1 //===--- HexagonExpandCondsets.cpp ----------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 // Replace mux instructions with the corresponding legal instructions. 11 // It is meant to work post-SSA, but still on virtual registers. It was 12 // originally placed between register coalescing and machine instruction 13 // scheduler. 14 // In this place in the optimization sequence, live interval analysis had 15 // been performed, and the live intervals should be preserved. A large part 16 // of the code deals with preserving the liveness information. 17 // 18 // Liveness tracking aside, the main functionality of this pass is divided 19 // into two steps. The first step is to replace an instruction 20 // vreg0 = C2_mux vreg0, vreg1, vreg2 21 // with a pair of conditional transfers 22 // vreg0 = A2_tfrt vreg0, vreg1 23 // vreg0 = A2_tfrf vreg0, vreg2 24 // It is the intention that the execution of this pass could be terminated 25 // after this step, and the code generated would be functionally correct. 26 // 27 // If the uses of the source values vreg1 and vreg2 are kills, and their 28 // definitions are predicable, then in the second step, the conditional 29 // transfers will then be rewritten as predicated instructions. E.g. 30 // vreg0 = A2_or vreg1, vreg2 31 // vreg3 = A2_tfrt vreg99, vreg0<kill> 32 // will be rewritten as 33 // vreg3 = A2_port vreg99, vreg1, vreg2 34 // 35 // This replacement has two variants: "up" and "down". Consider this case: 36 // vreg0 = A2_or vreg1, vreg2 37 // ... [intervening instructions] ... 38 // vreg3 = A2_tfrt vreg99, vreg0<kill> 39 // variant "up": 40 // vreg3 = A2_port vreg99, vreg1, vreg2 41 // ... [intervening instructions, vreg0->vreg3] ... 42 // [deleted] 43 // variant "down": 44 // [deleted] 45 // ... [intervening instructions] ... 46 // vreg3 = A2_port vreg99, vreg1, vreg2 47 // 48 // Both, one or none of these variants may be valid, and checks are made 49 // to rule out inapplicable variants. 50 // 51 // As an additional optimization, before either of the two steps above is 52 // executed, the pass attempts to coalesce the target register with one of 53 // the source registers, e.g. given an instruction 54 // vreg3 = C2_mux vreg0, vreg1, vreg2 55 // vreg3 will be coalesced with either vreg1 or vreg2. If this succeeds, 56 // the instruction would then be (for example) 57 // vreg3 = C2_mux vreg0, vreg3, vreg2 58 // and, under certain circumstances, this could result in only one predicated 59 // instruction: 60 // vreg3 = A2_tfrf vreg0, vreg2 61 // 62 63 #define DEBUG_TYPE "expand-condsets" 64 #include "HexagonTargetMachine.h" 65 66 #include "llvm/CodeGen/Passes.h" 67 #include "llvm/CodeGen/LiveInterval.h" 68 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 69 #include "llvm/CodeGen/MachineFunction.h" 70 #include "llvm/CodeGen/MachineInstrBuilder.h" 71 #include "llvm/CodeGen/MachineRegisterInfo.h" 72 #include "llvm/Target/TargetInstrInfo.h" 73 #include "llvm/Target/TargetMachine.h" 74 #include "llvm/Target/TargetRegisterInfo.h" 75 #include "llvm/Support/CommandLine.h" 76 #include "llvm/Support/Debug.h" 77 #include "llvm/Support/raw_ostream.h" 78 79 using namespace llvm; 80 81 static cl::opt<unsigned> OptTfrLimit("expand-condsets-tfr-limit", 82 cl::init(~0U), cl::Hidden, cl::desc("Max number of mux expansions")); 83 static cl::opt<unsigned> OptCoaLimit("expand-condsets-coa-limit", 84 cl::init(~0U), cl::Hidden, cl::desc("Max number of segment coalescings")); 85 86 namespace llvm { 87 void initializeHexagonExpandCondsetsPass(PassRegistry&); 88 FunctionPass *createHexagonExpandCondsets(); 89 } 90 91 namespace { 92 class HexagonExpandCondsets : public MachineFunctionPass { 93 public: 94 static char ID; 95 HexagonExpandCondsets() : 96 MachineFunctionPass(ID), HII(0), TRI(0), MRI(0), 97 LIS(0), CoaLimitActive(false), 98 TfrLimitActive(false), CoaCounter(0), TfrCounter(0) { 99 if (OptCoaLimit.getPosition()) 100 CoaLimitActive = true, CoaLimit = OptCoaLimit; 101 if (OptTfrLimit.getPosition()) 102 TfrLimitActive = true, TfrLimit = OptTfrLimit; 103 initializeHexagonExpandCondsetsPass(*PassRegistry::getPassRegistry()); 104 } 105 106 virtual const char *getPassName() const { 107 return "Hexagon Expand Condsets"; 108 } 109 virtual void getAnalysisUsage(AnalysisUsage &AU) const { 110 AU.addRequired<LiveIntervals>(); 111 AU.addPreserved<LiveIntervals>(); 112 AU.addPreserved<SlotIndexes>(); 113 MachineFunctionPass::getAnalysisUsage(AU); 114 } 115 virtual bool runOnMachineFunction(MachineFunction &MF); 116 117 private: 118 const HexagonInstrInfo *HII; 119 const TargetRegisterInfo *TRI; 120 MachineRegisterInfo *MRI; 121 LiveIntervals *LIS; 122 123 bool CoaLimitActive, TfrLimitActive; 124 unsigned CoaLimit, TfrLimit, CoaCounter, TfrCounter; 125 126 struct RegisterRef { 127 RegisterRef(const MachineOperand &Op) : Reg(Op.getReg()), 128 Sub(Op.getSubReg()) {} 129 RegisterRef(unsigned R = 0, unsigned S = 0) : Reg(R), Sub(S) {} 130 bool operator== (RegisterRef RR) const { 131 return Reg == RR.Reg && Sub == RR.Sub; 132 } 133 bool operator!= (RegisterRef RR) const { return !operator==(RR); } 134 unsigned Reg, Sub; 135 }; 136 137 typedef DenseMap<unsigned,unsigned> ReferenceMap; 138 enum { Sub_Low = 0x1, Sub_High = 0x2, Sub_None = (Sub_Low | Sub_High) }; 139 enum { Exec_Then = 0x10, Exec_Else = 0x20 }; 140 unsigned getMaskForSub(unsigned Sub); 141 bool isCondset(const MachineInstr *MI); 142 143 void addRefToMap(RegisterRef RR, ReferenceMap &Map, unsigned Exec); 144 bool isRefInMap(RegisterRef, ReferenceMap &Map, unsigned Exec); 145 146 LiveInterval::iterator nextSegment(LiveInterval &LI, SlotIndex S); 147 LiveInterval::iterator prevSegment(LiveInterval &LI, SlotIndex S); 148 void makeDefined(unsigned Reg, SlotIndex S, bool SetDef); 149 void makeUndead(unsigned Reg, SlotIndex S); 150 void shrinkToUses(unsigned Reg, LiveInterval &LI); 151 void updateKillFlags(unsigned Reg, LiveInterval &LI); 152 void terminateSegment(LiveInterval::iterator LT, SlotIndex S, 153 LiveInterval &LI); 154 void addInstrToLiveness(MachineInstr *MI); 155 void removeInstrFromLiveness(MachineInstr *MI); 156 157 unsigned getCondTfrOpcode(const MachineOperand &SO, bool Cond); 158 MachineInstr *genTfrFor(MachineOperand &SrcOp, unsigned DstR, 159 unsigned DstSR, const MachineOperand &PredOp, bool Cond); 160 bool split(MachineInstr *MI); 161 bool splitInBlock(MachineBasicBlock &B); 162 163 bool isPredicable(MachineInstr *MI); 164 MachineInstr *getReachingDefForPred(RegisterRef RD, 165 MachineBasicBlock::iterator UseIt, unsigned PredR, bool Cond); 166 bool canMoveOver(MachineInstr *MI, ReferenceMap &Defs, ReferenceMap &Uses); 167 bool canMoveMemTo(MachineInstr *MI, MachineInstr *ToI, bool IsDown); 168 void predicateAt(RegisterRef RD, MachineInstr *MI, 169 MachineBasicBlock::iterator Where, unsigned PredR, bool Cond); 170 void renameInRange(RegisterRef RO, RegisterRef RN, unsigned PredR, 171 bool Cond, MachineBasicBlock::iterator First, 172 MachineBasicBlock::iterator Last); 173 bool predicate(MachineInstr *TfrI, bool Cond); 174 bool predicateInBlock(MachineBasicBlock &B); 175 176 void postprocessUndefImplicitUses(MachineBasicBlock &B); 177 void removeImplicitUses(MachineInstr *MI); 178 void removeImplicitUses(MachineBasicBlock &B); 179 180 bool isIntReg(RegisterRef RR, unsigned &BW); 181 bool isIntraBlocks(LiveInterval &LI); 182 bool coalesceRegisters(RegisterRef R1, RegisterRef R2); 183 bool coalesceSegments(MachineFunction &MF); 184 }; 185 } 186 187 char HexagonExpandCondsets::ID = 0; 188 189 190 unsigned HexagonExpandCondsets::getMaskForSub(unsigned Sub) { 191 switch (Sub) { 192 case Hexagon::subreg_loreg: 193 return Sub_Low; 194 case Hexagon::subreg_hireg: 195 return Sub_High; 196 case Hexagon::NoSubRegister: 197 return Sub_None; 198 } 199 llvm_unreachable("Invalid subregister"); 200 } 201 202 203 bool HexagonExpandCondsets::isCondset(const MachineInstr *MI) { 204 unsigned Opc = MI->getOpcode(); 205 switch (Opc) { 206 case Hexagon::C2_mux: 207 case Hexagon::C2_muxii: 208 case Hexagon::C2_muxir: 209 case Hexagon::C2_muxri: 210 case Hexagon::MUX64_rr: 211 return true; 212 break; 213 } 214 return false; 215 } 216 217 218 void HexagonExpandCondsets::addRefToMap(RegisterRef RR, ReferenceMap &Map, 219 unsigned Exec) { 220 unsigned Mask = getMaskForSub(RR.Sub) | Exec; 221 ReferenceMap::iterator F = Map.find(RR.Reg); 222 if (F == Map.end()) 223 Map.insert(std::make_pair(RR.Reg, Mask)); 224 else 225 F->second |= Mask; 226 } 227 228 229 bool HexagonExpandCondsets::isRefInMap(RegisterRef RR, ReferenceMap &Map, 230 unsigned Exec) { 231 ReferenceMap::iterator F = Map.find(RR.Reg); 232 if (F == Map.end()) 233 return false; 234 unsigned Mask = getMaskForSub(RR.Sub) | Exec; 235 if (Mask & F->second) 236 return true; 237 return false; 238 } 239 240 241 LiveInterval::iterator HexagonExpandCondsets::nextSegment(LiveInterval &LI, 242 SlotIndex S) { 243 for (LiveInterval::iterator I = LI.begin(), E = LI.end(); I != E; ++I) { 244 if (I->start >= S) 245 return I; 246 } 247 return LI.end(); 248 } 249 250 251 LiveInterval::iterator HexagonExpandCondsets::prevSegment(LiveInterval &LI, 252 SlotIndex S) { 253 LiveInterval::iterator P = LI.end(); 254 for (LiveInterval::iterator I = LI.begin(), E = LI.end(); I != E; ++I) { 255 if (I->end > S) 256 return P; 257 P = I; 258 } 259 return P; 260 } 261 262 263 /// Find the implicit use of register Reg in slot index S, and make sure 264 /// that the "defined" flag is set to SetDef. While the mux expansion is 265 /// going on, predicated instructions will have implicit uses of the 266 /// registers that are being defined. This is to keep any preceding 267 /// definitions live. If there is no preceding definition, the implicit 268 /// use will be marked as "undef", otherwise it will be "defined". This 269 /// function is used to update the flag. 270 void HexagonExpandCondsets::makeDefined(unsigned Reg, SlotIndex S, 271 bool SetDef) { 272 if (!S.isRegister()) 273 return; 274 MachineInstr *MI = LIS->getInstructionFromIndex(S); 275 assert(MI && "Expecting instruction"); 276 for (auto &Op : MI->operands()) { 277 if (!Op.isReg() || !Op.isUse() || Op.getReg() != Reg) 278 continue; 279 bool IsDef = !Op.isUndef(); 280 if (Op.isImplicit() && IsDef != SetDef) 281 Op.setIsUndef(!SetDef); 282 } 283 } 284 285 286 void HexagonExpandCondsets::makeUndead(unsigned Reg, SlotIndex S) { 287 // If S is a block boundary, then there can still be a dead def reaching 288 // this point. Instead of traversing the CFG, queue start points of all 289 // live segments that begin with a register, and end at a block boundary. 290 // This may "resurrect" some truly dead definitions, but doing so is 291 // harmless. 292 SmallVector<MachineInstr*,8> Defs; 293 if (S.isBlock()) { 294 LiveInterval &LI = LIS->getInterval(Reg); 295 for (LiveInterval::iterator I = LI.begin(), E = LI.end(); I != E; ++I) { 296 if (!I->start.isRegister() || !I->end.isBlock()) 297 continue; 298 MachineInstr *MI = LIS->getInstructionFromIndex(I->start); 299 Defs.push_back(MI); 300 } 301 } else if (S.isRegister()) { 302 MachineInstr *MI = LIS->getInstructionFromIndex(S); 303 Defs.push_back(MI); 304 } 305 306 for (unsigned i = 0, n = Defs.size(); i < n; ++i) { 307 MachineInstr *MI = Defs[i]; 308 for (auto &Op : MI->operands()) { 309 if (!Op.isReg() || !Op.isDef() || Op.getReg() != Reg) 310 continue; 311 Op.setIsDead(false); 312 } 313 } 314 } 315 316 317 /// Shrink the segments in the live interval for a given register to the last 318 /// use before each subsequent def. Unlike LiveIntervals::shrinkToUses, this 319 /// function will not mark any definitions of Reg as dead. The reason for this 320 /// is that this function is used while a MUX instruction is being expanded, 321 /// or while a conditional copy is undergoing predication. During these 322 /// processes, there may be defs present in the instruction sequence that have 323 /// not yet been removed, or there may be missing uses that have not yet been 324 /// added. We want to utilize LiveIntervals::shrinkToUses as much as possible, 325 /// but since it does not extend any intervals that are too short, we need to 326 /// pre-emptively extend them here in anticipation of further changes. 