Home | History | Annotate | Download | only in CodeGen
      1 //===----- SchedulePostRAList.cpp - list scheduler ------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This implements a top-down list scheduler, using standard algorithms.
     11 // The basic approach uses a priority queue of available nodes to schedule.
     12 // One at a time, nodes are taken from the priority queue (thus in priority
     13 // order), checked for legality to schedule, and emitted if legal.
     14 //
     15 // Nodes may not be legal to schedule either due to structural hazards (e.g.
     16 // pipeline or resource constraints) or because an input to the instruction has
     17 // not completed execution.
     18 //
     19 //===----------------------------------------------------------------------===//
     20 
     21 #include "llvm/CodeGen/Passes.h"
     22 #include "AggressiveAntiDepBreaker.h"
     23 #include "AntiDepBreaker.h"
     24 #include "CriticalAntiDepBreaker.h"
     25 #include "llvm/ADT/BitVector.h"
     26 #include "llvm/ADT/Statistic.h"
     27 #include "llvm/Analysis/AliasAnalysis.h"
     28 #include "llvm/CodeGen/LatencyPriorityQueue.h"
     29 #include "llvm/CodeGen/MachineDominators.h"
     30 #include "llvm/CodeGen/MachineFrameInfo.h"
     31 #include "llvm/CodeGen/MachineFunctionPass.h"
     32 #include "llvm/CodeGen/MachineLoopInfo.h"
     33 #include "llvm/CodeGen/MachineRegisterInfo.h"
     34 #include "llvm/CodeGen/RegisterClassInfo.h"
     35 #include "llvm/CodeGen/ScheduleDAGInstrs.h"
     36 #include "llvm/CodeGen/ScheduleHazardRecognizer.h"
     37 #include "llvm/CodeGen/SchedulerRegistry.h"
     38 #include "llvm/Support/CommandLine.h"
     39 #include "llvm/Support/Debug.h"
     40 #include "llvm/Support/ErrorHandling.h"
     41 #include "llvm/Support/raw_ostream.h"
     42 #include "llvm/Target/TargetInstrInfo.h"
     43 #include "llvm/Target/TargetLowering.h"
     44 #include "llvm/Target/TargetRegisterInfo.h"
     45 #include "llvm/Target/TargetSubtargetInfo.h"
     46 using namespace llvm;
     47 
     48 #define DEBUG_TYPE "post-RA-sched"
     49 
     50 STATISTIC(NumNoops, "Number of noops inserted");
     51 STATISTIC(NumStalls, "Number of pipeline stalls");
     52 STATISTIC(NumFixedAnti, "Number of fixed anti-dependencies");
     53 
     54 // Post-RA scheduling is enabled with
     55 // TargetSubtargetInfo.enablePostRAScheduler(). This flag can be used to
     56 // override the target.
     57 static cl::opt<bool>
     58 EnablePostRAScheduler("post-RA-scheduler",
     59                        cl::desc("Enable scheduling after register allocation"),
     60                        cl::init(false), cl::Hidden);
     61 static cl::opt<std::string>
     62 EnableAntiDepBreaking("break-anti-dependencies",
     63                       cl::desc("Break post-RA scheduling anti-dependencies: "
     64                                "\"critical\", \"all\", or \"none\""),
     65                       cl::init("none"), cl::Hidden);
     66 
     67 // If DebugDiv > 0 then only schedule MBB with (ID % DebugDiv) == DebugMod
     68 static cl::opt<int>
     69 DebugDiv("postra-sched-debugdiv",
     70                       cl::desc("Debug control MBBs that are scheduled"),
     71                       cl::init(0), cl::Hidden);
     72 static cl::opt<int>
     73 DebugMod("postra-sched-debugmod",
     74                       cl::desc("Debug control MBBs that are scheduled"),
     75                       cl::init(0), cl::Hidden);
     76 
     77 AntiDepBreaker::~AntiDepBreaker() { }
     78 
     79 namespace {
     80   class PostRAScheduler : public MachineFunctionPass {
     81     const TargetInstrInfo *TII;
     82     RegisterClassInfo RegClassInfo;
     83 
     84   public:
     85     static char ID;
     86     PostRAScheduler() : MachineFunctionPass(ID) {}
     87 
     88     void getAnalysisUsage(AnalysisUsage &AU) const override {
     89       AU.setPreservesCFG();
     90       AU.addRequired<AAResultsWrapperPass>();
     91       AU.addRequired<TargetPassConfig>();
     92       AU.addRequired<MachineDominatorTree>();
     93       AU.addPreserved<MachineDominatorTree>();
     94       AU.addRequired<MachineLoopInfo>();
     95       AU.addPreserved<MachineLoopInfo>();
     96       MachineFunctionPass::getAnalysisUsage(AU);
     97     }
     98 
     99     bool runOnMachineFunction(MachineFunction &Fn) override;
    100 
    101     bool enablePostRAScheduler(
    102         const TargetSubtargetInfo &ST, CodeGenOpt::Level OptLevel,
    103         TargetSubtargetInfo::AntiDepBreakMode &Mode,
    104         TargetSubtargetInfo::RegClassVector &CriticalPathRCs) const;
    105   };
    106   char PostRAScheduler::ID = 0;
    107 
    108   class SchedulePostRATDList : public ScheduleDAGInstrs {
    109     /// AvailableQueue - The priority queue to use for the available SUnits.
