Home | History | Annotate | Download | only in ARM
      1 //===-- ARMAsmPrinter.cpp - Print machine code to an ARM .s file ----------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file contains a printer that converts from our internal representation
     11 // of machine-dependent LLVM code to GAS-format ARM assembly language.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "ARMAsmPrinter.h"
     16 #include "ARM.h"
     17 #include "ARMConstantPoolValue.h"
     18 #include "ARMMachineFunctionInfo.h"
     19 #include "ARMTargetMachine.h"
     20 #include "ARMTargetObjectFile.h"
     21 #include "InstPrinter/ARMInstPrinter.h"
     22 #include "MCTargetDesc/ARMAddressingModes.h"
     23 #include "MCTargetDesc/ARMMCExpr.h"
     24 #include "llvm/ADT/SetVector.h"
     25 #include "llvm/ADT/SmallString.h"
     26 #include "llvm/CodeGen/MachineFunctionPass.h"
     27 #include "llvm/CodeGen/MachineJumpTableInfo.h"
     28 #include "llvm/CodeGen/MachineModuleInfoImpls.h"
     29 #include "llvm/IR/Constants.h"
     30 #include "llvm/IR/DataLayout.h"
     31 #include "llvm/IR/DebugInfo.h"
     32 #include "llvm/IR/Mangler.h"
     33 #include "llvm/IR/Module.h"
     34 #include "llvm/IR/Type.h"
     35 #include "llvm/MC/MCAsmInfo.h"
     36 #include "llvm/MC/MCAssembler.h"
     37 #include "llvm/MC/MCContext.h"
     38 #include "llvm/MC/MCELFStreamer.h"
     39 #include "llvm/MC/MCInst.h"
     40 #include "llvm/MC/MCInstBuilder.h"
     41 #include "llvm/MC/MCObjectStreamer.h"
     42 #include "llvm/MC/MCSectionMachO.h"
     43 #include "llvm/MC/MCStreamer.h"
     44 #include "llvm/MC/MCSymbol.h"
     45 #include "llvm/Support/ARMBuildAttributes.h"
     46 #include "llvm/Support/TargetParser.h"
     47 #include "llvm/Support/COFF.h"
     48 #include "llvm/Support/CommandLine.h"
     49 #include "llvm/Support/Debug.h"
     50 #include "llvm/Support/ELF.h"
     51 #include "llvm/Support/ErrorHandling.h"
     52 #include "llvm/Support/TargetRegistry.h"
     53 #include "llvm/Support/raw_ostream.h"
     54 #include "llvm/Target/TargetMachine.h"
     55 #include <cctype>
     56 using namespace llvm;
     57 
     58 #define DEBUG_TYPE "asm-printer"
     59 
     60 ARMAsmPrinter::ARMAsmPrinter(TargetMachine &TM,
     61                              std::unique_ptr<MCStreamer> Streamer)
     62     : AsmPrinter(TM, std::move(Streamer)), AFI(nullptr), MCP(nullptr),
     63       InConstantPool(false), OptimizationGoals(-1) {}
     64 
     65 void ARMAsmPrinter::EmitFunctionBodyEnd() {
     66   // Make sure to terminate any constant pools that were at the end
     67   // of the function.
     68   if (!InConstantPool)
     69     return;
     70   InConstantPool = false;
     71   OutStreamer->EmitDataRegion(MCDR_DataRegionEnd);
     72 }
     73 
     74 void ARMAsmPrinter::EmitFunctionEntryLabel() {
     75   if (AFI->isThumbFunction()) {
     76     OutStreamer->EmitAssemblerFlag(MCAF_Code16);
     77     OutStreamer->EmitThumbFunc(CurrentFnSym);
     78   }
     79 
     80   OutStreamer->EmitLabel(CurrentFnSym);
     81 }
     82 
     83 void ARMAsmPrinter::EmitXXStructor(const DataLayout &DL, const Constant *CV) {
     84   uint64_t Size = getDataLayout().getTypeAllocSize(CV->getType());
     85   assert(Size && "C++ constructor pointer had zero size!");
     86 
     87   const GlobalValue *GV = dyn_cast<GlobalValue>(CV->stripPointerCasts());
     88   assert(GV && "C++ constructor pointer was not a GlobalValue!");
     89 
     90   const MCExpr *E = MCSymbolRefExpr::create(GetARMGVSymbol(GV,
     91                                                            ARMII::MO_NO_FLAG),
     92                                             (Subtarget->isTargetELF()
     93                                              ? MCSymbolRefExpr::VK_ARM_TARGET1
     94                                              : MCSymbolRefExpr::VK_None),
     95                                             OutContext);
     96 
     97   OutStreamer->EmitValue(E, Size);
     98 }
     99 
    100 /// runOnMachineFunction - This uses the EmitInstruction()
    101 /// method to print assembly for each instruction.
    102 ///
    103 bool ARMAsmPrinter::runOnMachineFunction(MachineFunction &MF) {
    104   AFI = MF.getInfo<ARMFunctionInfo>();
    105   MCP = MF.getConstantPool();
    106   Subtarget = &MF.getSubtarget<ARMSubtarget>();
    107 
    108   SetupMachineFunction(MF);
    109   const Function* F = MF.getFunction();
    110   const TargetMachine& TM = MF.getTarget();
    111 
    112   // Calculate this function's optimization goal.
    113   unsigned OptimizationGoal;
    114   if (F->hasFnAttribute(Attribute::OptimizeNone))
    115     // For best debugging illusion, speed and small size sacrificed
    116     OptimizationGoal = 6;
    117   else if (F->optForMinSize())
    118     // Aggressively for small size, speed and debug illusion sacrificed
    119     OptimizationGoal = 4;
    120   else if (F->optForSize())
    121     // For small size, but speed and debugging illusion preserved
    122     OptimizationGoal = 3;
    123   else if (TM.getOptLevel() == CodeGenOpt::Aggressive)
    124     // Aggressively for speed, small size and debug illusion sacrificed
    125     OptimizationGoal = 2;
    126   else if (TM.getOptLevel() > CodeGenOpt::None)
    127     // For speed, but small size and good debug illusion preserved
    128     OptimizationGoal = 1;
    129   else // TM.getOptLevel() == CodeGenOpt::None
    130     // For good debugging, but speed and small size preserved
    131     OptimizationGoal = 5;
    132 
    133   // Combine a new optimization goal with existing ones.
    134   if (OptimizationGoals == -1) // uninitialized goals
    135     OptimizationGoals = OptimizationGoal;
    136   else if (OptimizationGoals != (int)OptimizationGoal) // conflicting goals
    137     OptimizationGoals = 0;
    138 
    139   if (Subtarget->isTargetCOFF()) {
    140     bool Internal = F->hasInternalLinkage();
    141     COFF::SymbolStorageClass Scl = Internal ? COFF::IMAGE_SYM_CLASS_STATIC
    142                                             : COFF::IMAGE_SYM_CLASS_EXTERNAL;
    143     int Type = COFF::IMAGE_SYM_DTYPE_FUNCTION << COFF::SCT_COMPLEX_TYPE_SHIFT;
    144 
    145     OutStreamer->BeginCOFFSymbolDef(CurrentFnSym);
    146     OutStreamer->EmitCOFFSymbolStorageClass(Scl);
    147     OutStreamer->EmitCOFFSymbolType(Type);
    148     OutStreamer->EndCOFFSymbolDef();
    149   }
    150 
    151   // Emit the rest of the function body.
    152   EmitFunctionBody();
    153 
    154   // If we need V4T thumb mode Register Indirect Jump pads, emit them.
    155   // These are created per function, rather than per TU, since it's
    156   // relatively easy to exceed the thumb branch range within a TU.
    157   if (! ThumbIndirectPads.empty()) {
    158     OutStreamer->EmitAssemblerFlag(MCAF_Code16);
    159     EmitAlignment(1);
    160     for (unsigned i = 0, e = ThumbIndirectPads.size(); i < e; i++) {
    161       OutStreamer->EmitLabel(ThumbIndirectPads[i].second);
    162       EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tBX)
    163         .addReg(ThumbIndirectPads[i].first)
    164         // Add predicate operands.
    165         .addImm(ARMCC::AL)
    166         .addReg(0));
    167     }
    168     ThumbIndirectPads.clear();
    169   }
    170 
    171   // We didn't modify anything.
    172   return false;
    173 }
    174 
    175 void ARMAsmPrinter::printOperand(const MachineInstr *MI, int OpNum,
    176                                  raw_ostream &O) {
    177   const MachineOperand &MO = MI->getOperand(OpNum);
    178   unsigned TF = MO.getTargetFlags();
    179 
    180   switch (MO.getType()) {
    181   default: llvm_unreachable("<unknown operand type>");
    182   case MachineOperand::MO_Register: {
    183     unsigned Reg = MO.getReg();
    184     assert(TargetRegisterInfo::isPhysicalRegister(Reg));
    185     assert(!MO.getSubReg() && "Subregs should be eliminated!");
    186     if(ARM::GPRPairRegClass.contains(Reg)) {
    187       const MachineFunction &MF = *MI->getParent()->getParent();
    188       const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
    189       Reg = TRI->getSubReg(Reg, ARM::gsub_0);
    190     }
    191     O << ARMInstPrinter::getRegisterName(Reg);
    192     break;
    193   }
    194   case MachineOperand::MO_Immediate: {
    195     int64_t Imm = MO.getImm();
    196     O << '#';
    197     if (TF == ARMII::MO_LO16)
    198       O << ":lower16:";
    199     else if (TF == ARMII::MO_HI16)
    200       O << ":upper16:";
    201     O << Imm;
    202     break;
    203   }
    204   case MachineOperand::MO_MachineBasicBlock:
    205     MO.getMBB()->getSymbol()->print(O, MAI);
    206     return;
    207   case MachineOperand::MO_GlobalAddress: {
    208     const GlobalValue *GV = MO.getGlobal();
    209     if (TF & ARMII::MO_LO16)
    210       O << ":lower16:";
    211     else if (TF & ARMII::MO_HI16)
    212       O << ":upper16:";
    213     GetARMGVSymbol(GV, TF)->print(O, MAI);
    214 
    215     printOffset(MO.getOffset(), O);
    216     if (TF == ARMII::MO_PLT)
    217       O << "(PLT)";
    218     break;
    219   }
    220   case MachineOperand::MO_ConstantPoolIndex:
    221     GetCPISymbol(MO.getIndex())->print(O, MAI);
    222     break;
    223   }
    224 }
    225 
    226 //===--------------------------------------------------------------------===//
    227 
    228 MCSymbol *ARMAsmPrinter::
    229 GetARMJTIPICJumpTableLabel(unsigned uid) const {
    230   const DataLayout &DL = getDataLayout();
    231   SmallString<60> Name;
    232   raw_svector_ostream(Name) << DL.getPrivateGlobalPrefix() << "JTI"
    233                             << getFunctionNumber() << '_' << uid;
    234   return OutContext.getOrCreateSymbol(Name);
    235 }
    236 
    237 bool ARMAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNum,
    238                                     unsigned AsmVariant, const char *ExtraCode,
    239                                     raw_ostream &O) {
    240   // Does this asm operand have a single letter operand modifier?
    241   if (ExtraCode && ExtraCode[0]) {
    242     if (ExtraCode[1] != 0) return true; // Unknown modifier.
    243 
    244     switch (ExtraCode[0]) {
    245     default:
    246       // See if this is a generic print operand
    247       return AsmPrinter::PrintAsmOperand(MI, OpNum, AsmVariant, ExtraCode, O);
    248     case 'a': // Print as a memory address.
