Expr *PointerArg = TheCall->getArg(numArgs - 1);
   2311   ExprResult PointerArgResult =
   2312       DefaultFunctionArrayLvalueConversion(PointerArg);
   2313 
   2314   if (PointerArgResult.isInvalid())
   2315     return ExprError();
   2316   PointerArg = PointerArgResult.get();
   2317   TheCall->setArg(numArgs - 1, PointerArg);
   2318 
   2319   const PointerType *pointerType = PointerArg->getType()->getAs<PointerType>();
   2320   if (!pointerType) {
   2321     Diag(DRE->getLocStart(), diag::err_nontemporal_builtin_must_be_pointer)
   2322         << PointerArg->getType() << PointerArg->getSourceRange();
   2323     return ExprError();
   2324   }
   2325 
   2326   QualType ValType = pointerType->getPointeeType();
   2327 
   2328   // Strip any qualifiers off ValType.
   2329   ValType = ValType.getUnqualifiedType();
   2330   if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
   2331       !ValType->isBlockPointerType() && !ValType->isFloatingType() &&
   2332       !ValType->isVectorType()) {
   2333     Diag(DRE->getLocStart(),
   2334          diag::err_nontemporal_builtin_must_be_pointer_intfltptr_or_vector)
   2335         << PointerArg->getType() << PointerArg->getSourceRange();
   2336     return ExprError();
   2337   }
   2338 
   2339   if (!isStore) {
   2340     TheCall->setType(ValType);
   2341     return TheCallResult;
   2342   }
   2343 
   2344   ExprResult ValArg = TheCall->getArg(0);
   2345   InitializedEntity Entity = InitializedEntity::InitializeParameter(
   2346       Context, ValType, /*consume*/ false);
   2347   ValArg = PerformCopyInitialization(Entity, SourceLocation(), ValArg);
   2348   if (ValArg.isInvalid())
   2349     return ExprError();
   2350 
   2351   TheCall->setArg(0, ValArg.get());
   2352   TheCall->setType(Context.VoidTy);
   2353   return TheCallResult;
   2354 }
   2355 
   2356 /// CheckObjCString - Checks that the argument to the builtin
   2357 /// CFString constructor is correct
   2358 /// Note: It might also make sense to do the UTF-16 conversion here (would
   2359 /// simplify the backend).
   2360 bool Sema::CheckObjCString(Expr *Arg) {
   2361   Arg = Arg->IgnoreParenCasts();
   2362   StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
   2363 
   2364   if (!Literal || !Literal->isAscii()) {
   2365     Diag(Arg->getLocStart(), diag::err_cfstring_literal_not_string_constant)
   2366       << Arg->getSourceRange();
   2367     return true;
   2368   }
   2369 
   2370   if (Literal->containsNonAsciiOrNull()) {
   2371     StringRef String = Literal->getString();
   2372     unsigned NumBytes = String.size();
   2373     SmallVector<UTF16, 128> ToBuf(NumBytes);
   2374     const UTF8 *FromPtr = (const UTF8 *)String.data();
   2375     UTF16 *ToPtr = &ToBuf[0];
   2376 
   2377     ConversionResult Result = ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes,
   2378                                                  &ToPtr, ToPtr + NumBytes,
   2379                                                  strictConversion);
   2380     // Check for conversion failure.
   2381     if (Result != conversionOK)
   2382       Diag(Arg->getLocStart(),
   2383            diag::warn_cfstring_truncated) << Arg->getSourceRange();
   2384   }
   2385   return false;
   2386 }
   2387 
   2388 /// Check the arguments to '__builtin_va_start' or '__builtin_ms_va_start'
   2389 /// for validity.  Emit an error and return true on failure; return false
   2390 /// on success.
   2391 bool Sema::SemaBuiltinVAStartImpl(CallExpr *TheCall) {
   2392   Expr *Fn = TheCall->getCallee();
   2393   if (TheCall->getNumArgs() > 2) {
   2394     Diag(TheCall->getArg(2)->getLocStart(),
   2395          diag::err_typecheck_call_too_many_args)
   2396       << 0 /*function call*/ << 2 << TheCall->getNumArgs()
   2397       << Fn->getSourceRange()
   2398       << SourceRange(TheCall->getArg(2)->getLocStart(),
   2399                      (*(TheCall->arg_end()-1))->getLocEnd());
   2400     return true;
   2401   }
   2402 
   2403   if (TheCall->getNumArgs() < 2) {
   2404     return Diag(TheCall->getLocEnd(),
   2405       diag::err_typecheck_call_too_few_args_at_least)
   2406       << 0 /*function call*/ << 2 << TheCall->getNumArgs();
   2407   }
   2408 
   2409   // Type-check the first argument normally.
   2410   if (checkBuiltinArgument(*this, TheCall, 0))
   2411     return true;
   2412 
   2413   // Determine whether the current function is variadic or not.
   2414   BlockScopeInfo *CurBlock = getCurBlock();
   2415   bool isVariadic;
   2416   if (CurBlock)
   2417     isVariadic = CurBlock->TheDecl->isVariadic();
   2418   else if (FunctionDecl *FD = getCurFunctionDecl())
   2419     isVariadic = FD->isVariadic();
   2420   else
   2421     isVariadic = getCurMethodDecl()->isVariadic();
   2422 
   2423   if (!isVariadic) {
   2424     Diag(Fn->getLocStart(), diag::err_va_start_used_in_non_variadic_function);
   2425     return true;
   2426   }
   2427 
   2428   // Verify that the second argument to the builtin is the last argument of the
   2429   // current function or method.
   2430   bool SecondArgIsLastNamedArgument = false;
   2431   const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
   2432 
   2433   // These are valid if SecondArgIsLastNamedArgument is false after the next
   2434   // block.
   2435   QualType Type;
   2436   SourceLocation ParamLoc;
   2437 
   2438   if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
   2439     if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
   2440       // FIXME: This isn't correct for methods (results in bogus warning).
   2441       // Get the last formal in the current function.
   2442       const ParmVarDecl *LastArg;
   2443       if (CurBlock)
   2444         LastArg = *(CurBlock->TheDecl->param_end()-1);
   2445       else if (FunctionDecl *FD = getCurFunctionDecl())
   2446         LastArg = *(FD->param_end()-1);
   2447       else
   2448         LastArg = *(getCurMethodDecl()->param_end()-1);
   2449       SecondArgIsLastNamedArgument = PV == LastArg;
   2450 
   2451       Type = PV->getType();
   2452       ParamLoc = PV->getLocation();
   2453     }
   2454   }
   2455 
   2456   if (!SecondArgIsLastNamedArgument)
   2457     Diag(TheCall->getArg(1)->getLocStart(),
   2458          diag::warn_second_parameter_of_va_start_not_last_named_argument);
   2459   else if (Type->isReferenceType()) {
   2460     Diag(Arg->getLocStart(),
   2461          diag::warn_va_start_of_reference_type_is_undefined);
   2462     Diag(ParamLoc, diag::note_parameter_type) << Type;
   2463   }
   2464 
   2465   TheCall->setType(Context.VoidTy);
   2466   return false;
   2467 }
   2468 
   2469 /// Check the arguments to '__builtin_va_start' for validity, and that
   2470 /// it was called from a function of the native ABI.
   2471 /// Emit an error and return true on failure; return false on success.
   2472 bool Sema::SemaBuiltinVAStart(CallExpr *TheCall) {
   2473   // On x86-64 Unix, don't allow this in Win64 ABI functions.
   2474   // On x64 Windows, don't allow this in System V ABI functions.
   2475   // (Yes, that means there's no corresponding way to support variadic
   2476   // System V ABI functions on Windows.)
   2477   if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86_64) {
   2478     unsigned OS = Context.getTargetInfo().getTriple().getOS();
   2479     clang::CallingConv CC = CC_C;
   2480     if (const FunctionDecl *FD = getCurFunctionDecl())
   2481       CC = FD->getType()->getAs<FunctionType>()->getCallConv();
   2482     if ((OS == llvm::Triple::Win32 && CC == CC_X86_64SysV) ||
   2483         (OS != llvm::Triple::Win32 && CC == CC_X86_64Win64))
   2484       return Diag(TheCall->getCallee()->getLocStart(),
   2485                   diag::err_va_start_used_in_wrong_abi_function)
   2486              << (OS != llvm::Triple::Win32);
   2487   }
   2488   return SemaBuiltinVAStartImpl(TheCall);
   2489 }
   2490 
   2491 /// Check the arguments to '__builtin_ms_va_start' for validity, and that
   2492 /// it was called from a Win64 ABI function.
   2493 /// Emit an error and return true on failure; return false on success.
   2494 bool Sema::SemaBuiltinMSVAStart(CallExpr *TheCall) {
   2495   // This only makes sense for x86-64.
   2496   const llvm::Triple &TT = Context.getTargetInfo().getTriple();
   2497   Expr *Callee = TheCall->getCallee();
   2498   if (TT.getArch() != llvm::Triple::x86_64)
   2499     return Diag(Callee->getLocStart(), diag::err_x86_builtin_32_bit_tgt);
   2500   // Don't allow this in System V ABI functions.
   2501   clang::CallingConv CC = CC_C;
   2502   if (const FunctionDecl *FD = getCurFunctionDecl())
   2503     CC = FD->getType()->getAs<FunctionType>()->getCallConv();
   2504   if (CC == CC_X86_64SysV ||
   2505       (TT.getOS() != llvm::Triple::Win32 && CC != CC_X86_64Win64))
   2506     return Diag(Callee->getLocStart(),
   2507                 diag::err_ms_va_start_used_in_sysv_function);
   2508   return SemaBuiltinVAStartImpl(TheCall);
   2509 }
   2510 
   2511 bool Sema::SemaBuiltinVAStartARM(CallExpr *Call) {
   2512   // void __va_start(va_list *ap, const char *named_addr, size_t slot_size,
   2513   //                 const char *named_addr);
   2514 
   2515   Expr *Func = Call->getCallee();
   2516 
   2517   if (Call->getNumArgs() < 3)
   2518     return Diag(Call->getLocEnd(),
   2519                 diag::err_typecheck_call_too_few_args_at_least)
   2520            << 0 /*function call*/ << 3 << Call->getNumArgs();
   2521 
   2522   // Determine whether the current function is variadic or not.
   2523   bool IsVariadic;
   2524   if (BlockScopeInfo *CurBlock = getCurBlock())
   2525     IsVariadic = CurBlock->TheDecl->isVariadic();
   2526   else if (FunctionDecl *FD = getCurFunctionDecl())
   2527     IsVariadic = FD->isVariadic();
   2528   else if (ObjCMethodDecl *MD = getCurMethodDecl())
   2529     IsVariadic = MD->isVariadic();
   2530   else
   2531     llvm_unreachable("unexpected statement type");
   2532 
   2533   if (!IsVariadic) {
   2534     Diag(Func->getLocStart(), diag::err_va_start_used_in_non_variadic_function);
   2535     return true;
   2536   }
   2537 
   2538   // Type-check the first argument normally.
   2539   if (checkBuiltinArgument(*this, Call, 0))
   2540     return true;
   2541 
   2542   const struct {
   2543     unsigned ArgNo;
   2544     QualType Type;
   2545   } ArgumentTypes[] = {
   2546     { 1, Context.getPointerType(Context.CharTy.withConst()) },
   2547     { 2, Context.getSizeType() },
   2548   };
   2549 
   2550   for (const auto &AT : ArgumentTypes) {
   2551     const Expr *Arg = Call->getArg(AT.ArgNo)->IgnoreParens();
   2552     if (Arg->getType().getCanonicalType() == AT.Type.getCanonicalType())
   2553       continue;
   2554     Diag(Arg->getLocStart(), diag::err_typecheck_convert_incompatible)
   2555       << Arg->getType() << AT.Type << 1 /* different class */
   2556       << 0 /* qualifier difference */ << 3 /* parameter mismatch */
   2557       << AT.ArgNo + 1 << Arg->getType() << AT.Type;
   2558   }
   2559 
   2560   return false;
   2561 }
   2562 
   2563 /// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and
   2564 /// friends.  This is declared to take (...), so we have to check everything.
   2565 bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) {
   2566   if (TheCall->getNumArgs() < 2)
   2567     return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
   2568       << 0 << 2 << TheCall->getNumArgs()/*function call*/;
   2569   if (TheCall->getNumArgs() > 2)
   2570     return Diag(TheCall->getArg(2)->getLocStart(),
   2571                 diag::err_typecheck_call_too_many_args)
   2572       << 0 /*function call*/ << 2 << TheCall->getNumArgs()
   2573       << SourceRange(TheCall->getArg(2)->getLocStart(),
   2574                      (*(TheCall->arg_end()-1))->getLocEnd());
   2575 
   2576   ExprResult OrigArg0 = TheCall->getArg(0);
   2577   ExprResult OrigArg1 = TheCall->getArg(1);
   2578 
   2579   // Do standard promotions between the two arguments, returning their common
   2580   // type.
   2581   QualType Res = UsualArithmeticConversions(OrigArg0, OrigArg1, false);
   2582   if (OrigArg0.isInvalid() || OrigArg1.isInvalid())
   2583     return true;
   2584 
   2585   // Make sure any conversions are pushed back into the call; this is
   2586   // type safe since unordered compare builtins are declared as "_Bool
   2587   // foo(...)".
   2588   TheCall->setArg(0, OrigArg0.get());
   2589   TheCall->setArg(1, OrigArg1.get());
   2590 
   2591   if (OrigArg0.get()->isTypeDependent() || OrigArg1.get()->isTypeDependent())
   2592     return false;
   2593 
   2594   // If the common type isn't a real floating type, then the arguments were
   2595   // invalid for this operation.
   2596   if (Res.isNull() || !Res->isRealFloatingType())
   2597     return Diag(OrigArg0.get()->getLocStart(),
   2598                 diag::err_typecheck_call_invalid_ordered_compare)
   2599       << OrigArg0.get()->getType() << OrigArg1.get()->getType()
   2600       << SourceRange(OrigArg0.get()->getLocStart(), OrigArg1.get()->getLocEnd());
   2601 
   2602   return false;
   2603 }
   2604 
   2605 /// SemaBuiltinSemaBuiltinFPClassification - Handle functions like
   2606 /// __builtin_isnan and friends.  This is declared to take (...), so we have
   2607 /// to check everything. We expect the last argument to be a floating point
   2608 /// value.
   2609 bool Sema::SemaBuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs) {
   2610   if (TheCall->getNumArgs() < NumArgs)
   2611     return Diag(TheCall->getLocEnd(), diag::err_typecheck_call_too_few_args)
   2612       << 0 << NumArgs << TheCall->getNumArgs()/*function call*/;
   2613   if (TheCall->getNumArgs() > NumArgs)
   2614     return Diag(TheCall->getArg(NumArgs)->getLocStart(),
   2615                 diag::err_typecheck_call_too_many_args)
   2616       << 0 /*function call*/ << NumArgs << TheCall->getNumArgs()
   2617       << SourceRange(TheCall->getArg(NumArgs)->getLocStart(),
   2618                      (*(TheCall->arg_end()-1))->getLocEnd());
   2619 
   2620   Expr *OrigArg = TheCall->getArg(NumArgs-1);
   2621 
   2622   if (OrigArg->isTypeDependent())
   2623     return false;
   2624 
   2625   // This operation requires a non-_Complex floating-point number.
   2626   if (!OrigArg->getType()->isRealFloatingType())
   2627     return Diag(OrigArg->getLocStart(),
   2628                 diag::err_typecheck_call_invalid_unary_fp)
   2629       << OrigArg->getType() << OrigArg->getSourceRange();
   2630 
   2631   // If this is an implicit conversion from float -> double, remove it.
   2632   if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(OrigArg)) {
   2633     Expr *CastArg = Cast->getSubExpr();
   2634     if (CastArg->getType()->isSpecificBuiltinType(BuiltinType::Float)) {
   2635       assert(Cast->getType()->isSpecificBuiltinType(BuiltinType::Double) &&
   2636              "promotion from float to double is the only expected cast here");
   2637       Cast->setSubExpr(nullptr);
   2638       TheCall->setArg(NumArgs-1, CastArg);
   2639     }
   2640   }
   2641 
   2642   return false;
   2643 }
   2644 
   2645 /// SemaBuiltinShuffleVector - Handle __builtin_shufflevector.
   2646 // This is declared to take (...), so we have to check everything.
   2647 ExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
   2648   if (TheCall->getNumArgs() < 2)
   2649     return ExprError(Diag(TheCall->getLocEnd(),
   2650                           diag::err_typecheck_call_too_few_args_at_least)
   2651                      << 0 /*function call*/ << 2 << TheCall->getNumArgs()
   2652                      << TheCall->getSourceRange());
   2653 
   2654   // Determine which of the following types of shufflevector we're checking:
   2655   // 1) unary, vector mask: (lhs, mask)
   2656   // 2) binary, vector mask: (lhs, rhs, mask)
   2657   // 3) binary, scalar mask: (lhs, rhs, index, ..., index)
   2658   QualType resType = TheCall->getArg(0)->getType();
   2659   unsigned numElements = 0;
   2660 
   2661   if (!TheCall->getArg(0)->isTypeDependent() &&
   2662       !TheCall->getArg(1)->isTypeDependent()) {
   2663     QualType LHSType = TheCall->getArg(0)->getType();
   2664     QualType RHSType = TheCall->getArg(1)->getType();
   2665 
   2666     if (!LHSType->isVectorType() || !RHSType->isVectorType())
   2667       return ExprError(Diag(TheCall->getLocStart(),
   2668                             diag::err_shufflevector_non_vector)
   2669                        << SourceRange(TheCall->getArg(0)->getLocStart(),
   2670                                       TheCall->getArg(1)->getLocEnd()));
   2671 
   2672     numElements = LHSType->getAs<VectorType>()->getNumElements();
   2673     unsigned numResElements = TheCall->getNumArgs() - 2;
   2674 
   2675     // Check to see if we have a call with 2 vector arguments, the unary shuffle
   2676     // with mask.  If so, verify that RHS is an integer vector type with the
   2677     // same number of elts as lhs.
   2678     if (TheCall->getNumArgs() == 2) {
   2679       if (!RHSType->hasIntegerRepresentation() ||
   2680           RHSType->getAs<VectorType>()->getNumElements() != numElements)
   2681         return ExprError(Diag(TheCall->getLocStart(),
   2682                               diag::err_shufflevector_incompatible_vector)
   2683                          << SourceRange(TheCall->getArg(1)->getLocStart(),
   2684                                         TheCall->getArg(1)->getLocEnd()));
   2685     } else if (!Context.hasSameUnqualifiedType(LHSType, RHSType)) {
   2686       return ExprError(Diag(TheCall->getLocStart(),
   2687                             diag::err_shufflevector_incompatible_vector)
   2688                        << SourceRange(TheCall->getArg(0)->getLocStart(),
   2689                                       TheCall->getArg(1)->getLocEnd()));
   2690     } else if (numElements != numResElements) {
   2691       QualType eltType = LHSType->getAs<VectorType>()->getElementType();
   2692       resType = Context.getVectorType(eltType, numResElements,
   2693                                       VectorType::GenericVector);
   2694     }
   2695   }
   2696 
   2697   for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
   2698     if (TheCall->getArg(i)->isTypeDependent() ||
   2699         TheCall->getArg(i)->isValueDependent())
   2700       continue;
   2701 
   2702     llvm::APSInt Result(32);
   2703     if (!TheCall->getArg(i)->isIntegerConstantExpr(Result, Context))
   2704       return ExprError(Diag(TheCall->getLocStart(),
   2705                             diag::err_shufflevector_nonconstant_argument)
   2706                        << TheCall->getArg(i)->getSourceRange());
   2707 
   2708     // Allow -1 which will be translated to undef in the IR.
   2709     if (Result.isSigned() && Result.isAllOnesValue())
   2710       continue;
   2711 
   2712     if (Result.getActiveBits() > 64 || Result.getZExtValue() >= numElements*2)
   2713       return ExprError(Diag(TheCall->getLocStart(),
   2714                             diag::err_shufflevector_argument_too_large)
   2715                        << TheCall->getArg(i)->getSourceRange());
   2716   }
   2717 
   2718   SmallVector<Expr*, 32> exprs;
   2719 
   2720   for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) {
   2721     exprs.push_back(TheCall->getArg(i));
   2722     TheCall->setArg(i, nullptr);
   2723   }
   2724 
   2725   return new (Context) ShuffleVectorExpr(Context, exprs, resType,
   2726                                          TheCall->getCallee()->getLocStart(),
   2727                                          TheCall->getRParenLoc());
   2728 }
   2729 
   2730 /// SemaConvertVectorExpr - Handle __builtin_convertvector
   2731 ExprResult Sema::SemaConvertVectorExpr(Expr *E, TypeSourceInfo *TInfo,
   2732                                        SourceLocation BuiltinLoc,
   2733                                        SourceLocation RParenLoc) {
   2734   ExprValueKind VK = VK_RValue;
   2735   ExprObjectKind OK = OK_Ordinary;
   2736   QualType DstTy = TInfo->getType();
   2737   QualType SrcTy = E->getType();
   2738 
   2739   if (!SrcTy->isVectorType() && !SrcTy->isDependentType())
   2740     return ExprError(Diag(BuiltinLoc,
   2741                           diag::err_convertvector_non_vector)
   2742                      << E->getSourceRange());
   2743   if (!DstTy->isVectorType() && !DstTy->isDependentType())
   2744     return ExprError(Diag(BuiltinLoc,
   2745                           diag::err_convertvector_non_vector_type));
   2746 
   2747   if (!SrcTy->isDependentType() && !DstTy->isDependentType()) {
   2748     unsigned SrcElts = SrcTy->getAs<VectorType>()->getNumElements();
   2749     unsigned DstElts = DstTy->getAs<VectorType>()->getNumElements();
   2750     if (SrcElts != DstElts)
   2751       return ExprError(Diag(BuiltinLoc,
   2752                             diag::err_convertvector_incompatible_vector)
   2753                        << E->getSourceRange());
   2754   }
   2755 
   2756   return new (Context)
   2757       ConvertVectorExpr(E, TInfo, DstTy, VK, OK, BuiltinLoc, RParenLoc);
   2758 }
   2759 
   2760 /// SemaBuiltinPrefetch - Handle __builtin_prefetch.
   2761 // This is declared to take (const void*, ...) and can take two
   2762 // optional constant int args.
   2763 bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) {
   2764   unsigned NumArgs = TheCall->getNumArgs();
   2765 
   2766   if (NumArgs > 3)
   2767     return Diag(TheCall->getLocEnd(),
   2768              diag::err_typecheck_call_too_many_args_at_most)
   2769              << 0 /*function call*/ << 3 << NumArgs
   2770              << TheCall->getSourceRange();
   2771 
   2772   // Argument 0 is checked for us and the remaining arguments must be
   2773   // constant integers.
   2774   for (unsigned i = 1; i != NumArgs; ++i)
   2775     if (SemaBuiltinConstantArgRange(TheCall, i, 0, i == 1 ? 1 : 3))
   2776       return true;
   2777 
   2778   return false;
   2779 }
   2780 
   2781 /// SemaBuiltinAssume - Handle __assume (MS Extension).
   2782 // __assume does not evaluate its arguments, and should warn if its argument
   2783 // has side effects.
   2784 bool Sema::SemaBuiltinAssume(CallExpr *TheCall) {
   2785   Expr *Arg = TheCall->getArg(0);
   2786   if (Arg->isInstantiationDependent()) return false;
   2787 
   2788   if (Arg->HasSideEffects(Context))
   2789     Diag(Arg->getLocStart(), diag::warn_assume_side_effects)
   2790       << Arg->getSourceRange()
   2791       << cast<FunctionDecl>(TheCall->getCalleeDecl())->getIdentifier();
   2792 
   2793   return false;
   2794 }
   2795 
   2796 /// Handle __builtin_assume_aligned. This is declared
   2797 /// as (const void*, size_t, ...) and can take one optional constant int arg.
   2798 bool Sema::SemaBuiltinAssumeAligned(CallExpr *TheCall) {
   2799   unsigned NumArgs = TheCall->getNumArgs();
   2800 
   2801   if (NumArgs > 3)
   2802     return Diag(TheCall->getLocEnd(),
   2803              diag::err_typecheck_call_too_many_args_at_most)
   2804              << 0 /*function call*/ << 3 << NumArgs
   2805              << TheCall->getSourceRange();
   2806 
   2807   // The alignment must be a constant integer.
   2808   Expr *Arg = TheCall->getArg(1);
   2809 
   2810   // We can't check the value of a dependent argument.
   2811   if (!Arg->isTypeDependent() && !Arg->isValueDependent()) {
   2812     llvm::APSInt Result;
   2813     if (SemaBuiltinConstantArg(TheCall, 1, Result))
   2814       return true;
   2815 
   2816     if (!Result.isPowerOf2())
   2817       return Diag(TheCall->getLocStart(),
   2818                   diag::err_alignment_not_power_of_two)
   2819            << Arg->getSourceRange();
   2820   }
   2821 
   2822   if (NumArgs > 2) {
   2823     ExprResult Arg(TheCall->getArg(2));
   2824     InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
   2825       Context.getSizeType(), false);
   2826     Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
   2827     if (Arg.isInvalid()) return true;
   2828     TheCall->setArg(2, Arg.get());
   2829   }
   2830 
   2831   return false;
   2832 }
   2833 
   2834 /// SemaBuiltinConstantArg - Handle a check if argument ArgNum of CallExpr
   2835 /// TheCall is a constant expression.
   2836 bool Sema::SemaBuiltinConstantArg(CallExpr *TheCall, int ArgNum,
   2837                                   llvm::APSInt &Result) {
   2838   Expr *Arg = TheCall->getArg(ArgNum);
   2839   DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
   2840   FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
   2841 
   2842   if (Arg->isTypeDependent() || Arg->isValueDependent()) return false;
   2843 
   2844   if (!Arg->isIntegerConstantExpr(Result, Context))
   2845     return Diag(TheCall->getLocStart(), diag::err_constant_integer_arg_type)
   2846                 << FDecl->getDeclName() <<  Arg->getSourceRange();
   2847 
   2848   return false;
   2849 }
   2850 
   2851 /// SemaBuiltinConstantArgRange - Handle a check if argument ArgNum of CallExpr
   2852 /// TheCall is a constant expression in the range [Low, High].
   2853 bool Sema::SemaBuiltinConstantArgRange(CallExpr *TheCall, int ArgNum,
   2854                                        int Low, int High) {
   2855   llvm::APSInt Result;
   2856 
   2857   // We can't check the value of a dependent argument.
   2858   Expr *Arg = TheCall->getArg(ArgNum);
   2859   if (Arg->isTypeDependent() || Arg->isValueDependent())
   2860     return false;
   2861 
   2862   // Check constant-ness first.
   2863   if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
   2864     return true;
   2865 
   2866   if (Result.getSExtValue() < Low || Result.getSExtValue() > High)
   2867     return Diag(TheCall->getLocStart(), diag::err_argument_invalid_range)
   2868       << Low << High << Arg->getSourceRange();
   2869 
   2870   return false;
   2871 }
   2872 
   2873 /// SemaBuiltinARMSpecialReg - Handle a check if argument ArgNum of CallExpr
   2874 /// TheCall is an ARM/AArch64 special register string literal.
   2875 bool Sema::SemaBuiltinARMSpecialReg(unsigned BuiltinID, CallExpr *TheCall,
   2876                                     int ArgNum, unsigned ExpectedFieldNum,
   2877                                     bool AllowName) {
   2878   bool IsARMBuiltin = BuiltinID == ARM::BI__builtin_arm_rsr64 ||
   2879                       BuiltinID == ARM::BI__builtin_arm_wsr64 ||
   2880                       BuiltinID == ARM::BI__builtin_arm_rsr ||
   2881                       BuiltinID == ARM::BI__builtin_arm_rsrp ||
   2882                       BuiltinID == ARM::BI__builtin_arm_wsr ||
   2883                       BuiltinID == ARM::BI__builtin_arm_wsrp;
   2884   bool IsAArch64Builtin = BuiltinID == AArch64::BI__builtin_arm_rsr64 ||
   2885                           BuiltinID == AArch64::BI__builtin_arm_wsr64 ||
   2886                           BuiltinID == AArch64::BI__builtin_arm_rsr ||
   2887                           BuiltinID == AArch64::BI__builtin_arm_rsrp ||
   2888                           BuiltinID == AArch64::BI__builtin_arm_wsr ||
   2889                           BuiltinID == AArch64::BI__builtin_arm_wsrp;
   2890   assert((IsARMBuiltin || IsAArch64Builtin) && "Unexpected ARM builtin.");
   2891 
   2892   // We can't check the value of a dependent argument.
   2893   Expr *Arg = TheCall->getArg(ArgNum);
   2894   if (Arg->isTypeDependent() || Arg->isValueDependent())
   2895     return false;
   2896 
   2897   // Check if the argument is a string literal.
   2898   if (!isa<StringLiteral>(Arg->IgnoreParenImpCasts()))
   2899     return Diag(TheCall->getLocStart(), diag::err_expr_not_string_literal)
   2900            << Arg->getSourceRange();
   2901 
   2902   // Check the type of special register given.
   2903   StringRef Reg = cast<StringLiteral>(Arg->IgnoreParenImpCasts())->getString();
   2904   SmallVector<StringRef, 6> Fields;
   2905   Reg.split(Fields, ":");
   2906 
   2907   if (Fields.size() != ExpectedFieldNum && !(AllowName && Fields.size() == 1))
   2908     return Diag(TheCall->getLocStart(), diag::err_arm_invalid_specialreg)
   2909            << Arg->getSourceRange();
   2910 
   2911   // If the string is the name of a register then we cannot check that it is
   2912   // valid here but if the string is of one the forms described in ACLE then we
   2913   // can check that the supplied fields are integers and within the valid
   2914   // ranges.
   2915   if (Fields.size() > 1) {
   2916     bool FiveFields = Fields.size() == 5;
   2917 
   2918     bool ValidString = true;
   2919     if (IsARMBuiltin) {
   2920       ValidString &= Fields[0].startswith_lower("cp") ||
   2921                      Fields[0].startswith_lower("p");
   2922       if (ValidString)
   2923         Fields[0] =
   2924           Fields[0].drop_front(Fields[0].startswith_lower("cp") ? 2 : 1);
   2925 
   2926       ValidString &= Fields[2].startswith_lower("c");
   2927       if (ValidString)
   2928         Fields[2] = Fields[2].drop_front(1);
   2929 
   2930       if (FiveFields) {
   2931         ValidString &= Fields[3].startswith_lower("c");
   2932         if (ValidString)
   2933           Fields[3] = Fields[3].drop_front(1);
   2934       }
   2935     }
   2936 
   2937     SmallVector<int, 5> Ranges;
   2938     if (FiveFields)
   2939       Ranges.append({IsAArch64Builtin ? 1 : 15, 7, 7, 15, 15});
   2940     else
   2941       Ranges.append({15, 7, 15});
   2942 
   2943     for (unsigned i=0; i<Fields.size(); ++i) {
   2944       int IntField;
   2945       ValidString &= !Fields[i].getAsInteger(10, IntField);
   2946       ValidString &= (IntField >= 0 && IntField <= Ranges[i]);
   2947     }
   2948 
   2949     if (!ValidString)
   2950       return Diag(TheCall->getLocStart(), diag::err_arm_invalid_specialreg)
   2951              << Arg->getSourceRange();
   2952 
   2953   } else if (IsAArch64Builtin && Fields.size() == 1) {
   2954     // If the register name is one of those that appear in the condition below
   2955     // and the special register builtin being used is one of the write builtins,
   2956     // then we require that the argument provided for writing to the register
   2957     // is an integer constant expression. This is because it will be lowered to
   2958     // an MSR (immediate) instruction, so we need to know the immediate at
   2959     // compile time.
   2960     if (TheCall->getNumArgs() != 2)
   2961       return false;
   2962 
   2963     std::string RegLower = Reg.lower();
   2964     if (RegLower != "spsel" && RegLower != "daifset" && RegLower != "daifclr" &&
   2965         RegLower != "pan" && RegLower != "uao")
   2966       return false;
   2967 
   2968     return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15);
   2969   }
   2970 
   2971   return false;
   2972 }
   2973 
   2974 /// SemaBuiltinLongjmp - Handle __builtin_longjmp(void *env[5], int val).
   2975 /// This checks that the target supports __builtin_longjmp and
   2976 /// that val is a constant 1.
   2977 bool Sema::SemaBuiltinLongjmp(CallExpr *TheCall) {
   2978   if (!Context.getTargetInfo().hasSjLjLowering())
   2979     return Diag(TheCall->getLocStart(), diag::err_builtin_longjmp_unsupported)
   2980              << SourceRange(TheCall->getLocStart(), TheCall->getLocEnd());
   2981 
   2982   Expr *Arg = TheCall->getArg(1);
   2983   llvm::APSInt Result;
   2984 
   2985   // TODO: This is less than ideal. Overload this to take a value.
   2986   if (SemaBuiltinConstantArg(TheCall, 1, Result))
   2987     return true;
   2988 
   2989   if (Result != 1)
   2990     return Diag(TheCall->getLocStart(), diag::err_builtin_longjmp_invalid_val)
   2991              << SourceRange(Arg->getLocStart(), Arg->getLocEnd());
   2992 
   2993   return false;
   2994 }
   2995 
   2996 
   2997 /// SemaBuiltinSetjmp - Handle __builtin_setjmp(void *env[5]).
   2998 /// This checks that the target supports __builtin_setjmp.
   2999 bool Sema::SemaBuiltinSetjmp(CallExpr *TheCall) {
   3000   if (!Context.getTargetInfo().hasSjLjLowering())
   3001     return Diag(TheCall->getLocStart(), diag::err_builtin_setjmp_unsupported)
   3002              << SourceRange(TheCall->getLocStart(), TheCall->getLocEnd());
   3003   return false;
   3004 }
   3005 
   3006 namespace {
   3007 enum StringLiteralCheckType {
   3008   SLCT_NotALiteral,
   3009   SLCT_UncheckedLiteral,
   3010   SLCT_CheckedLiteral
   3011 };
   3012 }
   3013 
   3014 // Determine if an expression is a string literal or constant string.
   3015 // If this function returns false on the arguments to a function expecting a
   3016 // format string, we will usually need to emit a warning.
   3017 // True string literals are then checked by CheckFormatString.
   3018 static StringLiteralCheckType
   3019 checkFormatStringExpr(Sema &S, const Expr *E, ArrayRef<const Expr *> Args,
   3020                       bool HasVAListArg, unsigned format_idx,
   3021                       unsigned firstDataArg, Sema::FormatStringType Type,
   3022                       Sema::VariadicCallType CallType, bool InFunctionCall,
   3023                       llvm::SmallBitVector &CheckedVarArgs) {
   3024  tryAgain:
   3025   if (E->isTypeDependent() || E->isValueDependent())
   3026     return SLCT_NotALiteral;
   3027 
   3028   E = E->IgnoreParenCasts();
   3029 
   3030   if (E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull))
   3031     // Technically -Wformat-nonliteral does not warn about this case.
   3032     // The behavior of printf and friends in this case is implementation
   3033     // dependent.  Ideally if the format string cannot be null then
   3034     // it should have a 'nonnull' attribute in the function prototype.
   3035     return SLCT_UncheckedLiteral;
   3036 
   3037   switch (E->getStmtClass()) {
   3038   case Stmt::BinaryConditionalOperatorClass:
   3039   case Stmt::ConditionalOperatorClass: {
   3040     // The expression is a literal if both sub-expressions were, and it was
   3041     // completely checked only if both sub-expressions were checked.
   3042     const AbstractConditionalOperator *C =
   3043         cast<AbstractConditionalOperator>(E);
   3044     StringLiteralCheckType Left =
   3045         checkFormatStringExpr(S, C->getTrueExpr(), Args,
   3046                               HasVAListArg, format_idx, firstDataArg,
   3047                               Type, CallType, InFunctionCall, CheckedVarArgs);
   3048     if (Left == SLCT_NotALiteral)
   3049       return SLCT_NotALiteral;
   3050     StringLiteralCheckType Right =
   3051         checkFormatStringExpr(S, C->getFalseExpr(), Args,
   3052                               HasVAListArg, format_idx, firstDataArg,
   3053                               Type, CallType, InFunctionCall, CheckedVarArgs);
   3054     return Left < Right ? Left : Right;
   3055   }
   3056 
   3057   case Stmt::ImplicitCastExprClass: {
   3058     E = cast<ImplicitCastExpr>(E)->getSubExpr();
   3059     goto tryAgain;
   3060   }
   3061 
   3062   case Stmt::OpaqueValueExprClass:
   3063     if (const Expr *src = cast<OpaqueValueExpr>(E)->getSourceExpr()) {
   3064       E = src;
   3065       goto tryAgain;
   3066     }
   3067     return SLCT_NotALiteral;
   3068 
   3069   case Stmt::PredefinedExprClass:
   3070     // While __func__, etc., are technically not string literals, they
   3071     // cannot contain format specifiers and thus are not a security
   3072     // liability.
   3073     return SLCT_UncheckedLiteral;
   3074 
   3075   case Stmt::DeclRefExprClass: {
   3076     const DeclRefExpr *DR = cast<DeclRefExpr>(E);
   3077 
   3078     // As an exception, do not flag errors for variables binding to
   3079     // const string literals.
   3080     if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
   3081       bool isConstant = false;
   3082       QualType T = DR->getType();
   3083 
   3084       if (const ArrayType *AT = S.Context.getAsArrayType(T)) {
   3085         isConstant = AT->getElementType().isConstant(S.Context);
   3086       } else if (const PointerType *PT = T->getAs<PointerType>()) {
   3087         isConstant = T.isConstant(S.Context) &&
   3088                      PT->getPointeeType().isConstant(S.Context);
   3089       } else if (T->isObjCObjectPointerType()) {
   3090         // In ObjC, there is usually no "const ObjectPointer" type,
   3091         // so don't check if the pointee type is constant.
   3092         isConstant = T.isConstant(S.Context);
   3093       }
   3094 
   3095       if (isConstant) {
   3096         if (const Expr *Init = VD->getAnyInitializer()) {
   3097           // Look through initializers like const char c[] = { "foo" }
   3098           if (const InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) {
   3099             if (InitList->isStringLiteralInit())
   3100               Init = InitList->getInit(0)->IgnoreParenImpCasts();
   3101           }
   3102           return checkFormatStringExpr(S, Init, Args,
   3103                                        HasVAListArg, format_idx,
   3104                                        firstDataArg, Type, CallType,
   3105                                        /*InFunctionCall*/false, CheckedVarArgs);
   3106         }
   3107       }
   3108 
   3109       // For vprintf* functions (i.e., HasVAListArg==true), we add a
   3110       // special check to see if the format string is a function parameter
   3111       // of the function calling the printf function.  If the function
   3112       // has an attribute indicating it is a printf-like function, then we
   3113       // should suppress warnings concerning non-literals being used in a call
   3114       // to a vprintf function.  For example:
   3115       //
   3116       // void
   3117       // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...){
   3118       //      va_list ap;
   3119       //      va_start(ap, fmt);
   3120       //      vprintf(fmt, ap);  // Do NOT emit a warning about "fmt".
   3121       //      ...
   3122       // }
   3123       if (HasVAListArg) {
   3124         if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(VD)) {
   3125           if (const NamedDecl *ND = dyn_cast<NamedDecl>(PV->getDeclContext())) {
   3126             int PVIndex = PV->getFunctionScopeIndex() + 1;
   3127             for (const auto *PVFormat : ND->specific_attrs<FormatAttr>()) {
   3128               // adjust for implicit parameter
   3129               if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND))
   3130                 if (MD->isInstance())
   3131                   ++PVIndex;
   3132               // We also check if the formats are compatible.
   3133               // We can't pass a 'scanf' string to a 'printf' function.
   3134               if (PVIndex == PVFormat->getFormatIdx() &&
   3135                   Type == S.GetFormatStringType(PVFormat))
   3136                 return SLCT_UncheckedLiteral;
   3137             }
   3138           }
   3139         }
   3140       }
   3141     }
   3142 
   3143     return SLCT_NotALiteral;
   3144   }
   3145 
   3146   case Stmt::CallExprClass:
   3147   case Stmt::CXXMemberCallExprClass: {
   3148     const CallExpr *CE = cast<CallExpr>(E);
   3149     if (const NamedDecl *ND = dyn_cast_or_null<NamedDecl>(CE->getCalleeDecl())) {
   3150       if (const FormatArgAttr *FA = ND->getAttr<FormatArgAttr>()) {
   3151         unsigned ArgIndex = FA->getFormatIdx();
   3152         if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND))
   3153           if (MD->isInstance())
   3154             --ArgIndex;
   3155         const Expr *Arg = CE->getArg(ArgIndex - 1);
   3156 
   3157         return checkFormatStringExpr(S, Arg, Args,
   3158                                      HasVAListArg, format_idx, firstDataArg,
   3159                                      Type, CallType, InFunctionCall,
   3160                                      CheckedVarArgs);
   3161       } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
   3162         unsigned BuiltinID = FD->getBuiltinID();
   3163         if (BuiltinID == Builtin::BI__builtin___CFStringMakeConstantString ||
   3164             BuiltinID == Builtin::BI__builtin___NSStringMakeConstantString) {
   3165           const Expr *Arg = CE->getArg(0);
   3166           return checkFormatStringExpr(S, Arg, Args,
   3167                                        HasVAListArg, format_idx,
   3168                                        firstDataArg, Type, CallType,
   3169                                        InFunctionCall, CheckedVarArgs);
   3170         }
   3171       }
   3172     }
   3173 
   3174     return SLCT_NotALiteral;
   3175   }
   3176   case Stmt::ObjCStringLiteralClass:
   3177   case Stmt::StringLiteralClass: {
   3178     const StringLiteral *StrE = nullptr;
   3179 
   3180     if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E))
   3181       StrE = ObjCFExpr->getString();
   3182     else
   3183       StrE = cast<StringLiteral>(E);
   3184 
   3185     if (StrE) {
   3186       S.CheckFormatString(StrE, E, Args, HasVAListArg, format_idx, firstDataArg,
   3187                           Type, InFunctionCall, CallType, CheckedVarArgs);
   3188       return SLCT_CheckedLiteral;
   3189     }
   3190 
   3191     return SLCT_NotALiteral;
   3192   }
   3193 
   3194   default:
   3195     return SLCT_NotALiteral;
   3196   }
   3197 }
   3198 
   3199 Sema::FormatStringType Sema::GetFormatStringType(const FormatAttr *Format) {
   3200   return llvm::StringSwitch<FormatStringType>(Format->getType()->getName())
   3201   .Case("scanf", FST_Scanf)
   3202   .Cases("printf", "printf0", FST_Printf)
   3203   .Cases("NSString", "CFString", FST_NSString)
   3204   .Case("strftime", FST_Strftime)
   3205   .Case("strfmon", FST_Strfmon)
   3206   .Cases("kprintf", "cmn_err", "vcmn_err", "zcmn_err", FST_Kprintf)
   3207   .Case("freebsd_kprintf", FST_FreeBSDKPrintf)
   3208   .Case("os_trace", FST_OSTrace)
   3209   .Default(FST_Unknown);
   3210 }
   3211 
   3212 /// CheckFormatArguments - Check calls to printf and scanf (and similar
   3213 /// functions) for correct use of format strings.
   3214 /// Returns true if a format string has been fully checked.
