1 //===-- AMDGPUISelLowering.cpp - AMDGPU Common DAG lowering functions -----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 /// \file 11 /// \brief This is the parent TargetLowering class for hardware code gen 12 /// targets. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "AMDGPUISelLowering.h" 17 #include "AMDGPU.h" 18 #include "AMDGPUDiagnosticInfoUnsupported.h" 19 #include "AMDGPUFrameLowering.h" 20 #include "AMDGPUIntrinsicInfo.h" 21 #include "AMDGPURegisterInfo.h" 22 #include "AMDGPUSubtarget.h" 23 #include "R600MachineFunctionInfo.h" 24 #include "SIMachineFunctionInfo.h" 25 #include "llvm/CodeGen/CallingConvLower.h" 26 #include "llvm/CodeGen/MachineFunction.h" 27 #include "llvm/CodeGen/MachineRegisterInfo.h" 28 #include "llvm/CodeGen/SelectionDAG.h" 29 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 30 #include "llvm/IR/DataLayout.h" 31 32 using namespace llvm; 33 34 static bool allocateStack(unsigned ValNo, MVT ValVT, MVT LocVT, 35 CCValAssign::LocInfo LocInfo, 36 ISD::ArgFlagsTy ArgFlags, CCState &State) { 37 unsigned Offset = State.AllocateStack(ValVT.getStoreSize(), 38 ArgFlags.getOrigAlign()); 39 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); 40 41 return true; 42 } 43 44 #include "AMDGPUGenCallingConv.inc" 45 46 // Find a larger type to do a load / store of a vector with. 47 EVT AMDGPUTargetLowering::getEquivalentMemType(LLVMContext &Ctx, EVT VT) { 48 unsigned StoreSize = VT.getStoreSizeInBits(); 49 if (StoreSize <= 32) 50 return EVT::getIntegerVT(Ctx, StoreSize); 51 52 assert(StoreSize % 32 == 0 && "Store size not a multiple of 32"); 53 return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32); 54 } 55 56 // Type for a vector that will be loaded to. 57 EVT AMDGPUTargetLowering::getEquivalentLoadRegType(LLVMContext &Ctx, EVT VT) { 58 unsigned StoreSize = VT.getStoreSizeInBits(); 59 if (StoreSize <= 32) 60 return EVT::getIntegerVT(Ctx, 32); 61 62 return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32); 63 } 64 65 AMDGPUTargetLowering::AMDGPUTargetLowering(TargetMachine &TM, 66 const AMDGPUSubtarget &STI) 67 : TargetLowering(TM), Subtarget(&STI) { 68 setOperationAction(ISD::Constant, MVT::i32, Legal); 69 setOperationAction(ISD::Constant, MVT::i64, Legal); 70 setOperationAction(ISD::ConstantFP, MVT::f32, Legal); 71 setOperationAction(ISD::ConstantFP, MVT::f64, Legal); 72 73 setOperationAction(ISD::BR_JT, MVT::Other, Expand); 74 setOperationAction(ISD::BRIND, MVT::Other, Expand); 75 76 // This is totally unsupported, just custom lower to produce an error. 77 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom); 78 79 // We need to custom lower some of the intrinsics 80 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 81 82 // Library functions. These default to Expand, but we have instructions 83 // for them. 84 setOperationAction(ISD::FCEIL, MVT::f32, Legal); 85 setOperationAction(ISD::FEXP2, MVT::f32, Legal); 86 setOperationAction(ISD::FPOW, MVT::f32, Legal); 87 setOperationAction(ISD::FLOG2, MVT::f32, Legal); 88 setOperationAction(ISD::FABS, MVT::f32, Legal); 89 setOperationAction(ISD::FFLOOR, MVT::f32, Legal); 90 setOperationAction(ISD::FRINT, MVT::f32, Legal); 91 setOperationAction(ISD::FTRUNC, MVT::f32, Legal); 92 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 93 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 94 95 setOperationAction(ISD::FROUND, MVT::f32, Custom); 96 setOperationAction(ISD::FROUND, MVT::f64, Custom); 97 98 setOperationAction(ISD::FREM, MVT::f32, Custom); 99 setOperationAction(ISD::FREM, MVT::f64, Custom); 100 101 // v_mad_f32 does not support denormals according to some sources. 102 if (!Subtarget->hasFP32Denormals()) 103 setOperationAction(ISD::FMAD, MVT::f32, Legal); 104 105 // Expand to fneg + fadd. 106 setOperationAction(ISD::FSUB, MVT::f64, Expand); 107 108 // Lower floating point store/load to integer store/load to reduce the number 109 // of patterns in tablegen. 110 setOperationAction(ISD::STORE, MVT::f32, Promote); 111 AddPromotedToType(ISD::STORE, MVT::f32, MVT::i32); 112 113 setOperationAction(ISD::STORE, MVT::v2f32, Promote); 114 AddPromotedToType(ISD::STORE, MVT::v2f32, MVT::v2i32); 115 116 setOperationAction(ISD::STORE, MVT::v4f32, Promote); 117 AddPromotedToType(ISD::STORE, MVT::v4f32, MVT::v4i32); 118 119 setOperationAction(ISD::STORE, MVT::v8f32, Promote); 120 AddPromotedToType(ISD::STORE, MVT::v8f32, MVT::v8i32); 121 122 setOperationAction(ISD::STORE, MVT::v16f32, Promote); 123 AddPromotedToType(ISD::STORE, MVT::v16f32, MVT::v16i32); 124 125 setOperationAction(ISD::STORE, MVT::f64, Promote); 126 AddPromotedToType(ISD::STORE, MVT::f64, MVT::i64); 127 128 setOperationAction(ISD::STORE, MVT::v2f64, Promote); 129 AddPromotedToType(ISD::STORE, MVT::v2f64, MVT::v2i64); 130 131 // Custom lowering of vector stores is required for local address space 132 // stores. 133 setOperationAction(ISD::STORE, MVT::v4i32, Custom); 134 135 setTruncStoreAction(MVT::v2i32, MVT::v2i16, Custom); 136 setTruncStoreAction(MVT::v2i32, MVT::v2i8, Custom); 137 setTruncStoreAction(MVT::v4i32, MVT::v4i8, Custom); 138 139 // XXX: This can be change to Custom, once ExpandVectorStores can 140 // handle 64-bit stores. 141 setTruncStoreAction(MVT::v4i32, MVT::v4i16, Expand); 142 143 setTruncStoreAction(MVT::i64, MVT::i16, Expand); 144 setTruncStoreAction(MVT::i64, MVT::i8, Expand); 145 setTruncStoreAction(MVT::i64, MVT::i1, Expand); 146 setTruncStoreAction(MVT::v2i64, MVT::v2i1, Expand); 147 setTruncStoreAction(MVT::v4i64, MVT::v4i1, Expand); 148 149 150 setOperationAction(ISD::LOAD, MVT::f32, Promote); 151 AddPromotedToType(ISD::LOAD, MVT::f32, MVT::i32); 152 153 setOperationAction(ISD::LOAD, MVT::v2f32, Promote); 154 AddPromotedToType(ISD::LOAD, MVT::v2f32, MVT::v2i32); 155 156 setOperationAction(ISD::LOAD, MVT::v4f32, Promote); 157 AddPromotedToType(ISD::LOAD, MVT::v4f32, MVT::v4i32); 158 159 setOperationAction(ISD::LOAD, MVT::v8f32, Promote); 160 AddPromotedToType(ISD::LOAD, MVT::v8f32, MVT::v8i32); 161 162 setOperationAction(ISD::LOAD, MVT::v16f32, Promote); 163 AddPromotedToType(ISD::LOAD, MVT::v16f32, MVT::v16i32); 164 165 setOperationAction(ISD::LOAD, MVT::f64, Promote); 166 AddPromotedToType(ISD::LOAD, MVT::f64, MVT::i64); 167 168 setOperationAction(ISD::LOAD, MVT::v2f64, Promote); 169 AddPromotedToType(ISD::LOAD, MVT::v2f64, MVT::v2i64); 170 171 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom); 172 setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f32, Custom); 173 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i32, Custom); 174 setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f32, Custom); 175 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f32, Custom); 176 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i32, Custom); 177 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f32, Custom); 178 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i32, Custom); 179 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f32, Custom); 180 setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i32, Custom); 181 182 // There are no 64-bit extloads. These should be done as a 32-bit extload and 183 // an extension to 64-bit. 184 for (MVT VT : MVT::integer_valuetypes()) { 185 setLoadExtAction(ISD::EXTLOAD, MVT::i64, VT, Expand); 186 setLoadExtAction(ISD::SEXTLOAD, MVT::i64, VT, Expand); 187 setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, VT, Expand); 188 } 189 190 for (MVT VT : MVT::integer_vector_valuetypes()) { 191 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i8, Expand); 192 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i8, Expand); 193 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i8, Expand); 194 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i8, Expand); 195 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i8, Expand); 196 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i8, Expand); 197 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i16, Expand); 198 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i16, Expand); 199 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i16, Expand); 200 setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i16, Expand); 201 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i16, Expand); 202 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i16, Expand); 203 } 204 205 setOperationAction(ISD::BR_CC, MVT::i1, Expand); 206 207 if (Subtarget->getGeneration() < AMDGPUSubtarget::SEA_ISLANDS) { 208 setOperationAction(ISD::FCEIL, MVT::f64, Custom); 209 setOperationAction(ISD::FTRUNC, MVT::f64, Custom); 210 setOperationAction(ISD::FRINT, MVT::f64, Custom); 211 setOperationAction(ISD::FFLOOR, MVT::f64, Custom); 212 } 213 214 if (!Subtarget->hasBFI()) { 215 // fcopysign can be done in a single instruction with BFI. 216 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); 217 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 218 } 219 220 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); 221 222 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand); 223 setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand); 224 setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand); 225 setLoadExtAction(ISD::EXTLOAD, MVT::v8f32, MVT::v8f16, Expand); 226 227 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand); 228 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand); 229 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand); 230 setLoadExtAction(ISD::EXTLOAD, MVT::v8f64, MVT::v8f16, Expand); 231 232 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 233 setTruncStoreAction(MVT::v2f32, MVT::v2f16, Expand); 234 setTruncStoreAction(MVT::v4f32, MVT::v4f16, Expand); 235 setTruncStoreAction(MVT::v8f32, MVT::v8f16, Expand); 236 237 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 238 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 239 240 const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 }; 241 for (MVT VT : ScalarIntVTs) { 242 setOperationAction(ISD::SREM, VT, Expand); 243 setOperationAction(ISD::SDIV, VT, Expand); 244 245 // GPU does not have divrem function for signed or unsigned. 246 setOperationAction(ISD::SDIVREM, VT, Custom); 247 setOperationAction(ISD::UDIVREM, VT, Custom); 248 249 // GPU does not have [S|U]MUL_LOHI functions as a single instruction. 250 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 251 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 252 253 setOperationAction(ISD::BSWAP, VT, Expand); 254 setOperationAction(ISD::CTTZ, VT, Expand); 255 setOperationAction(ISD::CTLZ, VT, Expand); 256 } 257 258 if (!Subtarget->hasBCNT(32)) 259 setOperationAction(ISD::CTPOP, MVT::i32, Expand); 260 261 if (!Subtarget->hasBCNT(64)) 262 setOperationAction(ISD::CTPOP, MVT::i64, Expand); 263 264 // The hardware supports 32-bit ROTR, but not ROTL. 265 setOperationAction(ISD::ROTL, MVT::i32, Expand); 266 setOperationAction(ISD::ROTL, MVT::i64, Expand); 267 setOperationAction(ISD::ROTR, MVT::i64, Expand); 268 269 setOperationAction(ISD::MUL, MVT::i64, Expand); 270 setOperationAction(ISD::MULHU, MVT::i64, Expand); 271 setOperationAction(ISD::MULHS, MVT::i64, Expand); 272 setOperationAction(ISD::UDIV, MVT::i32, Expand); 273 setOperationAction(ISD::UREM, MVT::i32, Expand); 274 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom); 275 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom); 276 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom); 277 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom); 278 setOperationAction(ISD::SELECT_CC, MVT::i64, Expand); 279 280 setOperationAction(ISD::SMIN, MVT::i32, Legal); 281 setOperationAction(ISD::UMIN, MVT::i32, Legal); 282 setOperationAction(ISD::SMAX, MVT::i32, Legal); 283 setOperationAction(ISD::UMAX, MVT::i32, Legal); 284 285 if (!Subtarget->hasFFBH()) 286 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand); 287 288 if (!Subtarget->hasFFBL()) 289 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand); 290 291 static const MVT::SimpleValueType VectorIntTypes[] = { 292 MVT::v2i32, MVT::v4i32 293 }; 294 295 for (MVT VT : VectorIntTypes) { 296 // Expand the following operations for the current type by default. 