    249       if (MI->getOperand(OpNum).isReg()) {
    250         O << "["
    251           << ARMInstPrinter::getRegisterName(MI->getOperand(OpNum).getReg())
    252           << "]";
    253         return false;
    254       }
    255       // Fallthrough
    256     case 'c': // Don't print "#" before an immediate operand.
    257       if (!MI->getOperand(OpNum).isImm())
    258         return true;
    259       O << MI->getOperand(OpNum).getImm();
    260       return false;
    261     case 'P': // Print a VFP double precision register.
    262     case 'q': // Print a NEON quad precision register.
    263       printOperand(MI, OpNum, O);
    264       return false;
    265     case 'y': // Print a VFP single precision register as indexed double.
    266       if (MI->getOperand(OpNum).isReg()) {
    267         unsigned Reg = MI->getOperand(OpNum).getReg();
    268         const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
    269         // Find the 'd' register that has this 's' register as a sub-register,
    270         // and determine the lane number.
    271         for (MCSuperRegIterator SR(Reg, TRI); SR.isValid(); ++SR) {
    272           if (!ARM::DPRRegClass.contains(*SR))
    273             continue;
    274           bool Lane0 = TRI->getSubReg(*SR, ARM::ssub_0) == Reg;
    275           O << ARMInstPrinter::getRegisterName(*SR) << (Lane0 ? "[0]" : "[1]");
    276           return false;
    277         }
    278       }
    279       return true;
    280     case 'B': // Bitwise inverse of integer or symbol without a preceding #.
    281       if (!MI->getOperand(OpNum).isImm())
    282         return true;
    283       O << ~(MI->getOperand(OpNum).getImm());
    284       return false;
    285     case 'L': // The low 16 bits of an immediate constant.
    286       if (!MI->getOperand(OpNum).isImm())
    287         return true;
    288       O << (MI->getOperand(OpNum).getImm() & 0xffff);
    289       return false;
    290     case 'M': { // A register range suitable for LDM/STM.
    291       if (!MI->getOperand(OpNum).isReg())
    292         return true;
    293       const MachineOperand &MO = MI->getOperand(OpNum);
    294       unsigned RegBegin = MO.getReg();
    295       // This takes advantage of the 2 operand-ness of ldm/stm and that we've
    296       // already got the operands in registers that are operands to the
    297       // inline asm statement.
    298       O << "{";
    299       if (ARM::GPRPairRegClass.contains(RegBegin)) {
    300         const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
    301         unsigned Reg0 = TRI->getSubReg(RegBegin, ARM::gsub_0);
    302         O << ARMInstPrinter::getRegisterName(Reg0) << ", ";
    303         RegBegin = TRI->getSubReg(RegBegin, ARM::gsub_1);
    304       }
    305       O << ARMInstPrinter::getRegisterName(RegBegin);
    306 
    307       // FIXME: The register allocator not only may not have given us the
    308       // registers in sequence, but may not be in ascending registers. This
    309       // will require changes in the register allocator that'll need to be
    310       // propagated down here if the operands change.
    311       unsigned RegOps = OpNum + 1;
    312       while (MI->getOperand(RegOps).isReg()) {
    313         O << ", "
    314           << ARMInstPrinter::getRegisterName(MI->getOperand(RegOps).getReg());
    315         RegOps++;
    316       }
    317 
    318       O << "}";
    319 
    320       return false;
    321     }
    322     case 'R': // The most significant register of a pair.
    323     case 'Q': { // The least significant register of a pair.
    324       if (OpNum == 0)
    325         return true;
    326       const MachineOperand &FlagsOP = MI->getOperand(OpNum - 1);
    327       if (!FlagsOP.isImm())
    328         return true;
    329       unsigned Flags = FlagsOP.getImm();
    330 
    331       // This operand may not be the one that actually provides the register. If
    332       // it's tied to a previous one then we should refer instead to that one
    333       // for registers and their classes.
    334       unsigned TiedIdx;
    335       if (InlineAsm::isUseOperandTiedToDef(Flags, TiedIdx)) {
    336         for (OpNum = InlineAsm::MIOp_FirstOperand; TiedIdx; --TiedIdx) {
    337           unsigned OpFlags = MI->getOperand(OpNum).getImm();
    338           OpNum += InlineAsm::getNumOperandRegisters(OpFlags) + 1;
    339         }
    340         Flags = MI->getOperand(OpNum).getImm();
    341 
    342         // Later code expects OpNum to be pointing at the register rather than
    343         // the flags.
    344         OpNum += 1;
    345       }
    346 
    347       unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
    348       unsigned RC;
    349       InlineAsm::hasRegClassConstraint(Flags, RC);
    350       if (RC == ARM::GPRPairRegClassID) {
    351         if (NumVals != 1)
    352           return true;
    353         const MachineOperand &MO = MI->getOperand(OpNum);
    354         if (!MO.isReg())
    355           return true;
    356         const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
    357         unsigned Reg = TRI->getSubReg(MO.getReg(), ExtraCode[0] == 'Q' ?
    358             ARM::gsub_0 : ARM::gsub_1);
    359         O << ARMInstPrinter::getRegisterName(Reg);
    360         return false;
    361       }
    362       if (NumVals != 2)
    363         return true;
    364       unsigned RegOp = ExtraCode[0] == 'Q' ? OpNum : OpNum + 1;
    365       if (RegOp >= MI->getNumOperands())
    366         return true;
    367       const MachineOperand &MO = MI->getOperand(RegOp);
    368       if (!MO.isReg())
    369         return true;
    370       unsigned Reg = MO.getReg();
    371       O << ARMInstPrinter::getRegisterName(Reg);
    372       return false;
    373     }
    374 
    375     case 'e': // The low doubleword register of a NEON quad register.
    376     case 'f': { // The high doubleword register of a NEON quad register.
    377       if (!MI->getOperand(OpNum).isReg())
    378         return true;
    379       unsigned Reg = MI->getOperand(OpNum).getReg();
    380       if (!ARM::QPRRegClass.contains(Reg))
    381         return true;
    382       const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
    383       unsigned SubReg = TRI->getSubReg(Reg, ExtraCode[0] == 'e' ?
    384                                        ARM::dsub_0 : ARM::dsub_1);
    385       O << ARMInstPrinter::getRegisterName(SubReg);
    386       return false;
    387     }
    388 
    389     // This modifier is not yet supported.
    390     case 'h': // A range of VFP/NEON registers suitable for VLD1/VST1.
    391       return true;
    392     case 'H': { // The highest-numbered register of a pair.
    393       const MachineOperand &MO = MI->getOperand(OpNum);
    394       if (!MO.isReg())
    395         return true;
    396       const MachineFunction &MF = *MI->getParent()->getParent();
    397       const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
    398       unsigned Reg = MO.getReg();
    399       if(!ARM::GPRPairRegClass.contains(Reg))
    400         return false;
    401       Reg = TRI->getSubReg(Reg, ARM::gsub_1);
    402       O << ARMInstPrinter::getRegisterName(Reg);
    403       return false;
    404     }
    405     }
    406   }
    407 
    408   printOperand(MI, OpNum, O);
    409   return false;
    410 }
    411 
    412 bool ARMAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI,
    413                                           unsigned OpNum, unsigned AsmVariant,
    414                                           const char *ExtraCode,
    415                                           raw_ostream &O) {
    416   // Does this asm operand have a single letter operand modifier?
    417   if (ExtraCode && ExtraCode[0]) {
    418     if (ExtraCode[1] != 0) return true; // Unknown modifier.
    419 
    420     switch (ExtraCode[0]) {
    421       case 'A': // A memory operand for a VLD1/VST1 instruction.
    422       default: return true;  // Unknown modifier.
    423       case 'm': // The base register of a memory operand.
    424         if (!MI->getOperand(OpNum).isReg())
    425           return true;
    426         O << ARMInstPrinter::getRegisterName(MI->getOperand(OpNum).getReg());
    427         return false;
    428     }
    429   }
    430 
    431   const MachineOperand &MO = MI->getOperand(OpNum);
    432   assert(MO.isReg() && "unexpected inline asm memory operand");
    433   O << "[" << ARMInstPrinter::getRegisterName(MO.getReg()) << "]";
    434   return false;
    435 }
    436 
    437 static bool isThumb(const MCSubtargetInfo& STI) {
    438   return STI.getFeatureBits()[ARM::ModeThumb];
    439 }
    440 
    441 void ARMAsmPrinter::emitInlineAsmEnd(const MCSubtargetInfo &StartInfo,
    442                                      const MCSubtargetInfo *EndInfo) const {
    443   // If either end mode is unknown (EndInfo == NULL) or different than
    444   // the start mode, then restore the start mode.
    445   const bool WasThumb = isThumb(StartInfo);
    446   if (!EndInfo || WasThumb != isThumb(*EndInfo)) {
    447     OutStreamer->EmitAssemblerFlag(WasThumb ? MCAF_Code16 : MCAF_Code32);
    448   }
    449 }
    450 
    451 void ARMAsmPrinter::EmitStartOfAsmFile(Module &M) {
    452   const Triple &TT = TM.getTargetTriple();
    453   // Use unified assembler syntax.
    454   OutStreamer->EmitAssemblerFlag(MCAF_SyntaxUnified);
    455 
    456   // Emit ARM Build Attributes
    457   if (TT.isOSBinFormatELF())
    458     emitAttributes();
    459 
    460   // Use the triple's architecture and subarchitecture to determine
    461   // if we're thumb for the purposes of the top level code16 assembler
    462   // flag.
    463   bool isThumb = TT.getArch() == Triple::thumb ||
    464                  TT.getArch() == Triple::thumbeb ||
    465                  TT.getSubArch() == Triple::ARMSubArch_v7m ||
    466                  TT.getSubArch() == Triple::ARMSubArch_v6m;
    467   if (!M.getModuleInlineAsm().empty() && isThumb)
    468     OutStreamer->EmitAssemblerFlag(MCAF_Code16);
    469 }
    470 
    471 static void
    472 emitNonLazySymbolPointer(MCStreamer &OutStreamer, MCSymbol *StubLabel,
    473                          MachineModuleInfoImpl::StubValueTy &MCSym) {
    474   // L_foo$stub:
    475   OutStreamer.EmitLabel(StubLabel);
    476   //   .indirect_symbol _foo
    477   OutStreamer.EmitSymbolAttribute(MCSym.getPointer(), MCSA_IndirectSymbol);
    478 
    479   if (MCSym.getInt())
    480     // External to current translation unit.
    481     OutStreamer.EmitIntValue(0, 4/*size*/);
    482   else
    483     // Internal to current translation unit.
    484     //
    485     // When we place the LSDA into the TEXT section, the type info
    486     // pointers need to be indirect and pc-rel. We accomplish this by
    487     // using NLPs; however, sometimes the types are local to the file.
    488     // We need to fill in the value for the NLP in those cases.
    489     OutStreamer.EmitValue(
    490         MCSymbolRefExpr::create(MCSym.getPointer(), OutStreamer.getContext()),
    491         4 /*size*/);
    492 }
    493 
    494 
    495 void ARMAsmPrinter::EmitEndOfAsmFile(Module &M) {
    496   const Triple &TT = TM.getTargetTriple();
    497   if (TT.isOSBinFormatMachO()) {
    498     // All darwin targets use mach-o.