   3215 bool Sema::CheckFormatArguments(const FormatAttr *Format,
   3216                                 ArrayRef<const Expr *> Args,
   3217                                 bool IsCXXMember,
   3218                                 VariadicCallType CallType,
   3219                                 SourceLocation Loc, SourceRange Range,
   3220                                 llvm::SmallBitVector &CheckedVarArgs) {
   3221   FormatStringInfo FSI;
   3222   if (getFormatStringInfo(Format, IsCXXMember, &FSI))
   3223     return CheckFormatArguments(Args, FSI.HasVAListArg, FSI.FormatIdx,
   3224                                 FSI.FirstDataArg, GetFormatStringType(Format),
   3225                                 CallType, Loc, Range, CheckedVarArgs);
   3226   return false;
   3227 }
   3228 
   3229 bool Sema::CheckFormatArguments(ArrayRef<const Expr *> Args,
   3230                                 bool HasVAListArg, unsigned format_idx,
   3231                                 unsigned firstDataArg, FormatStringType Type,
   3232                                 VariadicCallType CallType,
   3233                                 SourceLocation Loc, SourceRange Range,
   3234                                 llvm::SmallBitVector &CheckedVarArgs) {
   3235   // CHECK: printf/scanf-like function is called with no format string.
   3236   if (format_idx >= Args.size()) {
   3237     Diag(Loc, diag::warn_missing_format_string) << Range;
   3238     return false;
   3239   }
   3240 
   3241   const Expr *OrigFormatExpr = Args[format_idx]->IgnoreParenCasts();
   3242 
   3243   // CHECK: format string is not a string literal.
   3244   //
   3245   // Dynamically generated format strings are difficult to
   3246   // automatically vet at compile time.  Requiring that format strings
   3247   // are string literals: (1) permits the checking of format strings by
   3248   // the compiler and thereby (2) can practically remove the source of
   3249   // many format string exploits.
   3250 
   3251   // Format string can be either ObjC string (e.g. @"%d") or
   3252   // C string (e.g. "%d")
   3253   // ObjC string uses the same format specifiers as C string, so we can use
   3254   // the same format string checking logic for both ObjC and C strings.
   3255   StringLiteralCheckType CT =
   3256       checkFormatStringExpr(*this, OrigFormatExpr, Args, HasVAListArg,
   3257                             format_idx, firstDataArg, Type, CallType,
   3258                             /*IsFunctionCall*/true, CheckedVarArgs);
   3259   if (CT != SLCT_NotALiteral)
   3260     // Literal format string found, check done!
   3261     return CT == SLCT_CheckedLiteral;
   3262 
   3263   // Strftime is particular as it always uses a single 'time' argument,
   3264   // so it is safe to pass a non-literal string.
   3265   if (Type == FST_Strftime)
   3266     return false;
   3267 
   3268   // Do not emit diag when the string param is a macro expansion and the
   3269   // format is either NSString or CFString. This is a hack to prevent
   3270   // diag when using the NSLocalizedString and CFCopyLocalizedString macros
   3271   // which are usually used in place of NS and CF string literals.
   3272   if (Type == FST_NSString &&
   3273       SourceMgr.isInSystemMacro(Args[format_idx]->getLocStart()))
   3274     return false;
   3275 
   3276   // If there are no arguments specified, warn with -Wformat-security, otherwise
   3277   // warn only with -Wformat-nonliteral.
   3278   if (Args.size() == firstDataArg)
   3279     Diag(Args[format_idx]->getLocStart(),
   3280          diag::warn_format_nonliteral_noargs)
   3281       << OrigFormatExpr->getSourceRange();
   3282   else
   3283     Diag(Args[format_idx]->getLocStart(),
   3284          diag::warn_format_nonliteral)
   3285            << OrigFormatExpr->getSourceRange();
   3286   return false;
   3287 }
   3288 
   3289 namespace {
   3290 class CheckFormatHandler : public analyze_format_string::FormatStringHandler {
   3291 protected:
   3292   Sema &S;
   3293   const StringLiteral *FExpr;
   3294   const Expr *OrigFormatExpr;
   3295   const unsigned FirstDataArg;
   3296   const unsigned NumDataArgs;
   3297   const char *Beg; // Start of format string.
   3298   const bool HasVAListArg;
   3299   ArrayRef<const Expr *> Args;
   3300   unsigned FormatIdx;
   3301   llvm::SmallBitVector CoveredArgs;
   3302   bool usesPositionalArgs;
   3303   bool atFirstArg;
   3304   bool inFunctionCall;
   3305   Sema::VariadicCallType CallType;
   3306   llvm::SmallBitVector &CheckedVarArgs;
   3307 public:
   3308   CheckFormatHandler(Sema &s, const StringLiteral *fexpr,
   3309                      const Expr *origFormatExpr, unsigned firstDataArg,
   3310                      unsigned numDataArgs, const char *beg, bool hasVAListArg,
   3311                      ArrayRef<const Expr *> Args,
   3312                      unsigned formatIdx, bool inFunctionCall,
   3313                      Sema::VariadicCallType callType,
   3314                      llvm::SmallBitVector &CheckedVarArgs)
   3315     : S(s), FExpr(fexpr), OrigFormatExpr(origFormatExpr),
   3316       FirstDataArg(firstDataArg), NumDataArgs(numDataArgs),
   3317       Beg(beg), HasVAListArg(hasVAListArg),
   3318       Args(Args), FormatIdx(formatIdx),
   3319       usesPositionalArgs(false), atFirstArg(true),
   3320       inFunctionCall(inFunctionCall), CallType(callType),
   3321       CheckedVarArgs(CheckedVarArgs) {
   3322     CoveredArgs.resize(numDataArgs);
   3323     CoveredArgs.reset();
   3324   }
   3325 
   3326   void DoneProcessing();
   3327 
   3328   void HandleIncompleteSpecifier(const char *startSpecifier,
   3329                                  unsigned specifierLen) override;
   3330 
   3331   void HandleInvalidLengthModifier(
   3332                            const analyze_format_string::FormatSpecifier &FS,
   3333                            const analyze_format_string::ConversionSpecifier &CS,
   3334                            const char *startSpecifier, unsigned specifierLen,
   3335                            unsigned DiagID);
   3336 
   3337   void HandleNonStandardLengthModifier(
   3338                     const analyze_format_string::FormatSpecifier &FS,
   3339                     const char *startSpecifier, unsigned specifierLen);
   3340 
   3341   void HandleNonStandardConversionSpecifier(
   3342                     const analyze_format_string::ConversionSpecifier &CS,
   3343                     const char *startSpecifier, unsigned specifierLen);
   3344 
   3345   void HandlePosition(const char *startPos, unsigned posLen) override;
   3346 
   3347   void HandleInvalidPosition(const char *startSpecifier,
   3348                              unsigned specifierLen,
   3349                              analyze_format_string::PositionContext p) override;
   3350 
   3351   void HandleZeroPosition(const char *startPos, unsigned posLen) override;
   3352 
   3353   void HandleNullChar(const char *nullCharacter) override;
   3354 
   3355   template <typename Range>
   3356   static void EmitFormatDiagnostic(Sema &S, bool inFunctionCall,
   3357                                    const Expr *ArgumentExpr,
   3358                                    PartialDiagnostic PDiag,
   3359                                    SourceLocation StringLoc,
   3360                                    bool IsStringLocation, Range StringRange,
   3361                                    ArrayRef<FixItHint> Fixit = None);
   3362 
   3363 protected:
   3364   bool HandleInvalidConversionSpecifier(unsigned argIndex, SourceLocation Loc,
   3365                                         const char *startSpec,
   3366                                         unsigned specifierLen,
   3367                                         const char *csStart, unsigned csLen);
   3368 
   3369   void HandlePositionalNonpositionalArgs(SourceLocation Loc,
   3370                                          const char *startSpec,
   3371                                          unsigned specifierLen);
   3372 
   3373   SourceRange getFormatStringRange();
   3374   CharSourceRange getSpecifierRange(const char *startSpecifier,
   3375                                     unsigned specifierLen);
   3376   SourceLocation getLocationOfByte(const char *x);
   3377 
   3378   const Expr *getDataArg(unsigned i) const;
   3379 
   3380   bool CheckNumArgs(const analyze_format_string::FormatSpecifier &FS,
   3381                     const analyze_format_string::ConversionSpecifier &CS,
   3382                     const char *startSpecifier, unsigned specifierLen,
   3383                     unsigned argIndex);
   3384 
   3385   template <typename Range>
   3386   void EmitFormatDiagnostic(PartialDiagnostic PDiag, SourceLocation StringLoc,
   3387                             bool IsStringLocation, Range StringRange,
   3388                             ArrayRef<FixItHint> Fixit = None);
   3389 };
   3390 }
   3391 
   3392 SourceRange CheckFormatHandler::getFormatStringRange() {
   3393   return OrigFormatExpr->getSourceRange();
   3394 }
   3395 
   3396 CharSourceRange CheckFormatHandler::
   3397 getSpecifierRange(const char *startSpecifier, unsigned specifierLen) {
   3398   SourceLocation Start = getLocationOfByte(startSpecifier);
   3399   SourceLocation End   = getLocationOfByte(startSpecifier + specifierLen - 1);
   3400 
   3401   // Advance the end SourceLocation by one due to half-open ranges.
   3402   End = End.getLocWithOffset(1);
   3403 
   3404   return CharSourceRange::getCharRange(Start, End);
   3405 }
   3406 
   3407 SourceLocation CheckFormatHandler::getLocationOfByte(const char *x) {
   3408   return S.getLocationOfStringLiteralByte(FExpr, x - Beg);
   3409 }
   3410 
   3411 void CheckFormatHandler::HandleIncompleteSpecifier(const char *startSpecifier,
   3412                                                    unsigned specifierLen){
   3413   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_incomplete_specifier),
   3414                        getLocationOfByte(startSpecifier),
   3415                        /*IsStringLocation*/true,
   3416                        getSpecifierRange(startSpecifier, specifierLen));
   3417 }
   3418 
   3419 void CheckFormatHandler::HandleInvalidLengthModifier(
   3420     const analyze_format_string::FormatSpecifier &FS,
   3421     const analyze_format_string::ConversionSpecifier &CS,
   3422     const char *startSpecifier, unsigned specifierLen, unsigned DiagID) {
   3423   using namespace analyze_format_string;
   3424 
   3425   const LengthModifier &LM = FS.getLengthModifier();
   3426   CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength());
   3427 
   3428   // See if we know how to fix this length modifier.
   3429   Optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier();
   3430   if (FixedLM) {
   3431     EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(),
   3432                          getLocationOfByte(LM.getStart()),
   3433                          /*IsStringLocation*/true,
   3434                          getSpecifierRange(startSpecifier, specifierLen));
   3435 
   3436     S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier)
   3437       << FixedLM->toString()
   3438       << FixItHint::CreateReplacement(LMRange, FixedLM->toString());
   3439 
   3440   } else {
   3441     FixItHint Hint;
   3442     if (DiagID == diag::warn_format_nonsensical_length)
   3443       Hint = FixItHint::CreateRemoval(LMRange);
   3444 
   3445     EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(),
   3446                          getLocationOfByte(LM.getStart()),
   3447                          /*IsStringLocation*/true,
   3448                          getSpecifierRange(startSpecifier, specifierLen),
   3449                          Hint);
   3450   }
   3451 }
   3452 
   3453 void CheckFormatHandler::HandleNonStandardLengthModifier(
   3454     const analyze_format_string::FormatSpecifier &FS,
   3455     const char *startSpecifier, unsigned specifierLen) {
   3456   using namespace analyze_format_string;
   3457 
   3458   const LengthModifier &LM = FS.getLengthModifier();
   3459   CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength());
   3460 
   3461   // See if we know how to fix this length modifier.
   3462   Optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier();
   3463   if (FixedLM) {
   3464     EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
   3465                            << LM.toString() << 0,
   3466                          getLocationOfByte(LM.getStart()),
   3467                          /*IsStringLocation*/true,
   3468                          getSpecifierRange(startSpecifier, specifierLen));
   3469 
   3470     S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier)
   3471       << FixedLM->toString()
   3472       << FixItHint::CreateReplacement(LMRange, FixedLM->toString());
   3473 
   3474   } else {
   3475     EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
   3476                            << LM.toString() << 0,
   3477                          getLocationOfByte(LM.getStart()),
   3478                          /*IsStringLocation*/true,
   3479                          getSpecifierRange(startSpecifier, specifierLen));
   3480   }
   3481 }
   3482 
   3483 void CheckFormatHandler::HandleNonStandardConversionSpecifier(
   3484     const analyze_format_string::ConversionSpecifier &CS,
   3485     const char *startSpecifier, unsigned specifierLen) {
   3486   using namespace analyze_format_string;
   3487 
   3488   // See if we know how to fix this conversion specifier.
   3489   Optional<ConversionSpecifier> FixedCS = CS.getStandardSpecifier();
   3490   if (FixedCS) {
   3491     EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
   3492                           << CS.toString() << /*conversion specifier*/1,
   3493                          getLocationOfByte(CS.getStart()),
   3494                          /*IsStringLocation*/true,
   3495                          getSpecifierRange(startSpecifier, specifierLen));
   3496 
   3497     CharSourceRange CSRange = getSpecifierRange(CS.getStart(), CS.getLength());
   3498     S.Diag(getLocationOfByte(CS.getStart()), diag::note_format_fix_specifier)
   3499       << FixedCS->toString()
   3500       << FixItHint::CreateReplacement(CSRange, FixedCS->toString());
   3501   } else {
   3502     EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
   3503                           << CS.toString() << /*conversion specifier*/1,
   3504                          getLocationOfByte(CS.getStart()),
   3505                          /*IsStringLocation*/true,
   3506                          getSpecifierRange(startSpecifier, specifierLen));
   3507   }
   3508 }
   3509 
   3510 void CheckFormatHandler::HandlePosition(const char *startPos,
   3511                                         unsigned posLen) {
   3512   EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard_positional_arg),
   3513                                getLocationOfByte(startPos),
   3514                                /*IsStringLocation*/true,
   3515                                getSpecifierRange(startPos, posLen));
   3516 }
   3517 
   3518 void
   3519 CheckFormatHandler::HandleInvalidPosition(const char *startPos, unsigned posLen,
   3520                                      analyze_format_string::PositionContext p) {
   3521   EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_positional_specifier)
   3522                          << (unsigned) p,
   3523                        getLocationOfByte(startPos), /*IsStringLocation*/true,
   3524                        getSpecifierRange(startPos, posLen));
   3525 }
   3526 
   3527 void CheckFormatHandler::HandleZeroPosition(const char *startPos,
   3528                                             unsigned posLen) {
   3529   EmitFormatDiagnostic(S.PDiag(diag::warn_format_zero_positional_specifier),
   3530                                getLocationOfByte(startPos),
   3531                                /*IsStringLocation*/true,
   3532                                getSpecifierRange(startPos, posLen));
   3533 }
   3534 
   3535 void CheckFormatHandler::HandleNullChar(const char *nullCharacter) {
   3536   if (!isa<ObjCStringLiteral>(OrigFormatExpr)) {
   3537     // The presence of a null character is likely an error.
   3538     EmitFormatDiagnostic(
   3539       S.PDiag(diag::warn_printf_format_string_contains_null_char),
   3540       getLocationOfByte(nullCharacter), /*IsStringLocation*/true,
   3541       getFormatStringRange());
   3542   }
   3543 }
   3544 
   3545 // Note that this may return NULL if there was an error parsing or building
   3546 // one of the argument expressions.
   3547 const Expr *CheckFormatHandler::getDataArg(unsigned i) const {
   3548   return Args[FirstDataArg + i];
   3549 }
   3550 
   3551 void CheckFormatHandler::DoneProcessing() {
   3552     // Does the number of data arguments exceed the number of
   3553     // format conversions in the format string?
   3554   if (!HasVAListArg) {
   3555       // Find any arguments that weren't covered.
   3556     CoveredArgs.flip();
   3557     signed notCoveredArg = CoveredArgs.find_first();
   3558     if (notCoveredArg >= 0) {
   3559       assert((unsigned)notCoveredArg < NumDataArgs);
   3560       if (const Expr *E = getDataArg((unsigned) notCoveredArg)) {
   3561         SourceLocation Loc = E->getLocStart();
   3562         if (!S.getSourceManager().isInSystemMacro(Loc)) {
   3563           EmitFormatDiagnostic(S.PDiag(diag::warn_printf_data_arg_not_used),
   3564                                Loc, /*IsStringLocation*/false,
   3565                                getFormatStringRange());
   3566         }
   3567       }
   3568     }
   3569   }
   3570 }
   3571 
   3572 bool
   3573 CheckFormatHandler::HandleInvalidConversionSpecifier(unsigned argIndex,
   3574                                                      SourceLocation Loc,
   3575                                                      const char *startSpec,
   3576                                                      unsigned specifierLen,
   3577                                                      const char *csStart,
   3578                                                      unsigned csLen) {
   3579 
   3580   bool keepGoing = true;
   3581   if (argIndex < NumDataArgs) {
   3582     // Consider the argument coverered, even though the specifier doesn't
   3583     // make sense.
   3584     CoveredArgs.set(argIndex);
   3585   }
   3586   else {
   3587     // If argIndex exceeds the number of data arguments we
   3588     // don't issue a warning because that is just a cascade of warnings (and
   3589     // they may have intended '%%' anyway). We don't want to continue processing
   3590     // the format string after this point, however, as we will like just get
   3591     // gibberish when trying to match arguments.
   3592     keepGoing = false;
   3593   }
   3594 
   3595   EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_conversion)
   3596                          << StringRef(csStart, csLen),
   3597                        Loc, /*IsStringLocation*/true,
   3598                        getSpecifierRange(startSpec, specifierLen));
   3599 
   3600   return keepGoing;
   3601 }
   3602 
   3603 void
   3604 CheckFormatHandler::HandlePositionalNonpositionalArgs(SourceLocation Loc,
   3605                                                       const char *startSpec,
   3606                                                       unsigned specifierLen) {
   3607   EmitFormatDiagnostic(
   3608     S.PDiag(diag::warn_format_mix_positional_nonpositional_args),
   3609     Loc, /*isStringLoc*/true, getSpecifierRange(startSpec, specifierLen));
   3610 }
   3611 
   3612 bool
   3613 CheckFormatHandler::CheckNumArgs(
   3614   const analyze_format_string::FormatSpecifier &FS,
   3615   const analyze_format_string::ConversionSpecifier &CS,
   3616   const char *startSpecifier, unsigned specifierLen, unsigned argIndex) {
   3617 
   3618   if (argIndex >= NumDataArgs) {
   3619     PartialDiagnostic PDiag = FS.usesPositionalArg()
   3620       ? (S.PDiag(diag::warn_printf_positional_arg_exceeds_data_args)
   3621            << (argIndex+1) << NumDataArgs)
   3622       : S.PDiag(diag::warn_printf_insufficient_data_args);
   3623     EmitFormatDiagnostic(
   3624       PDiag, getLocationOfByte(CS.getStart()), /*IsStringLocation*/true,
   3625       getSpecifierRange(startSpecifier, specifierLen));
   3626     return false;
   3627   }
   3628   return true;
   3629 }
   3630 
   3631 template<typename Range>
   3632 void CheckFormatHandler::EmitFormatDiagnostic(PartialDiagnostic PDiag,
   3633                                               SourceLocation Loc,
   3634                                               bool IsStringLocation,
   3635                                               Range StringRange,
   3636                                               ArrayRef<FixItHint> FixIt) {
   3637   EmitFormatDiagnostic(S, inFunctionCall, Args[FormatIdx], PDiag,
   3638                        Loc, IsStringLocation, StringRange, FixIt);
   3639 }
   3640 
   3641 /// \brief If the format string is not within the funcion call, emit a note
   3642 /// so that the function call and string are in diagnostic messages.
   3643 ///
   3644 /// \param InFunctionCall if true, the format string is within the function
   3645 /// call and only one diagnostic message will be produced.  Otherwise, an
   3646 /// extra note will be emitted pointing to location of the format string.
   3647 ///
   3648 /// \param ArgumentExpr the expression that is passed as the format string
   3649 /// argument in the function call.  Used for getting locations when two
   3650 /// diagnostics are emitted.
   3651 ///
   3652 /// \param PDiag the callee should already have provided any strings for the
   3653 /// diagnostic message.  This function only adds locations and fixits
   3654 /// to diagnostics.
   3655 ///
   3656 /// \param Loc primary location for diagnostic.  If two diagnostics are
   3657 /// required, one will be at Loc and a new SourceLocation will be created for
   3658 /// the other one.
   3659 ///
   3660 /// \param IsStringLocation if true, Loc points to the format string should be
   3661 /// used for the note.  Otherwise, Loc points to the argument list and will
   3662 /// be used with PDiag.
   3663 ///
   3664 /// \param StringRange some or all of the string to highlight.  This is
   3665 /// templated so it can accept either a CharSourceRange or a SourceRange.
   3666 ///
   3667 /// \param FixIt optional fix it hint for the format string.
   3668 template<typename Range>
   3669 void CheckFormatHandler::EmitFormatDiagnostic(Sema &S, bool InFunctionCall,
   3670                                               const Expr *ArgumentExpr,
   3671                                               PartialDiagnostic PDiag,
   3672                                               SourceLocation Loc,
   3673                                               bool IsStringLocation,
   3674                                               Range StringRange,
   3675                                               ArrayRef<FixItHint> FixIt) {
   3676   if (InFunctionCall) {
   3677     const Sema::SemaDiagnosticBuilder &D = S.Diag(Loc, PDiag);
   3678     D << StringRange;
   3679     D << FixIt;
   3680   } else {
   3681     S.Diag(IsStringLocation ? ArgumentExpr->getExprLoc() : Loc, PDiag)
   3682       << ArgumentExpr->getSourceRange();
   3683 
   3684     const Sema::SemaDiagnosticBuilder &Note =
   3685       S.Diag(IsStringLocation ? Loc : StringRange.getBegin(),
   3686              diag::note_format_string_defined);
   3687 
   3688     Note << StringRange;
   3689     Note << FixIt;
   3690   }
   3691 }
   3692 
   3693 //===--- CHECK: Printf format string checking ------------------------------===//
   3694 
   3695 namespace {
   3696 class CheckPrintfHandler : public CheckFormatHandler {
   3697   bool ObjCContext;
   3698 public:
   3699   CheckPrintfHandler(Sema &s, const StringLiteral *fexpr,
   3700                      const Expr *origFormatExpr, unsigned firstDataArg,
   3701                      unsigned numDataArgs, bool isObjC,
   3702                      const char *beg, bool hasVAListArg,
   3703                      ArrayRef<const Expr *> Args,
   3704                      unsigned formatIdx, bool inFunctionCall,
   3705                      Sema::VariadicCallType CallType,
   3706                      llvm::SmallBitVector &CheckedVarArgs)
   3707     : CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg,
   3708                          numDataArgs, beg, hasVAListArg, Args,
   3709                          formatIdx, inFunctionCall, CallType, CheckedVarArgs),
   3710       ObjCContext(isObjC)
   3711   {}
   3712 
   3713 
   3714   bool HandleInvalidPrintfConversionSpecifier(
   3715                                       const analyze_printf::PrintfSpecifier &FS,
   3716                                       const char *startSpecifier,
   3717                                       unsigned specifierLen) override;
   3718 
   3719   bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS,
   3720                              const char *startSpecifier,
   3721                              unsigned specifierLen) override;
   3722   bool checkFormatExpr(const analyze_printf::PrintfSpecifier &FS,
   3723                        const char *StartSpecifier,
   3724                        unsigned SpecifierLen,
   3725                        const Expr *E);
   3726 
   3727   bool HandleAmount(const analyze_format_string::OptionalAmount &Amt, unsigned k,
   3728                     const char *startSpecifier, unsigned specifierLen);
   3729   void HandleInvalidAmount(const analyze_printf::PrintfSpecifier &FS,
   3730                            const analyze_printf::OptionalAmount &Amt,
   3731                            unsigned type,
   3732                            const char *startSpecifier, unsigned specifierLen);
   3733   void HandleFlag(const analyze_printf::PrintfSpecifier &FS,
   3734                   const analyze_printf::OptionalFlag &flag,
   3735                   const char *startSpecifier, unsigned specifierLen);
   3736   void HandleIgnoredFlag(const analyze_printf::PrintfSpecifier &FS,
   3737                          const analyze_printf::OptionalFlag &ignoredFlag,
   3738                          const analyze_printf::OptionalFlag &flag,
   3739                          const char *startSpecifier, unsigned specifierLen);
   3740   bool checkForCStrMembers(const analyze_printf::ArgType &AT,
   3741                            const Expr *E);
   3742 
   3743   void HandleEmptyObjCModifierFlag(const char *startFlag,
   3744                                    unsigned flagLen) override;
   3745 
   3746   void HandleInvalidObjCModifierFlag(const char *startFlag,
   3747                                             unsigned flagLen) override;
   3748 
   3749   void HandleObjCFlagsWithNonObjCConversion(const char *flagsStart,
   3750                                            const char *flagsEnd,
   3751                                            const char *conversionPosition)
   3752                                              override;
   3753 };
   3754 }
   3755 
   3756 bool CheckPrintfHandler::HandleInvalidPrintfConversionSpecifier(
   3757                                       const analyze_printf::PrintfSpecifier &FS,
   3758                                       const char *startSpecifier,
   3759                                       unsigned specifierLen) {
   3760   const analyze_printf::PrintfConversionSpecifier &CS =
   3761     FS.getConversionSpecifier();
   3762 
   3763   return HandleInvalidConversionSpecifier(FS.getArgIndex(),
   3764                                           getLocationOfByte(CS.getStart()),
   3765                                           startSpecifier, specifierLen,
   3766                                           CS.getStart(), CS.getLength());
   3767 }
   3768 
   3769 bool CheckPrintfHandler::HandleAmount(
   3770                                const analyze_format_string::OptionalAmount &Amt,
   3771                                unsigned k, const char *startSpecifier,
   3772                                unsigned specifierLen) {
   3773 
   3774   if (Amt.hasDataArgument()) {
   3775     if (!HasVAListArg) {
   3776       unsigned argIndex = Amt.getArgIndex();
   3777       if (argIndex >= NumDataArgs) {
   3778         EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_missing_arg)
   3779                                << k,
   3780                              getLocationOfByte(Amt.getStart()),
   3781                              /*IsStringLocation*/true,
   3782                              getSpecifierRange(startSpecifier, specifierLen));
   3783         // Don't do any more checking.  We will just emit
   3784         // spurious errors.
   3785         return false;
   3786       }
   3787 
   3788       // Type check the data argument.  It should be an 'int'.
   3789       // Although not in conformance with C99, we also allow the argument to be
   3790       // an 'unsigned int' as that is a reasonably safe case.  GCC also
   3791       // doesn't emit a warning for that case.
   3792       CoveredArgs.set(argIndex);
   3793       const Expr *Arg = getDataArg(argIndex);
   3794       if (!Arg)
   3795         return false;
   3796 
   3797       QualType T = Arg->getType();
   3798 
   3799       const analyze_printf::ArgType &AT = Amt.getArgType(S.Context);
   3800       assert(AT.isValid());
   3801 
   3802       if (!AT.matchesType(S.Context, T)) {
   3803         EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_wrong_type)
   3804                                << k << AT.getRepresentativeTypeName(S.Context)
   3805                                << T << Arg->getSourceRange(),
   3806                              getLocationOfByte(Amt.getStart()),
   3807                              /*IsStringLocation*/true,
   3808                              getSpecifierRange(startSpecifier, specifierLen));
   3809         // Don't do any more checking.  We will just emit
   3810         // spurious errors.
   3811         return false;
   3812       }
   3813     }
   3814   }
   3815   return true;
   3816 }
   3817 
   3818 void CheckPrintfHandler::HandleInvalidAmount(
   3819                                       const analyze_printf::PrintfSpecifier &FS,
   3820                                       const analyze_printf::OptionalAmount &Amt,
   3821                                       unsigned type,
   3822                                       const char *startSpecifier,
   3823                                       unsigned specifierLen) {
   3824   const analyze_printf::PrintfConversionSpecifier &CS =
   3825     FS.getConversionSpecifier();
   3826 
   3827   FixItHint fixit =
   3828     Amt.getHowSpecified() == analyze_printf::OptionalAmount::Constant
   3829       ? FixItHint::CreateRemoval(getSpecifierRange(Amt.getStart(),
   3830                                  Amt.getConstantLength()))
   3831       : FixItHint();
   3832 
   3833   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_optional_amount)
   3834                          << type << CS.toString(),
   3835                        getLocationOfByte(Amt.getStart()),
   3836                        /*IsStringLocation*/true,
   3837                        getSpecifierRange(startSpecifier, specifierLen),
   3838                        fixit);
   3839 }
   3840 
   3841 void CheckPrintfHandler::HandleFlag(const analyze_printf::PrintfSpecifier &FS,
   3842                                     const analyze_printf::OptionalFlag &flag,
   3843                                     const char *startSpecifier,
   3844                                     unsigned specifierLen) {
   3845   // Warn about pointless flag with a fixit removal.
   3846   const analyze_printf::PrintfConversionSpecifier &CS =
   3847     FS.getConversionSpecifier();
   3848   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_flag)
   3849                          << flag.toString() << CS.toString(),
   3850                        getLocationOfByte(flag.getPosition()),
   3851                        /*IsStringLocation*/true,
   3852                        getSpecifierRange(startSpecifier, specifierLen),
   3853                        FixItHint::CreateRemoval(
   3854                          getSpecifierRange(flag.getPosition(), 1)));
   3855 }
   3856 
   3857 void CheckPrintfHandler::HandleIgnoredFlag(
   3858                                 const analyze_printf::PrintfSpecifier &FS,
   3859                                 const analyze_printf::OptionalFlag &ignoredFlag,
   3860                                 const analyze_printf::OptionalFlag &flag,
   3861                                 const char *startSpecifier,
   3862                                 unsigned specifierLen) {
   3863   // Warn about ignored flag with a fixit removal.
   3864   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_ignored_flag)
   3865                          << ignoredFlag.toString() << flag.toString(),
   3866                        getLocationOfByte(ignoredFlag.getPosition()),
   3867                        /*IsStringLocation*/true,
   3868                        getSpecifierRange(startSpecifier, specifierLen),
   3869                        FixItHint::CreateRemoval(
   3870                          getSpecifierRange(ignoredFlag.getPosition(), 1)));
   3871 }
   3872 
   3873 //  void EmitFormatDiagnostic(PartialDiagnostic PDiag, SourceLocation StringLoc,
   3874 //                            bool IsStringLocation, Range StringRange,
   3875 //                            ArrayRef<FixItHint> Fixit = None);
   3876 
   3877 void CheckPrintfHandler::HandleEmptyObjCModifierFlag(const char *startFlag,
   3878                                                      unsigned flagLen) {
   3879   // Warn about an empty flag.
   3880   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_empty_objc_flag),
   3881                        getLocationOfByte(startFlag),
   3882                        /*IsStringLocation*/true,
   3883                        getSpecifierRange(startFlag, flagLen));
   3884 }
   3885 
   3886 void CheckPrintfHandler::HandleInvalidObjCModifierFlag(const char *startFlag,
   3887                                                        unsigned flagLen) {
   3888   // Warn about an invalid flag.
   3889   auto Range = getSpecifierRange(startFlag, flagLen);
   3890   StringRef flag(startFlag, flagLen);
   3891   EmitFormatDiagnostic(S.PDiag(diag::warn_printf_invalid_objc_flag) << flag,
   3892                       getLocationOfByte(startFlag),
   3893                       /*IsStringLocation*/true,
   3894                       Range, FixItHint::CreateRemoval(Range));
   3895 }
   3896 
   3897 void CheckPrintfHandler::HandleObjCFlagsWithNonObjCConversion(
   3898     const char *flagsStart, const char *flagsEnd, const char *conversionPosition) {
   3899     // Warn about using '[...]' without a '@' conversion.
   3900     auto Range = getSpecifierRange(flagsStart, flagsEnd - flagsStart + 1);
   3901     auto diag = diag::warn_printf_ObjCflags_without_ObjCConversion;
   3902     EmitFormatDiagnostic(S.PDiag(diag) << StringRef(conversionPosition, 1),
   3903                          getLocationOfByte(conversionPosition),
   3904                          /*IsStringLocation*/true,
   3905                          Range, FixItHint::CreateRemoval(Range));
   3906 }
   3907 
   3908 // Determines if the specified is a C++ class or struct containing
   3909 // a member with the specified name and kind (e.g. a CXXMethodDecl named
   3910 // "c_str()").
   3911 template<typename MemberKind>
   3912 static llvm::SmallPtrSet<MemberKind*, 1>
   3913 CXXRecordMembersNamed(StringRef Name, Sema &S, QualType Ty) {
   3914   const RecordType *RT = Ty->getAs<RecordType>();
   3915   llvm::SmallPtrSet<MemberKind*, 1> Results;
   3916 
   3917   if (!RT)
   3918     return Results;
   3919   const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
   3920   if (!RD || !RD->getDefinition())
   3921     return Results;
   3922 
   3923   LookupResult R(S, &S.Context.Idents.get(Name), SourceLocation(),
   3924                  Sema::LookupMemberName);
   3925   R.suppressDiagnostics();
   3926 
   3927   // We just need to include all members of the right kind turned up by the
   3928   // filter, at this point.
   3929   if (S.LookupQualifiedName(R, RT->getDecl()))
   3930     for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
   3931       NamedDecl *decl = (*I)->getUnderlyingDecl();
   3932       if (MemberKind *FK = dyn_cast<MemberKind>(decl))
   3933         Results.insert(FK);
   3934     }
   3935   return Results;
   3936 }
   3937 
   3938 /// Check if we could call '.c_str()' on an object.
   3939 ///
   3940 /// FIXME: This returns the wrong results in some cases (if cv-qualifiers don't
   3941 /// allow the call, or if it would be ambiguous).
   3942 bool Sema::hasCStrMethod(const Expr *E) {
   3943   typedef llvm::SmallPtrSet<CXXMethodDecl*, 1> MethodSet;
   3944   MethodSet Results =
   3945       CXXRecordMembersNamed<CXXMethodDecl>("c_str", *this, E->getType());
   3946   for (MethodSet::iterator MI = Results.begin(), ME = Results.end();
   3947        MI != ME; ++MI)
   3948     if ((*MI)->getMinRequiredArguments() == 0)
   3949       return true;
   3950   return false;
   3951 }
   3952 
   3953 // Check if a (w)string was passed when a (w)char* was needed, and offer a
   3954 // better diagnostic if so. AT is assumed to be valid.
   3955 // Returns true when a c_str() conversion method is found.
   3956 bool CheckPrintfHandler::checkForCStrMembers(
   3957     const analyze_printf::ArgType &AT, const Expr *E) {
   3958   typedef llvm::SmallPtrSet<CXXMethodDecl*, 1> MethodSet;
   3959 
   3960   MethodSet Results =
   3961       CXXRecordMembersNamed<CXXMethodDecl>("c_str", S, E->getType());
   3962 
   3963   for (MethodSet::iterator MI = Results.begin(), ME = Results.end();
   3964        MI != ME; ++MI) {
   3965     const CXXMethodDecl *Method = *MI;
   3966     if (Method->getMinRequiredArguments() == 0 &&
   3967         AT.matchesType(S.Context, Method->getReturnType())) {
   3968       // FIXME: Suggest parens if the expression needs them.
   3969       SourceLocation EndLoc = S.getLocForEndOfToken(E->getLocEnd());
   3970       S.Diag(E->getLocStart(), diag::note_printf_c_str)
   3971           << "c_str()"
   3972           << FixItHint::CreateInsertion(EndLoc, ".c_str()");
   3973       return true;
   3974     }
   3975   }
   3976 
   3977   return false;
   3978 }
   3979 
   3980 bool
   3981 CheckPrintfHandler::HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier
   3982                                             &FS,
   3983                                           const char *startSpecifier,
   3984                                           unsigned specifierLen) {
   3985 
   3986   using namespace analyze_format_string;
   3987   using namespace analyze_printf;
   3988   const PrintfConversionSpecifier &CS = FS.getConversionSpecifier();
   3989 
   3990   if (FS.consumesDataArgument()) {
   3991     if (atFirstArg) {
   3992         atFirstArg = false;
   3993         usesPositionalArgs = FS.usesPositionalArg();
   3994     }
   3995     else if (usesPositionalArgs != FS.usesPositionalArg()) {
   3996       HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()),
   3997                                         startSpecifier, specifierLen);
   3998       return false;
   3999     }
   4000   }
   4001 
   4002   // First check if the field width, precision, and conversion specifier
   4003   // have matching data arguments.
   4004   if (!HandleAmount(FS.getFieldWidth(), /* field width */ 0,
   4005                     startSpecifier, specifierLen)) {
   4006     return false;
   4007   }
   4008 
   4009   if (!HandleAmount(FS.getPrecision(), /* precision */ 1,
   4010                     startSpecifier, specifierLen)) {
   4011     return false;
   4012   }
   4013 
   4014   if (!CS.consumesDataArgument()) {
   4015     // FIXME: Technically specifying a precision or field width here
   4016     // makes no sense.  Worth issuing a warning at some point.
   4017     return true;
   4018   }
   4019 
   4020   // Consume the argument.
   4021   unsigned argIndex = FS.getArgIndex();
   4022   if (argIndex < NumDataArgs) {
   4023     // The check to see if the argIndex is valid will come later.
   4024     // We set the bit here because we may exit early from this
   4025     // function if we encounter some other error.
   4026     CoveredArgs.set(argIndex);
   4027   }
   4028 
   4029   // FreeBSD kernel extensions.
   4030   if (CS.getKind() == ConversionSpecifier::FreeBSDbArg ||
   4031       CS.getKind() == ConversionSpecifier::FreeBSDDArg) {
   4032     // We need at least two arguments.
   4033     if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex + 1))
   4034       return false;
   4035 
   4036     // Claim the second argument.
   4037     CoveredArgs.set(argIndex + 1);
   4038 
   4039     // Type check the first argument (int for %b, pointer for %D)
   4040     const Expr *Ex = getDataArg(argIndex);
   4041     const analyze_printf::ArgType &AT =
   4042       (CS.getKind() == ConversionSpecifier::FreeBSDbArg) ?
   4043         ArgType(S.Context.IntTy) : ArgType::CPointerTy;
   4044     if (AT.isValid() && !AT.matchesType(S.Context, Ex->getType()))
   4045       EmitFormatDiagnostic(
   4046         S.PDiag(diag::warn_format_conversion_argument_type_mismatch)
   4047         << AT.getRepresentativeTypeName(S.Context) << Ex->getType()
   4048         << false << Ex->getSourceRange(),
   4049         Ex->getLocStart(), /*IsStringLocation*/false,
   4050         getSpecifierRange(startSpecifier, specifierLen));
   4051 
   4052     // Type check the second argument (char * for both %b and %D)
   4053     Ex = getDataArg(argIndex + 1);
   4054     const analyze_printf::ArgType &AT2 = ArgType::CStrTy;
   4055     if (AT2.isValid() && !AT2.matchesType(S.Context, Ex->getType()))
   4056       EmitFormatDiagnostic(
   4057         S.PDiag(diag::warn_format_conversion_argument_type_mismatch)
   4058         << AT2.getRepresentativeTypeName(S.Context) << Ex->getType()
   4059         << false << Ex->getSourceRange(),
   4060         Ex->getLocStart(), /*IsStringLocation*/false,
   4061         getSpecifierRange(startSpecifier, specifierLen));
   4062 
   4063      return true;
   4064   }
   4065 
   4066   // Check for using an Objective-C specific conversion specifier
   4067   // in a non-ObjC literal.
   4068   if (!ObjCContext && CS.isObjCArg()) {
   4069     return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
   4070                                                   specifierLen);
   4071   }
   4072 
   4073   // Check for invalid use of field width
   4074   if (!FS.hasValidFieldWidth()) {
   4075     HandleInvalidAmount(FS, FS.getFieldWidth(), /* field width */ 0,
   4076         startSpecifier, specifierLen);
   4077   }
   4078 
   4079   // Check for invalid use of precision
   4080   if (!FS.hasValidPrecision()) {
   4081     HandleInvalidAmount(FS, FS.getPrecision(), /* precision */ 1,
   4082         startSpecifier, specifierLen);
   4083   }
   4084 
   4085   // Check each flag does not conflict with any other component.
   4086   if (!FS.hasValidThousandsGroupingPrefix())
   4087     HandleFlag(FS, FS.hasThousandsGrouping(), startSpecifier, specifierLen);
   4088   if (!FS.hasValidLeadingZeros())
   4089     HandleFlag(FS, FS.hasLeadingZeros(), startSpecifier, specifierLen);
   4090   if (!FS.hasValidPlusPrefix())
   4091     HandleFlag(FS, FS.hasPlusPrefix(), startSpecifier, specifierLen);
   4092   if (!FS.hasValidSpacePrefix())
   4093     HandleFlag(FS, FS.hasSpacePrefix(), startSpecifier, specifierLen);
   4094   if (!FS.hasValidAlternativeForm())
   4095     HandleFlag(FS, FS.hasAlternativeForm(), startSpecifier, specifierLen);
   4096   if (!FS.hasValidLeftJustified())
   4097     HandleFlag(FS, FS.isLeftJustified(), startSpecifier, specifierLen);
   4098 
   4099   // Check that flags are not ignored by another flag
   4100   if (FS.hasSpacePrefix() && FS.hasPlusPrefix()) // ' ' ignored by '+'
   4101     HandleIgnoredFlag(FS, FS.hasSpacePrefix(), FS.hasPlusPrefix(),
   4102         startSpecifier, specifierLen);
   4103   if (FS.hasLeadingZeros() && FS.isLeftJustified()) // '0' ignored by '-'
   4104     HandleIgnoredFlag(FS, FS.hasLeadingZeros(), FS.isLeftJustified(),
   4105             startSpecifier, specifierLen);
   4106 
   4107   // Check the length modifier is valid with the given conversion specifier.
   4108   if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo()))
   4109     HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
   4110                                 diag::warn_format_nonsensical_length);
   4111   else if (!FS.hasStandardLengthModifier())
   4112     HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen);
   4113   else if (!FS.hasStandardLengthConversionCombination())
   4114     HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
   4115                                 diag::warn_format_non_standard_conversion_spec);
   4116 
   4117   if (!FS.hasStandardConversionSpecifier(S.getLangOpts()))
   4118     HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen);
   4119 
   4120   // The remaining checks depend on the data arguments.
   4121   if (HasVAListArg)
   4122     return true;
   4123 
   4124   if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
   4125     return false;
   4126 
   4127   const Expr *Arg = getDataArg(argIndex);
   4128   if (!Arg)
   4129     return true;
   4130 
   4131   return checkFormatExpr(FS, startSpecifier, specifierLen, Arg);
   4132 }
   4133 
   4134 static bool requiresParensToAddCast(const Expr *E) {
   4135   // FIXME: We should have a general way to reason about operator
   4136   // precedence and whether parens are actually needed here.
   4137   // Take care of a few common cases where they aren't.
