Home | History | Annotate | Download | only in AMDGPU
      1 //===-- AMDGPUISelLowering.cpp - AMDGPU Common DAG lowering functions -----===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 /// \file
     11 /// \brief This is the parent TargetLowering class for hardware code gen
     12 /// targets.
     13 //
     14 //===----------------------------------------------------------------------===//
     15 
     16 #include "AMDGPUISelLowering.h"
     17 #include "AMDGPU.h"
     18 #include "AMDGPUDiagnosticInfoUnsupported.h"
     19 #include "AMDGPUFrameLowering.h"
     20 #include "AMDGPUIntrinsicInfo.h"
     21 #include "AMDGPURegisterInfo.h"
     22 #include "AMDGPUSubtarget.h"
     23 #include "R600MachineFunctionInfo.h"
     24 #include "SIMachineFunctionInfo.h"
     25 #include "llvm/CodeGen/CallingConvLower.h"
     26 #include "llvm/CodeGen/MachineFunction.h"
     27 #include "llvm/CodeGen/MachineRegisterInfo.h"
     28 #include "llvm/CodeGen/SelectionDAG.h"
     29 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
     30 #include "llvm/IR/DataLayout.h"
     31 
     32 using namespace llvm;
     33 
     34 static bool allocateStack(unsigned ValNo, MVT ValVT, MVT LocVT,
     35                       CCValAssign::LocInfo LocInfo,
     36                       ISD::ArgFlagsTy ArgFlags, CCState &State) {
     37   unsigned Offset = State.AllocateStack(ValVT.getStoreSize(),
     38                                         ArgFlags.getOrigAlign());
     39   State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
     40 
     41   return true;
     42 }
     43 
     44 #include "AMDGPUGenCallingConv.inc"
     45 
     46 // Find a larger type to do a load / store of a vector with.
     47 EVT AMDGPUTargetLowering::getEquivalentMemType(LLVMContext &Ctx, EVT VT) {
     48   unsigned StoreSize = VT.getStoreSizeInBits();
     49   if (StoreSize <= 32)
     50     return EVT::getIntegerVT(Ctx, StoreSize);
     51 
     52   assert(StoreSize % 32 == 0 && "Store size not a multiple of 32");
     53   return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32);
     54 }
     55 
     56 // Type for a vector that will be loaded to.
     57 EVT AMDGPUTargetLowering::getEquivalentLoadRegType(LLVMContext &Ctx, EVT VT) {
     58   unsigned StoreSize = VT.getStoreSizeInBits();
     59   if (StoreSize <= 32)
     60     return EVT::getIntegerVT(Ctx, 32);
     61 
     62   return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32);
     63 }
     64 
     65 AMDGPUTargetLowering::AMDGPUTargetLowering(TargetMachine &TM,
     66                                            const AMDGPUSubtarget &STI)
     67     : TargetLowering(TM), Subtarget(&STI) {
     68   setOperationAction(ISD::Constant, MVT::i32, Legal);
     69   setOperationAction(ISD::Constant, MVT::i64, Legal);
     70   setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
     71   setOperationAction(ISD::ConstantFP, MVT::f64, Legal);
     72 
     73   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
     74   setOperationAction(ISD::BRIND, MVT::Other, Expand);
     75 
     76   // This is totally unsupported, just custom lower to produce an error.
     77   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
     78 
     79   // We need to custom lower some of the intrinsics
     80   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
     81 
     82   // Library functions.  These default to Expand, but we have instructions
     83   // for them.
     84   setOperationAction(ISD::FCEIL,  MVT::f32, Legal);
     85   setOperationAction(ISD::FEXP2,  MVT::f32, Legal);
     86   setOperationAction(ISD::FPOW,   MVT::f32, Legal);
     87   setOperationAction(ISD::FLOG2,  MVT::f32, Legal);
     88   setOperationAction(ISD::FABS,   MVT::f32, Legal);
     89   setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
     90   setOperationAction(ISD::FRINT,  MVT::f32, Legal);
     91   setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
     92   setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
     93   setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
     94 
     95   setOperationAction(ISD::FROUND, MVT::f32, Custom);
     96   setOperationAction(ISD::FROUND, MVT::f64, Custom);
     97 
     98   setOperationAction(ISD::FREM, MVT::f32, Custom);
     99   setOperationAction(ISD::FREM, MVT::f64, Custom);
    100 
    101   // v_mad_f32 does not support denormals according to some sources.
    102   if (!Subtarget->hasFP32Denormals())
    103     setOperationAction(ISD::FMAD, MVT::f32, Legal);
    104 
    105   // Expand to fneg + fadd.
    106   setOperationAction(ISD::FSUB, MVT::f64, Expand);
    107 
    108   // Lower floating point store/load to integer store/load to reduce the number
    109   // of patterns in tablegen.
    110   setOperationAction(ISD::STORE, MVT::f32, Promote);
    111   AddPromotedToType(ISD::STORE, MVT::f32, MVT::i32);
    112 
    113   setOperationAction(ISD::STORE, MVT::v2f32, Promote);
    114   AddPromotedToType(ISD::STORE, MVT::v2f32, MVT::v2i32);
    115 
    116   setOperationAction(ISD::STORE, MVT::v4f32, Promote);
    117   AddPromotedToType(ISD::STORE, MVT::v4f32, MVT::v4i32);
    118 
    119   setOperationAction(ISD::STORE, MVT::v8f32, Promote);
    120   AddPromotedToType(ISD::STORE, MVT::v8f32, MVT::v8i32);
    121 
    122   setOperationAction(ISD::STORE, MVT::v16f32, Promote);
    123   AddPromotedToType(ISD::STORE, MVT::v16f32, MVT::v16i32);
    124 
    125   setOperationAction(ISD::STORE, MVT::f64, Promote);
    126   AddPromotedToType(ISD::STORE, MVT::f64, MVT::i64);
    127 
    128   setOperationAction(ISD::STORE, MVT::v2f64, Promote);
    129   AddPromotedToType(ISD::STORE, MVT::v2f64, MVT::v2i64);
    130 
    131   // Custom lowering of vector stores is required for local address space
    132   // stores.
    133   setOperationAction(ISD::STORE, MVT::v4i32, Custom);
    134 
    135   setTruncStoreAction(MVT::v2i32, MVT::v2i16, Custom);
    136   setTruncStoreAction(MVT::v2i32, MVT::v2i8, Custom);
    137   setTruncStoreAction(MVT::v4i32, MVT::v4i8, Custom);
    138 
    139   // XXX: This can be change to Custom, once ExpandVectorStores can
    140   // handle 64-bit stores.
    141   setTruncStoreAction(MVT::v4i32, MVT::v4i16, Expand);
    142 
    143   setTruncStoreAction(MVT::i64, MVT::i16, Expand);
    144   setTruncStoreAction(MVT::i64, MVT::i8, Expand);
    145   setTruncStoreAction(MVT::i64, MVT::i1, Expand);
    146   setTruncStoreAction(MVT::v2i64, MVT::v2i1, Expand);
    147   setTruncStoreAction(MVT::v4i64, MVT::v4i1, Expand);
    148 
    149 
    150   setOperationAction(ISD::LOAD, MVT::f32, Promote);
    151   AddPromotedToType(ISD::LOAD, MVT::f32, MVT::i32);
    152 
    153   setOperationAction(ISD::LOAD, MVT::v2f32, Promote);
    154   AddPromotedToType(ISD::LOAD, MVT::v2f32, MVT::v2i32);
    155 
    156   setOperationAction(ISD::LOAD, MVT::v4f32, Promote);
    157   AddPromotedToType(ISD::LOAD, MVT::v4f32, MVT::v4i32);
    158 
    159   setOperationAction(ISD::LOAD, MVT::v8f32, Promote);
    160   AddPromotedToType(ISD::LOAD, MVT::v8f32, MVT::v8i32);
    161 
    162   setOperationAction(ISD::LOAD, MVT::v16f32, Promote);
    163   AddPromotedToType(ISD::LOAD, MVT::v16f32, MVT::v16i32);
    164 
    165   setOperationAction(ISD::LOAD, MVT::f64, Promote);
    166   AddPromotedToType(ISD::LOAD, MVT::f64, MVT::i64);
    167 
    168   setOperationAction(ISD::LOAD, MVT::v2f64, Promote);
    169   AddPromotedToType(ISD::LOAD, MVT::v2f64, MVT::v2i64);
    170 
    171   setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom);
    172   setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f32, Custom);
    173   setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i32, Custom);
    174   setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f32, Custom);
    175   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f32, Custom);
    176   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i32, Custom);
    177   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f32, Custom);
    178   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i32, Custom);
    179   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f32, Custom);
    180   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i32, Custom);
    181 
    182   // There are no 64-bit extloads. These should be done as a 32-bit extload and
    183   // an extension to 64-bit.
    184   for (MVT VT : MVT::integer_valuetypes()) {
    185     setLoadExtAction(ISD::EXTLOAD, MVT::i64, VT, Expand);
    186     setLoadExtAction(ISD::SEXTLOAD, MVT::i64, VT, Expand);
    187     setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, VT, Expand);
    188   }
    189 
    190   for (MVT VT : MVT::integer_vector_valuetypes()) {
    191     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i8, Expand);
    192     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i8, Expand);
    193     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i8, Expand);
    194     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i8, Expand);
    195     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i8, Expand);
    196     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i8, Expand);
    197     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i16, Expand);
    198     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i16, Expand);
    199     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i16, Expand);
    200     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i16, Expand);
    201     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i16, Expand);
    202     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i16, Expand);
    203   }
    204 
    205   setOperationAction(ISD::BR_CC, MVT::i1, Expand);
    206 
    207   if (Subtarget->getGeneration() < AMDGPUSubtarget::SEA_ISLANDS) {
    208     setOperationAction(ISD::FCEIL, MVT::f64, Custom);
    209     setOperationAction(ISD::FTRUNC, MVT::f64, Custom);
    210     setOperationAction(ISD::FRINT, MVT::f64, Custom);
    211     setOperationAction(ISD::FFLOOR, MVT::f64, Custom);
    212   }
    213 
    214   if (!Subtarget->hasBFI()) {
    215     // fcopysign can be done in a single instruction with BFI.
    216     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
    217     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
    218   }
    219 
    220   setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
    221 
    222   setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
    223   setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand);
    224   setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand);
    225   setLoadExtAction(ISD::EXTLOAD, MVT::v8f32, MVT::v8f16, Expand);
    226 
    227   setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
    228   setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand);
    229   setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand);
    230   setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f16, Expand);
    231 
    232   setTruncStoreAction(MVT::f32, MVT::f16, Expand);
    233   setTruncStoreAction(MVT::v2f32, MVT::v2f16, Expand);
    234   setTruncStoreAction(MVT::v4f32, MVT::v4f16, Expand);
    235   setTruncStoreAction(MVT::v8f32, MVT::v8f16, Expand);
    236 
    237   setTruncStoreAction(MVT::f64, MVT::f16, Expand);
    238   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
    239 
    240   const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 };
    241   for (MVT VT : ScalarIntVTs) {
    242     setOperationAction(ISD::SREM, VT, Expand);
    243     setOperationAction(ISD::SDIV, VT, Expand);
    244 
    245     // GPU does not have divrem function for signed or unsigned.
    246     setOperationAction(ISD::SDIVREM, VT, Custom);
    247     setOperationAction(ISD::UDIVREM, VT, Custom);
    248 
    249     // GPU does not have [S|U]MUL_LOHI functions as a single instruction.
    250     setOperationAction(ISD::SMUL_LOHI, VT, Expand);
    251     setOperationAction(ISD::UMUL_LOHI, VT, Expand);
    252 
    253     setOperationAction(ISD::BSWAP, VT, Expand);
    254     setOperationAction(ISD::CTTZ, VT, Expand);
    255     setOperationAction(ISD::CTLZ, VT, Expand);
    256   }
    257 
    258   if (!Subtarget->hasBCNT(32))
    259     setOperationAction(ISD::CTPOP, MVT::i32, Expand);
    260 
    261   if (!Subtarget->hasBCNT(64))
    262     setOperationAction(ISD::CTPOP, MVT::i64, Expand);
    263 
    264   // The hardware supports 32-bit ROTR, but not ROTL.
    265   setOperationAction(ISD::ROTL, MVT::i32, Expand);
    266   setOperationAction(ISD::ROTL, MVT::i64, Expand);
    267   setOperationAction(ISD::ROTR, MVT::i64, Expand);
    268 
    269   setOperationAction(ISD::MUL, MVT::i64, Expand);
    270   setOperationAction(ISD::MULHU, MVT::i64, Expand);
    271   setOperationAction(ISD::MULHS, MVT::i64, Expand);
    272   setOperationAction(ISD::UDIV, MVT::i32, Expand);
    273   setOperationAction(ISD::UREM, MVT::i32, Expand);
    274   setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
    275   setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
    276   setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
    277   setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
    278   setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
    279 
    280   setOperationAction(ISD::SMIN, MVT::i32, Legal);
    281   setOperationAction(ISD::UMIN, MVT::i32, Legal);
    282   setOperationAction(ISD::SMAX, MVT::i32, Legal);
    283   setOperationAction(ISD::UMAX, MVT::i32, Legal);
    284 
    285   if (!Subtarget->hasFFBH())
    286     setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand);
    287 
    288   if (!Subtarget->hasFFBL())
    289     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand);
    290 
    291   static const MVT::SimpleValueType VectorIntTypes[] = {
    292     MVT::v2i32, MVT::v4i32
    293   };
    294 
    295   for (MVT VT : VectorIntTypes) {
    296     // Expand the following operations for the current type by default.
    297     setOperationAction(ISD::ADD,  VT, Expand);
    298     setOperationAction(ISD::AND,  VT, Expand);
    299     setOperationAction(ISD::FP_TO_SINT, VT, Expand);
    300     setOperationAction(ISD::FP_TO_UINT, VT, Expand);
    301     setOperationAction(ISD::MUL,  VT, Expand);
    302     setOperationAction(ISD::OR,   VT, Expand);
    303     setOperationAction(ISD::SHL,  VT, Expand);
    304     setOperationAction(ISD::SRA,  VT, Expand);
    305     setOperationAction(ISD::SRL,  VT, Expand);
    306     setOperationAction(ISD::ROTL, VT, Expand);
    307     setOperationAction(ISD::ROTR, VT, Expand);
    308     setOperationAction(ISD::SUB,  VT, Expand);
    309     setOperationAction(ISD::SINT_TO_FP, VT, Expand);
    310     setOperationAction(ISD::UINT_TO_FP, VT, Expand);
    311     setOperationAction(ISD::SDIV, VT, Expand);
    312     setOperationAction(ISD::UDIV, VT, Expand);
    313     setOperationAction(ISD::SREM, VT, Expand);
    314     setOperationAction(ISD::UREM, VT, Expand);
    315     setOperationAction(ISD::SMUL_LOHI, VT, Expand);
    316     setOperationAction(ISD::UMUL_LOHI, VT, Expand);
    317     setOperationAction(ISD::SDIVREM, VT, Custom);
    318     setOperationAction(ISD::UDIVREM, VT, Expand);
    319     setOperationAction(ISD::ADDC, VT, Expand);
    320     setOperationAction(ISD::SUBC, VT, Expand);
    321     setOperationAction(ISD::ADDE, VT, Expand);
    322     setOperationAction(ISD::SUBE, VT, Expand);
    323     setOperationAction(ISD::SELECT, VT, Expand);
    324     setOperationAction(ISD::VSELECT, VT, Expand);
    325     setOperationAction(ISD::SELECT_CC, VT, Expand);
    326     setOperationAction(ISD::XOR,  VT, Expand);
    327     setOperationAction(ISD::BSWAP, VT, Expand);
    328     setOperationAction(ISD::CTPOP, VT, Expand);
    329     setOperationAction(ISD::CTTZ, VT, Expand);
    330     setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand);
    331     setOperationAction(ISD::CTLZ, VT, Expand);
    332     setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand);
    333     setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand);
    334   }
    335 
    336   static const MVT::SimpleValueType FloatVectorTypes[] = {
    337     MVT::v2f32, MVT::v4f32
    338   };
    339 
    340   for (MVT VT : FloatVectorTypes) {
    341     setOperationAction(ISD::FABS, VT, Expand);
    342     setOperationAction(ISD::FMINNUM, VT, Expand);
    343     setOperationAction(ISD::FMAXNUM, VT, Expand);
    344     setOperationAction(ISD::FADD, VT, Expand);
    345     setOperationAction(ISD::FCEIL, VT, Expand);
    346     setOperationAction(ISD::FCOS, VT, Expand);
    347     setOperationAction(ISD::FDIV, VT, Expand);
    348     setOperationAction(ISD::FEXP2, VT, Expand);
    349     setOperationAction(ISD::FLOG2, VT, Expand);
    350     setOperationAction(ISD::FREM, VT, Expand);
    351     setOperationAction(ISD::FPOW, VT, Expand);
    352     setOperationAction(ISD::FFLOOR, VT, Expand);
    353     setOperationAction(ISD::FTRUNC, VT, Expand);
    354     setOperationAction(ISD::FMUL, VT, Expand);
    355     setOperationAction(ISD::FMA, VT, Expand);
    356     setOperationAction(ISD::FRINT, VT, Expand);
    357     setOperationAction(ISD::FNEARBYINT, VT, Expand);
    358     setOperationAction(ISD::FSQRT, VT, Expand);
    359     setOperationAction(ISD::FSIN, VT, Expand);
    360     setOperationAction(ISD::FSUB, VT, Expand);
    361     setOperationAction(ISD::FNEG, VT, Expand);
    362     setOperationAction(ISD::SELECT, VT, Expand);
    363     setOperationAction(ISD::VSELECT, VT, Expand);
    364     setOperationAction(ISD::SELECT_CC, VT, Expand);
    365     setOperationAction(ISD::FCOPYSIGN, VT, Expand);
    366     setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand);
    367   }
    368 
    369   setOperationAction(ISD::FNEARBYINT, MVT::f32, Custom);
    370   setOperationAction(ISD::FNEARBYINT, MVT::f64, Custom);
    371 
    372   setTargetDAGCombine(ISD::SHL);
    373   setTargetDAGCombine(ISD::MUL);
    374   setTargetDAGCombine(ISD::SELECT);
    375   setTargetDAGCombine(ISD::SELECT_CC);
    376   setTargetDAGCombine(ISD::STORE);
    377 
    378   setTargetDAGCombine(ISD::FADD);
    379   setTargetDAGCombine(ISD::FSUB);
    380 
    381   setBooleanContents(ZeroOrNegativeOneBooleanContent);
    382   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
    383 
    384   setSchedulingPreference(Sched::RegPressure);
    385   setJumpIsExpensive(true);
    386 
    387   // SI at least has hardware support for floating point exceptions, but no way
    388   // of using or handling them is implemented. They are also optional in OpenCL
    389   // (Section 7.3)
    390   setHasFloatingPointExceptions(false);
    391 
    392   setSelectIsExpensive(false);
    393   PredictableSelectIsExpensive = false;
    394 
    395   setFsqrtIsCheap(true);
    396 
    397   // We want to find all load dependencies for long chains of stores to enable
    398   // merging into very wide vectors. The problem is with vectors with > 4
    399   // elements. MergeConsecutiveStores will attempt to merge these because x8/x16
    400   // vectors are a legal type, even though we have to split the loads
    401   // usually. When we can more precisely specify load legality per address
    402   // space, we should be able to make FindBetterChain/MergeConsecutiveStores
    403   // smarter so that they can figure out what to do in 2 iterations without all
    404   // N > 4 stores on the same chain.