    499     const TargetLoweringObjectFileMachO &TLOFMacho =
    500       static_cast<const TargetLoweringObjectFileMachO &>(getObjFileLowering());
    501     MachineModuleInfoMachO &MMIMacho =
    502       MMI->getObjFileInfo<MachineModuleInfoMachO>();
    503 
    504     // Output non-lazy-pointers for external and common global variables.
    505     MachineModuleInfoMachO::SymbolListTy Stubs = MMIMacho.GetGVStubList();
    506 
    507     if (!Stubs.empty()) {
    508       // Switch with ".non_lazy_symbol_pointer" directive.
    509       OutStreamer->SwitchSection(TLOFMacho.getNonLazySymbolPointerSection());
    510       EmitAlignment(2);
    511 
    512       for (auto &Stub : Stubs)
    513         emitNonLazySymbolPointer(*OutStreamer, Stub.first, Stub.second);
    514 
    515       Stubs.clear();
    516       OutStreamer->AddBlankLine();
    517     }
    518 
    519     Stubs = MMIMacho.GetHiddenGVStubList();
    520     if (!Stubs.empty()) {
    521       OutStreamer->SwitchSection(TLOFMacho.getNonLazySymbolPointerSection());
    522       EmitAlignment(2);
    523 
    524       for (auto &Stub : Stubs)
    525         emitNonLazySymbolPointer(*OutStreamer, Stub.first, Stub.second);
    526 
    527       Stubs.clear();
    528       OutStreamer->AddBlankLine();
    529     }
    530 
    531     // Funny Darwin hack: This flag tells the linker that no global symbols
    532     // contain code that falls through to other global symbols (e.g. the obvious
    533     // implementation of multiple entry points).  If this doesn't occur, the
    534     // linker can safely perform dead code stripping.  Since LLVM never
    535     // generates code that does this, it is always safe to set.
    536     OutStreamer->EmitAssemblerFlag(MCAF_SubsectionsViaSymbols);
    537   }
    538 
    539   // The last attribute to be emitted is ABI_optimization_goals
    540   MCTargetStreamer &TS = *OutStreamer->getTargetStreamer();
    541   ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS);
    542 
    543   if (OptimizationGoals > 0 &&
    544       (Subtarget->isTargetAEABI() || Subtarget->isTargetGNUAEABI()))
    545     ATS.emitAttribute(ARMBuildAttrs::ABI_optimization_goals, OptimizationGoals);
    546   OptimizationGoals = -1;
    547 
    548   ATS.finishAttributeSection();
    549 }
    550 
    551 //===----------------------------------------------------------------------===//
    552 // Helper routines for EmitStartOfAsmFile() and EmitEndOfAsmFile()
    553 // FIXME:
    554 // The following seem like one-off assembler flags, but they actually need
    555 // to appear in the .ARM.attributes section in ELF.
    556 // Instead of subclassing the MCELFStreamer, we do the work here.
    557 
    558 static ARMBuildAttrs::CPUArch getArchForCPU(StringRef CPU,
    559                                             const ARMSubtarget *Subtarget) {
    560   if (CPU == "xscale")
    561     return ARMBuildAttrs::v5TEJ;
    562 
    563   if (Subtarget->hasV8Ops())
    564     return ARMBuildAttrs::v8;
    565   else if (Subtarget->hasV7Ops()) {
    566     if (Subtarget->isMClass() && Subtarget->hasDSP())
    567       return ARMBuildAttrs::v7E_M;
    568     return ARMBuildAttrs::v7;
    569   } else if (Subtarget->hasV6T2Ops())
    570     return ARMBuildAttrs::v6T2;
    571   else if (Subtarget->hasV6MOps())
    572     return ARMBuildAttrs::v6S_M;
    573   else if (Subtarget->hasV6Ops())
    574     return ARMBuildAttrs::v6;
    575   else if (Subtarget->hasV5TEOps())
    576     return ARMBuildAttrs::v5TE;
    577   else if (Subtarget->hasV5TOps())
    578     return ARMBuildAttrs::v5T;
    579   else if (Subtarget->hasV4TOps())
    580     return ARMBuildAttrs::v4T;
    581   else
    582     return ARMBuildAttrs::v4;
    583 }
    584 
    585 void ARMAsmPrinter::emitAttributes() {
    586   MCTargetStreamer &TS = *OutStreamer->getTargetStreamer();
    587   ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS);
    588 
    589   ATS.emitTextAttribute(ARMBuildAttrs::conformance, "2.09");
    590 
    591   ATS.switchVendor("aeabi");
    592 
    593   // Compute ARM ELF Attributes based on the default subtarget that
    594   // we'd have constructed. The existing ARM behavior isn't LTO clean
    595   // anyhow.
    596   // FIXME: For ifunc related functions we could iterate over and look
    597   // for a feature string that doesn't match the default one.
    598   const Triple &TT = TM.getTargetTriple();
    599   StringRef CPU = TM.getTargetCPU();
    600   StringRef FS = TM.getTargetFeatureString();
    601   std::string ArchFS = ARM_MC::ParseARMTriple(TT, CPU);
    602   if (!FS.empty()) {
    603     if (!ArchFS.empty())
    604       ArchFS = (Twine(ArchFS) + "," + FS).str();
    605     else
    606       ArchFS = FS;
    607   }
    608   const ARMBaseTargetMachine &ATM =
    609       static_cast<const ARMBaseTargetMachine &>(TM);
    610   const ARMSubtarget STI(TT, CPU, ArchFS, ATM, ATM.isLittleEndian());
    611 
    612   std::string CPUString = STI.getCPUString();
    613 
    614   if (CPUString.find("generic") != 0) { //CPUString doesn't start with "generic"
    615     // FIXME: remove krait check when GNU tools support krait cpu
    616     if (STI.isKrait()) {
    617       ATS.emitTextAttribute(ARMBuildAttrs::CPU_name, "cortex-a9");
    618       // We consider krait as a "cortex-a9" + hwdiv CPU
    619       // Enable hwdiv through ".arch_extension idiv"
    620       if (STI.hasDivide() || STI.hasDivideInARMMode())
    621         ATS.emitArchExtension(ARM::AEK_HWDIV | ARM::AEK_HWDIVARM);
    622     } else
    623       ATS.emitTextAttribute(ARMBuildAttrs::CPU_name, CPUString);
    624   }
    625 
    626   ATS.emitAttribute(ARMBuildAttrs::CPU_arch, getArchForCPU(CPUString, &STI));
    627 
    628   // Tag_CPU_arch_profile must have the default value of 0 when "Architecture
    629   // profile is not applicable (e.g. pre v7, or cross-profile code)".
    630   if (STI.hasV7Ops()) {
    631     if (STI.isAClass()) {
    632       ATS.emitAttribute(ARMBuildAttrs::CPU_arch_profile,
    633                         ARMBuildAttrs::ApplicationProfile);
    634     } else if (STI.isRClass()) {
    635       ATS.emitAttribute(ARMBuildAttrs::CPU_arch_profile,
    636                         ARMBuildAttrs::RealTimeProfile);
    637     } else if (STI.isMClass()) {
    638       ATS.emitAttribute(ARMBuildAttrs::CPU_arch_profile,
    639                         ARMBuildAttrs::MicroControllerProfile);
    640     }
    641   }
    642 
    643   ATS.emitAttribute(ARMBuildAttrs::ARM_ISA_use,
    644                     STI.hasARMOps() ? ARMBuildAttrs::Allowed
    645                                     : ARMBuildAttrs::Not_Allowed);
    646   if (STI.isThumb1Only()) {
    647     ATS.emitAttribute(ARMBuildAttrs::THUMB_ISA_use, ARMBuildAttrs::Allowed);
    648   } else if (STI.hasThumb2()) {
    649     ATS.emitAttribute(ARMBuildAttrs::THUMB_ISA_use,
    650                       ARMBuildAttrs::AllowThumb32);
    651   }
    652 
    653   if (STI.hasNEON()) {
    654     /* NEON is not exactly a VFP architecture, but GAS emit one of
    655      * neon/neon-fp-armv8/neon-vfpv4/vfpv3/vfpv2 for .fpu parameters */
    656     if (STI.hasFPARMv8()) {
    657       if (STI.hasCrypto())
    658         ATS.emitFPU(ARM::FK_CRYPTO_NEON_FP_ARMV8);
    659       else
    660         ATS.emitFPU(ARM::FK_NEON_FP_ARMV8);
    661     } else if (STI.hasVFP4())
    662       ATS.emitFPU(ARM::FK_NEON_VFPV4);
    663     else
    664       ATS.emitFPU(STI.hasFP16() ? ARM::FK_NEON_FP16 : ARM::FK_NEON);
    665     // Emit Tag_Advanced_SIMD_arch for ARMv8 architecture
    666     if (STI.hasV8Ops())
    667       ATS.emitAttribute(ARMBuildAttrs::Advanced_SIMD_arch,
    668                         STI.hasV8_1aOps() ? ARMBuildAttrs::AllowNeonARMv8_1a:
    669                                             ARMBuildAttrs::AllowNeonARMv8);
    670   } else {
    671     if (STI.hasFPARMv8())
    672       // FPv5 and FP-ARMv8 have the same instructions, so are modeled as one
    673       // FPU, but there are two different names for it depending on the CPU.
    674       ATS.emitFPU(STI.hasD16()
    675                   ? (STI.isFPOnlySP() ? ARM::FK_FPV5_SP_D16 : ARM::FK_FPV5_D16)
    676                   : ARM::FK_FP_ARMV8);
    677     else if (STI.hasVFP4())
    678       ATS.emitFPU(STI.hasD16()
    679                   ? (STI.isFPOnlySP() ? ARM::FK_FPV4_SP_D16 : ARM::FK_VFPV4_D16)
    680                   : ARM::FK_VFPV4);
    681     else if (STI.hasVFP3())
    682       ATS.emitFPU(STI.hasD16()
    683                   // +d16
    684                   ? (STI.isFPOnlySP()
    685                      ? (STI.hasFP16() ? ARM::FK_VFPV3XD_FP16 : ARM::FK_VFPV3XD)
    686                      : (STI.hasFP16() ? ARM::FK_VFPV3_D16_FP16 : ARM::FK_VFPV3_D16))
    687                   // -d16
    688                   : (STI.hasFP16() ? ARM::FK_VFPV3_FP16 : ARM::FK_VFPV3));
    689     else if (STI.hasVFP2())
    690       ATS.emitFPU(ARM::FK_VFPV2);
    691   }
    692 
    693   if (TM.getRelocationModel() == Reloc::PIC_) {
    694     // PIC specific attributes.
    695     ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_RW_data,
    696                       ARMBuildAttrs::AddressRWPCRel);
    697     ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_RO_data,
    698                       ARMBuildAttrs::AddressROPCRel);
    699     ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_GOT_use,
    700                       ARMBuildAttrs::AddressGOT);
    701   } else {
    702     // Allow direct addressing of imported data for all other relocation models.
    703     ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_GOT_use,
    704                       ARMBuildAttrs::AddressDirect);
    705   }
    706 
    707   // Signal various FP modes.
    708   if (!TM.Options.UnsafeFPMath) {
    709     ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal,
    710                       ARMBuildAttrs::IEEEDenormals);
    711     ATS.emitAttribute(ARMBuildAttrs::ABI_FP_exceptions, ARMBuildAttrs::Allowed);
    712 
    713     // If the user has permitted this code to choose the IEEE 754
    714     // rounding at run-time, emit the rounding attribute.