327 void HexagonExpandCondsets::shrinkToUses(unsigned Reg, LiveInterval &LI) { 328 SmallVector<MachineInstr*,4> Deads; 329 LIS->shrinkToUses(&LI, &Deads); 330 // Need to undo the deadification made by "shrinkToUses". It's easier to 331 // do it here, since we have a list of all instructions that were just 332 // marked as dead. 333 for (unsigned i = 0, n = Deads.size(); i < n; ++i) { 334 MachineInstr *MI = Deads[i]; 335 // Clear the "dead" flag. 336 for (auto &Op : MI->operands()) { 337 if (!Op.isReg() || !Op.isDef() || Op.getReg() != Reg) 338 continue; 339 Op.setIsDead(false); 340 } 341 // Extend the live segment to the beginning of the next one. 342 LiveInterval::iterator End = LI.end(); 343 SlotIndex S = LIS->getInstructionIndex(MI).getRegSlot(); 344 LiveInterval::iterator T = LI.FindSegmentContaining(S); 345 assert(T != End); 346 LiveInterval::iterator N = std::next(T); 347 if (N != End) 348 T->end = N->start; 349 else 350 T->end = LIS->getMBBEndIdx(MI->getParent()); 351 } 352 updateKillFlags(Reg, LI); 353 } 354 355 356 /// Given an updated live interval LI for register Reg, update the kill flags 357 /// in instructions using Reg to reflect the liveness changes. 358 void HexagonExpandCondsets::updateKillFlags(unsigned Reg, LiveInterval &LI) { 359 MRI->clearKillFlags(Reg); 360 for (LiveInterval::iterator I = LI.begin(), E = LI.end(); I != E; ++I) { 361 SlotIndex EX = I->end; 362 if (!EX.isRegister()) 363 continue; 364 MachineInstr *MI = LIS->getInstructionFromIndex(EX); 365 for (auto &Op : MI->operands()) { 366 if (!Op.isReg() || !Op.isUse() || Op.getReg() != Reg) 367 continue; 368 // Only set the kill flag on the first encountered use of Reg in this 369 // instruction. 370 Op.setIsKill(true); 371 break; 372 } 373 } 374 } 375 376 377 /// When adding a new instruction to liveness, the newly added definition 378 /// will start a new live segment. This may happen at a position that falls 379 /// within an existing live segment. In such case that live segment needs to 380 /// be truncated to make room for the new segment. Ultimately, the truncation 381 /// will occur at the last use, but for now the segment can be terminated 382 /// right at the place where the new segment will start. The segments will be 383 /// shrunk-to-uses later. 384 void HexagonExpandCondsets::terminateSegment(LiveInterval::iterator LT, 385 SlotIndex S, LiveInterval &LI) { 386 // Terminate the live segment pointed to by LT within a live interval LI. 387 if (LT == LI.end()) 388 return; 389 390 VNInfo *OldVN = LT->valno; 391 SlotIndex EX = LT->end; 392 LT->end = S; 393 // If LT does not end at a block boundary, the termination is done. 394 if (!EX.isBlock()) 395 return; 396 397 // If LT ended at a block boundary, it's possible that its value number 398 // is picked up at the beginning other blocks. Create a new value number 399 // and change such blocks to use it instead. 400 VNInfo *NewVN = 0; 401 for (LiveInterval::iterator I = LI.begin(), E = LI.end(); I != E; ++I) { 402 if (!I->start.isBlock() || I->valno != OldVN) 403 continue; 404 // Generate on-demand a new value number that is defined by the 405 // block beginning (i.e. -phi). 406 if (!NewVN) 407 NewVN = LI.getNextValue(I->start, LIS->getVNInfoAllocator()); 408 I->valno = NewVN; 409 } 410 } 411 412 413 /// Add the specified instruction to live intervals. This function is used 414 /// to update the live intervals while the program code is being changed. 415 /// Neither the expansion of a MUX, nor the predication are atomic, and this 416 /// function is used to update the live intervals while these transformations 417 /// are being done. 418 void HexagonExpandCondsets::addInstrToLiveness(MachineInstr *MI) { 419 SlotIndex MX = LIS->isNotInMIMap(MI) ? LIS->InsertMachineInstrInMaps(MI) 420 : LIS->getInstructionIndex(MI); 421 DEBUG(dbgs() << "adding liveness info for instr\n " << MX << " " << *MI); 422 423 MX = MX.getRegSlot(); 424 bool Predicated = HII->isPredicated(MI); 425 MachineBasicBlock *MB = MI->getParent(); 426 427 // Strip all implicit uses from predicated instructions. They will be 428 // added again, according to the updated information. 429 if (Predicated) 430 removeImplicitUses(MI); 431 432 // For each def in MI we need to insert a new live segment starting at MX 433 // into the interval. If there already exists a live segment in the interval 434 // that contains MX, we need to terminate it at MX. 435 SmallVector<RegisterRef,2> Defs; 436 for (auto &Op : MI->operands()) 437 if (Op.isReg() && Op.isDef()) 438 Defs.push_back(RegisterRef(Op)); 439 440 for (unsigned i = 0, n = Defs.size(); i < n; ++i) { 441 unsigned DefR = Defs[i].Reg; 442 LiveInterval &LID = LIS->getInterval(DefR); 443 DEBUG(dbgs() << "adding def " << PrintReg(DefR, TRI) 444 << " with interval\n " << LID << "\n"); 445 // If MX falls inside of an existing live segment, terminate it. 446 LiveInterval::iterator LT = LID.FindSegmentContaining(MX); 447 if (LT != LID.end()) 448 terminateSegment(LT, MX, LID); 449 DEBUG(dbgs() << "after terminating segment\n " << LID << "\n"); 450 451 // Create a new segment starting from MX. 452 LiveInterval::iterator P = prevSegment(LID, MX), N = nextSegment(LID, MX); 453 SlotIndex EX; 454 VNInfo *VN = LID.getNextValue(MX, LIS->getVNInfoAllocator()); 455 if (N == LID.end()) { 456 // There is no live segment after MX. End this segment at the end of 457 // the block. 458 EX = LIS->getMBBEndIdx(MB); 459 } else { 460 // If the next segment starts at the block boundary, end the new segment 461 // at the boundary of the preceding block (i.e. the previous index). 462 // Otherwise, end the segment at the beginning of the next segment. In 463 // either case it will be "shrunk-to-uses" later. 464 EX = N->start.isBlock() ? N->start.getPrevIndex() : N->start; 465 } 466 if (Predicated) { 467 // Predicated instruction will have an implicit use of the defined 468 // register. This is necessary so that this definition will not make 469 // any previous definitions dead. If there are no previous live 470 // segments, still add the implicit use, but make it "undef". 