   4138   const Expr *Inside = E->IgnoreImpCasts();
   4139   if (const PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(Inside))
   4140     Inside = POE->getSyntacticForm()->IgnoreImpCasts();
   4141 
   4142   switch (Inside->getStmtClass()) {
   4143   case Stmt::ArraySubscriptExprClass:
   4144   case Stmt::CallExprClass:
   4145   case Stmt::CharacterLiteralClass:
   4146   case Stmt::CXXBoolLiteralExprClass:
   4147   case Stmt::DeclRefExprClass:
   4148   case Stmt::FloatingLiteralClass:
   4149   case Stmt::IntegerLiteralClass:
   4150   case Stmt::MemberExprClass:
   4151   case Stmt::ObjCArrayLiteralClass:
   4152   case Stmt::ObjCBoolLiteralExprClass:
   4153   case Stmt::ObjCBoxedExprClass:
   4154   case Stmt::ObjCDictionaryLiteralClass:
   4155   case Stmt::ObjCEncodeExprClass:
   4156   case Stmt::ObjCIvarRefExprClass:
   4157   case Stmt::ObjCMessageExprClass:
   4158   case Stmt::ObjCPropertyRefExprClass:
   4159   case Stmt::ObjCStringLiteralClass:
   4160   case Stmt::ObjCSubscriptRefExprClass:
   4161   case Stmt::ParenExprClass:
   4162   case Stmt::StringLiteralClass:
   4163   case Stmt::UnaryOperatorClass:
   4164     return false;
   4165   default:
   4166     return true;
   4167   }
   4168 }
   4169 
   4170 static std::pair<QualType, StringRef>
   4171 shouldNotPrintDirectly(const ASTContext &Context,
   4172                        QualType IntendedTy,
   4173                        const Expr *E) {
   4174   // Use a 'while' to peel off layers of typedefs.
   4175   QualType TyTy = IntendedTy;
   4176   while (const TypedefType *UserTy = TyTy->getAs<TypedefType>()) {
   4177     StringRef Name = UserTy->getDecl()->getName();
   4178     QualType CastTy = llvm::StringSwitch<QualType>(Name)
   4179       .Case("NSInteger", Context.LongTy)
   4180       .Case("NSUInteger", Context.UnsignedLongTy)
   4181       .Case("SInt32", Context.IntTy)
   4182       .Case("UInt32", Context.UnsignedIntTy)
   4183       .Default(QualType());
   4184 
   4185     if (!CastTy.isNull())
   4186       return std::make_pair(CastTy, Name);
   4187 
   4188     TyTy = UserTy->desugar();
   4189   }
   4190 
   4191   // Strip parens if necessary.
   4192   if (const ParenExpr *PE = dyn_cast<ParenExpr>(E))
   4193     return shouldNotPrintDirectly(Context,
   4194                                   PE->getSubExpr()->getType(),
   4195                                   PE->getSubExpr());
   4196 
   4197   // If this is a conditional expression, then its result type is constructed
   4198   // via usual arithmetic conversions and thus there might be no necessary
   4199   // typedef sugar there.  Recurse to operands to check for NSInteger &
   4200   // Co. usage condition.
   4201   if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
   4202     QualType TrueTy, FalseTy;
   4203     StringRef TrueName, FalseName;
   4204 
   4205     std::tie(TrueTy, TrueName) =
   4206       shouldNotPrintDirectly(Context,
   4207                              CO->getTrueExpr()->getType(),
   4208                              CO->getTrueExpr());
   4209     std::tie(FalseTy, FalseName) =
   4210       shouldNotPrintDirectly(Context,
   4211                              CO->getFalseExpr()->getType(),
   4212                              CO->getFalseExpr());
   4213 
   4214     if (TrueTy == FalseTy)
   4215       return std::make_pair(TrueTy, TrueName);
   4216     else if (TrueTy.isNull())
   4217       return std::make_pair(FalseTy, FalseName);
   4218     else if (FalseTy.isNull())
   4219       return std::make_pair(TrueTy, TrueName);
   4220   }
   4221 
   4222   return std::make_pair(QualType(), StringRef());
   4223 }
   4224 
   4225 bool
   4226 CheckPrintfHandler::checkFormatExpr(const analyze_printf::PrintfSpecifier &FS,
   4227                                     const char *StartSpecifier,
   4228                                     unsigned SpecifierLen,
   4229                                     const Expr *E) {
   4230   using namespace analyze_format_string;
   4231   using namespace analyze_printf;
   4232   // Now type check the data expression that matches the
   4233   // format specifier.
   4234   const analyze_printf::ArgType &AT = FS.getArgType(S.Context,
   4235                                                     ObjCContext);
   4236   if (!AT.isValid())
   4237     return true;
   4238 
   4239   QualType ExprTy = E->getType();
   4240   while (const TypeOfExprType *TET = dyn_cast<TypeOfExprType>(ExprTy)) {
   4241     ExprTy = TET->getUnderlyingExpr()->getType();
   4242   }
   4243 
   4244   analyze_printf::ArgType::MatchKind match = AT.matchesType(S.Context, ExprTy);
   4245 
   4246   if (match == analyze_printf::ArgType::Match) {
   4247     return true;
   4248   }
   4249 
   4250   // Look through argument promotions for our error message's reported type.
   4251   // This includes the integral and floating promotions, but excludes array
   4252   // and function pointer decay; seeing that an argument intended to be a
   4253   // string has type 'char [6]' is probably more confusing than 'char *'.
   4254   if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
   4255     if (ICE->getCastKind() == CK_IntegralCast ||
   4256         ICE->getCastKind() == CK_FloatingCast) {
   4257       E = ICE->getSubExpr();
   4258       ExprTy = E->getType();
   4259 
   4260       // Check if we didn't match because of an implicit cast from a 'char'
   4261       // or 'short' to an 'int'.  This is done because printf is a varargs
   4262       // function.
   4263       if (ICE->getType() == S.Context.IntTy ||
   4264           ICE->getType() == S.Context.UnsignedIntTy) {
   4265         // All further checking is done on the subexpression.
   4266         if (AT.matchesType(S.Context, ExprTy))
   4267           return true;
   4268       }
   4269     }
   4270   } else if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E)) {
   4271     // Special case for 'a', which has type 'int' in C.
   4272     // Note, however, that we do /not/ want to treat multibyte constants like
   4273     // 'MooV' as characters! This form is deprecated but still exists.
   4274     if (ExprTy == S.Context.IntTy)
   4275       if (llvm::isUIntN(S.Context.getCharWidth(), CL->getValue()))
   4276         ExprTy = S.Context.CharTy;
   4277   }
   4278 
   4279   // Look through enums to their underlying type.
   4280   bool IsEnum = false;
   4281   if (auto EnumTy = ExprTy->getAs<EnumType>()) {
   4282     ExprTy = EnumTy->getDecl()->getIntegerType();
   4283     IsEnum = true;
   4284   }
   4285 
   4286   // %C in an Objective-C context prints a unichar, not a wchar_t.
   4287   // If the argument is an integer of some kind, believe the %C and suggest
   4288   // a cast instead of changing the conversion specifier.
   4289   QualType IntendedTy = ExprTy;
   4290   if (ObjCContext &&
   4291       FS.getConversionSpecifier().getKind() == ConversionSpecifier::CArg) {
   4292     if (ExprTy->isIntegralOrUnscopedEnumerationType() &&
   4293         !ExprTy->isCharType()) {
   4294       // 'unichar' is defined as a typedef of unsigned short, but we should
   4295       // prefer using the typedef if it is visible.
   4296       IntendedTy = S.Context.UnsignedShortTy;
   4297 
   4298       // While we are here, check if the value is an IntegerLiteral that happens
   4299       // to be within the valid range.
   4300       if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E)) {
   4301         const llvm::APInt &V = IL->getValue();
   4302         if (V.getActiveBits() <= S.Context.getTypeSize(IntendedTy))
   4303           return true;
   4304       }
   4305 
   4306       LookupResult Result(S, &S.Context.Idents.get("unichar"), E->getLocStart(),
   4307                           Sema::LookupOrdinaryName);
   4308       if (S.LookupName(Result, S.getCurScope())) {
   4309         NamedDecl *ND = Result.getFoundDecl();
   4310         if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(ND))
   4311           if (TD->getUnderlyingType() == IntendedTy)
   4312             IntendedTy = S.Context.getTypedefType(TD);
   4313       }
   4314     }
   4315   }
   4316 
   4317   // Special-case some of Darwin's platform-independence types by suggesting
   4318   // casts to primitive types that are known to be large enough.
   4319   bool ShouldNotPrintDirectly = false; StringRef CastTyName;
   4320   if (S.Context.getTargetInfo().getTriple().isOSDarwin()) {
   4321     QualType CastTy;
   4322     std::tie(CastTy, CastTyName) = shouldNotPrintDirectly(S.Context, IntendedTy, E);
   4323     if (!CastTy.isNull()) {
   4324       IntendedTy = CastTy;
   4325       ShouldNotPrintDirectly = true;
   4326     }
   4327   }
   4328 
   4329   // We may be able to offer a FixItHint if it is a supported type.
   4330   PrintfSpecifier fixedFS = FS;
   4331   bool success = fixedFS.fixType(IntendedTy, S.getLangOpts(),
   4332                                  S.Context, ObjCContext);
   4333 
   4334   if (success) {
   4335     // Get the fix string from the fixed format specifier
   4336     SmallString<16> buf;
   4337     llvm::raw_svector_ostream os(buf);
   4338     fixedFS.toString(os);
   4339 
   4340     CharSourceRange SpecRange = getSpecifierRange(StartSpecifier, SpecifierLen);
   4341 
   4342     if (IntendedTy == ExprTy && !ShouldNotPrintDirectly) {
   4343       unsigned diag = diag::warn_format_conversion_argument_type_mismatch;
   4344       if (match == analyze_format_string::ArgType::NoMatchPedantic) {
   4345         diag = diag::warn_format_conversion_argument_type_mismatch_pedantic;
   4346       }
   4347       // In this case, the specifier is wrong and should be changed to match
   4348       // the argument.
   4349       EmitFormatDiagnostic(S.PDiag(diag)
   4350                                << AT.getRepresentativeTypeName(S.Context)
   4351                                << IntendedTy << IsEnum << E->getSourceRange(),
   4352                            E->getLocStart(),
   4353                            /*IsStringLocation*/ false, SpecRange,
   4354                            FixItHint::CreateReplacement(SpecRange, os.str()));
   4355 
   4356     } else {
   4357       // The canonical type for formatting this value is different from the
   4358       // actual type of the expression. (This occurs, for example, with Darwin's
   4359       // NSInteger on 32-bit platforms, where it is typedef'd as 'int', but
   4360       // should be printed as 'long' for 64-bit compatibility.)
   4361       // Rather than emitting a normal format/argument mismatch, we want to
   4362       // add a cast to the recommended type (and correct the format string
   4363       // if necessary).
   4364       SmallString<16> CastBuf;
   4365       llvm::raw_svector_ostream CastFix(CastBuf);
   4366       CastFix << "(";
   4367       IntendedTy.print(CastFix, S.Context.getPrintingPolicy());
   4368       CastFix << ")";
   4369 
   4370       SmallVector<FixItHint,4> Hints;
   4371       if (!AT.matchesType(S.Context, IntendedTy))
   4372         Hints.push_back(FixItHint::CreateReplacement(SpecRange, os.str()));
   4373 
   4374       if (const CStyleCastExpr *CCast = dyn_cast<CStyleCastExpr>(E)) {
   4375         // If there's already a cast present, just replace it.
   4376         SourceRange CastRange(CCast->getLParenLoc(), CCast->getRParenLoc());
   4377         Hints.push_back(FixItHint::CreateReplacement(CastRange, CastFix.str()));
   4378 
   4379       } else if (!requiresParensToAddCast(E)) {
   4380         // If the expression has high enough precedence,
   4381         // just write the C-style cast.
   4382         Hints.push_back(FixItHint::CreateInsertion(E->getLocStart(),
   4383                                                    CastFix.str()));
   4384       } else {
   4385         // Otherwise, add parens around the expression as well as the cast.
   4386         CastFix << "(";
   4387         Hints.push_back(FixItHint::CreateInsertion(E->getLocStart(),
   4388                                                    CastFix.str()));
   4389 
   4390         SourceLocation After = S.getLocForEndOfToken(E->getLocEnd());
   4391         Hints.push_back(FixItHint::CreateInsertion(After, ")"));
   4392       }
   4393 
   4394       if (ShouldNotPrintDirectly) {
   4395         // The expression has a type that should not be printed directly.
   4396         // We extract the name from the typedef because we don't want to show
   4397         // the underlying type in the diagnostic.
   4398         StringRef Name;
   4399         if (const TypedefType *TypedefTy = dyn_cast<TypedefType>(ExprTy))
   4400           Name = TypedefTy->getDecl()->getName();
   4401         else
   4402           Name = CastTyName;
   4403         EmitFormatDiagnostic(S.PDiag(diag::warn_format_argument_needs_cast)
   4404                                << Name << IntendedTy << IsEnum
   4405                                << E->getSourceRange(),
   4406                              E->getLocStart(), /*IsStringLocation=*/false,
   4407                              SpecRange, Hints);
   4408       } else {
   4409         // In this case, the expression could be printed using a different
   4410         // specifier, but we've decided that the specifier is probably correct
   4411         // and we should cast instead. Just use the normal warning message.
   4412         EmitFormatDiagnostic(
   4413           S.PDiag(diag::warn_format_conversion_argument_type_mismatch)
   4414             << AT.getRepresentativeTypeName(S.Context) << ExprTy << IsEnum
   4415             << E->getSourceRange(),
   4416           E->getLocStart(), /*IsStringLocation*/false,
   4417           SpecRange, Hints);
   4418       }
   4419     }
   4420   } else {
   4421     const CharSourceRange &CSR = getSpecifierRange(StartSpecifier,
   4422                                                    SpecifierLen);
   4423     // Since the warning for passing non-POD types to variadic functions
   4424     // was deferred until now, we emit a warning for non-POD
   4425     // arguments here.
   4426     switch (S.isValidVarArgType(ExprTy)) {
   4427     case Sema::VAK_Valid:
   4428     case Sema::VAK_ValidInCXX11: {
   4429       unsigned diag = diag::warn_format_conversion_argument_type_mismatch;
   4430       if (match == analyze_printf::ArgType::NoMatchPedantic) {
   4431         diag = diag::warn_format_conversion_argument_type_mismatch_pedantic;
   4432       }
   4433 
   4434       EmitFormatDiagnostic(
   4435           S.PDiag(diag) << AT.getRepresentativeTypeName(S.Context) << ExprTy
   4436                         << IsEnum << CSR << E->getSourceRange(),
   4437           E->getLocStart(), /*IsStringLocation*/ false, CSR);
   4438       break;
   4439     }
   4440     case Sema::VAK_Undefined:
   4441     case Sema::VAK_MSVCUndefined:
   4442       EmitFormatDiagnostic(
   4443         S.PDiag(diag::warn_non_pod_vararg_with_format_string)
   4444           << S.getLangOpts().CPlusPlus11
   4445           << ExprTy
   4446           << CallType
   4447           << AT.getRepresentativeTypeName(S.Context)
   4448           << CSR
   4449           << E->getSourceRange(),
   4450         E->getLocStart(), /*IsStringLocation*/false, CSR);
   4451       checkForCStrMembers(AT, E);
   4452       break;
   4453 
   4454     case Sema::VAK_Invalid:
   4455       if (ExprTy->isObjCObjectType())
   4456         EmitFormatDiagnostic(
   4457           S.PDiag(diag::err_cannot_pass_objc_interface_to_vararg_format)
   4458             << S.getLangOpts().CPlusPlus11
   4459             << ExprTy
   4460             << CallType
   4461             << AT.getRepresentativeTypeName(S.Context)
   4462             << CSR
   4463             << E->getSourceRange(),
   4464           E->getLocStart(), /*IsStringLocation*/false, CSR);
   4465       else
   4466         // FIXME: If this is an initializer list, suggest removing the braces
   4467         // or inserting a cast to the target type.
   4468         S.Diag(E->getLocStart(), diag::err_cannot_pass_to_vararg_format)
   4469           << isa<InitListExpr>(E) << ExprTy << CallType
   4470           << AT.getRepresentativeTypeName(S.Context)
   4471           << E->getSourceRange();
   4472       break;
   4473     }
   4474 
   4475     assert(FirstDataArg + FS.getArgIndex() < CheckedVarArgs.size() &&
   4476            "format string specifier index out of range");
   4477     CheckedVarArgs[FirstDataArg + FS.getArgIndex()] = true;
   4478   }
   4479 
   4480   return true;
   4481 }
   4482 
   4483 //===--- CHECK: Scanf format string checking ------------------------------===//
   4484 
   4485 namespace {
   4486 class CheckScanfHandler : public CheckFormatHandler {
   4487 public:
   4488   CheckScanfHandler(Sema &s, const StringLiteral *fexpr,
   4489                     const Expr *origFormatExpr, unsigned firstDataArg,
   4490                     unsigned numDataArgs, const char *beg, bool hasVAListArg,
   4491                     ArrayRef<const Expr *> Args,
   4492                     unsigned formatIdx, bool inFunctionCall,
   4493                     Sema::VariadicCallType CallType,
   4494                     llvm::SmallBitVector &CheckedVarArgs)
   4495     : CheckFormatHandler(s, fexpr, origFormatExpr, firstDataArg,
   4496                          numDataArgs, beg, hasVAListArg,
   4497                          Args, formatIdx, inFunctionCall, CallType,
   4498                          CheckedVarArgs)
   4499   {}
   4500 
   4501   bool HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier &FS,
   4502                             const char *startSpecifier,
   4503                             unsigned specifierLen) override;
   4504 
   4505   bool HandleInvalidScanfConversionSpecifier(
   4506           const analyze_scanf::ScanfSpecifier &FS,
   4507           const char *startSpecifier,
   4508           unsigned specifierLen) override;
   4509 
   4510   void HandleIncompleteScanList(const char *start, const char *end) override;
   4511 };
   4512 }
   4513 
   4514 void CheckScanfHandler::HandleIncompleteScanList(const char *start,
   4515                                                  const char *end) {
   4516   EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_scanlist_incomplete),
   4517                        getLocationOfByte(end), /*IsStringLocation*/true,
   4518                        getSpecifierRange(start, end - start));
   4519 }
   4520 
   4521 bool CheckScanfHandler::HandleInvalidScanfConversionSpecifier(
   4522                                         const analyze_scanf::ScanfSpecifier &FS,
   4523                                         const char *startSpecifier,
   4524                                         unsigned specifierLen) {
   4525 
   4526   const analyze_scanf::ScanfConversionSpecifier &CS =
   4527     FS.getConversionSpecifier();
   4528 
   4529   return HandleInvalidConversionSpecifier(FS.getArgIndex(),
   4530                                           getLocationOfByte(CS.getStart()),
   4531                                           startSpecifier, specifierLen,
   4532                                           CS.getStart(), CS.getLength());
   4533 }
   4534 
   4535 bool CheckScanfHandler::HandleScanfSpecifier(
   4536                                        const analyze_scanf::ScanfSpecifier &FS,
   4537                                        const char *startSpecifier,
   4538                                        unsigned specifierLen) {
   4539 
   4540   using namespace analyze_scanf;
   4541   using namespace analyze_format_string;
   4542 
   4543   const ScanfConversionSpecifier &CS = FS.getConversionSpecifier();
   4544 
   4545   // Handle case where '%' and '*' don't consume an argument.  These shouldn't
   4546   // be used to decide if we are using positional arguments consistently.
   4547   if (FS.consumesDataArgument()) {
   4548     if (atFirstArg) {
   4549       atFirstArg = false;
   4550       usesPositionalArgs = FS.usesPositionalArg();
   4551     }
   4552     else if (usesPositionalArgs != FS.usesPositionalArg()) {
   4553       HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()),
   4554                                         startSpecifier, specifierLen);
   4555       return false;
   4556     }
   4557   }
   4558 
   4559   // Check if the field with is non-zero.
   4560   const OptionalAmount &Amt = FS.getFieldWidth();
   4561   if (Amt.getHowSpecified() == OptionalAmount::Constant) {
   4562     if (Amt.getConstantAmount() == 0) {
   4563       const CharSourceRange &R = getSpecifierRange(Amt.getStart(),
   4564                                                    Amt.getConstantLength());
   4565       EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_nonzero_width),
   4566                            getLocationOfByte(Amt.getStart()),
   4567                            /*IsStringLocation*/true, R,
   4568                            FixItHint::CreateRemoval(R));
   4569     }
   4570   }
   4571 
   4572   if (!FS.consumesDataArgument()) {
   4573     // FIXME: Technically specifying a precision or field width here
   4574     // makes no sense.  Worth issuing a warning at some point.
   4575     return true;
   4576   }
   4577 
   4578   // Consume the argument.
   4579   unsigned argIndex = FS.getArgIndex();
   4580   if (argIndex < NumDataArgs) {
   4581       // The check to see if the argIndex is valid will come later.
   4582       // We set the bit here because we may exit early from this
   4583       // function if we encounter some other error.
   4584     CoveredArgs.set(argIndex);
   4585   }
   4586 
   4587   // Check the length modifier is valid with the given conversion specifier.
   4588   if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo()))
   4589     HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
   4590                                 diag::warn_format_nonsensical_length);
   4591   else if (!FS.hasStandardLengthModifier())
   4592     HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen);
   4593   else if (!FS.hasStandardLengthConversionCombination())
   4594     HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
   4595                                 diag::warn_format_non_standard_conversion_spec);
   4596 
   4597   if (!FS.hasStandardConversionSpecifier(S.getLangOpts()))
   4598     HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen);
   4599 
   4600   // The remaining checks depend on the data arguments.
   4601   if (HasVAListArg)
   4602     return true;
   4603 
   4604   if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
   4605     return false;
   4606 
   4607   // Check that the argument type matches the format specifier.
   4608   const Expr *Ex = getDataArg(argIndex);
   4609   if (!Ex)
   4610     return true;
   4611 
   4612   const analyze_format_string::ArgType &AT = FS.getArgType(S.Context);
   4613 
   4614   if (!AT.isValid()) {
   4615     return true;
   4616   }
   4617 
   4618   analyze_format_string::ArgType::MatchKind match =
   4619       AT.matchesType(S.Context, Ex->getType());
   4620   if (match == analyze_format_string::ArgType::Match) {
   4621     return true;
   4622   }
   4623 
   4624   ScanfSpecifier fixedFS = FS;
   4625   bool success = fixedFS.fixType(Ex->getType(), Ex->IgnoreImpCasts()->getType(),
   4626                                  S.getLangOpts(), S.Context);
   4627 
   4628   unsigned diag = diag::warn_format_conversion_argument_type_mismatch;
   4629   if (match == analyze_format_string::ArgType::NoMatchPedantic) {
   4630     diag = diag::warn_format_conversion_argument_type_mismatch_pedantic;
   4631   }
   4632 
   4633   if (success) {
   4634     // Get the fix string from the fixed format specifier.
   4635     SmallString<128> buf;
   4636     llvm::raw_svector_ostream os(buf);
   4637     fixedFS.toString(os);
   4638 
   4639     EmitFormatDiagnostic(
   4640         S.PDiag(diag) << AT.getRepresentativeTypeName(S.Context)
   4641                       << Ex->getType() << false << Ex->getSourceRange(),
   4642         Ex->getLocStart(),
   4643         /*IsStringLocation*/ false,
   4644         getSpecifierRange(startSpecifier, specifierLen),
   4645         FixItHint::CreateReplacement(
   4646             getSpecifierRange(startSpecifier, specifierLen), os.str()));
   4647   } else {
   4648     EmitFormatDiagnostic(S.PDiag(diag)
   4649                              << AT.getRepresentativeTypeName(S.Context)
   4650                              << Ex->getType() << false << Ex->getSourceRange(),
   4651                          Ex->getLocStart(),
   4652                          /*IsStringLocation*/ false,
   4653                          getSpecifierRange(startSpecifier, specifierLen));
   4654   }
   4655 
   4656   return true;
   4657 }
   4658 
   4659 void Sema::CheckFormatString(const StringLiteral *FExpr,
   4660                              const Expr *OrigFormatExpr,
   4661                              ArrayRef<const Expr *> Args,
   4662                              bool HasVAListArg, unsigned format_idx,
   4663                              unsigned firstDataArg, FormatStringType Type,
   4664                              bool inFunctionCall, VariadicCallType CallType,
   4665                              llvm::SmallBitVector &CheckedVarArgs) {
   4666 
   4667   // CHECK: is the format string a wide literal?
   4668   if (!FExpr->isAscii() && !FExpr->isUTF8()) {
   4669     CheckFormatHandler::EmitFormatDiagnostic(
   4670       *this, inFunctionCall, Args[format_idx],
   4671       PDiag(diag::warn_format_string_is_wide_literal), FExpr->getLocStart(),
   4672       /*IsStringLocation*/true, OrigFormatExpr->getSourceRange());
   4673     return;
   4674   }
   4675 
   4676   // Str - The format string.  NOTE: this is NOT null-terminated!
   4677   StringRef StrRef = FExpr->getString();
   4678   const char *Str = StrRef.data();
   4679   // Account for cases where the string literal is truncated in a declaration.
   4680   const ConstantArrayType *T = Context.getAsConstantArrayType(FExpr->getType());
   4681   assert(T && "String literal not of constant array type!");
   4682   size_t TypeSize = T->getSize().getZExtValue();
   4683   size_t StrLen = std::min(std::max(TypeSize, size_t(1)) - 1, StrRef.size());
   4684   const unsigned numDataArgs = Args.size() - firstDataArg;
   4685 
   4686   // Emit a warning if the string literal is truncated and does not contain an
   4687   // embedded null character.
   4688   if (TypeSize <= StrRef.size() &&
   4689       StrRef.substr(0, TypeSize).find('\0') == StringRef::npos) {
   4690     CheckFormatHandler::EmitFormatDiagnostic(
   4691         *this, inFunctionCall, Args[format_idx],
   4692         PDiag(diag::warn_printf_format_string_not_null_terminated),
   4693         FExpr->getLocStart(),
   4694         /*IsStringLocation=*/true, OrigFormatExpr->getSourceRange());
   4695     return;
   4696   }
   4697 
   4698   // CHECK: empty format string?
   4699   if (StrLen == 0 && numDataArgs > 0) {
   4700     CheckFormatHandler::EmitFormatDiagnostic(
   4701       *this, inFunctionCall, Args[format_idx],
   4702       PDiag(diag::warn_empty_format_string), FExpr->getLocStart(),
   4703       /*IsStringLocation*/true, OrigFormatExpr->getSourceRange());
   4704     return;
   4705   }
   4706 
   4707   if (Type == FST_Printf || Type == FST_NSString ||
   4708       Type == FST_FreeBSDKPrintf || Type == FST_OSTrace) {
   4709     CheckPrintfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg,
   4710                          numDataArgs, (Type == FST_NSString || Type == FST_OSTrace),
   4711                          Str, HasVAListArg, Args, format_idx,
   4712                          inFunctionCall, CallType, CheckedVarArgs);
   4713 
   4714     if (!analyze_format_string::ParsePrintfString(H, Str, Str + StrLen,
   4715                                                   getLangOpts(),
   4716                                                   Context.getTargetInfo(),
   4717                                                   Type == FST_FreeBSDKPrintf))
   4718       H.DoneProcessing();
   4719   } else if (Type == FST_Scanf) {
   4720     CheckScanfHandler H(*this, FExpr, OrigFormatExpr, firstDataArg, numDataArgs,
   4721                         Str, HasVAListArg, Args, format_idx,
   4722                         inFunctionCall, CallType, CheckedVarArgs);
   4723 
   4724     if (!analyze_format_string::ParseScanfString(H, Str, Str + StrLen,
   4725                                                  getLangOpts(),
   4726                                                  Context.getTargetInfo()))
   4727       H.DoneProcessing();
   4728   } // TODO: handle other formats
   4729 }
   4730 
   4731 bool Sema::FormatStringHasSArg(const StringLiteral *FExpr) {
   4732   // Str - The format string.  NOTE: this is NOT null-terminated!
   4733   StringRef StrRef = FExpr->getString();
   4734   const char *Str = StrRef.data();
   4735   // Account for cases where the string literal is truncated in a declaration.
   4736   const ConstantArrayType *T = Context.getAsConstantArrayType(FExpr->getType());
   4737   assert(T && "String literal not of constant array type!");
   4738   size_t TypeSize = T->getSize().getZExtValue();
   4739   size_t StrLen = std::min(std::max(TypeSize, size_t(1)) - 1, StrRef.size());
   4740   return analyze_format_string::ParseFormatStringHasSArg(Str, Str + StrLen,
   4741                                                          getLangOpts(),
   4742                                                          Context.getTargetInfo());
   4743 }
   4744 
   4745 //===--- CHECK: Warn on use of wrong absolute value function. -------------===//
   4746 
   4747 // Returns the related absolute value function that is larger, of 0 if one
   4748 // does not exist.
   4749 static unsigned getLargerAbsoluteValueFunction(unsigned AbsFunction) {
   4750   switch (AbsFunction) {
   4751   default:
   4752     return 0;
   4753 
   4754   case Builtin::BI__builtin_abs:
   4755     return Builtin::BI__builtin_labs;
   4756   case Builtin::BI__builtin_labs:
   4757     return Builtin::BI__builtin_llabs;
   4758   case Builtin::BI__builtin_llabs:
   4759     return 0;
   4760 
   4761   case Builtin::BI__builtin_fabsf:
   4762     return Builtin::BI__builtin_fabs;
   4763   case Builtin::BI__builtin_fabs:
   4764     return Builtin::BI__builtin_fabsl;
   4765   case Builtin::BI__builtin_fabsl:
   4766     return 0;
   4767 
   4768   case Builtin::BI__builtin_cabsf:
   4769     return Builtin::BI__builtin_cabs;
   4770   case Builtin::BI__builtin_cabs:
   4771     return Builtin::BI__builtin_cabsl;
   4772   case Builtin::BI__builtin_cabsl:
   4773     return 0;
   4774 
   4775   case Builtin::BIabs:
   4776     return Builtin::BIlabs;
   4777   case Builtin::BIlabs:
   4778     return Builtin::BIllabs;
   4779   case Builtin::BIllabs:
   4780     return 0;
   4781 
   4782   case Builtin::BIfabsf:
   4783     return Builtin::BIfabs;
   4784   case Builtin::BIfabs:
   4785     return Builtin::BIfabsl;
   4786   case Builtin::BIfabsl:
   4787     return 0;
   4788 
   4789   case Builtin::BIcabsf:
   4790    return Builtin::BIcabs;
   4791   case Builtin::BIcabs:
   4792     return Builtin::BIcabsl;
   4793   case Builtin::BIcabsl:
   4794     return 0;
   4795   }
   4796 }
   4797 
   4798 // Returns the argument type of the absolute value function.
   4799 static QualType getAbsoluteValueArgumentType(ASTContext &Context,
   4800                                              unsigned AbsType) {
   4801   if (AbsType == 0)
   4802     return QualType();
   4803 
   4804   ASTContext::GetBuiltinTypeError Error = ASTContext::GE_None;
   4805   QualType BuiltinType = Context.GetBuiltinType(AbsType, Error);
   4806   if (Error != ASTContext::GE_None)
   4807     return QualType();
   4808 
   4809   const FunctionProtoType *FT = BuiltinType->getAs<FunctionProtoType>();
   4810   if (!FT)
   4811     return QualType();
   4812 
   4813   if (FT->getNumParams() != 1)
   4814     return QualType();
   4815 
   4816   return FT->getParamType(0);
   4817 }
   4818 
   4819 // Returns the best absolute value function, or zero, based on type and
   4820 // current absolute value function.
   4821 static unsigned getBestAbsFunction(ASTContext &Context, QualType ArgType,
   4822                                    unsigned AbsFunctionKind) {
   4823   unsigned BestKind = 0;
   4824   uint64_t ArgSize = Context.getTypeSize(ArgType);
   4825   for (unsigned Kind = AbsFunctionKind; Kind != 0;
   4826        Kind = getLargerAbsoluteValueFunction(Kind)) {
   4827     QualType ParamType = getAbsoluteValueArgumentType(Context, Kind);
   4828     if (Context.getTypeSize(ParamType) >= ArgSize) {
   4829       if (BestKind == 0)
   4830         BestKind = Kind;
   4831       else if (Context.hasSameType(ParamType, ArgType)) {
   4832         BestKind = Kind;
   4833         break;
   4834       }
   4835     }
   4836   }
   4837   return BestKind;
   4838 }
   4839 
   4840 enum AbsoluteValueKind {
   4841   AVK_Integer,
   4842   AVK_Floating,
   4843   AVK_Complex
   4844 };
   4845 
   4846 static AbsoluteValueKind getAbsoluteValueKind(QualType T) {
   4847   if (T->isIntegralOrEnumerationType())
   4848     return AVK_Integer;
   4849   if (T->isRealFloatingType())
   4850     return AVK_Floating;
   4851   if (T->isAnyComplexType())
   4852     return AVK_Complex;
   4853 
   4854   llvm_unreachable("Type not integer, floating, or complex");
   4855 }
   4856 
   4857 // Changes the absolute value function to a different type.  Preserves whether
   4858 // the function is a builtin.
   4859 static unsigned changeAbsFunction(unsigned AbsKind,
   4860                                   AbsoluteValueKind ValueKind) {
   4861   switch (ValueKind) {
   4862   case AVK_Integer:
   4863     switch (AbsKind) {
   4864     default:
   4865       return 0;
   4866     case Builtin::BI__builtin_fabsf:
   4867     case Builtin::BI__builtin_fabs:
   4868     case Builtin::BI__builtin_fabsl:
   4869     case Builtin::BI__builtin_cabsf:
   4870     case Builtin::BI__builtin_cabs:
   4871     case Builtin::BI__builtin_cabsl:
   4872       return Builtin::BI__builtin_abs;
   4873     case Builtin::BIfabsf:
   4874     case Builtin::BIfabs:
   4875     case Builtin::BIfabsl:
   4876     case Builtin::BIcabsf:
   4877     case Builtin::BIcabs:
   4878     case Builtin::BIcabsl:
   4879       return Builtin::BIabs;
   4880     }
   4881   case AVK_Floating:
   4882     switch (AbsKind) {
   4883     default:
   4884       return 0;
   4885     case Builtin::BI__builtin_abs:
   4886     case Builtin::BI__builtin_labs:
   4887     case Builtin::BI__builtin_llabs:
   4888     case Builtin::BI__builtin_cabsf:
   4889     case Builtin::BI__builtin_cabs:
   4890     case Builtin::BI__builtin_cabsl:
   4891       return Builtin::BI__builtin_fabsf;
   4892     case Builtin::BIabs:
   4893     case Builtin::BIlabs:
   4894     case Builtin::BIllabs:
   4895     case Builtin::BIcabsf:
   4896     case Builtin::BIcabs:
   4897     case Builtin::BIcabsl:
   4898       return Builtin::BIfabsf;
   4899     }
   4900   case AVK_Complex:
   4901     switch (AbsKind) {
   4902     default:
   4903       return 0;
   4904     case Builtin::BI__builtin_abs:
   4905     case Builtin::BI__builtin_labs:
   4906     case Builtin::BI__builtin_llabs:
   4907     case Builtin::BI__builtin_fabsf:
   4908     case Builtin::BI__builtin_fabs:
   4909     case Builtin::BI__builtin_fabsl:
   4910       return Builtin::BI__builtin_cabsf;
   4911     case Builtin::BIabs:
   4912     case Builtin::BIlabs:
   4913     case Builtin::BIllabs:
   4914     case Builtin::BIfabsf:
   4915     case Builtin::BIfabs:
   4916     case Builtin::BIfabsl:
   4917       return Builtin::BIcabsf;
   4918     }
   4919   }
   4920   llvm_unreachable("Unable to convert function");
   4921 }
   4922 
   4923 static unsigned getAbsoluteValueFunctionKind(const FunctionDecl *FDecl) {
   4924   const IdentifierInfo *FnInfo = FDecl->getIdentifier();
   4925   if (!FnInfo)
   4926     return 0;
   4927 
   4928   switch (FDecl->getBuiltinID()) {
   4929   default:
   4930     return 0;
   4931   case Builtin::BI__builtin_abs:
   4932   case Builtin::BI__builtin_fabs:
   4933   case Builtin::BI__builtin_fabsf:
   4934   case Builtin::BI__builtin_fabsl:
   4935   case Builtin::BI__builtin_labs:
   4936   case Builtin::BI__builtin_llabs:
   4937   case Builtin::BI__builtin_cabs:
   4938   case Builtin::BI__builtin_cabsf:
   4939   case Builtin::BI__builtin_cabsl:
   4940   case Builtin::BIabs:
   4941   case Builtin::BIlabs:
   4942   case Builtin::BIllabs:
   4943   case Builtin::BIfabs:
   4944   case Builtin::BIfabsf:
   4945   case Builtin::BIfabsl:
   4946   case Builtin::BIcabs:
   4947   case Builtin::BIcabsf:
   4948   case Builtin::BIcabsl:
   4949     return FDecl->getBuiltinID();
   4950   }
   4951   llvm_unreachable("Unknown Builtin type");
   4952 }
   4953 
   4954 // If the replacement is valid, emit a note with replacement function.
   4955 // Additionally, suggest including the proper header if not already included.
   4956 static void emitReplacement(Sema &S, SourceLocation Loc, SourceRange Range,
   4957                             unsigned AbsKind, QualType ArgType) {
   4958   bool EmitHeaderHint = true;
   4959   const char *HeaderName = nullptr;
   4960   const char *FunctionName = nullptr;
   4961   if (S.getLangOpts().CPlusPlus && !ArgType->isAnyComplexType()) {
   4962     FunctionName = "std::abs";
   4963     if (ArgType->isIntegralOrEnumerationType()) {
   4964       HeaderName = "cstdlib";
   4965     } else if (ArgType->isRealFloatingType()) {
   4966       HeaderName = "cmath";
   4967     } else {
   4968       llvm_unreachable("Invalid Type");
   4969     }
   4970 
   4971     // Lookup all std::abs
   4972     if (NamespaceDecl *Std = S.getStdNamespace()) {
   4973       LookupResult R(S, &S.Context.Idents.get("abs"), Loc, Sema::LookupAnyName);
   4974       R.suppressDiagnostics();
   4975       S.LookupQualifiedName(R, Std);
   4976 
   4977       for (const auto *I : R) {
   4978         const FunctionDecl *FDecl = nullptr;
   4979         if (const UsingShadowDecl *UsingD = dyn_cast<UsingShadowDecl>(I)) {
   4980           FDecl = dyn_cast<FunctionDecl>(UsingD->getTargetDecl());
   4981         } else {
   4982           FDecl = dyn_cast<FunctionDecl>(I);
   4983         }
   4984         if (!FDecl)
   4985           continue;
   4986 
   4987         // Found std::abs(), check that they are the right ones.
   4988         if (FDecl->getNumParams() != 1)
   4989           continue;
   4990 
   4991         // Check that the parameter type can handle the argument.
   4992         QualType ParamType = FDecl->getParamDecl(0)->getType();
   4993         if (getAbsoluteValueKind(ArgType) == getAbsoluteValueKind(ParamType) &&
   4994             S.Context.getTypeSize(ArgType) <=
   4995                 S.Context.getTypeSize(ParamType)) {
   4996           // Found a function, don't need the header hint.
   4997           EmitHeaderHint = false;
   4998           break;
   4999         }
   5000       }
   5001     }
   5002   } else {
   5003     FunctionName = S.Context.BuiltinInfo.getName(AbsKind);
   5004     HeaderName = S.Context.BuiltinInfo.getHeaderName(AbsKind);
   5005 
   5006     if (HeaderName) {
   5007       DeclarationName DN(&S.Context.Idents.get(FunctionName));
   5008       LookupResult R(S, DN, Loc, Sema::LookupAnyName);
   5009       R.suppressDiagnostics();
   5010       S.LookupName(R, S.getCurScope());
   5011 
   5012       if (R.isSingleResult()) {
   5013         FunctionDecl *FD = dyn_cast<FunctionDecl>(R.getFoundDecl());
   5014         if (FD && FD->getBuiltinID() == AbsKind) {
   5015           EmitHeaderHint = false;
   5016         } else {
   5017           return;
   5018         }
   5019       } else if (!R.empty()) {
   5020         return;
   5021       }
   5022     }
   5023   }
   5024 
   5025   S.Diag(Loc, diag::note_replace_abs_function)
   5026       << FunctionName << FixItHint::CreateReplacement(Range, FunctionName);
   5027 
   5028   if (!HeaderName)
   5029     return;
   5030 
   5031   if (!EmitHeaderHint)
   5032     return;
   5033 
   5034   S.Diag(Loc, diag::note_include_header_or_declare) << HeaderName
   5035                                                     << FunctionName;
   5036 }
   5037 
   5038 static bool IsFunctionStdAbs(const FunctionDecl *FDecl) {
   5039   if (!FDecl)
   5040     return false;
   5041 
   5042   if (!FDecl->getIdentifier() || !FDecl->getIdentifier()->isStr("abs"))
   5043     return false;
   5044 
   5045   const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(FDecl->getDeclContext());
   5046 
   5047   while (ND && ND->isInlineNamespace()) {
   5048     ND = dyn_cast<NamespaceDecl>(ND->getDeclContext());
   5049   }
   5050 
   5051   if (!ND || !ND->getIdentifier() || !ND->getIdentifier()->isStr("std"))
   5052     return false;
   5053 
   5054   if (!isa<TranslationUnitDecl>(ND->getDeclContext()))
   5055     return false;
   5056 
   5057   return true;
   5058 }
   5059 
   5060 // Warn when using the wrong abs() function.
   5061 void Sema::CheckAbsoluteValueFunction(const CallExpr *Call,
   5062                                       const FunctionDecl *FDecl,
   5063                                       IdentifierInfo *FnInfo) {
   5064   if (Call->getNumArgs() != 1)
   5065     return;
   5066 
   5067   unsigned AbsKind = getAbsoluteValueFunctionKind(FDecl);
   5068   bool IsStdAbs = IsFunctionStdAbs(FDecl);
   5069   if (AbsKind == 0 && !IsStdAbs)
   5070     return;
   5071 
   5072   QualType ArgType = Call->getArg(0)->IgnoreParenImpCasts()->getType();
   5073   QualType ParamType = Call->getArg(0)->getType();
   5074 
   5075   // Unsigned types cannot be negative.  Suggest removing the absolute value
   5076   // function call.
   5077   if (ArgType->isUnsignedIntegerType()) {
   5078     const char *FunctionName =
   5079         IsStdAbs ? "std::abs" : Context.BuiltinInfo.getName(AbsKind);
   5080     Diag(Call->getExprLoc(), diag::warn_unsigned_abs) << ArgType << ParamType;
   5081     Diag(Call->getExprLoc(), diag::note_remove_abs)
   5082         << FunctionName
   5083         << FixItHint::CreateRemoval(Call->getCallee()->getSourceRange());
   5084     return;
   5085   }
   5086 
   5087   // Taking the absolute value of a pointer is very suspicious, they probably
   5088   // wanted to index into an array, dereference a pointer, call a function, etc.
   5089   if (ArgType->isPointerType() || ArgType->canDecayToPointerType()) {
   5090     unsigned DiagType = 0;
   5091     if (ArgType->isFunctionType())
   5092       DiagType = 1;
   5093     else if (ArgType->isArrayType())
   5094       DiagType = 2;
   5095 
   5096     Diag(Call->getExprLoc(), diag::warn_pointer_abs) << DiagType << ArgType;
   5097     return;
   5098   }
   5099 
   5100   // std::abs has overloads which prevent most of the absolute value problems
   5101   // from occurring.
   5102   if (IsStdAbs)
   5103     return;
   5104 
   5105   AbsoluteValueKind ArgValueKind = getAbsoluteValueKind(ArgType);
   5106   AbsoluteValueKind ParamValueKind = getAbsoluteValueKind(ParamType);
   5107 
   5108   // The argument and parameter are the same kind.  Check if they are the right
   5109   // size.