297 setOperationAction(ISD::ADD, VT, Expand); 298 setOperationAction(ISD::AND, VT, Expand); 299 setOperationAction(ISD::FP_TO_SINT, VT, Expand); 300 setOperationAction(ISD::FP_TO_UINT, VT, Expand); 301 setOperationAction(ISD::MUL, VT, Expand); 302 setOperationAction(ISD::OR, VT, Expand); 303 setOperationAction(ISD::SHL, VT, Expand); 304 setOperationAction(ISD::SRA, VT, Expand); 305 setOperationAction(ISD::SRL, VT, Expand); 306 setOperationAction(ISD::ROTL, VT, Expand); 307 setOperationAction(ISD::ROTR, VT, Expand); 308 setOperationAction(ISD::SUB, VT, Expand); 309 setOperationAction(ISD::SINT_TO_FP, VT, Expand); 310 setOperationAction(ISD::UINT_TO_FP, VT, Expand); 311 setOperationAction(ISD::SDIV, VT, Expand); 312 setOperationAction(ISD::UDIV, VT, Expand); 313 setOperationAction(ISD::SREM, VT, Expand); 314 setOperationAction(ISD::UREM, VT, Expand); 315 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 316 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 317 setOperationAction(ISD::SDIVREM, VT, Custom); 318 setOperationAction(ISD::UDIVREM, VT, Expand); 319 setOperationAction(ISD::ADDC, VT, Expand); 320 setOperationAction(ISD::SUBC, VT, Expand); 321 setOperationAction(ISD::ADDE, VT, Expand); 322 setOperationAction(ISD::SUBE, VT, Expand); 323 setOperationAction(ISD::SELECT, VT, Expand); 324 setOperationAction(ISD::VSELECT, VT, Expand); 325 setOperationAction(ISD::SELECT_CC, VT, Expand); 326 setOperationAction(ISD::XOR, VT, Expand); 327 setOperationAction(ISD::BSWAP, VT, Expand); 328 setOperationAction(ISD::CTPOP, VT, Expand); 329 setOperationAction(ISD::CTTZ, VT, Expand); 330 setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand); 331 setOperationAction(ISD::CTLZ, VT, Expand); 332 setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand); 333 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); 334 } 335 336 static const MVT::SimpleValueType FloatVectorTypes[] = { 337 MVT::v2f32, MVT::v4f32 338 }; 339 340 for (MVT VT : FloatVectorTypes) { 341 setOperationAction(ISD::FABS, VT, Expand); 342 setOperationAction(ISD::FMINNUM, VT, Expand); 343 setOperationAction(ISD::FMAXNUM, VT, Expand); 344 setOperationAction(ISD::FADD, VT, Expand); 345 setOperationAction(ISD::FCEIL, VT, Expand); 346 setOperationAction(ISD::FCOS, VT, Expand); 347 setOperationAction(ISD::FDIV, VT, Expand); 348 setOperationAction(ISD::FEXP2, VT, Expand); 349 setOperationAction(ISD::FLOG2, VT, Expand); 350 setOperationAction(ISD::FREM, VT, Expand); 351 setOperationAction(ISD::FPOW, VT, Expand); 352 setOperationAction(ISD::FFLOOR, VT, Expand); 353 setOperationAction(ISD::FTRUNC, VT, Expand); 354 setOperationAction(ISD::FMUL, VT, Expand); 355 setOperationAction(ISD::FMA, VT, Expand); 356 setOperationAction(ISD::FRINT, VT, Expand); 357 setOperationAction(ISD::FNEARBYINT, VT, Expand); 358 setOperationAction(ISD::FSQRT, VT, Expand); 359 setOperationAction(ISD::FSIN, VT, Expand); 360 setOperationAction(ISD::FSUB, VT, Expand); 361 setOperationAction(ISD::FNEG, VT, Expand); 362 setOperationAction(ISD::SELECT, VT, Expand); 363 setOperationAction(ISD::VSELECT, VT, Expand); 364 setOperationAction(ISD::SELECT_CC, VT, Expand); 365 setOperationAction(ISD::FCOPYSIGN, VT, Expand); 366 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand); 367 } 368 369 setOperationAction(ISD::FNEARBYINT, MVT::f32, Custom); 370 setOperationAction(ISD::FNEARBYINT, MVT::f64, Custom); 371 372 setTargetDAGCombine(ISD::SHL); 373 setTargetDAGCombine(ISD::MUL); 374 setTargetDAGCombine(ISD::SELECT); 375 setTargetDAGCombine(ISD::SELECT_CC); 376 setTargetDAGCombine(ISD::STORE); 377 378 setTargetDAGCombine(ISD::FADD); 379 setTargetDAGCombine(ISD::FSUB); 380 381 setBooleanContents(ZeroOrNegativeOneBooleanContent); 382 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 383 384 setSchedulingPreference(Sched::RegPressure); 385 setJumpIsExpensive(true); 386 387 // SI at least has hardware support for floating point exceptions, but no way 388 // of using or handling them is implemented. They are also optional in OpenCL 389 // (Section 7.3) 390 setHasFloatingPointExceptions(false); 391 392 setSelectIsExpensive(false); 393 PredictableSelectIsExpensive = false; 394 395 setFsqrtIsCheap(true); 396 397 // We want to find all load dependencies for long chains of stores to enable 398 // merging into very wide vectors. The problem is with vectors with > 4 399 // elements. MergeConsecutiveStores will attempt to merge these because x8/x16 400 // vectors are a legal type, even though we have to split the loads 401 // usually. When we can more precisely specify load legality per address 402 // space, we should be able to make FindBetterChain/MergeConsecutiveStores 403 // smarter so that they can figure out what to do in 2 iterations without all 404 // N > 4 stores on the same chain. 405 GatherAllAliasesMaxDepth = 16; 406 407 // FIXME: Need to really handle these. 408 MaxStoresPerMemcpy = 4096; 409 MaxStoresPerMemmove = 4096; 410 MaxStoresPerMemset = 4096; 411 } 412 413 //===----------------------------------------------------------------------===// 414 // Target Information 415 //===----------------------------------------------------------------------===// 416 417 MVT AMDGPUTargetLowering::getVectorIdxTy(const DataLayout &) const { 418 return MVT::i32; 419 } 420 421 bool AMDGPUTargetLowering::isSelectSupported(SelectSupportKind SelType) const { 422 return true; 423 } 424 425 // The backend supports 32 and 64 bit floating point immediates. 426 // FIXME: Why are we reporting vectors of FP immediates as legal? 427 bool AMDGPUTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const { 428 EVT ScalarVT = VT.getScalarType(); 429 return (ScalarVT == MVT::f32 || ScalarVT == MVT::f64); 430 } 431 432 // We don't want to shrink f64 / f32 constants. 433 bool AMDGPUTargetLowering::ShouldShrinkFPConstant(EVT VT) const { 434 EVT ScalarVT = VT.getScalarType(); 435 return (ScalarVT != MVT::f32 && ScalarVT != MVT::f64); 436 } 437 438 bool AMDGPUTargetLowering::shouldReduceLoadWidth(SDNode *N, 439 ISD::LoadExtType, 440 EVT NewVT) const { 441 442 unsigned NewSize = NewVT.getStoreSizeInBits(); 443 444 // If we are reducing to a 32-bit load, this is always better. 445 if (NewSize == 32) 446 return true; 447 448 EVT OldVT = N->getValueType(0); 449 unsigned OldSize = OldVT.getStoreSizeInBits(); 450 451 // Don't produce extloads from sub 32-bit types. SI doesn't have scalar 452 // extloads, so doing one requires using a buffer_load. In cases where we 453 // still couldn't use a scalar load, using the wider load shouldn't really 454 // hurt anything. 455 456 // If the old size already had to be an extload, there's no harm in continuing 457 // to reduce the width. 458 return (OldSize < 32); 459 } 460 461 bool AMDGPUTargetLowering::isLoadBitCastBeneficial(EVT LoadTy, 462 EVT CastTy) const { 463 if (LoadTy.getSizeInBits() != CastTy.getSizeInBits()) 464 return true; 465 466 unsigned LScalarSize = LoadTy.getScalarType().getSizeInBits(); 467 unsigned CastScalarSize = CastTy.getScalarType().getSizeInBits(); 468 469 return ((LScalarSize <= CastScalarSize) || 470 (CastScalarSize >= 32) || 471 (LScalarSize < 32)); 472 } 473 474 // SI+ has instructions for cttz / ctlz for 32-bit values. This is probably also 475 // profitable with the expansion for 64-bit since it's generally good to 476 // speculate things. 477 // FIXME: These should really have the size as a parameter. 478 bool AMDGPUTargetLowering::isCheapToSpeculateCttz() const { 479 return true; 480 } 481 482 bool AMDGPUTargetLowering::isCheapToSpeculateCtlz() const { 483 return true; 484 } 485 486 //===---------------------------------------------------------------------===// 487 // Target Properties 488 //===---------------------------------------------------------------------===// 489 490 bool AMDGPUTargetLowering::isFAbsFree(EVT VT) const { 491 assert(VT.isFloatingPoint()); 492 return VT == MVT::f32 || VT == MVT::f64; 493 } 494 495 bool AMDGPUTargetLowering::isFNegFree(EVT VT) const { 496 assert(VT.isFloatingPoint()); 497 return VT == MVT::f32 || VT == MVT::f64; 498 } 499 500 bool AMDGPUTargetLowering:: storeOfVectorConstantIsCheap(EVT MemVT, 501 unsigned NumElem, 502 unsigned AS) const { 503 return true; 504 } 505 506 bool AMDGPUTargetLowering::aggressivelyPreferBuildVectorSources(EVT VecVT) const { 507 // There are few operations which truly have vector input operands. Any vector 508 // operation is going to involve operations on each component, and a 509 // build_vector will be a copy per element, so it always makes sense to use a 510 // build_vector input in place of the extracted element to avoid a copy into a 511 // super register. 512 // 513 // We should probably only do this if all users are extracts only, but this 514 // should be the common case. 515 return true; 516 } 517 518 bool AMDGPUTargetLowering::isTruncateFree(EVT Source, EVT Dest) const { 519 // Truncate is just accessing a subregister. 520 return Dest.bitsLT(Source) && (Dest.getSizeInBits() % 32 == 0); 521 } 522 523 bool AMDGPUTargetLowering::isTruncateFree(Type *Source, Type *Dest) const { 524 // Truncate is just accessing a subregister. 525 return Dest->getPrimitiveSizeInBits() < Source->getPrimitiveSizeInBits() && 526 (Dest->getPrimitiveSizeInBits() % 32 == 0); 527 } 528 529 bool AMDGPUTargetLowering::isZExtFree(Type *Src, Type *Dest) const { 530 unsigned SrcSize = Src->getScalarSizeInBits(); 531 unsigned DestSize = Dest->getScalarSizeInBits(); 532 533 return SrcSize == 32 && DestSize == 64; 534 } 535 536 bool AMDGPUTargetLowering::isZExtFree(EVT Src, EVT Dest) const { 537 // Any register load of a 64-bit value really requires 2 32-bit moves. For all 538 // practical purposes, the extra mov 0 to load a 64-bit is free. As used, 539 // this will enable reducing 64-bit operations the 32-bit, which is always 540 // good. 541 return Src == MVT::i32 && Dest == MVT::i64; 542 } 543 544 bool AMDGPUTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 545 return isZExtFree(Val.getValueType(), VT2); 546 } 547 548 bool AMDGPUTargetLowering::isNarrowingProfitable(EVT SrcVT, EVT DestVT) const { 549 // There aren't really 64-bit registers, but pairs of 32-bit ones and only a 550 // limited number of native 64-bit operations. Shrinking an operation to fit 551 // in a single 32-bit register should always be helpful. As currently used, 552 // this is much less general than the name suggests, and is only used in 553 // places trying to reduce the sizes of loads. Shrinking loads to < 32-bits is 554 // not profitable, and may actually be harmful. 555 return SrcVT.getSizeInBits() > 32 && DestVT.getSizeInBits() == 32; 556 } 557 558 //===---------------------------------------------------------------------===// 559 // TargetLowering Callbacks 560 //===---------------------------------------------------------------------===// 561 562 void AMDGPUTargetLowering::AnalyzeFormalArguments(CCState &State, 563 const SmallVectorImpl<ISD::InputArg> &Ins) const { 564 565 State.AnalyzeFormalArguments(Ins, CC_AMDGPU); 566 } 567 568 SDValue AMDGPUTargetLowering::LowerReturn( 569 SDValue Chain, 570 CallingConv::ID CallConv, 571 bool isVarArg, 572 const SmallVectorImpl<ISD::OutputArg> &Outs, 573 const SmallVectorImpl<SDValue> &OutVals, 574 SDLoc DL, SelectionDAG &DAG) const { 575 return DAG.getNode(AMDGPUISD::RET_FLAG, DL, MVT::Other, Chain); 576 } 577 578 //===---------------------------------------------------------------------===// 579 // Target specific lowering 580 //===---------------------------------------------------------------------===// 581 582 SDValue AMDGPUTargetLowering::LowerCall(CallLoweringInfo &CLI, 583 SmallVectorImpl<SDValue> &InVals) const { 584 SDValue Callee = CLI.Callee; 585 SelectionDAG &DAG = CLI.DAG; 586 587 const Function &Fn = *DAG.getMachineFunction().getFunction(); 588 589 StringRef FuncName("<unknown>"); 590 591 if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Callee)) 592 FuncName = G->getSymbol(); 593 else if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) 594 FuncName = G->getGlobal()->getName(); 595 596 DiagnosticInfoUnsupported NoCalls(Fn, "call to function " + FuncName); 597 DAG.getContext()->diagnose(NoCalls); 598 return SDValue(); 599 } 600 601 SDValue AMDGPUTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, 602 SelectionDAG &DAG) const { 603 const Function &Fn = *DAG.getMachineFunction().getFunction(); 604 605 DiagnosticInfoUnsupported NoDynamicAlloca(Fn, "dynamic alloca"); 606 DAG.getContext()->diagnose(NoDynamicAlloca); 607 return SDValue(); 608 } 609 610 SDValue AMDGPUTargetLowering::LowerOperation(SDValue Op, 611 SelectionDAG &DAG) const { 612 switch (Op.getOpcode()) { 613 default: 614 Op.getNode()->dump(); 615 llvm_unreachable("Custom lowering code for this" 616 "instruction is not implemented yet!"); 617 break; 618 case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG); 619 case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG); 620 case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG); 621 case ISD::FrameIndex: return LowerFrameIndex(Op, DAG); 622 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); 623 case ISD::UDIVREM: return LowerUDIVREM(Op, DAG); 624 case ISD::SDIVREM: return LowerSDIVREM(Op, DAG); 625 case ISD::FREM: return LowerFREM(Op, DAG); 626 case ISD::FCEIL: return LowerFCEIL(Op, DAG); 627 case ISD::FTRUNC: return LowerFTRUNC(Op, DAG); 628 case ISD::FRINT: return LowerFRINT(Op, DAG); 629 case ISD::FNEARBYINT: return LowerFNEARBYINT(Op, DAG); 630 case ISD::FROUND: return LowerFROUND(Op, DAG); 631 case ISD::FFLOOR: return LowerFFLOOR(Op, DAG); 632 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG); 633 case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG); 634 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG); 635 case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG); 636 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); 637 } 638 return Op; 639 } 640 641 void AMDGPUTargetLowering::ReplaceNodeResults(SDNode *N, 642 SmallVectorImpl<SDValue> &Results, 643 SelectionDAG &DAG) const { 644 switch (N->getOpcode()) { 645 case ISD::SIGN_EXTEND_INREG: 646 // Different parts of legalization seem to interpret which type of 647 // sign_extend_inreg is the one to check for custom lowering. The extended 648 // from type is what really matters, but some places check for custom 649 // lowering of the result type. This results in trying to use 650 // ReplaceNodeResults to sext_in_reg to an illegal type, so we'll just do 651 // nothing here and let the illegal result integer be handled normally. 