    110     ///
    111     LatencyPriorityQueue AvailableQueue;
    112 
    113     /// PendingQueue - This contains all of the instructions whose operands have
    114     /// been issued, but their results are not ready yet (due to the latency of
    115     /// the operation).  Once the operands becomes available, the instruction is
    116     /// added to the AvailableQueue.
    117     std::vector<SUnit*> PendingQueue;
    118 
    119     /// HazardRec - The hazard recognizer to use.
    120     ScheduleHazardRecognizer *HazardRec;
    121 
    122     /// AntiDepBreak - Anti-dependence breaking object, or NULL if none
    123     AntiDepBreaker *AntiDepBreak;
    124 
    125     /// AA - AliasAnalysis for making memory reference queries.
    126     AliasAnalysis *AA;
    127 
    128     /// The schedule. Null SUnit*'s represent noop instructions.
    129     std::vector<SUnit*> Sequence;
    130 
    131     /// The index in BB of RegionEnd.
    132     ///
    133     /// This is the instruction number from the top of the current block, not
    134     /// the SlotIndex. It is only used by the AntiDepBreaker.
    135     unsigned EndIndex;
    136 
    137   public:
    138     SchedulePostRATDList(
    139         MachineFunction &MF, MachineLoopInfo &MLI, AliasAnalysis *AA,
    140         const RegisterClassInfo &,
    141         TargetSubtargetInfo::AntiDepBreakMode AntiDepMode,
    142         SmallVectorImpl<const TargetRegisterClass *> &CriticalPathRCs);
    143 
    144     ~SchedulePostRATDList() override;
    145 
    146     /// startBlock - Initialize register live-range state for scheduling in
    147     /// this block.
    148     ///
    149     void startBlock(MachineBasicBlock *BB) override;
    150 
    151     // Set the index of RegionEnd within the current BB.
    152     void setEndIndex(unsigned EndIdx) { EndIndex = EndIdx; }
    153 
    154     /// Initialize the scheduler state for the next scheduling region.
    155     void enterRegion(MachineBasicBlock *bb,
    156                      MachineBasicBlock::iterator begin,
    157                      MachineBasicBlock::iterator end,
    158                      unsigned regioninstrs) override;
    159 
    160     /// Notify that the scheduler has finished scheduling the current region.
    161     void exitRegion() override;
    162 
    163     /// Schedule - Schedule the instruction range using list scheduling.
    164     ///
    165     void schedule() override;
    166 
    167     void EmitSchedule();
    168 
    169     /// Observe - Update liveness information to account for the current
    170     /// instruction, which will not be scheduled.
    171     ///
    172     void Observe(MachineInstr *MI, unsigned Count);
    173 
    174     /// finishBlock - Clean up register live-range state.
