1 //===-- ARMAsmPrinter.cpp - Print machine code to an ARM .s file ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains a printer that converts from our internal representation 11 // of machine-dependent LLVM code to GAS-format ARM assembly language. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "ARMAsmPrinter.h" 16 #include "ARM.h" 17 #include "ARMConstantPoolValue.h" 18 #include "ARMMachineFunctionInfo.h" 19 #include "ARMTargetMachine.h" 20 #include "ARMTargetObjectFile.h" 21 #include "InstPrinter/ARMInstPrinter.h" 22 #include "MCTargetDesc/ARMAddressingModes.h" 23 #include "MCTargetDesc/ARMMCExpr.h" 24 #include "llvm/ADT/SetVector.h" 25 #include "llvm/ADT/SmallString.h" 26 #include "llvm/CodeGen/MachineFunctionPass.h" 27 #include "llvm/CodeGen/MachineJumpTableInfo.h" 28 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 29 #include "llvm/IR/Constants.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/DebugInfo.h" 32 #include "llvm/IR/Mangler.h" 33 #include "llvm/IR/Module.h" 34 #include "llvm/IR/Type.h" 35 #include "llvm/MC/MCAsmInfo.h" 36 #include "llvm/MC/MCAssembler.h" 37 #include "llvm/MC/MCContext.h" 38 #include "llvm/MC/MCELFStreamer.h" 39 #include "llvm/MC/MCInst.h" 40 #include "llvm/MC/MCInstBuilder.h" 41 #include "llvm/MC/MCObjectStreamer.h" 42 #include "llvm/MC/MCSectionMachO.h" 43 #include "llvm/MC/MCStreamer.h" 44 #include "llvm/MC/MCSymbol.h" 45 #include "llvm/Support/ARMBuildAttributes.h" 46 #include "llvm/Support/TargetParser.h" 47 #include "llvm/Support/COFF.h" 48 #include "llvm/Support/CommandLine.h" 49 #include "llvm/Support/Debug.h" 50 #include "llvm/Support/ELF.h" 51 #include "llvm/Support/ErrorHandling.h" 52 #include "llvm/Support/TargetRegistry.h" 53 #include "llvm/Support/raw_ostream.h" 54 #include "llvm/Target/TargetMachine.h" 55 #include <cctype> 56 using namespace llvm; 57 58 #define DEBUG_TYPE "asm-printer" 59 60 ARMAsmPrinter::ARMAsmPrinter(TargetMachine &TM, 61 std::unique_ptr<MCStreamer> Streamer) 62 : AsmPrinter(TM, std::move(Streamer)), AFI(nullptr), MCP(nullptr), 63 InConstantPool(false), OptimizationGoals(-1) {} 64 65 void ARMAsmPrinter::EmitFunctionBodyEnd() { 66 // Make sure to terminate any constant pools that were at the end 67 // of the function. 68 if (!InConstantPool) 69 return; 70 InConstantPool = false; 71 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd); 72 } 73 74 void ARMAsmPrinter::EmitFunctionEntryLabel() { 75 if (AFI->isThumbFunction()) { 76 OutStreamer->EmitAssemblerFlag(MCAF_Code16); 77 OutStreamer->EmitThumbFunc(CurrentFnSym); 78 } 79 80 OutStreamer->EmitLabel(CurrentFnSym); 81 } 82 83 void ARMAsmPrinter::EmitXXStructor(const DataLayout &DL, const Constant *CV) { 84 uint64_t Size = getDataLayout().getTypeAllocSize(CV->getType()); 85 assert(Size && "C++ constructor pointer had zero size!"); 86 87 const GlobalValue *GV = dyn_cast<GlobalValue>(CV->stripPointerCasts()); 88 assert(GV && "C++ constructor pointer was not a GlobalValue!"); 89 90 const MCExpr *E = MCSymbolRefExpr::create(GetARMGVSymbol(GV, 91 ARMII::MO_NO_FLAG), 92 (Subtarget->isTargetELF() 93 ? MCSymbolRefExpr::VK_ARM_TARGET1 94 : MCSymbolRefExpr::VK_None), 95 OutContext); 96 97 OutStreamer->EmitValue(E, Size); 98 } 99 100 /// runOnMachineFunction - This uses the EmitInstruction() 101 /// method to print assembly for each instruction. 102 /// 103 bool ARMAsmPrinter::runOnMachineFunction(MachineFunction &MF) { 104 AFI = MF.getInfo<ARMFunctionInfo>(); 105 MCP = MF.getConstantPool(); 106 Subtarget = &MF.getSubtarget<ARMSubtarget>(); 107 108 SetupMachineFunction(MF); 109 const Function* F = MF.getFunction(); 110 const TargetMachine& TM = MF.getTarget(); 111 112 // Calculate this function's optimization goal. 113 unsigned OptimizationGoal; 114 if (F->hasFnAttribute(Attribute::OptimizeNone)) 115 // For best debugging illusion, speed and small size sacrificed 116 OptimizationGoal = 6; 117 else if (F->optForMinSize()) 118 // Aggressively for small size, speed and debug illusion sacrificed 119 OptimizationGoal = 4; 120 else if (F->optForSize()) 121 // For small size, but speed and debugging illusion preserved 122 OptimizationGoal = 3; 123 else if (TM.getOptLevel() == CodeGenOpt::Aggressive) 124 // Aggressively for speed, small size and debug illusion sacrificed 125 OptimizationGoal = 2; 126 else if (TM.getOptLevel() > CodeGenOpt::None) 127 // For speed, but small size and good debug illusion preserved 128 OptimizationGoal = 1; 129 else // TM.getOptLevel() == CodeGenOpt::None 130 // For good debugging, but speed and small size preserved 131 OptimizationGoal = 5; 132 133 // Combine a new optimization goal with existing ones. 134 if (OptimizationGoals == -1) // uninitialized goals 135 OptimizationGoals = OptimizationGoal; 136 else if (OptimizationGoals != (int)OptimizationGoal) // conflicting goals 137 OptimizationGoals = 0; 138 139 if (Subtarget->isTargetCOFF()) { 140 bool Internal = F->hasInternalLinkage(); 141 COFF::SymbolStorageClass Scl = Internal ? COFF::IMAGE_SYM_CLASS_STATIC 142 : COFF::IMAGE_SYM_CLASS_EXTERNAL; 143 int Type = COFF::IMAGE_SYM_DTYPE_FUNCTION << COFF::SCT_COMPLEX_TYPE_SHIFT; 144 145 OutStreamer->BeginCOFFSymbolDef(CurrentFnSym); 146 OutStreamer->EmitCOFFSymbolStorageClass(Scl); 147 OutStreamer->EmitCOFFSymbolType(Type); 148 OutStreamer->EndCOFFSymbolDef(); 149 } 150 151 // Emit the rest of the function body. 152 EmitFunctionBody(); 153 154 // If we need V4T thumb mode Register Indirect Jump pads, emit them. 155 // These are created per function, rather than per TU, since it's 156 // relatively easy to exceed the thumb branch range within a TU. 157 if (! ThumbIndirectPads.empty()) { 158 OutStreamer->EmitAssemblerFlag(MCAF_Code16); 159 EmitAlignment(1); 160 for (unsigned i = 0, e = ThumbIndirectPads.size(); i < e; i++) { 161 OutStreamer->EmitLabel(ThumbIndirectPads[i].second); 162 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tBX) 163 .addReg(ThumbIndirectPads[i].first) 164 // Add predicate operands. 165 .addImm(ARMCC::AL) 166 .addReg(0)); 167 } 168 ThumbIndirectPads.clear(); 169 } 170 171 // We didn't modify anything. 172 return false; 173 } 174 175 void ARMAsmPrinter::printOperand(const MachineInstr *MI, int OpNum, 176 raw_ostream &O) { 177 const MachineOperand &MO = MI->getOperand(OpNum); 178 unsigned TF = MO.getTargetFlags(); 179 180 switch (MO.getType()) { 181 default: llvm_unreachable("<unknown operand type>"); 182 case MachineOperand::MO_Register: { 183 unsigned Reg = MO.getReg(); 184 assert(TargetRegisterInfo::isPhysicalRegister(Reg)); 185 assert(!MO.getSubReg() && "Subregs should be eliminated!"); 186 if(ARM::GPRPairRegClass.contains(Reg)) { 187 const MachineFunction &MF = *MI->getParent()->getParent(); 188 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 189 Reg = TRI->getSubReg(Reg, ARM::gsub_0); 190 } 191 O << ARMInstPrinter::getRegisterName(Reg); 192 break; 193 } 194 case MachineOperand::MO_Immediate: { 195 int64_t Imm = MO.getImm(); 196 O << '#'; 197 if (TF == ARMII::MO_LO16) 198 O << ":lower16:"; 199 else if (TF == ARMII::MO_HI16) 200 O << ":upper16:"; 201 O << Imm; 202 break; 203 } 204 case MachineOperand::MO_MachineBasicBlock: 205 MO.getMBB()->getSymbol()->print(O, MAI); 206 return; 207 case MachineOperand::MO_GlobalAddress: { 208 const GlobalValue *GV = MO.getGlobal(); 209 if (TF & ARMII::MO_LO16) 210 O << ":lower16:"; 211 else if (TF & ARMII::MO_HI16) 212 O << ":upper16:"; 213 GetARMGVSymbol(GV, TF)->print(O, MAI); 214 215 printOffset(MO.getOffset(), O); 216 if (TF == ARMII::MO_PLT) 217 O << "(PLT)"; 218 break; 219 } 220 case MachineOperand::MO_ConstantPoolIndex: 221 GetCPISymbol(MO.getIndex())->print(O, MAI); 222 break; 223 } 224 } 225 226 //===--------------------------------------------------------------------===// 227 228 MCSymbol *ARMAsmPrinter:: 229 GetARMJTIPICJumpTableLabel(unsigned uid) const { 230 const DataLayout &DL = getDataLayout(); 231 SmallString<60> Name; 232 raw_svector_ostream(Name) << DL.getPrivateGlobalPrefix() << "JTI" 233 << getFunctionNumber() << '_' << uid; 234 return OutContext.getOrCreateSymbol(Name); 235 } 236 237 bool ARMAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNum, 238 unsigned AsmVariant, const char *ExtraCode, 239 raw_ostream &O) { 240 // Does this asm operand have a single letter operand modifier? 241 if (ExtraCode && ExtraCode[0]) { 242 if (ExtraCode[1] != 0) return true; // Unknown modifier. 243 244 switch (ExtraCode[0]) { 245 default: 246 // See if this is a generic print operand 247 return AsmPrinter::PrintAsmOperand(MI, OpNum, AsmVariant, ExtraCode, O); 248 case 'a': // Print as a memory address. 