    405   GatherAllAliasesMaxDepth = 16;
    406 
    407   // FIXME: Need to really handle these.
    408   MaxStoresPerMemcpy  = 4096;
    409   MaxStoresPerMemmove = 4096;
    410   MaxStoresPerMemset  = 4096;
    411 }
    412 
    413 //===----------------------------------------------------------------------===//
    414 // Target Information
    415 //===----------------------------------------------------------------------===//
    416 
    417 MVT AMDGPUTargetLowering::getVectorIdxTy(const DataLayout &) const {
    418   return MVT::i32;
    419 }
    420 
    421 bool AMDGPUTargetLowering::isSelectSupported(SelectSupportKind SelType) const {
    422   return true;
    423 }
    424 
    425 // The backend supports 32 and 64 bit floating point immediates.
    426 // FIXME: Why are we reporting vectors of FP immediates as legal?
    427 bool AMDGPUTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
    428   EVT ScalarVT = VT.getScalarType();
    429   return (ScalarVT == MVT::f32 || ScalarVT == MVT::f64);
    430 }
    431 
    432 // We don't want to shrink f64 / f32 constants.
    433 bool AMDGPUTargetLowering::ShouldShrinkFPConstant(EVT VT) const {
    434   EVT ScalarVT = VT.getScalarType();
    435   return (ScalarVT != MVT::f32 && ScalarVT != MVT::f64);
    436 }
    437 
    438 bool AMDGPUTargetLowering::shouldReduceLoadWidth(SDNode *N,
    439                                                  ISD::LoadExtType,
    440                                                  EVT NewVT) const {
    441 
    442   unsigned NewSize = NewVT.getStoreSizeInBits();
    443 
    444   // If we are reducing to a 32-bit load, this is always better.
    445   if (NewSize == 32)
    446     return true;
    447 
    448   EVT OldVT = N->getValueType(0);
    449   unsigned OldSize = OldVT.getStoreSizeInBits();
    450 
    451   // Don't produce extloads from sub 32-bit types. SI doesn't have scalar
    452   // extloads, so doing one requires using a buffer_load. In cases where we
    453   // still couldn't use a scalar load, using the wider load shouldn't really
    454   // hurt anything.
    455 
    456   // If the old size already had to be an extload, there's no harm in continuing
    457   // to reduce the width.
    458   return (OldSize < 32);
    459 }
    460 
    461 bool AMDGPUTargetLowering::isLoadBitCastBeneficial(EVT LoadTy,
    462                                                    EVT CastTy) const {
    463   if (LoadTy.getSizeInBits() != CastTy.getSizeInBits())
    464     return true;
    465 
    466   unsigned LScalarSize = LoadTy.getScalarType().getSizeInBits();
    467   unsigned CastScalarSize = CastTy.getScalarType().getSizeInBits();
    468 
    469   return ((LScalarSize <= CastScalarSize) ||
    470           (CastScalarSize >= 32) ||
    471           (LScalarSize < 32));
    472 }
    473 
    474 // SI+ has instructions for cttz / ctlz for 32-bit values. This is probably also
    475 // profitable with the expansion for 64-bit since it's generally good to
    476 // speculate things.
    477 // FIXME: These should really have the size as a parameter.
    478 bool AMDGPUTargetLowering::isCheapToSpeculateCttz() const {
    479   return true;
    480 }
    481 
    482 bool AMDGPUTargetLowering::isCheapToSpeculateCtlz() const {
    483   return true;
    484 }
    485 
    486 //===---------------------------------------------------------------------===//
    487 // Target Properties
    488 //===---------------------------------------------------------------------===//
    489 
    490 bool AMDGPUTargetLowering::isFAbsFree(EVT VT) const {
    491   assert(VT.isFloatingPoint());
    492   return VT == MVT::f32 || VT == MVT::f64;
    493 }
    494 
    495 bool AMDGPUTargetLowering::isFNegFree(EVT VT) const {
    496   assert(VT.isFloatingPoint());
    497   return VT == MVT::f32 || VT == MVT::f64;
    498 }
    499 
    500 bool AMDGPUTargetLowering:: storeOfVectorConstantIsCheap(EVT MemVT,
    501                                                          unsigned NumElem,
    502                                                          unsigned AS) const {
    503   return true;
    504 }
    505 
    506 bool AMDGPUTargetLowering::aggressivelyPreferBuildVectorSources(EVT VecVT) const {
    507   // There are few operations which truly have vector input operands. Any vector
    508   // operation is going to involve operations on each component, and a
    509   // build_vector will be a copy per element, so it always makes sense to use a
    510   // build_vector input in place of the extracted element to avoid a copy into a
    511   // super register.
    512   //
    513   // We should probably only do this if all users are extracts only, but this
    514   // should be the common case.
    515   return true;
    516 }
    517 
    518 bool AMDGPUTargetLowering::isTruncateFree(EVT Source, EVT Dest) const {
    519   // Truncate is just accessing a subregister.
    520   return Dest.bitsLT(Source) && (Dest.getSizeInBits() % 32 == 0);
    521 }
    522 
    523 bool AMDGPUTargetLowering::isTruncateFree(Type *Source, Type *Dest) const {
    524   // Truncate is just accessing a subregister.
    525   return Dest->getPrimitiveSizeInBits() < Source->getPrimitiveSizeInBits() &&
    526          (Dest->getPrimitiveSizeInBits() % 32 == 0);
    527 }
    528 
    529 bool AMDGPUTargetLowering::isZExtFree(Type *Src, Type *Dest) const {
    530   unsigned SrcSize = Src->getScalarSizeInBits();
    531   unsigned DestSize = Dest->getScalarSizeInBits();
    532 
    533   return SrcSize == 32 && DestSize == 64;
    534 }
    535 
    536 bool AMDGPUTargetLowering::isZExtFree(EVT Src, EVT Dest) const {
    537   // Any register load of a 64-bit value really requires 2 32-bit moves. For all
    538   // practical purposes, the extra mov 0 to load a 64-bit is free.  As used,
    539   // this will enable reducing 64-bit operations the 32-bit, which is always
    540   // good.
    541   return Src == MVT::i32 && Dest == MVT::i64;
    542 }
    543 
    544 bool AMDGPUTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
    545   return isZExtFree(Val.getValueType(), VT2);
    546 }
    547 
    548 bool AMDGPUTargetLowering::isNarrowingProfitable(EVT SrcVT, EVT DestVT) const {
    549   // There aren't really 64-bit registers, but pairs of 32-bit ones and only a
    550   // limited number of native 64-bit operations. Shrinking an operation to fit
    551   // in a single 32-bit register should always be helpful. As currently used,
    552   // this is much less general than the name suggests, and is only used in
    553   // places trying to reduce the sizes of loads. Shrinking loads to < 32-bits is
    554   // not profitable, and may actually be harmful.
    555   return SrcVT.getSizeInBits() > 32 && DestVT.getSizeInBits() == 32;
    556 }
    557 
    558 //===---------------------------------------------------------------------===//
    559 // TargetLowering Callbacks
    560 //===---------------------------------------------------------------------===//
    561 
    562 void AMDGPUTargetLowering::AnalyzeFormalArguments(CCState &State,
    563                              const SmallVectorImpl<ISD::InputArg> &Ins) const {
    564 
    565   State.AnalyzeFormalArguments(Ins, CC_AMDGPU);
    566 }
    567 
    568 SDValue AMDGPUTargetLowering::LowerReturn(
    569                                      SDValue Chain,
    570                                      CallingConv::ID CallConv,
    571                                      bool isVarArg,
    572                                      const SmallVectorImpl<ISD::OutputArg> &Outs,
    573                                      const SmallVectorImpl<SDValue> &OutVals,
    574                                      SDLoc DL, SelectionDAG &DAG) const {
    575   return DAG.getNode(AMDGPUISD::RET_FLAG, DL, MVT::Other, Chain);
    576 }
    577 
    578 //===---------------------------------------------------------------------===//
    579 // Target specific lowering
    580 //===---------------------------------------------------------------------===//
    581 
    582 SDValue AMDGPUTargetLowering::LowerCall(CallLoweringInfo &CLI,
    583                                         SmallVectorImpl<SDValue> &InVals) const {
    584   SDValue Callee = CLI.Callee;
    585   SelectionDAG &DAG = CLI.DAG;
    586 
    587   const Function &Fn = *DAG.getMachineFunction().getFunction();
    588 
    589   StringRef FuncName("<unknown>");
    590 
    591   if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Callee))
    592     FuncName = G->getSymbol();
    593   else if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
    594     FuncName = G->getGlobal()->getName();
    595 
    596   DiagnosticInfoUnsupported NoCalls(Fn, "call to function " + FuncName);
    597   DAG.getContext()->diagnose(NoCalls);
    598   return SDValue();
    599 }
    600 
    601 SDValue AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
    602                                                       SelectionDAG &DAG) const {
    603   const Function &Fn = *DAG.getMachineFunction().getFunction();
    604 
    605   DiagnosticInfoUnsupported NoDynamicAlloca(Fn, "dynamic alloca");
    606   DAG.getContext()->diagnose(NoDynamicAlloca);
    607   return SDValue();
    608 }
    609 
    610 SDValue AMDGPUTargetLowering::LowerOperation(SDValue Op,
    611                                              SelectionDAG &DAG) const {
    612   switch (Op.getOpcode()) {
    613   default:
    614     Op.getNode()->dump();
    615     llvm_unreachable("Custom lowering code for this"
    616                      "instruction is not implemented yet!");
    617     break;
    618   case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG);
    619   case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
    620   case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG);
    621   case ISD::FrameIndex: return LowerFrameIndex(Op, DAG);
    622   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
    623   case ISD::UDIVREM: return LowerUDIVREM(Op, DAG);
    624   case ISD::SDIVREM: return LowerSDIVREM(Op, DAG);
    625   case ISD::FREM: return LowerFREM(Op, DAG);
    626   case ISD::FCEIL: return LowerFCEIL(Op, DAG);
    627   case ISD::FTRUNC: return LowerFTRUNC(Op, DAG);
    628   case ISD::FRINT: return LowerFRINT(Op, DAG);
    629   case ISD::FNEARBYINT: return LowerFNEARBYINT(Op, DAG);
    630   case ISD::FROUND: return LowerFROUND(Op, DAG);
    631   case ISD::FFLOOR: return LowerFFLOOR(Op, DAG);
    632   case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG);
    633   case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG);
    634   case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG);
    635   case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG);
    636   case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
    637   }
    638   return Op;
    639 }
    640 
    641 void AMDGPUTargetLowering::ReplaceNodeResults(SDNode *N,
    642                                               SmallVectorImpl<SDValue> &Results,
    643                                               SelectionDAG &DAG) const {
    644   switch (N->getOpcode()) {
    645   case ISD::SIGN_EXTEND_INREG:
    646     // Different parts of legalization seem to interpret which type of
    647     // sign_extend_inreg is the one to check for custom lowering. The extended
    648     // from type is what really matters, but some places check for custom
    649     // lowering of the result type. This results in trying to use
    650     // ReplaceNodeResults to sext_in_reg to an illegal type, so we'll just do
    651     // nothing here and let the illegal result integer be handled normally.
    652     return;
    653   case ISD::LOAD: {
    654     SDNode *Node = LowerLOAD(SDValue(N, 0), DAG).getNode();
    655     if (!Node)
    656       return;
    657 
    658     Results.push_back(SDValue(Node, 0));
    659     Results.push_back(SDValue(Node, 1));
    660     // XXX: LLVM seems not to replace Chain Value inside CustomWidenLowerNode
    661     // function
    662     DAG.ReplaceAllUsesOfValueWith(SDValue(N,1), SDValue(Node, 1));
    663     return;
    664   }
    665   case ISD::STORE: {
    666     SDValue Lowered = LowerSTORE(SDValue(N, 0), DAG);
    667     if (Lowered.getNode())
    668       Results.push_back(Lowered);
    669     return;
    670   }
    671   default:
    672     return;
    673   }
    674 }
    675 
    676 // FIXME: This implements accesses to initialized globals in the constant
    677 // address space by copying them to private and accessing that. It does not
    678 // properly handle illegal types or vectors. The private vector loads are not
    679 // scalarized, and the illegal scalars hit an assertion. This technique will not
    680 // work well with large initializers, and this should eventually be
    681 // removed. Initialized globals should be placed into a data section that the
    682 // runtime will load into a buffer before the kernel is executed. Uses of the
    683 // global need to be replaced with a pointer loaded from an implicit kernel
    684 // argument into this buffer holding the copy of the data, which will remove the
    685 // need for any of this.