471 // Because of the implicit use, the preceding definition is not 472 // dead. Mark is as such (if necessary). 473 MachineOperand ImpUse = MachineOperand::CreateReg(DefR, false, true); 474 ImpUse.setSubReg(Defs[i].Sub); 475 bool Undef = false; 476 if (P == LID.end()) 477 Undef = true; 478 else { 479 // If the previous segment extends to the end of the previous block, 480 // the end index may actually be the beginning of this block. If 481 // the previous segment ends at a block boundary, move it back by one, 482 // to get the proper block for it. 483 SlotIndex PE = P->end.isBlock() ? P->end.getPrevIndex() : P->end; 484 MachineBasicBlock *PB = LIS->getMBBFromIndex(PE); 485 if (PB != MB && !LIS->isLiveInToMBB(LID, MB)) 486 Undef = true; 487 } 488 if (!Undef) { 489 makeUndead(DefR, P->valno->def); 490 // We are adding a live use, so extend the previous segment to 491 // include it. 492 P->end = MX; 493 } else { 494 ImpUse.setIsUndef(true); 495 } 496 497 if (!MI->readsRegister(DefR)) 498 MI->addOperand(ImpUse); 499 if (N != LID.end()) 500 makeDefined(DefR, N->start, true); 501 } 502 LiveRange::Segment NR = LiveRange::Segment(MX, EX, VN); 503 LID.addSegment(NR); 504 DEBUG(dbgs() << "added a new segment " << NR << "\n " << LID << "\n"); 505 shrinkToUses(DefR, LID); 506 DEBUG(dbgs() << "updated imp-uses: " << *MI); 507 LID.verify(); 508 } 509 510 // For each use in MI: 511 // - If there is no live segment that contains MX for the used register, 512 // extend the previous one. Ignore implicit uses. 513 for (auto &Op : MI->operands()) { 514 if (!Op.isReg() || !Op.isUse() || Op.isImplicit() || Op.isUndef()) 515 continue; 516 unsigned UseR = Op.getReg(); 517 LiveInterval &LIU = LIS->getInterval(UseR); 518 // Find the last segment P that starts before MX. 519 LiveInterval::iterator P = LIU.FindSegmentContaining(MX); 520 if (P == LIU.end()) 521 P = prevSegment(LIU, MX); 522 523 assert(P != LIU.end() && "MI uses undefined register?"); 524 SlotIndex EX = P->end; 525 // If P contains MX, there is not much to do. 526 if (EX > MX) { 527 Op.setIsKill(false); 528 continue; 529 } 530 // Otherwise, extend P to "next(MX)". 531 P->end = MX.getNextIndex(); 532 Op.setIsKill(true); 533 // Get the old "kill" instruction, and remove the kill flag. 534 if (MachineInstr *KI = LIS->getInstructionFromIndex(MX)) 535 KI->clearRegisterKills(UseR, nullptr); 536 shrinkToUses(UseR, LIU); 537 LIU.verify(); 538 } 539 } 540 541 542 /// Update the live interval information to reflect the removal of the given 543 /// instruction from the program. As with "addInstrToLiveness", this function 544 /// is called while the program code is being changed. 545 void HexagonExpandCondsets::removeInstrFromLiveness(MachineInstr *MI) { 546 SlotIndex MX = LIS->getInstructionIndex(MI).getRegSlot(); 547 DEBUG(dbgs() << "removing instr\n " << MX << " " << *MI); 548 549 // For each def in MI: 550 // If MI starts a live segment, merge this segment with the previous segment. 551 // 552 for (auto &Op : MI->operands()) { 553 if (!Op.isReg() || !Op.isDef()) 554 continue; 555 unsigned DefR = Op.getReg(); 556 LiveInterval &LID = LIS->getInterval(DefR); 557 LiveInterval::iterator LT = LID.FindSegmentContaining(MX); 558 assert(LT != LID.end() && "Expecting live segments"); 559 DEBUG(dbgs() << "removing def at " << MX << " of " << PrintReg(DefR, TRI) 560 << " with interval\n " << LID << "\n"); 561 if (LT->start != MX) 562 continue; 563 564 VNInfo *MVN = LT->valno; 565 if (LT != LID.begin()) { 566 // If the current live segment is not the first, the task is easy. If 567 // the previous segment continues into the current block, extend it to 568 // the end of the current one, and merge the value numbers. 569 // Otherwise, remove the current segment, and make the end of it "undef". 570 LiveInterval::iterator P = std::prev(LT); 571 SlotIndex PE = P->end.isBlock() ? P->end.getPrevIndex() : P->end; 572 MachineBasicBlock *MB = MI->getParent(); 573 MachineBasicBlock *PB = LIS->getMBBFromIndex(PE); 574 if (PB != MB && !LIS->isLiveInToMBB(LID, MB)) { 575 makeDefined(DefR, LT->end, false); 576 LID.removeSegment(*LT); 577 } else { 578 // Make the segments adjacent, so that merge-vn can also merge the 579 // segments. 580 P->end = LT->start; 581 makeUndead(DefR, P->valno->def); 582 LID.MergeValueNumberInto(MVN, P->valno); 583 } 584 } else { 585 LiveInterval::iterator N = std::next(LT); 586 LiveInterval::iterator RmB = LT, RmE = N; 587 while (N != LID.end()) { 588 // Iterate until the first register-based definition is found 589 // (i.e. skip all block-boundary entries). 590 LiveInterval::iterator Next = std::next(N); 591 if (N->start.isRegister()) { 592 makeDefined(DefR, N->start, false); 593 break; 594 } 595 if (N->end.isRegister()) { 596 makeDefined(DefR, N->end, false); 597 RmE = Next; 598 break; 599 } 600 RmE = Next; 601 N = Next; 602 } 603 // Erase the segments in one shot to avoid invalidating iterators. 604 LID.segments.erase(RmB, RmE); 605 } 606 607 bool VNUsed = false; 608 for (LiveInterval::iterator I = LID.begin(), E = LID.end(); I != E; ++I) { 609 if (I->valno != MVN) 610 continue; 611 VNUsed = true; 612 break; 613 } 614 if (!VNUsed) 615 MVN->markUnused(); 616 617 DEBUG(dbgs() << "new interval: "); 618 if (!LID.empty()) { 619 DEBUG(dbgs() << LID << "\n"); 620 LID.verify(); 621 } else { 622 DEBUG(dbgs() << "<empty>\n"); 623 LIS->removeInterval(DefR); 624 } 625 } 626 627 // For uses there is nothing to do. The intervals will be updated via 628 // shrinkToUses. 