652 return; 653 case ISD::LOAD: { 654 SDNode *Node = LowerLOAD(SDValue(N, 0), DAG).getNode(); 655 if (!Node) 656 return; 657 658 Results.push_back(SDValue(Node, 0)); 659 Results.push_back(SDValue(Node, 1)); 660 // XXX: LLVM seems not to replace Chain Value inside CustomWidenLowerNode 661 // function 662 DAG.ReplaceAllUsesOfValueWith(SDValue(N,1), SDValue(Node, 1)); 663 return; 664 } 665 case ISD::STORE: { 666 SDValue Lowered = LowerSTORE(SDValue(N, 0), DAG); 667 if (Lowered.getNode()) 668 Results.push_back(Lowered); 669 return; 670 } 671 default: 672 return; 673 } 674 } 675 676 // FIXME: This implements accesses to initialized globals in the constant 677 // address space by copying them to private and accessing that. It does not 678 // properly handle illegal types or vectors. The private vector loads are not 679 // scalarized, and the illegal scalars hit an assertion. This technique will not 680 // work well with large initializers, and this should eventually be 681 // removed. Initialized globals should be placed into a data section that the 682 // runtime will load into a buffer before the kernel is executed. Uses of the 683 // global need to be replaced with a pointer loaded from an implicit kernel 684 // argument into this buffer holding the copy of the data, which will remove the 685 // need for any of this. 686 SDValue AMDGPUTargetLowering::LowerConstantInitializer(const Constant* Init, 687 const GlobalValue *GV, 688 const SDValue &InitPtr, 689 SDValue Chain, 690 SelectionDAG &DAG) const { 691 const DataLayout &TD = DAG.getDataLayout(); 692 SDLoc DL(InitPtr); 693 Type *InitTy = Init->getType(); 694 695 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Init)) { 696 EVT VT = EVT::getEVT(InitTy); 697 PointerType *PtrTy = PointerType::get(InitTy, AMDGPUAS::PRIVATE_ADDRESS); 698 return DAG.getStore(Chain, DL, DAG.getConstant(*CI, DL, VT), InitPtr, 699 MachinePointerInfo(UndefValue::get(PtrTy)), false, 700 false, TD.getPrefTypeAlignment(InitTy)); 701 } 702 703 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(Init)) { 704 EVT VT = EVT::getEVT(CFP->getType()); 705 PointerType *PtrTy = PointerType::get(CFP->getType(), 0); 706 return DAG.getStore(Chain, DL, DAG.getConstantFP(*CFP, DL, VT), InitPtr, 707 MachinePointerInfo(UndefValue::get(PtrTy)), false, 708 false, TD.getPrefTypeAlignment(CFP->getType())); 709 } 710 711 if (StructType *ST = dyn_cast<StructType>(InitTy)) { 712 const StructLayout *SL = TD.getStructLayout(ST); 713 714 EVT PtrVT = InitPtr.getValueType(); 715 SmallVector<SDValue, 8> Chains; 716 717 for (unsigned I = 0, N = ST->getNumElements(); I != N; ++I) { 718 SDValue Offset = DAG.getConstant(SL->getElementOffset(I), DL, PtrVT); 719 SDValue Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, InitPtr, Offset); 720 721 Constant *Elt = Init->getAggregateElement(I); 722 Chains.push_back(LowerConstantInitializer(Elt, GV, Ptr, Chain, DAG)); 723 } 724 725 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 726 } 727 728 if (SequentialType *SeqTy = dyn_cast<SequentialType>(InitTy)) { 729 EVT PtrVT = InitPtr.getValueType(); 730 731 unsigned NumElements; 732 if (ArrayType *AT = dyn_cast<ArrayType>(SeqTy)) 733 NumElements = AT->getNumElements(); 734 else if (VectorType *VT = dyn_cast<VectorType>(SeqTy)) 735 NumElements = VT->getNumElements(); 736 else 737 llvm_unreachable("Unexpected type"); 738 739 unsigned EltSize = TD.getTypeAllocSize(SeqTy->getElementType()); 740 SmallVector<SDValue, 8> Chains; 741 for (unsigned i = 0; i < NumElements; ++i) { 742 SDValue Offset = DAG.getConstant(i * EltSize, DL, PtrVT); 743 SDValue Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, InitPtr, Offset); 744 745 Constant *Elt = Init->getAggregateElement(i); 746 Chains.push_back(LowerConstantInitializer(Elt, GV, Ptr, Chain, DAG)); 747 } 748 749 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 750 } 751 752 if (isa<UndefValue>(Init)) { 753 EVT VT = EVT::getEVT(InitTy); 754 PointerType *PtrTy = PointerType::get(InitTy, AMDGPUAS::PRIVATE_ADDRESS); 755 return DAG.getStore(Chain, DL, DAG.getUNDEF(VT), InitPtr, 756 MachinePointerInfo(UndefValue::get(PtrTy)), false, 757 false, TD.getPrefTypeAlignment(InitTy)); 758 } 759 760 Init->dump(); 761 llvm_unreachable("Unhandled constant initializer"); 762 } 763 764 static bool hasDefinedInitializer(const GlobalValue *GV) { 765 const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV); 766 if (!GVar || !GVar->hasInitializer()) 767 return false; 768 769 if (isa<UndefValue>(GVar->getInitializer())) 770 return false; 771 772 return true; 773 } 774 775 SDValue AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction* MFI, 776 SDValue Op, 777 SelectionDAG &DAG) const { 778 779 const DataLayout &DL = DAG.getDataLayout(); 780 GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Op); 781 const GlobalValue *GV = G->getGlobal(); 782 783 switch (G->getAddressSpace()) { 784 case AMDGPUAS::LOCAL_ADDRESS: { 785 // XXX: What does the value of G->getOffset() mean? 786 assert(G->getOffset() == 0 && 787 "Do not know what to do with an non-zero offset"); 788 789 // TODO: We could emit code to handle the initialization somewhere. 790 if (hasDefinedInitializer(GV)) 791 break; 792 793 unsigned Offset; 794 if (MFI->LocalMemoryObjects.count(GV) == 0) { 795 uint64_t Size = DL.getTypeAllocSize(GV->getType()->getElementType()); 796 Offset = MFI->LDSSize; 797 MFI->LocalMemoryObjects[GV] = Offset; 798 // XXX: Account for alignment? 799 MFI->LDSSize += Size; 800 } else { 801 Offset = MFI->LocalMemoryObjects[GV]; 802 } 803 804 return DAG.getConstant(Offset, SDLoc(Op), 805 getPointerTy(DL, AMDGPUAS::LOCAL_ADDRESS)); 806 } 807 case AMDGPUAS::CONSTANT_ADDRESS: { 808 MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo(); 809 Type *EltType = GV->getType()->getElementType(); 810 unsigned Size = DL.getTypeAllocSize(EltType); 811 unsigned Alignment = DL.getPrefTypeAlignment(EltType); 812 813 MVT PrivPtrVT = getPointerTy(DL, AMDGPUAS::PRIVATE_ADDRESS); 814 MVT ConstPtrVT = getPointerTy(DL, AMDGPUAS::CONSTANT_ADDRESS); 815 816 int FI = FrameInfo->CreateStackObject(Size, Alignment, false); 817 SDValue InitPtr = DAG.getFrameIndex(FI, PrivPtrVT); 818 819 const GlobalVariable *Var = cast<GlobalVariable>(GV); 820 if (!Var->hasInitializer()) { 821 // This has no use, but bugpoint will hit it. 822 return DAG.getZExtOrTrunc(InitPtr, SDLoc(Op), ConstPtrVT); 823 } 824 825 const Constant *Init = Var->getInitializer(); 826 SmallVector<SDNode*, 8> WorkList; 827 828 for (SDNode::use_iterator I = DAG.getEntryNode()->use_begin(), 829 E = DAG.getEntryNode()->use_end(); I != E; ++I) { 830 if (I->getOpcode() != AMDGPUISD::REGISTER_LOAD && I->getOpcode() != ISD::LOAD) 831 continue; 832 WorkList.push_back(*I); 833 } 834 SDValue Chain = LowerConstantInitializer(Init, GV, InitPtr, DAG.getEntryNode(), DAG); 835 for (SmallVector<SDNode*, 8>::iterator I = WorkList.begin(), 836 E = WorkList.end(); I != E; ++I) { 837 SmallVector<SDValue, 8> Ops; 838 Ops.push_back(Chain); 839 for (unsigned i = 1; i < (*I)->getNumOperands(); ++i) { 840 Ops.push_back((*I)->getOperand(i)); 841 } 842 DAG.UpdateNodeOperands(*I, Ops); 843 } 844 return DAG.getZExtOrTrunc(InitPtr, SDLoc(Op), ConstPtrVT); 845 } 846 } 847 848 const Function &Fn = *DAG.getMachineFunction().getFunction(); 849 DiagnosticInfoUnsupported BadInit(Fn, 850 "initializer for address space"); 851 DAG.getContext()->diagnose(BadInit); 852 return SDValue(); 853 } 854 855 SDValue AMDGPUTargetLowering::LowerCONCAT_VECTORS(SDValue Op, 856 SelectionDAG &DAG) const { 857 SmallVector<SDValue, 8> Args; 858 859 for (const SDUse &U : Op->ops()) 860 DAG.ExtractVectorElements(U.get(), Args); 861 862 return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(Op), Op.getValueType(), Args); 863 } 864 865 SDValue AMDGPUTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op, 866 SelectionDAG &DAG) const { 867 868 SmallVector<SDValue, 8> Args; 869 unsigned Start = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); 870 EVT VT = Op.getValueType(); 871 DAG.ExtractVectorElements(Op.getOperand(0), Args, Start, 872 VT.getVectorNumElements()); 873 874 return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(Op), Op.getValueType(), Args); 875 } 876 877 SDValue AMDGPUTargetLowering::LowerFrameIndex(SDValue Op, 878 SelectionDAG &DAG) const { 879 880 MachineFunction &MF = DAG.getMachineFunction(); 881 const AMDGPUFrameLowering *TFL = Subtarget->getFrameLowering(); 882 883 FrameIndexSDNode *FIN = cast<FrameIndexSDNode>(Op); 884 885 unsigned FrameIndex = FIN->getIndex(); 886 unsigned IgnoredFrameReg; 887 unsigned Offset = 888 TFL->getFrameIndexReference(MF, FrameIndex, IgnoredFrameReg); 889 return DAG.getConstant(Offset * 4 * TFL->getStackWidth(MF), SDLoc(Op), 890 Op.getValueType()); 891 } 892 893 SDValue AMDGPUTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, 894 SelectionDAG &DAG) const { 895 unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 896 SDLoc DL(Op); 897 EVT VT = Op.getValueType(); 898 899 switch (IntrinsicID) { 900 default: return Op; 901 case AMDGPUIntrinsic::AMDGPU_abs: 902 case AMDGPUIntrinsic::AMDIL_abs: // Legacy name. 903 return LowerIntrinsicIABS(Op, DAG); 904 case AMDGPUIntrinsic::AMDGPU_lrp: 905 return LowerIntrinsicLRP(Op, DAG); 906 907 case AMDGPUIntrinsic::AMDGPU_clamp: 908 case AMDGPUIntrinsic::AMDIL_clamp: // Legacy name. 909 return DAG.getNode(AMDGPUISD::CLAMP, DL, VT, 910 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 911 912 case Intrinsic::AMDGPU_div_scale: { 913 // 3rd parameter required to be a constant. 914 const ConstantSDNode *Param = dyn_cast<ConstantSDNode>(Op.getOperand(3)); 915 if (!Param) 916 return DAG.getUNDEF(VT); 917 918 // Translate to the operands expected by the machine instruction. The 919 // first parameter must be the same as the first instruction. 920 SDValue Numerator = Op.getOperand(1); 921 SDValue Denominator = Op.getOperand(2); 922 923 // Note this order is opposite of the machine instruction's operations, 924 // which is s0.f = Quotient, s1.f = Denominator, s2.f = Numerator. The 925 // intrinsic has the numerator as the first operand to match a normal 926 // division operation. 927 928 SDValue Src0 = Param->isAllOnesValue() ? Numerator : Denominator; 929 930 return DAG.getNode(AMDGPUISD::DIV_SCALE, DL, Op->getVTList(), Src0, 931 Denominator, Numerator); 932 } 933 934 case Intrinsic::AMDGPU_div_fmas: 935 return DAG.getNode(AMDGPUISD::DIV_FMAS, DL, VT, 936 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3), 937 Op.getOperand(4)); 938 939 case Intrinsic::AMDGPU_div_fixup: 940 return DAG.getNode(AMDGPUISD::DIV_FIXUP, DL, VT, 941 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 942 943 case Intrinsic::AMDGPU_trig_preop: 944 return DAG.getNode(AMDGPUISD::TRIG_PREOP, DL, VT, 945 Op.getOperand(1), Op.getOperand(2)); 946 947 case Intrinsic::AMDGPU_rcp: 948 return DAG.getNode(AMDGPUISD::RCP, DL, VT, Op.getOperand(1)); 949 950 case Intrinsic::AMDGPU_rsq: 951 return DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1)); 952 953 case AMDGPUIntrinsic::AMDGPU_legacy_rsq: 954 return DAG.getNode(AMDGPUISD::RSQ_LEGACY, DL, VT, Op.getOperand(1)); 955 956 case Intrinsic::AMDGPU_rsq_clamped: 957 if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) { 958 Type *Type = VT.getTypeForEVT(*DAG.getContext()); 959 APFloat Max = APFloat::getLargest(Type->getFltSemantics()); 960 APFloat Min = APFloat::getLargest(Type->getFltSemantics(), true); 961 962 SDValue Rsq = DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1)); 963 SDValue Tmp = DAG.getNode(ISD::FMINNUM, DL, VT, Rsq, 964 DAG.getConstantFP(Max, DL, VT)); 965 return DAG.getNode(ISD::FMAXNUM, DL, VT, Tmp, 966 DAG.getConstantFP(Min, DL, VT)); 967 } else { 968 return DAG.getNode(AMDGPUISD::RSQ_CLAMPED, DL, VT, Op.getOperand(1)); 969 } 970 971 case Intrinsic::AMDGPU_ldexp: 972 return DAG.getNode(AMDGPUISD::LDEXP, DL, VT, Op.getOperand(1), 973 Op.getOperand(2)); 974 975 case AMDGPUIntrinsic::AMDGPU_imax: 976 return DAG.getNode(ISD::SMAX, DL, VT, Op.getOperand(1), 977 Op.getOperand(2)); 978 case AMDGPUIntrinsic::AMDGPU_umax: 979 return DAG.getNode(ISD::UMAX, DL, VT, Op.getOperand(1), 980 Op.getOperand(2)); 981 case AMDGPUIntrinsic::AMDGPU_imin: 982 return DAG.getNode(ISD::SMIN, DL, VT, Op.getOperand(1), 983 Op.getOperand(2)); 984 case AMDGPUIntrinsic::AMDGPU_umin: 985 return DAG.getNode(ISD::UMIN, DL, VT, Op.getOperand(1), 986 Op.getOperand(2)); 987 988 case AMDGPUIntrinsic::AMDGPU_umul24: 