    686 SDValue AMDGPUTargetLowering::LowerConstantInitializer(const Constant* Init,
    687                                                        const GlobalValue *GV,
    688                                                        const SDValue &InitPtr,
    689                                                        SDValue Chain,
    690                                                        SelectionDAG &DAG) const {
    691   const DataLayout &TD = DAG.getDataLayout();
    692   SDLoc DL(InitPtr);
    693   Type *InitTy = Init->getType();
    694 
    695   if (const ConstantInt *CI = dyn_cast<ConstantInt>(Init)) {
    696     EVT VT = EVT::getEVT(InitTy);
    697     PointerType *PtrTy = PointerType::get(InitTy, AMDGPUAS::PRIVATE_ADDRESS);
    698     return DAG.getStore(Chain, DL, DAG.getConstant(*CI, DL, VT), InitPtr,
    699                         MachinePointerInfo(UndefValue::get(PtrTy)), false,
    700                         false, TD.getPrefTypeAlignment(InitTy));
    701   }
    702 
    703   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(Init)) {
    704     EVT VT = EVT::getEVT(CFP->getType());
    705     PointerType *PtrTy = PointerType::get(CFP->getType(), 0);
    706     return DAG.getStore(Chain, DL, DAG.getConstantFP(*CFP, DL, VT), InitPtr,
    707                         MachinePointerInfo(UndefValue::get(PtrTy)), false,
    708                         false, TD.getPrefTypeAlignment(CFP->getType()));
    709   }
    710 
    711   if (StructType *ST = dyn_cast<StructType>(InitTy)) {
    712     const StructLayout *SL = TD.getStructLayout(ST);
    713 
    714     EVT PtrVT = InitPtr.getValueType();
    715     SmallVector<SDValue, 8> Chains;
    716 
    717     for (unsigned I = 0, N = ST->getNumElements(); I != N; ++I) {
    718       SDValue Offset = DAG.getConstant(SL->getElementOffset(I), DL, PtrVT);
    719       SDValue Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, InitPtr, Offset);
    720 
    721       Constant *Elt = Init->getAggregateElement(I);
    722       Chains.push_back(LowerConstantInitializer(Elt, GV, Ptr, Chain, DAG));
    723     }
    724 
    725     return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
    726   }
    727 
    728   if (SequentialType *SeqTy = dyn_cast<SequentialType>(InitTy)) {
    729     EVT PtrVT = InitPtr.getValueType();
    730 
    731     unsigned NumElements;
    732     if (ArrayType *AT = dyn_cast<ArrayType>(SeqTy))
    733       NumElements = AT->getNumElements();
    734     else if (VectorType *VT = dyn_cast<VectorType>(SeqTy))
    735       NumElements = VT->getNumElements();
    736     else
    737       llvm_unreachable("Unexpected type");
    738 
    739     unsigned EltSize = TD.getTypeAllocSize(SeqTy->getElementType());
    740     SmallVector<SDValue, 8> Chains;
    741     for (unsigned i = 0; i < NumElements; ++i) {
    742       SDValue Offset = DAG.getConstant(i * EltSize, DL, PtrVT);
    743       SDValue Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, InitPtr, Offset);
    744 
    745       Constant *Elt = Init->getAggregateElement(i);
    746       Chains.push_back(LowerConstantInitializer(Elt, GV, Ptr, Chain, DAG));
    747     }
    748 
    749     return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
    750   }
    751 
    752   if (isa<UndefValue>(Init)) {
    753     EVT VT = EVT::getEVT(InitTy);
    754     PointerType *PtrTy = PointerType::get(InitTy, AMDGPUAS::PRIVATE_ADDRESS);
    755     return DAG.getStore(Chain, DL, DAG.getUNDEF(VT), InitPtr,
    756                         MachinePointerInfo(UndefValue::get(PtrTy)), false,
    757                         false, TD.getPrefTypeAlignment(InitTy));
    758   }
    759 
    760   Init->dump();
    761   llvm_unreachable("Unhandled constant initializer");
    762 }
    763 
    764 static bool hasDefinedInitializer(const GlobalValue *GV) {
    765   const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
    766   if (!GVar || !GVar->hasInitializer())
    767     return false;
    768 
    769   if (isa<UndefValue>(GVar->getInitializer()))
    770     return false;
    771 
    772   return true;
    773 }
    774 
    775 SDValue AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction* MFI,
    776                                                  SDValue Op,
    777                                                  SelectionDAG &DAG) const {
    778 
    779   const DataLayout &DL = DAG.getDataLayout();
    780   GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Op);
    781   const GlobalValue *GV = G->getGlobal();
    782 
    783   switch (G->getAddressSpace()) {
    784   case AMDGPUAS::LOCAL_ADDRESS: {
    785     // XXX: What does the value of G->getOffset() mean?
    786     assert(G->getOffset() == 0 &&
    787          "Do not know what to do with an non-zero offset");
    788 
    789     // TODO: We could emit code to handle the initialization somewhere.
    790     if (hasDefinedInitializer(GV))
    791       break;
    792 
    793     unsigned Offset;
    794     if (MFI->LocalMemoryObjects.count(GV) == 0) {
    795       uint64_t Size = DL.getTypeAllocSize(GV->getType()->getElementType());
    796       Offset = MFI->LDSSize;
    797       MFI->LocalMemoryObjects[GV] = Offset;
    798       // XXX: Account for alignment?
    799       MFI->LDSSize += Size;
    800     } else {
    801       Offset = MFI->LocalMemoryObjects[GV];
    802     }
    803 
    804     return DAG.getConstant(Offset, SDLoc(Op),
    805                            getPointerTy(DL, AMDGPUAS::LOCAL_ADDRESS));
    806   }
    807   case AMDGPUAS::CONSTANT_ADDRESS: {
    808     MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
    809     Type *EltType = GV->getType()->getElementType();
    810     unsigned Size = DL.getTypeAllocSize(EltType);
    811     unsigned Alignment = DL.getPrefTypeAlignment(EltType);
    812 
    813     MVT PrivPtrVT = getPointerTy(DL, AMDGPUAS::PRIVATE_ADDRESS);
    814     MVT ConstPtrVT = getPointerTy(DL, AMDGPUAS::CONSTANT_ADDRESS);
    815 
    816     int FI = FrameInfo->CreateStackObject(Size, Alignment, false);
    817     SDValue InitPtr = DAG.getFrameIndex(FI, PrivPtrVT);
    818 
    819     const GlobalVariable *Var = cast<GlobalVariable>(GV);
    820     if (!Var->hasInitializer()) {
    821       // This has no use, but bugpoint will hit it.
    822       return DAG.getZExtOrTrunc(InitPtr, SDLoc(Op), ConstPtrVT);
    823     }
    824 
    825     const Constant *Init = Var->getInitializer();
    826     SmallVector<SDNode*, 8> WorkList;
    827 
    828     for (SDNode::use_iterator I = DAG.getEntryNode()->use_begin(),
    829                               E = DAG.getEntryNode()->use_end(); I != E; ++I) {
    830       if (I->getOpcode() != AMDGPUISD::REGISTER_LOAD && I->getOpcode() != ISD::LOAD)
    831         continue;
    832       WorkList.push_back(*I);
    833     }
    834     SDValue Chain = LowerConstantInitializer(Init, GV, InitPtr, DAG.getEntryNode(), DAG);
    835     for (SmallVector<SDNode*, 8>::iterator I = WorkList.begin(),
    836                                            E = WorkList.end(); I != E; ++I) {
    837       SmallVector<SDValue, 8> Ops;
    838       Ops.push_back(Chain);
    839       for (unsigned i = 1; i < (*I)->getNumOperands(); ++i) {
    840         Ops.push_back((*I)->getOperand(i));
    841       }
    842       DAG.UpdateNodeOperands(*I, Ops);
    843     }
    844     return DAG.getZExtOrTrunc(InitPtr, SDLoc(Op), ConstPtrVT);
    845   }
    846   }
    847 
    848   const Function &Fn = *DAG.getMachineFunction().getFunction();
    849   DiagnosticInfoUnsupported BadInit(Fn,
    850                                     "initializer for address space");
    851   DAG.getContext()->diagnose(BadInit);
    852   return SDValue();
    853 }
    854 
    855 SDValue AMDGPUTargetLowering::LowerCONCAT_VECTORS(SDValue Op,
    856                                                   SelectionDAG &DAG) const {
    857   SmallVector<SDValue, 8> Args;
    858 
    859   for (const SDUse &U : Op->ops())
    860     DAG.ExtractVectorElements(U.get(), Args);
    861 
    862   return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(Op), Op.getValueType(), Args);
    863 }
    864 
    865 SDValue AMDGPUTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op,
    866                                                      SelectionDAG &DAG) const {
    867 
    868   SmallVector<SDValue, 8> Args;
    869   unsigned Start = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
    870   EVT VT = Op.getValueType();
    871   DAG.ExtractVectorElements(Op.getOperand(0), Args, Start,
    872                             VT.getVectorNumElements());
    873 
    874   return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(Op), Op.getValueType(), Args);
    875 }
    876 
    877 SDValue AMDGPUTargetLowering::LowerFrameIndex(SDValue Op,
    878                                               SelectionDAG &DAG) const {
    879 
    880   MachineFunction &MF = DAG.getMachineFunction();
    881   const AMDGPUFrameLowering *TFL = Subtarget->getFrameLowering();
    882 
    883   FrameIndexSDNode *FIN = cast<FrameIndexSDNode>(Op);
    884 
    885   unsigned FrameIndex = FIN->getIndex();
    886   unsigned IgnoredFrameReg;
    887   unsigned Offset =
    888       TFL->getFrameIndexReference(MF, FrameIndex, IgnoredFrameReg);
    889   return DAG.getConstant(Offset * 4 * TFL->getStackWidth(MF), SDLoc(Op),
    890                          Op.getValueType());
    891 }
    892 
    893 SDValue AMDGPUTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
    894     SelectionDAG &DAG) const {
    895   unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
    896   SDLoc DL(Op);
    897   EVT VT = Op.getValueType();
    898 
    899   switch (IntrinsicID) {
    900     default: return Op;
    901     case AMDGPUIntrinsic::AMDGPU_abs:
    902     case AMDGPUIntrinsic::AMDIL_abs: // Legacy name.
    903       return LowerIntrinsicIABS(Op, DAG);
    904     case AMDGPUIntrinsic::AMDGPU_lrp:
    905       return LowerIntrinsicLRP(Op, DAG);
    906 
    907     case AMDGPUIntrinsic::AMDGPU_clamp:
    908     case AMDGPUIntrinsic::AMDIL_clamp: // Legacy name.
    909       return DAG.getNode(AMDGPUISD::CLAMP, DL, VT,
    910                          Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
    911 
    912     case Intrinsic::AMDGPU_div_scale: {
    913       // 3rd parameter required to be a constant.
    914       const ConstantSDNode *Param = dyn_cast<ConstantSDNode>(Op.getOperand(3));
    915       if (!Param)
    916         return DAG.getUNDEF(VT);
    917 
    918       // Translate to the operands expected by the machine instruction. The
    919       // first parameter must be the same as the first instruction.
    920       SDValue Numerator = Op.getOperand(1);
    921       SDValue Denominator = Op.getOperand(2);
    922 
    923       // Note this order is opposite of the machine instruction's operations,
    924       // which is s0.f = Quotient, s1.f = Denominator, s2.f = Numerator. The
    925       // intrinsic has the numerator as the first operand to match a normal
    926       // division operation.
    927 
    928       SDValue Src0 = Param->isAllOnesValue() ? Numerator : Denominator;
    929 
    930       return DAG.getNode(AMDGPUISD::DIV_SCALE, DL, Op->getVTList(), Src0,
    931                          Denominator, Numerator);
    932     }
    933 
    934     case Intrinsic::AMDGPU_div_fmas:
    935       return DAG.getNode(AMDGPUISD::DIV_FMAS, DL, VT,
    936                          Op.getOperand(1), Op.getOperand(2), Op.getOperand(3),
    937                          Op.getOperand(4));
    938 
    939     case Intrinsic::AMDGPU_div_fixup:
    940       return DAG.getNode(AMDGPUISD::DIV_FIXUP, DL, VT,
    941                          Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
    942 
    943     case Intrinsic::AMDGPU_trig_preop:
    944       return DAG.getNode(AMDGPUISD::TRIG_PREOP, DL, VT,
    945                          Op.getOperand(1), Op.getOperand(2));
    946 
    947     case Intrinsic::AMDGPU_rcp:
    948       return DAG.getNode(AMDGPUISD::RCP, DL, VT, Op.getOperand(1));
    949 
    950     case Intrinsic::AMDGPU_rsq:
    951       return DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1));
    952 
    953     case AMDGPUIntrinsic::AMDGPU_legacy_rsq:
    954       return DAG.getNode(AMDGPUISD::RSQ_LEGACY, DL, VT, Op.getOperand(1));
    955 
    956     case Intrinsic::AMDGPU_rsq_clamped:
    957       if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) {
    958         Type *Type = VT.getTypeForEVT(*DAG.getContext());
    959         APFloat Max = APFloat::getLargest(Type->getFltSemantics());
    960         APFloat Min = APFloat::getLargest(Type->getFltSemantics(), true);
    961 
    962         SDValue Rsq = DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1));
    963         SDValue Tmp = DAG.getNode(ISD::FMINNUM, DL, VT, Rsq,
    964                                   DAG.getConstantFP(Max, DL, VT));
    965         return DAG.getNode(ISD::FMAXNUM, DL, VT, Tmp,
    966                            DAG.getConstantFP(Min, DL, VT));
    967       } else {
    968         return DAG.getNode(AMDGPUISD::RSQ_CLAMPED, DL, VT, Op.getOperand(1));
    969       }
    970 
    971     case Intrinsic::AMDGPU_ldexp:
    972       return DAG.getNode(AMDGPUISD::LDEXP, DL, VT, Op.getOperand(1),
    973                                                    Op.getOperand(2));
    974 
    975     case AMDGPUIntrinsic::AMDGPU_imax:
    976       return DAG.getNode(ISD::SMAX, DL, VT, Op.getOperand(1),
    977                                             Op.getOperand(2));
    978     case AMDGPUIntrinsic::AMDGPU_umax:
    979       return DAG.getNode(ISD::UMAX, DL, VT, Op.getOperand(1),
    980                                             Op.getOperand(2));
    981     case AMDGPUIntrinsic::AMDGPU_imin:
    982       return DAG.getNode(ISD::SMIN, DL, VT, Op.getOperand(1),
    983                                             Op.getOperand(2));
    984     case AMDGPUIntrinsic::AMDGPU_umin:
    985       return DAG.getNode(ISD::UMIN, DL, VT, Op.getOperand(1),
    986                                             Op.getOperand(2));
    987 
    988     case AMDGPUIntrinsic::AMDGPU_umul24:
    989       return DAG.getNode(AMDGPUISD::MUL_U24, DL, VT,
    990                          Op.getOperand(1), Op.getOperand(2));
    991 
    992     case AMDGPUIntrinsic::AMDGPU_imul24:
    993       return DAG.getNode(AMDGPUISD::MUL_I24, DL, VT,
    994                          Op.getOperand(1), Op.getOperand(2));
    995 
    996     case AMDGPUIntrinsic::AMDGPU_umad24:
    997       return DAG.getNode(AMDGPUISD::MAD_U24, DL, VT,
    998                          Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
    999 
   1000     case AMDGPUIntrinsic::AMDGPU_imad24:
   1001       return DAG.getNode(AMDGPUISD::MAD_I24, DL, VT,
   1002                          Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
   1003 
   1004     case AMDGPUIntrinsic::AMDGPU_cvt_f32_ubyte0:
   1005       return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0, DL, VT, Op.getOperand(1));
   1006 
   1007     case AMDGPUIntrinsic::AMDGPU_cvt_f32_ubyte1:
   1008       return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE1, DL, VT, Op.getOperand(1));
   1009 
   1010     case AMDGPUIntrinsic::AMDGPU_cvt_f32_ubyte2:
   1011       return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE2, DL, VT, Op.getOperand(1));
   1012 
   1013     case AMDGPUIntrinsic::AMDGPU_cvt_f32_ubyte3:
   1014       return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE3, DL, VT, Op.getOperand(1));
   1015 
   1016     case AMDGPUIntrinsic::AMDGPU_bfe_i32:
   1017       return DAG.getNode(AMDGPUISD::BFE_I32, DL, VT,
   1018                          Op.getOperand(1),
   1019                          Op.getOperand(2),
   1020                          Op.getOperand(3));
   1021 
   1022     case AMDGPUIntrinsic::AMDGPU_bfe_u32:
   1023       return DAG.getNode(AMDGPUISD::BFE_U32, DL, VT,
   1024                          Op.getOperand(1),
   1025                          Op.getOperand(2),
   1026                          Op.getOperand(3));
   1027 
   1028     case AMDGPUIntrinsic::AMDGPU_bfi:
   1029       return DAG.getNode(AMDGPUISD::BFI, DL, VT,
   1030                          Op.getOperand(1),
   1031                          Op.getOperand(2),
   1032                          Op.getOperand(3));
   1033 
   1034     case AMDGPUIntrinsic::AMDGPU_bfm:
   1035       return DAG.getNode(AMDGPUISD::BFM, DL, VT,
   1036                          Op.getOperand(1),
   1037                          Op.getOperand(2));
   1038 
   1039   case Intrinsic::AMDGPU_class:
   1040     return DAG.getNode(AMDGPUISD::FP_CLASS, DL, VT,
   1041                        Op.getOperand(1), Op.getOperand(2));
   1042 
   1043     case AMDGPUIntrinsic::AMDIL_exp: // Legacy name.
   1044       return DAG.getNode(ISD::FEXP2, DL, VT, Op.getOperand(1));
   1045 
   1046     case AMDGPUIntrinsic::AMDIL_round_nearest: // Legacy name.
   1047       return DAG.getNode(ISD::FRINT, DL, VT, Op.getOperand(1));
   1048     case AMDGPUIntrinsic::AMDGPU_trunc: // Legacy name.
   1049       return DAG.getNode(ISD::FTRUNC, DL, VT, Op.getOperand(1));
   1050     case AMDGPUIntrinsic::AMDGPU_brev: // Legacy name
   1051       return DAG.getNode(ISD::BITREVERSE, DL, VT, Op.getOperand(1));
   1052   }
   1053 }
   1054 
   1055 ///IABS(a) = SMAX(sub(0, a), a)
   1056 SDValue AMDGPUTargetLowering::LowerIntrinsicIABS(SDValue Op,
   1057                                                  SelectionDAG &DAG) const {
   1058   SDLoc DL(Op);
   1059   EVT VT = Op.getValueType();
   1060   SDValue Neg = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT),
   1061                             Op.getOperand(1));
   1062 
   1063   return DAG.getNode(ISD::SMAX, DL, VT, Neg, Op.getOperand(1));
   1064 }
   1065 
   1066 /// Linear Interpolation
   1067 /// LRP(a, b, c) = muladd(a,  b, (1 - a) * c)
   1068 SDValue AMDGPUTargetLowering::LowerIntrinsicLRP(SDValue Op,
   1069                                                 SelectionDAG &DAG) const {
   1070   SDLoc DL(Op);
   1071   EVT VT = Op.getValueType();
   1072   // TODO: Should this propagate fast-math-flags?