    715     if (TM.Options.HonorSignDependentRoundingFPMathOption)
    716       ATS.emitAttribute(ARMBuildAttrs::ABI_FP_rounding, ARMBuildAttrs::Allowed);
    717   } else {
    718     if (!STI.hasVFP2()) {
    719       // When the target doesn't have an FPU (by design or
    720       // intention), the assumptions made on the software support
    721       // mirror that of the equivalent hardware support *if it
    722       // existed*. For v7 and better we indicate that denormals are
    723       // flushed preserving sign, and for V6 we indicate that
    724       // denormals are flushed to positive zero.
    725       if (STI.hasV7Ops())
    726         ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal,
    727                           ARMBuildAttrs::PreserveFPSign);
    728     } else if (STI.hasVFP3()) {
    729       // In VFPv4, VFPv4U, VFPv3, or VFPv3U, it is preserved. That is,
    730       // the sign bit of the zero matches the sign bit of the input or
    731       // result that is being flushed to zero.
    732       ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal,
    733                         ARMBuildAttrs::PreserveFPSign);
    734     }
    735     // For VFPv2 implementations it is implementation defined as
    736     // to whether denormals are flushed to positive zero or to
    737     // whatever the sign of zero is (ARM v7AR ARM 2.7.5). Historically
    738     // LLVM has chosen to flush this to positive zero (most likely for
    739     // GCC compatibility), so that's the chosen value here (the
    740     // absence of its emission implies zero).
    741   }
    742 
    743   // TM.Options.NoInfsFPMath && TM.Options.NoNaNsFPMath is the
    744   // equivalent of GCC's -ffinite-math-only flag.
    745   if (TM.Options.NoInfsFPMath && TM.Options.NoNaNsFPMath)
    746     ATS.emitAttribute(ARMBuildAttrs::ABI_FP_number_model,
    747                       ARMBuildAttrs::Allowed);
    748   else
    749     ATS.emitAttribute(ARMBuildAttrs::ABI_FP_number_model,
    750                       ARMBuildAttrs::AllowIEE754);
    751 
    752   if (STI.allowsUnalignedMem())
    753     ATS.emitAttribute(ARMBuildAttrs::CPU_unaligned_access,
    754                       ARMBuildAttrs::Allowed);
    755   else
    756     ATS.emitAttribute(ARMBuildAttrs::CPU_unaligned_access,
    757                       ARMBuildAttrs::Not_Allowed);
    758 
    759   // FIXME: add more flags to ARMBuildAttributes.h
    760   // 8-bytes alignment stuff.
    761   ATS.emitAttribute(ARMBuildAttrs::ABI_align_needed, 1);
    762   ATS.emitAttribute(ARMBuildAttrs::ABI_align_preserved, 1);
    763 
    764   // ABI_HardFP_use attribute to indicate single precision FP.
    765   if (STI.isFPOnlySP())
    766     ATS.emitAttribute(ARMBuildAttrs::ABI_HardFP_use,
    767                       ARMBuildAttrs::HardFPSinglePrecision);
    768 
    769   // Hard float.  Use both S and D registers and conform to AAPCS-VFP.
    770   if (STI.isAAPCS_ABI() && TM.Options.FloatABIType == FloatABI::Hard)
    771     ATS.emitAttribute(ARMBuildAttrs::ABI_VFP_args, ARMBuildAttrs::HardFPAAPCS);
    772 
    773   // FIXME: Should we signal R9 usage?
    774 
    775   if (STI.hasFP16())
    776     ATS.emitAttribute(ARMBuildAttrs::FP_HP_extension, ARMBuildAttrs::AllowHPFP);
    777 
    778   // FIXME: To support emitting this build attribute as GCC does, the
    779   // -mfp16-format option and associated plumbing must be
    780   // supported. For now the __fp16 type is exposed by default, so this
    781   // attribute should be emitted with value 1.
    782   ATS.emitAttribute(ARMBuildAttrs::ABI_FP_16bit_format,
    783                     ARMBuildAttrs::FP16FormatIEEE);
    784 
    785   if (STI.hasMPExtension())
    786     ATS.emitAttribute(ARMBuildAttrs::MPextension_use, ARMBuildAttrs::AllowMP);
    787 
    788   // Hardware divide in ARM mode is part of base arch, starting from ARMv8.
    789   // If only Thumb hwdiv is present, it must also be in base arch (ARMv7-R/M).
    790   // It is not possible to produce DisallowDIV: if hwdiv is present in the base
    791   // arch, supplying -hwdiv downgrades the effective arch, via ClearImpliedBits.
    792   // AllowDIVExt is only emitted if hwdiv isn't available in the base arch;
    793   // otherwise, the default value (AllowDIVIfExists) applies.
    794   if (STI.hasDivideInARMMode() && !STI.hasV8Ops())
    795     ATS.emitAttribute(ARMBuildAttrs::DIV_use, ARMBuildAttrs::AllowDIVExt);
    796 
    797   if (MMI) {
    798     if (const Module *SourceModule = MMI->getModule()) {
    799       // ABI_PCS_wchar_t to indicate wchar_t width
    800       // FIXME: There is no way to emit value 0 (wchar_t prohibited).
    801       if (auto WCharWidthValue = mdconst::extract_or_null<ConstantInt>(
    802               SourceModule->getModuleFlag("wchar_size"))) {
    803         int WCharWidth = WCharWidthValue->getZExtValue();
    804         assert((WCharWidth == 2 || WCharWidth == 4) &&
    805                "wchar_t width must be 2 or 4 bytes");
    806         ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_wchar_t, WCharWidth);
    807       }
    808 
    809       // ABI_enum_size to indicate enum width
    810       // FIXME: There is no way to emit value 0 (enums prohibited) or value 3
    811       //        (all enums contain a value needing 32 bits to encode).
    812       if (auto EnumWidthValue = mdconst::extract_or_null<ConstantInt>(
    813               SourceModule->getModuleFlag("min_enum_size"))) {
    814         int EnumWidth = EnumWidthValue->getZExtValue();
    815         assert((EnumWidth == 1 || EnumWidth == 4) &&
    816                "Minimum enum width must be 1 or 4 bytes");
    817         int EnumBuildAttr = EnumWidth == 1 ? 1 : 2;
    818         ATS.emitAttribute(ARMBuildAttrs::ABI_enum_size, EnumBuildAttr);
    819       }
    820     }
    821   }
    822 
    823   // TODO: We currently only support either reserving the register, or treating
    824   // it as another callee-saved register, but not as SB or a TLS pointer; It
    825   // would instead be nicer to push this from the frontend as metadata, as we do
    826   // for the wchar and enum size tags
    827   if (STI.isR9Reserved())
    828     ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_R9_use, ARMBuildAttrs::R9Reserved);
    829   else
    830     ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_R9_use, ARMBuildAttrs::R9IsGPR);
    831 
    832   if (STI.hasTrustZone() && STI.hasVirtualization())
    833     ATS.emitAttribute(ARMBuildAttrs::Virtualization_use,
    834                       ARMBuildAttrs::AllowTZVirtualization);
    835   else if (STI.hasTrustZone())
    836     ATS.emitAttribute(ARMBuildAttrs::Virtualization_use,
    837                       ARMBuildAttrs::AllowTZ);
    838   else if (STI.hasVirtualization())
    839     ATS.emitAttribute(ARMBuildAttrs::Virtualization_use,
    840                       ARMBuildAttrs::AllowVirtualization);
    841 }
    842 
    843 //===----------------------------------------------------------------------===//
    844 
    845 static MCSymbol *getPICLabel(const char *Prefix, unsigned FunctionNumber,
    846                              unsigned LabelId, MCContext &Ctx) {
    847 
    848   MCSymbol *Label = Ctx.getOrCreateSymbol(Twine(Prefix)
    849                        + "PC" + Twine(FunctionNumber) + "_" + Twine(LabelId));
    850   return Label;
    851 }
    852 
    853 static MCSymbolRefExpr::VariantKind
    854 getModifierVariantKind(ARMCP::ARMCPModifier Modifier) {
    855   switch (Modifier) {
    856   case ARMCP::no_modifier: return MCSymbolRefExpr::VK_None;
    857   case ARMCP::TLSGD:       return MCSymbolRefExpr::VK_TLSGD;
    858   case ARMCP::TPOFF:       return MCSymbolRefExpr::VK_TPOFF;
    859   case ARMCP::GOTTPOFF:    return MCSymbolRefExpr::VK_GOTTPOFF;
    860   case ARMCP::GOT_PREL:    return MCSymbolRefExpr::VK_ARM_GOT_PREL;
    861   }
    862   llvm_unreachable("Invalid ARMCPModifier!");
    863 }
    864 
    865 MCSymbol *ARMAsmPrinter::GetARMGVSymbol(const GlobalValue *GV,
    866                                         unsigned char TargetFlags) {
    867   if (Subtarget->isTargetMachO()) {
    868     bool IsIndirect = (TargetFlags & ARMII::MO_NONLAZY) &&
    869       Subtarget->GVIsIndirectSymbol(GV, TM.getRelocationModel());
    870 
    871     if (!IsIndirect)
    872       return getSymbol(GV);
    873 
    874     // FIXME: Remove this when Darwin transition to @GOT like syntax.
    875     MCSymbol *MCSym = getSymbolWithGlobalValueBase(GV, "$non_lazy_ptr");
    876     MachineModuleInfoMachO &MMIMachO =
    877       MMI->getObjFileInfo<MachineModuleInfoMachO>();
    878     MachineModuleInfoImpl::StubValueTy &StubSym =
    879       GV->hasHiddenVisibility() ? MMIMachO.getHiddenGVStubEntry(MCSym)
    880                                 : MMIMachO.getGVStubEntry(MCSym);
    881     if (!StubSym.getPointer())
    882       StubSym = MachineModuleInfoImpl::StubValueTy(getSymbol(GV),
    883                                                    !GV->hasInternalLinkage());
    884     return MCSym;
    885   } else if (Subtarget->isTargetCOFF()) {
    886     assert(Subtarget->isTargetWindows() &&
    887            "Windows is the only supported COFF target");
    888 
    889     bool IsIndirect = (TargetFlags & ARMII::MO_DLLIMPORT);
    890     if (!IsIndirect)
    891       return getSymbol(GV);
    892 
    893     SmallString<128> Name;
    894     Name = "__imp_";
    895     getNameWithPrefix(Name, GV);
    896 
    897     return OutContext.getOrCreateSymbol(Name);
    898   } else if (Subtarget->isTargetELF()) {
    899     return getSymbol(GV);
    900   }
    901   llvm_unreachable("unexpected target");
    902 }
    903 
    904 void ARMAsmPrinter::
    905 EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
    906   const DataLayout &DL = getDataLayout();
    907   int Size = DL.getTypeAllocSize(MCPV->getType());
    908 
    909   ARMConstantPoolValue *ACPV = static_cast<ARMConstantPoolValue*>(MCPV);
    910 
    911   MCSymbol *MCSym;
    912   if (ACPV->isLSDA()) {
    913     MCSym = getCurExceptionSym();
    914   } else if (ACPV->isBlockAddress()) {
    915     const BlockAddress *BA =
    916       cast<ARMConstantPoolConstant>(ACPV)->getBlockAddress();
    917     MCSym = GetBlockAddressSymbol(BA);
    918   } else if (ACPV->isGlobalValue()) {
    919     const GlobalValue *GV = cast<ARMConstantPoolConstant>(ACPV)->getGV();
    920 
    921     // On Darwin, const-pool entries may get the "FOO$non_lazy_ptr" mangling, so
    922     // flag the global as MO_NONLAZY.