629 SmallVector<unsigned,4> Uses; 630 for (auto &Op : MI->operands()) { 631 if (!Op.isReg() || !Op.isUse()) 632 continue; 633 unsigned R = Op.getReg(); 634 if (!TargetRegisterInfo::isVirtualRegister(R)) 635 continue; 636 Uses.push_back(R); 637 } 638 LIS->RemoveMachineInstrFromMaps(MI); 639 MI->eraseFromParent(); 640 for (unsigned i = 0, n = Uses.size(); i < n; ++i) { 641 LiveInterval &LI = LIS->getInterval(Uses[i]); 642 shrinkToUses(Uses[i], LI); 643 } 644 } 645 646 647 /// Get the opcode for a conditional transfer of the value in SO (source 648 /// operand). The condition (true/false) is given in Cond. 649 unsigned HexagonExpandCondsets::getCondTfrOpcode(const MachineOperand &SO, 650 bool Cond) { 651 using namespace Hexagon; 652 if (SO.isReg()) { 653 unsigned PhysR; 654 RegisterRef RS = SO; 655 if (TargetRegisterInfo::isVirtualRegister(RS.Reg)) { 656 const TargetRegisterClass *VC = MRI->getRegClass(RS.Reg); 657 assert(VC->begin() != VC->end() && "Empty register class"); 658 PhysR = *VC->begin(); 659 } else { 660 assert(TargetRegisterInfo::isPhysicalRegister(RS.Reg)); 661 PhysR = RS.Reg; 662 } 663 unsigned PhysS = (RS.Sub == 0) ? PhysR : TRI->getSubReg(PhysR, RS.Sub); 664 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(PhysS); 665 switch (RC->getSize()) { 666 case 4: 667 return Cond ? A2_tfrt : A2_tfrf; 668 case 8: 669 return Cond ? A2_tfrpt : A2_tfrpf; 670 } 671 llvm_unreachable("Invalid register operand"); 672 } 673 if (SO.isImm() || SO.isFPImm()) 674 return Cond ? C2_cmoveit : C2_cmoveif; 675 llvm_unreachable("Unexpected source operand"); 676 } 677 678 679 /// Generate a conditional transfer, copying the value SrcOp to the 680 /// destination register DstR:DstSR, and using the predicate register from 681 /// PredOp. The Cond argument specifies whether the predicate is to be 682 /// if(PredOp), or if(!PredOp). 683 MachineInstr *HexagonExpandCondsets::genTfrFor(MachineOperand &SrcOp, 684 unsigned DstR, unsigned DstSR, const MachineOperand &PredOp, bool Cond) { 685 MachineInstr *MI = SrcOp.getParent(); 686 MachineBasicBlock &B = *MI->getParent(); 687 MachineBasicBlock::iterator At = MI; 688 DebugLoc DL = MI->getDebugLoc(); 689 690 // Don't avoid identity copies here (i.e. if the source and the destination 691 // are the same registers). It is actually better to generate them here, 692 // since this would cause the copy to potentially be predicated in the next 693 // step. The predication will remove such a copy if it is unable to 694 /// predicate. 695 696 unsigned Opc = getCondTfrOpcode(SrcOp, Cond); 697 MachineInstr *TfrI = BuildMI(B, At, DL, HII->get(Opc)) 698 .addReg(DstR, RegState::Define, DstSR) 699 .addOperand(PredOp) 700 .addOperand(SrcOp); 701 // We don't want any kills yet. 702 TfrI->clearKillInfo(); 703 DEBUG(dbgs() << "created an initial copy: " << *TfrI); 704 return TfrI; 705 } 706 707 708 /// Replace a MUX instruction MI with a pair A2_tfrt/A2_tfrf. This function 709 /// performs all necessary changes to complete the replacement. 710 bool HexagonExpandCondsets::split(MachineInstr *MI) { 711 if (TfrLimitActive) { 712 if (TfrCounter >= TfrLimit) 713 return false; 714 TfrCounter++; 715 } 716 DEBUG(dbgs() << "\nsplitting BB#" << MI->getParent()->getNumber() 717 << ": " << *MI); 718 MachineOperand &MD = MI->getOperand(0); // Definition 719 MachineOperand &MP = MI->getOperand(1); // Predicate register 720 assert(MD.isDef()); 721 unsigned DR = MD.getReg(), DSR = MD.getSubReg(); 722 723 // First, create the two invididual conditional transfers, and add each 724 // of them to the live intervals information. Do that first and then remove 725 // the old instruction from live intervals. 726 if (MachineInstr *TfrT = genTfrFor(MI->getOperand(2), DR, DSR, MP, true)) 727 addInstrToLiveness(TfrT); 728 if (MachineInstr *TfrF = genTfrFor(MI->getOperand(3), DR, DSR, MP, false)) 729 addInstrToLiveness(TfrF); 730 removeInstrFromLiveness(MI); 731 732 return true; 733 } 734 735 736 /// Split all MUX instructions in the given block into pairs of contitional 737 /// transfers. 738 bool HexagonExpandCondsets::splitInBlock(MachineBasicBlock &B) { 739 bool Changed = false; 740 MachineBasicBlock::iterator I, E, NextI; 741 for (I = B.begin(), E = B.end(); I != E; I = NextI) { 742 NextI = std::next(I); 743 if (isCondset(I)) 744 Changed |= split(I); 745 } 746 return Changed; 747 } 748 749 750 bool HexagonExpandCondsets::isPredicable(MachineInstr *MI) { 751 if (HII->isPredicated(MI) || !HII->isPredicable(MI)) 752 return false; 753 if (MI->hasUnmodeledSideEffects() || MI->mayStore()) 754 return false; 755 // Reject instructions with multiple defs (e.g. post-increment loads). 756 bool HasDef = false; 757 for (auto &Op : MI->operands()) { 758 if (!Op.isReg() || !Op.isDef()) 759 continue; 760 if (HasDef) 761 return false; 762 HasDef = true; 763 } 764 for (auto &Mo : MI->memoperands()) 765 if (Mo->isVolatile()) 766 return false; 767 return true; 768 } 769 770 771 /// Find the reaching definition for a predicated use of RD. The RD is used 772 /// under the conditions given by PredR and Cond, and this function will ignore 773 /// definitions that set RD under the opposite conditions. 774 MachineInstr *HexagonExpandCondsets::getReachingDefForPred(RegisterRef RD, 775 MachineBasicBlock::iterator UseIt, unsigned PredR, bool Cond) { 776 MachineBasicBlock &B = *UseIt->getParent(); 777 MachineBasicBlock::iterator I = UseIt, S = B.begin(); 778 if (I == S) 779 return 0; 780 781 bool PredValid = true; 782 do { 783 --I; 784 MachineInstr *MI = &*I; 785 // Check if this instruction can be ignored, i.e. if it is predicated 786 // on the complementary condition. 787 if (PredValid && HII->isPredicated(MI)) { 788 if (MI->readsRegister(PredR) && (Cond != HII->isPredicatedTrue(MI))) 789 continue; 790 } 791 792 // Check the defs. If the PredR is defined, invalidate it. If RD is 793 // defined, return the instruction or 0, depending on the circumstances. 794 for (auto &Op : MI->operands()) { 795 if (!Op.isReg() || !Op.isDef()) 796 continue; 797 RegisterRef RR = Op; 798 if (RR.Reg == PredR) { 799 PredValid = false; 800 continue; 801 } 802 if (RR.Reg != RD.Reg) 803 continue; 804 // If the "Reg" part agrees, there is still the subregister to check. 805 // If we are looking for vreg1:loreg, we can skip vreg1:hireg, but 806 // not vreg1 (w/o subregisters). 807 if (RR.Sub == RD.Sub) 808 return MI; 809 if (RR.Sub == 0 || RD.Sub == 0) 810 return 0; 811 // We have different subregisters, so we can continue looking. 