   1073   SDValue OneSubA = DAG.getNode(ISD::FSUB, DL, VT,
   1074                                 DAG.getConstantFP(1.0f, DL, MVT::f32),
   1075                                 Op.getOperand(1));
   1076   SDValue OneSubAC = DAG.getNode(ISD::FMUL, DL, VT, OneSubA,
   1077                                                     Op.getOperand(3));
   1078   return DAG.getNode(ISD::FADD, DL, VT,
   1079       DAG.getNode(ISD::FMUL, DL, VT, Op.getOperand(1), Op.getOperand(2)),
   1080       OneSubAC);
   1081 }
   1082 
   1083 /// \brief Generate Min/Max node
   1084 SDValue AMDGPUTargetLowering::CombineFMinMaxLegacy(SDLoc DL,
   1085                                                    EVT VT,
   1086                                                    SDValue LHS,
   1087                                                    SDValue RHS,
   1088                                                    SDValue True,
   1089                                                    SDValue False,
   1090                                                    SDValue CC,
   1091                                                    DAGCombinerInfo &DCI) const {
   1092   if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
   1093     return SDValue();
   1094 
   1095   if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True))
   1096     return SDValue();
   1097 
   1098   SelectionDAG &DAG = DCI.DAG;
   1099   ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get();
   1100   switch (CCOpcode) {
   1101   case ISD::SETOEQ:
   1102   case ISD::SETONE:
   1103   case ISD::SETUNE:
   1104   case ISD::SETNE:
   1105   case ISD::SETUEQ:
   1106   case ISD::SETEQ:
   1107   case ISD::SETFALSE:
   1108   case ISD::SETFALSE2:
   1109   case ISD::SETTRUE:
   1110   case ISD::SETTRUE2:
   1111   case ISD::SETUO:
   1112   case ISD::SETO:
   1113     break;
   1114   case ISD::SETULE:
   1115   case ISD::SETULT: {
   1116     if (LHS == True)
   1117       return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS);
   1118     return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS);
   1119   }
   1120   case ISD::SETOLE:
   1121   case ISD::SETOLT:
   1122   case ISD::SETLE:
   1123   case ISD::SETLT: {
   1124     // Ordered. Assume ordered for undefined.
   1125 
   1126     // Only do this after legalization to avoid interfering with other combines
   1127     // which might occur.
   1128     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG &&
   1129         !DCI.isCalledByLegalizer())
   1130       return SDValue();
   1131 
   1132     // We need to permute the operands to get the correct NaN behavior. The
   1133     // selected operand is the second one based on the failing compare with NaN,
   1134     // so permute it based on the compare type the hardware uses.
   1135     if (LHS == True)
   1136       return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS);
   1137     return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS);
   1138   }
   1139   case ISD::SETUGE:
   1140   case ISD::SETUGT: {
   1141     if (LHS == True)
   1142       return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS);
   1143     return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS);
   1144   }
   1145   case ISD::SETGT:
   1146   case ISD::SETGE:
   1147   case ISD::SETOGE:
   1148   case ISD::SETOGT: {
   1149     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG &&
   1150         !DCI.isCalledByLegalizer())
   1151       return SDValue();
   1152 
   1153     if (LHS == True)
   1154       return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS);
   1155     return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS);
   1156   }
   1157   case ISD::SETCC_INVALID:
   1158     llvm_unreachable("Invalid setcc condcode!");
   1159   }
   1160   return SDValue();
   1161 }
   1162 
   1163 SDValue AMDGPUTargetLowering::ScalarizeVectorLoad(const SDValue Op,
   1164                                                   SelectionDAG &DAG) const {
   1165   LoadSDNode *Load = cast<LoadSDNode>(Op);
   1166   EVT MemVT = Load->getMemoryVT();
   1167   EVT MemEltVT = MemVT.getVectorElementType();
   1168 
   1169   EVT LoadVT = Op.getValueType();
   1170   EVT EltVT = LoadVT.getVectorElementType();
   1171   EVT PtrVT = Load->getBasePtr().getValueType();
   1172 
   1173   unsigned NumElts = Load->getMemoryVT().getVectorNumElements();
   1174   SmallVector<SDValue, 8> Loads;
   1175   SmallVector<SDValue, 8> Chains;
   1176 
   1177   SDLoc SL(Op);
   1178   unsigned MemEltSize = MemEltVT.getStoreSize();
   1179   MachinePointerInfo SrcValue(Load->getMemOperand()->getValue());
   1180 
   1181   for (unsigned i = 0; i < NumElts; ++i) {
   1182     SDValue Ptr = DAG.getNode(ISD::ADD, SL, PtrVT, Load->getBasePtr(),
   1183                               DAG.getConstant(i * MemEltSize, SL, PtrVT));
   1184 
   1185     SDValue NewLoad
   1186       = DAG.getExtLoad(Load->getExtensionType(), SL, EltVT,
   1187                        Load->getChain(), Ptr,
   1188                        SrcValue.getWithOffset(i * MemEltSize),
   1189                        MemEltVT, Load->isVolatile(), Load->isNonTemporal(),
   1190                        Load->isInvariant(), Load->getAlignment());
   1191     Loads.push_back(NewLoad.getValue(0));
   1192     Chains.push_back(NewLoad.getValue(1));
   1193   }
   1194 
   1195   SDValue Ops[] = {
   1196     DAG.getNode(ISD::BUILD_VECTOR, SL, LoadVT, Loads),
   1197     DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Chains)
   1198   };
   1199 
   1200   return DAG.getMergeValues(Ops, SL);
   1201 }
   1202 
   1203 SDValue AMDGPUTargetLowering::SplitVectorLoad(const SDValue Op,
   1204                                               SelectionDAG &DAG) const {
   1205   EVT VT = Op.getValueType();
   1206 
   1207   // If this is a 2 element vector, we really want to scalarize and not create
   1208   // weird 1 element vectors.
   1209   if (VT.getVectorNumElements() == 2)
   1210     return ScalarizeVectorLoad(Op, DAG);
   1211 
   1212   LoadSDNode *Load = cast<LoadSDNode>(Op);
   1213   SDValue BasePtr = Load->getBasePtr();
   1214   EVT PtrVT = BasePtr.getValueType();
   1215   EVT MemVT = Load->getMemoryVT();
   1216   SDLoc SL(Op);
   1217 
   1218   const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo();
   1219 
   1220   EVT LoVT, HiVT;
   1221   EVT LoMemVT, HiMemVT;
   1222   SDValue Lo, Hi;
   1223 
   1224   std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT);
   1225   std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemVT);
   1226   std::tie(Lo, Hi) = DAG.SplitVector(Op, SL, LoVT, HiVT);
   1227 
   1228   unsigned Size = LoMemVT.getStoreSize();
   1229   unsigned BaseAlign = Load->getAlignment();
   1230   unsigned HiAlign = MinAlign(BaseAlign, Size);
   1231 
   1232   SDValue LoLoad
   1233     = DAG.getExtLoad(Load->getExtensionType(), SL, LoVT,
   1234                      Load->getChain(), BasePtr,
   1235                      SrcValue,
   1236                      LoMemVT, Load->isVolatile(), Load->isNonTemporal(),
   1237                      Load->isInvariant(), BaseAlign);
   1238 
   1239   SDValue HiPtr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr,
   1240                               DAG.getConstant(Size, SL, PtrVT));
   1241 
   1242   SDValue HiLoad
   1243     = DAG.getExtLoad(Load->getExtensionType(), SL, HiVT,
   1244                      Load->getChain(), HiPtr,
   1245                      SrcValue.getWithOffset(LoMemVT.getStoreSize()),
   1246                      HiMemVT, Load->isVolatile(), Load->isNonTemporal(),
   1247                      Load->isInvariant(), HiAlign);
   1248 
   1249   SDValue Ops[] = {
   1250     DAG.getNode(ISD::CONCAT_VECTORS, SL, VT, LoLoad, HiLoad),
   1251     DAG.getNode(ISD::TokenFactor, SL, MVT::Other,
   1252                 LoLoad.getValue(1), HiLoad.getValue(1))
   1253   };
   1254 
   1255   return DAG.getMergeValues(Ops, SL);
   1256 }
   1257 
   1258 SDValue AMDGPUTargetLowering::MergeVectorStore(const SDValue &Op,
   1259                                                SelectionDAG &DAG) const {
   1260   StoreSDNode *Store = cast<StoreSDNode>(Op);
   1261   EVT MemVT = Store->getMemoryVT();
   1262   unsigned MemBits = MemVT.getSizeInBits();
   1263 
   1264   // Byte stores are really expensive, so if possible, try to pack 32-bit vector
   1265   // truncating store into an i32 store.
   1266   // XXX: We could also handle optimize other vector bitwidths.
   1267   if (!MemVT.isVector() || MemBits > 32) {
   1268     return SDValue();
   1269   }
   1270 
   1271   SDLoc DL(Op);
   1272   SDValue Value = Store->getValue();
   1273   EVT VT = Value.getValueType();
   1274   EVT ElemVT = VT.getVectorElementType();
   1275   SDValue Ptr = Store->getBasePtr();
   1276   EVT MemEltVT = MemVT.getVectorElementType();
   1277   unsigned MemEltBits = MemEltVT.getSizeInBits();
   1278   unsigned MemNumElements = MemVT.getVectorNumElements();
   1279   unsigned PackedSize = MemVT.getStoreSizeInBits();
   1280   SDValue Mask = DAG.getConstant((1 << MemEltBits) - 1, DL, MVT::i32);
   1281 
   1282   assert(Value.getValueType().getScalarSizeInBits() >= 32);
   1283 
   1284   SDValue PackedValue;
   1285   for (unsigned i = 0; i < MemNumElements; ++i) {
   1286     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ElemVT, Value,
   1287                               DAG.getConstant(i, DL, MVT::i32));
   1288     Elt = DAG.getZExtOrTrunc(Elt, DL, MVT::i32);
   1289     Elt = DAG.getNode(ISD::AND, DL, MVT::i32, Elt, Mask); // getZeroExtendInReg
   1290 
   1291     SDValue Shift = DAG.getConstant(MemEltBits * i, DL, MVT::i32);
   1292     Elt = DAG.getNode(ISD::SHL, DL, MVT::i32, Elt, Shift);
   1293 
   1294     if (i == 0) {
   1295       PackedValue = Elt;
   1296     } else {
   1297       PackedValue = DAG.getNode(ISD::OR, DL, MVT::i32, PackedValue, Elt);
   1298     }
   1299   }
   1300 
   1301   if (PackedSize < 32) {
   1302     EVT PackedVT = EVT::getIntegerVT(*DAG.getContext(), PackedSize);
   1303     return DAG.getTruncStore(Store->getChain(), DL, PackedValue, Ptr,
   1304                              Store->getMemOperand()->getPointerInfo(),
   1305                              PackedVT,
   1306                              Store->isNonTemporal(), Store->isVolatile(),
   1307                              Store->getAlignment());
   1308   }
   1309 
   1310   return DAG.getStore(Store->getChain(), DL, PackedValue, Ptr,
   1311                       Store->getMemOperand()->getPointerInfo(),
   1312                       Store->isVolatile(),  Store->isNonTemporal(),
   1313                       Store->getAlignment());
   1314 }
   1315 
   1316 SDValue AMDGPUTargetLowering::ScalarizeVectorStore(SDValue Op,
   1317                                                    SelectionDAG &DAG) const {
   1318   StoreSDNode *Store = cast<StoreSDNode>(Op);
   1319   EVT MemEltVT = Store->getMemoryVT().getVectorElementType();
   1320   EVT EltVT = Store->getValue().getValueType().getVectorElementType();
   1321   EVT PtrVT = Store->getBasePtr().getValueType();
   1322   unsigned NumElts = Store->getMemoryVT().getVectorNumElements();
   1323   SDLoc SL(Op);
   1324 
   1325   SmallVector<SDValue, 8> Chains;
   1326 
   1327   unsigned EltSize = MemEltVT.getStoreSize();
   1328   MachinePointerInfo SrcValue(Store->getMemOperand()->getValue());
   1329 
   1330   for (unsigned i = 0, e = NumElts; i != e; ++i) {
   1331     SDValue Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
   1332                               Store->getValue(),
   1333                               DAG.getConstant(i, SL, MVT::i32));
   1334 
   1335     SDValue Offset = DAG.getConstant(i * MemEltVT.getStoreSize(), SL, PtrVT);
   1336     SDValue Ptr = DAG.getNode(ISD::ADD, SL, PtrVT, Store->getBasePtr(), Offset);
   1337     SDValue NewStore =
   1338       DAG.getTruncStore(Store->getChain(), SL, Val, Ptr,
   1339                         SrcValue.getWithOffset(i * EltSize),
   1340                         MemEltVT, Store->isNonTemporal(), Store->isVolatile(),
   1341                         Store->getAlignment());
   1342     Chains.push_back(NewStore);
   1343   }
   1344 
   1345   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Chains);
   1346 }
   1347 
   1348 SDValue AMDGPUTargetLowering::SplitVectorStore(SDValue Op,
   1349                                                SelectionDAG &DAG) const {
   1350   StoreSDNode *Store = cast<StoreSDNode>(Op);
   1351   SDValue Val = Store->getValue();
   1352   EVT VT = Val.getValueType();
   1353 
   1354   // If this is a 2 element vector, we really want to scalarize and not create
   1355   // weird 1 element vectors.
   1356   if (VT.getVectorNumElements() == 2)
   1357     return ScalarizeVectorStore(Op, DAG);
   1358 
   1359   EVT MemVT = Store->getMemoryVT();
   1360   SDValue Chain = Store->getChain();
   1361   SDValue BasePtr = Store->getBasePtr();
   1362   SDLoc SL(Op);
   1363 
   1364   EVT LoVT, HiVT;
   1365   EVT LoMemVT, HiMemVT;
   1366   SDValue Lo, Hi;
   1367 
   1368   std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT);
   1369   std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemVT);
   1370   std::tie(Lo, Hi) = DAG.SplitVector(Val, SL, LoVT, HiVT);
   1371 
   1372   EVT PtrVT = BasePtr.getValueType();
   1373   SDValue HiPtr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr,
   1374                               DAG.getConstant(LoMemVT.getStoreSize(), SL,
   1375                                               PtrVT));
   1376 
   1377   const MachinePointerInfo &SrcValue = Store->getMemOperand()->getPointerInfo();
   1378   unsigned BaseAlign = Store->getAlignment();
   1379   unsigned Size = LoMemVT.getStoreSize();
   1380   unsigned HiAlign = MinAlign(BaseAlign, Size);
   1381 
   1382   SDValue LoStore
   1383     = DAG.getTruncStore(Chain, SL, Lo,
   1384                         BasePtr,
   1385                         SrcValue,
   1386                         LoMemVT,
   1387                         Store->isNonTemporal(),
   1388                         Store->isVolatile(),
   1389                         BaseAlign);
   1390   SDValue HiStore
   1391     = DAG.getTruncStore(Chain, SL, Hi,
   1392                         HiPtr,
   1393                         SrcValue.getWithOffset(Size),
   1394                         HiMemVT,
   1395                         Store->isNonTemporal(),
   1396                         Store->isVolatile(),
   1397                         HiAlign);
   1398 
   1399   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoStore, HiStore);
   1400 }
   1401 
   1402 
   1403 SDValue AMDGPUTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
   1404   SDLoc DL(Op);
   1405   LoadSDNode *Load = cast<LoadSDNode>(Op);
   1406   ISD::LoadExtType ExtType = Load->getExtensionType();
   1407   EVT VT = Op.getValueType();
   1408   EVT MemVT = Load->getMemoryVT();
   1409 
   1410   if (ExtType == ISD::NON_EXTLOAD && VT.getSizeInBits() < 32) {
   1411     assert(VT == MVT::i1 && "Only i1 non-extloads expected");
   1412     // FIXME: Copied from PPC
   1413     // First, load into 32 bits, then truncate to 1 bit.
   1414 
   1415     SDValue Chain = Load->getChain();
   1416     SDValue BasePtr = Load->getBasePtr();
   1417     MachineMemOperand *MMO = Load->getMemOperand();
   1418 
   1419     SDValue NewLD = DAG.getExtLoad(ISD::EXTLOAD, DL, MVT::i32, Chain,
   1420                                    BasePtr, MVT::i8, MMO);
   1421 
   1422     SDValue Ops[] = {
   1423       DAG.getNode(ISD::TRUNCATE, DL, VT, NewLD),
   1424       NewLD.getValue(1)
   1425     };
   1426 
   1427     return DAG.getMergeValues(Ops, DL);
   1428   }
   1429 
   1430   if (Subtarget->getGeneration() >= AMDGPUSubtarget::SOUTHERN_ISLANDS ||
   1431       Load->getAddressSpace() != AMDGPUAS::PRIVATE_ADDRESS ||
   1432       ExtType == ISD::NON_EXTLOAD || Load->getMemoryVT().bitsGE(MVT::i32))
   1433     return SDValue();
   1434 
   1435   // <SI && AS=PRIVATE && EXTLOAD && size < 32bit,
   1436   // register (2-)byte extract.
   1437 
   1438   // Get Register holding the target.
   1439   SDValue Ptr = DAG.getNode(ISD::SRL, DL, MVT::i32, Load->getBasePtr(),
   1440                             DAG.getConstant(2, DL, MVT::i32));
   1441   // Load the Register.