   5110   if (ArgValueKind == ParamValueKind) {
   5111     if (Context.getTypeSize(ArgType) <= Context.getTypeSize(ParamType))
   5112       return;
   5113 
   5114     unsigned NewAbsKind = getBestAbsFunction(Context, ArgType, AbsKind);
   5115     Diag(Call->getExprLoc(), diag::warn_abs_too_small)
   5116         << FDecl << ArgType << ParamType;
   5117 
   5118     if (NewAbsKind == 0)
   5119       return;
   5120 
   5121     emitReplacement(*this, Call->getExprLoc(),
   5122                     Call->getCallee()->getSourceRange(), NewAbsKind, ArgType);
   5123     return;
   5124   }
   5125 
   5126   // ArgValueKind != ParamValueKind
   5127   // The wrong type of absolute value function was used.  Attempt to find the
   5128   // proper one.
   5129   unsigned NewAbsKind = changeAbsFunction(AbsKind, ArgValueKind);
   5130   NewAbsKind = getBestAbsFunction(Context, ArgType, NewAbsKind);
   5131   if (NewAbsKind == 0)
   5132     return;
   5133 
   5134   Diag(Call->getExprLoc(), diag::warn_wrong_absolute_value_type)
   5135       << FDecl << ParamValueKind << ArgValueKind;
   5136 
   5137   emitReplacement(*this, Call->getExprLoc(),
   5138                   Call->getCallee()->getSourceRange(), NewAbsKind, ArgType);
   5139   return;
   5140 }
   5141 
   5142 //===--- CHECK: Standard memory functions ---------------------------------===//
   5143 
   5144 /// \brief Takes the expression passed to the size_t parameter of functions
   5145 /// such as memcmp, strncat, etc and warns if it's a comparison.
   5146 ///
   5147 /// This is to catch typos like `if (memcmp(&a, &b, sizeof(a) > 0))`.
   5148 static bool CheckMemorySizeofForComparison(Sema &S, const Expr *E,
   5149                                            IdentifierInfo *FnName,
   5150                                            SourceLocation FnLoc,
   5151                                            SourceLocation RParenLoc) {
   5152   const BinaryOperator *Size = dyn_cast<BinaryOperator>(E);
   5153   if (!Size)
   5154     return false;
   5155 
   5156   // if E is binop and op is >, <, >=, <=, ==, &&, ||:
   5157   if (!Size->isComparisonOp() && !Size->isEqualityOp() && !Size->isLogicalOp())
   5158     return false;
   5159 
   5160   SourceRange SizeRange = Size->getSourceRange();
   5161   S.Diag(Size->getOperatorLoc(), diag::warn_memsize_comparison)
   5162       << SizeRange << FnName;
   5163   S.Diag(FnLoc, diag::note_memsize_comparison_paren)
   5164       << FnName << FixItHint::CreateInsertion(
   5165                        S.getLocForEndOfToken(Size->getLHS()->getLocEnd()), ")")
   5166       << FixItHint::CreateRemoval(RParenLoc);
   5167   S.Diag(SizeRange.getBegin(), diag::note_memsize_comparison_cast_silence)
   5168       << FixItHint::CreateInsertion(SizeRange.getBegin(), "(size_t)(")
   5169       << FixItHint::CreateInsertion(S.getLocForEndOfToken(SizeRange.getEnd()),
   5170                                     ")");
   5171 
   5172   return true;
   5173 }
   5174 
   5175 /// \brief Determine whether the given type is or contains a dynamic class type
   5176 /// (e.g., whether it has a vtable).
   5177 static const CXXRecordDecl *getContainedDynamicClass(QualType T,
   5178                                                      bool &IsContained) {
   5179   // Look through array types while ignoring qualifiers.
   5180   const Type *Ty = T->getBaseElementTypeUnsafe();
   5181   IsContained = false;
   5182 
   5183   const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
   5184   RD = RD ? RD->getDefinition() : nullptr;
   5185   if (!RD)
   5186     return nullptr;
   5187 
   5188   if (RD->isDynamicClass())
   5189     return RD;
   5190 
   5191   // Check all the fields.  If any bases were dynamic, the class is dynamic.
   5192   // It's impossible for a class to transitively contain itself by value, so
   5193   // infinite recursion is impossible.
   5194   for (auto *FD : RD->fields()) {
   5195     bool SubContained;
   5196     if (const CXXRecordDecl *ContainedRD =
   5197             getContainedDynamicClass(FD->getType(), SubContained)) {
   5198       IsContained = true;
   5199       return ContainedRD;
   5200     }
   5201   }
   5202 
   5203   return nullptr;
   5204 }
   5205 
   5206 /// \brief If E is a sizeof expression, returns its argument expression,
   5207 /// otherwise returns NULL.
   5208 static const Expr *getSizeOfExprArg(const Expr *E) {
   5209   if (const UnaryExprOrTypeTraitExpr *SizeOf =
   5210       dyn_cast<UnaryExprOrTypeTraitExpr>(E))
   5211     if (SizeOf->getKind() == clang::UETT_SizeOf && !SizeOf->isArgumentType())
   5212       return SizeOf->getArgumentExpr()->IgnoreParenImpCasts();
   5213 
   5214   return nullptr;
   5215 }
   5216 
   5217 /// \brief If E is a sizeof expression, returns its argument type.
   5218 static QualType getSizeOfArgType(const Expr *E) {
   5219   if (const UnaryExprOrTypeTraitExpr *SizeOf =
   5220       dyn_cast<UnaryExprOrTypeTraitExpr>(E))
   5221     if (SizeOf->getKind() == clang::UETT_SizeOf)
   5222       return SizeOf->getTypeOfArgument();
   5223 
   5224   return QualType();
   5225 }
   5226 
   5227 /// \brief Check for dangerous or invalid arguments to memset().
   5228 ///
   5229 /// This issues warnings on known problematic, dangerous or unspecified
   5230 /// arguments to the standard 'memset', 'memcpy', 'memmove', and 'memcmp'
   5231 /// function calls.
   5232 ///
   5233 /// \param Call The call expression to diagnose.
   5234 void Sema::CheckMemaccessArguments(const CallExpr *Call,
   5235                                    unsigned BId,
   5236                                    IdentifierInfo *FnName) {
   5237   assert(BId != 0);
   5238 
   5239   // It is possible to have a non-standard definition of memset.  Validate
   5240   // we have enough arguments, and if not, abort further checking.
   5241   unsigned ExpectedNumArgs = (BId == Builtin::BIstrndup ? 2 : 3);
   5242   if (Call->getNumArgs() < ExpectedNumArgs)
   5243     return;
   5244 
   5245   unsigned LastArg = (BId == Builtin::BImemset ||
   5246                       BId == Builtin::BIstrndup ? 1 : 2);
   5247   unsigned LenArg = (BId == Builtin::BIstrndup ? 1 : 2);
   5248   const Expr *LenExpr = Call->getArg(LenArg)->IgnoreParenImpCasts();
   5249 
   5250   if (CheckMemorySizeofForComparison(*this, LenExpr, FnName,
   5251                                      Call->getLocStart(), Call->getRParenLoc()))
   5252     return;
   5253 
   5254   // We have special checking when the length is a sizeof expression.
   5255   QualType SizeOfArgTy = getSizeOfArgType(LenExpr);
   5256   const Expr *SizeOfArg = getSizeOfExprArg(LenExpr);
   5257   llvm::FoldingSetNodeID SizeOfArgID;
   5258 
   5259   for (unsigned ArgIdx = 0; ArgIdx != LastArg; ++ArgIdx) {
   5260     const Expr *Dest = Call->getArg(ArgIdx)->IgnoreParenImpCasts();
   5261     SourceRange ArgRange = Call->getArg(ArgIdx)->getSourceRange();
   5262 
   5263     QualType DestTy = Dest->getType();
   5264     QualType PointeeTy;
   5265     if (const PointerType *DestPtrTy = DestTy->getAs<PointerType>()) {
   5266       PointeeTy = DestPtrTy->getPointeeType();
   5267 
   5268       // Never warn about void type pointers. This can be used to suppress
   5269       // false positives.
   5270       if (PointeeTy->isVoidType())
   5271         continue;
   5272 
   5273       // Catch "memset(p, 0, sizeof(p))" -- needs to be sizeof(*p). Do this by
   5274       // actually comparing the expressions for equality. Because computing the
   5275       // expression IDs can be expensive, we only do this if the diagnostic is
   5276       // enabled.
   5277       if (SizeOfArg &&
   5278           !Diags.isIgnored(diag::warn_sizeof_pointer_expr_memaccess,
   5279                            SizeOfArg->getExprLoc())) {
   5280         // We only compute IDs for expressions if the warning is enabled, and
   5281         // cache the sizeof arg's ID.
   5282         if (SizeOfArgID == llvm::FoldingSetNodeID())
   5283           SizeOfArg->Profile(SizeOfArgID, Context, true);
   5284         llvm::FoldingSetNodeID DestID;
   5285         Dest->Profile(DestID, Context, true);
   5286         if (DestID == SizeOfArgID) {
   5287           // TODO: For strncpy() and friends, this could suggest sizeof(dst)
   5288           //       over sizeof(src) as well.
   5289           unsigned ActionIdx = 0; // Default is to suggest dereferencing.
   5290           StringRef ReadableName = FnName->getName();
   5291 
   5292           if (const UnaryOperator *UnaryOp = dyn_cast<UnaryOperator>(Dest))
   5293             if (UnaryOp->getOpcode() == UO_AddrOf)
   5294               ActionIdx = 1; // If its an address-of operator, just remove it.
   5295           if (!PointeeTy->isIncompleteType() &&
   5296               (Context.getTypeSize(PointeeTy) == Context.getCharWidth()))
   5297             ActionIdx = 2; // If the pointee's size is sizeof(char),
   5298                            // suggest an explicit length.
   5299 
   5300           // If the function is defined as a builtin macro, do not show macro
   5301           // expansion.
   5302           SourceLocation SL = SizeOfArg->getExprLoc();
   5303           SourceRange DSR = Dest->getSourceRange();
   5304           SourceRange SSR = SizeOfArg->getSourceRange();
   5305           SourceManager &SM = getSourceManager();
   5306 
   5307           if (SM.isMacroArgExpansion(SL)) {
   5308             ReadableName = Lexer::getImmediateMacroName(SL, SM, LangOpts);
   5309             SL = SM.getSpellingLoc(SL);
   5310             DSR = SourceRange(SM.getSpellingLoc(DSR.getBegin()),
   5311                              SM.getSpellingLoc(DSR.getEnd()));
   5312             SSR = SourceRange(SM.getSpellingLoc(SSR.getBegin()),
   5313                              SM.getSpellingLoc(SSR.getEnd()));
   5314           }
   5315 
   5316           DiagRuntimeBehavior(SL, SizeOfArg,
   5317                               PDiag(diag::warn_sizeof_pointer_expr_memaccess)
   5318                                 << ReadableName
   5319                                 << PointeeTy
   5320                                 << DestTy
   5321                                 << DSR
   5322                                 << SSR);
   5323           DiagRuntimeBehavior(SL, SizeOfArg,
   5324                          PDiag(diag::warn_sizeof_pointer_expr_memaccess_note)
   5325                                 << ActionIdx
   5326                                 << SSR);
   5327 
   5328           break;
   5329         }
   5330       }
   5331 
   5332       // Also check for cases where the sizeof argument is the exact same
   5333       // type as the memory argument, and where it points to a user-defined
   5334       // record type.
   5335       if (SizeOfArgTy != QualType()) {
   5336         if (PointeeTy->isRecordType() &&
   5337             Context.typesAreCompatible(SizeOfArgTy, DestTy)) {
   5338           DiagRuntimeBehavior(LenExpr->getExprLoc(), Dest,
   5339                               PDiag(diag::warn_sizeof_pointer_type_memaccess)
   5340                                 << FnName << SizeOfArgTy << ArgIdx
   5341                                 << PointeeTy << Dest->getSourceRange()
   5342                                 << LenExpr->getSourceRange());
   5343           break;
   5344         }
   5345       }
   5346     } else if (DestTy->isArrayType()) {
   5347       PointeeTy = DestTy;
   5348     }
   5349 
   5350     if (PointeeTy == QualType())
   5351       continue;
   5352 
   5353     // Always complain about dynamic classes.
   5354     bool IsContained;
   5355     if (const CXXRecordDecl *ContainedRD =
   5356             getContainedDynamicClass(PointeeTy, IsContained)) {
   5357 
   5358       unsigned OperationType = 0;
   5359       // "overwritten" if we're warning about the destination for any call
   5360       // but memcmp; otherwise a verb appropriate to the call.
   5361       if (ArgIdx != 0 || BId == Builtin::BImemcmp) {
   5362         if (BId == Builtin::BImemcpy)
   5363           OperationType = 1;
   5364         else if(BId == Builtin::BImemmove)
   5365           OperationType = 2;
   5366         else if (BId == Builtin::BImemcmp)
   5367           OperationType = 3;
   5368       }
   5369 
   5370       DiagRuntimeBehavior(
   5371         Dest->getExprLoc(), Dest,
   5372         PDiag(diag::warn_dyn_class_memaccess)
   5373           << (BId == Builtin::BImemcmp ? ArgIdx + 2 : ArgIdx)
   5374           << FnName << IsContained << ContainedRD << OperationType
   5375           << Call->getCallee()->getSourceRange());
   5376     } else if (PointeeTy.hasNonTrivialObjCLifetime() &&
   5377              BId != Builtin::BImemset)
   5378       DiagRuntimeBehavior(
   5379         Dest->getExprLoc(), Dest,
   5380         PDiag(diag::warn_arc_object_memaccess)
   5381           << ArgIdx << FnName << PointeeTy
   5382           << Call->getCallee()->getSourceRange());
   5383     else
   5384       continue;
   5385 
   5386     DiagRuntimeBehavior(
   5387       Dest->getExprLoc(), Dest,
   5388       PDiag(diag::note_bad_memaccess_silence)
   5389         << FixItHint::CreateInsertion(ArgRange.getBegin(), "(void*)"));
   5390     break;
   5391   }
   5392 
   5393 }
   5394 
   5395 // A little helper routine: ignore addition and subtraction of integer literals.
   5396 // This intentionally does not ignore all integer constant expressions because
   5397 // we don't want to remove sizeof().
   5398 static const Expr *ignoreLiteralAdditions(const Expr *Ex, ASTContext &Ctx) {
   5399   Ex = Ex->IgnoreParenCasts();
   5400 
   5401   for (;;) {
   5402     const BinaryOperator * BO = dyn_cast<BinaryOperator>(Ex);
   5403     if (!BO || !BO->isAdditiveOp())
   5404       break;
   5405 
   5406     const Expr *RHS = BO->getRHS()->IgnoreParenCasts();
   5407     const Expr *LHS = BO->getLHS()->IgnoreParenCasts();
   5408 
   5409     if (isa<IntegerLiteral>(RHS))
   5410       Ex = LHS;
   5411     else if (isa<IntegerLiteral>(LHS))
   5412       Ex = RHS;
   5413     else
   5414       break;
   5415   }
   5416 
   5417   return Ex;
   5418 }
   5419 
   5420 static bool isConstantSizeArrayWithMoreThanOneElement(QualType Ty,
   5421                                                       ASTContext &Context) {
   5422   // Only handle constant-sized or VLAs, but not flexible members.
   5423   if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(Ty)) {
   5424     // Only issue the FIXIT for arrays of size > 1.
   5425     if (CAT->getSize().getSExtValue() <= 1)
   5426       return false;
   5427   } else if (!Ty->isVariableArrayType()) {
   5428     return false;
   5429   }
   5430   return true;
   5431 }
   5432 
   5433 // Warn if the user has made the 'size' argument to strlcpy or strlcat
   5434 // be the size of the source, instead of the destination.
   5435 void Sema::CheckStrlcpycatArguments(const CallExpr *Call,
   5436                                     IdentifierInfo *FnName) {
   5437 
   5438   // Don't crash if the user has the wrong number of arguments
   5439   unsigned NumArgs = Call->getNumArgs();
   5440   if ((NumArgs != 3) && (NumArgs != 4))
   5441     return;
   5442 
   5443   const Expr *SrcArg = ignoreLiteralAdditions(Call->getArg(1), Context);
   5444   const Expr *SizeArg = ignoreLiteralAdditions(Call->getArg(2), Context);
   5445   const Expr *CompareWithSrc = nullptr;
   5446 
   5447   if (CheckMemorySizeofForComparison(*this, SizeArg, FnName,
   5448                                      Call->getLocStart(), Call->getRParenLoc()))
   5449     return;
   5450 
   5451   // Look for 'strlcpy(dst, x, sizeof(x))'
   5452   if (const Expr *Ex = getSizeOfExprArg(SizeArg))
   5453     CompareWithSrc = Ex;
   5454   else {
   5455     // Look for 'strlcpy(dst, x, strlen(x))'
   5456     if (const CallExpr *SizeCall = dyn_cast<CallExpr>(SizeArg)) {
   5457       if (SizeCall->getBuiltinCallee() == Builtin::BIstrlen &&
   5458           SizeCall->getNumArgs() == 1)
   5459         CompareWithSrc = ignoreLiteralAdditions(SizeCall->getArg(0), Context);
   5460     }
   5461   }
   5462 
   5463   if (!CompareWithSrc)
   5464     return;
   5465 
   5466   // Determine if the argument to sizeof/strlen is equal to the source
   5467   // argument.  In principle there's all kinds of things you could do
   5468   // here, for instance creating an == expression and evaluating it with
   5469   // EvaluateAsBooleanCondition, but this uses a more direct technique:
   5470   const DeclRefExpr *SrcArgDRE = dyn_cast<DeclRefExpr>(SrcArg);
   5471   if (!SrcArgDRE)
   5472     return;
   5473 
   5474   const DeclRefExpr *CompareWithSrcDRE = dyn_cast<DeclRefExpr>(CompareWithSrc);
   5475   if (!CompareWithSrcDRE ||
   5476       SrcArgDRE->getDecl() != CompareWithSrcDRE->getDecl())
   5477     return;
   5478 
   5479   const Expr *OriginalSizeArg = Call->getArg(2);
   5480   Diag(CompareWithSrcDRE->getLocStart(), diag::warn_strlcpycat_wrong_size)
   5481     << OriginalSizeArg->getSourceRange() << FnName;
   5482 
   5483   // Output a FIXIT hint if the destination is an array (rather than a
   5484   // pointer to an array).  This could be enhanced to handle some
   5485   // pointers if we know the actual size, like if DstArg is 'array+2'
   5486   // we could say 'sizeof(array)-2'.
   5487   const Expr *DstArg = Call->getArg(0)->IgnoreParenImpCasts();
   5488   if (!isConstantSizeArrayWithMoreThanOneElement(DstArg->getType(), Context))
   5489     return;
   5490 
   5491   SmallString<128> sizeString;
   5492   llvm::raw_svector_ostream OS(sizeString);
   5493   OS << "sizeof(";
   5494   DstArg->printPretty(OS, nullptr, getPrintingPolicy());
   5495   OS << ")";
   5496 
   5497   Diag(OriginalSizeArg->getLocStart(), diag::note_strlcpycat_wrong_size)
   5498     << FixItHint::CreateReplacement(OriginalSizeArg->getSourceRange(),
   5499                                     OS.str());
   5500 }
   5501 
   5502 /// Check if two expressions refer to the same declaration.
   5503 static bool referToTheSameDecl(const Expr *E1, const Expr *E2) {
   5504   if (const DeclRefExpr *D1 = dyn_cast_or_null<DeclRefExpr>(E1))
   5505     if (const DeclRefExpr *D2 = dyn_cast_or_null<DeclRefExpr>(E2))
   5506       return D1->getDecl() == D2->getDecl();
   5507   return false;
   5508 }
   5509 
   5510 static const Expr *getStrlenExprArg(const Expr *E) {
   5511   if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
   5512     const FunctionDecl *FD = CE->getDirectCallee();
   5513     if (!FD || FD->getMemoryFunctionKind() != Builtin::BIstrlen)
   5514       return nullptr;
   5515     return CE->getArg(0)->IgnoreParenCasts();
   5516   }
   5517   return nullptr;
   5518 }
   5519 
   5520 // Warn on anti-patterns as the 'size' argument to strncat.
   5521 // The correct size argument should look like following:
   5522 //   strncat(dst, src, sizeof(dst) - strlen(dest) - 1);
   5523 void Sema::CheckStrncatArguments(const CallExpr *CE,
   5524                                  IdentifierInfo *FnName) {
   5525   // Don't crash if the user has the wrong number of arguments.
   5526   if (CE->getNumArgs() < 3)
   5527     return;
   5528   const Expr *DstArg = CE->getArg(0)->IgnoreParenCasts();
   5529   const Expr *SrcArg = CE->getArg(1)->IgnoreParenCasts();
   5530   const Expr *LenArg = CE->getArg(2)->IgnoreParenCasts();
   5531 
   5532   if (CheckMemorySizeofForComparison(*this, LenArg, FnName, CE->getLocStart(),
   5533                                      CE->getRParenLoc()))
   5534     return;
   5535 
   5536   // Identify common expressions, which are wrongly used as the size argument
   5537   // to strncat and may lead to buffer overflows.
   5538   unsigned PatternType = 0;
   5539   if (const Expr *SizeOfArg = getSizeOfExprArg(LenArg)) {
   5540     // - sizeof(dst)
   5541     if (referToTheSameDecl(SizeOfArg, DstArg))
   5542       PatternType = 1;
   5543     // - sizeof(src)
   5544     else if (referToTheSameDecl(SizeOfArg, SrcArg))
   5545       PatternType = 2;
   5546   } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(LenArg)) {
   5547     if (BE->getOpcode() == BO_Sub) {
   5548       const Expr *L = BE->getLHS()->IgnoreParenCasts();
   5549       const Expr *R = BE->getRHS()->IgnoreParenCasts();
   5550       // - sizeof(dst) - strlen(dst)
   5551       if (referToTheSameDecl(DstArg, getSizeOfExprArg(L)) &&
   5552           referToTheSameDecl(DstArg, getStrlenExprArg(R)))
   5553         PatternType = 1;
   5554       // - sizeof(src) - (anything)
   5555       else if (referToTheSameDecl(SrcArg, getSizeOfExprArg(L)))
   5556         PatternType = 2;
   5557     }
   5558   }
   5559 
   5560   if (PatternType == 0)
   5561     return;
   5562 
   5563   // Generate the diagnostic.
   5564   SourceLocation SL = LenArg->getLocStart();
   5565   SourceRange SR = LenArg->getSourceRange();
   5566   SourceManager &SM = getSourceManager();
   5567 
   5568   // If the function is defined as a builtin macro, do not show macro expansion.
   5569   if (SM.isMacroArgExpansion(SL)) {
   5570     SL = SM.getSpellingLoc(SL);
   5571     SR = SourceRange(SM.getSpellingLoc(SR.getBegin()),
   5572                      SM.getSpellingLoc(SR.getEnd()));
   5573   }
   5574 
   5575   // Check if the destination is an array (rather than a pointer to an array).
   5576   QualType DstTy = DstArg->getType();
   5577   bool isKnownSizeArray = isConstantSizeArrayWithMoreThanOneElement(DstTy,
   5578                                                                     Context);
   5579   if (!isKnownSizeArray) {
   5580     if (PatternType == 1)
   5581       Diag(SL, diag::warn_strncat_wrong_size) << SR;
   5582     else
   5583       Diag(SL, diag::warn_strncat_src_size) << SR;
   5584     return;
   5585   }
   5586 
   5587   if (PatternType == 1)
   5588     Diag(SL, diag::warn_strncat_large_size) << SR;
   5589   else
   5590     Diag(SL, diag::warn_strncat_src_size) << SR;
   5591 
   5592   SmallString<128> sizeString;
   5593   llvm::raw_svector_ostream OS(sizeString);
   5594   OS << "sizeof(";
   5595   DstArg->printPretty(OS, nullptr, getPrintingPolicy());
   5596   OS << ") - ";
   5597   OS << "strlen(";
   5598   DstArg->printPretty(OS, nullptr, getPrintingPolicy());
   5599   OS << ") - 1";
   5600 
   5601   Diag(SL, diag::note_strncat_wrong_size)
   5602     << FixItHint::CreateReplacement(SR, OS.str());
   5603 }
   5604 
   5605 //===--- CHECK: Return Address of Stack Variable --------------------------===//
   5606 
   5607 static Expr *EvalVal(Expr *E, SmallVectorImpl<DeclRefExpr *> &refVars,
   5608                      Decl *ParentDecl);
   5609 static Expr *EvalAddr(Expr* E, SmallVectorImpl<DeclRefExpr *> &refVars,
   5610                       Decl *ParentDecl);
   5611 
   5612 /// CheckReturnStackAddr - Check if a return statement returns the address
   5613 ///   of a stack variable.
   5614 static void
   5615 CheckReturnStackAddr(Sema &S, Expr *RetValExp, QualType lhsType,
   5616                      SourceLocation ReturnLoc) {
   5617 
   5618   Expr *stackE = nullptr;
   5619   SmallVector<DeclRefExpr *, 8> refVars;
   5620 
   5621   // Perform checking for returned stack addresses, local blocks,
   5622   // label addresses or references to temporaries.
   5623   if (lhsType->isPointerType() ||
   5624       (!S.getLangOpts().ObjCAutoRefCount && lhsType->isBlockPointerType())) {
   5625     stackE = EvalAddr(RetValExp, refVars, /*ParentDecl=*/nullptr);
   5626   } else if (lhsType->isReferenceType()) {
   5627     stackE = EvalVal(RetValExp, refVars, /*ParentDecl=*/nullptr);
   5628   }
   5629 
   5630   if (!stackE)
   5631     return; // Nothing suspicious was found.
   5632 
   5633   SourceLocation diagLoc;
   5634   SourceRange diagRange;
   5635   if (refVars.empty()) {
   5636     diagLoc = stackE->getLocStart();
   5637     diagRange = stackE->getSourceRange();
   5638   } else {
   5639     // We followed through a reference variable. 'stackE' contains the
   5640     // problematic expression but we will warn at the return statement pointing
   5641     // at the reference variable. We will later display the "trail" of
   5642     // reference variables using notes.
   5643     diagLoc = refVars[0]->getLocStart();
   5644     diagRange = refVars[0]->getSourceRange();
   5645   }
   5646 
   5647   if (DeclRefExpr *DR = dyn_cast<DeclRefExpr>(stackE)) { //address of local var.
   5648     S.Diag(diagLoc, diag::warn_ret_stack_addr_ref) << lhsType->isReferenceType()
   5649      << DR->getDecl()->getDeclName() << diagRange;
   5650   } else if (isa<BlockExpr>(stackE)) { // local block.
   5651     S.Diag(diagLoc, diag::err_ret_local_block) << diagRange;
   5652   } else if (isa<AddrLabelExpr>(stackE)) { // address of label.
   5653     S.Diag(diagLoc, diag::warn_ret_addr_label) << diagRange;
   5654   } else { // local temporary.
   5655     S.Diag(diagLoc, diag::warn_ret_local_temp_addr_ref)
   5656      << lhsType->isReferenceType() << diagRange;
   5657   }
   5658 
   5659   // Display the "trail" of reference variables that we followed until we
   5660   // found the problematic expression using notes.
   5661   for (unsigned i = 0, e = refVars.size(); i != e; ++i) {
   5662     VarDecl *VD = cast<VarDecl>(refVars[i]->getDecl());
   5663     // If this var binds to another reference var, show the range of the next
   5664     // var, otherwise the var binds to the problematic expression, in which case
   5665     // show the range of the expression.
   5666     SourceRange range = (i < e-1) ? refVars[i+1]->getSourceRange()
   5667                                   : stackE->getSourceRange();
   5668     S.Diag(VD->getLocation(), diag::note_ref_var_local_bind)
   5669         << VD->getDeclName() << range;
   5670   }
   5671 }
   5672 
   5673 /// EvalAddr - EvalAddr and EvalVal are mutually recursive functions that
   5674 ///  check if the expression in a return statement evaluates to an address
   5675 ///  to a location on the stack, a local block, an address of a label, or a
   5676 ///  reference to local temporary. The recursion is used to traverse the
   5677 ///  AST of the return expression, with recursion backtracking when we
   5678 ///  encounter a subexpression that (1) clearly does not lead to one of the
   5679 ///  above problematic expressions (2) is something we cannot determine leads to
   5680 ///  a problematic expression based on such local checking.
   5681 ///
   5682 ///  Both EvalAddr and EvalVal follow through reference variables to evaluate
   5683 ///  the expression that they point to. Such variables are added to the
   5684 ///  'refVars' vector so that we know what the reference variable "trail" was.
   5685 ///
   5686 ///  EvalAddr processes expressions that are pointers that are used as
   5687 ///  references (and not L-values).  EvalVal handles all other values.
   5688 ///  At the base case of the recursion is a check for the above problematic
   5689 ///  expressions.
   5690 ///
   5691 ///  This implementation handles:
   5692 ///
   5693 ///   * pointer-to-pointer casts
   5694 ///   * implicit conversions from array references to pointers
   5695 ///   * taking the address of fields
   5696 ///   * arbitrary interplay between "&" and "*" operators
   5697 ///   * pointer arithmetic from an address of a stack variable
   5698 ///   * taking the address of an array element where the array is on the stack
   5699 static Expr *EvalAddr(Expr *E, SmallVectorImpl<DeclRefExpr *> &refVars,
   5700                       Decl *ParentDecl) {
   5701   if (E->isTypeDependent())
   5702     return nullptr;
   5703 
   5704   // We should only be called for evaluating pointer expressions.
   5705   assert((E->getType()->isAnyPointerType() ||
   5706           E->getType()->isBlockPointerType() ||
   5707           E->getType()->isObjCQualifiedIdType()) &&
   5708          "EvalAddr only works on pointers");
   5709 
   5710   E = E->IgnoreParens();
   5711 
   5712   // Our "symbolic interpreter" is just a dispatch off the currently
   5713   // viewed AST node.  We then recursively traverse the AST by calling
   5714   // EvalAddr and EvalVal appropriately.
   5715   switch (E->getStmtClass()) {
   5716   case Stmt::DeclRefExprClass: {
   5717     DeclRefExpr *DR = cast<DeclRefExpr>(E);
   5718 
   5719     // If we leave the immediate function, the lifetime isn't about to end.
   5720     if (DR->refersToEnclosingVariableOrCapture())
   5721       return nullptr;
   5722 
   5723     if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl()))
   5724       // If this is a reference variable, follow through to the expression that
   5725       // it points to.
   5726       if (V->hasLocalStorage() &&
   5727           V->getType()->isReferenceType() && V->hasInit()) {
   5728         // Add the reference variable to the "trail".
   5729         refVars.push_back(DR);
   5730         return EvalAddr(V->getInit(), refVars, ParentDecl);
   5731       }
   5732 
   5733     return nullptr;
   5734   }
   5735 
   5736   case Stmt::UnaryOperatorClass: {
   5737     // The only unary operator that make sense to handle here
   5738     // is AddrOf.  All others don't make sense as pointers.
   5739     UnaryOperator *U = cast<UnaryOperator>(E);
   5740 
   5741     if (U->getOpcode() == UO_AddrOf)
   5742       return EvalVal(U->getSubExpr(), refVars, ParentDecl);
   5743     else
   5744       return nullptr;
   5745   }
   5746 
   5747   case Stmt::BinaryOperatorClass: {
   5748     // Handle pointer arithmetic.  All other binary operators are not valid
   5749     // in this context.
   5750     BinaryOperator *B = cast<BinaryOperator>(E);
   5751     BinaryOperatorKind op = B->getOpcode();
   5752 
   5753     if (op != BO_Add && op != BO_Sub)
   5754       return nullptr;
   5755 
   5756     Expr *Base = B->getLHS();
   5757 
   5758     // Determine which argument is the real pointer base.  It could be
   5759     // the RHS argument instead of the LHS.
   5760     if (!Base->getType()->isPointerType()) Base = B->getRHS();
   5761 
   5762     assert (Base->getType()->isPointerType());
   5763     return EvalAddr(Base, refVars, ParentDecl);
   5764   }
   5765 
   5766   // For conditional operators we need to see if either the LHS or RHS are
   5767   // valid DeclRefExpr*s.  If one of them is valid, we return it.
   5768   case Stmt::ConditionalOperatorClass: {
   5769     ConditionalOperator *C = cast<ConditionalOperator>(E);
   5770 
   5771     // Handle the GNU extension for missing LHS.
   5772     // FIXME: That isn't a ConditionalOperator, so doesn't get here.
   5773     if (Expr *LHSExpr = C->getLHS()) {
   5774       // In C++, we can have a throw-expression, which has 'void' type.
   5775       if (!LHSExpr->getType()->isVoidType())
   5776         if (Expr *LHS = EvalAddr(LHSExpr, refVars, ParentDecl))
   5777           return LHS;
   5778     }
   5779 
   5780     // In C++, we can have a throw-expression, which has 'void' type.
   5781     if (C->getRHS()->getType()->isVoidType())
   5782       return nullptr;
   5783 
   5784     return EvalAddr(C->getRHS(), refVars, ParentDecl);
   5785   }
   5786 
   5787   case Stmt::BlockExprClass:
   5788     if (cast<BlockExpr>(E)->getBlockDecl()->hasCaptures())
   5789       return E; // local block.
   5790     return nullptr;
   5791 
   5792   case Stmt::AddrLabelExprClass:
   5793     return E; // address of label.
   5794 
   5795   case Stmt::ExprWithCleanupsClass:
   5796     return EvalAddr(cast<ExprWithCleanups>(E)->getSubExpr(), refVars,
   5797                     ParentDecl);
   5798 
   5799   // For casts, we need to handle conversions from arrays to
   5800   // pointer values, and pointer-to-pointer conversions.
   5801   case Stmt::ImplicitCastExprClass:
   5802   case Stmt::CStyleCastExprClass:
   5803   case Stmt::CXXFunctionalCastExprClass:
   5804   case Stmt::ObjCBridgedCastExprClass:
   5805   case Stmt::CXXStaticCastExprClass:
   5806   case Stmt::CXXDynamicCastExprClass:
   5807   case Stmt::CXXConstCastExprClass:
   5808   case Stmt::CXXReinterpretCastExprClass: {
   5809     Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
   5810     switch (cast<CastExpr>(E)->getCastKind()) {
   5811     case CK_LValueToRValue:
   5812     case CK_NoOp:
   5813     case CK_BaseToDerived:
   5814     case CK_DerivedToBase:
   5815     case CK_UncheckedDerivedToBase:
   5816     case CK_Dynamic:
   5817     case CK_CPointerToObjCPointerCast:
   5818     case CK_BlockPointerToObjCPointerCast:
   5819     case CK_AnyPointerToBlockPointerCast:
   5820       return EvalAddr(SubExpr, refVars, ParentDecl);
   5821 
   5822     case CK_ArrayToPointerDecay:
   5823       return EvalVal(SubExpr, refVars, ParentDecl);
   5824 
   5825     case CK_BitCast:
   5826       if (SubExpr->getType()->isAnyPointerType() ||
   5827           SubExpr->getType()->isBlockPointerType() ||
   5828           SubExpr->getType()->isObjCQualifiedIdType())
   5829         return EvalAddr(SubExpr, refVars, ParentDecl);
   5830       else
   5831         return nullptr;
   5832 
   5833     default:
   5834       return nullptr;
   5835     }
   5836   }
   5837 
   5838   case Stmt::MaterializeTemporaryExprClass:
   5839     if (Expr *Result = EvalAddr(
   5840                          cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr(),
   5841                                 refVars, ParentDecl))
   5842       return Result;
   5843 
   5844     return E;
   5845 
   5846   // Everything else: we simply don't reason about them.
   5847   default:
   5848     return nullptr;
   5849   }
   5850 }
   5851 
   5852 
   5853 ///  EvalVal - This function is complements EvalAddr in the mutual recursion.
   5854 ///   See the comments for EvalAddr for more details.
   5855 static Expr *EvalVal(Expr *E, SmallVectorImpl<DeclRefExpr *> &refVars,
   5856                      Decl *ParentDecl) {
   5857 do {
   5858   // We should only be called for evaluating non-pointer expressions, or
   5859   // expressions with a pointer type that are not used as references but instead
   5860   // are l-values (e.g., DeclRefExpr with a pointer type).
   5861 
   5862   // Our "symbolic interpreter" is just a dispatch off the currently
   5863   // viewed AST node.  We then recursively traverse the AST by calling
   5864   // EvalAddr and EvalVal appropriately.
   5865 
   5866   E = E->IgnoreParens();
   5867   switch (E->getStmtClass()) {
   5868   case Stmt::ImplicitCastExprClass: {
   5869     ImplicitCastExpr *IE = cast<ImplicitCastExpr>(E);
   5870     if (IE->getValueKind() == VK_LValue) {
   5871       E = IE->getSubExpr();
   5872       continue;
   5873     }
   5874     return nullptr;
   5875   }
   5876 
   5877   case Stmt::ExprWithCleanupsClass:
   5878     return EvalVal(cast<ExprWithCleanups>(E)->getSubExpr(), refVars,ParentDecl);
   5879 
   5880   case Stmt::DeclRefExprClass: {
   5881     // When we hit a DeclRefExpr we are looking at code that refers to a
   5882     // variable's name. If it's not a reference variable we check if it has
   5883     // local storage within the function, and if so, return the expression.
   5884     DeclRefExpr *DR = cast<DeclRefExpr>(E);
   5885 
   5886     // If we leave the immediate function, the lifetime isn't about to end.
   5887     if (DR->refersToEnclosingVariableOrCapture())
   5888       return nullptr;
   5889 
   5890     if (VarDecl *V = dyn_cast<VarDecl>(DR->getDecl())) {
   5891       // Check if it refers to itself, e.g. "int& i = i;".
   5892       if (V == ParentDecl)
   5893         return DR;
   5894 
   5895       if (V->hasLocalStorage()) {
   5896         if (!V->getType()->isReferenceType())
   5897           return DR;
   5898 
   5899         // Reference variable, follow through to the expression that
   5900         // it points to.
   5901         if (V->hasInit()) {
   5902           // Add the reference variable to the "trail".
   5903           refVars.push_back(DR);
   5904           return EvalVal(V->getInit(), refVars, V);
   5905         }
   5906       }
   5907     }
   5908 
   5909     return nullptr;
   5910   }
   5911 
   5912   case Stmt::UnaryOperatorClass: {
   5913     // The only unary operator that make sense to handle here
   5914     // is Deref.  All others don't resolve to a "name."  This includes
   5915     // handling all sorts of rvalues passed to a unary operator.
   5916     UnaryOperator *U = cast<UnaryOperator>(E);
   5917 
   5918     if (U->getOpcode() == UO_Deref)
   5919       return EvalAddr(U->getSubExpr(), refVars, ParentDecl);
   5920 
   5921     return nullptr;
   5922   }
   5923 
   5924   case Stmt::ArraySubscriptExprClass: {
   5925     // Array subscripts are potential references to data on the stack.  We
   5926     // retrieve the DeclRefExpr* for the array variable if it indeed
   5927     // has local storage.
   5928     return EvalAddr(cast<ArraySubscriptExpr>(E)->getBase(), refVars,ParentDecl);
   5929   }
   5930 
   5931   case Stmt::OMPArraySectionExprClass: {
   5932     return EvalAddr(cast<OMPArraySectionExpr>(E)->getBase(), refVars,
   5933                     ParentDecl);
   5934   }
   5935 
   5936   case Stmt::ConditionalOperatorClass: {
   5937     // For conditional operators we need to see if either the LHS or RHS are
   5938     // non-NULL Expr's.  If one is non-NULL, we return it.
   5939     ConditionalOperator *C = cast<ConditionalOperator>(E);
   5940 
   5941     // Handle the GNU extension for missing LHS.
   5942     if (Expr *LHSExpr = C->getLHS()) {
   5943       // In C++, we can have a throw-expression, which has 'void' type.
   5944       if (!LHSExpr->getType()->isVoidType())
   5945         if (Expr *LHS = EvalVal(LHSExpr, refVars, ParentDecl))
   5946           return LHS;
   5947     }
   5948 
   5949     // In C++, we can have a throw-expression, which has 'void' type.
   5950     if (C->getRHS()->getType()->isVoidType())
   5951       return nullptr;
   5952 
   5953     return EvalVal(C->getRHS(), refVars, ParentDecl);
   5954   }
   5955 
   5956   // Accesses to members are potential references to data on the stack.
   5957   case Stmt::MemberExprClass: {
   5958     MemberExpr *M = cast<MemberExpr>(E);
   5959 
   5960     // Check for indirect access.  We only want direct field accesses.
   5961     if (M->isArrow())
   5962       return nullptr;
   5963 
   5964     // Check whether the member type is itself a reference, in which case
   5965     // we're not going to refer to the member, but to what the member refers to.
   5966     if (M->getMemberDecl()->getType()->isReferenceType())
   5967       return nullptr;
   5968 
   5969     return EvalVal(M->getBase(), refVars, ParentDecl);
   5970   }
   5971 
   5972   case Stmt::MaterializeTemporaryExprClass:
   5973     if (Expr *Result = EvalVal(
   5974                           cast<MaterializeTemporaryExpr>(E)->GetTemporaryExpr(),
   5975                                refVars, ParentDecl))
   5976       return Result;
   5977 
   5978     return E;
   5979 
   5980   default:
   5981     // Check that we don't return or take the address of a reference to a
   5982     // temporary. This is only useful in C++.
   5983     if (!E->isTypeDependent() && E->isRValue())
   5984       return E;
   5985 
   5986     // Everything else: we simply don't reason about them.
   5987     return nullptr;
   5988   }
   5989 } while (true);
   5990 }
   5991 
   5992 void
   5993 Sema::CheckReturnValExpr(Expr *RetValExp, QualType lhsType,
   5994                          SourceLocation ReturnLoc,
   5995                          bool isObjCMethod,
   5996                          const AttrVec *Attrs,
   5997                          const FunctionDecl *FD) {
   5998   CheckReturnStackAddr(*this, RetValExp, lhsType, ReturnLoc);
   5999 
   6000   // Check if the return value is null but should not be.
   6001   if (((Attrs && hasSpecificAttr<ReturnsNonNullAttr>(*Attrs)) ||
   6002        (!isObjCMethod && isNonNullType(Context, lhsType))) &&
   6003       CheckNonNullExpr(*this, RetValExp))
   6004     Diag(ReturnLoc, diag::warn_null_ret)
   6005       << (isObjCMethod ? 1 : 0) << RetValExp->getSourceRange();
   6006 
   6007   // C++11 [basic.stc.dynamic.allocation]p4:
   6008   //   If an allocation function declared with a non-throwing
   6009   //   exception-specification fails to allocate storage, it shall return
   6010   //   a null pointer. Any other allocation function that fails to allocate
   6011   //   storage shall indicate failure only by throwing an exception [...]
   6012   if (FD) {
   6013     OverloadedOperatorKind Op = FD->getOverloadedOperator();
   6014     if (Op == OO_New || Op == OO_Array_New) {
   6015       const FunctionProtoType *Proto
   6016         = FD->getType()->castAs<FunctionProtoType>();
   6017       if (!Proto->isNothrow(Context, /*ResultIfDependent*/true) &&
   6018           CheckNonNullExpr(*this, RetValExp))
   6019         Diag(ReturnLoc, diag::warn_operator_new_returns_null)
   6020           << FD << getLangOpts().CPlusPlus11;
   6021     }
   6022   }
   6023 }
   6024 
   6025 //===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===//
   6026 
   6027 /// Check for comparisons of floating point operands using != and ==.