    175     ///
    176     void finishBlock() override;
    177 
    178   private:
    179     void ReleaseSucc(SUnit *SU, SDep *SuccEdge);
    180     void ReleaseSuccessors(SUnit *SU);
    181     void ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle);
    182     void ListScheduleTopDown();
    183 
    184     void dumpSchedule() const;
    185     void emitNoop(unsigned CurCycle);
    186   };
    187 }
    188 
    189 char &llvm::PostRASchedulerID = PostRAScheduler::ID;
    190 
    191 INITIALIZE_PASS(PostRAScheduler, "post-RA-sched",
    192                 "Post RA top-down list latency scheduler", false, false)
    193 
    194 SchedulePostRATDList::SchedulePostRATDList(
    195     MachineFunction &MF, MachineLoopInfo &MLI, AliasAnalysis *AA,
    196     const RegisterClassInfo &RCI,
    197     TargetSubtargetInfo::AntiDepBreakMode AntiDepMode,
    198     SmallVectorImpl<const TargetRegisterClass *> &CriticalPathRCs)
    199     : ScheduleDAGInstrs(MF, &MLI), AA(AA), EndIndex(0) {
    200 
    201   const InstrItineraryData *InstrItins =
    202       MF.getSubtarget().getInstrItineraryData();
    203   HazardRec =
    204       MF.getSubtarget().getInstrInfo()->CreateTargetPostRAHazardRecognizer(
    205           InstrItins, this);
    206 
    207   assert((AntiDepMode == TargetSubtargetInfo::ANTIDEP_NONE ||
    208           MRI.tracksLiveness()) &&
    209          "Live-ins must be accurate for anti-dependency breaking");
    210   AntiDepBreak =
    211     ((AntiDepMode == TargetSubtargetInfo::ANTIDEP_ALL) ?
    212      (AntiDepBreaker *)new AggressiveAntiDepBreaker(MF, RCI, CriticalPathRCs) :
    213      ((AntiDepMode == TargetSubtargetInfo::ANTIDEP_CRITICAL) ?
    214       (AntiDepBreaker *)new CriticalAntiDepBreaker(MF, RCI) : nullptr));
    215 }
    216 
    217 SchedulePostRATDList::~SchedulePostRATDList() {
    218   delete HazardRec;
    219   delete AntiDepBreak;
    220 }
    221 
    222 /// Initialize state associated with the next scheduling region.
    223 void SchedulePostRATDList::enterRegion(MachineBasicBlock *bb,
    224                  MachineBasicBlock::iterator begin,
    225                  MachineBasicBlock::iterator end,
    226                  unsigned regioninstrs) {
    227   ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs);
    228   Sequence.clear();
    229 }
    230 
    231 /// Print the schedule before exiting the region.
    232 void SchedulePostRATDList::exitRegion() {
    233   DEBUG({
    234       dbgs() << "*** Final schedule ***\n";
    235       dumpSchedule();
    236       dbgs() << '\n';
    237     });
    238   ScheduleDAGInstrs::exitRegion();
    239 }
    240 
    241 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
    242 /// dumpSchedule - dump the scheduled Sequence.
    243 void SchedulePostRATDList::dumpSchedule() const {
    244   for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
    245     if (SUnit *SU = Sequence[i])
    246       SU->dump(this);
    247     else
    248       dbgs() << "**** NOOP ****\n";
    249   }
    250 }
    251 #endif
    252 
    253 bool PostRAScheduler::enablePostRAScheduler(
    254     const TargetSubtargetInfo &ST,
    255     CodeGenOpt::Level OptLevel,
    256     TargetSubtargetInfo::AntiDepBreakMode &Mode,
    257     TargetSubtargetInfo::RegClassVector &CriticalPathRCs) const {
    258   Mode = ST.getAntiDepBreakMode();
    259   ST.getCriticalPathRCs(CriticalPathRCs);
    260   return ST.enablePostRAScheduler() &&
    261          OptLevel >= ST.getOptLevelToEnablePostRAScheduler();
    262 }
    263 
    264 bool PostRAScheduler::runOnMachineFunction(MachineFunction &Fn) {
    265   if (skipOptnoneFunction(*Fn.getFunction()))
    266     return false;
    267 
    268   TII = Fn.getSubtarget().getInstrInfo();
    269   MachineLoopInfo &MLI = getAnalysis<MachineLoopInfo>();
    270   AliasAnalysis *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
    271   TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>();
    272 
    273   RegClassInfo.runOnMachineFunction(Fn);
    274 
    275   // Check for explicit enable/disable of post-ra scheduling.
    276   TargetSubtargetInfo::AntiDepBreakMode AntiDepMode =
    277     TargetSubtargetInfo::ANTIDEP_NONE;
    278   SmallVector<const TargetRegisterClass*, 4> CriticalPathRCs;
    279   if (EnablePostRAScheduler.getPosition() > 0) {
    280     if (!EnablePostRAScheduler)
    281       return false;
    282   } else {
    283     // Check that post-RA scheduling is enabled for this target.