   1442   SDValue Ret = DAG.getNode(AMDGPUISD::REGISTER_LOAD, DL, Op.getValueType(),
   1443                             Load->getChain(), Ptr,
   1444                             DAG.getTargetConstant(0, DL, MVT::i32),
   1445                             Op.getOperand(2));
   1446 
   1447   // Get offset within the register.
   1448   SDValue ByteIdx = DAG.getNode(ISD::AND, DL, MVT::i32,
   1449                                 Load->getBasePtr(),
   1450                                 DAG.getConstant(0x3, DL, MVT::i32));
   1451 
   1452   // Bit offset of target byte (byteIdx * 8).
   1453   SDValue ShiftAmt = DAG.getNode(ISD::SHL, DL, MVT::i32, ByteIdx,
   1454                                  DAG.getConstant(3, DL, MVT::i32));
   1455 
   1456   // Shift to the right.
   1457   Ret = DAG.getNode(ISD::SRL, DL, MVT::i32, Ret, ShiftAmt);
   1458 
   1459   // Eliminate the upper bits by setting them to ...
   1460   EVT MemEltVT = MemVT.getScalarType();
   1461 
   1462   // ... ones.
   1463   if (ExtType == ISD::SEXTLOAD) {
   1464     SDValue MemEltVTNode = DAG.getValueType(MemEltVT);
   1465 
   1466     SDValue Ops[] = {
   1467       DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, Ret, MemEltVTNode),
   1468       Load->getChain()
   1469     };
   1470 
   1471     return DAG.getMergeValues(Ops, DL);
   1472   }
   1473 
   1474   // ... or zeros.
   1475   SDValue Ops[] = {
   1476     DAG.getZeroExtendInReg(Ret, DL, MemEltVT),
   1477     Load->getChain()
   1478   };
   1479 
   1480   return DAG.getMergeValues(Ops, DL);
   1481 }
   1482 
   1483 SDValue AMDGPUTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
   1484   SDLoc DL(Op);
   1485   SDValue Result = AMDGPUTargetLowering::MergeVectorStore(Op, DAG);
   1486   if (Result.getNode()) {
   1487     return Result;
   1488   }
   1489 
   1490   StoreSDNode *Store = cast<StoreSDNode>(Op);
   1491   SDValue Chain = Store->getChain();
   1492   if ((Store->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS ||
   1493        Store->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS) &&
   1494       Store->getValue().getValueType().isVector()) {
   1495     return SplitVectorStore(Op, DAG);
   1496   }
   1497 
   1498   EVT MemVT = Store->getMemoryVT();
   1499   if (Store->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS &&
   1500       MemVT.bitsLT(MVT::i32)) {
   1501     unsigned Mask = 0;
   1502     if (Store->getMemoryVT() == MVT::i8) {
   1503       Mask = 0xff;
   1504     } else if (Store->getMemoryVT() == MVT::i16) {
   1505       Mask = 0xffff;
   1506     }
   1507     SDValue BasePtr = Store->getBasePtr();
   1508     SDValue Ptr = DAG.getNode(ISD::SRL, DL, MVT::i32, BasePtr,
   1509                               DAG.getConstant(2, DL, MVT::i32));
   1510     SDValue Dst = DAG.getNode(AMDGPUISD::REGISTER_LOAD, DL, MVT::i32,
   1511                               Chain, Ptr,
   1512                               DAG.getTargetConstant(0, DL, MVT::i32));
   1513 
   1514     SDValue ByteIdx = DAG.getNode(ISD::AND, DL, MVT::i32, BasePtr,
   1515                                   DAG.getConstant(0x3, DL, MVT::i32));
   1516 
   1517     SDValue ShiftAmt = DAG.getNode(ISD::SHL, DL, MVT::i32, ByteIdx,
   1518                                    DAG.getConstant(3, DL, MVT::i32));
   1519 
   1520     SDValue SExtValue = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i32,
   1521                                     Store->getValue());
   1522 
   1523     SDValue MaskedValue = DAG.getZeroExtendInReg(SExtValue, DL, MemVT);
   1524 
   1525     SDValue ShiftedValue = DAG.getNode(ISD::SHL, DL, MVT::i32,
   1526                                        MaskedValue, ShiftAmt);
   1527 
   1528     SDValue DstMask = DAG.getNode(ISD::SHL, DL, MVT::i32,
   1529                                   DAG.getConstant(Mask, DL, MVT::i32),
   1530                                   ShiftAmt);
   1531     DstMask = DAG.getNode(ISD::XOR, DL, MVT::i32, DstMask,
   1532                           DAG.getConstant(0xffffffff, DL, MVT::i32));
   1533     Dst = DAG.getNode(ISD::AND, DL, MVT::i32, Dst, DstMask);
   1534 
   1535     SDValue Value = DAG.getNode(ISD::OR, DL, MVT::i32, Dst, ShiftedValue);
   1536     return DAG.getNode(AMDGPUISD::REGISTER_STORE, DL, MVT::Other,
   1537                        Chain, Value, Ptr,
   1538                        DAG.getTargetConstant(0, DL, MVT::i32));
   1539   }
   1540   return SDValue();
   1541 }
   1542 
   1543 // This is a shortcut for integer division because we have fast i32<->f32
   1544 // conversions, and fast f32 reciprocal instructions. The fractional part of a
   1545 // float is enough to accurately represent up to a 24-bit integer.
   1546 SDValue AMDGPUTargetLowering::LowerDIVREM24(SDValue Op, SelectionDAG &DAG, bool sign) const {
   1547   SDLoc DL(Op);
   1548   EVT VT = Op.getValueType();
   1549   SDValue LHS = Op.getOperand(0);
   1550   SDValue RHS = Op.getOperand(1);
   1551   MVT IntVT = MVT::i32;
   1552   MVT FltVT = MVT::f32;
   1553 
   1554   ISD::NodeType ToFp  = sign ? ISD::SINT_TO_FP : ISD::UINT_TO_FP;
   1555   ISD::NodeType ToInt = sign ? ISD::FP_TO_SINT : ISD::FP_TO_UINT;
   1556 
   1557   if (VT.isVector()) {
   1558     unsigned NElts = VT.getVectorNumElements();
   1559     IntVT = MVT::getVectorVT(MVT::i32, NElts);
   1560     FltVT = MVT::getVectorVT(MVT::f32, NElts);
   1561   }
   1562 
   1563   unsigned BitSize = VT.getScalarType().getSizeInBits();
   1564 
   1565   SDValue jq = DAG.getConstant(1, DL, IntVT);
   1566 
   1567   if (sign) {
   1568     // char|short jq = ia ^ ib;
   1569     jq = DAG.getNode(ISD::XOR, DL, VT, LHS, RHS);
   1570 
   1571     // jq = jq >> (bitsize - 2)
   1572     jq = DAG.getNode(ISD::SRA, DL, VT, jq,
   1573                      DAG.getConstant(BitSize - 2, DL, VT));
   1574 
   1575     // jq = jq | 0x1
   1576     jq = DAG.getNode(ISD::OR, DL, VT, jq, DAG.getConstant(1, DL, VT));
   1577 
   1578     // jq = (int)jq
   1579     jq = DAG.getSExtOrTrunc(jq, DL, IntVT);
   1580   }
   1581 
   1582   // int ia = (int)LHS;
   1583   SDValue ia = sign ?
   1584     DAG.getSExtOrTrunc(LHS, DL, IntVT) : DAG.getZExtOrTrunc(LHS, DL, IntVT);
   1585 
   1586   // int ib, (int)RHS;
   1587   SDValue ib = sign ?
   1588     DAG.getSExtOrTrunc(RHS, DL, IntVT) : DAG.getZExtOrTrunc(RHS, DL, IntVT);
   1589 
   1590   // float fa = (float)ia;
   1591   SDValue fa = DAG.getNode(ToFp, DL, FltVT, ia);
   1592 
   1593   // float fb = (float)ib;
   1594   SDValue fb = DAG.getNode(ToFp, DL, FltVT, ib);
   1595 
   1596   // TODO: Should this propagate fast-math-flags?
   1597   // float fq = native_divide(fa, fb);
   1598   SDValue fq = DAG.getNode(ISD::FMUL, DL, FltVT,
   1599                            fa, DAG.getNode(AMDGPUISD::RCP, DL, FltVT, fb));
   1600 
   1601   // fq = trunc(fq);
   1602   fq = DAG.getNode(ISD::FTRUNC, DL, FltVT, fq);
   1603 
   1604   // float fqneg = -fq;
   1605   SDValue fqneg = DAG.getNode(ISD::FNEG, DL, FltVT, fq);
   1606 
   1607   // float fr = mad(fqneg, fb, fa);
   1608   SDValue fr = DAG.getNode(ISD::FADD, DL, FltVT,
   1609                            DAG.getNode(ISD::FMUL, DL, FltVT, fqneg, fb), fa);
   1610 
   1611   // int iq = (int)fq;
   1612   SDValue iq = DAG.getNode(ToInt, DL, IntVT, fq);
   1613 
   1614   // fr = fabs(fr);
   1615   fr = DAG.getNode(ISD::FABS, DL, FltVT, fr);
   1616 
   1617   // fb = fabs(fb);
   1618   fb = DAG.getNode(ISD::FABS, DL, FltVT, fb);
   1619 
   1620   EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
   1621 
   1622   // int cv = fr >= fb;
   1623   SDValue cv = DAG.getSetCC(DL, SetCCVT, fr, fb, ISD::SETOGE);
   1624 
   1625   // jq = (cv ? jq : 0);
   1626   jq = DAG.getNode(ISD::SELECT, DL, VT, cv, jq, DAG.getConstant(0, DL, VT));
   1627 
   1628   // dst = trunc/extend to legal type
   1629   iq = sign ? DAG.getSExtOrTrunc(iq, DL, VT) : DAG.getZExtOrTrunc(iq, DL, VT);
   1630 
   1631   // dst = iq + jq;
   1632   SDValue Div = DAG.getNode(ISD::ADD, DL, VT, iq, jq);
   1633 
   1634   // Rem needs compensation, it's easier to recompute it
   1635   SDValue Rem = DAG.getNode(ISD::MUL, DL, VT, Div, RHS);
   1636   Rem = DAG.getNode(ISD::SUB, DL, VT, LHS, Rem);
   1637 
   1638   SDValue Res[2] = {
   1639     Div,
   1640     Rem
   1641   };
   1642   return DAG.getMergeValues(Res, DL);
   1643 }
   1644 
   1645 void AMDGPUTargetLowering::LowerUDIVREM64(SDValue Op,
   1646                                       SelectionDAG &DAG,
   1647                                       SmallVectorImpl<SDValue> &Results) const {
   1648   assert(Op.getValueType() == MVT::i64);
   1649 
   1650   SDLoc DL(Op);
   1651   EVT VT = Op.getValueType();
   1652   EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext());
   1653 
   1654   SDValue one = DAG.getConstant(1, DL, HalfVT);
   1655   SDValue zero = DAG.getConstant(0, DL, HalfVT);
   1656 
   1657   //HiLo split
   1658   SDValue LHS = Op.getOperand(0);
   1659   SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, zero);
   1660   SDValue LHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, one);
   1661 
   1662   SDValue RHS = Op.getOperand(1);
   1663   SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, zero);
   1664   SDValue RHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, one);
   1665 
   1666   if (VT == MVT::i64 &&
   1667     DAG.MaskedValueIsZero(RHS, APInt::getHighBitsSet(64, 32)) &&
   1668     DAG.MaskedValueIsZero(LHS, APInt::getHighBitsSet(64, 32))) {
   1669 
   1670     SDValue Res = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(HalfVT, HalfVT),
   1671                               LHS_Lo, RHS_Lo);
   1672 
   1673     SDValue DIV = DAG.getNode(ISD::BUILD_PAIR, DL, VT, Res.getValue(0), zero);
   1674     SDValue REM = DAG.getNode(ISD::BUILD_PAIR, DL, VT, Res.getValue(1), zero);
   1675     Results.push_back(DIV);
   1676     Results.push_back(REM);
   1677     return;
   1678   }
   1679 
   1680   // Get Speculative values
   1681   SDValue DIV_Part = DAG.getNode(ISD::UDIV, DL, HalfVT, LHS_Hi, RHS_Lo);
   1682   SDValue REM_Part = DAG.getNode(ISD::UREM, DL, HalfVT, LHS_Hi, RHS_Lo);
   1683 
   1684   SDValue REM_Lo = DAG.getSelectCC(DL, RHS_Hi, zero, REM_Part, LHS_Hi, ISD::SETEQ);
   1685   SDValue REM = DAG.getNode(ISD::BUILD_PAIR, DL, VT, REM_Lo, zero);
   1686 
   1687   SDValue DIV_Hi = DAG.getSelectCC(DL, RHS_Hi, zero, DIV_Part, zero, ISD::SETEQ);
   1688   SDValue DIV_Lo = zero;
   1689 
   1690   const unsigned halfBitWidth = HalfVT.getSizeInBits();
   1691 
   1692   for (unsigned i = 0; i < halfBitWidth; ++i) {
   1693     const unsigned bitPos = halfBitWidth - i - 1;
   1694     SDValue POS = DAG.getConstant(bitPos, DL, HalfVT);
   1695     // Get value of high bit
   1696     SDValue HBit = DAG.getNode(ISD::SRL, DL, HalfVT, LHS_Lo, POS);
   1697     HBit = DAG.getNode(ISD::AND, DL, HalfVT, HBit, one);
   1698     HBit = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, HBit);
   1699 
   1700     // Shift
   1701     REM = DAG.getNode(ISD::SHL, DL, VT, REM, DAG.getConstant(1, DL, VT));
   1702     // Add LHS high bit
   1703     REM = DAG.getNode(ISD::OR, DL, VT, REM, HBit);
   1704 
   1705     SDValue BIT = DAG.getConstant(1 << bitPos, DL, HalfVT);
   1706     SDValue realBIT = DAG.getSelectCC(DL, REM, RHS, BIT, zero, ISD::SETUGE);
   1707 
   1708     DIV_Lo = DAG.getNode(ISD::OR, DL, HalfVT, DIV_Lo, realBIT);
   1709 
   1710     // Update REM
   1711     SDValue REM_sub = DAG.getNode(ISD::SUB, DL, VT, REM, RHS);
   1712     REM = DAG.getSelectCC(DL, REM, RHS, REM_sub, REM, ISD::SETUGE);
   1713   }
   1714 
   1715   SDValue DIV = DAG.getNode(ISD::BUILD_PAIR, DL, VT, DIV_Lo, DIV_Hi);
   1716   Results.push_back(DIV);
   1717   Results.push_back(REM);
   1718 }
   1719 
   1720 SDValue AMDGPUTargetLowering::LowerUDIVREM(SDValue Op,
   1721                                            SelectionDAG &DAG) const {
   1722   SDLoc DL(Op);
   1723   EVT VT = Op.getValueType();
   1724 
   1725   if (VT == MVT::i64) {
   1726     SmallVector<SDValue, 2> Results;
   1727     LowerUDIVREM64(Op, DAG, Results);
   1728     return DAG.getMergeValues(Results, DL);
   1729   }
   1730 
   1731   SDValue Num = Op.getOperand(0);
   1732   SDValue Den = Op.getOperand(1);
   1733 
   1734   if (VT == MVT::i32) {
   1735     if (DAG.MaskedValueIsZero(Num, APInt::getHighBitsSet(32, 8)) &&
   1736         DAG.MaskedValueIsZero(Den, APInt::getHighBitsSet(32, 8))) {
   1737       // TODO: We technically could do this for i64, but shouldn't that just be
   1738       // handled by something generally reducing 64-bit division on 32-bit
   1739       // values to 32-bit?
   1740       return LowerDIVREM24(Op, DAG, false);
   1741     }
   1742   }
   1743 
   1744   // RCP =  URECIP(Den) = 2^32 / Den + e
   1745   // e is rounding error.
