1 //===-- llvm/Target/TargetSchedule.cpp - Sched Machine Model ----*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements a wrapper around MCSchedModel that allows the interface 11 // to benefit from information currently only available in TargetInstrInfo. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/TargetSchedule.h" 16 #include "llvm/Support/CommandLine.h" 17 #include "llvm/Support/raw_ostream.h" 18 #include "llvm/Target/TargetInstrInfo.h" 19 #include "llvm/Target/TargetRegisterInfo.h" 20 #include "llvm/Target/TargetSubtargetInfo.h" 21 22 using namespace llvm; 23 24 static cl::opt<bool> EnableSchedModel("schedmodel", cl::Hidden, cl::init(true), 25 cl::desc("Use TargetSchedModel for latency lookup")); 26 27 static cl::opt<bool> EnableSchedItins("scheditins", cl::Hidden, cl::init(true), 28 cl::desc("Use InstrItineraryData for latency lookup")); 29 30 bool TargetSchedModel::hasInstrSchedModel() const { 31 return EnableSchedModel && SchedModel.hasInstrSchedModel(); 32 } 33 34 bool TargetSchedModel::hasInstrItineraries() const { 35 return EnableSchedItins && !InstrItins.isEmpty(); 36 } 37 38 static unsigned gcd(unsigned Dividend, unsigned Divisor) { 39 // Dividend and Divisor will be naturally swapped as needed. 40 while(Divisor) { 41 unsigned Rem = Dividend % Divisor; 42 Dividend = Divisor; 43 Divisor = Rem; 44 }; 45 return Dividend; 46 } 47 static unsigned lcm(unsigned A, unsigned B) { 48 unsigned LCM = (uint64_t(A) * B) / gcd(A, B); 49 assert((LCM >= A && LCM >= B) && "LCM overflow"); 50 return LCM; 51 } 52 53 void TargetSchedModel::init(const MCSchedModel &sm, 54 const TargetSubtargetInfo *sti, 55 const TargetInstrInfo *tii) { 56 SchedModel = sm; 57 STI = sti; 58 TII = tii; 59 STI->initInstrItins(InstrItins); 60 61 unsigned NumRes = SchedModel.getNumProcResourceKinds(); 62 ResourceFactors.resize(NumRes); 63 ResourceLCM = SchedModel.IssueWidth; 64 for (unsigned Idx = 0; Idx < NumRes; ++Idx) { 65 unsigned NumUnits = SchedModel.getProcResource(Idx)->NumUnits; 66 if (NumUnits > 0) 67 ResourceLCM = lcm(ResourceLCM, NumUnits); 68 } 69 MicroOpFactor = ResourceLCM / SchedModel.IssueWidth; 70 for (unsigned Idx = 0; Idx < NumRes; ++Idx) { 71 unsigned NumUnits = SchedModel.getProcResource(Idx)->NumUnits; 72 ResourceFactors[Idx] = NumUnits ? (ResourceLCM / NumUnits) : 0; 73 } 74 } 75 76 unsigned TargetSchedModel::getNumMicroOps(const MachineInstr *MI, 77 const MCSchedClassDesc *SC) const { 78 if (hasInstrItineraries()) { 79 int UOps = InstrItins.getNumMicroOps(MI->getDesc().getSchedClass()); 80 return (UOps >= 0) ? UOps : TII->getNumMicroOps(&InstrItins, MI); 81 } 82 if (hasInstrSchedModel()) { 83 if (!SC) 84 SC = resolveSchedClass(MI); 85 if (SC->isValid()) 86 return SC->NumMicroOps; 87 } 88 return MI->isTransient() ? 0 : 1; 89 } 90 91 // The machine model may explicitly specify an invalid latency, which 92 // effectively means infinite latency. Since users of the TargetSchedule API 93 // don't know how to handle this, we convert it to a very large latency that is 94 // easy to distinguish when debugging the DAG but won't induce overflow. 95 static unsigned capLatency(int Cycles) { 96 return Cycles >= 0 ? Cycles : 1000; 97 } 98 99 /// Return the MCSchedClassDesc for this instruction. Some SchedClasses require 100 /// evaluation of predicates that depend on instruction operands or flags. 101 const MCSchedClassDesc *TargetSchedModel:: 102 resolveSchedClass(const MachineInstr *MI) const { 103 104 // Get the definition's scheduling class descriptor from this machine model. 