989 return DAG.getNode(AMDGPUISD::MUL_U24, DL, VT, 990 Op.getOperand(1), Op.getOperand(2)); 991 992 case AMDGPUIntrinsic::AMDGPU_imul24: 993 return DAG.getNode(AMDGPUISD::MUL_I24, DL, VT, 994 Op.getOperand(1), Op.getOperand(2)); 995 996 case AMDGPUIntrinsic::AMDGPU_umad24: 997 return DAG.getNode(AMDGPUISD::MAD_U24, DL, VT, 998 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 999 1000 case AMDGPUIntrinsic::AMDGPU_imad24: 1001 return DAG.getNode(AMDGPUISD::MAD_I24, DL, VT, 1002 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3)); 1003 1004 case AMDGPUIntrinsic::AMDGPU_cvt_f32_ubyte0: 1005 return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0, DL, VT, Op.getOperand(1)); 1006 1007 case AMDGPUIntrinsic::AMDGPU_cvt_f32_ubyte1: 1008 return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE1, DL, VT, Op.getOperand(1)); 1009 1010 case AMDGPUIntrinsic::AMDGPU_cvt_f32_ubyte2: 1011 return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE2, DL, VT, Op.getOperand(1)); 1012 1013 case AMDGPUIntrinsic::AMDGPU_cvt_f32_ubyte3: 1014 return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE3, DL, VT, Op.getOperand(1)); 1015 1016 case AMDGPUIntrinsic::AMDGPU_bfe_i32: 1017 return DAG.getNode(AMDGPUISD::BFE_I32, DL, VT, 1018 Op.getOperand(1), 1019 Op.getOperand(2), 1020 Op.getOperand(3)); 1021 1022 case AMDGPUIntrinsic::AMDGPU_bfe_u32: 1023 return DAG.getNode(AMDGPUISD::BFE_U32, DL, VT, 1024 Op.getOperand(1), 1025 Op.getOperand(2), 1026 Op.getOperand(3)); 1027 1028 case AMDGPUIntrinsic::AMDGPU_bfi: 1029 return DAG.getNode(AMDGPUISD::BFI, DL, VT, 1030 Op.getOperand(1), 1031 Op.getOperand(2), 1032 Op.getOperand(3)); 1033 1034 case AMDGPUIntrinsic::AMDGPU_bfm: 1035 return DAG.getNode(AMDGPUISD::BFM, DL, VT, 1036 Op.getOperand(1), 1037 Op.getOperand(2)); 1038 1039 case Intrinsic::AMDGPU_class: 1040 return DAG.getNode(AMDGPUISD::FP_CLASS, DL, VT, 1041 Op.getOperand(1), Op.getOperand(2)); 1042 1043 case AMDGPUIntrinsic::AMDIL_exp: // Legacy name. 1044 return DAG.getNode(ISD::FEXP2, DL, VT, Op.getOperand(1)); 1045 1046 case AMDGPUIntrinsic::AMDIL_round_nearest: // Legacy name. 1047 return DAG.getNode(ISD::FRINT, DL, VT, Op.getOperand(1)); 1048 case AMDGPUIntrinsic::AMDGPU_trunc: // Legacy name. 1049 return DAG.getNode(ISD::FTRUNC, DL, VT, Op.getOperand(1)); 1050 case AMDGPUIntrinsic::AMDGPU_brev: // Legacy name 1051 return DAG.getNode(ISD::BITREVERSE, DL, VT, Op.getOperand(1)); 1052 } 1053 } 1054 1055 ///IABS(a) = SMAX(sub(0, a), a) 1056 SDValue AMDGPUTargetLowering::LowerIntrinsicIABS(SDValue Op, 1057 SelectionDAG &DAG) const { 1058 SDLoc DL(Op); 1059 EVT VT = Op.getValueType(); 1060 SDValue Neg = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), 1061 Op.getOperand(1)); 1062 1063 return DAG.getNode(ISD::SMAX, DL, VT, Neg, Op.getOperand(1)); 1064 } 1065 1066 /// Linear Interpolation 1067 /// LRP(a, b, c) = muladd(a, b, (1 - a) * c) 1068 SDValue AMDGPUTargetLowering::LowerIntrinsicLRP(SDValue Op, 1069 SelectionDAG &DAG) const { 1070 SDLoc DL(Op); 1071 EVT VT = Op.getValueType(); 1072 // TODO: Should this propagate fast-math-flags? 1073 SDValue OneSubA = DAG.getNode(ISD::FSUB, DL, VT, 1074 DAG.getConstantFP(1.0f, DL, MVT::f32), 1075 Op.getOperand(1)); 1076 SDValue OneSubAC = DAG.getNode(ISD::FMUL, DL, VT, OneSubA, 1077 Op.getOperand(3)); 1078 return DAG.getNode(ISD::FADD, DL, VT, 1079 DAG.getNode(ISD::FMUL, DL, VT, Op.getOperand(1), Op.getOperand(2)), 1080 OneSubAC); 1081 } 1082 1083 /// \brief Generate Min/Max node 1084 SDValue AMDGPUTargetLowering::CombineFMinMaxLegacy(SDLoc DL, 1085 EVT VT, 1086 SDValue LHS, 1087 SDValue RHS, 1088 SDValue True, 1089 SDValue False, 1090 SDValue CC, 1091 DAGCombinerInfo &DCI) const { 1092 if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) 1093 return SDValue(); 1094 1095 if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True)) 1096 return SDValue(); 1097 1098 SelectionDAG &DAG = DCI.DAG; 1099 ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get(); 1100 switch (CCOpcode) { 1101 case ISD::SETOEQ: 1102 case ISD::SETONE: 1103 case ISD::SETUNE: 1104 case ISD::SETNE: 1105 case ISD::SETUEQ: 1106 case ISD::SETEQ: 1107 case ISD::SETFALSE: 1108 case ISD::SETFALSE2: 1109 case ISD::SETTRUE: 1110 case ISD::SETTRUE2: 1111 case ISD::SETUO: 1112 case ISD::SETO: 1113 break; 1114 case ISD::SETULE: 1115 case ISD::SETULT: { 1116 if (LHS == True) 1117 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); 1118 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); 1119 } 1120 case ISD::SETOLE: 1121 case ISD::SETOLT: 1122 case ISD::SETLE: 1123 case ISD::SETLT: { 1124 // Ordered. Assume ordered for undefined. 1125 1126 // Only do this after legalization to avoid interfering with other combines 1127 // which might occur. 1128 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && 1129 !DCI.isCalledByLegalizer()) 1130 return SDValue(); 1131 1132 // We need to permute the operands to get the correct NaN behavior. The 1133 // selected operand is the second one based on the failing compare with NaN, 1134 // so permute it based on the compare type the hardware uses. 1135 if (LHS == True) 1136 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); 1137 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); 1138 } 1139 case ISD::SETUGE: 1140 case ISD::SETUGT: { 1141 if (LHS == True) 1142 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS); 1143 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS); 1144 } 1145 case ISD::SETGT: 1146 case ISD::SETGE: 1147 case ISD::SETOGE: 1148 case ISD::SETOGT: { 1149 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG && 1150 !DCI.isCalledByLegalizer()) 1151 return SDValue(); 1152 1153 if (LHS == True) 1154 return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS); 1155 return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS); 1156 } 1157 case ISD::SETCC_INVALID: 1158 llvm_unreachable("Invalid setcc condcode!"); 1159 } 1160 return SDValue(); 1161 } 1162 1163 SDValue AMDGPUTargetLowering::ScalarizeVectorLoad(const SDValue Op, 1164 SelectionDAG &DAG) const { 1165 LoadSDNode *Load = cast<LoadSDNode>(Op); 1166 EVT MemVT = Load->getMemoryVT(); 1167 EVT MemEltVT = MemVT.getVectorElementType(); 1168 1169 EVT LoadVT = Op.getValueType(); 1170 EVT EltVT = LoadVT.getVectorElementType(); 1171 EVT PtrVT = Load->getBasePtr().getValueType(); 1172 1173 unsigned NumElts = Load->getMemoryVT().getVectorNumElements(); 1174 SmallVector<SDValue, 8> Loads; 1175 SmallVector<SDValue, 8> Chains; 1176 1177 SDLoc SL(Op); 1178 unsigned MemEltSize = MemEltVT.getStoreSize(); 1179 MachinePointerInfo SrcValue(Load->getMemOperand()->getValue()); 1180 1181 for (unsigned i = 0; i < NumElts; ++i) { 1182 SDValue Ptr = DAG.getNode(ISD::ADD, SL, PtrVT, Load->getBasePtr(), 1183 DAG.getConstant(i * MemEltSize, SL, PtrVT)); 1184 1185 SDValue NewLoad 1186 = DAG.getExtLoad(Load->getExtensionType(), SL, EltVT, 1187 Load->getChain(), Ptr, 1188 SrcValue.getWithOffset(i * MemEltSize), 1189 MemEltVT, Load->isVolatile(), Load->isNonTemporal(), 1190 Load->isInvariant(), Load->getAlignment()); 1191 Loads.push_back(NewLoad.getValue(0)); 1192 Chains.push_back(NewLoad.getValue(1)); 1193 } 1194 1195 SDValue Ops[] = { 1196 DAG.getNode(ISD::BUILD_VECTOR, SL, LoadVT, Loads), 1197 DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Chains) 1198 }; 1199 1200 return DAG.getMergeValues(Ops, SL); 1201 } 1202 1203 SDValue AMDGPUTargetLowering::SplitVectorLoad(const SDValue Op, 1204 SelectionDAG &DAG) const { 1205 EVT VT = Op.getValueType(); 1206 1207 // If this is a 2 element vector, we really want to scalarize and not create 1208 // weird 1 element vectors. 1209 if (VT.getVectorNumElements() == 2) 1210 return ScalarizeVectorLoad(Op, DAG); 1211 1212 LoadSDNode *Load = cast<LoadSDNode>(Op); 1213 SDValue BasePtr = Load->getBasePtr(); 1214 EVT PtrVT = BasePtr.getValueType(); 1215 EVT MemVT = Load->getMemoryVT(); 1216 SDLoc SL(Op); 1217 1218 const MachinePointerInfo &SrcValue = Load->getMemOperand()->getPointerInfo(); 1219 1220 EVT LoVT, HiVT; 1221 EVT LoMemVT, HiMemVT; 1222 SDValue Lo, Hi; 1223 1224 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT); 1225 std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemVT); 1226 std::tie(Lo, Hi) = DAG.SplitVector(Op, SL, LoVT, HiVT); 1227 1228 unsigned Size = LoMemVT.getStoreSize(); 1229 unsigned BaseAlign = Load->getAlignment(); 1230 unsigned HiAlign = MinAlign(BaseAlign, Size); 1231 1232 SDValue LoLoad 1233 = DAG.getExtLoad(Load->getExtensionType(), SL, LoVT, 1234 Load->getChain(), BasePtr, 1235 SrcValue, 1236 LoMemVT, Load->isVolatile(), Load->isNonTemporal(), 1237 Load->isInvariant(), BaseAlign); 1238 1239 SDValue HiPtr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr, 1240 DAG.getConstant(Size, SL, PtrVT)); 1241 1242 SDValue HiLoad 1243 = DAG.getExtLoad(Load->getExtensionType(), SL, HiVT, 1244 Load->getChain(), HiPtr, 1245 SrcValue.getWithOffset(LoMemVT.getStoreSize()), 1246 HiMemVT, Load->isVolatile(), Load->isNonTemporal(), 1247 Load->isInvariant(), HiAlign); 1248 1249 SDValue Ops[] = { 1250 DAG.getNode(ISD::CONCAT_VECTORS, SL, VT, LoLoad, HiLoad), 1251 DAG.getNode(ISD::TokenFactor, SL, MVT::Other, 1252 LoLoad.getValue(1), HiLoad.getValue(1)) 1253 }; 1254 1255 return DAG.getMergeValues(Ops, SL); 1256 } 1257 1258 SDValue AMDGPUTargetLowering::MergeVectorStore(const SDValue &Op, 1259 SelectionDAG &DAG) const { 1260 StoreSDNode *Store = cast<StoreSDNode>(Op); 1261 EVT MemVT = Store->getMemoryVT(); 1262 unsigned MemBits = MemVT.getSizeInBits(); 1263 1264 // Byte stores are really expensive, so if possible, try to pack 32-bit vector 1265 // truncating store into an i32 store. 1266 // XXX: We could also handle optimize other vector bitwidths. 1267 if (!MemVT.isVector() || MemBits > 32) { 1268 return SDValue(); 1269 } 1270 1271 SDLoc DL(Op); 1272 SDValue Value = Store->getValue(); 1273 EVT VT = Value.getValueType(); 1274 EVT ElemVT = VT.getVectorElementType(); 1275 SDValue Ptr = Store->getBasePtr(); 1276 EVT MemEltVT = MemVT.getVectorElementType(); 1277 unsigned MemEltBits = MemEltVT.getSizeInBits(); 1278 unsigned MemNumElements = MemVT.getVectorNumElements(); 1279 unsigned PackedSize = MemVT.getStoreSizeInBits(); 1280 SDValue Mask = DAG.getConstant((1 << MemEltBits) - 1, DL, MVT::i32); 1281 1282 assert(Value.getValueType().getScalarSizeInBits() >= 32); 1283 1284 SDValue PackedValue; 1285 for (unsigned i = 0; i < MemNumElements; ++i) { 1286 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ElemVT, Value, 1287 DAG.getConstant(i, DL, MVT::i32)); 1288 Elt = DAG.getZExtOrTrunc(Elt, DL, MVT::i32); 1289 Elt = DAG.getNode(ISD::AND, DL, MVT::i32, Elt, Mask); // getZeroExtendInReg 1290 1291 SDValue Shift = DAG.getConstant(MemEltBits * i, DL, MVT::i32); 1292 Elt = DAG.getNode(ISD::SHL, DL, MVT::i32, Elt, Shift); 1293 1294 if (i == 0) { 1295 PackedValue = Elt; 1296 } else { 1297 PackedValue = DAG.getNode(ISD::OR, DL, MVT::i32, PackedValue, Elt); 1298 } 1299 } 1300 1301 if (PackedSize < 32) { 1302 EVT PackedVT = EVT::getIntegerVT(*DAG.getContext(), PackedSize); 1303 return DAG.getTruncStore(Store->getChain(), DL, PackedValue, Ptr, 1304 Store->getMemOperand()->getPointerInfo(), 1305 PackedVT, 1306 Store->isNonTemporal(), Store->isVolatile(), 1307 Store->getAlignment()); 1308 } 1309 1310 return DAG.getStore(Store->getChain(), DL, PackedValue, Ptr, 1311 Store->getMemOperand()->getPointerInfo(), 1312 Store->isVolatile(), Store->isNonTemporal(), 1313 Store->getAlignment()); 1314 } 1315 1316 SDValue AMDGPUTargetLowering::ScalarizeVectorStore(SDValue Op, 1317 SelectionDAG &DAG) const { 1318 StoreSDNode *Store = cast<StoreSDNode>(Op); 1319 EVT MemEltVT = Store->getMemoryVT().getVectorElementType(); 1320 EVT EltVT = Store->getValue().getValueType().getVectorElementType(); 1321 EVT PtrVT = Store->getBasePtr().getValueType(); 1322 unsigned NumElts = Store->getMemoryVT().getVectorNumElements(); 1323 SDLoc SL(Op); 1324 1325 SmallVector<SDValue, 8> Chains; 1326 1327 unsigned EltSize = MemEltVT.getStoreSize(); 1328 MachinePointerInfo SrcValue(Store->getMemOperand()->getValue()); 1329 1330 for (unsigned i = 0, e = NumElts; i != e; ++i) { 1331 SDValue Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, 1332 Store->getValue(), 1333 DAG.getConstant(i, SL, MVT::i32)); 1334 1335 SDValue Offset = DAG.getConstant(i * MemEltVT.getStoreSize(), SL, PtrVT); 1336 SDValue Ptr = DAG.getNode(ISD::ADD, SL, PtrVT, Store->getBasePtr(), Offset); 1337 SDValue NewStore = 1338 DAG.getTruncStore(Store->getChain(), SL, Val, Ptr, 1339 SrcValue.getWithOffset(i * EltSize), 1340 MemEltVT, Store->isNonTemporal(), Store->isVolatile(), 1341 Store->getAlignment()); 1342 Chains.push_back(NewStore); 1343 } 1344 1345 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Chains); 1346 } 1347 1348 SDValue AMDGPUTargetLowering::SplitVectorStore(SDValue Op, 1349 SelectionDAG &DAG) const { 1350 StoreSDNode *Store = cast<StoreSDNode>(Op); 1351 SDValue Val = Store->getValue(); 1352 EVT VT = Val.getValueType(); 1353 1354 // If this is a 2 element vector, we really want to scalarize and not create 1355 // weird 1 element vectors. 