    923     unsigned char TF = Subtarget->isTargetMachO() ? ARMII::MO_NONLAZY : 0;
    924     MCSym = GetARMGVSymbol(GV, TF);
    925   } else if (ACPV->isMachineBasicBlock()) {
    926     const MachineBasicBlock *MBB = cast<ARMConstantPoolMBB>(ACPV)->getMBB();
    927     MCSym = MBB->getSymbol();
    928   } else {
    929     assert(ACPV->isExtSymbol() && "unrecognized constant pool value");
    930     const char *Sym = cast<ARMConstantPoolSymbol>(ACPV)->getSymbol();
    931     MCSym = GetExternalSymbolSymbol(Sym);
    932   }
    933 
    934   // Create an MCSymbol for the reference.
    935   const MCExpr *Expr =
    936     MCSymbolRefExpr::create(MCSym, getModifierVariantKind(ACPV->getModifier()),
    937                             OutContext);
    938 
    939   if (ACPV->getPCAdjustment()) {
    940     MCSymbol *PCLabel =
    941         getPICLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(),
    942                     ACPV->getLabelId(), OutContext);
    943     const MCExpr *PCRelExpr = MCSymbolRefExpr::create(PCLabel, OutContext);
    944     PCRelExpr =
    945       MCBinaryExpr::createAdd(PCRelExpr,
    946                               MCConstantExpr::create(ACPV->getPCAdjustment(),
    947                                                      OutContext),
    948                               OutContext);
    949     if (ACPV->mustAddCurrentAddress()) {
    950       // We want "(<expr> - .)", but MC doesn't have a concept of the '.'
    951       // label, so just emit a local label end reference that instead.
    952       MCSymbol *DotSym = OutContext.createTempSymbol();
    953       OutStreamer->EmitLabel(DotSym);
    954       const MCExpr *DotExpr = MCSymbolRefExpr::create(DotSym, OutContext);
    955       PCRelExpr = MCBinaryExpr::createSub(PCRelExpr, DotExpr, OutContext);
    956     }
    957     Expr = MCBinaryExpr::createSub(Expr, PCRelExpr, OutContext);
    958   }
    959   OutStreamer->EmitValue(Expr, Size);
    960 }
    961 
    962 void ARMAsmPrinter::EmitJumpTableAddrs(const MachineInstr *MI) {
    963   const MachineOperand &MO1 = MI->getOperand(1);
    964   unsigned JTI = MO1.getIndex();
    965 
    966   // Make sure the Thumb jump table is 4-byte aligned. This will be a nop for
    967   // ARM mode tables.
    968   EmitAlignment(2);
    969 
    970   // Emit a label for the jump table.
    971   MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(JTI);
    972   OutStreamer->EmitLabel(JTISymbol);
    973 
    974   // Mark the jump table as data-in-code.
    975   OutStreamer->EmitDataRegion(MCDR_DataRegionJT32);
    976 
    977   // Emit each entry of the table.
    978   const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
    979   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
    980   const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
    981 
    982   for (unsigned i = 0, e = JTBBs.size(); i != e; ++i) {
    983     MachineBasicBlock *MBB = JTBBs[i];
    984     // Construct an MCExpr for the entry. We want a value of the form:
    985     // (BasicBlockAddr - TableBeginAddr)
    986     //
    987     // For example, a table with entries jumping to basic blocks BB0 and BB1
    988     // would look like:
    989     // LJTI_0_0:
    990     //    .word (LBB0 - LJTI_0_0)
    991     //    .word (LBB1 - LJTI_0_0)
    992     const MCExpr *Expr = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext);
    993 
    994     if (TM.getRelocationModel() == Reloc::PIC_)
    995       Expr = MCBinaryExpr::createSub(Expr, MCSymbolRefExpr::create(JTISymbol,
    996                                                                    OutContext),
    997                                      OutContext);
    998     // If we're generating a table of Thumb addresses in static relocation
    999     // model, we need to add one to keep interworking correctly.
   1000     else if (AFI->isThumbFunction())
   1001       Expr = MCBinaryExpr::createAdd(Expr, MCConstantExpr::create(1,OutContext),
   1002                                      OutContext);
   1003     OutStreamer->EmitValue(Expr, 4);
   1004   }
   1005   // Mark the end of jump table data-in-code region.
   1006   OutStreamer->EmitDataRegion(MCDR_DataRegionEnd);
   1007 }
   1008 
   1009 void ARMAsmPrinter::EmitJumpTableInsts(const MachineInstr *MI) {
   1010   const MachineOperand &MO1 = MI->getOperand(1);
   1011   unsigned JTI = MO1.getIndex();
   1012 
   1013   MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(JTI);
   1014   OutStreamer->EmitLabel(JTISymbol);
   1015 
   1016   // Emit each entry of the table.
   1017   const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
   1018   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
   1019   const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
   1020 
   1021   for (unsigned i = 0, e = JTBBs.size(); i != e; ++i) {
   1022     MachineBasicBlock *MBB = JTBBs[i];
   1023     const MCExpr *MBBSymbolExpr = MCSymbolRefExpr::create(MBB->getSymbol(),
   1024                                                           OutContext);
   1025     // If this isn't a TBB or TBH, the entries are direct branch instructions.
   1026     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2B)
   1027         .addExpr(MBBSymbolExpr)
   1028         .addImm(ARMCC::AL)
   1029         .addReg(0));
   1030   }
   1031 }
   1032 
   1033 void ARMAsmPrinter::EmitJumpTableTBInst(const MachineInstr *MI,
   1034                                         unsigned OffsetWidth) {
   1035   assert((OffsetWidth == 1 || OffsetWidth == 2) && "invalid tbb/tbh width");
   1036   const MachineOperand &MO1 = MI->getOperand(1);
   1037   unsigned JTI = MO1.getIndex();
   1038 
   1039   MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(JTI);
   1040   OutStreamer->EmitLabel(JTISymbol);
   1041 
   1042   // Emit each entry of the table.
   1043   const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
   1044   const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
   1045   const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
   1046 
   1047   // Mark the jump table as data-in-code.
   1048   OutStreamer->EmitDataRegion(OffsetWidth == 1 ? MCDR_DataRegionJT8
   1049                                                : MCDR_DataRegionJT16);
   1050 
   1051   for (auto MBB : JTBBs) {
   1052     const MCExpr *MBBSymbolExpr = MCSymbolRefExpr::create(MBB->getSymbol(),
   1053                                                           OutContext);
   1054     // Otherwise it's an offset from the dispatch instruction. Construct an
   1055     // MCExpr for the entry. We want a value of the form:
   1056     // (BasicBlockAddr - TBBInstAddr + 4) / 2
   1057     //
   1058     // For example, a TBB table with entries jumping to basic blocks BB0 and BB1
   1059     // would look like:
   1060     // LJTI_0_0:
   1061     //    .byte (LBB0 - (LCPI0_0 + 4)) / 2
   1062     //    .byte (LBB1 - (LCPI0_0 + 4)) / 2
   1063     // where LCPI0_0 is a label defined just before the TBB instruction using
   1064     // this table.
   1065     MCSymbol *TBInstPC = GetCPISymbol(MI->getOperand(0).getImm());
   1066     const MCExpr *Expr = MCBinaryExpr::createAdd(
   1067         MCSymbolRefExpr::create(TBInstPC, OutContext),
   1068         MCConstantExpr::create(4, OutContext), OutContext);
   1069     Expr = MCBinaryExpr::createSub(MBBSymbolExpr, Expr, OutContext);
   1070     Expr = MCBinaryExpr::createDiv(Expr, MCConstantExpr::create(2, OutContext),
   1071                                    OutContext);
   1072     OutStreamer->EmitValue(Expr, OffsetWidth);
   1073   }
   1074   // Mark the end of jump table data-in-code region. 32-bit offsets use
   1075   // actual branch instructions here, so we don't mark those as a data-region
   1076   // at all.
   1077   OutStreamer->EmitDataRegion(MCDR_DataRegionEnd);
   1078 
   1079   // Make sure the next instruction is 2-byte aligned.
   1080   EmitAlignment(1);
   1081 }
   1082 
   1083 void ARMAsmPrinter::EmitUnwindingInstruction(const MachineInstr *MI) {
   1084   assert(MI->getFlag(MachineInstr::FrameSetup) &&
   1085       "Only instruction which are involved into frame setup code are allowed");
   1086 
   1087   MCTargetStreamer &TS = *OutStreamer->getTargetStreamer();
   1088   ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS);
   1089   const MachineFunction &MF = *MI->getParent()->getParent();
   1090   const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo();
   1091   const ARMFunctionInfo &AFI = *MF.getInfo<ARMFunctionInfo>();
   1092 
   1093   unsigned FramePtr = RegInfo->getFrameRegister(MF);
   1094   unsigned Opc = MI->getOpcode();
   1095   unsigned SrcReg, DstReg;
   1096 
   1097   if (Opc == ARM::tPUSH || Opc == ARM::tLDRpci) {
   1098     // Two special cases:
   1099     // 1) tPUSH does not have src/dst regs.
   1100     // 2) for Thumb1 code we sometimes materialize the constant via constpool
   1101     // load. Yes, this is pretty fragile, but for now I don't see better
   1102     // way... :(
   1103     SrcReg = DstReg = ARM::SP;
   1104   } else {
   1105     SrcReg = MI->getOperand(1).getReg();
   1106     DstReg = MI->getOperand(0).getReg();
   1107   }
   1108 
   1109   // Try to figure out the unwinding opcode out of src / dst regs.
   1110   if (MI->mayStore()) {
   1111     // Register saves.
   1112     assert(DstReg == ARM::SP &&
   1113            "Only stack pointer as a destination reg is supported");
   1114 
   1115     SmallVector<unsigned, 4> RegList;
   1116     // Skip src & dst reg, and pred ops.
   1117     unsigned StartOp = 2 + 2;
   1118     // Use all the operands.
   1119     unsigned NumOffset = 0;
   1120 
   1121     switch (Opc) {
   1122     default:
   1123       MI->dump();
   1124       llvm_unreachable("Unsupported opcode for unwinding information");
   1125     case ARM::tPUSH:
   1126       // Special case here: no src & dst reg, but two extra imp ops.
   1127       StartOp = 2; NumOffset = 2;
   1128     case ARM::STMDB_UPD:
   1129     case ARM::t2STMDB_UPD:
   1130     case ARM::VSTMDDB_UPD:
   1131       assert(SrcReg == ARM::SP &&
   1132              "Only stack pointer as a source reg is supported");
   1133       for (unsigned i = StartOp, NumOps = MI->getNumOperands() - NumOffset;
   1134            i != NumOps; ++i) {
   1135         const MachineOperand &MO = MI->getOperand(i);
   1136         // Actually, there should never be any impdef stuff here. Skip it
   1137         // temporary to workaround PR11902.
   1138         if (MO.isImplicit())
   1139           continue;
   1140         RegList.push_back(MO.getReg());
   1141       }
   1142       break;
   1143     case ARM::STR_PRE_IMM:
   1144     case ARM::STR_PRE_REG:
   1145     case ARM::t2STR_PRE:
   1146       assert(MI->getOperand(2).getReg() == ARM::SP &&
   1147              "Only stack pointer as a source reg is supported");
   1148       RegList.push_back(SrcReg);
   1149       break;
   1150     }
   1151     if (MAI->getExceptionHandlingType() == ExceptionHandling::ARM)
   1152       ATS.emitRegSave(RegList, Opc == ARM::VSTMDDB_UPD);
   1153   } else {
   1154     // Changes of stack / frame pointer.