   6028 /// Issue a warning if these are no self-comparisons, as they are not likely
   6029 /// to do what the programmer intended.
   6030 void Sema::CheckFloatComparison(SourceLocation Loc, Expr* LHS, Expr *RHS) {
   6031   Expr* LeftExprSansParen = LHS->IgnoreParenImpCasts();
   6032   Expr* RightExprSansParen = RHS->IgnoreParenImpCasts();
   6033 
   6034   // Special case: check for x == x (which is OK).
   6035   // Do not emit warnings for such cases.
   6036   if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
   6037     if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
   6038       if (DRL->getDecl() == DRR->getDecl())
   6039         return;
   6040 
   6041 
   6042   // Special case: check for comparisons against literals that can be exactly
   6043   //  represented by APFloat.  In such cases, do not emit a warning.  This
   6044   //  is a heuristic: often comparison against such literals are used to
   6045   //  detect if a value in a variable has not changed.  This clearly can
   6046   //  lead to false negatives.
   6047   if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
   6048     if (FLL->isExact())
   6049       return;
   6050   } else
   6051     if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen))
   6052       if (FLR->isExact())
   6053         return;
   6054 
   6055   // Check for comparisons with builtin types.
   6056   if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
   6057     if (CL->getBuiltinCallee())
   6058       return;
   6059 
   6060   if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
   6061     if (CR->getBuiltinCallee())
   6062       return;
   6063 
   6064   // Emit the diagnostic.
   6065   Diag(Loc, diag::warn_floatingpoint_eq)
   6066     << LHS->getSourceRange() << RHS->getSourceRange();
   6067 }
   6068 
   6069 //===--- CHECK: Integer mixed-sign comparisons (-Wsign-compare) --------===//
   6070 //===--- CHECK: Lossy implicit conversions (-Wconversion) --------------===//
   6071 
   6072 namespace {
   6073 
   6074 /// Structure recording the 'active' range of an integer-valued
   6075 /// expression.
   6076 struct IntRange {
   6077   /// The number of bits active in the int.
   6078   unsigned Width;
   6079 
   6080   /// True if the int is known not to have negative values.
   6081   bool NonNegative;
   6082 
   6083   IntRange(unsigned Width, bool NonNegative)
   6084     : Width(Width), NonNegative(NonNegative)
   6085   {}
   6086 
   6087   /// Returns the range of the bool type.
   6088   static IntRange forBoolType() {
   6089     return IntRange(1, true);
   6090   }
   6091 
   6092   /// Returns the range of an opaque value of the given integral type.
   6093   static IntRange forValueOfType(ASTContext &C, QualType T) {
   6094     return forValueOfCanonicalType(C,
   6095                           T->getCanonicalTypeInternal().getTypePtr());
   6096   }
   6097 
   6098   /// Returns the range of an opaque value of a canonical integral type.
   6099   static IntRange forValueOfCanonicalType(ASTContext &C, const Type *T) {
   6100     assert(T->isCanonicalUnqualified());
   6101 
   6102     if (const VectorType *VT = dyn_cast<VectorType>(T))
   6103       T = VT->getElementType().getTypePtr();
   6104     if (const ComplexType *CT = dyn_cast<ComplexType>(T))
   6105       T = CT->getElementType().getTypePtr();
   6106     if (const AtomicType *AT = dyn_cast<AtomicType>(T))
   6107       T = AT->getValueType().getTypePtr();
   6108 
   6109     // For enum types, use the known bit width of the enumerators.
   6110     if (const EnumType *ET = dyn_cast<EnumType>(T)) {
   6111       EnumDecl *Enum = ET->getDecl();
   6112       if (!Enum->isCompleteDefinition())
   6113         return IntRange(C.getIntWidth(QualType(T, 0)), false);
   6114 
   6115       unsigned NumPositive = Enum->getNumPositiveBits();
   6116       unsigned NumNegative = Enum->getNumNegativeBits();
   6117 
   6118       if (NumNegative == 0)
   6119         return IntRange(NumPositive, true/*NonNegative*/);
   6120       else
   6121         return IntRange(std::max(NumPositive + 1, NumNegative),
   6122                         false/*NonNegative*/);
   6123     }
   6124 
   6125     const BuiltinType *BT = cast<BuiltinType>(T);
   6126     assert(BT->isInteger());
   6127 
   6128     return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
   6129   }
   6130 
   6131   /// Returns the "target" range of a canonical integral type, i.e.
   6132   /// the range of values expressible in the type.
   6133   ///
   6134   /// This matches forValueOfCanonicalType except that enums have the
   6135   /// full range of their type, not the range of their enumerators.
   6136   static IntRange forTargetOfCanonicalType(ASTContext &C, const Type *T) {
   6137     assert(T->isCanonicalUnqualified());
   6138 
   6139     if (const VectorType *VT = dyn_cast<VectorType>(T))
   6140       T = VT->getElementType().getTypePtr();
   6141     if (const ComplexType *CT = dyn_cast<ComplexType>(T))
   6142       T = CT->getElementType().getTypePtr();
   6143     if (const AtomicType *AT = dyn_cast<AtomicType>(T))
   6144       T = AT->getValueType().getTypePtr();
   6145     if (const EnumType *ET = dyn_cast<EnumType>(T))
   6146       T = C.getCanonicalType(ET->getDecl()->getIntegerType()).getTypePtr();
   6147 
   6148     const BuiltinType *BT = cast<BuiltinType>(T);
   6149     assert(BT->isInteger());
   6150 
   6151     return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
   6152   }
   6153 
   6154   /// Returns the supremum of two ranges: i.e. their conservative merge.
   6155   static IntRange join(IntRange L, IntRange R) {
   6156     return IntRange(std::max(L.Width, R.Width),
   6157                     L.NonNegative && R.NonNegative);
   6158   }
   6159 
   6160   /// Returns the infinum of two ranges: i.e. their aggressive merge.
   6161   static IntRange meet(IntRange L, IntRange R) {
   6162     return IntRange(std::min(L.Width, R.Width),
   6163                     L.NonNegative || R.NonNegative);
   6164   }
   6165 };
   6166 
   6167 static IntRange GetValueRange(ASTContext &C, llvm::APSInt &value,
   6168                               unsigned MaxWidth) {
   6169   if (value.isSigned() && value.isNegative())
   6170     return IntRange(value.getMinSignedBits(), false);
   6171 
   6172   if (value.getBitWidth() > MaxWidth)
   6173     value = value.trunc(MaxWidth);
   6174 
   6175   // isNonNegative() just checks the sign bit without considering
   6176   // signedness.
   6177   return IntRange(value.getActiveBits(), true);
   6178 }
   6179 
   6180 static IntRange GetValueRange(ASTContext &C, APValue &result, QualType Ty,
   6181                               unsigned MaxWidth) {
   6182   if (result.isInt())
   6183     return GetValueRange(C, result.getInt(), MaxWidth);
   6184 
   6185   if (result.isVector()) {
   6186     IntRange R = GetValueRange(C, result.getVectorElt(0), Ty, MaxWidth);
   6187     for (unsigned i = 1, e = result.getVectorLength(); i != e; ++i) {
   6188       IntRange El = GetValueRange(C, result.getVectorElt(i), Ty, MaxWidth);
   6189       R = IntRange::join(R, El);
   6190     }
   6191     return R;
   6192   }
   6193 
   6194   if (result.isComplexInt()) {
   6195     IntRange R = GetValueRange(C, result.getComplexIntReal(), MaxWidth);
   6196     IntRange I = GetValueRange(C, result.getComplexIntImag(), MaxWidth);
   6197     return IntRange::join(R, I);
   6198   }
   6199 
   6200   // This can happen with lossless casts to intptr_t of "based" lvalues.
   6201   // Assume it might use arbitrary bits.
   6202   // FIXME: The only reason we need to pass the type in here is to get
   6203   // the sign right on this one case.  It would be nice if APValue
   6204   // preserved this.
   6205   assert(result.isLValue() || result.isAddrLabelDiff());
   6206   return IntRange(MaxWidth, Ty->isUnsignedIntegerOrEnumerationType());
   6207 }
   6208 
   6209 static QualType GetExprType(Expr *E) {
   6210   QualType Ty = E->getType();
   6211   if (const AtomicType *AtomicRHS = Ty->getAs<AtomicType>())
   6212     Ty = AtomicRHS->getValueType();
   6213   return Ty;
   6214 }
   6215 
   6216 /// Pseudo-evaluate the given integer expression, estimating the
   6217 /// range of values it might take.
   6218 ///
   6219 /// \param MaxWidth - the width to which the value will be truncated
   6220 static IntRange GetExprRange(ASTContext &C, Expr *E, unsigned MaxWidth) {
   6221   E = E->IgnoreParens();
   6222 
   6223   // Try a full evaluation first.
   6224   Expr::EvalResult result;
   6225   if (E->EvaluateAsRValue(result, C))
   6226     return GetValueRange(C, result.Val, GetExprType(E), MaxWidth);
   6227 
   6228   // I think we only want to look through implicit casts here; if the
   6229   // user has an explicit widening cast, we should treat the value as
   6230   // being of the new, wider type.
   6231   if (ImplicitCastExpr *CE = dyn_cast<ImplicitCastExpr>(E)) {
   6232     if (CE->getCastKind() == CK_NoOp || CE->getCastKind() == CK_LValueToRValue)
   6233       return GetExprRange(C, CE->getSubExpr(), MaxWidth);
   6234 
   6235     IntRange OutputTypeRange = IntRange::forValueOfType(C, GetExprType(CE));
   6236 
   6237     bool isIntegerCast = (CE->getCastKind() == CK_IntegralCast);
   6238 
   6239     // Assume that non-integer casts can span the full range of the type.
   6240     if (!isIntegerCast)
   6241       return OutputTypeRange;
   6242 
   6243     IntRange SubRange
   6244       = GetExprRange(C, CE->getSubExpr(),
   6245                      std::min(MaxWidth, OutputTypeRange.Width));
   6246 
   6247     // Bail out if the subexpr's range is as wide as the cast type.
   6248     if (SubRange.Width >= OutputTypeRange.Width)
   6249       return OutputTypeRange;
   6250 
   6251     // Otherwise, we take the smaller width, and we're non-negative if
   6252     // either the output type or the subexpr is.
   6253     return IntRange(SubRange.Width,
   6254                     SubRange.NonNegative || OutputTypeRange.NonNegative);
   6255   }
   6256 
   6257   if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
   6258     // If we can fold the condition, just take that operand.
   6259     bool CondResult;
   6260     if (CO->getCond()->EvaluateAsBooleanCondition(CondResult, C))
   6261       return GetExprRange(C, CondResult ? CO->getTrueExpr()
   6262                                         : CO->getFalseExpr(),
   6263                           MaxWidth);
   6264 
   6265     // Otherwise, conservatively merge.
   6266     IntRange L = GetExprRange(C, CO->getTrueExpr(), MaxWidth);
   6267     IntRange R = GetExprRange(C, CO->getFalseExpr(), MaxWidth);
   6268     return IntRange::join(L, R);
   6269   }
   6270 
   6271   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
   6272     switch (BO->getOpcode()) {
   6273 
   6274     // Boolean-valued operations are single-bit and positive.
   6275     case BO_LAnd:
   6276     case BO_LOr:
   6277     case BO_LT:
   6278     case BO_GT:
   6279     case BO_LE:
   6280     case BO_GE:
   6281     case BO_EQ:
   6282     case BO_NE:
   6283       return IntRange::forBoolType();
   6284 
   6285     // The type of the assignments is the type of the LHS, so the RHS
   6286     // is not necessarily the same type.
   6287     case BO_MulAssign:
   6288     case BO_DivAssign:
   6289     case BO_RemAssign:
   6290     case BO_AddAssign:
   6291     case BO_SubAssign:
   6292     case BO_XorAssign:
   6293     case BO_OrAssign:
   6294       // TODO: bitfields?
   6295       return IntRange::forValueOfType(C, GetExprType(E));
   6296 
   6297     // Simple assignments just pass through the RHS, which will have
   6298     // been coerced to the LHS type.
   6299     case BO_Assign:
   6300       // TODO: bitfields?
   6301       return GetExprRange(C, BO->getRHS(), MaxWidth);
   6302 
   6303     // Operations with opaque sources are black-listed.
   6304     case BO_PtrMemD:
   6305     case BO_PtrMemI:
   6306       return IntRange::forValueOfType(C, GetExprType(E));
   6307 
   6308     // Bitwise-and uses the *infinum* of the two source ranges.
   6309     case BO_And:
   6310     case BO_AndAssign:
   6311       return IntRange::meet(GetExprRange(C, BO->getLHS(), MaxWidth),
   6312                             GetExprRange(C, BO->getRHS(), MaxWidth));
   6313 
   6314     // Left shift gets black-listed based on a judgement call.
   6315     case BO_Shl:
   6316       // ...except that we want to treat '1 << (blah)' as logically
   6317       // positive.  It's an important idiom.
   6318       if (IntegerLiteral *I
   6319             = dyn_cast<IntegerLiteral>(BO->getLHS()->IgnoreParenCasts())) {
   6320         if (I->getValue() == 1) {
   6321           IntRange R = IntRange::forValueOfType(C, GetExprType(E));
   6322           return IntRange(R.Width, /*NonNegative*/ true);
   6323         }
   6324       }
   6325       // fallthrough
   6326 
   6327     case BO_ShlAssign:
   6328       return IntRange::forValueOfType(C, GetExprType(E));
   6329 
   6330     // Right shift by a constant can narrow its left argument.
   6331     case BO_Shr:
   6332     case BO_ShrAssign: {
   6333       IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
   6334 
   6335       // If the shift amount is a positive constant, drop the width by
   6336       // that much.
   6337       llvm::APSInt shift;
   6338       if (BO->getRHS()->isIntegerConstantExpr(shift, C) &&
   6339           shift.isNonNegative()) {
   6340         unsigned zext = shift.getZExtValue();
   6341         if (zext >= L.Width)
   6342           L.Width = (L.NonNegative ? 0 : 1);
   6343         else
   6344           L.Width -= zext;
   6345       }
   6346 
   6347       return L;
   6348     }
   6349 
   6350     // Comma acts as its right operand.
   6351     case BO_Comma:
   6352       return GetExprRange(C, BO->getRHS(), MaxWidth);
   6353 
   6354     // Black-list pointer subtractions.
   6355     case BO_Sub:
   6356       if (BO->getLHS()->getType()->isPointerType())
   6357         return IntRange::forValueOfType(C, GetExprType(E));
   6358       break;
   6359 
   6360     // The width of a division result is mostly determined by the size
   6361     // of the LHS.
   6362     case BO_Div: {
   6363       // Don't 'pre-truncate' the operands.
   6364       unsigned opWidth = C.getIntWidth(GetExprType(E));
   6365       IntRange L = GetExprRange(C, BO->getLHS(), opWidth);
   6366 
   6367       // If the divisor is constant, use that.
   6368       llvm::APSInt divisor;
   6369       if (BO->getRHS()->isIntegerConstantExpr(divisor, C)) {
   6370         unsigned log2 = divisor.logBase2(); // floor(log_2(divisor))
   6371         if (log2 >= L.Width)
   6372           L.Width = (L.NonNegative ? 0 : 1);
   6373         else
   6374           L.Width = std::min(L.Width - log2, MaxWidth);
   6375         return L;
   6376       }
   6377 
   6378       // Otherwise, just use the LHS's width.
   6379       IntRange R = GetExprRange(C, BO->getRHS(), opWidth);
   6380       return IntRange(L.Width, L.NonNegative && R.NonNegative);
   6381     }
   6382 
   6383     // The result of a remainder can't be larger than the result of
   6384     // either side.
   6385     case BO_Rem: {
   6386       // Don't 'pre-truncate' the operands.
   6387       unsigned opWidth = C.getIntWidth(GetExprType(E));
   6388       IntRange L = GetExprRange(C, BO->getLHS(), opWidth);
   6389       IntRange R = GetExprRange(C, BO->getRHS(), opWidth);
   6390 
   6391       IntRange meet = IntRange::meet(L, R);
   6392       meet.Width = std::min(meet.Width, MaxWidth);
   6393       return meet;
   6394     }
   6395 
   6396     // The default behavior is okay for these.
   6397     case BO_Mul:
   6398     case BO_Add:
   6399     case BO_Xor:
   6400     case BO_Or:
   6401       break;
   6402     }
   6403 
   6404     // The default case is to treat the operation as if it were closed
   6405     // on the narrowest type that encompasses both operands.
   6406     IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth);
   6407     IntRange R = GetExprRange(C, BO->getRHS(), MaxWidth);
   6408     return IntRange::join(L, R);
   6409   }
   6410 
   6411   if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
   6412     switch (UO->getOpcode()) {
   6413     // Boolean-valued operations are white-listed.
   6414     case UO_LNot:
   6415       return IntRange::forBoolType();
   6416 
   6417     // Operations with opaque sources are black-listed.
   6418     case UO_Deref:
   6419     case UO_AddrOf: // should be impossible
   6420       return IntRange::forValueOfType(C, GetExprType(E));
   6421 
   6422     default:
   6423       return GetExprRange(C, UO->getSubExpr(), MaxWidth);
   6424     }
   6425   }
   6426 
   6427   if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E))
   6428     return GetExprRange(C, OVE->getSourceExpr(), MaxWidth);
   6429 
   6430   if (FieldDecl *BitField = E->getSourceBitField())
   6431     return IntRange(BitField->getBitWidthValue(C),
   6432                     BitField->getType()->isUnsignedIntegerOrEnumerationType());
   6433 
   6434   return IntRange::forValueOfType(C, GetExprType(E));
   6435 }
   6436 
   6437 static IntRange GetExprRange(ASTContext &C, Expr *E) {
   6438   return GetExprRange(C, E, C.getIntWidth(GetExprType(E)));
   6439 }
   6440 
   6441 /// Checks whether the given value, which currently has the given
   6442 /// source semantics, has the same value when coerced through the
   6443 /// target semantics.
   6444 static bool IsSameFloatAfterCast(const llvm::APFloat &value,
   6445                                  const llvm::fltSemantics &Src,
   6446                                  const llvm::fltSemantics &Tgt) {
   6447   llvm::APFloat truncated = value;
   6448 
   6449   bool ignored;
   6450   truncated.convert(Src, llvm::APFloat::rmNearestTiesToEven, &ignored);
   6451   truncated.convert(Tgt, llvm::APFloat::rmNearestTiesToEven, &ignored);
   6452 
   6453   return truncated.bitwiseIsEqual(value);
   6454 }
   6455 
   6456 /// Checks whether the given value, which currently has the given
   6457 /// source semantics, has the same value when coerced through the
   6458 /// target semantics.
   6459 ///
   6460 /// The value might be a vector of floats (or a complex number).
   6461 static bool IsSameFloatAfterCast(const APValue &value,
   6462                                  const llvm::fltSemantics &Src,
   6463                                  const llvm::fltSemantics &Tgt) {
   6464   if (value.isFloat())
   6465     return IsSameFloatAfterCast(value.getFloat(), Src, Tgt);
   6466 
   6467   if (value.isVector()) {
   6468     for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i)
   6469       if (!IsSameFloatAfterCast(value.getVectorElt(i), Src, Tgt))
   6470         return false;
   6471     return true;
   6472   }
   6473 
   6474   assert(value.isComplexFloat());
   6475   return (IsSameFloatAfterCast(value.getComplexFloatReal(), Src, Tgt) &&
   6476           IsSameFloatAfterCast(value.getComplexFloatImag(), Src, Tgt));
   6477 }
   6478 
   6479 static void AnalyzeImplicitConversions(Sema &S, Expr *E, SourceLocation CC);
   6480 
   6481 static bool IsZero(Sema &S, Expr *E) {
   6482   // Suppress cases where we are comparing against an enum constant.
   6483   if (const DeclRefExpr *DR =
   6484       dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()))
   6485     if (isa<EnumConstantDecl>(DR->getDecl()))
   6486       return false;
   6487 
   6488   // Suppress cases where the '0' value is expanded from a macro.
   6489   if (E->getLocStart().isMacroID())
   6490     return false;
   6491 
   6492   llvm::APSInt Value;
   6493   return E->isIntegerConstantExpr(Value, S.Context) && Value == 0;
   6494 }
   6495 
   6496 static bool HasEnumType(Expr *E) {
   6497   // Strip off implicit integral promotions.
   6498   while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
   6499     if (ICE->getCastKind() != CK_IntegralCast &&
   6500         ICE->getCastKind() != CK_NoOp)
   6501       break;
   6502     E = ICE->getSubExpr();
   6503   }
   6504 
   6505   return E->getType()->isEnumeralType();
   6506 }
   6507 
   6508 static void CheckTrivialUnsignedComparison(Sema &S, BinaryOperator *E) {
   6509   // Disable warning in template instantiations.
   6510   if (!S.ActiveTemplateInstantiations.empty())
   6511     return;
   6512 
   6513   BinaryOperatorKind op = E->getOpcode();
   6514   if (E->isValueDependent())
   6515     return;
   6516 
   6517   if (op == BO_LT && IsZero(S, E->getRHS())) {
   6518     S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
   6519       << "< 0" << "false" << HasEnumType(E->getLHS())
   6520       << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
   6521   } else if (op == BO_GE && IsZero(S, E->getRHS())) {
   6522     S.Diag(E->getOperatorLoc(), diag::warn_lunsigned_always_true_comparison)
   6523       << ">= 0" << "true" << HasEnumType(E->getLHS())
   6524       << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
   6525   } else if (op == BO_GT && IsZero(S, E->getLHS())) {
   6526     S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
   6527       << "0 >" << "false" << HasEnumType(E->getRHS())
   6528       << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
   6529   } else if (op == BO_LE && IsZero(S, E->getLHS())) {
   6530     S.Diag(E->getOperatorLoc(), diag::warn_runsigned_always_true_comparison)
   6531       << "0 <=" << "true" << HasEnumType(E->getRHS())
   6532       << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
   6533   }
   6534 }
   6535 
   6536 static void DiagnoseOutOfRangeComparison(Sema &S, BinaryOperator *E,
   6537                                          Expr *Constant, Expr *Other,
   6538                                          llvm::APSInt Value,
   6539                                          bool RhsConstant) {
   6540   // Disable warning in template instantiations.
   6541   if (!S.ActiveTemplateInstantiations.empty())
   6542     return;
   6543 
   6544   // TODO: Investigate using GetExprRange() to get tighter bounds
   6545   // on the bit ranges.
   6546   QualType OtherT = Other->getType();
   6547   if (const auto *AT = OtherT->getAs<AtomicType>())
   6548     OtherT = AT->getValueType();
   6549   IntRange OtherRange = IntRange::forValueOfType(S.Context, OtherT);
   6550   unsigned OtherWidth = OtherRange.Width;
   6551 
   6552   bool OtherIsBooleanType = Other->isKnownToHaveBooleanValue();
   6553 
   6554   // 0 values are handled later by CheckTrivialUnsignedComparison().
   6555   if ((Value == 0) && (!OtherIsBooleanType))
   6556     return;
   6557 
   6558   BinaryOperatorKind op = E->getOpcode();
   6559   bool IsTrue = true;
   6560 
   6561   // Used for diagnostic printout.
   6562   enum {
   6563     LiteralConstant = 0,
   6564     CXXBoolLiteralTrue,
   6565     CXXBoolLiteralFalse
   6566   } LiteralOrBoolConstant = LiteralConstant;
   6567 
   6568   if (!OtherIsBooleanType) {
   6569     QualType ConstantT = Constant->getType();
   6570     QualType CommonT = E->getLHS()->getType();
   6571 
   6572     if (S.Context.hasSameUnqualifiedType(OtherT, ConstantT))
   6573       return;
   6574     assert((OtherT->isIntegerType() && ConstantT->isIntegerType()) &&
   6575            "comparison with non-integer type");
   6576 
   6577     bool ConstantSigned = ConstantT->isSignedIntegerType();
   6578     bool CommonSigned = CommonT->isSignedIntegerType();
   6579 
   6580     bool EqualityOnly = false;
   6581 
   6582     if (CommonSigned) {
   6583       // The common type is signed, therefore no signed to unsigned conversion.
   6584       if (!OtherRange.NonNegative) {
   6585         // Check that the constant is representable in type OtherT.
   6586         if (ConstantSigned) {
   6587           if (OtherWidth >= Value.getMinSignedBits())
   6588             return;
   6589         } else { // !ConstantSigned
   6590           if (OtherWidth >= Value.getActiveBits() + 1)
   6591             return;
   6592         }
   6593       } else { // !OtherSigned
   6594                // Check that the constant is representable in type OtherT.
   6595         // Negative values are out of range.
   6596         if (ConstantSigned) {
   6597           if (Value.isNonNegative() && OtherWidth >= Value.getActiveBits())
   6598             return;
   6599         } else { // !ConstantSigned
   6600           if (OtherWidth >= Value.getActiveBits())
   6601             return;
   6602         }
   6603       }
   6604     } else { // !CommonSigned
   6605       if (OtherRange.NonNegative) {
   6606         if (OtherWidth >= Value.getActiveBits())
   6607           return;
   6608       } else { // OtherSigned
   6609         assert(!ConstantSigned &&
   6610                "Two signed types converted to unsigned types.");
   6611         // Check to see if the constant is representable in OtherT.
   6612         if (OtherWidth > Value.getActiveBits())
   6613           return;
   6614         // Check to see if the constant is equivalent to a negative value
   6615         // cast to CommonT.
   6616         if (S.Context.getIntWidth(ConstantT) ==
   6617                 S.Context.getIntWidth(CommonT) &&
   6618             Value.isNegative() && Value.getMinSignedBits() <= OtherWidth)
   6619           return;
   6620         // The constant value rests between values that OtherT can represent
   6621         // after conversion.  Relational comparison still works, but equality
   6622         // comparisons will be tautological.
   6623         EqualityOnly = true;
   6624       }
   6625     }
   6626 
   6627     bool PositiveConstant = !ConstantSigned || Value.isNonNegative();
   6628 
   6629     if (op == BO_EQ || op == BO_NE) {
   6630       IsTrue = op == BO_NE;
   6631     } else if (EqualityOnly) {
   6632       return;
   6633     } else if (RhsConstant) {
   6634       if (op == BO_GT || op == BO_GE)
   6635         IsTrue = !PositiveConstant;
   6636       else // op == BO_LT || op == BO_LE
   6637         IsTrue = PositiveConstant;
   6638     } else {
   6639       if (op == BO_LT || op == BO_LE)
   6640         IsTrue = !PositiveConstant;
   6641       else // op == BO_GT || op == BO_GE
   6642         IsTrue = PositiveConstant;
   6643     }
   6644   } else {
   6645     // Other isKnownToHaveBooleanValue
   6646     enum CompareBoolWithConstantResult { AFals, ATrue, Unkwn };
   6647     enum ConstantValue { LT_Zero, Zero, One, GT_One, SizeOfConstVal };
   6648     enum ConstantSide { Lhs, Rhs, SizeOfConstSides };
   6649 
   6650     static const struct LinkedConditions {
   6651       CompareBoolWithConstantResult BO_LT_OP[SizeOfConstSides][SizeOfConstVal];
   6652       CompareBoolWithConstantResult BO_GT_OP[SizeOfConstSides][SizeOfConstVal];
   6653       CompareBoolWithConstantResult BO_LE_OP[SizeOfConstSides][SizeOfConstVal];
   6654       CompareBoolWithConstantResult BO_GE_OP[SizeOfConstSides][SizeOfConstVal];
   6655       CompareBoolWithConstantResult BO_EQ_OP[SizeOfConstSides][SizeOfConstVal];
   6656       CompareBoolWithConstantResult BO_NE_OP[SizeOfConstSides][SizeOfConstVal];
   6657 
   6658     } TruthTable = {
   6659         // Constant on LHS.              | Constant on RHS.              |
   6660         // LT_Zero| Zero  | One   |GT_One| LT_Zero| Zero  | One   |GT_One|
   6661         { { ATrue, Unkwn, AFals, AFals }, { AFals, AFals, Unkwn, ATrue } },
   6662         { { AFals, AFals, Unkwn, ATrue }, { ATrue, Unkwn, AFals, AFals } },
   6663         { { ATrue, ATrue, Unkwn, AFals }, { AFals, Unkwn, ATrue, ATrue } },
   6664         { { AFals, Unkwn, ATrue, ATrue }, { ATrue, ATrue, Unkwn, AFals } },
   6665         { { AFals, Unkwn, Unkwn, AFals }, { AFals, Unkwn, Unkwn, AFals } },
   6666         { { ATrue, Unkwn, Unkwn, ATrue }, { ATrue, Unkwn, Unkwn, ATrue } }
   6667       };
   6668 
   6669     bool ConstantIsBoolLiteral = isa<CXXBoolLiteralExpr>(Constant);
   6670 
   6671     enum ConstantValue ConstVal = Zero;
   6672     if (Value.isUnsigned() || Value.isNonNegative()) {
   6673       if (Value == 0) {
   6674         LiteralOrBoolConstant =
   6675             ConstantIsBoolLiteral ? CXXBoolLiteralFalse : LiteralConstant;
   6676         ConstVal = Zero;
   6677       } else if (Value == 1) {
   6678         LiteralOrBoolConstant =
   6679             ConstantIsBoolLiteral ? CXXBoolLiteralTrue : LiteralConstant;
   6680         ConstVal = One;
   6681       } else {
   6682         LiteralOrBoolConstant = LiteralConstant;
   6683         ConstVal = GT_One;
   6684       }
   6685     } else {
   6686       ConstVal = LT_Zero;
   6687     }
   6688 
   6689     CompareBoolWithConstantResult CmpRes;
   6690 
   6691     switch (op) {
   6692     case BO_LT:
   6693       CmpRes = TruthTable.BO_LT_OP[RhsConstant][ConstVal];
   6694       break;
   6695     case BO_GT:
   6696       CmpRes = TruthTable.BO_GT_OP[RhsConstant][ConstVal];
   6697       break;
   6698     case BO_LE:
   6699       CmpRes = TruthTable.BO_LE_OP[RhsConstant][ConstVal];
   6700       break;
   6701     case BO_GE:
   6702       CmpRes = TruthTable.BO_GE_OP[RhsConstant][ConstVal];
   6703       break;
   6704     case BO_EQ:
   6705       CmpRes = TruthTable.BO_EQ_OP[RhsConstant][ConstVal];
   6706       break;
   6707     case BO_NE:
   6708       CmpRes = TruthTable.BO_NE_OP[RhsConstant][ConstVal];
   6709       break;
   6710     default:
   6711       CmpRes = Unkwn;
   6712       break;
   6713     }
   6714 
   6715     if (CmpRes == AFals) {
   6716       IsTrue = false;
   6717     } else if (CmpRes == ATrue) {
   6718       IsTrue = true;
   6719     } else {
   6720       return;
   6721     }
   6722   }
   6723 
   6724   // If this is a comparison to an enum constant, include that
   6725   // constant in the diagnostic.
   6726   const EnumConstantDecl *ED = nullptr;
   6727   if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Constant))
   6728     ED = dyn_cast<EnumConstantDecl>(DR->getDecl());
   6729 
   6730   SmallString<64> PrettySourceValue;
   6731   llvm::raw_svector_ostream OS(PrettySourceValue);
   6732   if (ED)
   6733     OS << '\'' << *ED << "' (" << Value << ")";
   6734   else
   6735     OS << Value;
   6736 
   6737   S.DiagRuntimeBehavior(
   6738     E->getOperatorLoc(), E,
   6739     S.PDiag(diag::warn_out_of_range_compare)
   6740         << OS.str() << LiteralOrBoolConstant
   6741         << OtherT << (OtherIsBooleanType && !OtherT->isBooleanType()) << IsTrue
   6742         << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange());
   6743 }
   6744 
   6745 /// Analyze the operands of the given comparison.  Implements the
   6746 /// fallback case from AnalyzeComparison.
   6747 static void AnalyzeImpConvsInComparison(Sema &S, BinaryOperator *E) {
   6748   AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
   6749   AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
   6750 }
   6751 
   6752 /// \brief Implements -Wsign-compare.
   6753 ///
   6754 /// \param E the binary operator to check for warnings
   6755 static void AnalyzeComparison(Sema &S, BinaryOperator *E) {
   6756   // The type the comparison is being performed in.
   6757   QualType T = E->getLHS()->getType();
   6758 
   6759   // Only analyze comparison operators where both sides have been converted to
   6760   // the same type.
   6761   if (!S.Context.hasSameUnqualifiedType(T, E->getRHS()->getType()))
   6762     return AnalyzeImpConvsInComparison(S, E);
   6763 
   6764   // Don't analyze value-dependent comparisons directly.
   6765   if (E->isValueDependent())
   6766     return AnalyzeImpConvsInComparison(S, E);
   6767 
   6768   Expr *LHS = E->getLHS()->IgnoreParenImpCasts();
   6769   Expr *RHS = E->getRHS()->IgnoreParenImpCasts();
   6770 
   6771   bool IsComparisonConstant = false;
   6772 
   6773   // Check whether an integer constant comparison results in a value
   6774   // of 'true' or 'false'.
   6775   if (T->isIntegralType(S.Context)) {
   6776     llvm::APSInt RHSValue;
   6777     bool IsRHSIntegralLiteral =
   6778       RHS->isIntegerConstantExpr(RHSValue, S.Context);
   6779     llvm::APSInt LHSValue;
   6780     bool IsLHSIntegralLiteral =
   6781       LHS->isIntegerConstantExpr(LHSValue, S.Context);
   6782     if (IsRHSIntegralLiteral && !IsLHSIntegralLiteral)
   6783         DiagnoseOutOfRangeComparison(S, E, RHS, LHS, RHSValue, true);
   6784     else if (!IsRHSIntegralLiteral && IsLHSIntegralLiteral)
   6785       DiagnoseOutOfRangeComparison(S, E, LHS, RHS, LHSValue, false);
   6786     else
   6787       IsComparisonConstant =
   6788         (IsRHSIntegralLiteral && IsLHSIntegralLiteral);
   6789   } else if (!T->hasUnsignedIntegerRepresentation())
   6790       IsComparisonConstant = E->isIntegerConstantExpr(S.Context);
   6791 
   6792   // We don't do anything special if this isn't an unsigned integral
   6793   // comparison:  we're only interested in integral comparisons, and
   6794   // signed comparisons only happen in cases we don't care to warn about.
   6795   //
   6796   // We also don't care about value-dependent expressions or expressions
   6797   // whose result is a constant.
   6798   if (!T->hasUnsignedIntegerRepresentation() || IsComparisonConstant)
   6799     return AnalyzeImpConvsInComparison(S, E);
   6800 
   6801   // Check to see if one of the (unmodified) operands is of different
   6802   // signedness.
   6803   Expr *signedOperand, *unsignedOperand;
   6804   if (LHS->getType()->hasSignedIntegerRepresentation()) {
   6805     assert(!RHS->getType()->hasSignedIntegerRepresentation() &&
   6806            "unsigned comparison between two signed integer expressions?");
   6807     signedOperand = LHS;
   6808     unsignedOperand = RHS;
   6809   } else if (RHS->getType()->hasSignedIntegerRepresentation()) {
   6810     signedOperand = RHS;
   6811     unsignedOperand = LHS;
   6812   } else {
   6813     CheckTrivialUnsignedComparison(S, E);
   6814     return AnalyzeImpConvsInComparison(S, E);
   6815   }
   6816 
   6817   // Otherwise, calculate the effective range of the signed operand.
   6818   IntRange signedRange = GetExprRange(S.Context, signedOperand);
   6819 
   6820   // Go ahead and analyze implicit conversions in the operands.  Note
   6821   // that we skip the implicit conversions on both sides.
   6822   AnalyzeImplicitConversions(S, LHS, E->getOperatorLoc());
   6823   AnalyzeImplicitConversions(S, RHS, E->getOperatorLoc());
   6824 
   6825   // If the signed range is non-negative, -Wsign-compare won't fire,
   6826   // but we should still check for comparisons which are always true
   6827   // or false.
   6828   if (signedRange.NonNegative)
   6829     return CheckTrivialUnsignedComparison(S, E);
   6830 
   6831   // For (in)equality comparisons, if the unsigned operand is a
   6832   // constant which cannot collide with a overflowed signed operand,
   6833   // then reinterpreting the signed operand as unsigned will not
   6834   // change the result of the comparison.
   6835   if (E->isEqualityOp()) {
   6836     unsigned comparisonWidth = S.Context.getIntWidth(T);
   6837     IntRange unsignedRange = GetExprRange(S.Context, unsignedOperand);
   6838 
   6839     // We should never be unable to prove that the unsigned operand is
   6840     // non-negative.
   6841     assert(unsignedRange.NonNegative && "unsigned range includes negative?");
   6842 
   6843     if (unsignedRange.Width < comparisonWidth)
   6844       return;
   6845   }
   6846 
   6847   S.DiagRuntimeBehavior(E->getOperatorLoc(), E,
   6848     S.PDiag(diag::warn_mixed_sign_comparison)
   6849       << LHS->getType() << RHS->getType()
   6850       << LHS->getSourceRange() << RHS->getSourceRange());
   6851 }
   6852 
   6853 /// Analyzes an attempt to assign the given value to a bitfield.
   6854 ///
   6855 /// Returns true if there was something fishy about the attempt.
   6856 static bool AnalyzeBitFieldAssignment(Sema &S, FieldDecl *Bitfield, Expr *Init,
   6857                                       SourceLocation InitLoc) {
   6858   assert(Bitfield->isBitField());
   6859   if (Bitfield->isInvalidDecl())
   6860     return false;
   6861 
   6862   // White-list bool bitfields.
   6863   if (Bitfield->getType()->isBooleanType())
   6864     return false;
   6865 
   6866   // Ignore value- or type-dependent expressions.
   6867   if (Bitfield->getBitWidth()->isValueDependent() ||
   6868       Bitfield->getBitWidth()->isTypeDependent() ||
   6869       Init->isValueDependent() ||
   6870       Init->isTypeDependent())
   6871     return false;
   6872 
   6873   Expr *OriginalInit = Init->IgnoreParenImpCasts();
   6874 
   6875   llvm::APSInt Value;
   6876   if (!OriginalInit->EvaluateAsInt(Value, S.Context, Expr::SE_AllowSideEffects))
   6877     return false;
   6878 
   6879   unsigned OriginalWidth = Value.getBitWidth();
   6880   unsigned FieldWidth = Bitfield->getBitWidthValue(S.Context);
   6881 
   6882   if (OriginalWidth <= FieldWidth)
   6883     return false;
   6884 
   6885   // Compute the value which the bitfield will contain.
   6886   llvm::APSInt TruncatedValue = Value.trunc(FieldWidth);
   6887   TruncatedValue.setIsSigned(Bitfield->getType()->isSignedIntegerType());
   6888 
   6889   // Check whether the stored value is equal to the original value.
   6890   TruncatedValue = TruncatedValue.extend(OriginalWidth);
   6891   if (llvm::APSInt::isSameValue(Value, TruncatedValue))
   6892     return false;
   6893 
   6894   // Special-case bitfields of width 1: booleans are naturally 0/1, and
   6895   // therefore don't strictly fit into a signed bitfield of width 1.
   6896   if (FieldWidth == 1 && Value == 1)
   6897     return false;
   6898 
   6899   std::string PrettyValue = Value.toString(10);
   6900   std::string PrettyTrunc = TruncatedValue.toString(10);
   6901 
   6902   S.Diag(InitLoc, diag::warn_impcast_bitfield_precision_constant)
   6903     << PrettyValue << PrettyTrunc << OriginalInit->getType()
   6904     << Init->getSourceRange();
   6905 
   6906   return true;
   6907 }
   6908 
   6909 /// Analyze the given simple or compound assignment for warning-worthy
   6910 /// operations.
   6911 static void AnalyzeAssignment(Sema &S, BinaryOperator *E) {
   6912   // Just recurse on the LHS.
   6913   AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
   6914 
   6915   // We want to recurse on the RHS as normal unless we're assigning to
   6916   // a bitfield.
   6917   if (FieldDecl *Bitfield = E->getLHS()->getSourceBitField()) {
   6918     if (AnalyzeBitFieldAssignment(S, Bitfield, E->getRHS(),
   6919                                   E->getOperatorLoc())) {
   6920       // Recurse, ignoring any implicit conversions on the RHS.
   6921       return AnalyzeImplicitConversions(S, E->getRHS()->IgnoreParenImpCasts(),
   6922                                         E->getOperatorLoc());
   6923     }
   6924   }
   6925 
   6926   AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
   6927 }
   6928 
   6929 /// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
   6930 static void DiagnoseImpCast(Sema &S, Expr *E, QualType SourceType, QualType T,
   6931                             SourceLocation CContext, unsigned diag,
   6932                             bool pruneControlFlow = false) {
   6933   if (pruneControlFlow) {
   6934     S.DiagRuntimeBehavior(E->getExprLoc(), E,
   6935                           S.PDiag(diag)
   6936                             << SourceType << T << E->getSourceRange()
   6937                             << SourceRange(CContext));
   6938     return;
   6939   }
   6940   S.Diag(E->getExprLoc(), diag)
   6941     << SourceType << T << E->getSourceRange() << SourceRange(CContext);
   6942 }
   6943 
   6944 /// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
   6945 static void DiagnoseImpCast(Sema &S, Expr *E, QualType T,
   6946                             SourceLocation CContext, unsigned diag,
   6947                             bool pruneControlFlow = false) {
   6948   DiagnoseImpCast(S, E, E->getType(), T, CContext, diag, pruneControlFlow);
   6949 }
   6950 
   6951 /// Diagnose an implicit cast from a literal expression. Does not warn when the
   6952 /// cast wouldn't lose information.
   6953 void DiagnoseFloatingLiteralImpCast(Sema &S, FloatingLiteral *FL, QualType T,
   6954                                     SourceLocation CContext) {
   6955   // Try to convert the literal exactly to an integer. If we can, don't warn.
   6956   bool isExact = false;
   6957   const llvm::APFloat &Value = FL->getValue();
   6958   llvm::APSInt IntegerValue(S.Context.getIntWidth(T),
   6959                             T->hasUnsignedIntegerRepresentation());
   6960   if (Value.convertToInteger(IntegerValue,
   6961                              llvm::APFloat::rmTowardZero, &isExact)
   6962       == llvm::APFloat::opOK && isExact)
   6963     return;
   6964 
   6965   // FIXME: Force the precision of the source value down so we don't print
   6966   // digits which are usually useless (we don't really care here if we
   6967   // truncate a digit by accident in edge cases).  Ideally, APFloat::toString
   6968   // would automatically print the shortest representation, but it's a bit
   6969   // tricky to implement.