105 unsigned SchedClass = MI->getDesc().getSchedClass(); 106 const MCSchedClassDesc *SCDesc = SchedModel.getSchedClassDesc(SchedClass); 107 if (!SCDesc->isValid()) 108 return SCDesc; 109 110 #ifndef NDEBUG 111 unsigned NIter = 0; 112 #endif 113 while (SCDesc->isVariant()) { 114 assert(++NIter < 6 && "Variants are nested deeper than the magic number"); 115 116 SchedClass = STI->resolveSchedClass(SchedClass, MI, this); 117 SCDesc = SchedModel.getSchedClassDesc(SchedClass); 118 } 119 return SCDesc; 120 } 121 122 /// Find the def index of this operand. This index maps to the machine model and 123 /// is independent of use operands. Def operands may be reordered with uses or 124 /// merged with uses without affecting the def index (e.g. before/after 125 /// regalloc). However, an instruction's def operands must never be reordered 126 /// with respect to each other. 127 static unsigned findDefIdx(const MachineInstr *MI, unsigned DefOperIdx) { 128 unsigned DefIdx = 0; 129 for (unsigned i = 0; i != DefOperIdx; ++i) { 130 const MachineOperand &MO = MI->getOperand(i); 131 if (MO.isReg() && MO.isDef()) 132 ++DefIdx; 133 } 134 return DefIdx; 135 } 136 137 /// Find the use index of this operand. This is independent of the instruction's 138 /// def operands. 139 /// 140 /// Note that uses are not determined by the operand's isUse property, which 141 /// is simply the inverse of isDef. Here we consider any readsReg operand to be 142 /// a "use". The machine model allows an operand to be both a Def and Use. 143 static unsigned findUseIdx(const MachineInstr *MI, unsigned UseOperIdx) { 144 unsigned UseIdx = 0; 145 for (unsigned i = 0; i != UseOperIdx; ++i) { 146 const MachineOperand &MO = MI->getOperand(i); 147 if (MO.isReg() && MO.readsReg()) 148 ++UseIdx; 149 } 150 return UseIdx; 151 } 152 153 // Top-level API for clients that know the operand indices. 154 unsigned TargetSchedModel::computeOperandLatency( 155 const MachineInstr *DefMI, unsigned DefOperIdx, 156 const MachineInstr *UseMI, unsigned UseOperIdx) const { 157 158 if (!hasInstrSchedModel() && !hasInstrItineraries()) 159 return TII->defaultDefLatency(SchedModel, DefMI); 160 161 if (hasInstrItineraries()) { 162 int OperLatency = 0; 163 if (UseMI) { 164 OperLatency = TII->getOperandLatency(&InstrItins, DefMI, DefOperIdx, 165 UseMI, UseOperIdx); 166 } 167 else { 168 unsigned DefClass = DefMI->getDesc().getSchedClass(); 169 OperLatency = InstrItins.getOperandCycle(DefClass, DefOperIdx); 170 } 171 if (OperLatency >= 0) 172 return OperLatency; 173 174 // No operand latency was found. 175 unsigned InstrLatency = TII->getInstrLatency(&InstrItins, DefMI); 176 177 // Expected latency is the max of the stage latency and itinerary props. 178 // Rather than directly querying InstrItins stage latency, we call a TII 179 // hook to allow subtargets to specialize latency. This hook is only 180 // applicable to the InstrItins model. InstrSchedModel should model all 181 // special cases without TII hooks. 182 InstrLatency = std::max(InstrLatency, 183 TII->defaultDefLatency(SchedModel, DefMI)); 184 return InstrLatency; 185 } 186 // hasInstrSchedModel() 187 const MCSchedClassDesc *SCDesc = resolveSchedClass(DefMI); 188 unsigned DefIdx = findDefIdx(DefMI, DefOperIdx); 189 if (DefIdx < SCDesc->NumWriteLatencyEntries) { 190 // Lookup the definition's write latency in SubtargetInfo. 191 const MCWriteLatencyEntry *WLEntry = 192 STI->getWriteLatencyEntry(SCDesc, DefIdx); 193 unsigned WriteID = WLEntry->WriteResourceID; 194 unsigned Latency = capLatency(WLEntry->Cycles); 195 if (!UseMI) 196 return Latency; 197 198 // Lookup the use's latency adjustment in SubtargetInfo. 199 const MCSchedClassDesc *UseDesc = resolveSchedClass(UseMI); 200 if (UseDesc->NumReadAdvanceEntries == 0) 201 return Latency; 202 unsigned UseIdx = findUseIdx(UseMI, UseOperIdx); 203 int Advance = STI->getReadAdvanceCycles(UseDesc, UseIdx, WriteID); 204 if (Advance > 0 && (unsigned)Advance > Latency) // unsigned wrap 205 return 0; 206 return Latency - Advance; 207 } 208 // If DefIdx does not exist in the model (e.g. implicit defs), then return 209 // unit latency (defaultDefLatency may be too conservative). 