   1155     if (SrcReg == ARM::SP) {
   1156       int64_t Offset = 0;
   1157       switch (Opc) {
   1158       default:
   1159         MI->dump();
   1160         llvm_unreachable("Unsupported opcode for unwinding information");
   1161       case ARM::MOVr:
   1162       case ARM::tMOVr:
   1163         Offset = 0;
   1164         break;
   1165       case ARM::ADDri:
   1166       case ARM::t2ADDri:
   1167         Offset = -MI->getOperand(2).getImm();
   1168         break;
   1169       case ARM::SUBri:
   1170       case ARM::t2SUBri:
   1171         Offset = MI->getOperand(2).getImm();
   1172         break;
   1173       case ARM::tSUBspi:
   1174         Offset = MI->getOperand(2).getImm()*4;
   1175         break;
   1176       case ARM::tADDspi:
   1177       case ARM::tADDrSPi:
   1178         Offset = -MI->getOperand(2).getImm()*4;
   1179         break;
   1180       case ARM::tLDRpci: {
   1181         // Grab the constpool index and check, whether it corresponds to
   1182         // original or cloned constpool entry.
   1183         unsigned CPI = MI->getOperand(1).getIndex();
   1184         const MachineConstantPool *MCP = MF.getConstantPool();
   1185         if (CPI >= MCP->getConstants().size())
   1186           CPI = AFI.getOriginalCPIdx(CPI);
   1187         assert(CPI != -1U && "Invalid constpool index");
   1188 
   1189         // Derive the actual offset.
   1190         const MachineConstantPoolEntry &CPE = MCP->getConstants()[CPI];
   1191         assert(!CPE.isMachineConstantPoolEntry() && "Invalid constpool entry");
   1192         // FIXME: Check for user, it should be "add" instruction!
   1193         Offset = -cast<ConstantInt>(CPE.Val.ConstVal)->getSExtValue();
   1194         break;
   1195       }
   1196       }
   1197 
   1198       if (MAI->getExceptionHandlingType() == ExceptionHandling::ARM) {
   1199         if (DstReg == FramePtr && FramePtr != ARM::SP)
   1200           // Set-up of the frame pointer. Positive values correspond to "add"
   1201           // instruction.
   1202           ATS.emitSetFP(FramePtr, ARM::SP, -Offset);
   1203         else if (DstReg == ARM::SP) {
   1204           // Change of SP by an offset. Positive values correspond to "sub"
   1205           // instruction.
   1206           ATS.emitPad(Offset);
   1207         } else {
   1208           // Move of SP to a register.  Positive values correspond to an "add"
   1209           // instruction.
   1210           ATS.emitMovSP(DstReg, -Offset);
   1211         }
   1212       }
   1213     } else if (DstReg == ARM::SP) {
   1214       MI->dump();
   1215       llvm_unreachable("Unsupported opcode for unwinding information");
   1216     }
   1217     else {
   1218       MI->dump();
   1219       llvm_unreachable("Unsupported opcode for unwinding information");
   1220     }
   1221   }
   1222 }
   1223 
   1224 // Simple pseudo-instructions have their lowering (with expansion to real
   1225 // instructions) auto-generated.
   1226 #include "ARMGenMCPseudoLowering.inc"
   1227 
   1228 void ARMAsmPrinter::EmitInstruction(const MachineInstr *MI) {
   1229   const DataLayout &DL = getDataLayout();
   1230 
   1231   // If we just ended a constant pool, mark it as such.
   1232   if (InConstantPool && MI->getOpcode() != ARM::CONSTPOOL_ENTRY) {
   1233     OutStreamer->EmitDataRegion(MCDR_DataRegionEnd);
   1234     InConstantPool = false;
   1235   }
   1236 
   1237   // Emit unwinding stuff for frame-related instructions
   1238   if (Subtarget->isTargetEHABICompatible() &&
   1239        MI->getFlag(MachineInstr::FrameSetup))
   1240     EmitUnwindingInstruction(MI);
   1241 
   1242   // Do any auto-generated pseudo lowerings.
   1243   if (emitPseudoExpansionLowering(*OutStreamer, MI))
   1244     return;
   1245 
   1246   assert(!convertAddSubFlagsOpcode(MI->getOpcode()) &&
   1247          "Pseudo flag setting opcode should be expanded early");
   1248 
   1249   // Check for manual lowerings.
   1250   unsigned Opc = MI->getOpcode();
   1251   switch (Opc) {
   1252   case ARM::t2MOVi32imm: llvm_unreachable("Should be lowered by thumb2it pass");
   1253   case ARM::DBG_VALUE: llvm_unreachable("Should be handled by generic printing");
   1254   case ARM::LEApcrel:
   1255   case ARM::tLEApcrel:
   1256   case ARM::t2LEApcrel: {
   1257     // FIXME: Need to also handle globals and externals
   1258     MCSymbol *CPISymbol = GetCPISymbol(MI->getOperand(1).getIndex());
   1259     EmitToStreamer(*OutStreamer, MCInstBuilder(MI->getOpcode() ==
   1260                                                ARM::t2LEApcrel ? ARM::t2ADR
   1261                   : (MI->getOpcode() == ARM::tLEApcrel ? ARM::tADR
   1262                      : ARM::ADR))
   1263       .addReg(MI->getOperand(0).getReg())
   1264       .addExpr(MCSymbolRefExpr::create(CPISymbol, OutContext))
   1265       // Add predicate operands.
   1266       .addImm(MI->getOperand(2).getImm())
   1267       .addReg(MI->getOperand(3).getReg()));
   1268     return;
   1269   }
   1270   case ARM::LEApcrelJT:
   1271   case ARM::tLEApcrelJT:
   1272   case ARM::t2LEApcrelJT: {
   1273     MCSymbol *JTIPICSymbol =
   1274       GetARMJTIPICJumpTableLabel(MI->getOperand(1).getIndex());
   1275     EmitToStreamer(*OutStreamer, MCInstBuilder(MI->getOpcode() ==
   1276                                                ARM::t2LEApcrelJT ? ARM::t2ADR
   1277                   : (MI->getOpcode() == ARM::tLEApcrelJT ? ARM::tADR
   1278                      : ARM::ADR))
   1279       .addReg(MI->getOperand(0).getReg())
   1280       .addExpr(MCSymbolRefExpr::create(JTIPICSymbol, OutContext))
   1281       // Add predicate operands.
   1282       .addImm(MI->getOperand(2).getImm())
   1283       .addReg(MI->getOperand(3).getReg()));
   1284     return;
   1285   }
   1286   // Darwin call instructions are just normal call instructions with different
   1287   // clobber semantics (they clobber R9).
   1288   case ARM::BX_CALL: {
   1289     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr)
   1290       .addReg(ARM::LR)
   1291       .addReg(ARM::PC)
   1292       // Add predicate operands.
   1293       .addImm(ARMCC::AL)
   1294       .addReg(0)
   1295       // Add 's' bit operand (always reg0 for this)
   1296       .addReg(0));
   1297 
   1298     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::BX)
   1299       .addReg(MI->getOperand(0).getReg()));
   1300     return;
   1301   }
   1302   case ARM::tBX_CALL: {
   1303     if (Subtarget->hasV5TOps())
   1304       llvm_unreachable("Expected BLX to be selected for v5t+");
   1305 
   1306     // On ARM v4t, when doing a call from thumb mode, we need to ensure
   1307     // that the saved lr has its LSB set correctly (the arch doesn't
   1308     // have blx).
   1309     // So here we generate a bl to a small jump pad that does bx rN.
   1310     // The jump pads are emitted after the function body.
   1311 
   1312     unsigned TReg = MI->getOperand(0).getReg();
   1313     MCSymbol *TRegSym = nullptr;
   1314     for (unsigned i = 0, e = ThumbIndirectPads.size(); i < e; i++) {
   1315       if (ThumbIndirectPads[i].first == TReg) {
   1316         TRegSym = ThumbIndirectPads[i].second;
   1317         break;
   1318       }
   1319     }
   1320 
   1321     if (!TRegSym) {
   1322       TRegSym = OutContext.createTempSymbol();
   1323       ThumbIndirectPads.push_back(std::make_pair(TReg, TRegSym));
   1324     }
   1325 
   1326     // Create a link-saving branch to the Reg Indirect Jump Pad.
   1327     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tBL)
   1328         // Predicate comes first here.
   1329         .addImm(ARMCC::AL).addReg(0)
   1330         .addExpr(MCSymbolRefExpr::create(TRegSym, OutContext)));
   1331     return;
   1332   }
   1333   case ARM::BMOVPCRX_CALL: {
   1334     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr)
   1335       .addReg(ARM::LR)
   1336       .addReg(ARM::PC)
   1337       // Add predicate operands.
   1338       .addImm(ARMCC::AL)
   1339       .addReg(0)
   1340       // Add 's' bit operand (always reg0 for this)
   1341       .addReg(0));
   1342 
   1343     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr)
   1344       .addReg(ARM::PC)
   1345       .addReg(MI->getOperand(0).getReg())
   1346       // Add predicate operands.
   1347       .addImm(ARMCC::AL)
   1348       .addReg(0)
   1349       // Add 's' bit operand (always reg0 for this)
   1350       .addReg(0));
   1351     return;
   1352   }
   1353   case ARM::BMOVPCB_CALL: {
   1354     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr)
   1355       .addReg(ARM::LR)
   1356       .addReg(ARM::PC)
   1357       // Add predicate operands.
   1358       .addImm(ARMCC::AL)
   1359       .addReg(0)
   1360       // Add 's' bit operand (always reg0 for this)
   1361       .addReg(0));
   1362 
   1363     const MachineOperand &Op = MI->getOperand(0);
   1364     const GlobalValue *GV = Op.getGlobal();
   1365     const unsigned TF = Op.getTargetFlags();
   1366     MCSymbol *GVSym = GetARMGVSymbol(GV, TF);
   1367     const MCExpr *GVSymExpr = MCSymbolRefExpr::create(GVSym, OutContext);
   1368     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::Bcc)
   1369       .addExpr(GVSymExpr)
   1370       // Add predicate operands.
   1371       .addImm(ARMCC::AL)
   1372       .addReg(0));
   1373     return;
   1374   }
   1375   case ARM::MOVi16_ga_pcrel:
   1376   case ARM::t2MOVi16_ga_pcrel: {
   1377     MCInst TmpInst;
   1378     TmpInst.setOpcode(Opc == ARM::MOVi16_ga_pcrel? ARM::MOVi16 : ARM::t2MOVi16);
   1379     TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg()));
   1380 
   1381     unsigned TF = MI->getOperand(1).getTargetFlags();
   1382     const GlobalValue *GV = MI->getOperand(1).getGlobal();
   1383     MCSymbol *GVSym = GetARMGVSymbol(GV, TF);
   1384     const MCExpr *GVSymExpr = MCSymbolRefExpr::create(GVSym, OutContext);
   1385 
   1386     MCSymbol *LabelSym =
   1387         getPICLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(),
   1388                     MI->getOperand(2).getImm(), OutContext);
   1389     const MCExpr *LabelSymExpr= MCSymbolRefExpr::create(LabelSym, OutContext);
   1390     unsigned PCAdj = (Opc == ARM::MOVi16_ga_pcrel) ? 8 : 4;
   1391     const MCExpr *PCRelExpr =
   1392       ARMMCExpr::createLower16(MCBinaryExpr::createSub(GVSymExpr,
   1393                                       MCBinaryExpr::createAdd(LabelSymExpr,
   1394                                       MCConstantExpr::create(PCAdj, OutContext),
   1395                                       OutContext), OutContext), OutContext);
   1396       TmpInst.addOperand(MCOperand::createExpr(PCRelExpr));
   1397 
   1398     // Add predicate operands.