   6970   SmallString<16> PrettySourceValue;
   6971   unsigned precision = llvm::APFloat::semanticsPrecision(Value.getSemantics());
   6972   precision = (precision * 59 + 195) / 196;
   6973   Value.toString(PrettySourceValue, precision);
   6974 
   6975   SmallString<16> PrettyTargetValue;
   6976   if (T->isSpecificBuiltinType(BuiltinType::Bool))
   6977     PrettyTargetValue = IntegerValue == 0 ? "false" : "true";
   6978   else
   6979     IntegerValue.toString(PrettyTargetValue);
   6980 
   6981   S.Diag(FL->getExprLoc(), diag::warn_impcast_literal_float_to_integer)
   6982     << FL->getType() << T.getUnqualifiedType() << PrettySourceValue
   6983     << PrettyTargetValue << FL->getSourceRange() << SourceRange(CContext);
   6984 }
   6985 
   6986 std::string PrettyPrintInRange(const llvm::APSInt &Value, IntRange Range) {
   6987   if (!Range.Width) return "0";
   6988 
   6989   llvm::APSInt ValueInRange = Value;
   6990   ValueInRange.setIsSigned(!Range.NonNegative);
   6991   ValueInRange = ValueInRange.trunc(Range.Width);
   6992   return ValueInRange.toString(10);
   6993 }
   6994 
   6995 static bool IsImplicitBoolFloatConversion(Sema &S, Expr *Ex, bool ToBool) {
   6996   if (!isa<ImplicitCastExpr>(Ex))
   6997     return false;
   6998 
   6999   Expr *InnerE = Ex->IgnoreParenImpCasts();
   7000   const Type *Target = S.Context.getCanonicalType(Ex->getType()).getTypePtr();
   7001   const Type *Source =
   7002     S.Context.getCanonicalType(InnerE->getType()).getTypePtr();
   7003   if (Target->isDependentType())
   7004     return false;
   7005 
   7006   const BuiltinType *FloatCandidateBT =
   7007     dyn_cast<BuiltinType>(ToBool ? Source : Target);
   7008   const Type *BoolCandidateType = ToBool ? Target : Source;
   7009 
   7010   return (BoolCandidateType->isSpecificBuiltinType(BuiltinType::Bool) &&
   7011           FloatCandidateBT && (FloatCandidateBT->isFloatingPoint()));
   7012 }
   7013 
   7014 void CheckImplicitArgumentConversions(Sema &S, CallExpr *TheCall,
   7015                                       SourceLocation CC) {
   7016   unsigned NumArgs = TheCall->getNumArgs();
   7017   for (unsigned i = 0; i < NumArgs; ++i) {
   7018     Expr *CurrA = TheCall->getArg(i);
   7019     if (!IsImplicitBoolFloatConversion(S, CurrA, true))
   7020       continue;
   7021 
   7022     bool IsSwapped = ((i > 0) &&
   7023         IsImplicitBoolFloatConversion(S, TheCall->getArg(i - 1), false));
   7024     IsSwapped |= ((i < (NumArgs - 1)) &&
   7025         IsImplicitBoolFloatConversion(S, TheCall->getArg(i + 1), false));
   7026     if (IsSwapped) {
   7027       // Warn on this floating-point to bool conversion.
   7028       DiagnoseImpCast(S, CurrA->IgnoreParenImpCasts(),
   7029                       CurrA->getType(), CC,
   7030                       diag::warn_impcast_floating_point_to_bool);
   7031     }
   7032   }
   7033 }
   7034 
   7035 static void DiagnoseNullConversion(Sema &S, Expr *E, QualType T,
   7036                                    SourceLocation CC) {
   7037   if (S.Diags.isIgnored(diag::warn_impcast_null_pointer_to_integer,
   7038                         E->getExprLoc()))
   7039     return;
   7040 
   7041   // Check for NULL (GNUNull) or nullptr (CXX11_nullptr).
   7042   const Expr::NullPointerConstantKind NullKind =
   7043       E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull);
   7044   if (NullKind != Expr::NPCK_GNUNull && NullKind != Expr::NPCK_CXX11_nullptr)
   7045     return;
   7046 
   7047   // Return if target type is a safe conversion.
   7048   if (T->isAnyPointerType() || T->isBlockPointerType() ||
   7049       T->isMemberPointerType() || !T->isScalarType() || T->isNullPtrType())
   7050     return;
   7051 
   7052   SourceLocation Loc = E->getSourceRange().getBegin();
   7053 
   7054   // __null is usually wrapped in a macro.  Go up a macro if that is the case.
   7055   if (NullKind == Expr::NPCK_GNUNull) {
   7056     if (Loc.isMacroID())
   7057       Loc = S.SourceMgr.getImmediateExpansionRange(Loc).first;
   7058   }
   7059 
   7060   // Only warn if the null and context location are in the same macro expansion.
   7061   if (S.SourceMgr.getFileID(Loc) != S.SourceMgr.getFileID(CC))
   7062     return;
   7063 
   7064   S.Diag(Loc, diag::warn_impcast_null_pointer_to_integer)
   7065       << (NullKind == Expr::NPCK_CXX11_nullptr) << T << clang::SourceRange(CC)
   7066       << FixItHint::CreateReplacement(Loc,
   7067                                       S.getFixItZeroLiteralForType(T, Loc));
   7068 }
   7069 
   7070 static void checkObjCArrayLiteral(Sema &S, QualType TargetType,
   7071                                   ObjCArrayLiteral *ArrayLiteral);
   7072 static void checkObjCDictionaryLiteral(Sema &S, QualType TargetType,
   7073                                        ObjCDictionaryLiteral *DictionaryLiteral);
   7074 
   7075 /// Check a single element within a collection literal against the
   7076 /// target element type.
   7077 static void checkObjCCollectionLiteralElement(Sema &S,
   7078                                               QualType TargetElementType,
   7079                                               Expr *Element,
   7080                                               unsigned ElementKind) {
   7081   // Skip a bitcast to 'id' or qualified 'id'.
   7082   if (auto ICE = dyn_cast<ImplicitCastExpr>(Element)) {
   7083     if (ICE->getCastKind() == CK_BitCast &&
   7084         ICE->getSubExpr()->getType()->getAs<ObjCObjectPointerType>())
   7085       Element = ICE->getSubExpr();
   7086   }
   7087 
   7088   QualType ElementType = Element->getType();
   7089   ExprResult ElementResult(Element);
   7090   if (ElementType->getAs<ObjCObjectPointerType>() &&
   7091       S.CheckSingleAssignmentConstraints(TargetElementType,
   7092                                          ElementResult,
   7093                                          false, false)
   7094         != Sema::Compatible) {
   7095     S.Diag(Element->getLocStart(),
   7096            diag::warn_objc_collection_literal_element)
   7097       << ElementType << ElementKind << TargetElementType
   7098       << Element->getSourceRange();
   7099   }
   7100 
   7101   if (auto ArrayLiteral = dyn_cast<ObjCArrayLiteral>(Element))
   7102     checkObjCArrayLiteral(S, TargetElementType, ArrayLiteral);
   7103   else if (auto DictionaryLiteral = dyn_cast<ObjCDictionaryLiteral>(Element))
   7104     checkObjCDictionaryLiteral(S, TargetElementType, DictionaryLiteral);
   7105 }
   7106 
   7107 /// Check an Objective-C array literal being converted to the given
   7108 /// target type.
   7109 static void checkObjCArrayLiteral(Sema &S, QualType TargetType,
   7110                                   ObjCArrayLiteral *ArrayLiteral) {
   7111   if (!S.NSArrayDecl)
   7112     return;
   7113 
   7114   const auto *TargetObjCPtr = TargetType->getAs<ObjCObjectPointerType>();
   7115   if (!TargetObjCPtr)
   7116     return;
   7117 
   7118   if (TargetObjCPtr->isUnspecialized() ||
   7119       TargetObjCPtr->getInterfaceDecl()->getCanonicalDecl()
   7120         != S.NSArrayDecl->getCanonicalDecl())
   7121     return;
   7122 
   7123   auto TypeArgs = TargetObjCPtr->getTypeArgs();
   7124   if (TypeArgs.size() != 1)
   7125     return;
   7126 
   7127   QualType TargetElementType = TypeArgs[0];
   7128   for (unsigned I = 0, N = ArrayLiteral->getNumElements(); I != N; ++I) {
   7129     checkObjCCollectionLiteralElement(S, TargetElementType,
   7130                                       ArrayLiteral->getElement(I),
   7131                                       0);
   7132   }
   7133 }
   7134 
   7135 /// Check an Objective-C dictionary literal being converted to the given
   7136 /// target type.
   7137 static void checkObjCDictionaryLiteral(
   7138               Sema &S, QualType TargetType,
   7139               ObjCDictionaryLiteral *DictionaryLiteral) {
   7140   if (!S.NSDictionaryDecl)
   7141     return;
   7142 
   7143   const auto *TargetObjCPtr = TargetType->getAs<ObjCObjectPointerType>();
   7144   if (!TargetObjCPtr)
   7145     return;
   7146 
   7147   if (TargetObjCPtr->isUnspecialized() ||
   7148       TargetObjCPtr->getInterfaceDecl()->getCanonicalDecl()
   7149         != S.NSDictionaryDecl->getCanonicalDecl())
   7150     return;
   7151 
   7152   auto TypeArgs = TargetObjCPtr->getTypeArgs();
   7153   if (TypeArgs.size() != 2)
   7154     return;
   7155 
   7156   QualType TargetKeyType = TypeArgs[0];
   7157   QualType TargetObjectType = TypeArgs[1];
   7158   for (unsigned I = 0, N = DictionaryLiteral->getNumElements(); I != N; ++I) {
   7159     auto Element = DictionaryLiteral->getKeyValueElement(I);
   7160     checkObjCCollectionLiteralElement(S, TargetKeyType, Element.Key, 1);
   7161     checkObjCCollectionLiteralElement(S, TargetObjectType, Element.Value, 2);
   7162   }
   7163 }
   7164 
   7165 void CheckImplicitConversion(Sema &S, Expr *E, QualType T,
   7166                              SourceLocation CC, bool *ICContext = nullptr) {
   7167   if (E->isTypeDependent() || E->isValueDependent()) return;
   7168 
   7169   const Type *Source = S.Context.getCanonicalType(E->getType()).getTypePtr();
   7170   const Type *Target = S.Context.getCanonicalType(T).getTypePtr();
   7171   if (Source == Target) return;
   7172   if (Target->isDependentType()) return;
   7173 
   7174   // If the conversion context location is invalid don't complain. We also
   7175   // don't want to emit a warning if the issue occurs from the expansion of
   7176   // a system macro. The problem is that 'getSpellingLoc()' is slow, so we
   7177   // delay this check as long as possible. Once we detect we are in that
   7178   // scenario, we just return.
   7179   if (CC.isInvalid())
   7180     return;
   7181 
   7182   // Diagnose implicit casts to bool.
   7183   if (Target->isSpecificBuiltinType(BuiltinType::Bool)) {
   7184     if (isa<StringLiteral>(E))
   7185       // Warn on string literal to bool.  Checks for string literals in logical
   7186       // and expressions, for instance, assert(0 && "error here"), are
   7187       // prevented by a check in AnalyzeImplicitConversions().
   7188       return DiagnoseImpCast(S, E, T, CC,
   7189                              diag::warn_impcast_string_literal_to_bool);
   7190     if (isa<ObjCStringLiteral>(E) || isa<ObjCArrayLiteral>(E) ||
   7191         isa<ObjCDictionaryLiteral>(E) || isa<ObjCBoxedExpr>(E)) {
   7192       // This covers the literal expressions that evaluate to Objective-C
   7193       // objects.
   7194       return DiagnoseImpCast(S, E, T, CC,
   7195                              diag::warn_impcast_objective_c_literal_to_bool);
   7196     }
   7197     if (Source->isPointerType() || Source->canDecayToPointerType()) {
   7198       // Warn on pointer to bool conversion that is always true.
   7199       S.DiagnoseAlwaysNonNullPointer(E, Expr::NPCK_NotNull, /*IsEqual*/ false,
   7200                                      SourceRange(CC));
   7201     }
   7202   }
   7203 
   7204   // Check implicit casts from Objective-C collection literals to specialized
   7205   // collection types, e.g., NSArray<NSString *> *.
   7206   if (auto *ArrayLiteral = dyn_cast<ObjCArrayLiteral>(E))
   7207     checkObjCArrayLiteral(S, QualType(Target, 0), ArrayLiteral);
   7208   else if (auto *DictionaryLiteral = dyn_cast<ObjCDictionaryLiteral>(E))
   7209     checkObjCDictionaryLiteral(S, QualType(Target, 0), DictionaryLiteral);
   7210 
   7211   // Strip vector types.
   7212   if (isa<VectorType>(Source)) {
   7213     if (!isa<VectorType>(Target)) {
   7214       if (S.SourceMgr.isInSystemMacro(CC))
   7215         return;
   7216       return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_vector_scalar);
   7217     }
   7218 
   7219     // If the vector cast is cast between two vectors of the same size, it is
   7220     // a bitcast, not a conversion.
   7221     if (S.Context.getTypeSize(Source) == S.Context.getTypeSize(Target))
   7222       return;
   7223 
   7224     Source = cast<VectorType>(Source)->getElementType().getTypePtr();
   7225     Target = cast<VectorType>(Target)->getElementType().getTypePtr();
   7226   }
   7227   if (auto VecTy = dyn_cast<VectorType>(Target))
   7228     Target = VecTy->getElementType().getTypePtr();
   7229 
   7230   // Strip complex types.
   7231   if (isa<ComplexType>(Source)) {
   7232     if (!isa<ComplexType>(Target)) {
   7233       if (S.SourceMgr.isInSystemMacro(CC))
   7234         return;
   7235 
   7236       return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_complex_scalar);
   7237     }
   7238 
   7239     Source = cast<ComplexType>(Source)->getElementType().getTypePtr();
   7240     Target = cast<ComplexType>(Target)->getElementType().getTypePtr();
   7241   }
   7242 
   7243   const BuiltinType *SourceBT = dyn_cast<BuiltinType>(Source);
   7244   const BuiltinType *TargetBT = dyn_cast<BuiltinType>(Target);
   7245 
   7246   // If the source is floating point...
   7247   if (SourceBT && SourceBT->isFloatingPoint()) {
   7248     // ...and the target is floating point...
   7249     if (TargetBT && TargetBT->isFloatingPoint()) {
   7250       // ...then warn if we're dropping FP rank.
   7251 
   7252       // Builtin FP kinds are ordered by increasing FP rank.
   7253       if (SourceBT->getKind() > TargetBT->getKind()) {
   7254         // Don't warn about float constants that are precisely
   7255         // representable in the target type.
   7256         Expr::EvalResult result;
   7257         if (E->EvaluateAsRValue(result, S.Context)) {
   7258           // Value might be a float, a float vector, or a float complex.
   7259           if (IsSameFloatAfterCast(result.Val,
   7260                    S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)),
   7261                    S.Context.getFloatTypeSemantics(QualType(SourceBT, 0))))
   7262             return;
   7263         }
   7264 
   7265         if (S.SourceMgr.isInSystemMacro(CC))
   7266           return;
   7267 
   7268         DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_precision);
   7269 
   7270       }
   7271       // ... or possibly if we're increasing rank, too
   7272       else if (TargetBT->getKind() > SourceBT->getKind()) {
   7273         if (S.SourceMgr.isInSystemMacro(CC))
   7274           return;
   7275 
   7276         DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_double_promotion);
   7277       }
   7278       return;
   7279     }
   7280 
   7281     // If the target is integral, always warn.
   7282     if (TargetBT && TargetBT->isInteger()) {
   7283       if (S.SourceMgr.isInSystemMacro(CC))
   7284         return;
   7285 
   7286       Expr *InnerE = E->IgnoreParenImpCasts();
   7287       // We also want to warn on, e.g., "int i = -1.234"
   7288       if (UnaryOperator *UOp = dyn_cast<UnaryOperator>(InnerE))
   7289         if (UOp->getOpcode() == UO_Minus || UOp->getOpcode() == UO_Plus)
   7290           InnerE = UOp->getSubExpr()->IgnoreParenImpCasts();
   7291 
   7292       if (FloatingLiteral *FL = dyn_cast<FloatingLiteral>(InnerE)) {
   7293         DiagnoseFloatingLiteralImpCast(S, FL, T, CC);
   7294       } else {
   7295         DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_integer);
   7296       }
   7297     }
   7298 
   7299     // If the target is bool, warn if expr is a function or method call.
   7300     if (Target->isSpecificBuiltinType(BuiltinType::Bool) &&
   7301         isa<CallExpr>(E)) {
   7302       // Check last argument of function call to see if it is an
   7303       // implicit cast from a type matching the type the result
   7304       // is being cast to.
   7305       CallExpr *CEx = cast<CallExpr>(E);
   7306       unsigned NumArgs = CEx->getNumArgs();
   7307       if (NumArgs > 0) {
   7308         Expr *LastA = CEx->getArg(NumArgs - 1);
   7309         Expr *InnerE = LastA->IgnoreParenImpCasts();
   7310         const Type *InnerType =
   7311           S.Context.getCanonicalType(InnerE->getType()).getTypePtr();
   7312         if (isa<ImplicitCastExpr>(LastA) && (InnerType == Target)) {
   7313           // Warn on this floating-point to bool conversion
   7314           DiagnoseImpCast(S, E, T, CC,
   7315                           diag::warn_impcast_floating_point_to_bool);
   7316         }
   7317       }
   7318     }
   7319     return;
   7320   }
   7321 
   7322   DiagnoseNullConversion(S, E, T, CC);
   7323 
   7324   if (!Source->isIntegerType() || !Target->isIntegerType())
   7325     return;
   7326 
   7327   // TODO: remove this early return once the false positives for constant->bool
   7328   // in templates, macros, etc, are reduced or removed.
   7329   if (Target->isSpecificBuiltinType(BuiltinType::Bool))
   7330     return;
   7331 
   7332   IntRange SourceRange = GetExprRange(S.Context, E);
   7333   IntRange TargetRange = IntRange::forTargetOfCanonicalType(S.Context, Target);
   7334 
   7335   if (SourceRange.Width > TargetRange.Width) {
   7336     // If the source is a constant, use a default-on diagnostic.
   7337     // TODO: this should happen for bitfield stores, too.
   7338     llvm::APSInt Value(32);
   7339     if (E->isIntegerConstantExpr(Value, S.Context)) {
   7340       if (S.SourceMgr.isInSystemMacro(CC))
   7341         return;
   7342 
   7343       std::string PrettySourceValue = Value.toString(10);
   7344       std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange);
   7345 
   7346       S.DiagRuntimeBehavior(E->getExprLoc(), E,
   7347         S.PDiag(diag::warn_impcast_integer_precision_constant)
   7348             << PrettySourceValue << PrettyTargetValue
   7349             << E->getType() << T << E->getSourceRange()
   7350             << clang::SourceRange(CC));
   7351       return;
   7352     }
   7353 
   7354     // People want to build with -Wshorten-64-to-32 and not -Wconversion.
   7355     if (S.SourceMgr.isInSystemMacro(CC))
   7356       return;
   7357 
   7358     if (TargetRange.Width == 32 && S.Context.getIntWidth(E->getType()) == 64)
   7359       return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_64_32,
   7360                              /* pruneControlFlow */ true);
   7361     return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_precision);
   7362   }
   7363 
   7364   if ((TargetRange.NonNegative && !SourceRange.NonNegative) ||
   7365       (!TargetRange.NonNegative && SourceRange.NonNegative &&
   7366        SourceRange.Width == TargetRange.Width)) {
   7367 
   7368     if (S.SourceMgr.isInSystemMacro(CC))
   7369       return;
   7370 
   7371     unsigned DiagID = diag::warn_impcast_integer_sign;
   7372 
   7373     // Traditionally, gcc has warned about this under -Wsign-compare.
   7374     // We also want to warn about it in -Wconversion.
   7375     // So if -Wconversion is off, use a completely identical diagnostic
   7376     // in the sign-compare group.
   7377     // The conditional-checking code will
   7378     if (ICContext) {
   7379       DiagID = diag::warn_impcast_integer_sign_conditional;
   7380       *ICContext = true;
   7381     }
   7382 
   7383     return DiagnoseImpCast(S, E, T, CC, DiagID);
   7384   }
   7385 
   7386   // Diagnose conversions between different enumeration types.
   7387   // In C, we pretend that the type of an EnumConstantDecl is its enumeration
   7388   // type, to give us better diagnostics.
   7389   QualType SourceType = E->getType();
   7390   if (!S.getLangOpts().CPlusPlus) {
   7391     if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
   7392       if (EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(DRE->getDecl())) {
   7393         EnumDecl *Enum = cast<EnumDecl>(ECD->getDeclContext());
   7394         SourceType = S.Context.getTypeDeclType(Enum);
   7395         Source = S.Context.getCanonicalType(SourceType).getTypePtr();
   7396       }
   7397   }
   7398 
   7399   if (const EnumType *SourceEnum = Source->getAs<EnumType>())
   7400     if (const EnumType *TargetEnum = Target->getAs<EnumType>())
   7401       if (SourceEnum->getDecl()->hasNameForLinkage() &&
   7402           TargetEnum->getDecl()->hasNameForLinkage() &&
   7403           SourceEnum != TargetEnum) {
   7404         if (S.SourceMgr.isInSystemMacro(CC))
   7405           return;
   7406 
   7407         return DiagnoseImpCast(S, E, SourceType, T, CC,
   7408                                diag::warn_impcast_different_enum_types);
   7409       }
   7410 
   7411   return;
   7412 }
   7413 
   7414 void CheckConditionalOperator(Sema &S, ConditionalOperator *E,
   7415                               SourceLocation CC, QualType T);
   7416 
   7417 void CheckConditionalOperand(Sema &S, Expr *E, QualType T,
   7418                              SourceLocation CC, bool &ICContext) {
   7419   E = E->IgnoreParenImpCasts();
   7420 
   7421   if (isa<ConditionalOperator>(E))
   7422     return CheckConditionalOperator(S, cast<ConditionalOperator>(E), CC, T);
   7423 
   7424   AnalyzeImplicitConversions(S, E, CC);
   7425   if (E->getType() != T)
   7426     return CheckImplicitConversion(S, E, T, CC, &ICContext);
   7427   return;
   7428 }
   7429 
   7430 void CheckConditionalOperator(Sema &S, ConditionalOperator *E,
   7431                               SourceLocation CC, QualType T) {
   7432   AnalyzeImplicitConversions(S, E->getCond(), E->getQuestionLoc());
   7433 
   7434   bool Suspicious = false;
   7435   CheckConditionalOperand(S, E->getTrueExpr(), T, CC, Suspicious);
   7436   CheckConditionalOperand(S, E->getFalseExpr(), T, CC, Suspicious);
   7437 
   7438   // If -Wconversion would have warned about either of the candidates
   7439   // for a signedness conversion to the context type...
   7440   if (!Suspicious) return;
   7441 
   7442   // ...but it's currently ignored...
   7443   if (!S.Diags.isIgnored(diag::warn_impcast_integer_sign_conditional, CC))
   7444     return;
   7445 
   7446   // ...then check whether it would have warned about either of the
   7447   // candidates for a signedness conversion to the condition type.
   7448   if (E->getType() == T) return;
   7449 
   7450   Suspicious = false;
   7451   CheckImplicitConversion(S, E->getTrueExpr()->IgnoreParenImpCasts(),
   7452                           E->getType(), CC, &Suspicious);
   7453   if (!Suspicious)
   7454     CheckImplicitConversion(S, E->getFalseExpr()->IgnoreParenImpCasts(),
   7455                             E->getType(), CC, &Suspicious);
   7456 }
   7457 
   7458 /// CheckBoolLikeConversion - Check conversion of given expression to boolean.
   7459 /// Input argument E is a logical expression.
   7460 static void CheckBoolLikeConversion(Sema &S, Expr *E, SourceLocation CC) {
   7461   if (S.getLangOpts().Bool)
   7462     return;
   7463   CheckImplicitConversion(S, E->IgnoreParenImpCasts(), S.Context.BoolTy, CC);
   7464 }
   7465 
   7466 /// AnalyzeImplicitConversions - Find and report any interesting
   7467 /// implicit conversions in the given expression.  There are a couple
   7468 /// of competing diagnostics here, -Wconversion and -Wsign-compare.
   7469 void AnalyzeImplicitConversions(Sema &S, Expr *OrigE, SourceLocation CC) {
   7470   QualType T = OrigE->getType();
   7471   Expr *E = OrigE->IgnoreParenImpCasts();
   7472 
   7473   if (E->isTypeDependent() || E->isValueDependent())
   7474     return;
   7475 
   7476   // For conditional operators, we analyze the arguments as if they
   7477   // were being fed directly into the output.
   7478   if (isa<ConditionalOperator>(E)) {
   7479     ConditionalOperator *CO = cast<ConditionalOperator>(E);
   7480     CheckConditionalOperator(S, CO, CC, T);
   7481     return;
   7482   }
   7483 
   7484   // Check implicit argument conversions for function calls.
   7485   if (CallExpr *Call = dyn_cast<CallExpr>(E))
   7486     CheckImplicitArgumentConversions(S, Call, CC);
   7487 
   7488   // Go ahead and check any implicit conversions we might have skipped.
   7489   // The non-canonical typecheck is just an optimization;
   7490   // CheckImplicitConversion will filter out dead implicit conversions.
   7491   if (E->getType() != T)
   7492     CheckImplicitConversion(S, E, T, CC);
   7493 
   7494   // Now continue drilling into this expression.
   7495 
   7496   if (PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E)) {
   7497     // The bound subexpressions in a PseudoObjectExpr are not reachable
   7498     // as transitive children.
   7499     // FIXME: Use a more uniform representation for this.
   7500     for (auto *SE : POE->semantics())
   7501       if (auto *OVE = dyn_cast<OpaqueValueExpr>(SE))
   7502         AnalyzeImplicitConversions(S, OVE->getSourceExpr(), CC);
   7503   }
   7504 
   7505   // Skip past explicit casts.
   7506   if (isa<ExplicitCastExpr>(E)) {
   7507     E = cast<ExplicitCastExpr>(E)->getSubExpr()->IgnoreParenImpCasts();
   7508     return AnalyzeImplicitConversions(S, E, CC);
   7509   }
   7510 
   7511   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
   7512     // Do a somewhat different check with comparison operators.
   7513     if (BO->isComparisonOp())
   7514       return AnalyzeComparison(S, BO);
   7515 
   7516     // And with simple assignments.
   7517     if (BO->getOpcode() == BO_Assign)
   7518       return AnalyzeAssignment(S, BO);
   7519   }
   7520 
   7521   // These break the otherwise-useful invariant below.  Fortunately,
   7522   // we don't really need to recurse into them, because any internal
   7523   // expressions should have been analyzed already when they were
   7524   // built into statements.
   7525   if (isa<StmtExpr>(E)) return;
   7526 
   7527   // Don't descend into unevaluated contexts.
   7528   if (isa<UnaryExprOrTypeTraitExpr>(E)) return;
   7529 
   7530   // Now just recurse over the expression's children.
   7531   CC = E->getExprLoc();
   7532   BinaryOperator *BO = dyn_cast<BinaryOperator>(E);
   7533   bool IsLogicalAndOperator = BO && BO->getOpcode() == BO_LAnd;
   7534   for (Stmt *SubStmt : E->children()) {
   7535     Expr *ChildExpr = dyn_cast_or_null<Expr>(SubStmt);
   7536     if (!ChildExpr)
   7537       continue;
   7538 
   7539     if (IsLogicalAndOperator &&
   7540         isa<StringLiteral>(ChildExpr->IgnoreParenImpCasts()))
   7541       // Ignore checking string literals that are in logical and operators.
   7542       // This is a common pattern for asserts.
   7543       continue;
   7544     AnalyzeImplicitConversions(S, ChildExpr, CC);
   7545   }
   7546 
   7547   if (BO && BO->isLogicalOp()) {
   7548     Expr *SubExpr = BO->getLHS()->IgnoreParenImpCasts();
   7549     if (!IsLogicalAndOperator || !isa<StringLiteral>(SubExpr))
   7550       ::CheckBoolLikeConversion(S, SubExpr, BO->getExprLoc());
   7551 
   7552     SubExpr = BO->getRHS()->IgnoreParenImpCasts();
   7553     if (!IsLogicalAndOperator || !isa<StringLiteral>(SubExpr))
   7554       ::CheckBoolLikeConversion(S, SubExpr, BO->getExprLoc());
   7555   }
   7556 
   7557   if (const UnaryOperator *U = dyn_cast<UnaryOperator>(E))
   7558     if (U->getOpcode() == UO_LNot)
   7559       ::CheckBoolLikeConversion(S, U->getSubExpr(), CC);
   7560 }
   7561 
   7562 } // end anonymous namespace
   7563 
   7564 enum {
   7565   AddressOf,
   7566   FunctionPointer,
   7567   ArrayPointer
   7568 };
   7569 
   7570 // Helper function for Sema::DiagnoseAlwaysNonNullPointer.
   7571 // Returns true when emitting a warning about taking the address of a reference.
   7572 static bool CheckForReference(Sema &SemaRef, const Expr *E,
   7573                               PartialDiagnostic PD) {
   7574   E = E->IgnoreParenImpCasts();
   7575 
   7576   const FunctionDecl *FD = nullptr;
   7577 
   7578   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
   7579     if (!DRE->getDecl()->getType()->isReferenceType())
   7580       return false;
   7581   } else if (const MemberExpr *M = dyn_cast<MemberExpr>(E)) {
   7582     if (!M->getMemberDecl()->getType()->isReferenceType())
   7583       return false;
   7584   } else if (const CallExpr *Call = dyn_cast<CallExpr>(E)) {
   7585     if (!Call->getCallReturnType(SemaRef.Context)->isReferenceType())
   7586       return false;
   7587     FD = Call->getDirectCallee();
   7588   } else {
   7589     return false;
   7590   }
   7591 
   7592   SemaRef.Diag(E->getExprLoc(), PD);
   7593 
   7594   // If possible, point to location of function.
   7595   if (FD) {
   7596     SemaRef.Diag(FD->getLocation(), diag::note_reference_is_return_value) << FD;
   7597   }
   7598 
   7599   return true;
   7600 }
   7601 
   7602 // Returns true if the SourceLocation is expanded from any macro body.
   7603 // Returns false if the SourceLocation is invalid, is from not in a macro
   7604 // expansion, or is from expanded from a top-level macro argument.
   7605 static bool IsInAnyMacroBody(const SourceManager &SM, SourceLocation Loc) {
   7606   if (Loc.isInvalid())
   7607     return false;
   7608 
   7609   while (Loc.isMacroID()) {
   7610     if (SM.isMacroBodyExpansion(Loc))
   7611       return true;
   7612     Loc = SM.getImmediateMacroCallerLoc(Loc);
   7613   }
   7614 
   7615   return false;
   7616 }
   7617 
   7618 /// \brief Diagnose pointers that are always non-null.
   7619 /// \param E the expression containing the pointer
   7620 /// \param NullKind NPCK_NotNull if E is a cast to bool, otherwise, E is
   7621 /// compared to a null pointer
   7622 /// \param IsEqual True when the comparison is equal to a null pointer
   7623 /// \param Range Extra SourceRange to highlight in the diagnostic
   7624 void Sema::DiagnoseAlwaysNonNullPointer(Expr *E,
   7625                                         Expr::NullPointerConstantKind NullKind,
   7626                                         bool IsEqual, SourceRange Range) {
   7627   if (!E)
   7628     return;
   7629 
   7630   // Don't warn inside macros.
   7631   if (E->getExprLoc().isMacroID()) {
   7632     const SourceManager &SM = getSourceManager();
   7633     if (IsInAnyMacroBody(SM, E->getExprLoc()) ||
   7634         IsInAnyMacroBody(SM, Range.getBegin()))
   7635       return;
   7636   }
   7637   E = E->IgnoreImpCasts();
   7638 
   7639   const bool IsCompare = NullKind != Expr::NPCK_NotNull;
   7640 
   7641   if (isa<CXXThisExpr>(E)) {
   7642     unsigned DiagID = IsCompare ? diag::warn_this_null_compare
   7643                                 : diag::warn_this_bool_conversion;
   7644     Diag(E->getExprLoc(), DiagID) << E->getSourceRange() << Range << IsEqual;
   7645     return;
   7646   }
   7647 
   7648   bool IsAddressOf = false;
   7649 
   7650   if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
   7651     if (UO->getOpcode() != UO_AddrOf)
   7652       return;
   7653     IsAddressOf = true;
   7654     E = UO->getSubExpr();
   7655   }
   7656 
   7657   if (IsAddressOf) {
   7658     unsigned DiagID = IsCompare
   7659                           ? diag::warn_address_of_reference_null_compare
   7660                           : diag::warn_address_of_reference_bool_conversion;
   7661     PartialDiagnostic PD = PDiag(DiagID) << E->getSourceRange() << Range
   7662                                          << IsEqual;
   7663     if (CheckForReference(*this, E, PD)) {
   7664       return;
   7665     }
   7666   }
   7667 
   7668   auto ComplainAboutNonnullParamOrCall = [&](bool IsParam) {
   7669     std::string Str;
   7670     llvm::raw_string_ostream S(Str);
   7671     E->printPretty(S, nullptr, getPrintingPolicy());
   7672     unsigned DiagID = IsCompare ? diag::warn_nonnull_expr_compare
   7673                                 : diag::warn_cast_nonnull_to_bool;
   7674     Diag(E->getExprLoc(), DiagID) << IsParam << S.str()
   7675       << E->getSourceRange() << Range << IsEqual;
   7676   };
   7677 
   7678   // If we have a CallExpr that is tagged with returns_nonnull, we can complain.
   7679   if (auto *Call = dyn_cast<CallExpr>(E->IgnoreParenImpCasts())) {
   7680     if (auto *Callee = Call->getDirectCallee()) {
   7681       if (Callee->hasAttr<ReturnsNonNullAttr>()) {
   7682         ComplainAboutNonnullParamOrCall(false);
   7683         return;
   7684       }
   7685     }
   7686   }
   7687 
   7688   // Expect to find a single Decl.  Skip anything more complicated.
   7689   ValueDecl *D = nullptr;
   7690   if (DeclRefExpr *R = dyn_cast<DeclRefExpr>(E)) {
   7691     D = R->getDecl();
   7692   } else if (MemberExpr *M = dyn_cast<MemberExpr>(E)) {
   7693     D = M->getMemberDecl();
   7694   }
   7695 
   7696   // Weak Decls can be null.
   7697   if (!D || D->isWeak())
   7698     return;
   7699 
   7700   // Check for parameter decl with nonnull attribute
   7701   if (const auto* PV = dyn_cast<ParmVarDecl>(D)) {
   7702     if (getCurFunction() &&
   7703         !getCurFunction()->ModifiedNonNullParams.count(PV)) {
   7704       if (PV->hasAttr<NonNullAttr>()) {
   7705         ComplainAboutNonnullParamOrCall(true);
   7706         return;
   7707       }
   7708 
   7709       if (const auto *FD = dyn_cast<FunctionDecl>(PV->getDeclContext())) {
   7710         auto ParamIter = std::find(FD->param_begin(), FD->param_end(), PV);
   7711         assert(ParamIter != FD->param_end());
   7712         unsigned ParamNo = std::distance(FD->param_begin(), ParamIter);
   7713 
   7714         for (const auto *NonNull : FD->specific_attrs<NonNullAttr>()) {
   7715           if (!NonNull->args_size()) {
   7716               ComplainAboutNonnullParamOrCall(true);
   7717               return;
   7718           }
   7719 
   7720           for (unsigned ArgNo : NonNull->args()) {
   7721             if (ArgNo == ParamNo) {
   7722               ComplainAboutNonnullParamOrCall(true);
   7723               return;
   7724             }
   7725           }
   7726         }
   7727       }
   7728     }
   7729   }
   7730 
   7731   QualType T = D->getType();
   7732   const bool IsArray = T->isArrayType();
   7733   const bool IsFunction = T->isFunctionType();
   7734 
   7735   // Address of function is used to silence the function warning.
   7736   if (IsAddressOf && IsFunction) {
   7737     return;
   7738   }
   7739 
   7740   // Found nothing.
   7741   if (!IsAddressOf && !IsFunction && !IsArray)
   7742     return;
   7743 
   7744   // Pretty print the expression for the diagnostic.
   7745   std::string Str;
   7746   llvm::raw_string_ostream S(Str);
   7747   E->printPretty(S, nullptr, getPrintingPolicy());
   7748 
   7749   unsigned DiagID = IsCompare ? diag::warn_null_pointer_compare
   7750                               : diag::warn_impcast_pointer_to_bool;
   7751   unsigned DiagType;
   7752   if (IsAddressOf)
   7753     DiagType = AddressOf;
   7754   else if (IsFunction)
   7755     DiagType = FunctionPointer;
   7756   else if (IsArray)
   7757     DiagType = ArrayPointer;
   7758   else
   7759     llvm_unreachable("Could not determine diagnostic.");
   7760   Diag(E->getExprLoc(), DiagID) << DiagType << S.str() << E->getSourceRange()
   7761                                 << Range << IsEqual;
   7762 
   7763   if (!IsFunction)
   7764     return;
   7765 
   7766   // Suggest '&' to silence the function warning.
   7767   Diag(E->getExprLoc(), diag::note_function_warning_silence)
   7768       << FixItHint::CreateInsertion(E->getLocStart(), "&");
   7769 
   7770   // Check to see if '()' fixit should be emitted.
   7771   QualType ReturnType;
   7772   UnresolvedSet<4> NonTemplateOverloads;
   7773   tryExprAsCall(*E, ReturnType, NonTemplateOverloads);
   7774   if (ReturnType.isNull())
   7775     return;
   7776 
   7777   if (IsCompare) {
   7778     // There are two cases here.  If there is null constant, the only suggest
   7779     // for a pointer return type.  If the null is 0, then suggest if the return
   7780     // type is a pointer or an integer type.
   7781     if (!ReturnType->isPointerType()) {
   7782       if (NullKind == Expr::NPCK_ZeroExpression ||
   7783           NullKind == Expr::NPCK_ZeroLiteral) {
   7784         if (!ReturnType->isIntegerType())
   7785           return;
   7786       } else {
   7787         return;
   7788       }
   7789     }
   7790   } else { // !IsCompare
   7791     // For function to bool, only suggest if the function pointer has bool
   7792     // return type.
   7793     if (!ReturnType->isSpecificBuiltinType(BuiltinType::Bool))
   7794       return;
   7795   }
   7796   Diag(E->getExprLoc(), diag::note_function_to_function_call)
   7797       << FixItHint::CreateInsertion(getLocForEndOfToken(E->getLocEnd()), "()");
   7798 }
   7799 
   7800 
   7801 /// Diagnoses "dangerous" implicit conversions within the given
   7802 /// expression (which is a full expression).  Implements -Wconversion
   7803 /// and -Wsign-compare.
   7804 ///
   7805 /// \param CC the "context" location of the implicit conversion, i.e.
   7806 ///   the most location of the syntactic entity requiring the implicit
   7807 ///   conversion
   7808 void Sema::CheckImplicitConversions(Expr *E, SourceLocation CC) {
   7809   // Don't diagnose in unevaluated contexts.
   7810   if (isUnevaluatedContext())
   7811     return;
   7812 
   7813   // Don't diagnose for value- or type-dependent expressions.
   7814   if (E->isTypeDependent() || E->isValueDependent())
   7815     return;
   7816 
   7817   // Check for array bounds violations in cases where the check isn't triggered
   7818   // elsewhere for other Expr types (like BinaryOperators), e.g. when an
   7819   // ArraySubscriptExpr is on the RHS of a variable initialization.
   7820   CheckArrayAccess(E);
   7821 
   7822   // This is not the right CC for (e.g.) a variable initialization.
   7823   AnalyzeImplicitConversions(*this, E, CC);
   7824 }
   7825 
   7826 /// CheckBoolLikeConversion - Check conversion of given expression to boolean.
   7827 /// Input argument E is a logical expression.
   7828 void Sema::CheckBoolLikeConversion(Expr *E, SourceLocation CC) {
   7829   ::CheckBoolLikeConversion(*this, E, CC);
   7830 }
   7831 
   7832 /// Diagnose when expression is an integer constant expression and its evaluation
   7833 /// results in integer overflow
   7834 void Sema::CheckForIntOverflow (Expr *E) {
   7835   if (isa<BinaryOperator>(E->IgnoreParenCasts()))
   7836     E->IgnoreParenCasts()->EvaluateForOverflow(Context);
   7837 }
   7838 
   7839 namespace {
   7840 /// \brief Visitor for expressions which looks for unsequenced operations on the
   7841 /// same object.
   7842 class SequenceChecker : public EvaluatedExprVisitor<SequenceChecker> {
   7843   typedef EvaluatedExprVisitor<SequenceChecker> Base;
   7844 
   7845   /// \brief A tree of sequenced regions within an expression. Two regions are
   7846   /// unsequenced if one is an ancestor or a descendent of the other. When we
   7847   /// finish processing an expression with sequencing, such as a comma
   7848   /// expression, we fold its tree nodes into its parent, since they are
   7849   /// unsequenced with respect to nodes we will visit later.
   7850   class SequenceTree {
   7851     struct Value {
   7852       explicit Value(unsigned Parent) : Parent(Parent), Merged(false) {}
   7853       unsigned Parent : 31;
   7854       bool Merged : 1;
   7855     };
   7856     SmallVector<Value, 8> Values;
   7857 
   7858   public:
   7859     /// \brief A region within an expression which may be sequenced with respect
   7860     /// to some other region.
   7861     class Seq {
   7862       explicit Seq(unsigned N) : Index(N) {}
   7863       unsigned Index;
   7864       friend class SequenceTree;
   7865     public:
   7866       Seq() : Index(0) {}
   7867     };
   7868 
   7869     SequenceTree() { Values.push_back(Value(0)); }
   7870     Seq root() const { return Seq(0); }
   7871 
   7872     /// \brief Create a new sequence of operations, which is an unsequenced
   7873     /// subset of \p Parent. This sequence of operations is sequenced with
   7874     /// respect to other children of \p Parent.
   7875     Seq allocate(Seq Parent) {
   7876       Values.push_back(Value(Parent.Index));
   7877       return Seq(Values.size() - 1);
   7878     }
   7879 
   7880     /// \brief Merge a sequence of operations into its parent.
   7881     void merge(Seq S) {
   7882       Values[S.Index].Merged = true;
   7883     }
   7884 
   7885     /// \brief Determine whether two operations are unsequenced. This operation
   7886     /// is asymmetric: \p Cur should be the more recent sequence, and \p Old
   7887     /// should have been merged into its parent as appropriate.
   7888     bool isUnsequenced(Seq Cur, Seq Old) {
   7889       unsigned C = representative(Cur.Index);
   7890       unsigned Target = representative(Old.Index);
   7891       while (C >= Target) {
   7892         if (C == Target)
   7893           return true;
   7894         C = Values[C].Parent;
   7895       }
   7896       return false;
   7897     }
   7898 
   7899   private:
   7900     /// \brief Pick a representative for a sequence.
   7901     unsigned representative(unsigned K) {
   7902       if (Values[K].Merged)
   7903         // Perform path compression as we go.
   7904         return Values[K].Parent = representative(Values[K].Parent);
   7905       return K;
   7906     }
   7907   };
   7908 
   7909   /// An object for which we can track unsequenced uses.
   7910   typedef NamedDecl *Object;
   7911 
   7912   /// Different flavors of object usage which we track. We only track the
   7913   /// least-sequenced usage of each kind.
   7914   enum UsageKind {
   7915     /// A read of an object. Multiple unsequenced reads are OK.
   7916     UK_Use,
   7917     /// A modification of an object which is sequenced before the value
   7918     /// computation of the expression, such as ++n in C++.
   7919     UK_ModAsValue,
   7920     /// A modification of an object which is not sequenced before the value
   7921     /// computation of the expression, such as n++.
   7922     UK_ModAsSideEffect,
   7923 
   7924     UK_Count = UK_ModAsSideEffect + 1
   7925   };
   7926 
   7927   struct Usage {
   7928     Usage() : Use(nullptr), Seq() {}
   7929     Expr *Use;
   7930     SequenceTree::Seq Seq;
   7931   };
   7932 
   7933   struct UsageInfo {
   7934     UsageInfo() : Diagnosed(false) {}
   7935     Usage Uses[UK_Count];
   7936     /// Have we issued a diagnostic for this variable already?