    284     // This may upgrade the AntiDepMode.
    285     if (!enablePostRAScheduler(Fn.getSubtarget(), PassConfig->getOptLevel(),
    286                                AntiDepMode, CriticalPathRCs))
    287       return false;
    288   }
    289 
    290   // Check for antidep breaking override...
    291   if (EnableAntiDepBreaking.getPosition() > 0) {
    292     AntiDepMode = (EnableAntiDepBreaking == "all")
    293       ? TargetSubtargetInfo::ANTIDEP_ALL
    294       : ((EnableAntiDepBreaking == "critical")
    295          ? TargetSubtargetInfo::ANTIDEP_CRITICAL
    296          : TargetSubtargetInfo::ANTIDEP_NONE);
    297   }
    298 
    299   DEBUG(dbgs() << "PostRAScheduler\n");
    300 
    301   SchedulePostRATDList Scheduler(Fn, MLI, AA, RegClassInfo, AntiDepMode,
    302                                  CriticalPathRCs);
    303 
    304   // Loop over all of the basic blocks
    305   for (auto &MBB : Fn) {
    306 #ifndef NDEBUG
    307     // If DebugDiv > 0 then only schedule MBB with (ID % DebugDiv) == DebugMod
    308     if (DebugDiv > 0) {
    309       static int bbcnt = 0;
    310       if (bbcnt++ % DebugDiv != DebugMod)
    311         continue;
    312       dbgs() << "*** DEBUG scheduling " << Fn.getName()
    313              << ":BB#" << MBB.getNumber() << " ***\n";
    314     }
    315 #endif
    316 
    317     // Initialize register live-range state for scheduling in this block.
    318     Scheduler.startBlock(&MBB);
    319 
    320     // Schedule each sequence of instructions not interrupted by a label
    321     // or anything else that effectively needs to shut down scheduling.
    322     MachineBasicBlock::iterator Current = MBB.end();
    323     unsigned Count = MBB.size(), CurrentCount = Count;
    324     for (MachineBasicBlock::iterator I = Current; I != MBB.begin();) {
    325       MachineInstr *MI = std::prev(I);
    326       --Count;
    327       // Calls are not scheduling boundaries before register allocation, but
    328       // post-ra we don't gain anything by scheduling across calls since we
    329       // don't need to worry about register pressure.
    330       if (MI->isCall() || TII->isSchedulingBoundary(MI, &MBB, Fn)) {
    331         Scheduler.enterRegion(&MBB, I, Current, CurrentCount - Count);
    332         Scheduler.setEndIndex(CurrentCount);
    333         Scheduler.schedule();
    334         Scheduler.exitRegion();
    335         Scheduler.EmitSchedule();
    336         Current = MI;
    337         CurrentCount = Count;
    338         Scheduler.Observe(MI, CurrentCount);
    339       }
    340       I = MI;
    341       if (MI->isBundle())
    342         Count -= MI->getBundleSize();
    343     }
    344     assert(Count == 0 && "Instruction count mismatch!");
    345     assert((MBB.begin() == Current || CurrentCount != 0) &&
    346            "Instruction count mismatch!");
    347     Scheduler.enterRegion(&MBB, MBB.begin(), Current, CurrentCount);
    348     Scheduler.setEndIndex(CurrentCount);
    349     Scheduler.schedule();
    350     Scheduler.exitRegion();
    351     Scheduler.EmitSchedule();
    352 
    353     // Clean up register live-range state.
    354     Scheduler.finishBlock();
    355 
    356     // Update register kills
    357     Scheduler.fixupKills(&MBB);
    358   }
    359 
    360   return true;
    361 }
    362 
    363 /// StartBlock - Initialize register live-range state for scheduling in
    364 /// this block.
    365 ///
    366 void SchedulePostRATDList::startBlock(MachineBasicBlock *BB) {
    367   // Call the superclass.
    368   ScheduleDAGInstrs::startBlock(BB);
    369 
    370   // Reset the hazard recognizer and anti-dep breaker.
    371   HazardRec->Reset();
    372   if (AntiDepBreak)
    373     AntiDepBreak->StartBlock(BB);
    374 }
    375 
    376 /// Schedule - Schedule the instruction range using list scheduling.
    377 ///
    378 void SchedulePostRATDList::schedule() {
    379   // Build the scheduling graph.