1356 if (VT.getVectorNumElements() == 2) 1357 return ScalarizeVectorStore(Op, DAG); 1358 1359 EVT MemVT = Store->getMemoryVT(); 1360 SDValue Chain = Store->getChain(); 1361 SDValue BasePtr = Store->getBasePtr(); 1362 SDLoc SL(Op); 1363 1364 EVT LoVT, HiVT; 1365 EVT LoMemVT, HiMemVT; 1366 SDValue Lo, Hi; 1367 1368 std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT); 1369 std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemVT); 1370 std::tie(Lo, Hi) = DAG.SplitVector(Val, SL, LoVT, HiVT); 1371 1372 EVT PtrVT = BasePtr.getValueType(); 1373 SDValue HiPtr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr, 1374 DAG.getConstant(LoMemVT.getStoreSize(), SL, 1375 PtrVT)); 1376 1377 const MachinePointerInfo &SrcValue = Store->getMemOperand()->getPointerInfo(); 1378 unsigned BaseAlign = Store->getAlignment(); 1379 unsigned Size = LoMemVT.getStoreSize(); 1380 unsigned HiAlign = MinAlign(BaseAlign, Size); 1381 1382 SDValue LoStore 1383 = DAG.getTruncStore(Chain, SL, Lo, 1384 BasePtr, 1385 SrcValue, 1386 LoMemVT, 1387 Store->isNonTemporal(), 1388 Store->isVolatile(), 1389 BaseAlign); 1390 SDValue HiStore 1391 = DAG.getTruncStore(Chain, SL, Hi, 1392 HiPtr, 1393 SrcValue.getWithOffset(Size), 1394 HiMemVT, 1395 Store->isNonTemporal(), 1396 Store->isVolatile(), 1397 HiAlign); 1398 1399 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoStore, HiStore); 1400 } 1401 1402 1403 SDValue AMDGPUTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const { 1404 SDLoc DL(Op); 1405 LoadSDNode *Load = cast<LoadSDNode>(Op); 1406 ISD::LoadExtType ExtType = Load->getExtensionType(); 1407 EVT VT = Op.getValueType(); 1408 EVT MemVT = Load->getMemoryVT(); 1409 1410 if (ExtType == ISD::NON_EXTLOAD && VT.getSizeInBits() < 32) { 1411 assert(VT == MVT::i1 && "Only i1 non-extloads expected"); 1412 // FIXME: Copied from PPC 1413 // First, load into 32 bits, then truncate to 1 bit. 1414 1415 SDValue Chain = Load->getChain(); 1416 SDValue BasePtr = Load->getBasePtr(); 1417 MachineMemOperand *MMO = Load->getMemOperand(); 1418 1419 SDValue NewLD = DAG.getExtLoad(ISD::EXTLOAD, DL, MVT::i32, Chain, 1420 BasePtr, MVT::i8, MMO); 1421 1422 SDValue Ops[] = { 1423 DAG.getNode(ISD::TRUNCATE, DL, VT, NewLD), 1424 NewLD.getValue(1) 1425 }; 1426 1427 return DAG.getMergeValues(Ops, DL); 1428 } 1429 1430 if (Subtarget->getGeneration() >= AMDGPUSubtarget::SOUTHERN_ISLANDS || 1431 Load->getAddressSpace() != AMDGPUAS::PRIVATE_ADDRESS || 1432 ExtType == ISD::NON_EXTLOAD || Load->getMemoryVT().bitsGE(MVT::i32)) 1433 return SDValue(); 1434 1435 // <SI && AS=PRIVATE && EXTLOAD && size < 32bit, 1436 // register (2-)byte extract. 1437 1438 // Get Register holding the target. 1439 SDValue Ptr = DAG.getNode(ISD::SRL, DL, MVT::i32, Load->getBasePtr(), 1440 DAG.getConstant(2, DL, MVT::i32)); 1441 // Load the Register. 1442 SDValue Ret = DAG.getNode(AMDGPUISD::REGISTER_LOAD, DL, Op.getValueType(), 1443 Load->getChain(), Ptr, 1444 DAG.getTargetConstant(0, DL, MVT::i32), 1445 Op.getOperand(2)); 1446 1447 // Get offset within the register. 1448 SDValue ByteIdx = DAG.getNode(ISD::AND, DL, MVT::i32, 1449 Load->getBasePtr(), 1450 DAG.getConstant(0x3, DL, MVT::i32)); 1451 1452 // Bit offset of target byte (byteIdx * 8). 1453 SDValue ShiftAmt = DAG.getNode(ISD::SHL, DL, MVT::i32, ByteIdx, 1454 DAG.getConstant(3, DL, MVT::i32)); 1455 1456 // Shift to the right. 1457 Ret = DAG.getNode(ISD::SRL, DL, MVT::i32, Ret, ShiftAmt); 1458 1459 // Eliminate the upper bits by setting them to ... 1460 EVT MemEltVT = MemVT.getScalarType(); 1461 1462 // ... ones. 1463 if (ExtType == ISD::SEXTLOAD) { 1464 SDValue MemEltVTNode = DAG.getValueType(MemEltVT); 1465 1466 SDValue Ops[] = { 1467 DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, Ret, MemEltVTNode), 1468 Load->getChain() 1469 }; 1470 1471 return DAG.getMergeValues(Ops, DL); 1472 } 1473 1474 // ... or zeros. 1475 SDValue Ops[] = { 1476 DAG.getZeroExtendInReg(Ret, DL, MemEltVT), 1477 Load->getChain() 1478 }; 1479 1480 return DAG.getMergeValues(Ops, DL); 1481 } 1482 1483 SDValue AMDGPUTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const { 1484 SDLoc DL(Op); 1485 SDValue Result = AMDGPUTargetLowering::MergeVectorStore(Op, DAG); 1486 if (Result.getNode()) { 1487 return Result; 1488 } 1489 1490 StoreSDNode *Store = cast<StoreSDNode>(Op); 1491 SDValue Chain = Store->getChain(); 1492 if ((Store->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS || 1493 Store->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS) && 1494 Store->getValue().getValueType().isVector()) { 1495 return SplitVectorStore(Op, DAG); 1496 } 1497 1498 EVT MemVT = Store->getMemoryVT(); 1499 if (Store->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS && 1500 MemVT.bitsLT(MVT::i32)) { 1501 unsigned Mask = 0; 1502 if (Store->getMemoryVT() == MVT::i8) { 1503 Mask = 0xff; 1504 } else if (Store->getMemoryVT() == MVT::i16) { 1505 Mask = 0xffff; 1506 } 1507 SDValue BasePtr = Store->getBasePtr(); 1508 SDValue Ptr = DAG.getNode(ISD::SRL, DL, MVT::i32, BasePtr, 1509 DAG.getConstant(2, DL, MVT::i32)); 1510 SDValue Dst = DAG.getNode(AMDGPUISD::REGISTER_LOAD, DL, MVT::i32, 1511 Chain, Ptr, 1512 DAG.getTargetConstant(0, DL, MVT::i32)); 1513 1514 SDValue ByteIdx = DAG.getNode(ISD::AND, DL, MVT::i32, BasePtr, 1515 DAG.getConstant(0x3, DL, MVT::i32)); 1516 1517 SDValue ShiftAmt = DAG.getNode(ISD::SHL, DL, MVT::i32, ByteIdx, 1518 DAG.getConstant(3, DL, MVT::i32)); 1519 1520 SDValue SExtValue = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i32, 1521 Store->getValue()); 1522 1523 SDValue MaskedValue = DAG.getZeroExtendInReg(SExtValue, DL, MemVT); 1524 1525 SDValue ShiftedValue = DAG.getNode(ISD::SHL, DL, MVT::i32, 1526 MaskedValue, ShiftAmt); 1527 1528 SDValue DstMask = DAG.getNode(ISD::SHL, DL, MVT::i32, 1529 DAG.getConstant(Mask, DL, MVT::i32), 1530 ShiftAmt); 1531 DstMask = DAG.getNode(ISD::XOR, DL, MVT::i32, DstMask, 1532 DAG.getConstant(0xffffffff, DL, MVT::i32)); 1533 Dst = DAG.getNode(ISD::AND, DL, MVT::i32, Dst, DstMask); 1534 1535 SDValue Value = DAG.getNode(ISD::OR, DL, MVT::i32, Dst, ShiftedValue); 1536 return DAG.getNode(AMDGPUISD::REGISTER_STORE, DL, MVT::Other, 1537 Chain, Value, Ptr, 1538 DAG.getTargetConstant(0, DL, MVT::i32)); 1539 } 1540 return SDValue(); 1541 } 1542 1543 // This is a shortcut for integer division because we have fast i32<->f32 1544 // conversions, and fast f32 reciprocal instructions. The fractional part of a 1545 // float is enough to accurately represent up to a 24-bit integer. 1546 SDValue AMDGPUTargetLowering::LowerDIVREM24(SDValue Op, SelectionDAG &DAG, bool sign) const { 1547 SDLoc DL(Op); 1548 EVT VT = Op.getValueType(); 1549 SDValue LHS = Op.getOperand(0); 1550 SDValue RHS = Op.getOperand(1); 1551 MVT IntVT = MVT::i32; 1552 MVT FltVT = MVT::f32; 1553 1554 ISD::NodeType ToFp = sign ? ISD::SINT_TO_FP : ISD::UINT_TO_FP; 1555 ISD::NodeType ToInt = sign ? ISD::FP_TO_SINT : ISD::FP_TO_UINT; 1556 1557 if (VT.isVector()) { 1558 unsigned NElts = VT.getVectorNumElements(); 1559 IntVT = MVT::getVectorVT(MVT::i32, NElts); 1560 FltVT = MVT::getVectorVT(MVT::f32, NElts); 1561 } 1562 1563 unsigned BitSize = VT.getScalarType().getSizeInBits(); 1564 1565 SDValue jq = DAG.getConstant(1, DL, IntVT); 1566 1567 if (sign) { 1568 // char|short jq = ia ^ ib; 1569 jq = DAG.getNode(ISD::XOR, DL, VT, LHS, RHS); 1570 1571 // jq = jq >> (bitsize - 2) 1572 jq = DAG.getNode(ISD::SRA, DL, VT, jq, 1573 DAG.getConstant(BitSize - 2, DL, VT)); 1574 1575 // jq = jq | 0x1 1576 jq = DAG.getNode(ISD::OR, DL, VT, jq, DAG.getConstant(1, DL, VT)); 1577 1578 // jq = (int)jq 1579 jq = DAG.getSExtOrTrunc(jq, DL, IntVT); 1580 } 1581 1582 // int ia = (int)LHS; 1583 SDValue ia = sign ? 1584 DAG.getSExtOrTrunc(LHS, DL, IntVT) : DAG.getZExtOrTrunc(LHS, DL, IntVT); 1585 1586 // int ib, (int)RHS; 1587 SDValue ib = sign ? 1588 DAG.getSExtOrTrunc(RHS, DL, IntVT) : DAG.getZExtOrTrunc(RHS, DL, IntVT); 1589 1590 // float fa = (float)ia; 1591 SDValue fa = DAG.getNode(ToFp, DL, FltVT, ia); 1592 1593 // float fb = (float)ib; 1594 SDValue fb = DAG.getNode(ToFp, DL, FltVT, ib); 1595 1596 // TODO: Should this propagate fast-math-flags? 1597 // float fq = native_divide(fa, fb); 1598 SDValue fq = DAG.getNode(ISD::FMUL, DL, FltVT, 1599 fa, DAG.getNode(AMDGPUISD::RCP, DL, FltVT, fb)); 1600 1601 // fq = trunc(fq); 1602 fq = DAG.getNode(ISD::FTRUNC, DL, FltVT, fq); 1603 1604 // float fqneg = -fq; 1605 SDValue fqneg = DAG.getNode(ISD::FNEG, DL, FltVT, fq); 1606 1607 // float fr = mad(fqneg, fb, fa); 1608 SDValue fr = DAG.getNode(ISD::FADD, DL, FltVT, 1609 DAG.getNode(ISD::FMUL, DL, FltVT, fqneg, fb), fa); 1610 1611 // int iq = (int)fq; 1612 SDValue iq = DAG.getNode(ToInt, DL, IntVT, fq); 1613 1614 // fr = fabs(fr); 1615 fr = DAG.getNode(ISD::FABS, DL, FltVT, fr); 1616 1617 // fb = fabs(fb); 1618 fb = DAG.getNode(ISD::FABS, DL, FltVT, fb); 1619 1620 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 1621 1622 // int cv = fr >= fb; 1623 SDValue cv = DAG.getSetCC(DL, SetCCVT, fr, fb, ISD::SETOGE); 1624 1625 // jq = (cv ? jq : 0); 1626 jq = DAG.getNode(ISD::SELECT, DL, VT, cv, jq, DAG.getConstant(0, DL, VT)); 1627 1628 // dst = trunc/extend to legal type 1629 iq = sign ? DAG.getSExtOrTrunc(iq, DL, VT) : DAG.getZExtOrTrunc(iq, DL, VT); 1630 1631 // dst = iq + jq; 1632 SDValue Div = DAG.getNode(ISD::ADD, DL, VT, iq, jq); 1633 1634 // Rem needs compensation, it's easier to recompute it 1635 SDValue Rem = DAG.getNode(ISD::MUL, DL, VT, Div, RHS); 1636 Rem = DAG.getNode(ISD::SUB, DL, VT, LHS, Rem); 1637 1638 SDValue Res[2] = { 1639 Div, 1640 Rem 1641 }; 1642 return DAG.getMergeValues(Res, DL); 1643 } 1644 1645 void AMDGPUTargetLowering::LowerUDIVREM64(SDValue Op, 1646 SelectionDAG &DAG, 1647 SmallVectorImpl<SDValue> &Results) const { 1648 assert(Op.getValueType() == MVT::i64); 1649 1650 SDLoc DL(Op); 1651 EVT VT = Op.getValueType(); 1652 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); 1653 1654 SDValue one = DAG.getConstant(1, DL, HalfVT); 1655 SDValue zero = DAG.getConstant(0, DL, HalfVT); 1656 1657 //HiLo split 1658 SDValue LHS = Op.getOperand(0); 1659 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, zero); 1660 SDValue LHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, one); 1661 1662 SDValue RHS = Op.getOperand(1); 1663 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, zero); 1664 SDValue RHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, one); 1665 1666 if (VT == MVT::i64 && 1667 DAG.MaskedValueIsZero(RHS, APInt::getHighBitsSet(64, 32)) && 1668 DAG.MaskedValueIsZero(LHS, APInt::getHighBitsSet(64, 32))) { 1669 1670 SDValue Res = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), 1671 LHS_Lo, RHS_Lo); 1672 1673 SDValue DIV = DAG.getNode(ISD::BUILD_PAIR, DL, VT, Res.getValue(0), zero); 1674 SDValue REM = DAG.getNode(ISD::BUILD_PAIR, DL, VT, Res.getValue(1), zero); 1675 Results.push_back(DIV); 1676 Results.push_back(REM); 1677 return; 1678 } 1679 1680 // Get Speculative values 1681 SDValue DIV_Part = DAG.getNode(ISD::UDIV, DL, HalfVT, LHS_Hi, RHS_Lo); 1682 SDValue REM_Part = DAG.getNode(ISD::UREM, DL, HalfVT, LHS_Hi, RHS_Lo); 1683 1684 SDValue REM_Lo = DAG.getSelectCC(DL, RHS_Hi, zero, REM_Part, LHS_Hi, ISD::SETEQ); 1685 SDValue REM = DAG.getNode(ISD::BUILD_PAIR, DL, VT, REM_Lo, zero); 1686 1687 SDValue DIV_Hi = DAG.getSelectCC(DL, RHS_Hi, zero, DIV_Part, zero, ISD::SETEQ); 1688 SDValue DIV_Lo = zero; 1689 1690 const unsigned halfBitWidth = HalfVT.getSizeInBits(); 1691 1692 for (unsigned i = 0; i < halfBitWidth; ++i) { 1693 const unsigned bitPos = halfBitWidth - i - 1; 1694 SDValue POS = DAG.getConstant(bitPos, DL, HalfVT); 1695 // Get value of high bit 1696 SDValue HBit = DAG.getNode(ISD::SRL, DL, HalfVT, LHS_Lo, POS); 1697 HBit = DAG.getNode(ISD::AND, DL, HalfVT, HBit, one); 1698 HBit = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, HBit); 1699 1700 // Shift 1701 REM = DAG.getNode(ISD::SHL, DL, VT, REM, DAG.getConstant(1, DL, VT)); 1702 // Add LHS high bit 1703 REM = DAG.getNode(ISD::OR, DL, VT, REM, HBit); 1704 1705 SDValue BIT = DAG.getConstant(1 << bitPos, DL, HalfVT); 1706 SDValue realBIT = DAG.getSelectCC(DL, REM, RHS, BIT, zero, ISD::SETUGE); 1707 1708 DIV_Lo = DAG.getNode(ISD::OR, DL, HalfVT, DIV_Lo, realBIT); 1709 1710 // Update REM 1711 SDValue REM_sub = DAG.getNode(ISD::SUB, DL, VT, REM, RHS); 1712 REM = DAG.getSelectCC(DL, REM, RHS, REM_sub, REM, ISD::SETUGE); 1713 } 1714 1715 SDValue DIV = DAG.getNode(ISD::BUILD_PAIR, DL, VT, DIV_Lo, DIV_Hi); 1716 Results.push_back(DIV); 1717 Results.push_back(REM); 1718 } 1719 1720 SDValue AMDGPUTargetLowering::LowerUDIVREM(SDValue Op, 1721 SelectionDAG &DAG) const { 1722 SDLoc DL(Op); 1723 EVT VT = Op.getValueType(); 1724 1725 if (VT == MVT::i64) { 1726 SmallVector<SDValue, 2> Results; 1727 LowerUDIVREM64(Op, DAG, Results); 1728 return DAG.getMergeValues(Results, DL); 1729 } 1730 1731 SDValue Num = Op.getOperand(0); 1732 SDValue Den = Op.getOperand(1); 1733 1734 if (VT == MVT::i32) { 1735 if (DAG.MaskedValueIsZero(Num, APInt::getHighBitsSet(32, 8)) && 1736 DAG.MaskedValueIsZero(Den, APInt::getHighBitsSet(32, 8))) { 1737 // TODO: We technically could do this for i64, but shouldn't that just be 1738 // handled by something generally reducing 64-bit division on 32-bit 1739 // values to 32-bit? 1740 return LowerDIVREM24(Op, DAG, false); 1741 } 1742 } 1743 1744 // RCP = URECIP(Den) = 2^32 / Den + e 1745 // e is rounding error. 