249 if (MI->getOperand(OpNum).isReg()) { 250 O << "[" 251 << ARMInstPrinter::getRegisterName(MI->getOperand(OpNum).getReg()) 252 << "]"; 253 return false; 254 } 255 // Fallthrough 256 case 'c': // Don't print "#" before an immediate operand. 257 if (!MI->getOperand(OpNum).isImm()) 258 return true; 259 O << MI->getOperand(OpNum).getImm(); 260 return false; 261 case 'P': // Print a VFP double precision register. 262 case 'q': // Print a NEON quad precision register. 263 printOperand(MI, OpNum, O); 264 return false; 265 case 'y': // Print a VFP single precision register as indexed double. 266 if (MI->getOperand(OpNum).isReg()) { 267 unsigned Reg = MI->getOperand(OpNum).getReg(); 268 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 269 // Find the 'd' register that has this 's' register as a sub-register, 270 // and determine the lane number. 271 for (MCSuperRegIterator SR(Reg, TRI); SR.isValid(); ++SR) { 272 if (!ARM::DPRRegClass.contains(*SR)) 273 continue; 274 bool Lane0 = TRI->getSubReg(*SR, ARM::ssub_0) == Reg; 275 O << ARMInstPrinter::getRegisterName(*SR) << (Lane0 ? "[0]" : "[1]"); 276 return false; 277 } 278 } 279 return true; 280 case 'B': // Bitwise inverse of integer or symbol without a preceding #. 281 if (!MI->getOperand(OpNum).isImm()) 282 return true; 283 O << ~(MI->getOperand(OpNum).getImm()); 284 return false; 285 case 'L': // The low 16 bits of an immediate constant. 286 if (!MI->getOperand(OpNum).isImm()) 287 return true; 288 O << (MI->getOperand(OpNum).getImm() & 0xffff); 289 return false; 290 case 'M': { // A register range suitable for LDM/STM. 291 if (!MI->getOperand(OpNum).isReg()) 292 return true; 293 const MachineOperand &MO = MI->getOperand(OpNum); 294 unsigned RegBegin = MO.getReg(); 295 // This takes advantage of the 2 operand-ness of ldm/stm and that we've 296 // already got the operands in registers that are operands to the 297 // inline asm statement. 298 O << "{"; 299 if (ARM::GPRPairRegClass.contains(RegBegin)) { 300 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 301 unsigned Reg0 = TRI->getSubReg(RegBegin, ARM::gsub_0); 302 O << ARMInstPrinter::getRegisterName(Reg0) << ", "; 303 RegBegin = TRI->getSubReg(RegBegin, ARM::gsub_1); 304 } 305 O << ARMInstPrinter::getRegisterName(RegBegin); 306 307 // FIXME: The register allocator not only may not have given us the 308 // registers in sequence, but may not be in ascending registers. This 309 // will require changes in the register allocator that'll need to be 310 // propagated down here if the operands change. 311 unsigned RegOps = OpNum + 1; 312 while (MI->getOperand(RegOps).isReg()) { 313 O << ", " 314 << ARMInstPrinter::getRegisterName(MI->getOperand(RegOps).getReg()); 315 RegOps++; 316 } 317 318 O << "}"; 319 320 return false; 321 } 322 case 'R': // The most significant register of a pair. 323 case 'Q': { // The least significant register of a pair. 324 if (OpNum == 0) 325 return true; 326 const MachineOperand &FlagsOP = MI->getOperand(OpNum - 1); 327 if (!FlagsOP.isImm()) 328 return true; 329 unsigned Flags = FlagsOP.getImm(); 330 331 // This operand may not be the one that actually provides the register. If 332 // it's tied to a previous one then we should refer instead to that one 333 // for registers and their classes. 334 unsigned TiedIdx; 335 if (InlineAsm::isUseOperandTiedToDef(Flags, TiedIdx)) { 336 for (OpNum = InlineAsm::MIOp_FirstOperand; TiedIdx; --TiedIdx) { 337 unsigned OpFlags = MI->getOperand(OpNum).getImm(); 338 OpNum += InlineAsm::getNumOperandRegisters(OpFlags) + 1; 339 } 340 Flags = MI->getOperand(OpNum).getImm(); 341 342 // Later code expects OpNum to be pointing at the register rather than 343 // the flags. 344 OpNum += 1; 345 } 346 347 unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags); 348 unsigned RC; 349 InlineAsm::hasRegClassConstraint(Flags, RC); 350 if (RC == ARM::GPRPairRegClassID) { 351 if (NumVals != 1) 352 return true; 353 const MachineOperand &MO = MI->getOperand(OpNum); 354 if (!MO.isReg()) 355 return true; 356 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 357 unsigned Reg = TRI->getSubReg(MO.getReg(), ExtraCode[0] == 'Q' ? 358 ARM::gsub_0 : ARM::gsub_1); 359 O << ARMInstPrinter::getRegisterName(Reg); 360 return false; 361 } 362 if (NumVals != 2) 363 return true; 364 unsigned RegOp = ExtraCode[0] == 'Q' ? OpNum : OpNum + 1; 365 if (RegOp >= MI->getNumOperands()) 366 return true; 367 const MachineOperand &MO = MI->getOperand(RegOp); 368 if (!MO.isReg()) 369 return true; 370 unsigned Reg = MO.getReg(); 371 O << ARMInstPrinter::getRegisterName(Reg); 372 return false; 373 } 374 375 case 'e': // The low doubleword register of a NEON quad register. 376 case 'f': { // The high doubleword register of a NEON quad register. 377 if (!MI->getOperand(OpNum).isReg()) 378 return true; 379 unsigned Reg = MI->getOperand(OpNum).getReg(); 380 if (!ARM::QPRRegClass.contains(Reg)) 381 return true; 382 const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo(); 383 unsigned SubReg = TRI->getSubReg(Reg, ExtraCode[0] == 'e' ? 384 ARM::dsub_0 : ARM::dsub_1); 385 O << ARMInstPrinter::getRegisterName(SubReg); 386 return false; 387 } 388 389 // This modifier is not yet supported. 390 case 'h': // A range of VFP/NEON registers suitable for VLD1/VST1. 391 return true; 392 case 'H': { // The highest-numbered register of a pair. 393 const MachineOperand &MO = MI->getOperand(OpNum); 394 if (!MO.isReg()) 395 return true; 396 const MachineFunction &MF = *MI->getParent()->getParent(); 397 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 398 unsigned Reg = MO.getReg(); 399 if(!ARM::GPRPairRegClass.contains(Reg)) 400 return false; 401 Reg = TRI->getSubReg(Reg, ARM::gsub_1); 402 O << ARMInstPrinter::getRegisterName(Reg); 403 return false; 404 } 405 } 406 } 407 408 printOperand(MI, OpNum, O); 409 return false; 410 } 411 412 bool ARMAsmPrinter::PrintAsmMemoryOperand(const MachineInstr *MI, 413 unsigned OpNum, unsigned AsmVariant, 414 const char *ExtraCode, 415 raw_ostream &O) { 416 // Does this asm operand have a single letter operand modifier? 417 if (ExtraCode && ExtraCode[0]) { 418 if (ExtraCode[1] != 0) return true; // Unknown modifier. 419 420 switch (ExtraCode[0]) { 421 case 'A': // A memory operand for a VLD1/VST1 instruction. 422 default: return true; // Unknown modifier. 423 case 'm': // The base register of a memory operand. 424 if (!MI->getOperand(OpNum).isReg()) 425 return true; 426 O << ARMInstPrinter::getRegisterName(MI->getOperand(OpNum).getReg()); 427 return false; 428 } 429 } 430 431 const MachineOperand &MO = MI->getOperand(OpNum); 432 assert(MO.isReg() && "unexpected inline asm memory operand"); 433 O << "[" << ARMInstPrinter::getRegisterName(MO.getReg()) << "]"; 434 return false; 435 } 436 437 static bool isThumb(const MCSubtargetInfo& STI) { 438 return STI.getFeatureBits()[ARM::ModeThumb]; 439 } 440 441 void ARMAsmPrinter::emitInlineAsmEnd(const MCSubtargetInfo &StartInfo, 442 const MCSubtargetInfo *EndInfo) const { 443 // If either end mode is unknown (EndInfo == NULL) or different than 444 // the start mode, then restore the start mode. 445 const bool WasThumb = isThumb(StartInfo); 446 if (!EndInfo || WasThumb != isThumb(*EndInfo)) { 447 OutStreamer->EmitAssemblerFlag(WasThumb ? MCAF_Code16 : MCAF_Code32); 448 } 449 } 450 451 void ARMAsmPrinter::EmitStartOfAsmFile(Module &M) { 452 const Triple &TT = TM.getTargetTriple(); 453 // Use unified assembler syntax. 454 OutStreamer->EmitAssemblerFlag(MCAF_SyntaxUnified); 455 456 // Emit ARM Build Attributes 457 if (TT.isOSBinFormatELF()) 458 emitAttributes(); 459 460 // Use the triple's architecture and subarchitecture to determine 461 // if we're thumb for the purposes of the top level code16 assembler 462 // flag. 463 bool isThumb = TT.getArch() == Triple::thumb || 464 TT.getArch() == Triple::thumbeb || 465 TT.getSubArch() == Triple::ARMSubArch_v7m || 466 TT.getSubArch() == Triple::ARMSubArch_v6m; 467 if (!M.getModuleInlineAsm().empty() && isThumb) 468 OutStreamer->EmitAssemblerFlag(MCAF_Code16); 469 } 470 471 static void 472 emitNonLazySymbolPointer(MCStreamer &OutStreamer, MCSymbol *StubLabel, 473 MachineModuleInfoImpl::StubValueTy &MCSym) { 474 // L_foo$stub: 475 OutStreamer.EmitLabel(StubLabel); 476 // .indirect_symbol _foo 477 OutStreamer.EmitSymbolAttribute(MCSym.getPointer(), MCSA_IndirectSymbol); 478 479 if (MCSym.getInt()) 480 // External to current translation unit. 481 OutStreamer.EmitIntValue(0, 4/*size*/); 482 else 483 // Internal to current translation unit. 484 // 485 // When we place the LSDA into the TEXT section, the type info 486 // pointers need to be indirect and pc-rel. We accomplish this by 487 // using NLPs; however, sometimes the types are local to the file. 488 // We need to fill in the value for the NLP in those cases. 