    380   buildSchedGraph(AA);
    381 
    382   if (AntiDepBreak) {
    383     unsigned Broken =
    384       AntiDepBreak->BreakAntiDependencies(SUnits, RegionBegin, RegionEnd,
    385                                           EndIndex, DbgValues);
    386 
    387     if (Broken != 0) {
    388       // We made changes. Update the dependency graph.
    389       // Theoretically we could update the graph in place:
    390       // When a live range is changed to use a different register, remove
    391       // the def's anti-dependence *and* output-dependence edges due to
    392       // that register, and add new anti-dependence and output-dependence
    393       // edges based on the next live range of the register.
    394       ScheduleDAG::clearDAG();
    395       buildSchedGraph(AA);
    396 
    397       NumFixedAnti += Broken;
    398     }
    399   }
    400 
    401   DEBUG(dbgs() << "********** List Scheduling **********\n");
    402   DEBUG(
    403     for (const SUnit &SU : SUnits) {
    404       SU.dumpAll(this);
    405       dbgs() << '\n';
    406     }
    407   );
    408 
    409   AvailableQueue.initNodes(SUnits);
    410   ListScheduleTopDown();
    411   AvailableQueue.releaseState();
    412 }
    413 
    414 /// Observe - Update liveness information to account for the current
    415 /// instruction, which will not be scheduled.
    416 ///
    417 void SchedulePostRATDList::Observe(MachineInstr *MI, unsigned Count) {
    418   if (AntiDepBreak)
    419     AntiDepBreak->Observe(MI, Count, EndIndex);
    420 }
    421 
    422 /// FinishBlock - Clean up register live-range state.
    423 ///
    424 void SchedulePostRATDList::finishBlock() {
    425   if (AntiDepBreak)
    426     AntiDepBreak->FinishBlock();
    427 
    428   // Call the superclass.
    429   ScheduleDAGInstrs::finishBlock();
    430 }
    431 
    432 //===----------------------------------------------------------------------===//
    433 //  Top-Down Scheduling
    434 //===----------------------------------------------------------------------===//
    435 
    436 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to
    437 /// the PendingQueue if the count reaches zero.
    438 void SchedulePostRATDList::ReleaseSucc(SUnit *SU, SDep *SuccEdge) {
    439   SUnit *SuccSU = SuccEdge->getSUnit();
    440 
    441   if (SuccEdge->isWeak()) {
    442     --SuccSU->WeakPredsLeft;
    443     return;
    444   }
    445 #ifndef NDEBUG
    446   if (SuccSU->NumPredsLeft == 0) {
    447     dbgs() << "*** Scheduling failed! ***\n";
    448     SuccSU->dump(this);
    449     dbgs() << " has been released too many times!\n";
    450     llvm_unreachable(nullptr);
    451   }
    452 #endif
    453   --SuccSU->NumPredsLeft;
    454 
    455   // Standard scheduler algorithms will recompute the depth of the successor
    456   // here as such:
    457   //   SuccSU->setDepthToAtLeast(SU->getDepth() + SuccEdge->getLatency());
    458   //
    459   // However, we lazily compute node depth instead. Note that
    460   // ScheduleNodeTopDown has already updated the depth of this node which causes
    461   // all descendents to be marked dirty. Setting the successor depth explicitly
    462   // here would cause depth to be recomputed for all its ancestors. If the
    463   // successor is not yet ready (because of a transitively redundant edge) then
    464   // this causes depth computation to be quadratic in the size of the DAG.
    465 
    466   // If all the node's predecessors are scheduled, this node is ready
    467   // to be scheduled. Ignore the special ExitSU node.
    468   if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU)
    469     PendingQueue.push_back(SuccSU);
    470 }
    471 
    472 /// ReleaseSuccessors - Call ReleaseSucc on each of SU's successors.
    473 void SchedulePostRATDList::ReleaseSuccessors(SUnit *SU) {
    474   for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
    475        I != E; ++I) {
    476     ReleaseSucc(SU, &*I);
    477   }
    478 }
    479 
    480 /// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending
    481 /// count of its successors. If a successor pending count is zero, add it to
    482 /// the Available queue.