1746 SDValue RCP = DAG.getNode(AMDGPUISD::URECIP, DL, VT, Den); 1747 1748 // RCP_LO = mul(RCP, Den) */ 1749 SDValue RCP_LO = DAG.getNode(ISD::MUL, DL, VT, RCP, Den); 1750 1751 // RCP_HI = mulhu (RCP, Den) */ 1752 SDValue RCP_HI = DAG.getNode(ISD::MULHU, DL, VT, RCP, Den); 1753 1754 // NEG_RCP_LO = -RCP_LO 1755 SDValue NEG_RCP_LO = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, DL, VT), 1756 RCP_LO); 1757 1758 // ABS_RCP_LO = (RCP_HI == 0 ? NEG_RCP_LO : RCP_LO) 1759 SDValue ABS_RCP_LO = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT), 1760 NEG_RCP_LO, RCP_LO, 1761 ISD::SETEQ); 1762 // Calculate the rounding error from the URECIP instruction 1763 // E = mulhu(ABS_RCP_LO, RCP) 1764 SDValue E = DAG.getNode(ISD::MULHU, DL, VT, ABS_RCP_LO, RCP); 1765 1766 // RCP_A_E = RCP + E 1767 SDValue RCP_A_E = DAG.getNode(ISD::ADD, DL, VT, RCP, E); 1768 1769 // RCP_S_E = RCP - E 1770 SDValue RCP_S_E = DAG.getNode(ISD::SUB, DL, VT, RCP, E); 1771 1772 // Tmp0 = (RCP_HI == 0 ? RCP_A_E : RCP_SUB_E) 1773 SDValue Tmp0 = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, DL, VT), 1774 RCP_A_E, RCP_S_E, 1775 ISD::SETEQ); 1776 // Quotient = mulhu(Tmp0, Num) 1777 SDValue Quotient = DAG.getNode(ISD::MULHU, DL, VT, Tmp0, Num); 1778 1779 // Num_S_Remainder = Quotient * Den 1780 SDValue Num_S_Remainder = DAG.getNode(ISD::MUL, DL, VT, Quotient, Den); 1781 1782 // Remainder = Num - Num_S_Remainder 1783 SDValue Remainder = DAG.getNode(ISD::SUB, DL, VT, Num, Num_S_Remainder); 1784 1785 // Remainder_GE_Den = (Remainder >= Den ? -1 : 0) 1786 SDValue Remainder_GE_Den = DAG.getSelectCC(DL, Remainder, Den, 1787 DAG.getConstant(-1, DL, VT), 1788 DAG.getConstant(0, DL, VT), 1789 ISD::SETUGE); 1790 // Remainder_GE_Zero = (Num >= Num_S_Remainder ? -1 : 0) 1791 SDValue Remainder_GE_Zero = DAG.getSelectCC(DL, Num, 1792 Num_S_Remainder, 1793 DAG.getConstant(-1, DL, VT), 1794 DAG.getConstant(0, DL, VT), 1795 ISD::SETUGE); 1796 // Tmp1 = Remainder_GE_Den & Remainder_GE_Zero 1797 SDValue Tmp1 = DAG.getNode(ISD::AND, DL, VT, Remainder_GE_Den, 1798 Remainder_GE_Zero); 1799 1800 // Calculate Division result: 1801 1802 // Quotient_A_One = Quotient + 1 1803 SDValue Quotient_A_One = DAG.getNode(ISD::ADD, DL, VT, Quotient, 1804 DAG.getConstant(1, DL, VT)); 1805 1806 // Quotient_S_One = Quotient - 1 1807 SDValue Quotient_S_One = DAG.getNode(ISD::SUB, DL, VT, Quotient, 1808 DAG.getConstant(1, DL, VT)); 1809 1810 // Div = (Tmp1 == 0 ? Quotient : Quotient_A_One) 1811 SDValue Div = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT), 1812 Quotient, Quotient_A_One, ISD::SETEQ); 1813 1814 // Div = (Remainder_GE_Zero == 0 ? Quotient_S_One : Div) 1815 Div = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT), 1816 Quotient_S_One, Div, ISD::SETEQ); 1817 1818 // Calculate Rem result: 1819 1820 // Remainder_S_Den = Remainder - Den 1821 SDValue Remainder_S_Den = DAG.getNode(ISD::SUB, DL, VT, Remainder, Den); 1822 1823 // Remainder_A_Den = Remainder + Den 1824 SDValue Remainder_A_Den = DAG.getNode(ISD::ADD, DL, VT, Remainder, Den); 1825 1826 // Rem = (Tmp1 == 0 ? Remainder : Remainder_S_Den) 1827 SDValue Rem = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, DL, VT), 1828 Remainder, Remainder_S_Den, ISD::SETEQ); 1829 1830 // Rem = (Remainder_GE_Zero == 0 ? Remainder_A_Den : Rem) 1831 Rem = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, DL, VT), 1832 Remainder_A_Den, Rem, ISD::SETEQ); 1833 SDValue Ops[2] = { 1834 Div, 1835 Rem 1836 }; 1837 return DAG.getMergeValues(Ops, DL); 1838 } 1839 1840 SDValue AMDGPUTargetLowering::LowerSDIVREM(SDValue Op, 1841 SelectionDAG &DAG) const { 1842 SDLoc DL(Op); 1843 EVT VT = Op.getValueType(); 1844 1845 SDValue LHS = Op.getOperand(0); 1846 SDValue RHS = Op.getOperand(1); 1847 1848 SDValue Zero = DAG.getConstant(0, DL, VT); 1849 SDValue NegOne = DAG.getConstant(-1, DL, VT); 1850 1851 if (VT == MVT::i32 && 1852 DAG.ComputeNumSignBits(LHS) > 8 && 1853 DAG.ComputeNumSignBits(RHS) > 8) { 1854 return LowerDIVREM24(Op, DAG, true); 1855 } 1856 if (VT == MVT::i64 && 1857 DAG.ComputeNumSignBits(LHS) > 32 && 1858 DAG.ComputeNumSignBits(RHS) > 32) { 1859 EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext()); 1860 1861 //HiLo split 1862 SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero); 1863 SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero); 1864 SDValue DIVREM = DAG.getNode(ISD::SDIVREM, DL, DAG.getVTList(HalfVT, HalfVT), 1865 LHS_Lo, RHS_Lo); 1866 SDValue Res[2] = { 1867 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(0)), 1868 DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(1)) 1869 }; 1870 return DAG.getMergeValues(Res, DL); 1871 } 1872 1873 SDValue LHSign = DAG.getSelectCC(DL, LHS, Zero, NegOne, Zero, ISD::SETLT); 1874 SDValue RHSign = DAG.getSelectCC(DL, RHS, Zero, NegOne, Zero, ISD::SETLT); 1875 SDValue DSign = DAG.getNode(ISD::XOR, DL, VT, LHSign, RHSign); 1876 SDValue RSign = LHSign; // Remainder sign is the same as LHS 1877 1878 LHS = DAG.getNode(ISD::ADD, DL, VT, LHS, LHSign); 1879 RHS = DAG.getNode(ISD::ADD, DL, VT, RHS, RHSign); 1880 1881 LHS = DAG.getNode(ISD::XOR, DL, VT, LHS, LHSign); 1882 RHS = DAG.getNode(ISD::XOR, DL, VT, RHS, RHSign); 1883 1884 SDValue Div = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(VT, VT), LHS, RHS); 1885 SDValue Rem = Div.getValue(1); 1886 1887 Div = DAG.getNode(ISD::XOR, DL, VT, Div, DSign); 1888 Rem = DAG.getNode(ISD::XOR, DL, VT, Rem, RSign); 1889 1890 Div = DAG.getNode(ISD::SUB, DL, VT, Div, DSign); 1891 Rem = DAG.getNode(ISD::SUB, DL, VT, Rem, RSign); 1892 1893 SDValue Res[2] = { 1894 Div, 1895 Rem 1896 }; 1897 return DAG.getMergeValues(Res, DL); 1898 } 1899 1900 // (frem x, y) -> (fsub x, (fmul (ftrunc (fdiv x, y)), y)) 1901 SDValue AMDGPUTargetLowering::LowerFREM(SDValue Op, SelectionDAG &DAG) const { 1902 SDLoc SL(Op); 1903 EVT VT = Op.getValueType(); 1904 SDValue X = Op.getOperand(0); 1905 SDValue Y = Op.getOperand(1); 1906 1907 // TODO: Should this propagate fast-math-flags? 1908 1909 SDValue Div = DAG.getNode(ISD::FDIV, SL, VT, X, Y); 1910 SDValue Floor = DAG.getNode(ISD::FTRUNC, SL, VT, Div); 1911 SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Floor, Y); 1912 1913 return DAG.getNode(ISD::FSUB, SL, VT, X, Mul); 1914 } 1915 1916 SDValue AMDGPUTargetLowering::LowerFCEIL(SDValue Op, SelectionDAG &DAG) const { 1917 SDLoc SL(Op); 1918 SDValue Src = Op.getOperand(0); 1919 1920 // result = trunc(src) 1921 // if (src > 0.0 && src != result) 1922 // result += 1.0 1923 1924 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 1925 1926 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); 1927 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64); 1928 1929 EVT SetCCVT = 1930 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 1931 1932 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOGT); 1933 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); 1934 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); 1935 1936 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, One, Zero); 1937 // TODO: Should this propagate fast-math-flags? 1938 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); 1939 } 1940 1941 static SDValue extractF64Exponent(SDValue Hi, SDLoc SL, SelectionDAG &DAG) { 1942 const unsigned FractBits = 52; 1943 const unsigned ExpBits = 11; 1944 1945 SDValue ExpPart = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32, 1946 Hi, 1947 DAG.getConstant(FractBits - 32, SL, MVT::i32), 1948 DAG.getConstant(ExpBits, SL, MVT::i32)); 1949 SDValue Exp = DAG.getNode(ISD::SUB, SL, MVT::i32, ExpPart, 1950 DAG.getConstant(1023, SL, MVT::i32)); 1951 1952 return Exp; 1953 } 1954 1955 SDValue AMDGPUTargetLowering::LowerFTRUNC(SDValue Op, SelectionDAG &DAG) const { 1956 SDLoc SL(Op); 1957 SDValue Src = Op.getOperand(0); 1958 1959 assert(Op.getValueType() == MVT::f64); 1960 1961 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 1962 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 1963 1964 SDValue VecSrc = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 1965 1966 // Extract the upper half, since this is where we will find the sign and 1967 // exponent. 1968 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecSrc, One); 1969 1970 SDValue Exp = extractF64Exponent(Hi, SL, DAG); 1971 1972 const unsigned FractBits = 52; 1973 1974 // Extract the sign bit. 1975 const SDValue SignBitMask = DAG.getConstant(UINT32_C(1) << 31, SL, MVT::i32); 1976 SDValue SignBit = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, SignBitMask); 1977 1978 // Extend back to to 64-bits. 1979 SDValue SignBit64 = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, 1980 Zero, SignBit); 1981 SignBit64 = DAG.getNode(ISD::BITCAST, SL, MVT::i64, SignBit64); 1982 1983 SDValue BcInt = DAG.getNode(ISD::BITCAST, SL, MVT::i64, Src); 1984 const SDValue FractMask 1985 = DAG.getConstant((UINT64_C(1) << FractBits) - 1, SL, MVT::i64); 1986 1987 SDValue Shr = DAG.getNode(ISD::SRA, SL, MVT::i64, FractMask, Exp); 1988 SDValue Not = DAG.getNOT(SL, Shr, MVT::i64); 1989 SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, BcInt, Not); 1990 1991 EVT SetCCVT = 1992 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32); 1993 1994 const SDValue FiftyOne = DAG.getConstant(FractBits - 1, SL, MVT::i32); 1995 1996 SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT); 1997 SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT); 1998 1999 SDValue Tmp1 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpLt0, SignBit64, Tmp0); 2000 SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpGt51, BcInt, Tmp1); 2001 2002 return DAG.getNode(ISD::BITCAST, SL, MVT::f64, Tmp2); 2003 } 2004 2005 SDValue AMDGPUTargetLowering::LowerFRINT(SDValue Op, SelectionDAG &DAG) const { 2006 SDLoc SL(Op); 2007 SDValue Src = Op.getOperand(0); 2008 2009 assert(Op.getValueType() == MVT::f64); 2010 2011 APFloat C1Val(APFloat::IEEEdouble, "0x1.0p+52"); 2012 SDValue C1 = DAG.getConstantFP(C1Val, SL, MVT::f64); 2013 SDValue CopySign = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, C1, Src); 2014 2015 // TODO: Should this propagate fast-math-flags? 2016 2017 SDValue Tmp1 = DAG.getNode(ISD::FADD, SL, MVT::f64, Src, CopySign); 2018 SDValue Tmp2 = DAG.getNode(ISD::FSUB, SL, MVT::f64, Tmp1, CopySign); 2019 2020 SDValue Fabs = DAG.getNode(ISD::FABS, SL, MVT::f64, Src); 2021 2022 APFloat C2Val(APFloat::IEEEdouble, "0x1.fffffffffffffp+51"); 2023 SDValue C2 = DAG.getConstantFP(C2Val, SL, MVT::f64); 2024 2025 EVT SetCCVT = 2026 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 2027 SDValue Cond = DAG.getSetCC(SL, SetCCVT, Fabs, C2, ISD::SETOGT); 2028 2029 return DAG.getSelect(SL, MVT::f64, Cond, Src, Tmp2); 2030 } 2031 2032 SDValue AMDGPUTargetLowering::LowerFNEARBYINT(SDValue Op, SelectionDAG &DAG) const { 2033 // FNEARBYINT and FRINT are the same, except in their handling of FP 2034 // exceptions. Those aren't really meaningful for us, and OpenCL only has 2035 // rint, so just treat them as equivalent. 2036 return DAG.getNode(ISD::FRINT, SDLoc(Op), Op.getValueType(), Op.getOperand(0)); 2037 } 2038 2039 // XXX - May require not supporting f32 denormals? 2040 SDValue AMDGPUTargetLowering::LowerFROUND32(SDValue Op, SelectionDAG &DAG) const { 2041 SDLoc SL(Op); 2042 SDValue X = Op.getOperand(0); 2043 2044 SDValue T = DAG.getNode(ISD::FTRUNC, SL, MVT::f32, X); 2045 2046 // TODO: Should this propagate fast-math-flags? 