812 } 813 } while (I != S); 814 815 return 0; 816 } 817 818 819 /// Check if the instruction MI can be safely moved over a set of instructions 820 /// whose side-effects (in terms of register defs and uses) are expressed in 821 /// the maps Defs and Uses. These maps reflect the conditional defs and uses 822 /// that depend on the same predicate register to allow moving instructions 823 /// over instructions predicated on the opposite condition. 824 bool HexagonExpandCondsets::canMoveOver(MachineInstr *MI, ReferenceMap &Defs, 825 ReferenceMap &Uses) { 826 // In order to be able to safely move MI over instructions that define 827 // "Defs" and use "Uses", no def operand from MI can be defined or used 828 // and no use operand can be defined. 829 for (auto &Op : MI->operands()) { 830 if (!Op.isReg()) 831 continue; 832 RegisterRef RR = Op; 833 // For physical register we would need to check register aliases, etc. 834 // and we don't want to bother with that. It would be of little value 835 // before the actual register rewriting (from virtual to physical). 836 if (!TargetRegisterInfo::isVirtualRegister(RR.Reg)) 837 return false; 838 // No redefs for any operand. 839 if (isRefInMap(RR, Defs, Exec_Then)) 840 return false; 841 // For defs, there cannot be uses. 842 if (Op.isDef() && isRefInMap(RR, Uses, Exec_Then)) 843 return false; 844 } 845 return true; 846 } 847 848 849 /// Check if the instruction accessing memory (TheI) can be moved to the 850 /// location ToI. 851 bool HexagonExpandCondsets::canMoveMemTo(MachineInstr *TheI, MachineInstr *ToI, 852 bool IsDown) { 853 bool IsLoad = TheI->mayLoad(), IsStore = TheI->mayStore(); 854 if (!IsLoad && !IsStore) 855 return true; 856 if (HII->areMemAccessesTriviallyDisjoint(TheI, ToI)) 857 return true; 858 if (TheI->hasUnmodeledSideEffects()) 859 return false; 860 861 MachineBasicBlock::iterator StartI = IsDown ? TheI : ToI; 862 MachineBasicBlock::iterator EndI = IsDown ? ToI : TheI; 863 bool Ordered = TheI->hasOrderedMemoryRef(); 864 865 // Search for aliased memory reference in (StartI, EndI). 866 for (MachineBasicBlock::iterator I = std::next(StartI); I != EndI; ++I) { 867 MachineInstr *MI = &*I; 868 if (MI->hasUnmodeledSideEffects()) 869 return false; 870 bool L = MI->mayLoad(), S = MI->mayStore(); 871 if (!L && !S) 872 continue; 873 if (Ordered && MI->hasOrderedMemoryRef()) 874 return false; 875 876 bool Conflict = (L && IsStore) || S; 877 if (Conflict) 878 return false; 879 } 880 return true; 881 } 882 883 884 /// Generate a predicated version of MI (where the condition is given via 885 /// PredR and Cond) at the point indicated by Where. 886 void HexagonExpandCondsets::predicateAt(RegisterRef RD, MachineInstr *MI, 887 MachineBasicBlock::iterator Where, unsigned PredR, bool Cond) { 888 // The problem with updating live intervals is that we can move one def 889 // past another def. In particular, this can happen when moving an A2_tfrt 890 // over an A2_tfrf defining the same register. From the point of view of 891 // live intervals, these two instructions are two separate definitions, 892 // and each one starts another live segment. LiveIntervals's "handleMove" 893 // does not allow such moves, so we need to handle it ourselves. To avoid 894 // invalidating liveness data while we are using it, the move will be 895 // implemented in 4 steps: (1) add a clone of the instruction MI at the 896 // target location, (2) update liveness, (3) delete the old instruction, 897 // and (4) update liveness again. 898 899 MachineBasicBlock &B = *MI->getParent(); 900 DebugLoc DL = Where->getDebugLoc(); // "Where" points to an instruction. 901 unsigned Opc = MI->getOpcode(); 902 unsigned PredOpc = HII->getCondOpcode(Opc, !Cond); 903 MachineInstrBuilder MB = BuildMI(B, Where, DL, HII->get(PredOpc)); 904 unsigned Ox = 0, NP = MI->getNumOperands(); 905 // Skip all defs from MI first. 906 while (Ox < NP) { 907 MachineOperand &MO = MI->getOperand(Ox); 908 if (!MO.isReg() || !MO.isDef()) 909 break; 910 Ox++; 911 } 912 // Add the new def, then the predicate register, then the rest of the 913 // operands. 914 MB.addReg(RD.Reg, RegState::Define, RD.Sub); 915 MB.addReg(PredR); 916 while (Ox < NP) { 917 MachineOperand &MO = MI->getOperand(Ox); 918 if (!MO.isReg() || !MO.isImplicit()) 919 MB.addOperand(MO); 920 Ox++; 921 } 922 923 MachineFunction &MF = *B.getParent(); 924 MachineInstr::mmo_iterator I = MI->memoperands_begin(); 925 unsigned NR = std::distance(I, MI->memoperands_end()); 926 MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(NR); 927 for (unsigned i = 0; i < NR; ++i) 928 MemRefs[i] = *I++; 929 MB.setMemRefs(MemRefs, MemRefs+NR); 930 931 MachineInstr *NewI = MB; 932 NewI->clearKillInfo(); 933 addInstrToLiveness(NewI); 934 } 935 936 937 /// In the range [First, Last], rename all references to the "old" register RO 938 /// to the "new" register RN, but only in instructions predicated on the given 939 /// condition. 940 void HexagonExpandCondsets::renameInRange(RegisterRef RO, RegisterRef RN, 941 unsigned PredR, bool Cond, MachineBasicBlock::iterator First, 942 MachineBasicBlock::iterator Last) { 943 MachineBasicBlock::iterator End = std::next(Last); 944 for (MachineBasicBlock::iterator I = First; I != End; ++I) { 945 MachineInstr *MI = &*I; 946 // Do not touch instructions that are not predicated, or are predicated 947 // on the opposite condition. 948 if (!HII->isPredicated(MI)) 949 continue; 950 if (!MI->readsRegister(PredR) || (Cond != HII->isPredicatedTrue(MI))) 951 continue; 952 953 for (auto &Op : MI->operands()) { 954 if (!Op.isReg() || RO != RegisterRef(Op)) 955 continue; 956 Op.setReg(RN.Reg); 957 Op.setSubReg(RN.Sub); 958 // In practice, this isn't supposed to see any defs. 959 assert(!Op.isDef() && "Not expecting a def"); 960 } 961 } 962 } 963 964 965 /// For a given conditional copy, predicate the definition of the source of 966 /// the copy under the given condition (using the same predicate register as 967 /// the copy). 968 bool HexagonExpandCondsets::predicate(MachineInstr *TfrI, bool Cond) { 969 // TfrI - A2_tfr[tf] Instruction (not A2_tfrsi). 