   1399     TmpInst.addOperand(MCOperand::createImm(ARMCC::AL));
   1400     TmpInst.addOperand(MCOperand::createReg(0));
   1401     // Add 's' bit operand (always reg0 for this)
   1402     TmpInst.addOperand(MCOperand::createReg(0));
   1403     EmitToStreamer(*OutStreamer, TmpInst);
   1404     return;
   1405   }
   1406   case ARM::MOVTi16_ga_pcrel:
   1407   case ARM::t2MOVTi16_ga_pcrel: {
   1408     MCInst TmpInst;
   1409     TmpInst.setOpcode(Opc == ARM::MOVTi16_ga_pcrel
   1410                       ? ARM::MOVTi16 : ARM::t2MOVTi16);
   1411     TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg()));
   1412     TmpInst.addOperand(MCOperand::createReg(MI->getOperand(1).getReg()));
   1413 
   1414     unsigned TF = MI->getOperand(2).getTargetFlags();
   1415     const GlobalValue *GV = MI->getOperand(2).getGlobal();
   1416     MCSymbol *GVSym = GetARMGVSymbol(GV, TF);
   1417     const MCExpr *GVSymExpr = MCSymbolRefExpr::create(GVSym, OutContext);
   1418 
   1419     MCSymbol *LabelSym =
   1420         getPICLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(),
   1421                     MI->getOperand(3).getImm(), OutContext);
   1422     const MCExpr *LabelSymExpr= MCSymbolRefExpr::create(LabelSym, OutContext);
   1423     unsigned PCAdj = (Opc == ARM::MOVTi16_ga_pcrel) ? 8 : 4;
   1424     const MCExpr *PCRelExpr =
   1425         ARMMCExpr::createUpper16(MCBinaryExpr::createSub(GVSymExpr,
   1426                                    MCBinaryExpr::createAdd(LabelSymExpr,
   1427                                       MCConstantExpr::create(PCAdj, OutContext),
   1428                                           OutContext), OutContext), OutContext);
   1429       TmpInst.addOperand(MCOperand::createExpr(PCRelExpr));
   1430     // Add predicate operands.
   1431     TmpInst.addOperand(MCOperand::createImm(ARMCC::AL));
   1432     TmpInst.addOperand(MCOperand::createReg(0));
   1433     // Add 's' bit operand (always reg0 for this)
   1434     TmpInst.addOperand(MCOperand::createReg(0));
   1435     EmitToStreamer(*OutStreamer, TmpInst);
   1436     return;
   1437   }
   1438   case ARM::tPICADD: {
   1439     // This is a pseudo op for a label + instruction sequence, which looks like:
   1440     // LPC0:
   1441     //     add r0, pc
   1442     // This adds the address of LPC0 to r0.
   1443 
   1444     // Emit the label.
   1445     OutStreamer->EmitLabel(getPICLabel(DL.getPrivateGlobalPrefix(),
   1446                                        getFunctionNumber(),
   1447                                        MI->getOperand(2).getImm(), OutContext));
   1448 
   1449     // Form and emit the add.
   1450     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDhirr)
   1451       .addReg(MI->getOperand(0).getReg())
   1452       .addReg(MI->getOperand(0).getReg())
   1453       .addReg(ARM::PC)
   1454       // Add predicate operands.
   1455       .addImm(ARMCC::AL)
   1456       .addReg(0));
   1457     return;
   1458   }
   1459   case ARM::PICADD: {
   1460     // This is a pseudo op for a label + instruction sequence, which looks like:
   1461     // LPC0:
   1462     //     add r0, pc, r0
   1463     // This adds the address of LPC0 to r0.
   1464 
   1465     // Emit the label.
   1466     OutStreamer->EmitLabel(getPICLabel(DL.getPrivateGlobalPrefix(),
   1467                                        getFunctionNumber(),
   1468                                        MI->getOperand(2).getImm(), OutContext));
   1469 
   1470     // Form and emit the add.
   1471     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDrr)
   1472       .addReg(MI->getOperand(0).getReg())
   1473       .addReg(ARM::PC)
   1474       .addReg(MI->getOperand(1).getReg())
   1475       // Add predicate operands.
   1476       .addImm(MI->getOperand(3).getImm())
   1477       .addReg(MI->getOperand(4).getReg())
   1478       // Add 's' bit operand (always reg0 for this)
   1479       .addReg(0));
   1480     return;
   1481   }
   1482   case ARM::PICSTR:
   1483   case ARM::PICSTRB:
   1484   case ARM::PICSTRH:
   1485   case ARM::PICLDR:
   1486   case ARM::PICLDRB:
   1487   case ARM::PICLDRH:
   1488   case ARM::PICLDRSB:
   1489   case ARM::PICLDRSH: {
   1490     // This is a pseudo op for a label + instruction sequence, which looks like:
   1491     // LPC0:
   1492     //     OP r0, [pc, r0]
   1493     // The LCP0 label is referenced by a constant pool entry in order to get
   1494     // a PC-relative address at the ldr instruction.
   1495 
   1496     // Emit the label.
   1497     OutStreamer->EmitLabel(getPICLabel(DL.getPrivateGlobalPrefix(),
   1498                                        getFunctionNumber(),
   1499                                        MI->getOperand(2).getImm(), OutContext));
   1500 
   1501     // Form and emit the load
   1502     unsigned Opcode;
   1503     switch (MI->getOpcode()) {
   1504     default:
   1505       llvm_unreachable("Unexpected opcode!");
   1506     case ARM::PICSTR:   Opcode = ARM::STRrs; break;
   1507     case ARM::PICSTRB:  Opcode = ARM::STRBrs; break;
   1508     case ARM::PICSTRH:  Opcode = ARM::STRH; break;
   1509     case ARM::PICLDR:   Opcode = ARM::LDRrs; break;
   1510     case ARM::PICLDRB:  Opcode = ARM::LDRBrs; break;
   1511     case ARM::PICLDRH:  Opcode = ARM::LDRH; break;
   1512     case ARM::PICLDRSB: Opcode = ARM::LDRSB; break;
   1513     case ARM::PICLDRSH: Opcode = ARM::LDRSH; break;
   1514     }
   1515     EmitToStreamer(*OutStreamer, MCInstBuilder(Opcode)
   1516       .addReg(MI->getOperand(0).getReg())
   1517       .addReg(ARM::PC)
   1518       .addReg(MI->getOperand(1).getReg())
   1519       .addImm(0)
   1520       // Add predicate operands.
   1521       .addImm(MI->getOperand(3).getImm())
   1522       .addReg(MI->getOperand(4).getReg()));
   1523 
   1524     return;
   1525   }
   1526   case ARM::CONSTPOOL_ENTRY: {
   1527     /// CONSTPOOL_ENTRY - This instruction represents a floating constant pool
   1528     /// in the function.  The first operand is the ID# for this instruction, the
   1529     /// second is the index into the MachineConstantPool that this is, the third
   1530     /// is the size in bytes of this constant pool entry.
   1531     /// The required alignment is specified on the basic block holding this MI.
   1532     unsigned LabelId = (unsigned)MI->getOperand(0).getImm();
   1533     unsigned CPIdx   = (unsigned)MI->getOperand(1).getIndex();
   1534 
   1535     // If this is the first entry of the pool, mark it.
   1536     if (!InConstantPool) {
   1537       OutStreamer->EmitDataRegion(MCDR_DataRegion);
   1538       InConstantPool = true;
   1539     }
   1540 
   1541     OutStreamer->EmitLabel(GetCPISymbol(LabelId));
   1542 
   1543     const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPIdx];
   1544     if (MCPE.isMachineConstantPoolEntry())
   1545       EmitMachineConstantPoolValue(MCPE.Val.MachineCPVal);
   1546     else
   1547       EmitGlobalConstant(DL, MCPE.Val.ConstVal);
   1548     return;
   1549   }
   1550   case ARM::JUMPTABLE_ADDRS:
   1551     EmitJumpTableAddrs(MI);
   1552     return;
   1553   case ARM::JUMPTABLE_INSTS:
   1554     EmitJumpTableInsts(MI);
   1555     return;
   1556   case ARM::JUMPTABLE_TBB:
   1557   case ARM::JUMPTABLE_TBH:
   1558     EmitJumpTableTBInst(MI, MI->getOpcode() == ARM::JUMPTABLE_TBB ? 1 : 2);
   1559     return;
   1560   case ARM::t2BR_JT: {
   1561     // Lower and emit the instruction itself, then the jump table following it.
   1562     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVr)
   1563       .addReg(ARM::PC)
   1564       .addReg(MI->getOperand(0).getReg())
   1565       // Add predicate operands.
   1566       .addImm(ARMCC::AL)
   1567       .addReg(0));
   1568     return;
   1569   }
   1570   case ARM::t2TBB_JT:
   1571   case ARM::t2TBH_JT: {
   1572     unsigned Opc = MI->getOpcode() == ARM::t2TBB_JT ? ARM::t2TBB : ARM::t2TBH;
   1573     // Lower and emit the PC label, then the instruction itself.
   1574     OutStreamer->EmitLabel(GetCPISymbol(MI->getOperand(3).getImm()));
   1575     EmitToStreamer(*OutStreamer, MCInstBuilder(Opc)
   1576                                      .addReg(MI->getOperand(0).getReg())
   1577                                      .addReg(MI->getOperand(1).getReg())
   1578                                      // Add predicate operands.
   1579                                      .addImm(ARMCC::AL)
   1580                                      .addReg(0));
   1581     return;
   1582   }
   1583   case ARM::tBR_JTr:
   1584   case ARM::BR_JTr: {
   1585     // Lower and emit the instruction itself, then the jump table following it.
   1586     // mov pc, target
   1587     MCInst TmpInst;
   1588     unsigned Opc = MI->getOpcode() == ARM::BR_JTr ?
   1589       ARM::MOVr : ARM::tMOVr;
   1590     TmpInst.setOpcode(Opc);
   1591     TmpInst.addOperand(MCOperand::createReg(ARM::PC));
   1592     TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg()));
   1593     // Add predicate operands.
   1594     TmpInst.addOperand(MCOperand::createImm(ARMCC::AL));
   1595     TmpInst.addOperand(MCOperand::createReg(0));
   1596     // Add 's' bit operand (always reg0 for this)
   1597     if (Opc == ARM::MOVr)
   1598       TmpInst.addOperand(MCOperand::createReg(0));
   1599     EmitToStreamer(*OutStreamer, TmpInst);
   1600     return;
   1601   }
   1602   case ARM::BR_JTm: {
   1603     // Lower and emit the instruction itself, then the jump table following it.
   1604     // ldr pc, target
   1605     MCInst TmpInst;
   1606     if (MI->getOperand(1).getReg() == 0) {
   1607       // literal offset
   1608       TmpInst.setOpcode(ARM::LDRi12);
   1609       TmpInst.addOperand(MCOperand::createReg(ARM::PC));
   1610       TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg()));
   1611       TmpInst.addOperand(MCOperand::createImm(MI->getOperand(2).getImm()));
   1612     } else {
   1613       TmpInst.setOpcode(ARM::LDRrs);
   1614       TmpInst.addOperand(MCOperand::createReg(ARM::PC));
   1615       TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg()));
   1616       TmpInst.addOperand(MCOperand::createReg(MI->getOperand(1).getReg()));
   1617       TmpInst.addOperand(MCOperand::createImm(0));
   1618     }
   1619     // Add predicate operands.