489 OutStreamer.EmitValue( 490 MCSymbolRefExpr::create(MCSym.getPointer(), OutStreamer.getContext()), 491 4 /*size*/); 492 } 493 494 495 void ARMAsmPrinter::EmitEndOfAsmFile(Module &M) { 496 const Triple &TT = TM.getTargetTriple(); 497 if (TT.isOSBinFormatMachO()) { 498 // All darwin targets use mach-o. 499 const TargetLoweringObjectFileMachO &TLOFMacho = 500 static_cast<const TargetLoweringObjectFileMachO &>(getObjFileLowering()); 501 MachineModuleInfoMachO &MMIMacho = 502 MMI->getObjFileInfo<MachineModuleInfoMachO>(); 503 504 // Output non-lazy-pointers for external and common global variables. 505 MachineModuleInfoMachO::SymbolListTy Stubs = MMIMacho.GetGVStubList(); 506 507 if (!Stubs.empty()) { 508 // Switch with ".non_lazy_symbol_pointer" directive. 509 OutStreamer->SwitchSection(TLOFMacho.getNonLazySymbolPointerSection()); 510 EmitAlignment(2); 511 512 for (auto &Stub : Stubs) 513 emitNonLazySymbolPointer(*OutStreamer, Stub.first, Stub.second); 514 515 Stubs.clear(); 516 OutStreamer->AddBlankLine(); 517 } 518 519 Stubs = MMIMacho.GetHiddenGVStubList(); 520 if (!Stubs.empty()) { 521 OutStreamer->SwitchSection(TLOFMacho.getNonLazySymbolPointerSection()); 522 EmitAlignment(2); 523 524 for (auto &Stub : Stubs) 525 emitNonLazySymbolPointer(*OutStreamer, Stub.first, Stub.second); 526 527 Stubs.clear(); 528 OutStreamer->AddBlankLine(); 529 } 530 531 // Funny Darwin hack: This flag tells the linker that no global symbols 532 // contain code that falls through to other global symbols (e.g. the obvious 533 // implementation of multiple entry points). If this doesn't occur, the 534 // linker can safely perform dead code stripping. Since LLVM never 535 // generates code that does this, it is always safe to set. 536 OutStreamer->EmitAssemblerFlag(MCAF_SubsectionsViaSymbols); 537 } 538 539 // The last attribute to be emitted is ABI_optimization_goals 540 MCTargetStreamer &TS = *OutStreamer->getTargetStreamer(); 541 ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS); 542 543 if (OptimizationGoals > 0 && 544 (Subtarget->isTargetAEABI() || Subtarget->isTargetGNUAEABI())) 545 ATS.emitAttribute(ARMBuildAttrs::ABI_optimization_goals, OptimizationGoals); 546 OptimizationGoals = -1; 547 548 ATS.finishAttributeSection(); 549 } 550 551 //===----------------------------------------------------------------------===// 552 // Helper routines for EmitStartOfAsmFile() and EmitEndOfAsmFile() 553 // FIXME: 554 // The following seem like one-off assembler flags, but they actually need 555 // to appear in the .ARM.attributes section in ELF. 556 // Instead of subclassing the MCELFStreamer, we do the work here. 557 558 static ARMBuildAttrs::CPUArch getArchForCPU(StringRef CPU, 559 const ARMSubtarget *Subtarget) { 560 if (CPU == "xscale") 561 return ARMBuildAttrs::v5TEJ; 562 563 if (Subtarget->hasV8Ops()) 564 return ARMBuildAttrs::v8; 565 else if (Subtarget->hasV7Ops()) { 566 if (Subtarget->isMClass() && Subtarget->hasDSP()) 567 return ARMBuildAttrs::v7E_M; 568 return ARMBuildAttrs::v7; 569 } else if (Subtarget->hasV6T2Ops()) 570 return ARMBuildAttrs::v6T2; 571 else if (Subtarget->hasV6MOps()) 572 return ARMBuildAttrs::v6S_M; 573 else if (Subtarget->hasV6Ops()) 574 return ARMBuildAttrs::v6; 575 else if (Subtarget->hasV5TEOps()) 576 return ARMBuildAttrs::v5TE; 577 else if (Subtarget->hasV5TOps()) 578 return ARMBuildAttrs::v5T; 579 else if (Subtarget->hasV4TOps()) 580 return ARMBuildAttrs::v4T; 581 else 582 return ARMBuildAttrs::v4; 583 } 584 585 void ARMAsmPrinter::emitAttributes() { 586 MCTargetStreamer &TS = *OutStreamer->getTargetStreamer(); 587 ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS); 588 589 ATS.emitTextAttribute(ARMBuildAttrs::conformance, "2.09"); 590 591 ATS.switchVendor("aeabi"); 592 593 // Compute ARM ELF Attributes based on the default subtarget that 594 // we'd have constructed. The existing ARM behavior isn't LTO clean 595 // anyhow. 596 // FIXME: For ifunc related functions we could iterate over and look 597 // for a feature string that doesn't match the default one. 598 const Triple &TT = TM.getTargetTriple(); 599 StringRef CPU = TM.getTargetCPU(); 600 StringRef FS = TM.getTargetFeatureString(); 601 std::string ArchFS = ARM_MC::ParseARMTriple(TT, CPU); 602 if (!FS.empty()) { 603 if (!ArchFS.empty()) 604 ArchFS = (Twine(ArchFS) + "," + FS).str(); 605 else 606 ArchFS = FS; 607 } 608 const ARMBaseTargetMachine &ATM = 609 static_cast<const ARMBaseTargetMachine &>(TM); 610 const ARMSubtarget STI(TT, CPU, ArchFS, ATM, ATM.isLittleEndian()); 611 612 std::string CPUString = STI.getCPUString(); 613 614 if (CPUString.find("generic") != 0) { //CPUString doesn't start with "generic" 615 // FIXME: remove krait check when GNU tools support krait cpu 616 if (STI.isKrait()) { 617 ATS.emitTextAttribute(ARMBuildAttrs::CPU_name, "cortex-a9"); 618 // We consider krait as a "cortex-a9" + hwdiv CPU 619 // Enable hwdiv through ".arch_extension idiv" 620 if (STI.hasDivide() || STI.hasDivideInARMMode()) 621 ATS.emitArchExtension(ARM::AEK_HWDIV | ARM::AEK_HWDIVARM); 622 } else 623 ATS.emitTextAttribute(ARMBuildAttrs::CPU_name, CPUString); 624 } 625 626 ATS.emitAttribute(ARMBuildAttrs::CPU_arch, getArchForCPU(CPUString, &STI)); 627 628 // Tag_CPU_arch_profile must have the default value of 0 when "Architecture 629 // profile is not applicable (e.g. pre v7, or cross-profile code)". 630 if (STI.hasV7Ops()) { 631 if (STI.isAClass()) { 632 ATS.emitAttribute(ARMBuildAttrs::CPU_arch_profile, 633 ARMBuildAttrs::ApplicationProfile); 634 } else if (STI.isRClass()) { 635 ATS.emitAttribute(ARMBuildAttrs::CPU_arch_profile, 636 ARMBuildAttrs::RealTimeProfile); 637 } else if (STI.isMClass()) { 638 ATS.emitAttribute(ARMBuildAttrs::CPU_arch_profile, 639 ARMBuildAttrs::MicroControllerProfile); 640 } 641 } 642 643 ATS.emitAttribute(ARMBuildAttrs::ARM_ISA_use, 644 STI.hasARMOps() ? ARMBuildAttrs::Allowed 645 : ARMBuildAttrs::Not_Allowed); 646 if (STI.isThumb1Only()) { 647 ATS.emitAttribute(ARMBuildAttrs::THUMB_ISA_use, ARMBuildAttrs::Allowed); 648 } else if (STI.hasThumb2()) { 649 ATS.emitAttribute(ARMBuildAttrs::THUMB_ISA_use, 650 ARMBuildAttrs::AllowThumb32); 651 } 652 653 if (STI.hasNEON()) { 654 /* NEON is not exactly a VFP architecture, but GAS emit one of 655 * neon/neon-fp-armv8/neon-vfpv4/vfpv3/vfpv2 for .fpu parameters */ 656 if (STI.hasFPARMv8()) { 657 if (STI.hasCrypto()) 658 ATS.emitFPU(ARM::FK_CRYPTO_NEON_FP_ARMV8); 659 else 660 ATS.emitFPU(ARM::FK_NEON_FP_ARMV8); 661 } else if (STI.hasVFP4()) 662 ATS.emitFPU(ARM::FK_NEON_VFPV4); 663 else 664 ATS.emitFPU(STI.hasFP16() ? ARM::FK_NEON_FP16 : ARM::FK_NEON); 665 // Emit Tag_Advanced_SIMD_arch for ARMv8 architecture 666 if (STI.hasV8Ops()) 667 ATS.emitAttribute(ARMBuildAttrs::Advanced_SIMD_arch, 668 STI.hasV8_1aOps() ? ARMBuildAttrs::AllowNeonARMv8_1a: 669 ARMBuildAttrs::AllowNeonARMv8); 670 } else { 671 if (STI.hasFPARMv8()) 672 // FPv5 and FP-ARMv8 have the same instructions, so are modeled as one 673 // FPU, but there are two different names for it depending on the CPU. 674 ATS.emitFPU(STI.hasD16() 675 ? (STI.isFPOnlySP() ? ARM::FK_FPV5_SP_D16 : ARM::FK_FPV5_D16) 676 : ARM::FK_FP_ARMV8); 677 else if (STI.hasVFP4()) 678 ATS.emitFPU(STI.hasD16() 679 ? (STI.isFPOnlySP() ? ARM::FK_FPV4_SP_D16 : ARM::FK_VFPV4_D16) 680 : ARM::FK_VFPV4); 681 else if (STI.hasVFP3()) 682 ATS.emitFPU(STI.hasD16() 683 // +d16 684 ? (STI.isFPOnlySP() 685 ? (STI.hasFP16() ? ARM::FK_VFPV3XD_FP16 : ARM::FK_VFPV3XD) 686 : (STI.hasFP16() ? ARM::FK_VFPV3_D16_FP16 : ARM::FK_VFPV3_D16)) 687 // -d16 688 : (STI.hasFP16() ? ARM::FK_VFPV3_FP16 : ARM::FK_VFPV3)); 689 else if (STI.hasVFP2()) 690 ATS.emitFPU(ARM::FK_VFPV2); 691 } 692 693 if (TM.getRelocationModel() == Reloc::PIC_) { 694 // PIC specific attributes. 695 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_RW_data, 696 ARMBuildAttrs::AddressRWPCRel); 697 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_RO_data, 698 ARMBuildAttrs::AddressROPCRel); 699 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_GOT_use, 700 ARMBuildAttrs::AddressGOT); 701 } else { 702 // Allow direct addressing of imported data for all other relocation models. 703 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_GOT_use, 704 ARMBuildAttrs::AddressDirect); 705 } 706 707 // Signal various FP modes. 708 if (!TM.Options.UnsafeFPMath) { 709 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal, 710 ARMBuildAttrs::IEEEDenormals); 711 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_exceptions, ARMBuildAttrs::Allowed); 712 713 // If the user has permitted this code to choose the IEEE 754 714 // rounding at run-time, emit the rounding attribute. 