970 unsigned Opc = TfrI->getOpcode(); 971 (void)Opc; 972 assert(Opc == Hexagon::A2_tfrt || Opc == Hexagon::A2_tfrf); 973 DEBUG(dbgs() << "\nattempt to predicate if-" << (Cond ? "true" : "false") 974 << ": " << *TfrI); 975 976 MachineOperand &MD = TfrI->getOperand(0); 977 MachineOperand &MP = TfrI->getOperand(1); 978 MachineOperand &MS = TfrI->getOperand(2); 979 // The source operand should be a <kill>. This is not strictly necessary, 980 // but it makes things a lot simpler. Otherwise, we would need to rename 981 // some registers, which would complicate the transformation considerably. 982 if (!MS.isKill()) 983 return false; 984 985 RegisterRef RT(MS); 986 unsigned PredR = MP.getReg(); 987 MachineInstr *DefI = getReachingDefForPred(RT, TfrI, PredR, Cond); 988 if (!DefI || !isPredicable(DefI)) 989 return false; 990 991 DEBUG(dbgs() << "Source def: " << *DefI); 992 993 // Collect the information about registers defined and used between the 994 // DefI and the TfrI. 995 // Map: reg -> bitmask of subregs 996 ReferenceMap Uses, Defs; 997 MachineBasicBlock::iterator DefIt = DefI, TfrIt = TfrI; 998 999 // Check if the predicate register is valid between DefI and TfrI. 1000 // If it is, we can then ignore instructions predicated on the negated 1001 // conditions when collecting def and use information. 1002 bool PredValid = true; 1003 for (MachineBasicBlock::iterator I = std::next(DefIt); I != TfrIt; ++I) { 1004 if (!I->modifiesRegister(PredR, 0)) 1005 continue; 1006 PredValid = false; 1007 break; 1008 } 1009 1010 for (MachineBasicBlock::iterator I = std::next(DefIt); I != TfrIt; ++I) { 1011 MachineInstr *MI = &*I; 1012 // If this instruction is predicated on the same register, it could 1013 // potentially be ignored. 1014 // By default assume that the instruction executes on the same condition 1015 // as TfrI (Exec_Then), and also on the opposite one (Exec_Else). 1016 unsigned Exec = Exec_Then | Exec_Else; 1017 if (PredValid && HII->isPredicated(MI) && MI->readsRegister(PredR)) 1018 Exec = (Cond == HII->isPredicatedTrue(MI)) ? Exec_Then : Exec_Else; 1019 1020 for (auto &Op : MI->operands()) { 1021 if (!Op.isReg()) 1022 continue; 1023 // We don't want to deal with physical registers. The reason is that 1024 // they can be aliased with other physical registers. Aliased virtual 1025 // registers must share the same register number, and can only differ 1026 // in the subregisters, which we are keeping track of. Physical 1027 // registers ters no longer have subregisters---their super- and 1028 // subregisters are other physical registers, and we are not checking 1029 // that. 1030 RegisterRef RR = Op; 1031 if (!TargetRegisterInfo::isVirtualRegister(RR.Reg)) 1032 return false; 1033 1034 ReferenceMap &Map = Op.isDef() ? Defs : Uses; 1035 addRefToMap(RR, Map, Exec); 1036 } 1037 } 1038 1039 // The situation: 1040 // RT = DefI 1041 // ... 1042 // RD = TfrI ..., RT 1043 1044 // If the register-in-the-middle (RT) is used or redefined between 1045 // DefI and TfrI, we may not be able proceed with this transformation. 1046 // We can ignore a def that will not execute together with TfrI, and a 1047 // use that will. If there is such a use (that does execute together with 1048 // TfrI), we will not be able to move DefI down. If there is a use that 1049 // executed if TfrI's condition is false, then RT must be available 1050 // unconditionally (cannot be predicated). 1051 // Essentially, we need to be able to rename RT to RD in this segment. 1052 if (isRefInMap(RT, Defs, Exec_Then) || isRefInMap(RT, Uses, Exec_Else)) 1053 return false; 1054 RegisterRef RD = MD; 1055 // If the predicate register is defined between DefI and TfrI, the only 1056 // potential thing to do would be to move the DefI down to TfrI, and then 1057 // predicate. The reaching def (DefI) must be movable down to the location 1058 // of the TfrI. 1059 // If the target register of the TfrI (RD) is not used or defined between 1060 // DefI and TfrI, consider moving TfrI up to DefI. 1061 bool CanUp = canMoveOver(TfrI, Defs, Uses); 1062 bool CanDown = canMoveOver(DefI, Defs, Uses); 1063 // The TfrI does not access memory, but DefI could. Check if it's safe 1064 // to move DefI down to TfrI. 1065 if (DefI->mayLoad() || DefI->mayStore()) 1066 if (!canMoveMemTo(DefI, TfrI, true)) 1067 CanDown = false; 1068 1069 DEBUG(dbgs() << "Can move up: " << (CanUp ? "yes" : "no") 1070 << ", can move down: " << (CanDown ? "yes\n" : "no\n")); 1071 MachineBasicBlock::iterator PastDefIt = std::next(DefIt); 1072 if (CanUp) 1073 predicateAt(RD, DefI, PastDefIt, PredR, Cond); 1074 else if (CanDown) 1075 predicateAt(RD, DefI, TfrIt, PredR, Cond); 1076 else 1077 return false; 1078 1079 if (RT != RD) 1080 renameInRange(RT, RD, PredR, Cond, PastDefIt, TfrIt); 1081 1082 // Delete the user of RT first (it should work either way, but this order 1083 // of deleting is more natural). 1084 removeInstrFromLiveness(TfrI); 1085 removeInstrFromLiveness(DefI); 1086 return true; 1087 } 1088 1089 1090 /// Predicate all cases of conditional copies in the specified block. 1091 bool HexagonExpandCondsets::predicateInBlock(MachineBasicBlock &B) { 1092 bool Changed = false; 1093 MachineBasicBlock::iterator I, E, NextI; 1094 for (I = B.begin(), E = B.end(); I != E; I = NextI) { 1095 NextI = std::next(I); 1096 unsigned Opc = I->getOpcode(); 1097 if (Opc == Hexagon::A2_tfrt || Opc == Hexagon::A2_tfrf) { 1098 bool Done = predicate(I, (Opc == Hexagon::A2_tfrt)); 1099 if (!Done) { 1100 // If we didn't predicate I, we may need to remove it in case it is 1101 // an "identity" copy, e.g. vreg1 = A2_tfrt vreg2, vreg1. 1102 if (RegisterRef(I->getOperand(0)) == RegisterRef(I->getOperand(2))) 1103 removeInstrFromLiveness(I); 1104 } 1105 Changed |= Done; 1106 } 1107 } 1108 return Changed; 1109 } 1110 1111 1112 void HexagonExpandCondsets::removeImplicitUses(MachineInstr *MI) { 1113 for (unsigned i = MI->getNumOperands(); i > 0; --i) { 1114 MachineOperand &MO = MI->getOperand(i-1); 1115 if (MO.isReg() && MO.isUse() && MO.isImplicit()) 1116 MI->RemoveOperand(i-1); 1117 } 1118 } 1119 1120 1121 void HexagonExpandCondsets::removeImplicitUses(MachineBasicBlock &B) { 1122 for (MachineBasicBlock::iterator I = B.begin(), E = B.end(); I != E; ++I) { 1123 MachineInstr *MI = &*I; 1124 if (HII->isPredicated(MI)) 1125 removeImplicitUses(MI); 1126 } 1127 } 1128 1129 1130 void HexagonExpandCondsets::postprocessUndefImplicitUses(MachineBasicBlock &B) { 1131 // Implicit uses that are "undef" are only meaningful (outside of the 1132 // internals of this pass) when the instruction defines a subregister, 1133 // and the implicit-undef use applies to the defined register. In such 1134 // cases, the proper way to record the information in the IR is to mark 1135 // the definition as "undef", which will be interpreted as "read-undef". 