   1620     TmpInst.addOperand(MCOperand::createImm(ARMCC::AL));
   1621     TmpInst.addOperand(MCOperand::createReg(0));
   1622     EmitToStreamer(*OutStreamer, TmpInst);
   1623     return;
   1624   }
   1625   case ARM::BR_JTadd: {
   1626     // Lower and emit the instruction itself, then the jump table following it.
   1627     // add pc, target, idx
   1628     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDrr)
   1629       .addReg(ARM::PC)
   1630       .addReg(MI->getOperand(0).getReg())
   1631       .addReg(MI->getOperand(1).getReg())
   1632       // Add predicate operands.
   1633       .addImm(ARMCC::AL)
   1634       .addReg(0)
   1635       // Add 's' bit operand (always reg0 for this)
   1636       .addReg(0));
   1637     return;
   1638   }
   1639   case ARM::SPACE:
   1640     OutStreamer->EmitZeros(MI->getOperand(1).getImm());
   1641     return;
   1642   case ARM::TRAP: {
   1643     // Non-Darwin binutils don't yet support the "trap" mnemonic.
   1644     // FIXME: Remove this special case when they do.
   1645     if (!Subtarget->isTargetMachO()) {
   1646       //.long 0xe7ffdefe @ trap
   1647       uint32_t Val = 0xe7ffdefeUL;
   1648       OutStreamer->AddComment("trap");
   1649       OutStreamer->EmitIntValue(Val, 4);
   1650       return;
   1651     }
   1652     break;
   1653   }
   1654   case ARM::TRAPNaCl: {
   1655     //.long 0xe7fedef0 @ trap
   1656     uint32_t Val = 0xe7fedef0UL;
   1657     OutStreamer->AddComment("trap");
   1658     OutStreamer->EmitIntValue(Val, 4);
   1659     return;
   1660   }
   1661   case ARM::tTRAP: {
   1662     // Non-Darwin binutils don't yet support the "trap" mnemonic.
   1663     // FIXME: Remove this special case when they do.
   1664     if (!Subtarget->isTargetMachO()) {
   1665       //.short 57086 @ trap
   1666       uint16_t Val = 0xdefe;
   1667       OutStreamer->AddComment("trap");
   1668       OutStreamer->EmitIntValue(Val, 2);
   1669       return;
   1670     }
   1671     break;
   1672   }
   1673   case ARM::t2Int_eh_sjlj_setjmp:
   1674   case ARM::t2Int_eh_sjlj_setjmp_nofp:
   1675   case ARM::tInt_eh_sjlj_setjmp: {
   1676     // Two incoming args: GPR:$src, GPR:$val
   1677     // mov $val, pc
   1678     // adds $val, #7
   1679     // str $val, [$src, #4]
   1680     // movs r0, #0
   1681     // b LSJLJEH
   1682     // movs r0, #1
   1683     // LSJLJEH:
   1684     unsigned SrcReg = MI->getOperand(0).getReg();
   1685     unsigned ValReg = MI->getOperand(1).getReg();
   1686     MCSymbol *Label = OutContext.createTempSymbol("SJLJEH", false, true);
   1687     OutStreamer->AddComment("eh_setjmp begin");
   1688     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVr)
   1689       .addReg(ValReg)
   1690       .addReg(ARM::PC)
   1691       // Predicate.
   1692       .addImm(ARMCC::AL)
   1693       .addReg(0));
   1694 
   1695     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDi3)
   1696       .addReg(ValReg)
   1697       // 's' bit operand
   1698       .addReg(ARM::CPSR)
   1699       .addReg(ValReg)
   1700       .addImm(7)
   1701       // Predicate.
   1702       .addImm(ARMCC::AL)
   1703       .addReg(0));
   1704 
   1705     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tSTRi)
   1706       .addReg(ValReg)
   1707       .addReg(SrcReg)
   1708       // The offset immediate is #4. The operand value is scaled by 4 for the
   1709       // tSTR instruction.
   1710       .addImm(1)
   1711       // Predicate.
   1712       .addImm(ARMCC::AL)
   1713       .addReg(0));
   1714 
   1715     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVi8)
   1716       .addReg(ARM::R0)
   1717       .addReg(ARM::CPSR)
   1718       .addImm(0)
   1719       // Predicate.
   1720       .addImm(ARMCC::AL)
   1721       .addReg(0));
   1722 
   1723     const MCExpr *SymbolExpr = MCSymbolRefExpr::create(Label, OutContext);
   1724     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tB)
   1725       .addExpr(SymbolExpr)
   1726       .addImm(ARMCC::AL)
   1727       .addReg(0));
   1728 
   1729     OutStreamer->AddComment("eh_setjmp end");
   1730     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVi8)
   1731       .addReg(ARM::R0)
   1732       .addReg(ARM::CPSR)
   1733       .addImm(1)
   1734       // Predicate.
   1735       .addImm(ARMCC::AL)
   1736       .addReg(0));
   1737 
   1738     OutStreamer->EmitLabel(Label);
   1739     return;
   1740   }
   1741 
   1742   case ARM::Int_eh_sjlj_setjmp_nofp:
   1743   case ARM::Int_eh_sjlj_setjmp: {
   1744     // Two incoming args: GPR:$src, GPR:$val
   1745     // add $val, pc, #8
   1746     // str $val, [$src, #+4]
   1747     // mov r0, #0
   1748     // add pc, pc, #0
   1749     // mov r0, #1
   1750     unsigned SrcReg = MI->getOperand(0).getReg();
   1751     unsigned ValReg = MI->getOperand(1).getReg();
   1752 
   1753     OutStreamer->AddComment("eh_setjmp begin");
   1754     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDri)
   1755       .addReg(ValReg)
   1756       .addReg(ARM::PC)
   1757       .addImm(8)
   1758       // Predicate.
   1759       .addImm(ARMCC::AL)
   1760       .addReg(0)
   1761       // 's' bit operand (always reg0 for this).
   1762       .addReg(0));
   1763 
   1764     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::STRi12)
   1765       .addReg(ValReg)
   1766       .addReg(SrcReg)
   1767       .addImm(4)
   1768       // Predicate.
   1769       .addImm(ARMCC::AL)
   1770       .addReg(0));
   1771 
   1772     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVi)
   1773       .addReg(ARM::R0)
   1774       .addImm(0)
   1775       // Predicate.
   1776       .addImm(ARMCC::AL)
   1777       .addReg(0)
   1778       // 's' bit operand (always reg0 for this).
   1779       .addReg(0));
   1780 
   1781     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDri)
   1782       .addReg(ARM::PC)
   1783       .addReg(ARM::PC)
   1784       .addImm(0)
   1785       // Predicate.
   1786       .addImm(ARMCC::AL)
   1787       .addReg(0)
   1788       // 's' bit operand (always reg0 for this).
   1789       .addReg(0));
   1790 
   1791     OutStreamer->AddComment("eh_setjmp end");
   1792     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVi)
   1793       .addReg(ARM::R0)
   1794       .addImm(1)
   1795       // Predicate.
   1796       .addImm(ARMCC::AL)
   1797       .addReg(0)
   1798       // 's' bit operand (always reg0 for this).
   1799       .addReg(0));
   1800     return;
   1801   }
   1802   case ARM::Int_eh_sjlj_longjmp: {
   1803     // ldr sp, [$src, #8]
   1804     // ldr $scratch, [$src, #4]
   1805     // ldr r7, [$src]
   1806     // bx $scratch
   1807     unsigned SrcReg = MI->getOperand(0).getReg();
   1808     unsigned ScratchReg = MI->getOperand(1).getReg();
   1809     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12)
   1810       .addReg(ARM::SP)
   1811       .addReg(SrcReg)
   1812       .addImm(8)
   1813       // Predicate.
   1814       .addImm(ARMCC::AL)
   1815       .addReg(0));
   1816 
   1817     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12)
   1818       .addReg(ScratchReg)
   1819       .addReg(SrcReg)
   1820       .addImm(4)
   1821       // Predicate.
   1822       .addImm(ARMCC::AL)
   1823       .addReg(0));
   1824 
   1825     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12)
   1826       .addReg(ARM::R7)
   1827       .addReg(SrcReg)
   1828       .addImm(0)
   1829       // Predicate.
   1830       .addImm(ARMCC::AL)
   1831       .addReg(0));
   1832 
   1833     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::BX)
   1834       .addReg(ScratchReg)
   1835       // Predicate.
   1836       .addImm(ARMCC::AL)
   1837       .addReg(0));
   1838     return;
   1839   }
   1840   case ARM::tInt_eh_sjlj_longjmp: {
   1841     // ldr $scratch, [$src, #8]
   1842     // mov sp, $scratch
   1843     // ldr $scratch, [$src, #4]
   1844     // ldr r7, [$src]
   1845     // bx $scratch
   1846     unsigned SrcReg = MI->getOperand(0).getReg();
   1847     unsigned ScratchReg = MI->getOperand(1).getReg();
   1848     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi)
   1849       .addReg(ScratchReg)
   1850       .addReg(SrcReg)
   1851       // The offset immediate is #8. The operand value is scaled by 4 for the
   1852       // tLDR instruction.
   1853       .addImm(2)
   1854       // Predicate.
   1855       .addImm(ARMCC::AL)
   1856       .addReg(0));
   1857 
   1858     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVr)
   1859       .addReg(ARM::SP)
   1860       .addReg(ScratchReg)
   1861       // Predicate.
   1862       .addImm(ARMCC::AL)
   1863       .addReg(0));
   1864 
   1865     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi)
   1866       .addReg(ScratchReg)
   1867       .addReg(SrcReg)
   1868       .addImm(1)
   1869       // Predicate.
   1870       .addImm(ARMCC::AL)
   1871       .addReg(0));
   1872 
   1873     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi)
   1874       .addReg(ARM::R7)
   1875       .addReg(SrcReg)
   1876       .addImm(0)
   1877       // Predicate.
   1878       .addImm(ARMCC::AL)
   1879       .addReg(0));
   1880 
   1881     EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tBX)
   1882       .addReg(ScratchReg)
   1883       // Predicate.
   1884       .addImm(ARMCC::AL)
   1885       .addReg(0));
   1886     return;
   1887   }
   1888   }
   1889 
   1890   MCInst TmpInst;
   1891   LowerARMMachineInstrToMCInst(MI, TmpInst, *this);
   1892 
   1893   EmitToStreamer(*OutStreamer, TmpInst);
   1894 }
   1895 
   1896 //===----------------------------------------------------------------------===//
   1897 // Target Registry Stuff
   1898 //===----------------------------------------------------------------------===//
   1899 
   1900 // Force static initialization.
   1901 extern "C" void LLVMInitializeARMAsmPrinter() {
   1902   RegisterAsmPrinter<ARMAsmPrinter> X(TheARMLETarget);
   1903   RegisterAsmPrinter<ARMAsmPrinter> Y(TheARMBETarget);
   1904   RegisterAsmPrinter<ARMAsmPrinter> A(TheThumbLETarget);
   1905   RegisterAsmPrinter<ARMAsmPrinter> B(TheThumbBETarget);
   1906 }
   1907