   1746   SDValue RCP = DAG.getNode(AMDGPUISD::URECIP, DL, VT, Den);
   1747 
   1748   // RCP_LO = mul(RCP, Den) */
   1749   SDValue RCP_LO = DAG.getNode(ISD::MUL, DL, VT, RCP, Den);
   1750 
   1751   // RCP_HI = mulhu (RCP, Den) */
   1752   SDValue RCP_HI = DAG.getNode(ISD::MULHU, DL, VT, RCP, Den);
   1753 
   1754   // NEG_RCP_LO = -RCP_LO
   1755   SDValue NEG_RCP_LO = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT),
   1756                                                      RCP_LO);
   1757 
   1758   // ABS_RCP_LO = (RCP_HI == 0 ? NEG_RCP_LO : RCP_LO)
   1759   SDValue ABS_RCP_LO = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT),
   1760                                            NEG_RCP_LO, RCP_LO,
   1761                                            ISD::SETEQ);
   1762   // Calculate the rounding error from the URECIP instruction
   1763   // E = mulhu(ABS_RCP_LO, RCP)
   1764   SDValue E = DAG.getNode(ISD::MULHU, DL, VT, ABS_RCP_LO, RCP);
   1765 
   1766   // RCP_A_E = RCP + E
   1767   SDValue RCP_A_E = DAG.getNode(ISD::ADD, DL, VT, RCP, E);
   1768 
   1769   // RCP_S_E = RCP - E
   1770   SDValue RCP_S_E = DAG.getNode(ISD::SUB, DL, VT, RCP, E);
   1771 
   1772   // Tmp0 = (RCP_HI == 0 ? RCP_A_E : RCP_SUB_E)
   1773   SDValue Tmp0 = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT),
   1774                                      RCP_A_E, RCP_S_E,
   1775                                      ISD::SETEQ);
   1776   // Quotient = mulhu(Tmp0, Num)
   1777   SDValue Quotient = DAG.getNode(ISD::MULHU, DL, VT, Tmp0, Num);
   1778 
   1779   // Num_S_Remainder = Quotient * Den
   1780   SDValue Num_S_Remainder = DAG.getNode(ISD::MUL, DL, VT, Quotient, Den);
   1781 
   1782   // Remainder = Num - Num_S_Remainder
   1783   SDValue Remainder = DAG.getNode(ISD::SUB, DL, VT, Num, Num_S_Remainder);
   1784 
   1785   // Remainder_GE_Den = (Remainder >= Den ? -1 : 0)
   1786   SDValue Remainder_GE_Den = DAG.getSelectCC(DL, Remainder, Den,
   1787                                                  DAG.getConstant(-1, DL, VT),
   1788                                                  DAG.getConstant(0, DL, VT),
   1789                                                  ISD::SETUGE);
   1790   // Remainder_GE_Zero = (Num >= Num_S_Remainder ? -1 : 0)
   1791   SDValue Remainder_GE_Zero = DAG.getSelectCC(DL, Num,
   1792                                                   Num_S_Remainder,
   1793                                                   DAG.getConstant(-1, DL, VT),
   1794                                                   DAG.getConstant(0, DL, VT),
   1795                                                   ISD::SETUGE);
   1796   // Tmp1 = Remainder_GE_Den & Remainder_GE_Zero
   1797   SDValue Tmp1 = DAG.getNode(ISD::AND, DL, VT, Remainder_GE_Den,
   1798                                                Remainder_GE_Zero);
   1799 
   1800   // Calculate Division result:
   1801 
   1802   // Quotient_A_One = Quotient + 1
   1803   SDValue Quotient_A_One = DAG.getNode(ISD::ADD, DL, VT, Quotient,
   1804                                        DAG.getConstant(1, DL, VT));
   1805 
   1806   // Quotient_S_One = Quotient - 1
   1807   SDValue Quotient_S_One = DAG.getNode(ISD::SUB, DL, VT, Quotient,
   1808                                        DAG.getConstant(1, DL, VT));
   1809 
   1810   // Div = (Tmp1 == 0 ? Quotient : Quotient_A_One)
   1811   SDValue Div = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT),
   1812                                      Quotient, Quotient_A_One, ISD::SETEQ);
   1813 
   1814   // Div = (Remainder_GE_Zero == 0 ? Quotient_S_One : Div)
   1815   Div = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT),
   1816                             Quotient_S_One, Div, ISD::SETEQ);
   1817 
   1818   // Calculate Rem result:
   1819 
   1820   // Remainder_S_Den = Remainder - Den
   1821   SDValue Remainder_S_Den = DAG.getNode(ISD::SUB, DL, VT, Remainder, Den);
   1822 
   1823   // Remainder_A_Den = Remainder + Den
   1824   SDValue Remainder_A_Den = DAG.getNode(ISD::ADD, DL, VT, Remainder, Den);
   1825 
   1826   // Rem = (Tmp1 == 0 ? Remainder : Remainder_S_Den)
   1827   SDValue Rem = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT),
   1828                                     Remainder, Remainder_S_Den, ISD::SETEQ);
   1829 
   1830   // Rem = (Remainder_GE_Zero == 0 ? Remainder_A_Den : Rem)
   1831   Rem = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT),
   1832                             Remainder_A_Den, Rem, ISD::SETEQ);
   1833   SDValue Ops[2] = {
   1834     Div,
   1835     Rem
   1836   };
   1837   return DAG.getMergeValues(Ops, DL);
   1838 }
   1839 
   1840 SDValue AMDGPUTargetLowering::LowerSDIVREM(SDValue Op,
   1841                                            SelectionDAG &DAG) const {
   1842   SDLoc DL(Op);
   1843   EVT VT = Op.getValueType();
   1844 
   1845   SDValue LHS = Op.getOperand(0);
   1846   SDValue RHS = Op.getOperand(1);
   1847 
   1848   SDValue Zero = DAG.getConstant(0, DL, VT);
   1849   SDValue NegOne = DAG.getConstant(-1, DL, VT);
   1850 
   1851   if (VT == MVT::i32 &&
   1852       DAG.ComputeNumSignBits(LHS) > 8 &&
   1853       DAG.ComputeNumSignBits(RHS) > 8) {
   1854     return LowerDIVREM24(Op, DAG, true);
   1855   }
   1856   if (VT == MVT::i64 &&
   1857       DAG.ComputeNumSignBits(LHS) > 32 &&
   1858       DAG.ComputeNumSignBits(RHS) > 32) {
   1859     EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext());
   1860 
   1861     //HiLo split
   1862     SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero);
   1863     SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero);
   1864     SDValue DIVREM = DAG.getNode(ISD::SDIVREM, DL, DAG.getVTList(HalfVT, HalfVT),
   1865                                  LHS_Lo, RHS_Lo);
   1866     SDValue Res[2] = {
   1867       DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(0)),
   1868       DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(1))
   1869     };
   1870     return DAG.getMergeValues(Res, DL);
   1871   }
   1872 
   1873   SDValue LHSign = DAG.getSelectCC(DL, LHS, Zero, NegOne, Zero, ISD::SETLT);
   1874   SDValue RHSign = DAG.getSelectCC(DL, RHS, Zero, NegOne, Zero, ISD::SETLT);
   1875   SDValue DSign = DAG.getNode(ISD::XOR, DL, VT, LHSign, RHSign);
   1876   SDValue RSign = LHSign; // Remainder sign is the same as LHS
   1877 
   1878   LHS = DAG.getNode(ISD::ADD, DL, VT, LHS, LHSign);
   1879   RHS = DAG.getNode(ISD::ADD, DL, VT, RHS, RHSign);
   1880 
   1881   LHS = DAG.getNode(ISD::XOR, DL, VT, LHS, LHSign);
   1882   RHS = DAG.getNode(ISD::XOR, DL, VT, RHS, RHSign);
   1883 
   1884   SDValue Div = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(VT, VT), LHS, RHS);
   1885   SDValue Rem = Div.getValue(1);
   1886 
   1887   Div = DAG.getNode(ISD::XOR, DL, VT, Div, DSign);
   1888   Rem = DAG.getNode(ISD::XOR, DL, VT, Rem, RSign);
   1889 
   1890   Div = DAG.getNode(ISD::SUB, DL, VT, Div, DSign);
   1891   Rem = DAG.getNode(ISD::SUB, DL, VT, Rem, RSign);
   1892 
   1893   SDValue Res[2] = {
   1894     Div,
   1895     Rem
   1896   };
   1897   return DAG.getMergeValues(Res, DL);
   1898 }
   1899 
   1900 // (frem x, y) -> (fsub x, (fmul (ftrunc (fdiv x, y)), y))
   1901 SDValue AMDGPUTargetLowering::LowerFREM(SDValue Op, SelectionDAG &DAG) const {
   1902   SDLoc SL(Op);
   1903   EVT VT = Op.getValueType();
   1904   SDValue X = Op.getOperand(0);
   1905   SDValue Y = Op.getOperand(1);
   1906 
   1907   // TODO: Should this propagate fast-math-flags?
   1908 
   1909   SDValue Div = DAG.getNode(ISD::FDIV, SL, VT, X, Y);
   1910   SDValue Floor = DAG.getNode(ISD::FTRUNC, SL, VT, Div);
   1911   SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Floor, Y);
   1912 
   1913   return DAG.getNode(ISD::FSUB, SL, VT, X, Mul);
   1914 }
   1915 
   1916 SDValue AMDGPUTargetLowering::LowerFCEIL(SDValue Op, SelectionDAG &DAG) const {
   1917   SDLoc SL(Op);
   1918   SDValue Src = Op.getOperand(0);
   1919 
   1920   // result = trunc(src)
   1921   // if (src > 0.0 && src != result)
   1922   //   result += 1.0
   1923 
   1924   SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
   1925 
   1926   const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64);
   1927   const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64);
   1928 
   1929   EVT SetCCVT =
   1930       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64);
   1931 
   1932   SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOGT);
   1933   SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE);
   1934   SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc);
   1935 
   1936   SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, One, Zero);
   1937   // TODO: Should this propagate fast-math-flags?
   1938   return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add);
   1939 }
   1940 
   1941 static SDValue extractF64Exponent(SDValue Hi, SDLoc SL, SelectionDAG &DAG) {
   1942   const unsigned FractBits = 52;
   1943   const unsigned ExpBits = 11;
   1944 
   1945   SDValue ExpPart = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32,
   1946                                 Hi,
   1947                                 DAG.getConstant(FractBits - 32, SL, MVT::i32),
   1948                                 DAG.getConstant(ExpBits, SL, MVT::i32));
   1949   SDValue Exp = DAG.getNode(ISD::SUB, SL, MVT::i32, ExpPart,
   1950                             DAG.getConstant(1023, SL, MVT::i32));
   1951 
   1952   return Exp;
   1953 }
   1954 
   1955 SDValue AMDGPUTargetLowering::LowerFTRUNC(SDValue Op, SelectionDAG &DAG) const {
   1956   SDLoc SL(Op);
   1957   SDValue Src = Op.getOperand(0);
   1958 
   1959   assert(Op.getValueType() == MVT::f64);
   1960 
   1961   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
   1962   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
   1963 
   1964   SDValue VecSrc = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src);
   1965 
   1966   // Extract the upper half, since this is where we will find the sign and
   1967   // exponent.
   1968   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecSrc, One);
   1969 
   1970   SDValue Exp = extractF64Exponent(Hi, SL, DAG);
   1971 
   1972   const unsigned FractBits = 52;
   1973 
   1974   // Extract the sign bit.
   1975   const SDValue SignBitMask = DAG.getConstant(UINT32_C(1) << 31, SL, MVT::i32);
   1976   SDValue SignBit = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, SignBitMask);
   1977 
   1978   // Extend back to to 64-bits.
   1979   SDValue SignBit64 = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32,
   1980                                   Zero, SignBit);
   1981   SignBit64 = DAG.getNode(ISD::BITCAST, SL, MVT::i64, SignBit64);
   1982 
   1983   SDValue BcInt = DAG.getNode(ISD::BITCAST, SL, MVT::i64, Src);
   1984   const SDValue FractMask
   1985     = DAG.getConstant((UINT64_C(1) << FractBits) - 1, SL, MVT::i64);
   1986 
   1987   SDValue Shr = DAG.getNode(ISD::SRA, SL, MVT::i64, FractMask, Exp);
   1988   SDValue Not = DAG.getNOT(SL, Shr, MVT::i64);
   1989   SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, BcInt, Not);
   1990 
   1991   EVT SetCCVT =
   1992       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32);
   1993 
   1994   const SDValue FiftyOne = DAG.getConstant(FractBits - 1, SL, MVT::i32);
   1995 
   1996   SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT);
   1997   SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT);
   1998 
   1999   SDValue Tmp1 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpLt0, SignBit64, Tmp0);
   2000   SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpGt51, BcInt, Tmp1);
   2001 
   2002   return DAG.getNode(ISD::BITCAST, SL, MVT::f64, Tmp2);
   2003 }
   2004 
   2005 SDValue AMDGPUTargetLowering::LowerFRINT(SDValue Op, SelectionDAG &DAG) const {
   2006   SDLoc SL(Op);
   2007   SDValue Src = Op.getOperand(0);
   2008 
   2009   assert(Op.getValueType() == MVT::f64);
   2010 
   2011   APFloat C1Val(APFloat::IEEEdouble, "0x1.0p+52");
   2012   SDValue C1 = DAG.getConstantFP(C1Val, SL, MVT::f64);
   2013   SDValue CopySign = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, C1, Src);
   2014 
   2015   // TODO: Should this propagate fast-math-flags?
   2016 
   2017   SDValue Tmp1 = DAG.getNode(ISD::FADD, SL, MVT::f64, Src, CopySign);
   2018   SDValue Tmp2 = DAG.getNode(ISD::FSUB, SL, MVT::f64, Tmp1, CopySign);
   2019 
   2020   SDValue Fabs = DAG.getNode(ISD::FABS, SL, MVT::f64, Src);
   2021 
   2022   APFloat C2Val(APFloat::IEEEdouble, "0x1.fffffffffffffp+51");
   2023   SDValue C2 = DAG.getConstantFP(C2Val, SL, MVT::f64);
   2024 
   2025   EVT SetCCVT =
   2026       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64);
   2027   SDValue Cond = DAG.getSetCC(SL, SetCCVT, Fabs, C2, ISD::SETOGT);
   2028 
   2029   return DAG.getSelect(SL, MVT::f64, Cond, Src, Tmp2);
   2030 }
   2031 
   2032 SDValue AMDGPUTargetLowering::LowerFNEARBYINT(SDValue Op, SelectionDAG &DAG) const {
   2033   // FNEARBYINT and FRINT are the same, except in their handling of FP
   2034   // exceptions. Those aren't really meaningful for us, and OpenCL only has
   2035   // rint, so just treat them as equivalent.
   2036   return DAG.getNode(ISD::FRINT, SDLoc(Op), Op.getValueType(), Op.getOperand(0));
   2037 }
   2038 
   2039 // XXX - May require not supporting f32 denormals?
   2040 SDValue AMDGPUTargetLowering::LowerFROUND32(SDValue Op, SelectionDAG &DAG) const {
   2041   SDLoc SL(Op);
   2042   SDValue X = Op.getOperand(0);
   2043 
   2044   SDValue T = DAG.getNode(ISD::FTRUNC, SL, MVT::f32, X);
   2045 
   2046   // TODO: Should this propagate fast-math-flags?
   2047 
   2048   SDValue Diff = DAG.getNode(ISD::FSUB, SL, MVT::f32, X, T);
   2049 
   2050   SDValue AbsDiff = DAG.getNode(ISD::FABS, SL, MVT::f32, Diff);
   2051 
   2052   const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f32);
   2053   const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32);
   2054   const SDValue Half = DAG.getConstantFP(0.5, SL, MVT::f32);
   2055 
   2056   SDValue SignOne = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f32, One, X);
   2057 
   2058   EVT SetCCVT =
   2059       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f32);
   2060 
   2061   SDValue Cmp = DAG.getSetCC(SL, SetCCVT, AbsDiff, Half, ISD::SETOGE);
   2062 
   2063   SDValue Sel = DAG.getNode(ISD::SELECT, SL, MVT::f32, Cmp, SignOne, Zero);
   2064 
   2065   return DAG.getNode(ISD::FADD, SL, MVT::f32, T, Sel);
   2066 }
   2067 
   2068 SDValue AMDGPUTargetLowering::LowerFROUND64(SDValue Op, SelectionDAG &DAG) const {
   2069   SDLoc SL(Op);
   2070   SDValue X = Op.getOperand(0);
   2071 
   2072   SDValue L = DAG.getNode(ISD::BITCAST, SL, MVT::i64, X);
   2073 
   2074   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
   2075   const SDValue One = DAG.getConstant(1, SL, MVT::i32);
   2076   const SDValue NegOne = DAG.getConstant(-1, SL, MVT::i32);
   2077   const SDValue FiftyOne = DAG.getConstant(51, SL, MVT::i32);
   2078   EVT SetCCVT =
   2079       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32);
   2080 
   2081   SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X);
   2082 
   2083   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, One);
   2084 
   2085   SDValue Exp = extractF64Exponent(Hi, SL, DAG);
   2086 
   2087   const SDValue Mask = DAG.getConstant(INT64_C(0x000fffffffffffff), SL,
   2088                                        MVT::i64);
   2089 
   2090   SDValue M = DAG.getNode(ISD::SRA, SL, MVT::i64, Mask, Exp);
   2091   SDValue D = DAG.getNode(ISD::SRA, SL, MVT::i64,
   2092                           DAG.getConstant(INT64_C(0x0008000000000000), SL,
   2093                                           MVT::i64),
   2094                           Exp);
   2095 
   2096   SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, L, M);
   2097   SDValue Tmp1 = DAG.getSetCC(SL, SetCCVT,
   2098                               DAG.getConstant(0, SL, MVT::i64), Tmp0,
   2099                               ISD::SETNE);
   2100 
   2101   SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, Tmp1,
   2102                              D, DAG.getConstant(0, SL, MVT::i64));
   2103   SDValue K = DAG.getNode(ISD::ADD, SL, MVT::i64, L, Tmp2);
   2104 
   2105   K = DAG.getNode(ISD::AND, SL, MVT::i64, K, DAG.getNOT(SL, M, MVT::i64));
   2106   K = DAG.getNode(ISD::BITCAST, SL, MVT::f64, K);
   2107 
   2108   SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT);
   2109   SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT);
   2110   SDValue ExpEqNegOne = DAG.getSetCC(SL, SetCCVT, NegOne, Exp, ISD::SETEQ);
   2111 
   2112   SDValue Mag = DAG.getNode(ISD::SELECT, SL, MVT::f64,
   2113                             ExpEqNegOne,
   2114                             DAG.getConstantFP(1.0, SL, MVT::f64),
   2115                             DAG.getConstantFP(0.0, SL, MVT::f64));
   2116 
   2117   SDValue S = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, Mag, X);
   2118 
   2119   K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpLt0, S, K);
   2120   K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpGt51, X, K);
   2121 
   2122   return K;
   2123 }
   2124 
   2125 SDValue AMDGPUTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const {
   2126   EVT VT = Op.getValueType();
   2127 
   2128   if (VT == MVT::f32)
   2129     return LowerFROUND32(Op, DAG);
   2130 
   2131   if (VT == MVT::f64)
   2132     return LowerFROUND64(Op, DAG);
   2133 
   2134   llvm_unreachable("unhandled type");
   2135 }
   2136 
   2137 SDValue AMDGPUTargetLowering::LowerFFLOOR(SDValue Op, SelectionDAG &DAG) const {
   2138   SDLoc SL(Op);
   2139   SDValue Src = Op.getOperand(0);
   2140 
   2141   // result = trunc(src);
   2142   // if (src < 0.0 && src != result)
   2143   //   result += -1.0.