715 if (TM.Options.HonorSignDependentRoundingFPMathOption) 716 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_rounding, ARMBuildAttrs::Allowed); 717 } else { 718 if (!STI.hasVFP2()) { 719 // When the target doesn't have an FPU (by design or 720 // intention), the assumptions made on the software support 721 // mirror that of the equivalent hardware support *if it 722 // existed*. For v7 and better we indicate that denormals are 723 // flushed preserving sign, and for V6 we indicate that 724 // denormals are flushed to positive zero. 725 if (STI.hasV7Ops()) 726 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal, 727 ARMBuildAttrs::PreserveFPSign); 728 } else if (STI.hasVFP3()) { 729 // In VFPv4, VFPv4U, VFPv3, or VFPv3U, it is preserved. That is, 730 // the sign bit of the zero matches the sign bit of the input or 731 // result that is being flushed to zero. 732 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_denormal, 733 ARMBuildAttrs::PreserveFPSign); 734 } 735 // For VFPv2 implementations it is implementation defined as 736 // to whether denormals are flushed to positive zero or to 737 // whatever the sign of zero is (ARM v7AR ARM 2.7.5). Historically 738 // LLVM has chosen to flush this to positive zero (most likely for 739 // GCC compatibility), so that's the chosen value here (the 740 // absence of its emission implies zero). 741 } 742 743 // TM.Options.NoInfsFPMath && TM.Options.NoNaNsFPMath is the 744 // equivalent of GCC's -ffinite-math-only flag. 745 if (TM.Options.NoInfsFPMath && TM.Options.NoNaNsFPMath) 746 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_number_model, 747 ARMBuildAttrs::Allowed); 748 else 749 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_number_model, 750 ARMBuildAttrs::AllowIEE754); 751 752 if (STI.allowsUnalignedMem()) 753 ATS.emitAttribute(ARMBuildAttrs::CPU_unaligned_access, 754 ARMBuildAttrs::Allowed); 755 else 756 ATS.emitAttribute(ARMBuildAttrs::CPU_unaligned_access, 757 ARMBuildAttrs::Not_Allowed); 758 759 // FIXME: add more flags to ARMBuildAttributes.h 760 // 8-bytes alignment stuff. 761 ATS.emitAttribute(ARMBuildAttrs::ABI_align_needed, 1); 762 ATS.emitAttribute(ARMBuildAttrs::ABI_align_preserved, 1); 763 764 // ABI_HardFP_use attribute to indicate single precision FP. 765 if (STI.isFPOnlySP()) 766 ATS.emitAttribute(ARMBuildAttrs::ABI_HardFP_use, 767 ARMBuildAttrs::HardFPSinglePrecision); 768 769 // Hard float. Use both S and D registers and conform to AAPCS-VFP. 770 if (STI.isAAPCS_ABI() && TM.Options.FloatABIType == FloatABI::Hard) 771 ATS.emitAttribute(ARMBuildAttrs::ABI_VFP_args, ARMBuildAttrs::HardFPAAPCS); 772 773 // FIXME: Should we signal R9 usage? 774 775 if (STI.hasFP16()) 776 ATS.emitAttribute(ARMBuildAttrs::FP_HP_extension, ARMBuildAttrs::AllowHPFP); 777 778 // FIXME: To support emitting this build attribute as GCC does, the 779 // -mfp16-format option and associated plumbing must be 780 // supported. For now the __fp16 type is exposed by default, so this 781 // attribute should be emitted with value 1. 782 ATS.emitAttribute(ARMBuildAttrs::ABI_FP_16bit_format, 783 ARMBuildAttrs::FP16FormatIEEE); 784 785 if (STI.hasMPExtension()) 786 ATS.emitAttribute(ARMBuildAttrs::MPextension_use, ARMBuildAttrs::AllowMP); 787 788 // Hardware divide in ARM mode is part of base arch, starting from ARMv8. 789 // If only Thumb hwdiv is present, it must also be in base arch (ARMv7-R/M). 790 // It is not possible to produce DisallowDIV: if hwdiv is present in the base 791 // arch, supplying -hwdiv downgrades the effective arch, via ClearImpliedBits. 792 // AllowDIVExt is only emitted if hwdiv isn't available in the base arch; 793 // otherwise, the default value (AllowDIVIfExists) applies. 794 if (STI.hasDivideInARMMode() && !STI.hasV8Ops()) 795 ATS.emitAttribute(ARMBuildAttrs::DIV_use, ARMBuildAttrs::AllowDIVExt); 796 797 if (MMI) { 798 if (const Module *SourceModule = MMI->getModule()) { 799 // ABI_PCS_wchar_t to indicate wchar_t width 800 // FIXME: There is no way to emit value 0 (wchar_t prohibited). 801 if (auto WCharWidthValue = mdconst::extract_or_null<ConstantInt>( 802 SourceModule->getModuleFlag("wchar_size"))) { 803 int WCharWidth = WCharWidthValue->getZExtValue(); 804 assert((WCharWidth == 2 || WCharWidth == 4) && 805 "wchar_t width must be 2 or 4 bytes"); 806 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_wchar_t, WCharWidth); 807 } 808 809 // ABI_enum_size to indicate enum width 810 // FIXME: There is no way to emit value 0 (enums prohibited) or value 3 811 // (all enums contain a value needing 32 bits to encode). 812 if (auto EnumWidthValue = mdconst::extract_or_null<ConstantInt>( 813 SourceModule->getModuleFlag("min_enum_size"))) { 814 int EnumWidth = EnumWidthValue->getZExtValue(); 815 assert((EnumWidth == 1 || EnumWidth == 4) && 816 "Minimum enum width must be 1 or 4 bytes"); 817 int EnumBuildAttr = EnumWidth == 1 ? 1 : 2; 818 ATS.emitAttribute(ARMBuildAttrs::ABI_enum_size, EnumBuildAttr); 819 } 820 } 821 } 822 823 // TODO: We currently only support either reserving the register, or treating 824 // it as another callee-saved register, but not as SB or a TLS pointer; It 825 // would instead be nicer to push this from the frontend as metadata, as we do 826 // for the wchar and enum size tags 827 if (STI.isR9Reserved()) 828 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_R9_use, ARMBuildAttrs::R9Reserved); 829 else 830 ATS.emitAttribute(ARMBuildAttrs::ABI_PCS_R9_use, ARMBuildAttrs::R9IsGPR); 831 832 if (STI.hasTrustZone() && STI.hasVirtualization()) 833 ATS.emitAttribute(ARMBuildAttrs::Virtualization_use, 834 ARMBuildAttrs::AllowTZVirtualization); 835 else if (STI.hasTrustZone()) 836 ATS.emitAttribute(ARMBuildAttrs::Virtualization_use, 837 ARMBuildAttrs::AllowTZ); 838 else if (STI.hasVirtualization()) 839 ATS.emitAttribute(ARMBuildAttrs::Virtualization_use, 840 ARMBuildAttrs::AllowVirtualization); 841 } 842 843 //===----------------------------------------------------------------------===// 844 845 static MCSymbol *getPICLabel(const char *Prefix, unsigned FunctionNumber, 846 unsigned LabelId, MCContext &Ctx) { 847 848 MCSymbol *Label = Ctx.getOrCreateSymbol(Twine(Prefix) 849 + "PC" + Twine(FunctionNumber) + "_" + Twine(LabelId)); 850 return Label; 851 } 852 853 static MCSymbolRefExpr::VariantKind 854 getModifierVariantKind(ARMCP::ARMCPModifier Modifier) { 855 switch (Modifier) { 856 case ARMCP::no_modifier: return MCSymbolRefExpr::VK_None; 857 case ARMCP::TLSGD: return MCSymbolRefExpr::VK_TLSGD; 858 case ARMCP::TPOFF: return MCSymbolRefExpr::VK_TPOFF; 859 case ARMCP::GOTTPOFF: return MCSymbolRefExpr::VK_GOTTPOFF; 860 case ARMCP::GOT_PREL: return MCSymbolRefExpr::VK_ARM_GOT_PREL; 861 } 862 llvm_unreachable("Invalid ARMCPModifier!"); 863 } 864 865 MCSymbol *ARMAsmPrinter::GetARMGVSymbol(const GlobalValue *GV, 866 unsigned char TargetFlags) { 867 if (Subtarget->isTargetMachO()) { 868 bool IsIndirect = (TargetFlags & ARMII::MO_NONLAZY) && 869 Subtarget->GVIsIndirectSymbol(GV, TM.getRelocationModel()); 870 871 if (!IsIndirect) 872 return getSymbol(GV); 873 874 // FIXME: Remove this when Darwin transition to @GOT like syntax. 875 MCSymbol *MCSym = getSymbolWithGlobalValueBase(GV, "$non_lazy_ptr"); 876 MachineModuleInfoMachO &MMIMachO = 877 MMI->getObjFileInfo<MachineModuleInfoMachO>(); 878 MachineModuleInfoImpl::StubValueTy &StubSym = 879 GV->hasHiddenVisibility() ? MMIMachO.getHiddenGVStubEntry(MCSym) 880 : MMIMachO.getGVStubEntry(MCSym); 881 if (!StubSym.getPointer()) 882 StubSym = MachineModuleInfoImpl::StubValueTy(getSymbol(GV), 883 !GV->hasInternalLinkage()); 884 return MCSym; 885 } else if (Subtarget->isTargetCOFF()) { 886 assert(Subtarget->isTargetWindows() && 887 "Windows is the only supported COFF target"); 888 889 bool IsIndirect = (TargetFlags & ARMII::MO_DLLIMPORT); 890 if (!IsIndirect) 891 return getSymbol(GV); 892 893 SmallString<128> Name; 894 Name = "__imp_"; 895 getNameWithPrefix(Name, GV); 896 897 return OutContext.getOrCreateSymbol(Name); 898 } else if (Subtarget->isTargetELF()) { 899 return getSymbol(GV); 900 } 901 llvm_unreachable("unexpected target"); 902 } 903 904 void ARMAsmPrinter:: 905 EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { 906 const DataLayout &DL = getDataLayout(); 907 int Size = DL.getTypeAllocSize(MCPV->getType()); 908 909 ARMConstantPoolValue *ACPV = static_cast<ARMConstantPoolValue*>(MCPV); 910 911 MCSymbol *MCSym; 912 if (ACPV->isLSDA()) { 913 MCSym = getCurExceptionSym(); 914 } else if (ACPV->isBlockAddress()) { 915 const BlockAddress *BA = 916 cast<ARMConstantPoolConstant>(ACPV)->getBlockAddress(); 917 MCSym = GetBlockAddressSymbol(BA); 918 } else if (ACPV->isGlobalValue()) { 919 const GlobalValue *GV = cast<ARMConstantPoolConstant>(ACPV)->getGV(); 920 921 // On Darwin, const-pool entries may get the "FOO$non_lazy_ptr" mangling, so 922 // flag the global as MO_NONLAZY. 