    483 void SchedulePostRATDList::ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle) {
    484   DEBUG(dbgs() << "*** Scheduling [" << CurCycle << "]: ");
    485   DEBUG(SU->dump(this));
    486 
    487   Sequence.push_back(SU);
    488   assert(CurCycle >= SU->getDepth() &&
    489          "Node scheduled above its depth!");
    490   SU->setDepthToAtLeast(CurCycle);
    491 
    492   ReleaseSuccessors(SU);
    493   SU->isScheduled = true;
    494   AvailableQueue.scheduledNode(SU);
    495 }
    496 
    497 /// emitNoop - Add a noop to the current instruction sequence.
    498 void SchedulePostRATDList::emitNoop(unsigned CurCycle) {
    499   DEBUG(dbgs() << "*** Emitting noop in cycle " << CurCycle << '\n');
    500   HazardRec->EmitNoop();
    501   Sequence.push_back(nullptr);   // NULL here means noop
    502   ++NumNoops;
    503 }
    504 
    505 /// ListScheduleTopDown - The main loop of list scheduling for top-down
    506 /// schedulers.
    507 void SchedulePostRATDList::ListScheduleTopDown() {
    508   unsigned CurCycle = 0;
    509 
    510   // We're scheduling top-down but we're visiting the regions in
    511   // bottom-up order, so we don't know the hazards at the start of a
    512   // region. So assume no hazards (this should usually be ok as most
    513   // blocks are a single region).
    514   HazardRec->Reset();
    515 
    516   // Release any successors of the special Entry node.
    517   ReleaseSuccessors(&EntrySU);
    518 
    519   // Add all leaves to Available queue.
    520   for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
    521     // It is available if it has no predecessors.
    522     if (!SUnits[i].NumPredsLeft && !SUnits[i].isAvailable) {
    523       AvailableQueue.push(&SUnits[i]);
    524       SUnits[i].isAvailable = true;
    525     }
    526   }
    527 
    528   // In any cycle where we can't schedule any instructions, we must
    529   // stall or emit a noop, depending on the target.
    530   bool CycleHasInsts = false;
    531 
    532   // While Available queue is not empty, grab the node with the highest
    533   // priority. If it is not ready put it back.  Schedule the node.
    534   std::vector<SUnit*> NotReady;
    535   Sequence.reserve(SUnits.size());
    536   while (!AvailableQueue.empty() || !PendingQueue.empty()) {
    537     // Check to see if any of the pending instructions are ready to issue.  If
    538     // so, add them to the available queue.
    539     unsigned MinDepth = ~0u;
    540     for (unsigned i = 0, e = PendingQueue.size(); i != e; ++i) {
    541       if (PendingQueue[i]->getDepth() <= CurCycle) {
    542         AvailableQueue.push(PendingQueue[i]);
    543         PendingQueue[i]->isAvailable = true;
    544         PendingQueue[i] = PendingQueue.back();
    545         PendingQueue.pop_back();
    546         --i; --e;
    547       } else if (PendingQueue[i]->getDepth() < MinDepth)
    548         MinDepth = PendingQueue[i]->getDepth();
    549     }
    550 
    551     DEBUG(dbgs() << "\n*** Examining Available\n"; AvailableQueue.dump(this));
    552 
    553     SUnit *FoundSUnit = nullptr, *NotPreferredSUnit = nullptr;
    554     bool HasNoopHazards = false;
    555     while (!AvailableQueue.empty()) {
    556       SUnit *CurSUnit = AvailableQueue.pop();
    557 
    558       ScheduleHazardRecognizer::HazardType HT =
    559         HazardRec->getHazardType(CurSUnit, 0/*no stalls*/);
    560       if (HT == ScheduleHazardRecognizer::NoHazard) {
    561         if (HazardRec->ShouldPreferAnother(CurSUnit)) {
    562           if (!NotPreferredSUnit) {
    563             // If this is the first non-preferred node for this cycle, then
    564             // record it and continue searching for a preferred node. If this
    565             // is not the first non-preferred node, then treat it as though
    566             // there had been a hazard.
    567             NotPreferredSUnit = CurSUnit;
    568             continue;
    569           }
    570         } else {
    571           FoundSUnit = CurSUnit;
    572           break;
    573         }
    574       }
    575 
    576       // Remember if this is a noop hazard.
    577       HasNoopHazards |= HT == ScheduleHazardRecognizer::NoopHazard;
    578 
    579       NotReady.push_back(CurSUnit);
    580     }
    581 
    582     // If we have a non-preferred node, push it back onto the available list.
    583     // If we did not find a preferred node, then schedule this first
    584     // non-preferred node.