   2144 
   2145   SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
   2146 
   2147   const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64);
   2148   const SDValue NegOne = DAG.getConstantFP(-1.0, SL, MVT::f64);
   2149 
   2150   EVT SetCCVT =
   2151       getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64);
   2152 
   2153   SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOLT);
   2154   SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE);
   2155   SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc);
   2156 
   2157   SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, NegOne, Zero);
   2158   // TODO: Should this propagate fast-math-flags?
   2159   return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add);
   2160 }
   2161 
   2162 SDValue AMDGPUTargetLowering::LowerINT_TO_FP64(SDValue Op, SelectionDAG &DAG,
   2163                                                bool Signed) const {
   2164   SDLoc SL(Op);
   2165   SDValue Src = Op.getOperand(0);
   2166 
   2167   SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src);
   2168 
   2169   SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC,
   2170                            DAG.getConstant(0, SL, MVT::i32));
   2171   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC,
   2172                            DAG.getConstant(1, SL, MVT::i32));
   2173 
   2174   SDValue CvtHi = DAG.getNode(Signed ? ISD::SINT_TO_FP : ISD::UINT_TO_FP,
   2175                               SL, MVT::f64, Hi);
   2176 
   2177   SDValue CvtLo = DAG.getNode(ISD::UINT_TO_FP, SL, MVT::f64, Lo);
   2178 
   2179   SDValue LdExp = DAG.getNode(AMDGPUISD::LDEXP, SL, MVT::f64, CvtHi,
   2180                               DAG.getConstant(32, SL, MVT::i32));
   2181   // TODO: Should this propagate fast-math-flags?
   2182   return DAG.getNode(ISD::FADD, SL, MVT::f64, LdExp, CvtLo);
   2183 }
   2184 
   2185 SDValue AMDGPUTargetLowering::LowerUINT_TO_FP(SDValue Op,
   2186                                                SelectionDAG &DAG) const {
   2187   SDValue S0 = Op.getOperand(0);
   2188   if (S0.getValueType() != MVT::i64)
   2189     return SDValue();
   2190 
   2191   EVT DestVT = Op.getValueType();
   2192   if (DestVT == MVT::f64)
   2193     return LowerINT_TO_FP64(Op, DAG, false);
   2194 
   2195   assert(DestVT == MVT::f32);
   2196 
   2197   SDLoc DL(Op);
   2198 
   2199   // f32 uint_to_fp i64
   2200   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, S0,
   2201                            DAG.getConstant(0, DL, MVT::i32));
   2202   SDValue FloatLo = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, Lo);
   2203   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, S0,
   2204                            DAG.getConstant(1, DL, MVT::i32));
   2205   SDValue FloatHi = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, Hi);
   2206   // TODO: Should this propagate fast-math-flags?
   2207   FloatHi = DAG.getNode(ISD::FMUL, DL, MVT::f32, FloatHi,
   2208                         DAG.getConstantFP(4294967296.0f, DL, MVT::f32)); // 2^32
   2209   return DAG.getNode(ISD::FADD, DL, MVT::f32, FloatLo, FloatHi);
   2210 }
   2211 
   2212 SDValue AMDGPUTargetLowering::LowerSINT_TO_FP(SDValue Op,
   2213                                               SelectionDAG &DAG) const {
   2214   SDValue Src = Op.getOperand(0);
   2215   if (Src.getValueType() == MVT::i64 && Op.getValueType() == MVT::f64)
   2216     return LowerINT_TO_FP64(Op, DAG, true);
   2217 
   2218   return SDValue();
   2219 }
   2220 
   2221 SDValue AMDGPUTargetLowering::LowerFP64_TO_INT(SDValue Op, SelectionDAG &DAG,
   2222                                                bool Signed) const {
   2223   SDLoc SL(Op);
   2224 
   2225   SDValue Src = Op.getOperand(0);
   2226 
   2227   SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
   2228 
   2229   SDValue K0 = DAG.getConstantFP(BitsToDouble(UINT64_C(0x3df0000000000000)), SL,
   2230                                  MVT::f64);
   2231   SDValue K1 = DAG.getConstantFP(BitsToDouble(UINT64_C(0xc1f0000000000000)), SL,
   2232                                  MVT::f64);
   2233   // TODO: Should this propagate fast-math-flags?
   2234   SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, Trunc, K0);
   2235 
   2236   SDValue FloorMul = DAG.getNode(ISD::FFLOOR, SL, MVT::f64, Mul);
   2237 
   2238 
   2239   SDValue Fma = DAG.getNode(ISD::FMA, SL, MVT::f64, FloorMul, K1, Trunc);
   2240 
   2241   SDValue Hi = DAG.getNode(Signed ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, SL,
   2242                            MVT::i32, FloorMul);
   2243   SDValue Lo = DAG.getNode(ISD::FP_TO_UINT, SL, MVT::i32, Fma);
   2244 
   2245   SDValue Result = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, Lo, Hi);
   2246 
   2247   return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Result);
   2248 }
   2249 
   2250 SDValue AMDGPUTargetLowering::LowerFP_TO_SINT(SDValue Op,
   2251                                               SelectionDAG &DAG) const {
   2252   SDValue Src = Op.getOperand(0);
   2253 
   2254   if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64)
   2255     return LowerFP64_TO_INT(Op, DAG, true);
   2256 
   2257   return SDValue();
   2258 }
   2259 
   2260 SDValue AMDGPUTargetLowering::LowerFP_TO_UINT(SDValue Op,
   2261                                               SelectionDAG &DAG) const {
   2262   SDValue Src = Op.getOperand(0);
   2263 
   2264   if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64)
   2265     return LowerFP64_TO_INT(Op, DAG, false);
   2266 
   2267   return SDValue();
   2268 }
   2269 
   2270 SDValue AMDGPUTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
   2271                                                      SelectionDAG &DAG) const {
   2272   EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
   2273   MVT VT = Op.getSimpleValueType();
   2274   MVT ScalarVT = VT.getScalarType();
   2275 
   2276   if (!VT.isVector())
   2277     return SDValue();
   2278 
   2279   SDValue Src = Op.getOperand(0);
   2280   SDLoc DL(Op);
   2281 
   2282   // TODO: Don't scalarize on Evergreen?
   2283   unsigned NElts = VT.getVectorNumElements();
   2284   SmallVector<SDValue, 8> Args;
   2285   DAG.ExtractVectorElements(Src, Args, 0, NElts);
   2286 
   2287   SDValue VTOp = DAG.getValueType(ExtraVT.getScalarType());
   2288   for (unsigned I = 0; I < NElts; ++I)
   2289     Args[I] = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, ScalarVT, Args[I], VTOp);
   2290 
   2291   return DAG.getNode(ISD::BUILD_VECTOR, DL, VT, Args);
   2292 }
   2293 
   2294 //===----------------------------------------------------------------------===//
   2295 // Custom DAG optimizations
   2296 //===----------------------------------------------------------------------===//
   2297 
   2298 static bool isU24(SDValue Op, SelectionDAG &DAG) {
   2299   APInt KnownZero, KnownOne;
   2300   EVT VT = Op.getValueType();
   2301   DAG.computeKnownBits(Op, KnownZero, KnownOne);
   2302 
   2303   return (VT.getSizeInBits() - KnownZero.countLeadingOnes()) <= 24;
   2304 }
   2305 
   2306 static bool isI24(SDValue Op, SelectionDAG &DAG) {
   2307   EVT VT = Op.getValueType();
   2308 
   2309   // In order for this to be a signed 24-bit value, bit 23, must
   2310   // be a sign bit.
   2311   return VT.getSizeInBits() >= 24 && // Types less than 24-bit should be treated
   2312                                      // as unsigned 24-bit values.
   2313          (VT.getSizeInBits() - DAG.ComputeNumSignBits(Op)) < 24;
   2314 }
   2315 
   2316 static void simplifyI24(SDValue Op, TargetLowering::DAGCombinerInfo &DCI) {
   2317 
   2318   SelectionDAG &DAG = DCI.DAG;
   2319   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   2320   EVT VT = Op.getValueType();
   2321 
   2322   APInt Demanded = APInt::getLowBitsSet(VT.getSizeInBits(), 24);
   2323   APInt KnownZero, KnownOne;
   2324   TargetLowering::TargetLoweringOpt TLO(DAG, true, true);
   2325   if (TLI.SimplifyDemandedBits(Op, Demanded, KnownZero, KnownOne, TLO))
   2326     DCI.CommitTargetLoweringOpt(TLO);
   2327 }
   2328 
   2329 template <typename IntTy>
   2330 static SDValue constantFoldBFE(SelectionDAG &DAG, IntTy Src0,
   2331                                uint32_t Offset, uint32_t Width, SDLoc DL) {
   2332   if (Width + Offset < 32) {
   2333     uint32_t Shl = static_cast<uint32_t>(Src0) << (32 - Offset - Width);
   2334     IntTy Result = static_cast<IntTy>(Shl) >> (32 - Width);
   2335     return DAG.getConstant(Result, DL, MVT::i32);
   2336   }
   2337 
   2338   return DAG.getConstant(Src0 >> Offset, DL, MVT::i32);
   2339 }
   2340 
   2341 static bool usesAllNormalStores(SDNode *LoadVal) {
   2342   for (SDNode::use_iterator I = LoadVal->use_begin(); !I.atEnd(); ++I) {
   2343     if (!ISD::isNormalStore(*I))
   2344       return false;
   2345   }
   2346 
   2347   return true;
   2348 }
   2349 
   2350 // If we have a copy of an illegal type, replace it with a load / store of an
   2351 // equivalently sized legal type. This avoids intermediate bit pack / unpack
   2352 // instructions emitted when handling extloads and truncstores. Ideally we could
   2353 // recognize the pack / unpack pattern to eliminate it.
   2354 SDValue AMDGPUTargetLowering::performStoreCombine(SDNode *N,
   2355                                                   DAGCombinerInfo &DCI) const {
   2356   if (!DCI.isBeforeLegalize())
   2357     return SDValue();
   2358 
   2359   StoreSDNode *SN = cast<StoreSDNode>(N);
   2360   SDValue Value = SN->getValue();
   2361   EVT VT = Value.getValueType();
   2362 
   2363   if (isTypeLegal(VT) || SN->isVolatile() ||
   2364       !ISD::isNormalLoad(Value.getNode()) || VT.getSizeInBits() < 8)
   2365     return SDValue();
   2366 
   2367   LoadSDNode *LoadVal = cast<LoadSDNode>(Value);
   2368   if (LoadVal->isVolatile() || !usesAllNormalStores(LoadVal))
   2369     return SDValue();
   2370 
   2371   EVT MemVT = LoadVal->getMemoryVT();
   2372 
   2373   SDLoc SL(N);
   2374   SelectionDAG &DAG = DCI.DAG;
   2375   EVT LoadVT = getEquivalentMemType(*DAG.getContext(), MemVT);
   2376 
   2377   SDValue NewLoad = DAG.getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD,
   2378                                 LoadVT, SL,
   2379                                 LoadVal->getChain(),
   2380                                 LoadVal->getBasePtr(),
   2381                                 LoadVal->getOffset(),
   2382                                 LoadVT,
   2383                                 LoadVal->getMemOperand());
   2384 
   2385   SDValue CastLoad = DAG.getNode(ISD::BITCAST, SL, VT, NewLoad.getValue(0));
   2386   DCI.CombineTo(LoadVal, CastLoad, NewLoad.getValue(1), false);
   2387 
   2388   return DAG.getStore(SN->getChain(), SL, NewLoad,
   2389                       SN->getBasePtr(), SN->getMemOperand());
   2390 }
   2391 
   2392 SDValue AMDGPUTargetLowering::performShlCombine(SDNode *N,
   2393                                                 DAGCombinerInfo &DCI) const {
   2394   if (N->getValueType(0) != MVT::i64)
   2395     return SDValue();
   2396 
   2397   // i64 (shl x, 32) -> (build_pair 0, x)
   2398 
   2399   // Doing this with moves theoretically helps MI optimizations that understand
   2400   // copies. 2 v_mov_b32_e32 will have the same code size / cycle count as
   2401   // v_lshl_b64. In the SALU case, I think this is slightly worse since it
   2402   // doubles the code size and I'm unsure about cycle count.
   2403   const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
   2404   if (!RHS || RHS->getZExtValue() != 32)
   2405     return SDValue();
   2406 
   2407   SDValue LHS = N->getOperand(0);
   2408 
   2409   SDLoc SL(N);
   2410   SelectionDAG &DAG = DCI.DAG;
   2411 
   2412   // Extract low 32-bits.
   2413   SDValue Lo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LHS);
   2414 
   2415   const SDValue Zero = DAG.getConstant(0, SL, MVT::i32);
   2416   return DAG.getNode(ISD::BUILD_PAIR, SL, MVT::i64, Zero, Lo);
   2417 }
   2418 
   2419 SDValue AMDGPUTargetLowering::performMulCombine(SDNode *N,
   2420                                                 DAGCombinerInfo &DCI) const {
   2421   EVT VT = N->getValueType(0);
   2422 
   2423   if (VT.isVector() || VT.getSizeInBits() > 32)
   2424     return SDValue();
   2425 
   2426   SelectionDAG &DAG = DCI.DAG;
   2427   SDLoc DL(N);
   2428 
   2429   SDValue N0 = N->getOperand(0);
   2430   SDValue N1 = N->getOperand(1);
   2431   SDValue Mul;
   2432 
   2433   if (Subtarget->hasMulU24() && isU24(N0, DAG) && isU24(N1, DAG)) {
   2434     N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32);
   2435     N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32);
   2436     Mul = DAG.getNode(AMDGPUISD::MUL_U24, DL, MVT::i32, N0, N1);
   2437   } else if (Subtarget->hasMulI24() && isI24(N0, DAG) && isI24(N1, DAG)) {
   2438     N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32);
   2439     N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32);
   2440     Mul = DAG.getNode(AMDGPUISD::MUL_I24, DL, MVT::i32, N0, N1);
   2441   } else {
   2442     return SDValue();
   2443   }
   2444 
   2445   // We need to use sext even for MUL_U24, because MUL_U24 is used
   2446   // for signed multiply of 8 and 16-bit types.
   2447   return DAG.getSExtOrTrunc(Mul, DL, VT);
   2448 }
   2449 
   2450 SDValue AMDGPUTargetLowering::PerformDAGCombine(SDNode *N,
   2451                                                 DAGCombinerInfo &DCI) const {
   2452   SelectionDAG &DAG = DCI.DAG;
   2453   SDLoc DL(N);
   2454 
   2455   switch(N->getOpcode()) {
   2456   default:
   2457     break;
   2458   case ISD::SHL: {
   2459     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
   2460       break;
   2461 
   2462     return performShlCombine(N, DCI);
   2463   }
   2464   case ISD::MUL:
   2465     return performMulCombine(N, DCI);
   2466   case AMDGPUISD::MUL_I24:
   2467   case AMDGPUISD::MUL_U24: {
   2468     SDValue N0 = N->getOperand(0);
   2469     SDValue N1 = N->getOperand(1);
   2470     simplifyI24(N0, DCI);
   2471     simplifyI24(N1, DCI);
   2472     return SDValue();
   2473   }
   2474   case ISD::SELECT: {
   2475     SDValue Cond = N->getOperand(0);
   2476     if (Cond.getOpcode() == ISD::SETCC && Cond.hasOneUse()) {
   2477       EVT VT = N->getValueType(0);
   2478       SDValue LHS = Cond.getOperand(0);
   2479       SDValue RHS = Cond.getOperand(1);
   2480       SDValue CC = Cond.getOperand(2);
   2481 
   2482       SDValue True = N->getOperand(1);
   2483       SDValue False = N->getOperand(2);
   2484 
   2485       if (VT == MVT::f32)
   2486         return CombineFMinMaxLegacy(DL, VT, LHS, RHS, True, False, CC, DCI);
   2487     }
   2488 
   2489     break;
   2490   }
   2491   case AMDGPUISD::BFE_I32:
   2492   case AMDGPUISD::BFE_U32: {
   2493     assert(!N->getValueType(0).isVector() &&
   2494            "Vector handling of BFE not implemented");
   2495     ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2));
   2496     if (!Width)
   2497       break;
   2498 
   2499     uint32_t WidthVal = Width->getZExtValue() & 0x1f;
   2500     if (WidthVal == 0)
   2501       return DAG.getConstant(0, DL, MVT::i32);
   2502 
   2503     ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
   2504     if (!Offset)
   2505       break;
   2506 
   2507     SDValue BitsFrom = N->getOperand(0);
   2508     uint32_t OffsetVal = Offset->getZExtValue() & 0x1f;
   2509 
   2510     bool Signed = N->getOpcode() == AMDGPUISD::BFE_I32;
   2511 
   2512     if (OffsetVal == 0) {
   2513       // This is already sign / zero extended, so try to fold away extra BFEs.