923 unsigned char TF = Subtarget->isTargetMachO() ? ARMII::MO_NONLAZY : 0; 924 MCSym = GetARMGVSymbol(GV, TF); 925 } else if (ACPV->isMachineBasicBlock()) { 926 const MachineBasicBlock *MBB = cast<ARMConstantPoolMBB>(ACPV)->getMBB(); 927 MCSym = MBB->getSymbol(); 928 } else { 929 assert(ACPV->isExtSymbol() && "unrecognized constant pool value"); 930 const char *Sym = cast<ARMConstantPoolSymbol>(ACPV)->getSymbol(); 931 MCSym = GetExternalSymbolSymbol(Sym); 932 } 933 934 // Create an MCSymbol for the reference. 935 const MCExpr *Expr = 936 MCSymbolRefExpr::create(MCSym, getModifierVariantKind(ACPV->getModifier()), 937 OutContext); 938 939 if (ACPV->getPCAdjustment()) { 940 MCSymbol *PCLabel = 941 getPICLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(), 942 ACPV->getLabelId(), OutContext); 943 const MCExpr *PCRelExpr = MCSymbolRefExpr::create(PCLabel, OutContext); 944 PCRelExpr = 945 MCBinaryExpr::createAdd(PCRelExpr, 946 MCConstantExpr::create(ACPV->getPCAdjustment(), 947 OutContext), 948 OutContext); 949 if (ACPV->mustAddCurrentAddress()) { 950 // We want "(<expr> - .)", but MC doesn't have a concept of the '.' 951 // label, so just emit a local label end reference that instead. 952 MCSymbol *DotSym = OutContext.createTempSymbol(); 953 OutStreamer->EmitLabel(DotSym); 954 const MCExpr *DotExpr = MCSymbolRefExpr::create(DotSym, OutContext); 955 PCRelExpr = MCBinaryExpr::createSub(PCRelExpr, DotExpr, OutContext); 956 } 957 Expr = MCBinaryExpr::createSub(Expr, PCRelExpr, OutContext); 958 } 959 OutStreamer->EmitValue(Expr, Size); 960 } 961 962 void ARMAsmPrinter::EmitJumpTableAddrs(const MachineInstr *MI) { 963 const MachineOperand &MO1 = MI->getOperand(1); 964 unsigned JTI = MO1.getIndex(); 965 966 // Make sure the Thumb jump table is 4-byte aligned. This will be a nop for 967 // ARM mode tables. 968 EmitAlignment(2); 969 970 // Emit a label for the jump table. 971 MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(JTI); 972 OutStreamer->EmitLabel(JTISymbol); 973 974 // Mark the jump table as data-in-code. 975 OutStreamer->EmitDataRegion(MCDR_DataRegionJT32); 976 977 // Emit each entry of the table. 978 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 979 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 980 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 981 982 for (unsigned i = 0, e = JTBBs.size(); i != e; ++i) { 983 MachineBasicBlock *MBB = JTBBs[i]; 984 // Construct an MCExpr for the entry. We want a value of the form: 985 // (BasicBlockAddr - TableBeginAddr) 986 // 987 // For example, a table with entries jumping to basic blocks BB0 and BB1 988 // would look like: 989 // LJTI_0_0: 990 // .word (LBB0 - LJTI_0_0) 991 // .word (LBB1 - LJTI_0_0) 992 const MCExpr *Expr = MCSymbolRefExpr::create(MBB->getSymbol(), OutContext); 993 994 if (TM.getRelocationModel() == Reloc::PIC_) 995 Expr = MCBinaryExpr::createSub(Expr, MCSymbolRefExpr::create(JTISymbol, 996 OutContext), 997 OutContext); 998 // If we're generating a table of Thumb addresses in static relocation 999 // model, we need to add one to keep interworking correctly. 1000 else if (AFI->isThumbFunction()) 1001 Expr = MCBinaryExpr::createAdd(Expr, MCConstantExpr::create(1,OutContext), 1002 OutContext); 1003 OutStreamer->EmitValue(Expr, 4); 1004 } 1005 // Mark the end of jump table data-in-code region. 1006 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd); 1007 } 1008 1009 void ARMAsmPrinter::EmitJumpTableInsts(const MachineInstr *MI) { 1010 const MachineOperand &MO1 = MI->getOperand(1); 1011 unsigned JTI = MO1.getIndex(); 1012 1013 MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(JTI); 1014 OutStreamer->EmitLabel(JTISymbol); 1015 1016 // Emit each entry of the table. 1017 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1018 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1019 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1020 1021 for (unsigned i = 0, e = JTBBs.size(); i != e; ++i) { 1022 MachineBasicBlock *MBB = JTBBs[i]; 1023 const MCExpr *MBBSymbolExpr = MCSymbolRefExpr::create(MBB->getSymbol(), 1024 OutContext); 1025 // If this isn't a TBB or TBH, the entries are direct branch instructions. 1026 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::t2B) 1027 .addExpr(MBBSymbolExpr) 1028 .addImm(ARMCC::AL) 1029 .addReg(0)); 1030 } 1031 } 1032 1033 void ARMAsmPrinter::EmitJumpTableTBInst(const MachineInstr *MI, 1034 unsigned OffsetWidth) { 1035 assert((OffsetWidth == 1 || OffsetWidth == 2) && "invalid tbb/tbh width"); 1036 const MachineOperand &MO1 = MI->getOperand(1); 1037 unsigned JTI = MO1.getIndex(); 1038 1039 MCSymbol *JTISymbol = GetARMJTIPICJumpTableLabel(JTI); 1040 OutStreamer->EmitLabel(JTISymbol); 1041 1042 // Emit each entry of the table. 1043 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); 1044 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); 1045 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; 1046 1047 // Mark the jump table as data-in-code. 1048 OutStreamer->EmitDataRegion(OffsetWidth == 1 ? MCDR_DataRegionJT8 1049 : MCDR_DataRegionJT16); 1050 1051 for (auto MBB : JTBBs) { 1052 const MCExpr *MBBSymbolExpr = MCSymbolRefExpr::create(MBB->getSymbol(), 1053 OutContext); 1054 // Otherwise it's an offset from the dispatch instruction. Construct an 1055 // MCExpr for the entry. We want a value of the form: 1056 // (BasicBlockAddr - TBBInstAddr + 4) / 2 1057 // 1058 // For example, a TBB table with entries jumping to basic blocks BB0 and BB1 1059 // would look like: 1060 // LJTI_0_0: 1061 // .byte (LBB0 - (LCPI0_0 + 4)) / 2 1062 // .byte (LBB1 - (LCPI0_0 + 4)) / 2 1063 // where LCPI0_0 is a label defined just before the TBB instruction using 1064 // this table. 1065 MCSymbol *TBInstPC = GetCPISymbol(MI->getOperand(0).getImm()); 1066 const MCExpr *Expr = MCBinaryExpr::createAdd( 1067 MCSymbolRefExpr::create(TBInstPC, OutContext), 1068 MCConstantExpr::create(4, OutContext), OutContext); 1069 Expr = MCBinaryExpr::createSub(MBBSymbolExpr, Expr, OutContext); 1070 Expr = MCBinaryExpr::createDiv(Expr, MCConstantExpr::create(2, OutContext), 1071 OutContext); 1072 OutStreamer->EmitValue(Expr, OffsetWidth); 1073 } 1074 // Mark the end of jump table data-in-code region. 32-bit offsets use 1075 // actual branch instructions here, so we don't mark those as a data-region 1076 // at all. 1077 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd); 1078 1079 // Make sure the next instruction is 2-byte aligned. 1080 EmitAlignment(1); 1081 } 1082 1083 void ARMAsmPrinter::EmitUnwindingInstruction(const MachineInstr *MI) { 1084 assert(MI->getFlag(MachineInstr::FrameSetup) && 1085 "Only instruction which are involved into frame setup code are allowed"); 1086 1087 MCTargetStreamer &TS = *OutStreamer->getTargetStreamer(); 1088 ARMTargetStreamer &ATS = static_cast<ARMTargetStreamer &>(TS); 1089 const MachineFunction &MF = *MI->getParent()->getParent(); 1090 const TargetRegisterInfo *RegInfo = MF.getSubtarget().getRegisterInfo(); 1091 const ARMFunctionInfo &AFI = *MF.getInfo<ARMFunctionInfo>(); 1092 1093 unsigned FramePtr = RegInfo->getFrameRegister(MF); 1094 unsigned Opc = MI->getOpcode(); 1095 unsigned SrcReg, DstReg; 1096 1097 if (Opc == ARM::tPUSH || Opc == ARM::tLDRpci) { 1098 // Two special cases: 1099 // 1) tPUSH does not have src/dst regs. 1100 // 2) for Thumb1 code we sometimes materialize the constant via constpool 1101 // load. Yes, this is pretty fragile, but for now I don't see better 1102 // way... :( 1103 SrcReg = DstReg = ARM::SP; 1104 } else { 1105 SrcReg = MI->getOperand(1).getReg(); 1106 DstReg = MI->getOperand(0).getReg(); 1107 } 1108 1109 // Try to figure out the unwinding opcode out of src / dst regs. 1110 if (MI->mayStore()) { 1111 // Register saves. 1112 assert(DstReg == ARM::SP && 1113 "Only stack pointer as a destination reg is supported"); 1114 1115 SmallVector<unsigned, 4> RegList; 1116 // Skip src & dst reg, and pred ops. 1117 unsigned StartOp = 2 + 2; 1118 // Use all the operands. 1119 unsigned NumOffset = 0; 1120 1121 switch (Opc) { 1122 default: 1123 MI->dump(); 1124 llvm_unreachable("Unsupported opcode for unwinding information"); 1125 case ARM::tPUSH: 1126 // Special case here: no src & dst reg, but two extra imp ops. 1127 StartOp = 2; NumOffset = 2; 1128 case ARM::STMDB_UPD: 1129 case ARM::t2STMDB_UPD: 1130 case ARM::VSTMDDB_UPD: 1131 assert(SrcReg == ARM::SP && 1132 "Only stack pointer as a source reg is supported"); 1133 for (unsigned i = StartOp, NumOps = MI->getNumOperands() - NumOffset; 1134 i != NumOps; ++i) { 1135 const MachineOperand &MO = MI->getOperand(i); 1136 // Actually, there should never be any impdef stuff here. Skip it 1137 // temporary to workaround PR11902. 