   7937     bool Diagnosed;
   7938   };
   7939   typedef llvm::SmallDenseMap<Object, UsageInfo, 16> UsageInfoMap;
   7940 
   7941   Sema &SemaRef;
   7942   /// Sequenced regions within the expression.
   7943   SequenceTree Tree;
   7944   /// Declaration modifications and references which we have seen.
   7945   UsageInfoMap UsageMap;
   7946   /// The region we are currently within.
   7947   SequenceTree::Seq Region;
   7948   /// Filled in with declarations which were modified as a side-effect
   7949   /// (that is, post-increment operations).
   7950   SmallVectorImpl<std::pair<Object, Usage> > *ModAsSideEffect;
   7951   /// Expressions to check later. We defer checking these to reduce
   7952   /// stack usage.
   7953   SmallVectorImpl<Expr *> &WorkList;
   7954 
   7955   /// RAII object wrapping the visitation of a sequenced subexpression of an
   7956   /// expression. At the end of this process, the side-effects of the evaluation
   7957   /// become sequenced with respect to the value computation of the result, so
   7958   /// we downgrade any UK_ModAsSideEffect within the evaluation to
   7959   /// UK_ModAsValue.
   7960   struct SequencedSubexpression {
   7961     SequencedSubexpression(SequenceChecker &Self)
   7962       : Self(Self), OldModAsSideEffect(Self.ModAsSideEffect) {
   7963       Self.ModAsSideEffect = &ModAsSideEffect;
   7964     }
   7965     ~SequencedSubexpression() {
   7966       for (auto MI = ModAsSideEffect.rbegin(), ME = ModAsSideEffect.rend();
   7967            MI != ME; ++MI) {
   7968         UsageInfo &U = Self.UsageMap[MI->first];
   7969         auto &SideEffectUsage = U.Uses[UK_ModAsSideEffect];
   7970         Self.addUsage(U, MI->first, SideEffectUsage.Use, UK_ModAsValue);
   7971         SideEffectUsage = MI->second;
   7972       }
   7973       Self.ModAsSideEffect = OldModAsSideEffect;
   7974     }
   7975 
   7976     SequenceChecker &Self;
   7977     SmallVector<std::pair<Object, Usage>, 4> ModAsSideEffect;
   7978     SmallVectorImpl<std::pair<Object, Usage> > *OldModAsSideEffect;
   7979   };
   7980 
   7981   /// RAII object wrapping the visitation of a subexpression which we might
   7982   /// choose to evaluate as a constant. If any subexpression is evaluated and
   7983   /// found to be non-constant, this allows us to suppress the evaluation of
   7984   /// the outer expression.
   7985   class EvaluationTracker {
   7986   public:
   7987     EvaluationTracker(SequenceChecker &Self)
   7988         : Self(Self), Prev(Self.EvalTracker), EvalOK(true) {
   7989       Self.EvalTracker = this;
   7990     }
   7991     ~EvaluationTracker() {
   7992       Self.EvalTracker = Prev;
   7993       if (Prev)
   7994         Prev->EvalOK &= EvalOK;
   7995     }
   7996 
   7997     bool evaluate(const Expr *E, bool &Result) {
   7998       if (!EvalOK || E->isValueDependent())
   7999         return false;
   8000       EvalOK = E->EvaluateAsBooleanCondition(Result, Self.SemaRef.Context);
   8001       return EvalOK;
   8002     }
   8003 
   8004   private:
   8005     SequenceChecker &Self;
   8006     EvaluationTracker *Prev;
   8007     bool EvalOK;
   8008   } *EvalTracker;
   8009 
   8010   /// \brief Find the object which is produced by the specified expression,
   8011   /// if any.
   8012   Object getObject(Expr *E, bool Mod) const {
   8013     E = E->IgnoreParenCasts();
   8014     if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
   8015       if (Mod && (UO->getOpcode() == UO_PreInc || UO->getOpcode() == UO_PreDec))
   8016         return getObject(UO->getSubExpr(), Mod);
   8017     } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
   8018       if (BO->getOpcode() == BO_Comma)
   8019         return getObject(BO->getRHS(), Mod);
   8020       if (Mod && BO->isAssignmentOp())
   8021         return getObject(BO->getLHS(), Mod);
   8022     } else if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
   8023       // FIXME: Check for more interesting cases, like "x.n = ++x.n".
   8024       if (isa<CXXThisExpr>(ME->getBase()->IgnoreParenCasts()))
   8025         return ME->getMemberDecl();
   8026     } else if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
   8027       // FIXME: If this is a reference, map through to its value.
   8028       return DRE->getDecl();
   8029     return nullptr;
   8030   }
   8031 
   8032   /// \brief Note that an object was modified or used by an expression.
   8033   void addUsage(UsageInfo &UI, Object O, Expr *Ref, UsageKind UK) {
   8034     Usage &U = UI.Uses[UK];
   8035     if (!U.Use || !Tree.isUnsequenced(Region, U.Seq)) {
   8036       if (UK == UK_ModAsSideEffect && ModAsSideEffect)
   8037         ModAsSideEffect->push_back(std::make_pair(O, U));
   8038       U.Use = Ref;
   8039       U.Seq = Region;
   8040     }
   8041   }
   8042   /// \brief Check whether a modification or use conflicts with a prior usage.
   8043   void checkUsage(Object O, UsageInfo &UI, Expr *Ref, UsageKind OtherKind,
   8044                   bool IsModMod) {
   8045     if (UI.Diagnosed)
   8046       return;
   8047 
   8048     const Usage &U = UI.Uses[OtherKind];
   8049     if (!U.Use || !Tree.isUnsequenced(Region, U.Seq))
   8050       return;
   8051 
   8052     Expr *Mod = U.Use;
   8053     Expr *ModOrUse = Ref;
   8054     if (OtherKind == UK_Use)
   8055       std::swap(Mod, ModOrUse);
   8056 
   8057     SemaRef.Diag(Mod->getExprLoc(),
   8058                  IsModMod ? diag::warn_unsequenced_mod_mod
   8059                           : diag::warn_unsequenced_mod_use)
   8060       << O << SourceRange(ModOrUse->getExprLoc());
   8061     UI.Diagnosed = true;
   8062   }
   8063 
   8064   void notePreUse(Object O, Expr *Use) {
   8065     UsageInfo &U = UsageMap[O];
   8066     // Uses conflict with other modifications.
   8067     checkUsage(O, U, Use, UK_ModAsValue, false);
   8068   }
   8069   void notePostUse(Object O, Expr *Use) {
   8070     UsageInfo &U = UsageMap[O];
   8071     checkUsage(O, U, Use, UK_ModAsSideEffect, false);
   8072     addUsage(U, O, Use, UK_Use);
   8073   }
   8074 
   8075   void notePreMod(Object O, Expr *Mod) {
   8076     UsageInfo &U = UsageMap[O];
   8077     // Modifications conflict with other modifications and with uses.
   8078     checkUsage(O, U, Mod, UK_ModAsValue, true);
   8079     checkUsage(O, U, Mod, UK_Use, false);
   8080   }
   8081   void notePostMod(Object O, Expr *Use, UsageKind UK) {
   8082     UsageInfo &U = UsageMap[O];
   8083     checkUsage(O, U, Use, UK_ModAsSideEffect, true);
   8084     addUsage(U, O, Use, UK);
   8085   }
   8086 
   8087 public:
   8088   SequenceChecker(Sema &S, Expr *E, SmallVectorImpl<Expr *> &WorkList)
   8089       : Base(S.Context), SemaRef(S), Region(Tree.root()),
   8090         ModAsSideEffect(nullptr), WorkList(WorkList), EvalTracker(nullptr) {
   8091     Visit(E);
   8092   }
   8093 
   8094   void VisitStmt(Stmt *S) {
   8095     // Skip all statements which aren't expressions for now.
   8096   }
   8097 
   8098   void VisitExpr(Expr *E) {
   8099     // By default, just recurse to evaluated subexpressions.
   8100     Base::VisitStmt(E);
   8101   }
   8102 
   8103   void VisitCastExpr(CastExpr *E) {
   8104     Object O = Object();
   8105     if (E->getCastKind() == CK_LValueToRValue)
   8106       O = getObject(E->getSubExpr(), false);
   8107 
   8108     if (O)
   8109       notePreUse(O, E);
   8110     VisitExpr(E);
   8111     if (O)
   8112       notePostUse(O, E);
   8113   }
   8114 
   8115   void VisitBinComma(BinaryOperator *BO) {
   8116     // C++11 [expr.comma]p1:
   8117     //   Every value computation and side effect associated with the left
   8118     //   expression is sequenced before every value computation and side
   8119     //   effect associated with the right expression.
   8120     SequenceTree::Seq LHS = Tree.allocate(Region);
   8121     SequenceTree::Seq RHS = Tree.allocate(Region);
   8122     SequenceTree::Seq OldRegion = Region;
   8123 
   8124     {
   8125       SequencedSubexpression SeqLHS(*this);
   8126       Region = LHS;
   8127       Visit(BO->getLHS());
   8128     }
   8129 
   8130     Region = RHS;
   8131     Visit(BO->getRHS());
   8132 
   8133     Region = OldRegion;
   8134 
   8135     // Forget that LHS and RHS are sequenced. They are both unsequenced
   8136     // with respect to other stuff.
   8137     Tree.merge(LHS);
   8138     Tree.merge(RHS);
   8139   }
   8140 
   8141   void VisitBinAssign(BinaryOperator *BO) {
   8142     // The modification is sequenced after the value computation of the LHS
   8143     // and RHS, so check it before inspecting the operands and update the
   8144     // map afterwards.
   8145     Object O = getObject(BO->getLHS(), true);
   8146     if (!O)
   8147       return VisitExpr(BO);
   8148 
   8149     notePreMod(O, BO);
   8150 
   8151     // C++11 [expr.ass]p7:
   8152     //   E1 op= E2 is equivalent to E1 = E1 op E2, except that E1 is evaluated
   8153     //   only once.
   8154     //
   8155     // Therefore, for a compound assignment operator, O is considered used
   8156     // everywhere except within the evaluation of E1 itself.
   8157     if (isa<CompoundAssignOperator>(BO))
   8158       notePreUse(O, BO);
   8159 
   8160     Visit(BO->getLHS());
   8161 
   8162     if (isa<CompoundAssignOperator>(BO))
   8163       notePostUse(O, BO);
   8164 
   8165     Visit(BO->getRHS());
   8166 
   8167     // C++11 [expr.ass]p1:
   8168     //   the assignment is sequenced [...] before the value computation of the
   8169     //   assignment expression.
   8170     // C11 6.5.16/3 has no such rule.
   8171     notePostMod(O, BO, SemaRef.getLangOpts().CPlusPlus ? UK_ModAsValue
   8172                                                        : UK_ModAsSideEffect);
   8173   }
   8174   void VisitCompoundAssignOperator(CompoundAssignOperator *CAO) {
   8175     VisitBinAssign(CAO);
   8176   }
   8177 
   8178   void VisitUnaryPreInc(UnaryOperator *UO) { VisitUnaryPreIncDec(UO); }
   8179   void VisitUnaryPreDec(UnaryOperator *UO) { VisitUnaryPreIncDec(UO); }
   8180   void VisitUnaryPreIncDec(UnaryOperator *UO) {
   8181     Object O = getObject(UO->getSubExpr(), true);
   8182     if (!O)
   8183       return VisitExpr(UO);
   8184 
   8185     notePreMod(O, UO);
   8186     Visit(UO->getSubExpr());
   8187     // C++11 [expr.pre.incr]p1:
   8188     //   the expression ++x is equivalent to x+=1
   8189     notePostMod(O, UO, SemaRef.getLangOpts().CPlusPlus ? UK_ModAsValue
   8190                                                        : UK_ModAsSideEffect);
   8191   }
   8192 
   8193   void VisitUnaryPostInc(UnaryOperator *UO) { VisitUnaryPostIncDec(UO); }
   8194   void VisitUnaryPostDec(UnaryOperator *UO) { VisitUnaryPostIncDec(UO); }
   8195   void VisitUnaryPostIncDec(UnaryOperator *UO) {
   8196     Object O = getObject(UO->getSubExpr(), true);
   8197     if (!O)
   8198       return VisitExpr(UO);
   8199 
   8200     notePreMod(O, UO);
   8201     Visit(UO->getSubExpr());
   8202     notePostMod(O, UO, UK_ModAsSideEffect);
   8203   }
   8204 
   8205   /// Don't visit the RHS of '&&' or '||' if it might not be evaluated.
   8206   void VisitBinLOr(BinaryOperator *BO) {
   8207     // The side-effects of the LHS of an '&&' are sequenced before the
   8208     // value computation of the RHS, and hence before the value computation
   8209     // of the '&&' itself, unless the LHS evaluates to zero. We treat them
   8210     // as if they were unconditionally sequenced.
   8211     EvaluationTracker Eval(*this);
   8212     {
   8213       SequencedSubexpression Sequenced(*this);
   8214       Visit(BO->getLHS());
   8215     }
   8216 
   8217     bool Result;
   8218     if (Eval.evaluate(BO->getLHS(), Result)) {
   8219       if (!Result)
   8220         Visit(BO->getRHS());
   8221     } else {
   8222       // Check for unsequenced operations in the RHS, treating it as an
   8223       // entirely separate evaluation.
   8224       //
   8225       // FIXME: If there are operations in the RHS which are unsequenced
   8226       // with respect to operations outside the RHS, and those operations
   8227       // are unconditionally evaluated, diagnose them.
   8228       WorkList.push_back(BO->getRHS());
   8229     }
   8230   }
   8231   void VisitBinLAnd(BinaryOperator *BO) {
   8232     EvaluationTracker Eval(*this);
   8233     {
   8234       SequencedSubexpression Sequenced(*this);
   8235       Visit(BO->getLHS());
   8236     }
   8237 
   8238     bool Result;
   8239     if (Eval.evaluate(BO->getLHS(), Result)) {
   8240       if (Result)
   8241         Visit(BO->getRHS());
   8242     } else {
   8243       WorkList.push_back(BO->getRHS());
   8244     }
   8245   }
   8246 
   8247   // Only visit the condition, unless we can be sure which subexpression will
   8248   // be chosen.
   8249   void VisitAbstractConditionalOperator(AbstractConditionalOperator *CO) {
   8250     EvaluationTracker Eval(*this);
   8251     {
   8252       SequencedSubexpression Sequenced(*this);
   8253       Visit(CO->getCond());
   8254     }
   8255 
   8256     bool Result;
   8257     if (Eval.evaluate(CO->getCond(), Result))
   8258       Visit(Result ? CO->getTrueExpr() : CO->getFalseExpr());
   8259     else {
   8260       WorkList.push_back(CO->getTrueExpr());
   8261       WorkList.push_back(CO->getFalseExpr());
   8262     }
   8263   }
   8264 
   8265   void VisitCallExpr(CallExpr *CE) {
   8266     // C++11 [intro.execution]p15:
   8267     //   When calling a function [...], every value computation and side effect
   8268     //   associated with any argument expression, or with the postfix expression
   8269     //   designating the called function, is sequenced before execution of every
   8270     //   expression or statement in the body of the function [and thus before
   8271     //   the value computation of its result].
   8272     SequencedSubexpression Sequenced(*this);
   8273     Base::VisitCallExpr(CE);
   8274 
   8275     // FIXME: CXXNewExpr and CXXDeleteExpr implicitly call functions.
   8276   }
   8277 
   8278   void VisitCXXConstructExpr(CXXConstructExpr *CCE) {
   8279     // This is a call, so all subexpressions are sequenced before the result.
   8280     SequencedSubexpression Sequenced(*this);
   8281 
   8282     if (!CCE->isListInitialization())
   8283       return VisitExpr(CCE);
   8284 
   8285     // In C++11, list initializations are sequenced.
   8286     SmallVector<SequenceTree::Seq, 32> Elts;
   8287     SequenceTree::Seq Parent = Region;
   8288     for (CXXConstructExpr::arg_iterator I = CCE->arg_begin(),
   8289                                         E = CCE->arg_end();
   8290          I != E; ++I) {
   8291       Region = Tree.allocate(Parent);
   8292       Elts.push_back(Region);
   8293       Visit(*I);
   8294     }
   8295 
   8296     // Forget that the initializers are sequenced.
   8297     Region = Parent;
   8298     for (unsigned I = 0; I < Elts.size(); ++I)
   8299       Tree.merge(Elts[I]);
   8300   }
   8301 
   8302   void VisitInitListExpr(InitListExpr *ILE) {
   8303     if (!SemaRef.getLangOpts().CPlusPlus11)
   8304       return VisitExpr(ILE);
   8305 
   8306     // In C++11, list initializations are sequenced.
   8307     SmallVector<SequenceTree::Seq, 32> Elts;
   8308     SequenceTree::Seq Parent = Region;
   8309     for (unsigned I = 0; I < ILE->getNumInits(); ++I) {
   8310       Expr *E = ILE->getInit(I);
   8311       if (!E) continue;
   8312       Region = Tree.allocate(Parent);
   8313       Elts.push_back(Region);
   8314       Visit(E);
   8315     }
   8316 
   8317     // Forget that the initializers are sequenced.
   8318     Region = Parent;
   8319     for (unsigned I = 0; I < Elts.size(); ++I)
   8320       Tree.merge(Elts[I]);
   8321   }
   8322 };
   8323 }
   8324 
   8325 void Sema::CheckUnsequencedOperations(Expr *E) {
   8326   SmallVector<Expr *, 8> WorkList;
   8327   WorkList.push_back(E);
   8328   while (!WorkList.empty()) {
   8329     Expr *Item = WorkList.pop_back_val();
   8330     SequenceChecker(*this, Item, WorkList);
   8331   }
   8332 }
   8333 
   8334 void Sema::CheckCompletedExpr(Expr *E, SourceLocation CheckLoc,
   8335                               bool IsConstexpr) {
   8336   CheckImplicitConversions(E, CheckLoc);
   8337   CheckUnsequencedOperations(E);
   8338   if (!IsConstexpr && !E->isValueDependent())
   8339     CheckForIntOverflow(E);
   8340 }
   8341 
   8342 void Sema::CheckBitFieldInitialization(SourceLocation InitLoc,
   8343                                        FieldDecl *BitField,
   8344                                        Expr *Init) {
   8345   (void) AnalyzeBitFieldAssignment(*this, BitField, Init, InitLoc);
   8346 }
   8347 
   8348 static void diagnoseArrayStarInParamType(Sema &S, QualType PType,
   8349                                          SourceLocation Loc) {
   8350   if (!PType->isVariablyModifiedType())
   8351     return;
   8352   if (const auto *PointerTy = dyn_cast<PointerType>(PType)) {
   8353     diagnoseArrayStarInParamType(S, PointerTy->getPointeeType(), Loc);
   8354     return;
   8355   }
   8356   if (const auto *ReferenceTy = dyn_cast<ReferenceType>(PType)) {
   8357     diagnoseArrayStarInParamType(S, ReferenceTy->getPointeeType(), Loc);
   8358     return;
   8359   }
   8360   if (const auto *ParenTy = dyn_cast<ParenType>(PType)) {
   8361     diagnoseArrayStarInParamType(S, ParenTy->getInnerType(), Loc);
   8362     return;
   8363   }
   8364 
   8365   const ArrayType *AT = S.Context.getAsArrayType(PType);
   8366   if (!AT)
   8367     return;
   8368 
   8369   if (AT->getSizeModifier() != ArrayType::Star) {
   8370     diagnoseArrayStarInParamType(S, AT->getElementType(), Loc);
   8371     return;
   8372   }
   8373 
   8374   S.Diag(Loc, diag::err_array_star_in_function_definition);
   8375 }
   8376 
   8377 /// CheckParmsForFunctionDef - Check that the parameters of the given
   8378 /// function are appropriate for the definition of a function. This
   8379 /// takes care of any checks that cannot be performed on the
   8380 /// declaration itself, e.g., that the types of each of the function
   8381 /// parameters are complete.
   8382 bool Sema::CheckParmsForFunctionDef(ParmVarDecl *const *P,
   8383                                     ParmVarDecl *const *PEnd,
   8384                                     bool CheckParameterNames) {
   8385   bool HasInvalidParm = false;
   8386   for (; P != PEnd; ++P) {
   8387     ParmVarDecl *Param = *P;
   8388 
   8389     // C99 6.7.5.3p4: the parameters in a parameter type list in a
   8390     // function declarator that is part of a function definition of
   8391     // that function shall not have incomplete type.
   8392     //
   8393     // This is also C++ [dcl.fct]p6.
   8394     if (!Param->isInvalidDecl() &&
   8395         RequireCompleteType(Param->getLocation(), Param->getType(),
   8396                             diag::err_typecheck_decl_incomplete_type)) {
   8397       Param->setInvalidDecl();
   8398       HasInvalidParm = true;
   8399     }
   8400 
   8401     // C99 6.9.1p5: If the declarator includes a parameter type list, the
   8402     // declaration of each parameter shall include an identifier.
   8403     if (CheckParameterNames &&
   8404         Param->getIdentifier() == nullptr &&
   8405         !Param->isImplicit() &&
   8406         !getLangOpts().CPlusPlus)
   8407       Diag(Param->getLocation(), diag::err_parameter_name_omitted);
   8408 
   8409     // C99 6.7.5.3p12:
   8410     //   If the function declarator is not part of a definition of that
   8411     //   function, parameters may have incomplete type and may use the [*]
   8412     //   notation in their sequences of declarator specifiers to specify
   8413     //   variable length array types.
   8414     QualType PType = Param->getOriginalType();
   8415     // FIXME: This diagnostic should point the '[*]' if source-location
   8416     // information is added for it.
   8417     diagnoseArrayStarInParamType(*this, PType, Param->getLocation());
   8418 
   8419     // MSVC destroys objects passed by value in the callee.  Therefore a
   8420     // function definition which takes such a parameter must be able to call the
   8421     // object's destructor.  However, we don't perform any direct access check
   8422     // on the dtor.
   8423     if (getLangOpts().CPlusPlus && Context.getTargetInfo()
   8424                                        .getCXXABI()
   8425                                        .areArgsDestroyedLeftToRightInCallee()) {
   8426       if (!Param->isInvalidDecl()) {
   8427         if (const RecordType *RT = Param->getType()->getAs<RecordType>()) {
   8428           CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
   8429           if (!ClassDecl->isInvalidDecl() &&
   8430               !ClassDecl->hasIrrelevantDestructor() &&
   8431               !ClassDecl->isDependentContext()) {
   8432             CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
   8433             MarkFunctionReferenced(Param->getLocation(), Destructor);
   8434             DiagnoseUseOfDecl(Destructor, Param->getLocation());
   8435           }
   8436         }
   8437       }
   8438     }
   8439 
   8440     // Parameters with the pass_object_size attribute only need to be marked
   8441     // constant at function definitions. Because we lack information about
   8442     // whether we're on a declaration or definition when we're instantiating the
   8443     // attribute, we need to check for constness here.
   8444     if (const auto *Attr = Param->getAttr<PassObjectSizeAttr>())
   8445       if (!Param->getType().isConstQualified())
   8446         Diag(Param->getLocation(), diag::err_attribute_pointers_only)
   8447             << Attr->getSpelling() << 1;
   8448   }
   8449 
   8450   return HasInvalidParm;
   8451 }
   8452 
   8453 /// CheckCastAlign - Implements -Wcast-align, which warns when a
   8454 /// pointer cast increases the alignment requirements.
   8455 void Sema::CheckCastAlign(Expr *Op, QualType T, SourceRange TRange) {
   8456   // This is actually a lot of work to potentially be doing on every
   8457   // cast; don't do it if we're ignoring -Wcast_align (as is the default).
   8458   if (getDiagnostics().isIgnored(diag::warn_cast_align, TRange.getBegin()))
   8459     return;
   8460 
   8461   // Ignore dependent types.
   8462   if (T->isDependentType() || Op->getType()->isDependentType())
   8463     return;
   8464 
   8465   // Require that the destination be a pointer type.
   8466   const PointerType *DestPtr = T->getAs<PointerType>();
   8467   if (!DestPtr) return;
   8468 
   8469   // If the destination has alignment 1, we're done.
   8470   QualType DestPointee = DestPtr->getPointeeType();
   8471   if (DestPointee->isIncompleteType()) return;
   8472   CharUnits DestAlign = Context.getTypeAlignInChars(DestPointee);
   8473   if (DestAlign.isOne()) return;
   8474 
   8475   // Require that the source be a pointer type.
   8476   const PointerType *SrcPtr = Op->getType()->getAs<PointerType>();
   8477   if (!SrcPtr) return;
   8478   QualType SrcPointee = SrcPtr->getPointeeType();
   8479 
   8480   // Whitelist casts from cv void*.  We already implicitly
   8481   // whitelisted casts to cv void*, since they have alignment 1.
   8482   // Also whitelist casts involving incomplete types, which implicitly
   8483   // includes 'void'.
   8484   if (SrcPointee->isIncompleteType()) return;
   8485 
   8486   CharUnits SrcAlign = Context.getTypeAlignInChars(SrcPointee);
   8487   if (SrcAlign >= DestAlign) return;
   8488 
   8489   Diag(TRange.getBegin(), diag::warn_cast_align)
   8490     << Op->getType() << T
   8491     << static_cast<unsigned>(SrcAlign.getQuantity())
   8492     << static_cast<unsigned>(DestAlign.getQuantity())
   8493     << TRange << Op->getSourceRange();
   8494 }
   8495 
   8496 static const Type* getElementType(const Expr *BaseExpr) {
   8497   const Type* EltType = BaseExpr->getType().getTypePtr();
   8498   if (EltType->isAnyPointerType())
   8499     return EltType->getPointeeType().getTypePtr();
   8500   else if (EltType->isArrayType())
   8501     return EltType->getBaseElementTypeUnsafe();
   8502   return EltType;
   8503 }
   8504 
   8505 /// \brief Check whether this array fits the idiom of a size-one tail padded
   8506 /// array member of a struct.
   8507 ///
   8508 /// We avoid emitting out-of-bounds access warnings for such arrays as they are
   8509 /// commonly used to emulate flexible arrays in C89 code.
   8510 static bool IsTailPaddedMemberArray(Sema &S, llvm::APInt Size,
   8511                                     const NamedDecl *ND) {
   8512   if (Size != 1 || !ND) return false;
   8513 
   8514   const FieldDecl *FD = dyn_cast<FieldDecl>(ND);
   8515   if (!FD) return false;
   8516 
   8517   // Don't consider sizes resulting from macro expansions or template argument
   8518   // substitution to form C89 tail-padded arrays.
   8519 
   8520   TypeSourceInfo *TInfo = FD->getTypeSourceInfo();
   8521   while (TInfo) {
   8522     TypeLoc TL = TInfo->getTypeLoc();
   8523     // Look through typedefs.
   8524     if (TypedefTypeLoc TTL = TL.getAs<TypedefTypeLoc>()) {
   8525       const TypedefNameDecl *TDL = TTL.getTypedefNameDecl();
   8526       TInfo = TDL->getTypeSourceInfo();
   8527       continue;
   8528     }
   8529     if (ConstantArrayTypeLoc CTL = TL.getAs<ConstantArrayTypeLoc>()) {
   8530       const Expr *SizeExpr = dyn_cast<IntegerLiteral>(CTL.getSizeExpr());
   8531       if (!SizeExpr || SizeExpr->getExprLoc().isMacroID())
   8532         return false;
   8533     }
   8534     break;
   8535   }
   8536 
   8537   const RecordDecl *RD = dyn_cast<RecordDecl>(FD->getDeclContext());
   8538   if (!RD) return false;
   8539   if (RD->isUnion()) return false;
   8540   if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
   8541     if (!CRD->isStandardLayout()) return false;
   8542   }
   8543 
   8544   // See if this is the last field decl in the record.
   8545   const Decl *D = FD;
   8546   while ((D = D->getNextDeclInContext()))
   8547     if (isa<FieldDecl>(D))
   8548       return false;
   8549   return true;
   8550 }
   8551 
   8552 void Sema::CheckArrayAccess(const Expr *BaseExpr, const Expr *IndexExpr,
   8553                             const ArraySubscriptExpr *ASE,
   8554                             bool AllowOnePastEnd, bool IndexNegated) {
   8555   IndexExpr = IndexExpr->IgnoreParenImpCasts();
   8556   if (IndexExpr->isValueDependent())
   8557     return;
   8558 
   8559   const Type *EffectiveType = getElementType(BaseExpr);
   8560   BaseExpr = BaseExpr->IgnoreParenCasts();
   8561   const ConstantArrayType *ArrayTy =
   8562     Context.getAsConstantArrayType(BaseExpr->getType());
   8563   if (!ArrayTy)
   8564     return;
   8565 
   8566   llvm::APSInt index;
   8567   if (!IndexExpr->EvaluateAsInt(index, Context, Expr::SE_AllowSideEffects))
   8568     return;
   8569   if (IndexNegated)
   8570     index = -index;
   8571 
   8572   const NamedDecl *ND = nullptr;
   8573   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
   8574     ND = dyn_cast<NamedDecl>(DRE->getDecl());
   8575   if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr))
   8576     ND = dyn_cast<NamedDecl>(ME->getMemberDecl());
   8577 
   8578   if (index.isUnsigned() || !index.isNegative()) {
   8579     llvm::APInt size = ArrayTy->getSize();
   8580     if (!size.isStrictlyPositive())
   8581       return;
   8582 
   8583     const Type* BaseType = getElementType(BaseExpr);
   8584     if (BaseType != EffectiveType) {
   8585       // Make sure we're comparing apples to apples when comparing index to size
   8586       uint64_t ptrarith_typesize = Context.getTypeSize(EffectiveType);
   8587       uint64_t array_typesize = Context.getTypeSize(BaseType);
   8588       // Handle ptrarith_typesize being zero, such as when casting to void*
   8589       if (!ptrarith_typesize) ptrarith_typesize = 1;
   8590       if (ptrarith_typesize != array_typesize) {
   8591         // There's a cast to a different size type involved
   8592         uint64_t ratio = array_typesize / ptrarith_typesize;
   8593         // TODO: Be smarter about handling cases where array_typesize is not a
   8594         // multiple of ptrarith_typesize
   8595         if (ptrarith_typesize * ratio == array_typesize)
   8596           size *= llvm::APInt(size.getBitWidth(), ratio);
   8597       }
   8598     }
   8599 
   8600     if (size.getBitWidth() > index.getBitWidth())
   8601       index = index.zext(size.getBitWidth());
   8602     else if (size.getBitWidth() < index.getBitWidth())
   8603       size = size.zext(index.getBitWidth());
   8604 
   8605     // For array subscripting the index must be less than size, but for pointer
   8606     // arithmetic also allow the index (offset) to be equal to size since
   8607     // computing the next address after the end of the array is legal and
   8608     // commonly done e.g. in C++ iterators and range-based for loops.
   8609     if (AllowOnePastEnd ? index.ule(size) : index.ult(size))
   8610       return;
   8611 
   8612     // Also don't warn for arrays of size 1 which are members of some
   8613     // structure. These are often used to approximate flexible arrays in C89
   8614     // code.
   8615     if (IsTailPaddedMemberArray(*this, size, ND))
   8616       return;
   8617 
   8618     // Suppress the warning if the subscript expression (as identified by the
   8619     // ']' location) and the index expression are both from macro expansions
   8620     // within a system header.
   8621     if (ASE) {
   8622       SourceLocation RBracketLoc = SourceMgr.getSpellingLoc(
   8623           ASE->getRBracketLoc());
   8624       if (SourceMgr.isInSystemHeader(RBracketLoc)) {
   8625         SourceLocation IndexLoc = SourceMgr.getSpellingLoc(
   8626             IndexExpr->getLocStart());
   8627         if (SourceMgr.isWrittenInSameFile(RBracketLoc, IndexLoc))
   8628           return;
   8629       }
   8630     }
   8631 
   8632     unsigned DiagID = diag::warn_ptr_arith_exceeds_bounds;
   8633     if (ASE)
   8634       DiagID = diag::warn_array_index_exceeds_bounds;
   8635 
   8636     DiagRuntimeBehavior(BaseExpr->getLocStart(), BaseExpr,
   8637                         PDiag(DiagID) << index.toString(10, true)
   8638                           << size.toString(10, true)
   8639                           << (unsigned)size.getLimitedValue(~0U)
   8640                           << IndexExpr->getSourceRange());
   8641   } else {
   8642     unsigned DiagID = diag::warn_array_index_precedes_bounds;
   8643     if (!ASE) {
   8644       DiagID = diag::warn_ptr_arith_precedes_bounds;
   8645       if (index.isNegative()) index = -index;
   8646     }
   8647 
   8648     DiagRuntimeBehavior(BaseExpr->getLocStart(), BaseExpr,
   8649                         PDiag(DiagID) << index.toString(10, true)
   8650                           << IndexExpr->getSourceRange());
   8651   }
   8652 
   8653   if (!ND) {
   8654     // Try harder to find a NamedDecl to point at in the note.
   8655     while (const ArraySubscriptExpr *ASE =
   8656            dyn_cast<ArraySubscriptExpr>(BaseExpr))
   8657       BaseExpr = ASE->getBase()->IgnoreParenCasts();
   8658     if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
   8659       ND = dyn_cast<NamedDecl>(DRE->getDecl());
   8660     if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr))
   8661       ND = dyn_cast<NamedDecl>(ME->getMemberDecl());
   8662   }
   8663 
   8664   if (ND)
   8665     DiagRuntimeBehavior(ND->getLocStart(), BaseExpr,
   8666                         PDiag(diag::note_array_index_out_of_bounds)
   8667                           << ND->getDeclName());
   8668 }
   8669 
   8670 void Sema::CheckArrayAccess(const Expr *expr) {
   8671   int AllowOnePastEnd = 0;
   8672   while (expr) {
   8673     expr = expr->IgnoreParenImpCasts();
   8674     switch (expr->getStmtClass()) {
   8675       case Stmt::ArraySubscriptExprClass: {
   8676         const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(expr);
   8677         CheckArrayAccess(ASE->getBase(), ASE->getIdx(), ASE,
   8678                          AllowOnePastEnd > 0);
   8679         return;
   8680       }
   8681       case Stmt::OMPArraySectionExprClass: {
   8682         const OMPArraySectionExpr *ASE = cast<OMPArraySectionExpr>(expr);
   8683         if (ASE->getLowerBound())
   8684           CheckArrayAccess(ASE->getBase(), ASE->getLowerBound(),
   8685                            /*ASE=*/nullptr, AllowOnePastEnd > 0);
   8686         return;
   8687       }
   8688       case Stmt::UnaryOperatorClass: {
   8689         // Only unwrap the * and & unary operators
   8690         const UnaryOperator *UO = cast<UnaryOperator>(expr);
   8691         expr = UO->getSubExpr();
   8692         switch (UO->getOpcode()) {
   8693           case UO_AddrOf:
   8694             AllowOnePastEnd++;
   8695             break;
   8696           case UO_Deref:
   8697             AllowOnePastEnd--;
   8698             break;
   8699           default:
   8700             return;
   8701         }
   8702         break;
   8703       }
   8704       case Stmt::ConditionalOperatorClass: {
   8705         const ConditionalOperator *cond = cast<ConditionalOperator>(expr);
   8706         if (const Expr *lhs = cond->getLHS())
   8707           CheckArrayAccess(lhs);
   8708         if (const Expr *rhs = cond->getRHS())
   8709           CheckArrayAccess(rhs);
   8710         return;
   8711       }
   8712       default:
   8713         return;
   8714     }
   8715   }
   8716 }
   8717 
   8718 //===--- CHECK: Objective-C retain cycles ----------------------------------//
   8719 
   8720 namespace {
   8721   struct RetainCycleOwner {
   8722     RetainCycleOwner() : Variable(nullptr), Indirect(false) {}
   8723     VarDecl *Variable;
   8724     SourceRange Range;
   8725     SourceLocation Loc;
   8726     bool Indirect;
   8727 
   8728     void setLocsFrom(Expr *e) {
   8729       Loc = e->getExprLoc();
   8730       Range = e->getSourceRange();
   8731     }
   8732   };
   8733 }
   8734 
   8735 /// Consider whether capturing the given variable can possibly lead to
   8736 /// a retain cycle.
   8737 static bool considerVariable(VarDecl *var, Expr *ref, RetainCycleOwner &owner) {
   8738   // In ARC, it's captured strongly iff the variable has __strong
   8739   // lifetime.  In MRR, it's captured strongly if the variable is
   8740   // __block and has an appropriate type.
   8741   if (var->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
   8742     return false;
   8743 
   8744   owner.Variable = var;
   8745   if (ref)
   8746     owner.setLocsFrom(ref);
   8747   return true;
   8748 }
   8749 
   8750 static bool findRetainCycleOwner(Sema &S, Expr *e, RetainCycleOwner &owner) {
   8751   while (true) {
   8752     e = e->IgnoreParens();
   8753     if (CastExpr *cast = dyn_cast<CastExpr>(e)) {
   8754       switch (cast->getCastKind()) {
   8755       case CK_BitCast:
   8756       case CK_LValueBitCast:
   8757       case CK_LValueToRValue:
   8758       case CK_ARCReclaimReturnedObject:
   8759         e = cast->getSubExpr();
   8760         continue;
   8761 
   8762       default:
   8763         return false;
   8764       }
   8765     }
   8766 
   8767     if (ObjCIvarRefExpr *ref = dyn_cast<ObjCIvarRefExpr>(e)) {
   8768       ObjCIvarDecl *ivar = ref->getDecl();
   8769       if (ivar->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
   8770         return false;
   8771 
   8772       // Try to find a retain cycle in the base.
   8773       if (!findRetainCycleOwner(S, ref->getBase(), owner))
   8774         return false;
   8775 
   8776       if (ref->isFreeIvar()) owner.setLocsFrom(ref);
   8777       owner.Indirect = true;
   8778       return true;
   8779     }
   8780 
   8781     if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) {
   8782       VarDecl *var = dyn_cast<VarDecl>(ref->getDecl());
   8783       if (!var) return false;
   8784       return considerVariable(var, ref, owner);
   8785     }
   8786 
   8787     if (MemberExpr *member = dyn_cast<MemberExpr>(e)) {
   8788       if (member->isArrow()) return false;
   8789 
   8790       // Don't count this as an indirect ownership.
   8791       e = member->getBase();
   8792       continue;
   8793     }
   8794 
   8795     if (PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) {
   8796       // Only pay attention to pseudo-objects on property references.
   8797       ObjCPropertyRefExpr *pre
   8798         = dyn_cast<ObjCPropertyRefExpr>(pseudo->getSyntacticForm()
   8799                                               ->IgnoreParens());
   8800       if (!pre) return false;
   8801       if (pre->isImplicitProperty()) return false;
   8802       ObjCPropertyDecl *property = pre->getExplicitProperty();
   8803       if (!property->isRetaining() &&
   8804           !(property->getPropertyIvarDecl() &&
   8805             property->getPropertyIvarDecl()->getType()
   8806               .getObjCLifetime() == Qualifiers::OCL_Strong))
   8807           return false;
   8808 
   8809       owner.Indirect = true;
   8810       if (pre->isSuperReceiver()) {
   8811         owner.Variable = S.getCurMethodDecl()->getSelfDecl();
   8812         if (!owner.Variable)
   8813           return false;
   8814         owner.Loc = pre->getLocation();
   8815         owner.Range = pre->getSourceRange();
   8816         return true;
   8817       }
   8818       e = const_cast<Expr*>(cast<OpaqueValueExpr>(pre->getBase())
   8819                               ->getSourceExpr());
   8820       continue;
   8821     }
   8822 
   8823     // Array ivars?
   8824 
   8825     return false;
   8826   }
   8827 }
   8828 
   8829 namespace {
   8830   struct FindCaptureVisitor : EvaluatedExprVisitor<FindCaptureVisitor> {
   8831     FindCaptureVisitor(ASTContext &Context, VarDecl *variable)
   8832       : EvaluatedExprVisitor<FindCaptureVisitor>(Context),
   8833         Context(Context), Variable(variable), Capturer(nullptr),
   8834         VarWillBeReased(false) {}
   8835     ASTContext &Context;
   8836     VarDecl *Variable;
   8837     Expr *Capturer;
   8838     bool VarWillBeReased;
   8839 
   8840     void VisitDeclRefExpr(DeclRefExpr *ref) {
   8841       if (ref->getDecl() == Variable && !Capturer)
   8842         Capturer = ref;
   8843     }
   8844 
   8845     void VisitObjCIvarRefExpr(ObjCIvarRefExpr *ref) {
   8846       if (Capturer) return;
   8847       Visit(ref->getBase());
   8848       if (Capturer && ref->isFreeIvar())
   8849         Capturer = ref;
   8850     }
   8851 
   8852     void VisitBlockExpr(BlockExpr *block) {
   8853       // Look inside nested blocks
   8854       if (block->getBlockDecl()->capturesVariable(Variable))
   8855         Visit(block->getBlockDecl()->getBody());
   8856     }
   8857 
   8858     void VisitOpaqueValueExpr(OpaqueValueExpr *OVE) {
   8859       if (Capturer) return;
   8860       if (OVE->getSourceExpr())
   8861         Visit(OVE->getSourceExpr());
   8862     }
   8863     void VisitBinaryOperator(BinaryOperator *BinOp) {
   8864       if (!Variable || VarWillBeReased || BinOp->getOpcode() != BO_Assign)
   8865         return;
   8866       Expr *LHS = BinOp->getLHS();
   8867       if (const DeclRefExpr *DRE = dyn_cast_or_null<DeclRefExpr>(LHS)) {
   8868         if (DRE->getDecl() != Variable)
   8869           return;
   8870         if (Expr *RHS = BinOp->getRHS()) {
   8871           RHS = RHS->IgnoreParenCasts();
   8872           llvm::APSInt Value;
   8873           VarWillBeReased =
   8874             (RHS && RHS->isIntegerConstantExpr(Value, Context) && Value == 0);
   8875         }
   8876       }
   8877     }
   8878   };
   8879 }
   8880 
   8881 /// Check whether the given argument is a block which captures a
   8882 /// variable.
   8883 static Expr *findCapturingExpr(Sema &S, Expr *e, RetainCycleOwner &owner) {
   8884   assert(owner.Variable && owner.Loc.isValid());
   8885 
   8886   e = e->IgnoreParenCasts();
   8887 
   8888   // Look through [^{...} copy] and Block_copy(^{...}).
   8889   if (ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(e)) {
   8890     Selector Cmd = ME->getSelector();
   8891     if (Cmd.isUnarySelector() && Cmd.getNameForSlot(0) == "copy") {
   8892       e = ME->getInstanceReceiver();
   8893       if (!e)
   8894         return nullptr;
   8895       e = e->IgnoreParenCasts();
   8896     }
   8897   } else if (CallExpr *CE = dyn_cast<CallExpr>(e)) {
   8898     if (CE->getNumArgs() == 1) {
   8899       FunctionDecl *Fn = dyn_cast_or_null<FunctionDecl>(CE->getCalleeDecl());
   8900       if (Fn) {
   8901         const IdentifierInfo *FnI = Fn->getIdentifier();
   8902         if (FnI && FnI->isStr("_Block_copy")) {
   8903           e = CE->getArg(0)->IgnoreParenCasts();
   8904         }
   8905       }
   8906     }
   8907   }
   8908 
   8909   BlockExpr *block = dyn_cast<BlockExpr>(e);
   8910   if (!block || !block->getBlockDecl()->capturesVariable(owner.Variable))
   8911     return nullptr;
   8912 
   8913   FindCaptureVisitor visitor(S.Context, owner.Variable);
   8914   visitor.Visit(block->getBlockDecl()->getBody());
   8915   return visitor.VarWillBeReased ? nullptr : visitor.Capturer;
   8916 }
   8917 
   8918 static void diagnoseRetainCycle(Sema &S, Expr *capturer,
   8919                                 RetainCycleOwner &owner) {
   8920   assert(capturer);
   8921   assert(owner.Variable && owner.Loc.isValid());
   8922 
   8923   S.Diag(capturer->getExprLoc(), diag::warn_arc_retain_cycle)
   8924     << owner.Variable << capturer->getSourceRange();
   8925   S.Diag(owner.Loc, diag::note_arc_retain_cycle_owner)
   8926     << owner.Indirect << owner.Range;
   8927 }
   8928 
   8929 /// Check for a keyword selector that starts with the word 'add' or
   8930 /// 'set'.