   2514       unsigned SignBits =  Signed ? (32 - WidthVal + 1) : (32 - WidthVal);
   2515 
   2516       unsigned OpSignBits = DAG.ComputeNumSignBits(BitsFrom);
   2517       if (OpSignBits >= SignBits)
   2518         return BitsFrom;
   2519 
   2520       EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), WidthVal);
   2521       if (Signed) {
   2522         // This is a sign_extend_inreg. Replace it to take advantage of existing
   2523         // DAG Combines. If not eliminated, we will match back to BFE during
   2524         // selection.
   2525 
   2526         // TODO: The sext_inreg of extended types ends, although we can could
   2527         // handle them in a single BFE.
   2528         return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, BitsFrom,
   2529                            DAG.getValueType(SmallVT));
   2530       }
   2531 
   2532       return DAG.getZeroExtendInReg(BitsFrom, DL, SmallVT);
   2533     }
   2534 
   2535     if (ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(BitsFrom)) {
   2536       if (Signed) {
   2537         return constantFoldBFE<int32_t>(DAG,
   2538                                         CVal->getSExtValue(),
   2539                                         OffsetVal,
   2540                                         WidthVal,
   2541                                         DL);
   2542       }
   2543 
   2544       return constantFoldBFE<uint32_t>(DAG,
   2545                                        CVal->getZExtValue(),
   2546                                        OffsetVal,
   2547                                        WidthVal,
   2548                                        DL);
   2549     }
   2550 
   2551     if ((OffsetVal + WidthVal) >= 32) {
   2552       SDValue ShiftVal = DAG.getConstant(OffsetVal, DL, MVT::i32);
   2553       return DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, MVT::i32,
   2554                          BitsFrom, ShiftVal);
   2555     }
   2556 
   2557     if (BitsFrom.hasOneUse()) {
   2558       APInt Demanded = APInt::getBitsSet(32,
   2559                                          OffsetVal,
   2560                                          OffsetVal + WidthVal);
   2561 
   2562       APInt KnownZero, KnownOne;
   2563       TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
   2564                                             !DCI.isBeforeLegalizeOps());
   2565       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   2566       if (TLO.ShrinkDemandedConstant(BitsFrom, Demanded) ||
   2567           TLI.SimplifyDemandedBits(BitsFrom, Demanded,
   2568                                    KnownZero, KnownOne, TLO)) {
   2569         DCI.CommitTargetLoweringOpt(TLO);
   2570       }
   2571     }
   2572 
   2573     break;
   2574   }
   2575 
   2576   case ISD::STORE:
   2577     return performStoreCombine(N, DCI);
   2578   }
   2579   return SDValue();
   2580 }
   2581 
   2582 //===----------------------------------------------------------------------===//
   2583 // Helper functions
   2584 //===----------------------------------------------------------------------===//
   2585 
   2586 void AMDGPUTargetLowering::getOriginalFunctionArgs(
   2587                                SelectionDAG &DAG,
   2588                                const Function *F,
   2589                                const SmallVectorImpl<ISD::InputArg> &Ins,
   2590                                SmallVectorImpl<ISD::InputArg> &OrigIns) const {
   2591 
   2592   for (unsigned i = 0, e = Ins.size(); i < e; ++i) {
   2593     if (Ins[i].ArgVT == Ins[i].VT) {
   2594       OrigIns.push_back(Ins[i]);
   2595       continue;
   2596     }
   2597 
   2598     EVT VT;
   2599     if (Ins[i].ArgVT.isVector() && !Ins[i].VT.isVector()) {
   2600       // Vector has been split into scalars.
   2601       VT = Ins[i].ArgVT.getVectorElementType();
   2602     } else if (Ins[i].VT.isVector() && Ins[i].ArgVT.isVector() &&
   2603                Ins[i].ArgVT.getVectorElementType() !=
   2604                Ins[i].VT.getVectorElementType()) {
   2605       // Vector elements have been promoted
   2606       VT = Ins[i].ArgVT;
   2607     } else {
   2608       // Vector has been spilt into smaller vectors.
   2609       VT = Ins[i].VT;
   2610     }
   2611 
   2612     ISD::InputArg Arg(Ins[i].Flags, VT, VT, Ins[i].Used,
   2613                       Ins[i].OrigArgIndex, Ins[i].PartOffset);
   2614     OrigIns.push_back(Arg);
   2615   }
   2616 }
   2617 
   2618 bool AMDGPUTargetLowering::isHWTrueValue(SDValue Op) const {
   2619   if (ConstantFPSDNode * CFP = dyn_cast<ConstantFPSDNode>(Op)) {
   2620     return CFP->isExactlyValue(1.0);
   2621   }
   2622   return isAllOnesConstant(Op);
   2623 }
   2624 
   2625 bool AMDGPUTargetLowering::isHWFalseValue(SDValue Op) const {
   2626   if (ConstantFPSDNode * CFP = dyn_cast<ConstantFPSDNode>(Op)) {
   2627     return CFP->getValueAPF().isZero();
   2628   }
   2629   return isNullConstant(Op);
   2630 }
   2631 
   2632 SDValue AMDGPUTargetLowering::CreateLiveInRegister(SelectionDAG &DAG,
   2633                                                   const TargetRegisterClass *RC,
   2634                                                    unsigned Reg, EVT VT) const {
   2635   MachineFunction &MF = DAG.getMachineFunction();
   2636   MachineRegisterInfo &MRI = MF.getRegInfo();
   2637   unsigned VirtualRegister;
   2638   if (!MRI.isLiveIn(Reg)) {
   2639     VirtualRegister = MRI.createVirtualRegister(RC);
   2640     MRI.addLiveIn(Reg, VirtualRegister);
   2641   } else {
   2642     VirtualRegister = MRI.getLiveInVirtReg(Reg);
   2643   }
   2644   return DAG.getRegister(VirtualRegister, VT);
   2645 }
   2646 
   2647 uint32_t AMDGPUTargetLowering::getImplicitParameterOffset(
   2648     const AMDGPUMachineFunction *MFI, const ImplicitParameter Param) const {
   2649   uint64_t ArgOffset = MFI->ABIArgOffset;
   2650   switch (Param) {
   2651   case GRID_DIM:
   2652     return ArgOffset;
   2653   case GRID_OFFSET:
   2654     return ArgOffset + 4;
   2655   }
   2656   llvm_unreachable("unexpected implicit parameter type");
   2657 }
   2658 
   2659 #define NODE_NAME_CASE(node) case AMDGPUISD::node: return #node;
   2660 
   2661 const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode) const {
   2662   switch ((AMDGPUISD::NodeType)Opcode) {
   2663   case AMDGPUISD::FIRST_NUMBER: break;
   2664   // AMDIL DAG nodes
   2665   NODE_NAME_CASE(CALL);
   2666   NODE_NAME_CASE(UMUL);
   2667   NODE_NAME_CASE(RET_FLAG);
   2668   NODE_NAME_CASE(BRANCH_COND);
   2669 
   2670   // AMDGPU DAG nodes
   2671   NODE_NAME_CASE(DWORDADDR)
   2672   NODE_NAME_CASE(FRACT)
   2673   NODE_NAME_CASE(CLAMP)
   2674   NODE_NAME_CASE(COS_HW)
   2675   NODE_NAME_CASE(SIN_HW)
   2676   NODE_NAME_CASE(FMAX_LEGACY)
   2677   NODE_NAME_CASE(FMIN_LEGACY)
   2678   NODE_NAME_CASE(FMAX3)
   2679   NODE_NAME_CASE(SMAX3)
   2680   NODE_NAME_CASE(UMAX3)
   2681   NODE_NAME_CASE(FMIN3)
   2682   NODE_NAME_CASE(SMIN3)
   2683   NODE_NAME_CASE(UMIN3)
   2684   NODE_NAME_CASE(URECIP)
   2685   NODE_NAME_CASE(DIV_SCALE)
   2686   NODE_NAME_CASE(DIV_FMAS)
   2687   NODE_NAME_CASE(DIV_FIXUP)
   2688   NODE_NAME_CASE(TRIG_PREOP)
   2689   NODE_NAME_CASE(RCP)
   2690   NODE_NAME_CASE(RSQ)
   2691   NODE_NAME_CASE(RSQ_LEGACY)
   2692   NODE_NAME_CASE(RSQ_CLAMPED)
   2693   NODE_NAME_CASE(LDEXP)
   2694   NODE_NAME_CASE(FP_CLASS)
   2695   NODE_NAME_CASE(DOT4)
   2696   NODE_NAME_CASE(CARRY)
   2697   NODE_NAME_CASE(BORROW)
   2698   NODE_NAME_CASE(BFE_U32)
   2699   NODE_NAME_CASE(BFE_I32)
   2700   NODE_NAME_CASE(BFI)
   2701   NODE_NAME_CASE(BFM)
   2702   NODE_NAME_CASE(MUL_U24)
   2703   NODE_NAME_CASE(MUL_I24)
   2704   NODE_NAME_CASE(MAD_U24)
   2705   NODE_NAME_CASE(MAD_I24)
   2706   NODE_NAME_CASE(TEXTURE_FETCH)
   2707   NODE_NAME_CASE(EXPORT)
   2708   NODE_NAME_CASE(CONST_ADDRESS)
   2709   NODE_NAME_CASE(REGISTER_LOAD)
   2710   NODE_NAME_CASE(REGISTER_STORE)
   2711   NODE_NAME_CASE(LOAD_CONSTANT)
   2712   NODE_NAME_CASE(LOAD_INPUT)
   2713   NODE_NAME_CASE(SAMPLE)
   2714   NODE_NAME_CASE(SAMPLEB)
   2715   NODE_NAME_CASE(SAMPLED)
   2716   NODE_NAME_CASE(SAMPLEL)
   2717   NODE_NAME_CASE(CVT_F32_UBYTE0)
   2718   NODE_NAME_CASE(CVT_F32_UBYTE1)
   2719   NODE_NAME_CASE(CVT_F32_UBYTE2)
   2720   NODE_NAME_CASE(CVT_F32_UBYTE3)
   2721   NODE_NAME_CASE(BUILD_VERTICAL_VECTOR)
   2722   NODE_NAME_CASE(CONST_DATA_PTR)
   2723   case AMDGPUISD::FIRST_MEM_OPCODE_NUMBER: break;
   2724   NODE_NAME_CASE(SENDMSG)
   2725   NODE_NAME_CASE(INTERP_MOV)
   2726   NODE_NAME_CASE(INTERP_P1)
   2727   NODE_NAME_CASE(INTERP_P2)
   2728   NODE_NAME_CASE(STORE_MSKOR)
   2729   NODE_NAME_CASE(TBUFFER_STORE_FORMAT)
   2730   case AMDGPUISD::LAST_AMDGPU_ISD_NUMBER: break;
   2731   }
   2732   return nullptr;
   2733 }
   2734 
   2735 SDValue AMDGPUTargetLowering::getRsqrtEstimate(SDValue Operand,
   2736                                                DAGCombinerInfo &DCI,
   2737                                                unsigned &RefinementSteps,
   2738                                                bool &UseOneConstNR) const {
   2739   SelectionDAG &DAG = DCI.DAG;
   2740   EVT VT = Operand.getValueType();
   2741 
   2742   if (VT == MVT::f32) {
   2743     RefinementSteps = 0;
   2744     return DAG.getNode(AMDGPUISD::RSQ, SDLoc(Operand), VT, Operand);
   2745   }
   2746 
   2747   // TODO: There is also f64 rsq instruction, but the documentation is less
   2748   // clear on its precision.
   2749 
   2750   return SDValue();
   2751 }
   2752 
   2753 SDValue AMDGPUTargetLowering::getRecipEstimate(SDValue Operand,
   2754                                                DAGCombinerInfo &DCI,
   2755                                                unsigned &RefinementSteps) const {
   2756   SelectionDAG &DAG = DCI.DAG;
   2757   EVT VT = Operand.getValueType();
   2758 
   2759   if (VT == MVT::f32) {
   2760     // Reciprocal, < 1 ulp error.
   2761     //
   2762     // This reciprocal approximation converges to < 0.5 ulp error with one
   2763     // newton rhapson performed with two fused multiple adds (FMAs).
   2764 
   2765     RefinementSteps = 0;
   2766     return DAG.getNode(AMDGPUISD::RCP, SDLoc(Operand), VT, Operand);
   2767   }
   2768 
   2769   // TODO: There is also f64 rcp instruction, but the documentation is less
   2770   // clear on its precision.
   2771 
   2772   return SDValue();
   2773 }
   2774 
   2775 static void computeKnownBitsForMinMax(const SDValue Op0,
   2776                                       const SDValue Op1,
   2777                                       APInt &KnownZero,
   2778                                       APInt &KnownOne,
   2779                                       const SelectionDAG &DAG,
   2780                                       unsigned Depth) {
   2781   APInt Op0Zero, Op0One;
   2782   APInt Op1Zero, Op1One;
   2783   DAG.computeKnownBits(Op0, Op0Zero, Op0One, Depth);
   2784   DAG.computeKnownBits(Op1, Op1Zero, Op1One, Depth);
   2785 
   2786   KnownZero = Op0Zero & Op1Zero;
   2787   KnownOne = Op0One & Op1One;
   2788 }
   2789 
   2790 void AMDGPUTargetLowering::computeKnownBitsForTargetNode(
   2791   const SDValue Op,
   2792   APInt &KnownZero,
   2793   APInt &KnownOne,
   2794   const SelectionDAG &DAG,
   2795   unsigned Depth) const {
   2796 
   2797   KnownZero = KnownOne = APInt(KnownOne.getBitWidth(), 0); // Don't know anything.
   2798 
   2799   APInt KnownZero2;
   2800   APInt KnownOne2;
   2801   unsigned Opc = Op.getOpcode();
   2802 
   2803   switch (Opc) {
   2804   default:
   2805     break;
   2806   case ISD::INTRINSIC_WO_CHAIN: {
   2807     // FIXME: The intrinsic should just use the node.
   2808     switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
   2809     case AMDGPUIntrinsic::AMDGPU_imax:
   2810     case AMDGPUIntrinsic::AMDGPU_umax:
   2811     case AMDGPUIntrinsic::AMDGPU_imin:
   2812     case AMDGPUIntrinsic::AMDGPU_umin:
   2813       computeKnownBitsForMinMax(Op.getOperand(1), Op.getOperand(2),
   2814                                 KnownZero, KnownOne, DAG, Depth);
   2815       break;
   2816     default:
   2817       break;
   2818     }
   2819 
   2820     break;
   2821   }
   2822   case AMDGPUISD::CARRY:
   2823   case AMDGPUISD::BORROW: {
   2824     KnownZero = APInt::getHighBitsSet(32, 31);
   2825     break;
   2826   }
   2827 
   2828   case AMDGPUISD::BFE_I32:
   2829   case AMDGPUISD::BFE_U32: {
   2830     ConstantSDNode *CWidth = dyn_cast<ConstantSDNode>(Op.getOperand(2));
   2831     if (!CWidth)
   2832       return;
   2833 
   2834     unsigned BitWidth = 32;
   2835     uint32_t Width = CWidth->getZExtValue() & 0x1f;
   2836 
   2837     if (Opc == AMDGPUISD::BFE_U32)
   2838       KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - Width);
   2839 
   2840     break;
   2841   }
   2842   }
   2843 }
   2844 
   2845 unsigned AMDGPUTargetLowering::ComputeNumSignBitsForTargetNode(
   2846   SDValue Op,
   2847   const SelectionDAG &DAG,
   2848   unsigned Depth) const {
   2849   switch (Op.getOpcode()) {
   2850   case AMDGPUISD::BFE_I32: {
   2851     ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2));
   2852     if (!Width)
   2853       return 1;
   2854 
   2855     unsigned SignBits = 32 - Width->getZExtValue() + 1;
   2856     if (!isNullConstant(Op.getOperand(1)))
   2857       return SignBits;
   2858 
   2859     // TODO: Could probably figure something out with non-0 offsets.
   2860     unsigned Op0SignBits = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1);
   2861     return std::max(SignBits, Op0SignBits);
   2862   }
   2863 
   2864   case AMDGPUISD::BFE_U32: {
   2865     ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2));
   2866     return Width ? 32 - (Width->getZExtValue() & 0x1f) : 1;
   2867   }
   2868 
   2869   case AMDGPUISD::CARRY:
   2870   case AMDGPUISD::BORROW:
   2871     return 31;
   2872 
   2873   default:
   2874     return 1;
   2875   }
   2876 }
   2877