1138 if (MO.isImplicit()) 1139 continue; 1140 RegList.push_back(MO.getReg()); 1141 } 1142 break; 1143 case ARM::STR_PRE_IMM: 1144 case ARM::STR_PRE_REG: 1145 case ARM::t2STR_PRE: 1146 assert(MI->getOperand(2).getReg() == ARM::SP && 1147 "Only stack pointer as a source reg is supported"); 1148 RegList.push_back(SrcReg); 1149 break; 1150 } 1151 if (MAI->getExceptionHandlingType() == ExceptionHandling::ARM) 1152 ATS.emitRegSave(RegList, Opc == ARM::VSTMDDB_UPD); 1153 } else { 1154 // Changes of stack / frame pointer. 1155 if (SrcReg == ARM::SP) { 1156 int64_t Offset = 0; 1157 switch (Opc) { 1158 default: 1159 MI->dump(); 1160 llvm_unreachable("Unsupported opcode for unwinding information"); 1161 case ARM::MOVr: 1162 case ARM::tMOVr: 1163 Offset = 0; 1164 break; 1165 case ARM::ADDri: 1166 case ARM::t2ADDri: 1167 Offset = -MI->getOperand(2).getImm(); 1168 break; 1169 case ARM::SUBri: 1170 case ARM::t2SUBri: 1171 Offset = MI->getOperand(2).getImm(); 1172 break; 1173 case ARM::tSUBspi: 1174 Offset = MI->getOperand(2).getImm()*4; 1175 break; 1176 case ARM::tADDspi: 1177 case ARM::tADDrSPi: 1178 Offset = -MI->getOperand(2).getImm()*4; 1179 break; 1180 case ARM::tLDRpci: { 1181 // Grab the constpool index and check, whether it corresponds to 1182 // original or cloned constpool entry. 1183 unsigned CPI = MI->getOperand(1).getIndex(); 1184 const MachineConstantPool *MCP = MF.getConstantPool(); 1185 if (CPI >= MCP->getConstants().size()) 1186 CPI = AFI.getOriginalCPIdx(CPI); 1187 assert(CPI != -1U && "Invalid constpool index"); 1188 1189 // Derive the actual offset. 1190 const MachineConstantPoolEntry &CPE = MCP->getConstants()[CPI]; 1191 assert(!CPE.isMachineConstantPoolEntry() && "Invalid constpool entry"); 1192 // FIXME: Check for user, it should be "add" instruction! 1193 Offset = -cast<ConstantInt>(CPE.Val.ConstVal)->getSExtValue(); 1194 break; 1195 } 1196 } 1197 1198 if (MAI->getExceptionHandlingType() == ExceptionHandling::ARM) { 1199 if (DstReg == FramePtr && FramePtr != ARM::SP) 1200 // Set-up of the frame pointer. Positive values correspond to "add" 1201 // instruction. 1202 ATS.emitSetFP(FramePtr, ARM::SP, -Offset); 1203 else if (DstReg == ARM::SP) { 1204 // Change of SP by an offset. Positive values correspond to "sub" 1205 // instruction. 1206 ATS.emitPad(Offset); 1207 } else { 1208 // Move of SP to a register. Positive values correspond to an "add" 1209 // instruction. 1210 ATS.emitMovSP(DstReg, -Offset); 1211 } 1212 } 1213 } else if (DstReg == ARM::SP) { 1214 MI->dump(); 1215 llvm_unreachable("Unsupported opcode for unwinding information"); 1216 } 1217 else { 1218 MI->dump(); 1219 llvm_unreachable("Unsupported opcode for unwinding information"); 1220 } 1221 } 1222 } 1223 1224 // Simple pseudo-instructions have their lowering (with expansion to real 1225 // instructions) auto-generated. 1226 #include "ARMGenMCPseudoLowering.inc" 1227 1228 void ARMAsmPrinter::EmitInstruction(const MachineInstr *MI) { 1229 const DataLayout &DL = getDataLayout(); 1230 1231 // If we just ended a constant pool, mark it as such. 1232 if (InConstantPool && MI->getOpcode() != ARM::CONSTPOOL_ENTRY) { 1233 OutStreamer->EmitDataRegion(MCDR_DataRegionEnd); 1234 InConstantPool = false; 1235 } 1236 1237 // Emit unwinding stuff for frame-related instructions 1238 if (Subtarget->isTargetEHABICompatible() && 1239 MI->getFlag(MachineInstr::FrameSetup)) 1240 EmitUnwindingInstruction(MI); 1241 1242 // Do any auto-generated pseudo lowerings. 1243 if (emitPseudoExpansionLowering(*OutStreamer, MI)) 1244 return; 1245 1246 assert(!convertAddSubFlagsOpcode(MI->getOpcode()) && 1247 "Pseudo flag setting opcode should be expanded early"); 1248 1249 // Check for manual lowerings. 1250 unsigned Opc = MI->getOpcode(); 1251 switch (Opc) { 1252 case ARM::t2MOVi32imm: llvm_unreachable("Should be lowered by thumb2it pass"); 1253 case ARM::DBG_VALUE: llvm_unreachable("Should be handled by generic printing"); 1254 case ARM::LEApcrel: 1255 case ARM::tLEApcrel: 1256 case ARM::t2LEApcrel: { 1257 // FIXME: Need to also handle globals and externals 1258 MCSymbol *CPISymbol = GetCPISymbol(MI->getOperand(1).getIndex()); 1259 EmitToStreamer(*OutStreamer, MCInstBuilder(MI->getOpcode() == 1260 ARM::t2LEApcrel ? ARM::t2ADR 1261 : (MI->getOpcode() == ARM::tLEApcrel ? ARM::tADR 1262 : ARM::ADR)) 1263 .addReg(MI->getOperand(0).getReg()) 1264 .addExpr(MCSymbolRefExpr::create(CPISymbol, OutContext)) 1265 // Add predicate operands. 1266 .addImm(MI->getOperand(2).getImm()) 1267 .addReg(MI->getOperand(3).getReg())); 1268 return; 1269 } 1270 case ARM::LEApcrelJT: 1271 case ARM::tLEApcrelJT: 1272 case ARM::t2LEApcrelJT: { 1273 MCSymbol *JTIPICSymbol = 1274 GetARMJTIPICJumpTableLabel(MI->getOperand(1).getIndex()); 1275 EmitToStreamer(*OutStreamer, MCInstBuilder(MI->getOpcode() == 1276 ARM::t2LEApcrelJT ? ARM::t2ADR 1277 : (MI->getOpcode() == ARM::tLEApcrelJT ? ARM::tADR 1278 : ARM::ADR)) 1279 .addReg(MI->getOperand(0).getReg()) 1280 .addExpr(MCSymbolRefExpr::create(JTIPICSymbol, OutContext)) 1281 // Add predicate operands. 1282 .addImm(MI->getOperand(2).getImm()) 1283 .addReg(MI->getOperand(3).getReg())); 1284 return; 1285 } 1286 // Darwin call instructions are just normal call instructions with different 1287 // clobber semantics (they clobber R9). 1288 case ARM::BX_CALL: { 1289 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr) 1290 .addReg(ARM::LR) 1291 .addReg(ARM::PC) 1292 // Add predicate operands. 1293 .addImm(ARMCC::AL) 1294 .addReg(0) 1295 // Add 's' bit operand (always reg0 for this) 1296 .addReg(0)); 1297 1298 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::BX) 1299 .addReg(MI->getOperand(0).getReg())); 1300 return; 1301 } 1302 case ARM::tBX_CALL: { 1303 if (Subtarget->hasV5TOps()) 1304 llvm_unreachable("Expected BLX to be selected for v5t+"); 1305 1306 // On ARM v4t, when doing a call from thumb mode, we need to ensure 1307 // that the saved lr has its LSB set correctly (the arch doesn't 1308 // have blx). 1309 // So here we generate a bl to a small jump pad that does bx rN. 1310 // The jump pads are emitted after the function body. 1311 1312 unsigned TReg = MI->getOperand(0).getReg(); 1313 MCSymbol *TRegSym = nullptr; 1314 for (unsigned i = 0, e = ThumbIndirectPads.size(); i < e; i++) { 1315 if (ThumbIndirectPads[i].first == TReg) { 1316 TRegSym = ThumbIndirectPads[i].second; 1317 break; 1318 } 1319 } 1320 1321 if (!TRegSym) { 1322 TRegSym = OutContext.createTempSymbol(); 1323 ThumbIndirectPads.push_back(std::make_pair(TReg, TRegSym)); 1324 } 1325 1326 // Create a link-saving branch to the Reg Indirect Jump Pad. 1327 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tBL) 1328 // Predicate comes first here. 1329 .addImm(ARMCC::AL).addReg(0) 1330 .addExpr(MCSymbolRefExpr::create(TRegSym, OutContext))); 1331 return; 1332 } 1333 case ARM::BMOVPCRX_CALL: { 1334 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr) 1335 .addReg(ARM::LR) 1336 .addReg(ARM::PC) 1337 // Add predicate operands. 1338 .addImm(ARMCC::AL) 1339 .addReg(0) 1340 // Add 's' bit operand (always reg0 for this) 1341 .addReg(0)); 1342 1343 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr) 1344 .addReg(ARM::PC) 1345 .addReg(MI->getOperand(0).getReg()) 1346 // Add predicate operands. 1347 .addImm(ARMCC::AL) 1348 .addReg(0) 1349 // Add 's' bit operand (always reg0 for this) 1350 .addReg(0)); 1351 return; 1352 } 1353 case ARM::BMOVPCB_CALL: { 1354 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVr) 1355 .addReg(ARM::LR) 1356 .addReg(ARM::PC) 1357 // Add predicate operands. 1358 .addImm(ARMCC::AL) 1359 .addReg(0) 1360 // Add 's' bit operand (always reg0 for this) 1361 .addReg(0)); 1362 1363 const MachineOperand &Op = MI->getOperand(0); 1364 const GlobalValue *GV = Op.getGlobal(); 1365 const unsigned TF = Op.getTargetFlags(); 1366 MCSymbol *GVSym = GetARMGVSymbol(GV, TF); 1367 const MCExpr *GVSymExpr = MCSymbolRefExpr::create(GVSym, OutContext); 1368 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::Bcc) 1369 .addExpr(GVSymExpr) 1370 // Add predicate operands. 