210 #ifndef NDEBUG 211 if (SCDesc->isValid() && !DefMI->getOperand(DefOperIdx).isImplicit() 212 && !DefMI->getDesc().OpInfo[DefOperIdx].isOptionalDef() 213 && SchedModel.isComplete()) { 214 errs() << "DefIdx " << DefIdx << " exceeds machine model writes for " 215 << *DefMI; 216 llvm_unreachable("incomplete machine model"); 217 } 218 #endif 219 // FIXME: Automatically giving all implicit defs defaultDefLatency is 220 // undesirable. We should only do it for defs that are known to the MC 221 // desc like flags. Truly implicit defs should get 1 cycle latency. 222 return DefMI->isTransient() ? 0 : TII->defaultDefLatency(SchedModel, DefMI); 223 } 224 225 unsigned 226 TargetSchedModel::computeInstrLatency(const MCSchedClassDesc &SCDesc) const { 227 unsigned Latency = 0; 228 for (unsigned DefIdx = 0, DefEnd = SCDesc.NumWriteLatencyEntries; 229 DefIdx != DefEnd; ++DefIdx) { 230 // Lookup the definition's write latency in SubtargetInfo. 231 const MCWriteLatencyEntry *WLEntry = 232 STI->getWriteLatencyEntry(&SCDesc, DefIdx); 233 Latency = std::max(Latency, capLatency(WLEntry->Cycles)); 234 } 235 return Latency; 236 } 237 238 unsigned TargetSchedModel::computeInstrLatency(unsigned Opcode) const { 239 assert(hasInstrSchedModel() && "Only call this function with a SchedModel"); 240 241 unsigned SCIdx = TII->get(Opcode).getSchedClass(); 242 const MCSchedClassDesc *SCDesc = SchedModel.getSchedClassDesc(SCIdx); 243 244 if (SCDesc->isValid() && !SCDesc->isVariant()) 245 return computeInstrLatency(*SCDesc); 246 247 llvm_unreachable("No MI sched latency"); 248 } 249 250 unsigned 251 TargetSchedModel::computeInstrLatency(const MachineInstr *MI, 252 bool UseDefaultDefLatency) const { 253 // For the itinerary model, fall back to the old subtarget hook. 254 // Allow subtargets to compute Bundle latencies outside the machine model. 255 if (hasInstrItineraries() || MI->isBundle() || 256 (!hasInstrSchedModel() && !UseDefaultDefLatency)) 257 return TII->getInstrLatency(&InstrItins, MI); 258 259 if (hasInstrSchedModel()) { 260 const MCSchedClassDesc *SCDesc = resolveSchedClass(MI); 261 if (SCDesc->isValid()) 262 return computeInstrLatency(*SCDesc); 263 } 264 return TII->defaultDefLatency(SchedModel, MI); 265 } 266 267 unsigned TargetSchedModel:: 268 computeOutputLatency(const MachineInstr *DefMI, unsigned DefOperIdx, 269 const MachineInstr *DepMI) const { 270 if (SchedModel.MicroOpBufferSize <= 1) 271 return 1; 272 273 // MicroOpBufferSize > 1 indicates an out-of-order processor that can dispatch 274 // WAW dependencies in the same cycle. 275 276 // Treat predication as a data dependency for out-of-order cpus. In-order 277 // cpus do not need to treat predicated writes specially. 278 // 279 // TODO: The following hack exists because predication passes do not 280 // correctly append imp-use operands, and readsReg() strangely returns false 281 // for predicated defs. 282 unsigned Reg = DefMI->getOperand(DefOperIdx).getReg(); 283 const MachineFunction &MF = *DefMI->getParent()->getParent(); 284 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 285 if (!DepMI->readsRegister(Reg, TRI) && TII->isPredicated(DepMI)) 286 return computeInstrLatency(DefMI); 287 288 // If we have a per operand scheduling model, check if this def is writing 289 // an unbuffered resource. If so, it treated like an in-order cpu. 290 if (hasInstrSchedModel()) { 291 const MCSchedClassDesc *SCDesc = resolveSchedClass(DefMI); 292 if (SCDesc->isValid()) { 293 for (const MCWriteProcResEntry *PRI = STI->getWriteProcResBegin(SCDesc), 294 *PRE = STI->getWriteProcResEnd(SCDesc); PRI != PRE; ++PRI) { 295 if (!SchedModel.getProcResource(PRI->ProcResourceIdx)->BufferSize) 296 return 1; 297 } 298 } 299 } 300 return 0; 301 } 302