   8931 static bool isSetterLikeSelector(Selector sel) {
   8932   if (sel.isUnarySelector()) return false;
   8933 
   8934   StringRef str = sel.getNameForSlot(0);
   8935   while (!str.empty() && str.front() == '_') str = str.substr(1);
   8936   if (str.startswith("set"))
   8937     str = str.substr(3);
   8938   else if (str.startswith("add")) {
   8939     // Specially whitelist 'addOperationWithBlock:'.
   8940     if (sel.getNumArgs() == 1 && str.startswith("addOperationWithBlock"))
   8941       return false;
   8942     str = str.substr(3);
   8943   }
   8944   else
   8945     return false;
   8946 
   8947   if (str.empty()) return true;
   8948   return !isLowercase(str.front());
   8949 }
   8950 
   8951 static Optional<int> GetNSMutableArrayArgumentIndex(Sema &S,
   8952                                                     ObjCMessageExpr *Message) {
   8953   bool IsMutableArray = S.NSAPIObj->isSubclassOfNSClass(
   8954                                                 Message->getReceiverInterface(),
   8955                                                 NSAPI::ClassId_NSMutableArray);
   8956   if (!IsMutableArray) {
   8957     return None;
   8958   }
   8959 
   8960   Selector Sel = Message->getSelector();
   8961 
   8962   Optional<NSAPI::NSArrayMethodKind> MKOpt =
   8963     S.NSAPIObj->getNSArrayMethodKind(Sel);
   8964   if (!MKOpt) {
   8965     return None;
   8966   }
   8967 
   8968   NSAPI::NSArrayMethodKind MK = *MKOpt;
   8969 
   8970   switch (MK) {
   8971     case NSAPI::NSMutableArr_addObject:
   8972     case NSAPI::NSMutableArr_insertObjectAtIndex:
   8973     case NSAPI::NSMutableArr_setObjectAtIndexedSubscript:
   8974       return 0;
   8975     case NSAPI::NSMutableArr_replaceObjectAtIndex:
   8976       return 1;
   8977 
   8978     default:
   8979       return None;
   8980   }
   8981 
   8982   return None;
   8983 }
   8984 
   8985 static
   8986 Optional<int> GetNSMutableDictionaryArgumentIndex(Sema &S,
   8987                                                   ObjCMessageExpr *Message) {
   8988   bool IsMutableDictionary = S.NSAPIObj->isSubclassOfNSClass(
   8989                                             Message->getReceiverInterface(),
   8990                                             NSAPI::ClassId_NSMutableDictionary);
   8991   if (!IsMutableDictionary) {
   8992     return None;
   8993   }
   8994 
   8995   Selector Sel = Message->getSelector();
   8996 
   8997   Optional<NSAPI::NSDictionaryMethodKind> MKOpt =
   8998     S.NSAPIObj->getNSDictionaryMethodKind(Sel);
   8999   if (!MKOpt) {
   9000     return None;
   9001   }
   9002 
   9003   NSAPI::NSDictionaryMethodKind MK = *MKOpt;
   9004 
   9005   switch (MK) {
   9006     case NSAPI::NSMutableDict_setObjectForKey:
   9007     case NSAPI::NSMutableDict_setValueForKey:
   9008     case NSAPI::NSMutableDict_setObjectForKeyedSubscript:
   9009       return 0;
   9010 
   9011     default:
   9012       return None;
   9013   }
   9014 
   9015   return None;
   9016 }
   9017 
   9018 static Optional<int> GetNSSetArgumentIndex(Sema &S, ObjCMessageExpr *Message) {
   9019   bool IsMutableSet = S.NSAPIObj->isSubclassOfNSClass(
   9020                                                 Message->getReceiverInterface(),
   9021                                                 NSAPI::ClassId_NSMutableSet);
   9022 
   9023   bool IsMutableOrderedSet = S.NSAPIObj->isSubclassOfNSClass(
   9024                                             Message->getReceiverInterface(),
   9025                                             NSAPI::ClassId_NSMutableOrderedSet);
   9026   if (!IsMutableSet && !IsMutableOrderedSet) {
   9027     return None;
   9028   }
   9029 
   9030   Selector Sel = Message->getSelector();
   9031 
   9032   Optional<NSAPI::NSSetMethodKind> MKOpt = S.NSAPIObj->getNSSetMethodKind(Sel);
   9033   if (!MKOpt) {
   9034     return None;
   9035   }
   9036 
   9037   NSAPI::NSSetMethodKind MK = *MKOpt;
   9038 
   9039   switch (MK) {
   9040     case NSAPI::NSMutableSet_addObject:
   9041     case NSAPI::NSOrderedSet_setObjectAtIndex:
   9042     case NSAPI::NSOrderedSet_setObjectAtIndexedSubscript:
   9043     case NSAPI::NSOrderedSet_insertObjectAtIndex:
   9044       return 0;
   9045     case NSAPI::NSOrderedSet_replaceObjectAtIndexWithObject:
   9046       return 1;
   9047   }
   9048 
   9049   return None;
   9050 }
   9051 
   9052 void Sema::CheckObjCCircularContainer(ObjCMessageExpr *Message) {
   9053   if (!Message->isInstanceMessage()) {
   9054     return;
   9055   }
   9056 
   9057   Optional<int> ArgOpt;
   9058 
   9059   if (!(ArgOpt = GetNSMutableArrayArgumentIndex(*this, Message)) &&
   9060       !(ArgOpt = GetNSMutableDictionaryArgumentIndex(*this, Message)) &&
   9061       !(ArgOpt = GetNSSetArgumentIndex(*this, Message))) {
   9062     return;
   9063   }
   9064 
   9065   int ArgIndex = *ArgOpt;
   9066 
   9067   Expr *Arg = Message->getArg(ArgIndex)->IgnoreImpCasts();
   9068   if (OpaqueValueExpr *OE = dyn_cast<OpaqueValueExpr>(Arg)) {
   9069     Arg = OE->getSourceExpr()->IgnoreImpCasts();
   9070   }
   9071 
   9072   if (Message->getReceiverKind() == ObjCMessageExpr::SuperInstance) {
   9073     if (DeclRefExpr *ArgRE = dyn_cast<DeclRefExpr>(Arg)) {
   9074       if (ArgRE->isObjCSelfExpr()) {
   9075         Diag(Message->getSourceRange().getBegin(),
   9076              diag::warn_objc_circular_container)
   9077           << ArgRE->getDecl()->getName() << StringRef("super");
   9078       }
   9079     }
   9080   } else {
   9081     Expr *Receiver = Message->getInstanceReceiver()->IgnoreImpCasts();
   9082 
   9083     if (OpaqueValueExpr *OE = dyn_cast<OpaqueValueExpr>(Receiver)) {
   9084       Receiver = OE->getSourceExpr()->IgnoreImpCasts();
   9085     }
   9086 
   9087     if (DeclRefExpr *ReceiverRE = dyn_cast<DeclRefExpr>(Receiver)) {
   9088       if (DeclRefExpr *ArgRE = dyn_cast<DeclRefExpr>(Arg)) {
   9089         if (ReceiverRE->getDecl() == ArgRE->getDecl()) {
   9090           ValueDecl *Decl = ReceiverRE->getDecl();
   9091           Diag(Message->getSourceRange().getBegin(),
   9092                diag::warn_objc_circular_container)
   9093             << Decl->getName() << Decl->getName();
   9094           if (!ArgRE->isObjCSelfExpr()) {
   9095             Diag(Decl->getLocation(),
   9096                  diag::note_objc_circular_container_declared_here)
   9097               << Decl->getName();
   9098           }
   9099         }
   9100       }
   9101     } else if (ObjCIvarRefExpr *IvarRE = dyn_cast<ObjCIvarRefExpr>(Receiver)) {
   9102       if (ObjCIvarRefExpr *IvarArgRE = dyn_cast<ObjCIvarRefExpr>(Arg)) {
   9103         if (IvarRE->getDecl() == IvarArgRE->getDecl()) {
   9104           ObjCIvarDecl *Decl = IvarRE->getDecl();
   9105           Diag(Message->getSourceRange().getBegin(),
   9106                diag::warn_objc_circular_container)
   9107             << Decl->getName() << Decl->getName();
   9108           Diag(Decl->getLocation(),
   9109                diag::note_objc_circular_container_declared_here)
   9110             << Decl->getName();
   9111         }
   9112       }
   9113     }
   9114   }
   9115 
   9116 }
   9117 
   9118 /// Check a message send to see if it's likely to cause a retain cycle.
   9119 void Sema::checkRetainCycles(ObjCMessageExpr *msg) {
   9120   // Only check instance methods whose selector looks like a setter.
   9121   if (!msg->isInstanceMessage() || !isSetterLikeSelector(msg->getSelector()))
   9122     return;
   9123 
   9124   // Try to find a variable that the receiver is strongly owned by.
   9125   RetainCycleOwner owner;
   9126   if (msg->getReceiverKind() == ObjCMessageExpr::Instance) {
   9127     if (!findRetainCycleOwner(*this, msg->getInstanceReceiver(), owner))
   9128       return;
   9129   } else {
   9130     assert(msg->getReceiverKind() == ObjCMessageExpr::SuperInstance);
   9131     owner.Variable = getCurMethodDecl()->getSelfDecl();
   9132     owner.Loc = msg->getSuperLoc();
   9133     owner.Range = msg->getSuperLoc();
   9134   }
   9135 
   9136   // Check whether the receiver is captured by any of the arguments.
   9137   for (unsigned i = 0, e = msg->getNumArgs(); i != e; ++i)
   9138     if (Expr *capturer = findCapturingExpr(*this, msg->getArg(i), owner))
   9139       return diagnoseRetainCycle(*this, capturer, owner);
   9140 }
   9141 
   9142 /// Check a property assign to see if it's likely to cause a retain cycle.
   9143 void Sema::checkRetainCycles(Expr *receiver, Expr *argument) {
   9144   RetainCycleOwner owner;
   9145   if (!findRetainCycleOwner(*this, receiver, owner))
   9146     return;
   9147 
   9148   if (Expr *capturer = findCapturingExpr(*this, argument, owner))
   9149     diagnoseRetainCycle(*this, capturer, owner);
   9150 }
   9151 
   9152 void Sema::checkRetainCycles(VarDecl *Var, Expr *Init) {
   9153   RetainCycleOwner Owner;
   9154   if (!considerVariable(Var, /*DeclRefExpr=*/nullptr, Owner))
   9155     return;
   9156 
   9157   // Because we don't have an expression for the variable, we have to set the
   9158   // location explicitly here.
   9159   Owner.Loc = Var->getLocation();
   9160   Owner.Range = Var->getSourceRange();
   9161 
   9162   if (Expr *Capturer = findCapturingExpr(*this, Init, Owner))
   9163     diagnoseRetainCycle(*this, Capturer, Owner);
   9164 }
   9165 
   9166 static bool checkUnsafeAssignLiteral(Sema &S, SourceLocation Loc,
   9167                                      Expr *RHS, bool isProperty) {
   9168   // Check if RHS is an Objective-C object literal, which also can get
   9169   // immediately zapped in a weak reference.  Note that we explicitly
   9170   // allow ObjCStringLiterals, since those are designed to never really die.
   9171   RHS = RHS->IgnoreParenImpCasts();
   9172 
   9173   // This enum needs to match with the 'select' in
   9174   // warn_objc_arc_literal_assign (off-by-1).
   9175   Sema::ObjCLiteralKind Kind = S.CheckLiteralKind(RHS);
   9176   if (Kind == Sema::LK_String || Kind == Sema::LK_None)
   9177     return false;
   9178 
   9179   S.Diag(Loc, diag::warn_arc_literal_assign)
   9180     << (unsigned) Kind
   9181     << (isProperty ? 0 : 1)
   9182     << RHS->getSourceRange();
   9183 
   9184   return true;
   9185 }
   9186 
   9187 static bool checkUnsafeAssignObject(Sema &S, SourceLocation Loc,
   9188                                     Qualifiers::ObjCLifetime LT,
   9189                                     Expr *RHS, bool isProperty) {
   9190   // Strip off any implicit cast added to get to the one ARC-specific.
   9191   while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
   9192     if (cast->getCastKind() == CK_ARCConsumeObject) {
   9193       S.Diag(Loc, diag::warn_arc_retained_assign)
   9194         << (LT == Qualifiers::OCL_ExplicitNone)
   9195         << (isProperty ? 0 : 1)
   9196         << RHS->getSourceRange();
   9197       return true;
   9198     }
   9199     RHS = cast->getSubExpr();
   9200   }
   9201 
   9202   if (LT == Qualifiers::OCL_Weak &&
   9203       checkUnsafeAssignLiteral(S, Loc, RHS, isProperty))
   9204     return true;
   9205 
   9206   return false;
   9207 }
   9208 
   9209 bool Sema::checkUnsafeAssigns(SourceLocation Loc,
   9210                               QualType LHS, Expr *RHS) {
   9211   Qualifiers::ObjCLifetime LT = LHS.getObjCLifetime();
   9212 
   9213   if (LT != Qualifiers::OCL_Weak && LT != Qualifiers::OCL_ExplicitNone)
   9214     return false;
   9215 
   9216   if (checkUnsafeAssignObject(*this, Loc, LT, RHS, false))
   9217     return true;
   9218 
   9219   return false;
   9220 }
   9221 
   9222 void Sema::checkUnsafeExprAssigns(SourceLocation Loc,
   9223                               Expr *LHS, Expr *RHS) {
   9224   QualType LHSType;
   9225   // PropertyRef on LHS type need be directly obtained from
   9226   // its declaration as it has a PseudoType.
   9227   ObjCPropertyRefExpr *PRE
   9228     = dyn_cast<ObjCPropertyRefExpr>(LHS->IgnoreParens());
   9229   if (PRE && !PRE->isImplicitProperty()) {
   9230     const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
   9231     if (PD)
   9232       LHSType = PD->getType();
   9233   }
   9234 
   9235   if (LHSType.isNull())
   9236     LHSType = LHS->getType();
   9237 
   9238   Qualifiers::ObjCLifetime LT = LHSType.getObjCLifetime();
   9239 
   9240   if (LT == Qualifiers::OCL_Weak) {
   9241     if (!Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, Loc))
   9242       getCurFunction()->markSafeWeakUse(LHS);
   9243   }
   9244 
   9245   if (checkUnsafeAssigns(Loc, LHSType, RHS))
   9246     return;
   9247 
   9248   // FIXME. Check for other life times.
   9249   if (LT != Qualifiers::OCL_None)
   9250     return;
   9251 
   9252   if (PRE) {
   9253     if (PRE->isImplicitProperty())
   9254       return;
   9255     const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
   9256     if (!PD)
   9257       return;
   9258 
   9259     unsigned Attributes = PD->getPropertyAttributes();
   9260     if (Attributes & ObjCPropertyDecl::OBJC_PR_assign) {
   9261       // when 'assign' attribute was not explicitly specified
   9262       // by user, ignore it and rely on property type itself
   9263       // for lifetime info.
   9264       unsigned AsWrittenAttr = PD->getPropertyAttributesAsWritten();
   9265       if (!(AsWrittenAttr & ObjCPropertyDecl::OBJC_PR_assign) &&
   9266           LHSType->isObjCRetainableType())
   9267         return;
   9268 
   9269       while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
   9270         if (cast->getCastKind() == CK_ARCConsumeObject) {
   9271           Diag(Loc, diag::warn_arc_retained_property_assign)
   9272           << RHS->getSourceRange();
   9273           return;
   9274         }
   9275         RHS = cast->getSubExpr();
   9276       }
   9277     }
   9278     else if (Attributes & ObjCPropertyDecl::OBJC_PR_weak) {
   9279       if (checkUnsafeAssignObject(*this, Loc, Qualifiers::OCL_Weak, RHS, true))
   9280         return;
   9281     }
   9282   }
   9283 }
   9284 
   9285 //===--- CHECK: Empty statement body (-Wempty-body) ---------------------===//
   9286 
   9287 namespace {
   9288 bool ShouldDiagnoseEmptyStmtBody(const SourceManager &SourceMgr,
   9289                                  SourceLocation StmtLoc,
   9290                                  const NullStmt *Body) {
   9291   // Do not warn if the body is a macro that expands to nothing, e.g:
   9292   //
   9293   // #define CALL(x)
   9294   // if (condition)
   9295   //   CALL(0);
   9296   //
   9297   if (Body->hasLeadingEmptyMacro())
   9298     return false;
   9299 
   9300   // Get line numbers of statement and body.
   9301   bool StmtLineInvalid;
   9302   unsigned StmtLine = SourceMgr.getPresumedLineNumber(StmtLoc,
   9303                                                       &StmtLineInvalid);
   9304   if (StmtLineInvalid)
   9305     return false;
   9306 
   9307   bool BodyLineInvalid;
   9308   unsigned BodyLine = SourceMgr.getSpellingLineNumber(Body->getSemiLoc(),
   9309                                                       &BodyLineInvalid);
   9310   if (BodyLineInvalid)
   9311     return false;
   9312 
   9313   // Warn if null statement and body are on the same line.
   9314   if (StmtLine != BodyLine)
   9315     return false;
   9316 
   9317   return true;
   9318 }
   9319 } // Unnamed namespace
   9320 
   9321 void Sema::DiagnoseEmptyStmtBody(SourceLocation StmtLoc,
   9322                                  const Stmt *Body,
   9323                                  unsigned DiagID) {
   9324   // Since this is a syntactic check, don't emit diagnostic for template
   9325   // instantiations, this just adds noise.
   9326   if (CurrentInstantiationScope)
   9327     return;
   9328 
   9329   // The body should be a null statement.
   9330   const NullStmt *NBody = dyn_cast<NullStmt>(Body);
   9331   if (!NBody)
   9332     return;
   9333 
   9334   // Do the usual checks.
   9335   if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody))
   9336     return;
   9337 
   9338   Diag(NBody->getSemiLoc(), DiagID);
   9339   Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line);
   9340 }
   9341 
   9342 void Sema::DiagnoseEmptyLoopBody(const Stmt *S,
   9343                                  const Stmt *PossibleBody) {
   9344   assert(!CurrentInstantiationScope); // Ensured by caller
   9345 
   9346   SourceLocation StmtLoc;
   9347   const Stmt *Body;
   9348   unsigned DiagID;
   9349   if (const ForStmt *FS = dyn_cast<ForStmt>(S)) {
   9350     StmtLoc = FS->getRParenLoc();
   9351     Body = FS->getBody();
   9352     DiagID = diag::warn_empty_for_body;
   9353   } else if (const WhileStmt *WS = dyn_cast<WhileStmt>(S)) {
   9354     StmtLoc = WS->getCond()->getSourceRange().getEnd();
   9355     Body = WS->getBody();
   9356     DiagID = diag::warn_empty_while_body;
   9357   } else
   9358     return; // Neither `for' nor `while'.
   9359 
   9360   // The body should be a null statement.
   9361   const NullStmt *NBody = dyn_cast<NullStmt>(Body);
   9362   if (!NBody)
   9363     return;
   9364 
   9365   // Skip expensive checks if diagnostic is disabled.
   9366   if (Diags.isIgnored(DiagID, NBody->getSemiLoc()))
   9367     return;
   9368 
   9369   // Do the usual checks.
   9370   if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody))
   9371     return;
   9372 
   9373   // `for(...);' and `while(...);' are popular idioms, so in order to keep
   9374   // noise level low, emit diagnostics only if for/while is followed by a
   9375   // CompoundStmt, e.g.:
   9376   //    for (int i = 0; i < n; i++);
   9377   //    {
   9378   //      a(i);
   9379   //    }
   9380   // or if for/while is followed by a statement with more indentation
   9381   // than for/while itself:
   9382   //    for (int i = 0; i < n; i++);
   9383   //      a(i);
   9384   bool ProbableTypo = isa<CompoundStmt>(PossibleBody);
   9385   if (!ProbableTypo) {
   9386     bool BodyColInvalid;
   9387     unsigned BodyCol = SourceMgr.getPresumedColumnNumber(
   9388                              PossibleBody->getLocStart(),
   9389                              &BodyColInvalid);
   9390     if (BodyColInvalid)
   9391       return;
   9392 
   9393     bool StmtColInvalid;
   9394     unsigned StmtCol = SourceMgr.getPresumedColumnNumber(
   9395                              S->getLocStart(),
   9396                              &StmtColInvalid);
   9397     if (StmtColInvalid)
   9398       return;
   9399 
   9400     if (BodyCol > StmtCol)
   9401       ProbableTypo = true;
   9402   }
   9403 
   9404   if (ProbableTypo) {
   9405     Diag(NBody->getSemiLoc(), DiagID);
   9406     Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line);
   9407   }
   9408 }
   9409 
   9410 //===--- CHECK: Warn on self move with std::move. -------------------------===//
   9411 
   9412 /// DiagnoseSelfMove - Emits a warning if a value is moved to itself.
   9413 void Sema::DiagnoseSelfMove(const Expr *LHSExpr, const Expr *RHSExpr,
   9414                              SourceLocation OpLoc) {
   9415 
   9416   if (Diags.isIgnored(diag::warn_sizeof_pointer_expr_memaccess, OpLoc))
   9417     return;
   9418 
   9419   if (!ActiveTemplateInstantiations.empty())
   9420     return;
   9421 
   9422   // Strip parens and casts away.
   9423   LHSExpr = LHSExpr->IgnoreParenImpCasts();
   9424   RHSExpr = RHSExpr->IgnoreParenImpCasts();
   9425 
   9426   // Check for a call expression
   9427   const CallExpr *CE = dyn_cast<CallExpr>(RHSExpr);
   9428   if (!CE || CE->getNumArgs() != 1)
   9429     return;
   9430 
   9431   // Check for a call to std::move
   9432   const FunctionDecl *FD = CE->getDirectCallee();
   9433   if (!FD || !FD->isInStdNamespace() || !FD->getIdentifier() ||
   9434       !FD->getIdentifier()->isStr("move"))
   9435     return;
   9436 
   9437   // Get argument from std::move
   9438   RHSExpr = CE->getArg(0);
   9439 
   9440   const DeclRefExpr *LHSDeclRef = dyn_cast<DeclRefExpr>(LHSExpr);
   9441   const DeclRefExpr *RHSDeclRef = dyn_cast<DeclRefExpr>(RHSExpr);
   9442 
   9443   // Two DeclRefExpr's, check that the decls are the same.
   9444   if (LHSDeclRef && RHSDeclRef) {
   9445     if (!LHSDeclRef->getDecl() || !RHSDeclRef->getDecl())
   9446       return;
   9447     if (LHSDeclRef->getDecl()->getCanonicalDecl() !=
   9448         RHSDeclRef->getDecl()->getCanonicalDecl())
   9449       return;
   9450 
   9451     Diag(OpLoc, diag::warn_self_move) << LHSExpr->getType()
   9452                                         << LHSExpr->getSourceRange()
   9453                                         << RHSExpr->getSourceRange();
   9454     return;
   9455   }
   9456 
   9457   // Member variables require a different approach to check for self moves.
   9458   // MemberExpr's are the same if every nested MemberExpr refers to the same
   9459   // Decl and that the base Expr's are DeclRefExpr's with the same Decl or
   9460   // the base Expr's are CXXThisExpr's.
   9461   const Expr *LHSBase = LHSExpr;
   9462   const Expr *RHSBase = RHSExpr;
   9463   const MemberExpr *LHSME = dyn_cast<MemberExpr>(LHSExpr);
   9464   const MemberExpr *RHSME = dyn_cast<MemberExpr>(RHSExpr);
   9465   if (!LHSME || !RHSME)
   9466     return;
   9467 
   9468   while (LHSME && RHSME) {
   9469     if (LHSME->getMemberDecl()->getCanonicalDecl() !=
   9470         RHSME->getMemberDecl()->getCanonicalDecl())
   9471       return;
   9472 
   9473     LHSBase = LHSME->getBase();
   9474     RHSBase = RHSME->getBase();
   9475     LHSME = dyn_cast<MemberExpr>(LHSBase);
   9476     RHSME = dyn_cast<MemberExpr>(RHSBase);
   9477   }
   9478 
   9479   LHSDeclRef = dyn_cast<DeclRefExpr>(LHSBase);
   9480   RHSDeclRef = dyn_cast<DeclRefExpr>(RHSBase);
   9481   if (LHSDeclRef && RHSDeclRef) {
   9482     if (!LHSDeclRef->getDecl() || !RHSDeclRef->getDecl())
   9483       return;
   9484     if (LHSDeclRef->getDecl()->getCanonicalDecl() !=
   9485         RHSDeclRef->getDecl()->getCanonicalDecl())
   9486       return;
   9487 
   9488     Diag(OpLoc, diag::warn_self_move) << LHSExpr->getType()
   9489                                         << LHSExpr->getSourceRange()
   9490                                         << RHSExpr->getSourceRange();
   9491     return;
   9492   }
   9493 
   9494   if (isa<CXXThisExpr>(LHSBase) && isa<CXXThisExpr>(RHSBase))
   9495     Diag(OpLoc, diag::warn_self_move) << LHSExpr->getType()
   9496                                         << LHSExpr->getSourceRange()
   9497                                         << RHSExpr->getSourceRange();
   9498 }
   9499 
   9500 //===--- Layout compatibility ----------------------------------------------//
   9501 
   9502 namespace {
   9503 
   9504 bool isLayoutCompatible(ASTContext &C, QualType T1, QualType T2);
   9505 
   9506 /// \brief Check if two enumeration types are layout-compatible.
   9507 bool isLayoutCompatible(ASTContext &C, EnumDecl *ED1, EnumDecl *ED2) {
   9508   // C++11 [dcl.enum] p8:
   9509   // Two enumeration types are layout-compatible if they have the same
   9510   // underlying type.
   9511   return ED1->isComplete() && ED2->isComplete() &&
   9512          C.hasSameType(ED1->getIntegerType(), ED2->getIntegerType());
   9513 }
   9514 
   9515 /// \brief Check if two fields are layout-compatible.
   9516 bool isLayoutCompatible(ASTContext &C, FieldDecl *Field1, FieldDecl *Field2) {
   9517   if (!isLayoutCompatible(C, Field1->getType(), Field2->getType()))
   9518     return false;
   9519 
   9520   if (Field1->isBitField() != Field2->isBitField())
   9521     return false;
   9522 
   9523   if (Field1->isBitField()) {
   9524     // Make sure that the bit-fields are the same length.
   9525     unsigned Bits1 = Field1->getBitWidthValue(C);
   9526     unsigned Bits2 = Field2->getBitWidthValue(C);
   9527 
   9528     if (Bits1 != Bits2)
   9529       return false;
   9530   }
   9531 
   9532   return true;
   9533 }
   9534 
   9535 /// \brief Check if two standard-layout structs are layout-compatible.
   9536 /// (C++11 [class.mem] p17)
   9537 bool isLayoutCompatibleStruct(ASTContext &C,
   9538                               RecordDecl *RD1,
   9539                               RecordDecl *RD2) {
   9540   // If both records are C++ classes, check that base classes match.
   9541   if (const CXXRecordDecl *D1CXX = dyn_cast<CXXRecordDecl>(RD1)) {
   9542     // If one of records is a CXXRecordDecl we are in C++ mode,
   9543     // thus the other one is a CXXRecordDecl, too.
   9544     const CXXRecordDecl *D2CXX = cast<CXXRecordDecl>(RD2);
   9545     // Check number of base classes.
   9546     if (D1CXX->getNumBases() != D2CXX->getNumBases())
   9547       return false;
   9548 
   9549     // Check the base classes.
   9550     for (CXXRecordDecl::base_class_const_iterator
   9551                Base1 = D1CXX->bases_begin(),
   9552            BaseEnd1 = D1CXX->bases_end(),
   9553               Base2 = D2CXX->bases_begin();
   9554          Base1 != BaseEnd1;
   9555          ++Base1, ++Base2) {
   9556       if (!isLayoutCompatible(C, Base1->getType(), Base2->getType()))
   9557         return false;
   9558     }
   9559   } else if (const CXXRecordDecl *D2CXX = dyn_cast<CXXRecordDecl>(RD2)) {
   9560     // If only RD2 is a C++ class, it should have zero base classes.
   9561     if (D2CXX->getNumBases() > 0)
   9562       return false;
   9563   }
   9564 
   9565   // Check the fields.
   9566   RecordDecl::field_iterator Field2 = RD2->field_begin(),
   9567                              Field2End = RD2->field_end(),
   9568                              Field1 = RD1->field_begin(),
   9569                              Field1End = RD1->field_end();
   9570   for ( ; Field1 != Field1End && Field2 != Field2End; ++Field1, ++Field2) {
   9571     if (!isLayoutCompatible(C, *Field1, *Field2))
   9572       return false;
   9573   }
   9574   if (Field1 != Field1End || Field2 != Field2End)
   9575     return false;
   9576 
   9577   return true;
   9578 }
   9579 
   9580 /// \brief Check if two standard-layout unions are layout-compatible.
   9581 /// (C++11 [class.mem] p18)
   9582 bool isLayoutCompatibleUnion(ASTContext &C,
   9583                              RecordDecl *RD1,
   9584                              RecordDecl *RD2) {
   9585   llvm::SmallPtrSet<FieldDecl *, 8> UnmatchedFields;
   9586   for (auto *Field2 : RD2->fields())
   9587     UnmatchedFields.insert(Field2);
   9588 
   9589   for (auto *Field1 : RD1->fields()) {
   9590     llvm::SmallPtrSet<FieldDecl *, 8>::iterator
   9591         I = UnmatchedFields.begin(),
   9592         E = UnmatchedFields.end();
   9593 
   9594     for ( ; I != E; ++I) {
   9595       if (isLayoutCompatible(C, Field1, *I)) {
   9596         bool Result = UnmatchedFields.erase(*I);
   9597         (void) Result;
   9598         assert(Result);
   9599         break;
   9600       }
   9601     }
   9602     if (I == E)
   9603       return false;
   9604   }
   9605 
   9606   return UnmatchedFields.empty();
   9607 }
   9608 
   9609 bool isLayoutCompatible(ASTContext &C, RecordDecl *RD1, RecordDecl *RD2) {
   9610   if (RD1->isUnion() != RD2->isUnion())
   9611     return false;
   9612 
   9613   if (RD1->isUnion())
   9614     return isLayoutCompatibleUnion(C, RD1, RD2);
   9615   else
   9616     return isLayoutCompatibleStruct(C, RD1, RD2);
   9617 }
   9618 
   9619 /// \brief Check if two types are layout-compatible in C++11 sense.
   9620 bool isLayoutCompatible(ASTContext &C, QualType T1, QualType T2) {
   9621   if (T1.isNull() || T2.isNull())
   9622     return false;
   9623 
   9624   // C++11 [basic.types] p11:
   9625   // If two types T1 and T2 are the same type, then T1 and T2 are
   9626   // layout-compatible types.
   9627   if (C.hasSameType(T1, T2))
   9628     return true;
   9629 
   9630   T1 = T1.getCanonicalType().getUnqualifiedType();
   9631   T2 = T2.getCanonicalType().getUnqualifiedType();
   9632 
   9633   const Type::TypeClass TC1 = T1->getTypeClass();
   9634   const Type::TypeClass TC2 = T2->getTypeClass();
   9635 
   9636   if (TC1 != TC2)
   9637     return false;
   9638 
   9639   if (TC1 == Type::Enum) {
   9640     return isLayoutCompatible(C,
   9641                               cast<EnumType>(T1)->getDecl(),
   9642                               cast<EnumType>(T2)->getDecl());
   9643   } else if (TC1 == Type::Record) {
   9644     if (!T1->isStandardLayoutType() || !T2->isStandardLayoutType())
   9645       return false;
   9646 
   9647     return isLayoutCompatible(C,
   9648                               cast<RecordType>(T1)->getDecl(),
   9649                               cast<RecordType>(T2)->getDecl());
   9650   }
   9651 
   9652   return false;
   9653 }
   9654 }
   9655 
   9656 //===--- CHECK: pointer_with_type_tag attribute: datatypes should match ----//
   9657 
   9658 namespace {
   9659 /// \brief Given a type tag expression find the type tag itself.
   9660 ///
   9661 /// \param TypeExpr Type tag expression, as it appears in user's code.
   9662 ///
   9663 /// \param VD Declaration of an identifier that appears in a type tag.
   9664 ///
   9665 /// \param MagicValue Type tag magic value.
   9666 bool FindTypeTagExpr(const Expr *TypeExpr, const ASTContext &Ctx,
   9667                      const ValueDecl **VD, uint64_t *MagicValue) {
   9668   while(true) {
   9669     if (!TypeExpr)
   9670       return false;
   9671 
   9672     TypeExpr = TypeExpr->IgnoreParenImpCasts()->IgnoreParenCasts();
   9673 
   9674     switch (TypeExpr->getStmtClass()) {
   9675     case Stmt::UnaryOperatorClass: {
   9676       const UnaryOperator *UO = cast<UnaryOperator>(TypeExpr);
   9677       if (UO->getOpcode() == UO_AddrOf || UO->getOpcode() == UO_Deref) {
   9678         TypeExpr = UO->getSubExpr();
   9679         continue;
   9680       }
   9681       return false;
   9682     }
   9683 
   9684     case Stmt::DeclRefExprClass: {
   9685       const DeclRefExpr *DRE = cast<DeclRefExpr>(TypeExpr);
   9686       *VD = DRE->getDecl();
   9687       return true;
   9688     }
   9689 
   9690     case Stmt::IntegerLiteralClass: {
   9691       const IntegerLiteral *IL = cast<IntegerLiteral>(TypeExpr);
   9692       llvm::APInt MagicValueAPInt = IL->getValue();
   9693       if (MagicValueAPInt.getActiveBits() <= 64) {
   9694         *MagicValue = MagicValueAPInt.getZExtValue();
   9695         return true;
   9696       } else
   9697         return false;
   9698     }
   9699 
   9700     case Stmt::BinaryConditionalOperatorClass:
   9701     case Stmt::ConditionalOperatorClass: {
   9702       const AbstractConditionalOperator *ACO =
   9703           cast<AbstractConditionalOperator>(TypeExpr);
   9704       bool Result;
   9705       if (ACO->getCond()->EvaluateAsBooleanCondition(Result, Ctx)) {
   9706         if (Result)
   9707           TypeExpr = ACO->getTrueExpr();
   9708         else
   9709           TypeExpr = ACO->getFalseExpr();
   9710         continue;
   9711       }
   9712       return false;
   9713     }
   9714 
   9715     case Stmt::BinaryOperatorClass: {
   9716       const BinaryOperator *BO = cast<BinaryOperator>(TypeExpr);
   9717       if (BO->getOpcode() == BO_Comma) {
   9718         TypeExpr = BO->getRHS();
   9719         continue;
   9720       }
   9721       return false;
   9722     }
   9723 
   9724     default:
   9725       return false;
   9726     }
   9727   }
   9728 }
   9729 
   9730 /// \brief Retrieve the C type corresponding to type tag TypeExpr.
   9731 ///
   9732 /// \param TypeExpr Expression that specifies a type tag.
   9733 ///
   9734 /// \param MagicValues Registered magic values.
   9735 ///
   9736 /// \param FoundWrongKind Set to true if a type tag was found, but of a wrong
   9737 ///        kind.
   9738 ///
   9739 /// \param TypeInfo Information about the corresponding C type.
   9740 ///
   9741 /// \returns true if the corresponding C type was found.
   9742 bool GetMatchingCType(
   9743         const IdentifierInfo *ArgumentKind,
   9744         const Expr *TypeExpr, const ASTContext &Ctx,
   9745         const llvm::DenseMap<Sema::TypeTagMagicValue,
   9746                              Sema::TypeTagData> *MagicValues,
   9747         bool &FoundWrongKind,
   9748         Sema::TypeTagData &TypeInfo) {
   9749   FoundWrongKind = false;
   9750 
   9751   // Variable declaration that has type_tag_for_datatype attribute.
   9752   const ValueDecl *VD = nullptr;
   9753 
   9754   uint64_t MagicValue;
   9755 
   9756   if (!FindTypeTagExpr(TypeExpr, Ctx, &VD, &MagicValue))
   9757     return false;
   9758 
   9759   if (VD) {
   9760     if (TypeTagForDatatypeAttr *I = VD->getAttr<TypeTagForDatatypeAttr>()) {
   9761       if (I->getArgumentKind() != ArgumentKind) {
   9762         FoundWrongKind = true;
   9763         return false;
   9764       }
   9765       TypeInfo.Type = I->getMatchingCType();
   9766       TypeInfo.LayoutCompatible = I->getLayoutCompatible();
   9767       TypeInfo.MustBeNull = I->getMustBeNull();
   9768       return true;
   9769     }
   9770     return false;
   9771   }
   9772 
   9773   if (!MagicValues)
   9774     return false;
   9775 
   9776   llvm::DenseMap<Sema::TypeTagMagicValue,
   9777                  Sema::TypeTagData>::const_iterator I =
   9778       MagicValues->find(std::make_pair(ArgumentKind, MagicValue));
   9779   if (I == MagicValues->end())
   9780     return false;
   9781 
   9782   TypeInfo = I->second;
   9783   return true;
   9784 }
   9785 } // unnamed namespace
   9786 
   9787 void Sema::RegisterTypeTagForDatatype(const IdentifierInfo *ArgumentKind,
   9788                                       uint64_t MagicValue, QualType Type,
   9789                                       bool LayoutCompatible,
   9790                                       bool MustBeNull) {
   9791   if (!TypeTagForDatatypeMagicValues)
   9792     TypeTagForDatatypeMagicValues.reset(
   9793         new llvm::DenseMap<TypeTagMagicValue, TypeTagData>);
   9794 
   9795   TypeTagMagicValue Magic(ArgumentKind, MagicValue);
   9796   (*TypeTagForDatatypeMagicValues)[Magic] =
   9797       TypeTagData(Type, LayoutCompatible, MustBeNull);
   9798 }
   9799 
   9800 namespace {
   9801 bool IsSameCharType(QualType T1, QualType T2) {
   9802   const BuiltinType *BT1 = T1->getAs<BuiltinType>();
   9803   if (!BT1)
   9804     return false;
   9805 
   9806   const BuiltinType *BT2 = T2->getAs<BuiltinType>();
   9807   if (!BT2)
   9808     return false;
   9809 
   9810   BuiltinType::Kind T1Kind = BT1->getKind();
   9811   BuiltinType::Kind T2Kind = BT2->getKind();
   9812 
   9813   return (T1Kind == BuiltinType::SChar  && T2Kind == BuiltinType::Char_S) ||
   9814          (T1Kind == BuiltinType::UChar  && T2Kind == BuiltinType::Char_U) ||
   9815          (T1Kind == BuiltinType::Char_U && T2Kind == BuiltinType::UChar) ||
   9816          (T1Kind == BuiltinType::Char_S && T2Kind == BuiltinType::SChar);
   9817 }
   9818 } // unnamed namespace
   9819 
   9820 void Sema::CheckArgumentWithTypeTag(const ArgumentWithTypeTagAttr *Attr,
   9821                                     const Expr * const *ExprArgs) {
   9822   const IdentifierInfo *ArgumentKind = Attr->getArgumentKind();
   9823   bool IsPointerAttr = Attr->getIsPointer();
   9824 
   9825   const Expr *TypeTagExpr = ExprArgs[Attr->getTypeTagIdx()];
   9826   bool FoundWrongKind;
   9827   TypeTagData TypeInfo;
   9828   if (!GetMatchingCType(ArgumentKind, TypeTagExpr, Context,
   9829                         TypeTagForDatatypeMagicValues.get(),
   9830                         FoundWrongKind, TypeInfo)) {
   9831     if (FoundWrongKind)
   9832       Diag(TypeTagExpr->getExprLoc(),
   9833            diag::warn_type_tag_for_datatype_wrong_kind)
   9834         << TypeTagExpr->getSourceRange();
   9835     return;
   9836   }
   9837 
   9838   const Expr *ArgumentExpr = ExprArgs[Attr->getArgumentIdx()];
   9839   if (IsPointerAttr) {
   9840     // Skip implicit cast of pointer to `void *' (as a function argument).
   9841     if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgumentExpr))
   9842       if (ICE->getType()->isVoidPointerType() &&
   9843           ICE->getCastKind() == CK_BitCast)
   9844         ArgumentExpr = ICE->getSubExpr();
   9845   }
   9846   QualType ArgumentType = ArgumentExpr->getType();
   9847 
   9848   // Passing a `void*' pointer shouldn't trigger a warning.
   9849   if (IsPointerAttr && ArgumentType->isVoidPointerType())
   9850     return;
   9851 
   9852   if (TypeInfo.MustBeNull) {
   9853     // Type tag with matching void type requires a null pointer.
   9854     if (!ArgumentExpr->isNullPointerConstant(Context,
   9855                                              Expr::NPC_ValueDependentIsNotNull)) {
   9856       Diag(ArgumentExpr->getExprLoc(),
   9857            diag::warn_type_safety_null_pointer_required)
   9858           << ArgumentKind->getName()
   9859           << ArgumentExpr->getSourceRange()
   9860           << TypeTagExpr->getSourceRange();
   9861     }
   9862     return;
   9863   }
   9864 
   9865   QualType RequiredType = TypeInfo.Type;
   9866   if (IsPointerAttr)
   9867     RequiredType = Context.getPointerType(RequiredType);
   9868 
   9869   bool mismatch = false;
   9870   if (!TypeInfo.LayoutCompatible) {
   9871     mismatch = !Context.hasSameType(ArgumentType, RequiredType);
   9872 
   9873     // C++11 [basic.fundamental] p1:
   9874     // Plain char, signed char, and unsigned char are three distinct types.
   9875     //
   9876     // But we treat plain `char' as equivalent to `signed char' or `unsigned
   9877     // char' depending on the current char signedness mode.
   9878     if (mismatch)
   9879       if ((IsPointerAttr && IsSameCharType(ArgumentType->getPointeeType(),
   9880                                            RequiredType->getPointeeType())) ||
   9881           (!IsPointerAttr && IsSameCharType(ArgumentType, RequiredType)))
   9882         mismatch = false;
   9883   } else
   9884     if (IsPointerAttr)
   9885       mismatch = !isLayoutCompatible(Context,
   9886                                      ArgumentType->getPointeeType(),
   9887                                      RequiredType->getPointeeType());
   9888     else
   9889       mismatch = !isLayoutCompatible(Context, ArgumentType, RequiredType);
   9890 
   9891   if (mismatch)
   9892     Diag(ArgumentExpr->getExprLoc(), diag::warn_type_safety_type_mismatch)
   9893         << ArgumentType << ArgumentKind
   9894         << TypeInfo.LayoutCompatible << RequiredType
   9895         << ArgumentExpr->getSourceRange()
   9896         << TypeTagExpr->getSourceRange();
   9897 }
   9898