1371 .addImm(ARMCC::AL) 1372 .addReg(0)); 1373 return; 1374 } 1375 case ARM::MOVi16_ga_pcrel: 1376 case ARM::t2MOVi16_ga_pcrel: { 1377 MCInst TmpInst; 1378 TmpInst.setOpcode(Opc == ARM::MOVi16_ga_pcrel? ARM::MOVi16 : ARM::t2MOVi16); 1379 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1380 1381 unsigned TF = MI->getOperand(1).getTargetFlags(); 1382 const GlobalValue *GV = MI->getOperand(1).getGlobal(); 1383 MCSymbol *GVSym = GetARMGVSymbol(GV, TF); 1384 const MCExpr *GVSymExpr = MCSymbolRefExpr::create(GVSym, OutContext); 1385 1386 MCSymbol *LabelSym = 1387 getPICLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(), 1388 MI->getOperand(2).getImm(), OutContext); 1389 const MCExpr *LabelSymExpr= MCSymbolRefExpr::create(LabelSym, OutContext); 1390 unsigned PCAdj = (Opc == ARM::MOVi16_ga_pcrel) ? 8 : 4; 1391 const MCExpr *PCRelExpr = 1392 ARMMCExpr::createLower16(MCBinaryExpr::createSub(GVSymExpr, 1393 MCBinaryExpr::createAdd(LabelSymExpr, 1394 MCConstantExpr::create(PCAdj, OutContext), 1395 OutContext), OutContext), OutContext); 1396 TmpInst.addOperand(MCOperand::createExpr(PCRelExpr)); 1397 1398 // Add predicate operands. 1399 TmpInst.addOperand(MCOperand::createImm(ARMCC::AL)); 1400 TmpInst.addOperand(MCOperand::createReg(0)); 1401 // Add 's' bit operand (always reg0 for this) 1402 TmpInst.addOperand(MCOperand::createReg(0)); 1403 EmitToStreamer(*OutStreamer, TmpInst); 1404 return; 1405 } 1406 case ARM::MOVTi16_ga_pcrel: 1407 case ARM::t2MOVTi16_ga_pcrel: { 1408 MCInst TmpInst; 1409 TmpInst.setOpcode(Opc == ARM::MOVTi16_ga_pcrel 1410 ? ARM::MOVTi16 : ARM::t2MOVTi16); 1411 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1412 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(1).getReg())); 1413 1414 unsigned TF = MI->getOperand(2).getTargetFlags(); 1415 const GlobalValue *GV = MI->getOperand(2).getGlobal(); 1416 MCSymbol *GVSym = GetARMGVSymbol(GV, TF); 1417 const MCExpr *GVSymExpr = MCSymbolRefExpr::create(GVSym, OutContext); 1418 1419 MCSymbol *LabelSym = 1420 getPICLabel(DL.getPrivateGlobalPrefix(), getFunctionNumber(), 1421 MI->getOperand(3).getImm(), OutContext); 1422 const MCExpr *LabelSymExpr= MCSymbolRefExpr::create(LabelSym, OutContext); 1423 unsigned PCAdj = (Opc == ARM::MOVTi16_ga_pcrel) ? 8 : 4; 1424 const MCExpr *PCRelExpr = 1425 ARMMCExpr::createUpper16(MCBinaryExpr::createSub(GVSymExpr, 1426 MCBinaryExpr::createAdd(LabelSymExpr, 1427 MCConstantExpr::create(PCAdj, OutContext), 1428 OutContext), OutContext), OutContext); 1429 TmpInst.addOperand(MCOperand::createExpr(PCRelExpr)); 1430 // Add predicate operands. 1431 TmpInst.addOperand(MCOperand::createImm(ARMCC::AL)); 1432 TmpInst.addOperand(MCOperand::createReg(0)); 1433 // Add 's' bit operand (always reg0 for this) 1434 TmpInst.addOperand(MCOperand::createReg(0)); 1435 EmitToStreamer(*OutStreamer, TmpInst); 1436 return; 1437 } 1438 case ARM::tPICADD: { 1439 // This is a pseudo op for a label + instruction sequence, which looks like: 1440 // LPC0: 1441 // add r0, pc 1442 // This adds the address of LPC0 to r0. 1443 1444 // Emit the label. 1445 OutStreamer->EmitLabel(getPICLabel(DL.getPrivateGlobalPrefix(), 1446 getFunctionNumber(), 1447 MI->getOperand(2).getImm(), OutContext)); 1448 1449 // Form and emit the add. 1450 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDhirr) 1451 .addReg(MI->getOperand(0).getReg()) 1452 .addReg(MI->getOperand(0).getReg()) 1453 .addReg(ARM::PC) 1454 // Add predicate operands. 1455 .addImm(ARMCC::AL) 1456 .addReg(0)); 1457 return; 1458 } 1459 case ARM::PICADD: { 1460 // This is a pseudo op for a label + instruction sequence, which looks like: 1461 // LPC0: 1462 // add r0, pc, r0 1463 // This adds the address of LPC0 to r0. 1464 1465 // Emit the label. 1466 OutStreamer->EmitLabel(getPICLabel(DL.getPrivateGlobalPrefix(), 1467 getFunctionNumber(), 1468 MI->getOperand(2).getImm(), OutContext)); 1469 1470 // Form and emit the add. 1471 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDrr) 1472 .addReg(MI->getOperand(0).getReg()) 1473 .addReg(ARM::PC) 1474 .addReg(MI->getOperand(1).getReg()) 1475 // Add predicate operands. 1476 .addImm(MI->getOperand(3).getImm()) 1477 .addReg(MI->getOperand(4).getReg()) 1478 // Add 's' bit operand (always reg0 for this) 1479 .addReg(0)); 1480 return; 1481 } 1482 case ARM::PICSTR: 1483 case ARM::PICSTRB: 1484 case ARM::PICSTRH: 1485 case ARM::PICLDR: 1486 case ARM::PICLDRB: 1487 case ARM::PICLDRH: 1488 case ARM::PICLDRSB: 1489 case ARM::PICLDRSH: { 1490 // This is a pseudo op for a label + instruction sequence, which looks like: 1491 // LPC0: 1492 // OP r0, [pc, r0] 1493 // The LCP0 label is referenced by a constant pool entry in order to get 1494 // a PC-relative address at the ldr instruction. 1495 1496 // Emit the label. 1497 OutStreamer->EmitLabel(getPICLabel(DL.getPrivateGlobalPrefix(), 1498 getFunctionNumber(), 1499 MI->getOperand(2).getImm(), OutContext)); 1500 1501 // Form and emit the load 1502 unsigned Opcode; 1503 switch (MI->getOpcode()) { 1504 default: 1505 llvm_unreachable("Unexpected opcode!"); 1506 case ARM::PICSTR: Opcode = ARM::STRrs; break; 1507 case ARM::PICSTRB: Opcode = ARM::STRBrs; break; 1508 case ARM::PICSTRH: Opcode = ARM::STRH; break; 1509 case ARM::PICLDR: Opcode = ARM::LDRrs; break; 1510 case ARM::PICLDRB: Opcode = ARM::LDRBrs; break; 1511 case ARM::PICLDRH: Opcode = ARM::LDRH; break; 1512 case ARM::PICLDRSB: Opcode = ARM::LDRSB; break; 1513 case ARM::PICLDRSH: Opcode = ARM::LDRSH; break; 1514 } 1515 EmitToStreamer(*OutStreamer, MCInstBuilder(Opcode) 1516 .addReg(MI->getOperand(0).getReg()) 1517 .addReg(ARM::PC) 1518 .addReg(MI->getOperand(1).getReg()) 1519 .addImm(0) 1520 // Add predicate operands. 1521 .addImm(MI->getOperand(3).getImm()) 1522 .addReg(MI->getOperand(4).getReg())); 1523 1524 return; 1525 } 1526 case ARM::CONSTPOOL_ENTRY: { 1527 /// CONSTPOOL_ENTRY - This instruction represents a floating constant pool 1528 /// in the function. The first operand is the ID# for this instruction, the 1529 /// second is the index into the MachineConstantPool that this is, the third 1530 /// is the size in bytes of this constant pool entry. 1531 /// The required alignment is specified on the basic block holding this MI. 1532 unsigned LabelId = (unsigned)MI->getOperand(0).getImm(); 1533 unsigned CPIdx = (unsigned)MI->getOperand(1).getIndex(); 1534 1535 // If this is the first entry of the pool, mark it. 1536 if (!InConstantPool) { 1537 OutStreamer->EmitDataRegion(MCDR_DataRegion); 1538 InConstantPool = true; 1539 } 1540 1541 OutStreamer->EmitLabel(GetCPISymbol(LabelId)); 1542 1543 const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPIdx]; 1544 if (MCPE.isMachineConstantPoolEntry()) 1545 EmitMachineConstantPoolValue(MCPE.Val.MachineCPVal); 1546 else 1547 EmitGlobalConstant(DL, MCPE.Val.ConstVal); 1548 return; 1549 } 1550 case ARM::JUMPTABLE_ADDRS: 1551 EmitJumpTableAddrs(MI); 1552 return; 1553 case ARM::JUMPTABLE_INSTS: 1554 EmitJumpTableInsts(MI); 1555 return; 1556 case ARM::JUMPTABLE_TBB: 1557 case ARM::JUMPTABLE_TBH: 1558 EmitJumpTableTBInst(MI, MI->getOpcode() == ARM::JUMPTABLE_TBB ? 1 : 2); 1559 return; 1560 case ARM::t2BR_JT: { 1561 // Lower and emit the instruction itself, then the jump table following it. 1562 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVr) 1563 .addReg(ARM::PC) 1564 .addReg(MI->getOperand(0).getReg()) 1565 // Add predicate operands. 1566 .addImm(ARMCC::AL) 1567 .addReg(0)); 1568 return; 1569 } 1570 case ARM::t2TBB_JT: 1571 case ARM::t2TBH_JT: { 1572 unsigned Opc = MI->getOpcode() == ARM::t2TBB_JT ? ARM::t2TBB : ARM::t2TBH; 1573 // Lower and emit the PC label, then the instruction itself. 1574 OutStreamer->EmitLabel(GetCPISymbol(MI->getOperand(3).getImm())); 1575 EmitToStreamer(*OutStreamer, MCInstBuilder(Opc) 1576 .addReg(MI->getOperand(0).getReg()) 1577 .addReg(MI->getOperand(1).getReg()) 1578 // Add predicate operands. 1579 .addImm(ARMCC::AL) 1580 .addReg(0)); 1581 return; 1582 } 1583 case ARM::tBR_JTr: 1584 case ARM::BR_JTr: { 1585 // Lower and emit the instruction itself, then the jump table following it. 1586 // mov pc, target 1587 MCInst TmpInst; 1588 unsigned Opc = MI->getOpcode() == ARM::BR_JTr ? 1589 ARM::MOVr : ARM::tMOVr; 1590 TmpInst.setOpcode(Opc); 1591 TmpInst.addOperand(MCOperand::createReg(ARM::PC)); 1592 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1593 // Add predicate operands. 1594 TmpInst.addOperand(MCOperand::createImm(ARMCC::AL)); 1595 TmpInst.addOperand(MCOperand::createReg(0)); 1596 // Add 's' bit operand (always reg0 for this) 1597 if (Opc == ARM::MOVr) 1598 TmpInst.addOperand(MCOperand::createReg(0)); 1599 EmitToStreamer(*OutStreamer, TmpInst); 1600 return; 1601 } 1602 case ARM::BR_JTm: { 1603 // Lower and emit the instruction itself, then the jump table following it. 1604 // ldr pc, target 1605 MCInst TmpInst; 1606 if (MI->getOperand(1).getReg() == 0) { 1607 // literal offset 1608 TmpInst.setOpcode(ARM::LDRi12); 1609 TmpInst.addOperand(MCOperand::createReg(ARM::PC)); 1610 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1611 TmpInst.addOperand(MCOperand::createImm(MI->getOperand(2).getImm())); 1612 } else { 1613 TmpInst.setOpcode(ARM::LDRrs); 1614 TmpInst.addOperand(MCOperand::createReg(ARM::PC)); 1615 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(0).getReg())); 1616 TmpInst.addOperand(MCOperand::createReg(MI->getOperand(1).getReg())); 1617 TmpInst.addOperand(MCOperand::createImm(0)); 1618 } 1619 // Add predicate operands. 