    585     if (NotPreferredSUnit) {
    586       if (!FoundSUnit) {
    587         DEBUG(dbgs() << "*** Will schedule a non-preferred instruction...\n");
    588         FoundSUnit = NotPreferredSUnit;
    589       } else {
    590         AvailableQueue.push(NotPreferredSUnit);
    591       }
    592 
    593       NotPreferredSUnit = nullptr;
    594     }
    595 
    596     // Add the nodes that aren't ready back onto the available list.
    597     if (!NotReady.empty()) {
    598       AvailableQueue.push_all(NotReady);
    599       NotReady.clear();
    600     }
    601 
    602     // If we found a node to schedule...
    603     if (FoundSUnit) {
    604       // If we need to emit noops prior to this instruction, then do so.
    605       unsigned NumPreNoops = HazardRec->PreEmitNoops(FoundSUnit);
    606       for (unsigned i = 0; i != NumPreNoops; ++i)
    607         emitNoop(CurCycle);
    608 
    609       // ... schedule the node...
    610       ScheduleNodeTopDown(FoundSUnit, CurCycle);
    611       HazardRec->EmitInstruction(FoundSUnit);
    612       CycleHasInsts = true;
    613       if (HazardRec->atIssueLimit()) {
    614         DEBUG(dbgs() << "*** Max instructions per cycle " << CurCycle << '\n');
    615         HazardRec->AdvanceCycle();
    616         ++CurCycle;
    617         CycleHasInsts = false;
    618       }
    619     } else {
    620       if (CycleHasInsts) {
    621         DEBUG(dbgs() << "*** Finished cycle " << CurCycle << '\n');
    622         HazardRec->AdvanceCycle();
    623       } else if (!HasNoopHazards) {
    624         // Otherwise, we have a pipeline stall, but no other problem,
    625         // just advance the current cycle and try again.
    626         DEBUG(dbgs() << "*** Stall in cycle " << CurCycle << '\n');
    627         HazardRec->AdvanceCycle();
    628         ++NumStalls;
    629       } else {
    630         // Otherwise, we have no instructions to issue and we have instructions
    631         // that will fault if we don't do this right.  This is the case for
    632         // processors without pipeline interlocks and other cases.
    633         emitNoop(CurCycle);
    634       }
    635 
    636       ++CurCycle;
    637       CycleHasInsts = false;
    638     }
    639   }
    640 
    641 #ifndef NDEBUG
    642   unsigned ScheduledNodes = VerifyScheduledDAG(/*isBottomUp=*/false);
    643   unsigned Noops = 0;
    644   for (unsigned i = 0, e = Sequence.size(); i != e; ++i)
    645     if (!Sequence[i])
    646       ++Noops;
    647   assert(Sequence.size() - Noops == ScheduledNodes &&
    648          "The number of nodes scheduled doesn't match the expected number!");
    649 #endif // NDEBUG
    650 }
    651 
    652 // EmitSchedule - Emit the machine code in scheduled order.
    653 void SchedulePostRATDList::EmitSchedule() {
    654   RegionBegin = RegionEnd;
    655 
    656   // If first instruction was a DBG_VALUE then put it back.
    657   if (FirstDbgValue)
    658     BB->splice(RegionEnd, BB, FirstDbgValue);
    659 
    660   // Then re-insert them according to the given schedule.
    661   for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
    662     if (SUnit *SU = Sequence[i])
    663       BB->splice(RegionEnd, BB, SU->getInstr());
    664     else
    665       // Null SUnit* is a noop.
    666       TII->insertNoop(*BB, RegionEnd);
    667 
    668     // Update the Begin iterator, as the first instruction in the block
    669     // may have been scheduled later.
    670     if (i == 0)
    671       RegionBegin = std::prev(RegionEnd);
    672   }
    673 
    674   // Reinsert any remaining debug_values.
    675   for (std::vector<std::pair<MachineInstr *, MachineInstr *> >::iterator
    676          DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) {
    677     std::pair<MachineInstr *, MachineInstr *> P = *std::prev(DI);
    678     MachineInstr *DbgValue = P.first;
    679     MachineBasicBlock::iterator OrigPrivMI = P.second;
    680     BB->splice(++OrigPrivMI, BB, DbgValue);
    681   }
    682   DbgValues.clear();
    683   FirstDbgValue = nullptr;
    684 }
    685