2047 2048 SDValue Diff = DAG.getNode(ISD::FSUB, SL, MVT::f32, X, T); 2049 2050 SDValue AbsDiff = DAG.getNode(ISD::FABS, SL, MVT::f32, Diff); 2051 2052 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f32); 2053 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32); 2054 const SDValue Half = DAG.getConstantFP(0.5, SL, MVT::f32); 2055 2056 SDValue SignOne = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f32, One, X); 2057 2058 EVT SetCCVT = 2059 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f32); 2060 2061 SDValue Cmp = DAG.getSetCC(SL, SetCCVT, AbsDiff, Half, ISD::SETOGE); 2062 2063 SDValue Sel = DAG.getNode(ISD::SELECT, SL, MVT::f32, Cmp, SignOne, Zero); 2064 2065 return DAG.getNode(ISD::FADD, SL, MVT::f32, T, Sel); 2066 } 2067 2068 SDValue AMDGPUTargetLowering::LowerFROUND64(SDValue Op, SelectionDAG &DAG) const { 2069 SDLoc SL(Op); 2070 SDValue X = Op.getOperand(0); 2071 2072 SDValue L = DAG.getNode(ISD::BITCAST, SL, MVT::i64, X); 2073 2074 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2075 const SDValue One = DAG.getConstant(1, SL, MVT::i32); 2076 const SDValue NegOne = DAG.getConstant(-1, SL, MVT::i32); 2077 const SDValue FiftyOne = DAG.getConstant(51, SL, MVT::i32); 2078 EVT SetCCVT = 2079 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::i32); 2080 2081 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X); 2082 2083 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, One); 2084 2085 SDValue Exp = extractF64Exponent(Hi, SL, DAG); 2086 2087 const SDValue Mask = DAG.getConstant(INT64_C(0x000fffffffffffff), SL, 2088 MVT::i64); 2089 2090 SDValue M = DAG.getNode(ISD::SRA, SL, MVT::i64, Mask, Exp); 2091 SDValue D = DAG.getNode(ISD::SRA, SL, MVT::i64, 2092 DAG.getConstant(INT64_C(0x0008000000000000), SL, 2093 MVT::i64), 2094 Exp); 2095 2096 SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, L, M); 2097 SDValue Tmp1 = DAG.getSetCC(SL, SetCCVT, 2098 DAG.getConstant(0, SL, MVT::i64), Tmp0, 2099 ISD::SETNE); 2100 2101 SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, Tmp1, 2102 D, DAG.getConstant(0, SL, MVT::i64)); 2103 SDValue K = DAG.getNode(ISD::ADD, SL, MVT::i64, L, Tmp2); 2104 2105 K = DAG.getNode(ISD::AND, SL, MVT::i64, K, DAG.getNOT(SL, M, MVT::i64)); 2106 K = DAG.getNode(ISD::BITCAST, SL, MVT::f64, K); 2107 2108 SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT); 2109 SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT); 2110 SDValue ExpEqNegOne = DAG.getSetCC(SL, SetCCVT, NegOne, Exp, ISD::SETEQ); 2111 2112 SDValue Mag = DAG.getNode(ISD::SELECT, SL, MVT::f64, 2113 ExpEqNegOne, 2114 DAG.getConstantFP(1.0, SL, MVT::f64), 2115 DAG.getConstantFP(0.0, SL, MVT::f64)); 2116 2117 SDValue S = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, Mag, X); 2118 2119 K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpLt0, S, K); 2120 K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpGt51, X, K); 2121 2122 return K; 2123 } 2124 2125 SDValue AMDGPUTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const { 2126 EVT VT = Op.getValueType(); 2127 2128 if (VT == MVT::f32) 2129 return LowerFROUND32(Op, DAG); 2130 2131 if (VT == MVT::f64) 2132 return LowerFROUND64(Op, DAG); 2133 2134 llvm_unreachable("unhandled type"); 2135 } 2136 2137 SDValue AMDGPUTargetLowering::LowerFFLOOR(SDValue Op, SelectionDAG &DAG) const { 2138 SDLoc SL(Op); 2139 SDValue Src = Op.getOperand(0); 2140 2141 // result = trunc(src); 2142 // if (src < 0.0 && src != result) 2143 // result += -1.0. 2144 2145 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 2146 2147 const SDValue Zero = DAG.getConstantFP(0.0, SL, MVT::f64); 2148 const SDValue NegOne = DAG.getConstantFP(-1.0, SL, MVT::f64); 2149 2150 EVT SetCCVT = 2151 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f64); 2152 2153 SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOLT); 2154 SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE); 2155 SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc); 2156 2157 SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, NegOne, Zero); 2158 // TODO: Should this propagate fast-math-flags? 2159 return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add); 2160 } 2161 2162 SDValue AMDGPUTargetLowering::LowerINT_TO_FP64(SDValue Op, SelectionDAG &DAG, 2163 bool Signed) const { 2164 SDLoc SL(Op); 2165 SDValue Src = Op.getOperand(0); 2166 2167 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src); 2168 2169 SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, 2170 DAG.getConstant(0, SL, MVT::i32)); 2171 SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, 2172 DAG.getConstant(1, SL, MVT::i32)); 2173 2174 SDValue CvtHi = DAG.getNode(Signed ? ISD::SINT_TO_FP : ISD::UINT_TO_FP, 2175 SL, MVT::f64, Hi); 2176 2177 SDValue CvtLo = DAG.getNode(ISD::UINT_TO_FP, SL, MVT::f64, Lo); 2178 2179 SDValue LdExp = DAG.getNode(AMDGPUISD::LDEXP, SL, MVT::f64, CvtHi, 2180 DAG.getConstant(32, SL, MVT::i32)); 2181 // TODO: Should this propagate fast-math-flags? 2182 return DAG.getNode(ISD::FADD, SL, MVT::f64, LdExp, CvtLo); 2183 } 2184 2185 SDValue AMDGPUTargetLowering::LowerUINT_TO_FP(SDValue Op, 2186 SelectionDAG &DAG) const { 2187 SDValue S0 = Op.getOperand(0); 2188 if (S0.getValueType() != MVT::i64) 2189 return SDValue(); 2190 2191 EVT DestVT = Op.getValueType(); 2192 if (DestVT == MVT::f64) 2193 return LowerINT_TO_FP64(Op, DAG, false); 2194 2195 assert(DestVT == MVT::f32); 2196 2197 SDLoc DL(Op); 2198 2199 // f32 uint_to_fp i64 2200 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, S0, 2201 DAG.getConstant(0, DL, MVT::i32)); 2202 SDValue FloatLo = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, Lo); 2203 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, S0, 2204 DAG.getConstant(1, DL, MVT::i32)); 2205 SDValue FloatHi = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, Hi); 2206 // TODO: Should this propagate fast-math-flags? 2207 FloatHi = DAG.getNode(ISD::FMUL, DL, MVT::f32, FloatHi, 2208 DAG.getConstantFP(4294967296.0f, DL, MVT::f32)); // 2^32 2209 return DAG.getNode(ISD::FADD, DL, MVT::f32, FloatLo, FloatHi); 2210 } 2211 2212 SDValue AMDGPUTargetLowering::LowerSINT_TO_FP(SDValue Op, 2213 SelectionDAG &DAG) const { 2214 SDValue Src = Op.getOperand(0); 2215 if (Src.getValueType() == MVT::i64 && Op.getValueType() == MVT::f64) 2216 return LowerINT_TO_FP64(Op, DAG, true); 2217 2218 return SDValue(); 2219 } 2220 2221 SDValue AMDGPUTargetLowering::LowerFP64_TO_INT(SDValue Op, SelectionDAG &DAG, 2222 bool Signed) const { 2223 SDLoc SL(Op); 2224 2225 SDValue Src = Op.getOperand(0); 2226 2227 SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src); 2228 2229 SDValue K0 = DAG.getConstantFP(BitsToDouble(UINT64_C(0x3df0000000000000)), SL, 2230 MVT::f64); 2231 SDValue K1 = DAG.getConstantFP(BitsToDouble(UINT64_C(0xc1f0000000000000)), SL, 2232 MVT::f64); 2233 // TODO: Should this propagate fast-math-flags? 2234 SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, Trunc, K0); 2235 2236 SDValue FloorMul = DAG.getNode(ISD::FFLOOR, SL, MVT::f64, Mul); 2237 2238 2239 SDValue Fma = DAG.getNode(ISD::FMA, SL, MVT::f64, FloorMul, K1, Trunc); 2240 2241 SDValue Hi = DAG.getNode(Signed ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, SL, 2242 MVT::i32, FloorMul); 2243 SDValue Lo = DAG.getNode(ISD::FP_TO_UINT, SL, MVT::i32, Fma); 2244 2245 SDValue Result = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, Lo, Hi); 2246 2247 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Result); 2248 } 2249 2250 SDValue AMDGPUTargetLowering::LowerFP_TO_SINT(SDValue Op, 2251 SelectionDAG &DAG) const { 2252 SDValue Src = Op.getOperand(0); 2253 2254 if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64) 2255 return LowerFP64_TO_INT(Op, DAG, true); 2256 2257 return SDValue(); 2258 } 2259 2260 SDValue AMDGPUTargetLowering::LowerFP_TO_UINT(SDValue Op, 2261 SelectionDAG &DAG) const { 2262 SDValue Src = Op.getOperand(0); 2263 2264 if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64) 2265 return LowerFP64_TO_INT(Op, DAG, false); 2266 2267 return SDValue(); 2268 } 2269 2270 SDValue AMDGPUTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op, 2271 SelectionDAG &DAG) const { 2272 EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT(); 2273 MVT VT = Op.getSimpleValueType(); 2274 MVT ScalarVT = VT.getScalarType(); 2275 2276 if (!VT.isVector()) 2277 return SDValue(); 2278 2279 SDValue Src = Op.getOperand(0); 2280 SDLoc DL(Op); 2281 2282 // TODO: Don't scalarize on Evergreen? 2283 unsigned NElts = VT.getVectorNumElements(); 2284 SmallVector<SDValue, 8> Args; 2285 DAG.ExtractVectorElements(Src, Args, 0, NElts); 2286 2287 SDValue VTOp = DAG.getValueType(ExtraVT.getScalarType()); 2288 for (unsigned I = 0; I < NElts; ++I) 2289 Args[I] = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, ScalarVT, Args[I], VTOp); 2290 2291 return DAG.getNode(ISD::BUILD_VECTOR, DL, VT, Args); 2292 } 2293 2294 //===----------------------------------------------------------------------===// 2295 // Custom DAG optimizations 2296 //===----------------------------------------------------------------------===// 2297 2298 static bool isU24(SDValue Op, SelectionDAG &DAG) { 2299 APInt KnownZero, KnownOne; 2300 EVT VT = Op.getValueType(); 2301 DAG.computeKnownBits(Op, KnownZero, KnownOne); 2302 2303 return (VT.getSizeInBits() - KnownZero.countLeadingOnes()) <= 24; 2304 } 2305 2306 static bool isI24(SDValue Op, SelectionDAG &DAG) { 2307 EVT VT = Op.getValueType(); 2308 2309 // In order for this to be a signed 24-bit value, bit 23, must 2310 // be a sign bit. 2311 return VT.getSizeInBits() >= 24 && // Types less than 24-bit should be treated 2312 // as unsigned 24-bit values. 2313 (VT.getSizeInBits() - DAG.ComputeNumSignBits(Op)) < 24; 2314 } 2315 2316 static void simplifyI24(SDValue Op, TargetLowering::DAGCombinerInfo &DCI) { 2317 2318 SelectionDAG &DAG = DCI.DAG; 2319 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2320 EVT VT = Op.getValueType(); 2321 2322 APInt Demanded = APInt::getLowBitsSet(VT.getSizeInBits(), 24); 2323 APInt KnownZero, KnownOne; 2324 TargetLowering::TargetLoweringOpt TLO(DAG, true, true); 2325 if (TLI.SimplifyDemandedBits(Op, Demanded, KnownZero, KnownOne, TLO)) 2326 DCI.CommitTargetLoweringOpt(TLO); 2327 } 2328 2329 template <typename IntTy> 2330 static SDValue constantFoldBFE(SelectionDAG &DAG, IntTy Src0, 2331 uint32_t Offset, uint32_t Width, SDLoc DL) { 2332 if (Width + Offset < 32) { 2333 uint32_t Shl = static_cast<uint32_t>(Src0) << (32 - Offset - Width); 2334 IntTy Result = static_cast<IntTy>(Shl) >> (32 - Width); 2335 return DAG.getConstant(Result, DL, MVT::i32); 2336 } 2337 2338 return DAG.getConstant(Src0 >> Offset, DL, MVT::i32); 2339 } 2340 2341 static bool usesAllNormalStores(SDNode *LoadVal) { 2342 for (SDNode::use_iterator I = LoadVal->use_begin(); !I.atEnd(); ++I) { 2343 if (!ISD::isNormalStore(*I)) 2344 return false; 2345 } 2346 2347 return true; 2348 } 2349 2350 // If we have a copy of an illegal type, replace it with a load / store of an 2351 // equivalently sized legal type. This avoids intermediate bit pack / unpack 2352 // instructions emitted when handling extloads and truncstores. Ideally we could 2353 // recognize the pack / unpack pattern to eliminate it. 2354 SDValue AMDGPUTargetLowering::performStoreCombine(SDNode *N, 2355 DAGCombinerInfo &DCI) const { 2356 if (!DCI.isBeforeLegalize()) 2357 return SDValue(); 2358 2359 StoreSDNode *SN = cast<StoreSDNode>(N); 2360 SDValue Value = SN->getValue(); 2361 EVT VT = Value.getValueType(); 2362 2363 if (isTypeLegal(VT) || SN->isVolatile() || 2364 !ISD::isNormalLoad(Value.getNode()) || VT.getSizeInBits() < 8) 2365 return SDValue(); 2366 2367 LoadSDNode *LoadVal = cast<LoadSDNode>(Value); 2368 if (LoadVal->isVolatile() || !usesAllNormalStores(LoadVal)) 2369 return SDValue(); 2370 2371 EVT MemVT = LoadVal->getMemoryVT(); 2372 2373 SDLoc SL(N); 2374 SelectionDAG &DAG = DCI.DAG; 2375 EVT LoadVT = getEquivalentMemType(*DAG.getContext(), MemVT); 2376 2377 SDValue NewLoad = DAG.getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, 2378 LoadVT, SL, 2379 LoadVal->getChain(), 2380 LoadVal->getBasePtr(), 2381 LoadVal->getOffset(), 2382 LoadVT, 2383 LoadVal->getMemOperand()); 2384 2385 SDValue CastLoad = DAG.getNode(ISD::BITCAST, SL, VT, NewLoad.getValue(0)); 2386 DCI.CombineTo(LoadVal, CastLoad, NewLoad.getValue(1), false); 2387 2388 return DAG.getStore(SN->getChain(), SL, NewLoad, 2389 SN->getBasePtr(), SN->getMemOperand()); 2390 } 2391 2392 SDValue AMDGPUTargetLowering::performShlCombine(SDNode *N, 2393 DAGCombinerInfo &DCI) const { 2394 if (N->getValueType(0) != MVT::i64) 2395 return SDValue(); 2396 2397 // i64 (shl x, 32) -> (build_pair 0, x) 2398 2399 // Doing this with moves theoretically helps MI optimizations that understand 2400 // copies. 2 v_mov_b32_e32 will have the same code size / cycle count as 2401 // v_lshl_b64. In the SALU case, I think this is slightly worse since it 2402 // doubles the code size and I'm unsure about cycle count. 2403 const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2404 if (!RHS || RHS->getZExtValue() != 32) 2405 return SDValue(); 2406 2407 SDValue LHS = N->getOperand(0); 2408 2409 SDLoc SL(N); 2410 SelectionDAG &DAG = DCI.DAG; 2411 2412 // Extract low 32-bits. 2413 SDValue Lo = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, LHS); 2414 2415 const SDValue Zero = DAG.getConstant(0, SL, MVT::i32); 2416 return DAG.getNode(ISD::BUILD_PAIR, SL, MVT::i64, Zero, Lo); 2417 } 2418 2419 SDValue AMDGPUTargetLowering::performMulCombine(SDNode *N, 2420 DAGCombinerInfo &DCI) const { 2421 EVT VT = N->getValueType(0); 2422 2423 if (VT.isVector() || VT.getSizeInBits() > 32) 2424 return SDValue(); 2425 2426 SelectionDAG &DAG = DCI.DAG; 2427 SDLoc DL(N); 2428 2429 SDValue N0 = N->getOperand(0); 2430 SDValue N1 = N->getOperand(1); 2431 SDValue Mul; 2432 2433 if (Subtarget->hasMulU24() && isU24(N0, DAG) && isU24(N1, DAG)) { 2434 N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32); 2435 N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32); 2436 Mul = DAG.getNode(AMDGPUISD::MUL_U24, DL, MVT::i32, N0, N1); 2437 } else if (Subtarget->hasMulI24() && isI24(N0, DAG) && isI24(N1, DAG)) { 2438 N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32); 2439 N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32); 2440 Mul = DAG.getNode(AMDGPUISD::MUL_I24, DL, MVT::i32, N0, N1); 2441 } else { 2442 return SDValue(); 2443 } 2444 2445 // We need to use sext even for MUL_U24, because MUL_U24 is used 2446 // for signed multiply of 8 and 16-bit types. 