1620 TmpInst.addOperand(MCOperand::createImm(ARMCC::AL)); 1621 TmpInst.addOperand(MCOperand::createReg(0)); 1622 EmitToStreamer(*OutStreamer, TmpInst); 1623 return; 1624 } 1625 case ARM::BR_JTadd: { 1626 // Lower and emit the instruction itself, then the jump table following it. 1627 // add pc, target, idx 1628 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDrr) 1629 .addReg(ARM::PC) 1630 .addReg(MI->getOperand(0).getReg()) 1631 .addReg(MI->getOperand(1).getReg()) 1632 // Add predicate operands. 1633 .addImm(ARMCC::AL) 1634 .addReg(0) 1635 // Add 's' bit operand (always reg0 for this) 1636 .addReg(0)); 1637 return; 1638 } 1639 case ARM::SPACE: 1640 OutStreamer->EmitZeros(MI->getOperand(1).getImm()); 1641 return; 1642 case ARM::TRAP: { 1643 // Non-Darwin binutils don't yet support the "trap" mnemonic. 1644 // FIXME: Remove this special case when they do. 1645 if (!Subtarget->isTargetMachO()) { 1646 //.long 0xe7ffdefe @ trap 1647 uint32_t Val = 0xe7ffdefeUL; 1648 OutStreamer->AddComment("trap"); 1649 OutStreamer->EmitIntValue(Val, 4); 1650 return; 1651 } 1652 break; 1653 } 1654 case ARM::TRAPNaCl: { 1655 //.long 0xe7fedef0 @ trap 1656 uint32_t Val = 0xe7fedef0UL; 1657 OutStreamer->AddComment("trap"); 1658 OutStreamer->EmitIntValue(Val, 4); 1659 return; 1660 } 1661 case ARM::tTRAP: { 1662 // Non-Darwin binutils don't yet support the "trap" mnemonic. 1663 // FIXME: Remove this special case when they do. 1664 if (!Subtarget->isTargetMachO()) { 1665 //.short 57086 @ trap 1666 uint16_t Val = 0xdefe; 1667 OutStreamer->AddComment("trap"); 1668 OutStreamer->EmitIntValue(Val, 2); 1669 return; 1670 } 1671 break; 1672 } 1673 case ARM::t2Int_eh_sjlj_setjmp: 1674 case ARM::t2Int_eh_sjlj_setjmp_nofp: 1675 case ARM::tInt_eh_sjlj_setjmp: { 1676 // Two incoming args: GPR:$src, GPR:$val 1677 // mov $val, pc 1678 // adds $val, #7 1679 // str $val, [$src, #4] 1680 // movs r0, #0 1681 // b LSJLJEH 1682 // movs r0, #1 1683 // LSJLJEH: 1684 unsigned SrcReg = MI->getOperand(0).getReg(); 1685 unsigned ValReg = MI->getOperand(1).getReg(); 1686 MCSymbol *Label = OutContext.createTempSymbol("SJLJEH", false, true); 1687 OutStreamer->AddComment("eh_setjmp begin"); 1688 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVr) 1689 .addReg(ValReg) 1690 .addReg(ARM::PC) 1691 // Predicate. 1692 .addImm(ARMCC::AL) 1693 .addReg(0)); 1694 1695 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tADDi3) 1696 .addReg(ValReg) 1697 // 's' bit operand 1698 .addReg(ARM::CPSR) 1699 .addReg(ValReg) 1700 .addImm(7) 1701 // Predicate. 1702 .addImm(ARMCC::AL) 1703 .addReg(0)); 1704 1705 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tSTRi) 1706 .addReg(ValReg) 1707 .addReg(SrcReg) 1708 // The offset immediate is #4. The operand value is scaled by 4 for the 1709 // tSTR instruction. 1710 .addImm(1) 1711 // Predicate. 1712 .addImm(ARMCC::AL) 1713 .addReg(0)); 1714 1715 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVi8) 1716 .addReg(ARM::R0) 1717 .addReg(ARM::CPSR) 1718 .addImm(0) 1719 // Predicate. 1720 .addImm(ARMCC::AL) 1721 .addReg(0)); 1722 1723 const MCExpr *SymbolExpr = MCSymbolRefExpr::create(Label, OutContext); 1724 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tB) 1725 .addExpr(SymbolExpr) 1726 .addImm(ARMCC::AL) 1727 .addReg(0)); 1728 1729 OutStreamer->AddComment("eh_setjmp end"); 1730 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVi8) 1731 .addReg(ARM::R0) 1732 .addReg(ARM::CPSR) 1733 .addImm(1) 1734 // Predicate. 1735 .addImm(ARMCC::AL) 1736 .addReg(0)); 1737 1738 OutStreamer->EmitLabel(Label); 1739 return; 1740 } 1741 1742 case ARM::Int_eh_sjlj_setjmp_nofp: 1743 case ARM::Int_eh_sjlj_setjmp: { 1744 // Two incoming args: GPR:$src, GPR:$val 1745 // add $val, pc, #8 1746 // str $val, [$src, #+4] 1747 // mov r0, #0 1748 // add pc, pc, #0 1749 // mov r0, #1 1750 unsigned SrcReg = MI->getOperand(0).getReg(); 1751 unsigned ValReg = MI->getOperand(1).getReg(); 1752 1753 OutStreamer->AddComment("eh_setjmp begin"); 1754 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDri) 1755 .addReg(ValReg) 1756 .addReg(ARM::PC) 1757 .addImm(8) 1758 // Predicate. 1759 .addImm(ARMCC::AL) 1760 .addReg(0) 1761 // 's' bit operand (always reg0 for this). 1762 .addReg(0)); 1763 1764 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::STRi12) 1765 .addReg(ValReg) 1766 .addReg(SrcReg) 1767 .addImm(4) 1768 // Predicate. 1769 .addImm(ARMCC::AL) 1770 .addReg(0)); 1771 1772 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVi) 1773 .addReg(ARM::R0) 1774 .addImm(0) 1775 // Predicate. 1776 .addImm(ARMCC::AL) 1777 .addReg(0) 1778 // 's' bit operand (always reg0 for this). 1779 .addReg(0)); 1780 1781 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::ADDri) 1782 .addReg(ARM::PC) 1783 .addReg(ARM::PC) 1784 .addImm(0) 1785 // Predicate. 1786 .addImm(ARMCC::AL) 1787 .addReg(0) 1788 // 's' bit operand (always reg0 for this). 1789 .addReg(0)); 1790 1791 OutStreamer->AddComment("eh_setjmp end"); 1792 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::MOVi) 1793 .addReg(ARM::R0) 1794 .addImm(1) 1795 // Predicate. 1796 .addImm(ARMCC::AL) 1797 .addReg(0) 1798 // 's' bit operand (always reg0 for this). 1799 .addReg(0)); 1800 return; 1801 } 1802 case ARM::Int_eh_sjlj_longjmp: { 1803 // ldr sp, [$src, #8] 1804 // ldr $scratch, [$src, #4] 1805 // ldr r7, [$src] 1806 // bx $scratch 1807 unsigned SrcReg = MI->getOperand(0).getReg(); 1808 unsigned ScratchReg = MI->getOperand(1).getReg(); 1809 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12) 1810 .addReg(ARM::SP) 1811 .addReg(SrcReg) 1812 .addImm(8) 1813 // Predicate. 1814 .addImm(ARMCC::AL) 1815 .addReg(0)); 1816 1817 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12) 1818 .addReg(ScratchReg) 1819 .addReg(SrcReg) 1820 .addImm(4) 1821 // Predicate. 1822 .addImm(ARMCC::AL) 1823 .addReg(0)); 1824 1825 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::LDRi12) 1826 .addReg(ARM::R7) 1827 .addReg(SrcReg) 1828 .addImm(0) 1829 // Predicate. 1830 .addImm(ARMCC::AL) 1831 .addReg(0)); 1832 1833 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::BX) 1834 .addReg(ScratchReg) 1835 // Predicate. 1836 .addImm(ARMCC::AL) 1837 .addReg(0)); 1838 return; 1839 } 1840 case ARM::tInt_eh_sjlj_longjmp: { 1841 // ldr $scratch, [$src, #8] 1842 // mov sp, $scratch 1843 // ldr $scratch, [$src, #4] 1844 // ldr r7, [$src] 1845 // bx $scratch 1846 unsigned SrcReg = MI->getOperand(0).getReg(); 1847 unsigned ScratchReg = MI->getOperand(1).getReg(); 1848 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi) 1849 .addReg(ScratchReg) 1850 .addReg(SrcReg) 1851 // The offset immediate is #8. The operand value is scaled by 4 for the 1852 // tLDR instruction. 1853 .addImm(2) 1854 // Predicate. 1855 .addImm(ARMCC::AL) 1856 .addReg(0)); 1857 1858 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tMOVr) 1859 .addReg(ARM::SP) 1860 .addReg(ScratchReg) 1861 // Predicate. 1862 .addImm(ARMCC::AL) 1863 .addReg(0)); 1864 1865 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi) 1866 .addReg(ScratchReg) 1867 .addReg(SrcReg) 1868 .addImm(1) 1869 // Predicate. 1870 .addImm(ARMCC::AL) 1871 .addReg(0)); 1872 1873 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tLDRi) 1874 .addReg(ARM::R7) 1875 .addReg(SrcReg) 1876 .addImm(0) 1877 // Predicate. 1878 .addImm(ARMCC::AL) 1879 .addReg(0)); 1880 1881 EmitToStreamer(*OutStreamer, MCInstBuilder(ARM::tBX) 1882 .addReg(ScratchReg) 1883 // Predicate. 1884 .addImm(ARMCC::AL) 1885 .addReg(0)); 1886 return; 1887 } 1888 } 1889 1890 MCInst TmpInst; 1891 LowerARMMachineInstrToMCInst(MI, TmpInst, *this); 1892 1893 EmitToStreamer(*OutStreamer, TmpInst); 1894 } 1895 1896 //===----------------------------------------------------------------------===// 1897 // Target Registry Stuff 1898 //===----------------------------------------------------------------------===// 1899 1900 // Force static initialization. 1901 extern "C" void LLVMInitializeARMAsmPrinter() { 1902 RegisterAsmPrinter<ARMAsmPrinter> X(TheARMLETarget); 1903 RegisterAsmPrinter<ARMAsmPrinter> Y(TheARMBETarget); 1904 RegisterAsmPrinter<ARMAsmPrinter> A(TheThumbLETarget); 1905 RegisterAsmPrinter<ARMAsmPrinter> B(TheThumbBETarget); 1906 } 1907