2447 return DAG.getSExtOrTrunc(Mul, DL, VT); 2448 } 2449 2450 SDValue AMDGPUTargetLowering::PerformDAGCombine(SDNode *N, 2451 DAGCombinerInfo &DCI) const { 2452 SelectionDAG &DAG = DCI.DAG; 2453 SDLoc DL(N); 2454 2455 switch(N->getOpcode()) { 2456 default: 2457 break; 2458 case ISD::SHL: { 2459 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) 2460 break; 2461 2462 return performShlCombine(N, DCI); 2463 } 2464 case ISD::MUL: 2465 return performMulCombine(N, DCI); 2466 case AMDGPUISD::MUL_I24: 2467 case AMDGPUISD::MUL_U24: { 2468 SDValue N0 = N->getOperand(0); 2469 SDValue N1 = N->getOperand(1); 2470 simplifyI24(N0, DCI); 2471 simplifyI24(N1, DCI); 2472 return SDValue(); 2473 } 2474 case ISD::SELECT: { 2475 SDValue Cond = N->getOperand(0); 2476 if (Cond.getOpcode() == ISD::SETCC && Cond.hasOneUse()) { 2477 EVT VT = N->getValueType(0); 2478 SDValue LHS = Cond.getOperand(0); 2479 SDValue RHS = Cond.getOperand(1); 2480 SDValue CC = Cond.getOperand(2); 2481 2482 SDValue True = N->getOperand(1); 2483 SDValue False = N->getOperand(2); 2484 2485 if (VT == MVT::f32) 2486 return CombineFMinMaxLegacy(DL, VT, LHS, RHS, True, False, CC, DCI); 2487 } 2488 2489 break; 2490 } 2491 case AMDGPUISD::BFE_I32: 2492 case AMDGPUISD::BFE_U32: { 2493 assert(!N->getValueType(0).isVector() && 2494 "Vector handling of BFE not implemented"); 2495 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2)); 2496 if (!Width) 2497 break; 2498 2499 uint32_t WidthVal = Width->getZExtValue() & 0x1f; 2500 if (WidthVal == 0) 2501 return DAG.getConstant(0, DL, MVT::i32); 2502 2503 ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1)); 2504 if (!Offset) 2505 break; 2506 2507 SDValue BitsFrom = N->getOperand(0); 2508 uint32_t OffsetVal = Offset->getZExtValue() & 0x1f; 2509 2510 bool Signed = N->getOpcode() == AMDGPUISD::BFE_I32; 2511 2512 if (OffsetVal == 0) { 2513 // This is already sign / zero extended, so try to fold away extra BFEs. 2514 unsigned SignBits = Signed ? (32 - WidthVal + 1) : (32 - WidthVal); 2515 2516 unsigned OpSignBits = DAG.ComputeNumSignBits(BitsFrom); 2517 if (OpSignBits >= SignBits) 2518 return BitsFrom; 2519 2520 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), WidthVal); 2521 if (Signed) { 2522 // This is a sign_extend_inreg. Replace it to take advantage of existing 2523 // DAG Combines. If not eliminated, we will match back to BFE during 2524 // selection. 2525 2526 // TODO: The sext_inreg of extended types ends, although we can could 2527 // handle them in a single BFE. 2528 return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, BitsFrom, 2529 DAG.getValueType(SmallVT)); 2530 } 2531 2532 return DAG.getZeroExtendInReg(BitsFrom, DL, SmallVT); 2533 } 2534 2535 if (ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(BitsFrom)) { 2536 if (Signed) { 2537 return constantFoldBFE<int32_t>(DAG, 2538 CVal->getSExtValue(), 2539 OffsetVal, 2540 WidthVal, 2541 DL); 2542 } 2543 2544 return constantFoldBFE<uint32_t>(DAG, 2545 CVal->getZExtValue(), 2546 OffsetVal, 2547 WidthVal, 2548 DL); 2549 } 2550 2551 if ((OffsetVal + WidthVal) >= 32) { 2552 SDValue ShiftVal = DAG.getConstant(OffsetVal, DL, MVT::i32); 2553 return DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, MVT::i32, 2554 BitsFrom, ShiftVal); 2555 } 2556 2557 if (BitsFrom.hasOneUse()) { 2558 APInt Demanded = APInt::getBitsSet(32, 2559 OffsetVal, 2560 OffsetVal + WidthVal); 2561 2562 APInt KnownZero, KnownOne; 2563 TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), 2564 !DCI.isBeforeLegalizeOps()); 2565 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2566 if (TLO.ShrinkDemandedConstant(BitsFrom, Demanded) || 2567 TLI.SimplifyDemandedBits(BitsFrom, Demanded, 2568 KnownZero, KnownOne, TLO)) { 2569 DCI.CommitTargetLoweringOpt(TLO); 2570 } 2571 } 2572 2573 break; 2574 } 2575 2576 case ISD::STORE: 2577 return performStoreCombine(N, DCI); 2578 } 2579 return SDValue(); 2580 } 2581 2582 //===----------------------------------------------------------------------===// 2583 // Helper functions 2584 //===----------------------------------------------------------------------===// 2585 2586 void AMDGPUTargetLowering::getOriginalFunctionArgs( 2587 SelectionDAG &DAG, 2588 const Function *F, 2589 const SmallVectorImpl<ISD::InputArg> &Ins, 2590 SmallVectorImpl<ISD::InputArg> &OrigIns) const { 2591 2592 for (unsigned i = 0, e = Ins.size(); i < e; ++i) { 2593 if (Ins[i].ArgVT == Ins[i].VT) { 2594 OrigIns.push_back(Ins[i]); 2595 continue; 2596 } 2597 2598 EVT VT; 2599 if (Ins[i].ArgVT.isVector() && !Ins[i].VT.isVector()) { 2600 // Vector has been split into scalars. 2601 VT = Ins[i].ArgVT.getVectorElementType(); 2602 } else if (Ins[i].VT.isVector() && Ins[i].ArgVT.isVector() && 2603 Ins[i].ArgVT.getVectorElementType() != 2604 Ins[i].VT.getVectorElementType()) { 2605 // Vector elements have been promoted 2606 VT = Ins[i].ArgVT; 2607 } else { 2608 // Vector has been spilt into smaller vectors. 2609 VT = Ins[i].VT; 2610 } 2611 2612 ISD::InputArg Arg(Ins[i].Flags, VT, VT, Ins[i].Used, 2613 Ins[i].OrigArgIndex, Ins[i].PartOffset); 2614 OrigIns.push_back(Arg); 2615 } 2616 } 2617 2618 bool AMDGPUTargetLowering::isHWTrueValue(SDValue Op) const { 2619 if (ConstantFPSDNode * CFP = dyn_cast<ConstantFPSDNode>(Op)) { 2620 return CFP->isExactlyValue(1.0); 2621 } 2622 return isAllOnesConstant(Op); 2623 } 2624 2625 bool AMDGPUTargetLowering::isHWFalseValue(SDValue Op) const { 2626 if (ConstantFPSDNode * CFP = dyn_cast<ConstantFPSDNode>(Op)) { 2627 return CFP->getValueAPF().isZero(); 2628 } 2629 return isNullConstant(Op); 2630 } 2631 2632 SDValue AMDGPUTargetLowering::CreateLiveInRegister(SelectionDAG &DAG, 2633 const TargetRegisterClass *RC, 2634 unsigned Reg, EVT VT) const { 2635 MachineFunction &MF = DAG.getMachineFunction(); 2636 MachineRegisterInfo &MRI = MF.getRegInfo(); 2637 unsigned VirtualRegister; 2638 if (!MRI.isLiveIn(Reg)) { 2639 VirtualRegister = MRI.createVirtualRegister(RC); 2640 MRI.addLiveIn(Reg, VirtualRegister); 2641 } else { 2642 VirtualRegister = MRI.getLiveInVirtReg(Reg); 2643 } 2644 return DAG.getRegister(VirtualRegister, VT); 2645 } 2646 2647 uint32_t AMDGPUTargetLowering::getImplicitParameterOffset( 2648 const AMDGPUMachineFunction *MFI, const ImplicitParameter Param) const { 2649 uint64_t ArgOffset = MFI->ABIArgOffset; 2650 switch (Param) { 2651 case GRID_DIM: 2652 return ArgOffset; 2653 case GRID_OFFSET: 2654 return ArgOffset + 4; 2655 } 2656 llvm_unreachable("unexpected implicit parameter type"); 2657 } 2658 2659 #define NODE_NAME_CASE(node) case AMDGPUISD::node: return #node; 2660 2661 const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode) const { 2662 switch ((AMDGPUISD::NodeType)Opcode) { 2663 case AMDGPUISD::FIRST_NUMBER: break; 2664 // AMDIL DAG nodes 2665 NODE_NAME_CASE(CALL); 2666 NODE_NAME_CASE(UMUL); 2667 NODE_NAME_CASE(RET_FLAG); 2668 NODE_NAME_CASE(BRANCH_COND); 2669 2670 // AMDGPU DAG nodes 2671 NODE_NAME_CASE(DWORDADDR) 2672 NODE_NAME_CASE(FRACT) 2673 NODE_NAME_CASE(CLAMP) 2674 NODE_NAME_CASE(COS_HW) 2675 NODE_NAME_CASE(SIN_HW) 2676 NODE_NAME_CASE(FMAX_LEGACY) 2677 NODE_NAME_CASE(FMIN_LEGACY) 2678 NODE_NAME_CASE(FMAX3) 2679 NODE_NAME_CASE(SMAX3) 2680 NODE_NAME_CASE(UMAX3) 2681 NODE_NAME_CASE(FMIN3) 2682 NODE_NAME_CASE(SMIN3) 2683 NODE_NAME_CASE(UMIN3) 2684 NODE_NAME_CASE(URECIP) 2685 NODE_NAME_CASE(DIV_SCALE) 2686 NODE_NAME_CASE(DIV_FMAS) 2687 NODE_NAME_CASE(DIV_FIXUP) 2688 NODE_NAME_CASE(TRIG_PREOP) 2689 NODE_NAME_CASE(RCP) 2690 NODE_NAME_CASE(RSQ) 2691 NODE_NAME_CASE(RSQ_LEGACY) 2692 NODE_NAME_CASE(RSQ_CLAMPED) 2693 NODE_NAME_CASE(LDEXP) 2694 NODE_NAME_CASE(FP_CLASS) 2695 NODE_NAME_CASE(DOT4) 2696 NODE_NAME_CASE(CARRY) 2697 NODE_NAME_CASE(BORROW) 2698 NODE_NAME_CASE(BFE_U32) 2699 NODE_NAME_CASE(BFE_I32) 2700 NODE_NAME_CASE(BFI) 2701 NODE_NAME_CASE(BFM) 2702 NODE_NAME_CASE(MUL_U24) 2703 NODE_NAME_CASE(MUL_I24) 2704 NODE_NAME_CASE(MAD_U24) 2705 NODE_NAME_CASE(MAD_I24) 2706 NODE_NAME_CASE(TEXTURE_FETCH) 2707 NODE_NAME_CASE(EXPORT) 2708 NODE_NAME_CASE(CONST_ADDRESS) 2709 NODE_NAME_CASE(REGISTER_LOAD) 2710 NODE_NAME_CASE(REGISTER_STORE) 2711 NODE_NAME_CASE(LOAD_CONSTANT) 2712 NODE_NAME_CASE(LOAD_INPUT) 2713 NODE_NAME_CASE(SAMPLE) 2714 NODE_NAME_CASE(SAMPLEB) 2715 NODE_NAME_CASE(SAMPLED) 2716 NODE_NAME_CASE(SAMPLEL) 2717 NODE_NAME_CASE(CVT_F32_UBYTE0) 2718 NODE_NAME_CASE(CVT_F32_UBYTE1) 2719 NODE_NAME_CASE(CVT_F32_UBYTE2) 2720 NODE_NAME_CASE(CVT_F32_UBYTE3) 2721 NODE_NAME_CASE(BUILD_VERTICAL_VECTOR) 2722 NODE_NAME_CASE(CONST_DATA_PTR) 2723 case AMDGPUISD::FIRST_MEM_OPCODE_NUMBER: break; 2724 NODE_NAME_CASE(SENDMSG) 2725 NODE_NAME_CASE(INTERP_MOV) 2726 NODE_NAME_CASE(INTERP_P1) 2727 NODE_NAME_CASE(INTERP_P2) 2728 NODE_NAME_CASE(STORE_MSKOR) 2729 NODE_NAME_CASE(TBUFFER_STORE_FORMAT) 2730 case AMDGPUISD::LAST_AMDGPU_ISD_NUMBER: break; 2731 } 2732 return nullptr; 2733 } 2734 2735 SDValue AMDGPUTargetLowering::getRsqrtEstimate(SDValue Operand, 2736 DAGCombinerInfo &DCI, 2737 unsigned &RefinementSteps, 2738 bool &UseOneConstNR) const { 2739 SelectionDAG &DAG = DCI.DAG; 2740 EVT VT = Operand.getValueType(); 2741 2742 if (VT == MVT::f32) { 2743 RefinementSteps = 0; 2744 return DAG.getNode(AMDGPUISD::RSQ, SDLoc(Operand), VT, Operand); 2745 } 2746 2747 // TODO: There is also f64 rsq instruction, but the documentation is less 2748 // clear on its precision. 2749 2750 return SDValue(); 2751 } 2752 2753 SDValue AMDGPUTargetLowering::getRecipEstimate(SDValue Operand, 2754 DAGCombinerInfo &DCI, 2755 unsigned &RefinementSteps) const { 2756 SelectionDAG &DAG = DCI.DAG; 2757 EVT VT = Operand.getValueType(); 2758 2759 if (VT == MVT::f32) { 2760 // Reciprocal, < 1 ulp error. 2761 // 2762 // This reciprocal approximation converges to < 0.5 ulp error with one 2763 // newton rhapson performed with two fused multiple adds (FMAs). 2764 2765 RefinementSteps = 0; 2766 return DAG.getNode(AMDGPUISD::RCP, SDLoc(Operand), VT, Operand); 2767 } 2768 2769 // TODO: There is also f64 rcp instruction, but the documentation is less 2770 // clear on its precision. 2771 2772 return SDValue(); 2773 } 2774 2775 static void computeKnownBitsForMinMax(const SDValue Op0, 2776 const SDValue Op1, 2777 APInt &KnownZero, 2778 APInt &KnownOne, 2779 const SelectionDAG &DAG, 2780 unsigned Depth) { 2781 APInt Op0Zero, Op0One; 2782 APInt Op1Zero, Op1One; 2783 DAG.computeKnownBits(Op0, Op0Zero, Op0One, Depth); 2784 DAG.computeKnownBits(Op1, Op1Zero, Op1One, Depth); 2785 2786 KnownZero = Op0Zero & Op1Zero; 2787 KnownOne = Op0One & Op1One; 2788 } 2789 2790 void AMDGPUTargetLowering::computeKnownBitsForTargetNode( 2791 const SDValue Op, 2792 APInt &KnownZero, 2793 APInt &KnownOne, 2794 const SelectionDAG &DAG, 2795 unsigned Depth) const { 2796 2797 KnownZero = KnownOne = APInt(KnownOne.getBitWidth(), 0); // Don't know anything. 2798 2799 APInt KnownZero2; 2800 APInt KnownOne2; 2801 unsigned Opc = Op.getOpcode(); 2802 2803 switch (Opc) { 2804 default: 2805 break; 2806 case ISD::INTRINSIC_WO_CHAIN: { 2807 // FIXME: The intrinsic should just use the node. 2808 switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) { 2809 case AMDGPUIntrinsic::AMDGPU_imax: 2810 case AMDGPUIntrinsic::AMDGPU_umax: 2811 case AMDGPUIntrinsic::AMDGPU_imin: 2812 case AMDGPUIntrinsic::AMDGPU_umin: 2813 computeKnownBitsForMinMax(Op.getOperand(1), Op.getOperand(2), 2814 KnownZero, KnownOne, DAG, Depth); 2815 break; 2816 default: 2817 break; 2818 } 2819 2820 break; 2821 } 2822 case AMDGPUISD::CARRY: 2823 case AMDGPUISD::BORROW: { 2824 KnownZero = APInt::getHighBitsSet(32, 31); 2825 break; 2826 } 2827 2828 case AMDGPUISD::BFE_I32: 2829 case AMDGPUISD::BFE_U32: { 2830 ConstantSDNode *CWidth = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 2831 if (!CWidth) 2832 return; 2833 2834 unsigned BitWidth = 32; 2835 uint32_t Width = CWidth->getZExtValue() & 0x1f; 2836 2837 if (Opc == AMDGPUISD::BFE_U32) 2838 KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - Width); 2839 2840 break; 2841 } 2842 } 2843 } 2844 2845 unsigned AMDGPUTargetLowering::ComputeNumSignBitsForTargetNode( 2846 SDValue Op, 2847 const SelectionDAG &DAG, 2848 unsigned Depth) const { 2849 switch (Op.getOpcode()) { 2850 case AMDGPUISD::BFE_I32: { 2851 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 2852 if (!Width) 2853 return 1; 2854 2855 unsigned SignBits = 32 - Width->getZExtValue() + 1; 2856 if (!isNullConstant(Op.getOperand(1))) 2857 return SignBits; 2858 2859 // TODO: Could probably figure something out with non-0 offsets. 2860 unsigned Op0SignBits = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1); 2861 return std::max(SignBits, Op0SignBits); 2862 } 2863 2864 case AMDGPUISD::BFE_U32: { 2865 ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2)); 2866 return Width ? 32 - (Width->getZExtValue() & 0x1f) : 1; 2867 } 2868 2869 case AMDGPUISD::CARRY: 2870 case AMDGPUISD::BORROW: 2871 return 31; 2872 2873 default: 2874 return 1; 2875 } 2876 } 2877