1136 typedef SmallSet<unsigned,2> RegisterSet; 1137 for (MachineBasicBlock::iterator I = B.begin(), E = B.end(); I != E; ++I) { 1138 MachineInstr *MI = &*I; 1139 RegisterSet Undefs; 1140 for (unsigned i = MI->getNumOperands(); i > 0; --i) { 1141 MachineOperand &MO = MI->getOperand(i-1); 1142 if (MO.isReg() && MO.isUse() && MO.isImplicit() && MO.isUndef()) { 1143 MI->RemoveOperand(i-1); 1144 Undefs.insert(MO.getReg()); 1145 } 1146 } 1147 for (auto &Op : MI->operands()) { 1148 if (!Op.isReg() || !Op.isDef() || !Op.getSubReg()) 1149 continue; 1150 if (Undefs.count(Op.getReg())) 1151 Op.setIsUndef(true); 1152 } 1153 } 1154 } 1155 1156 1157 bool HexagonExpandCondsets::isIntReg(RegisterRef RR, unsigned &BW) { 1158 if (!TargetRegisterInfo::isVirtualRegister(RR.Reg)) 1159 return false; 1160 const TargetRegisterClass *RC = MRI->getRegClass(RR.Reg); 1161 if (RC == &Hexagon::IntRegsRegClass) { 1162 BW = 32; 1163 return true; 1164 } 1165 if (RC == &Hexagon::DoubleRegsRegClass) { 1166 BW = (RR.Sub != 0) ? 32 : 64; 1167 return true; 1168 } 1169 return false; 1170 } 1171 1172 1173 bool HexagonExpandCondsets::isIntraBlocks(LiveInterval &LI) { 1174 for (LiveInterval::iterator I = LI.begin(), E = LI.end(); I != E; ++I) { 1175 LiveRange::Segment &LR = *I; 1176 // Range must start at a register... 1177 if (!LR.start.isRegister()) 1178 return false; 1179 // ...and end in a register or in a dead slot. 1180 if (!LR.end.isRegister() && !LR.end.isDead()) 1181 return false; 1182 } 1183 return true; 1184 } 1185 1186 1187 bool HexagonExpandCondsets::coalesceRegisters(RegisterRef R1, RegisterRef R2) { 1188 if (CoaLimitActive) { 1189 if (CoaCounter >= CoaLimit) 1190 return false; 1191 CoaCounter++; 1192 } 1193 unsigned BW1, BW2; 1194 if (!isIntReg(R1, BW1) || !isIntReg(R2, BW2) || BW1 != BW2) 1195 return false; 1196 if (MRI->isLiveIn(R1.Reg)) 1197 return false; 1198 if (MRI->isLiveIn(R2.Reg)) 1199 return false; 1200 1201 LiveInterval &L1 = LIS->getInterval(R1.Reg); 1202 LiveInterval &L2 = LIS->getInterval(R2.Reg); 1203 bool Overlap = L1.overlaps(L2); 1204 1205 DEBUG(dbgs() << "compatible registers: (" 1206 << (Overlap ? "overlap" : "disjoint") << ")\n " 1207 << PrintReg(R1.Reg, TRI, R1.Sub) << " " << L1 << "\n " 1208 << PrintReg(R2.Reg, TRI, R2.Sub) << " " << L2 << "\n"); 1209 if (R1.Sub || R2.Sub) 1210 return false; 1211 if (Overlap) 1212 return false; 1213 1214 // Coalescing could have a negative impact on scheduling, so try to limit 1215 // to some reasonable extent. Only consider coalescing segments, when one 1216 // of them does not cross basic block boundaries. 1217 if (!isIntraBlocks(L1) && !isIntraBlocks(L2)) 1218 return false; 1219 1220 MRI->replaceRegWith(R2.Reg, R1.Reg); 1221 1222 // Move all live segments from L2 to L1. 1223 typedef DenseMap<VNInfo*,VNInfo*> ValueInfoMap; 1224 ValueInfoMap VM; 1225 for (LiveInterval::iterator I = L2.begin(), E = L2.end(); I != E; ++I) { 1226 VNInfo *NewVN, *OldVN = I->valno; 1227 ValueInfoMap::iterator F = VM.find(OldVN); 1228 if (F == VM.end()) { 1229 NewVN = L1.getNextValue(I->valno->def, LIS->getVNInfoAllocator()); 1230 VM.insert(std::make_pair(OldVN, NewVN)); 1231 } else { 1232 NewVN = F->second; 1233 } 1234 L1.addSegment(LiveRange::Segment(I->start, I->end, NewVN)); 1235 } 1236 while (L2.begin() != L2.end()) 1237 L2.removeSegment(*L2.begin()); 1238 1239 updateKillFlags(R1.Reg, L1); 1240 DEBUG(dbgs() << "coalesced: " << L1 << "\n"); 1241 L1.verify(); 1242 1243 return true; 1244 } 1245 1246 1247 /// Attempt to coalesce one of the source registers to a MUX intruction with 1248 /// the destination register. This could lead to having only one predicated 1249 /// instruction in the end instead of two. 1250 bool HexagonExpandCondsets::coalesceSegments(MachineFunction &MF) { 1251 SmallVector<MachineInstr*,16> Condsets; 1252 for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) { 1253 MachineBasicBlock &B = *I; 1254 for (MachineBasicBlock::iterator J = B.begin(), F = B.end(); J != F; ++J) { 1255 MachineInstr *MI = &*J; 1256 if (!isCondset(MI)) 1257 continue; 1258 MachineOperand &S1 = MI->getOperand(2), &S2 = MI->getOperand(3); 1259 if (!S1.isReg() && !S2.isReg()) 1260 continue; 1261 Condsets.push_back(MI); 1262 } 1263 } 1264 1265 bool Changed = false; 1266 for (unsigned i = 0, n = Condsets.size(); i < n; ++i) { 1267 MachineInstr *CI = Condsets[i]; 1268 RegisterRef RD = CI->getOperand(0); 1269 RegisterRef RP = CI->getOperand(1); 1270 MachineOperand &S1 = CI->getOperand(2), &S2 = CI->getOperand(3); 1271 bool Done = false; 1272 // Consider this case: 1273 // vreg1 = instr1 ... 1274 // vreg2 = instr2 ... 1275 // vreg0 = C2_mux ..., vreg1, vreg2 1276 // If vreg0 was coalesced with vreg1, we could end up with the following 1277 // code: 1278 // vreg0 = instr1 ... 1279 // vreg2 = instr2 ... 1280 // vreg0 = A2_tfrf ..., vreg2 1281 // which will later become: 1282 // vreg0 = instr1 ... 1283 // vreg0 = instr2_cNotPt ... 1284 // i.e. there will be an unconditional definition (instr1) of vreg0 1285 // followed by a conditional one. The output dependency was there before 1286 // and it unavoidable, but if instr1 is predicable, we will no longer be 1287 // able to predicate it here. 1288 // To avoid this scenario, don't coalesce the destination register with 1289 // a source register that is defined by a predicable instruction. 1290 if (S1.isReg()) { 1291 RegisterRef RS = S1; 1292 MachineInstr *RDef = getReachingDefForPred(RS, CI, RP.Reg, true); 1293 if (!RDef || !HII->isPredicable(RDef)) 1294 Done = coalesceRegisters(RD, RegisterRef(S1)); 1295 } 1296 if (!Done && S2.isReg()) { 1297 RegisterRef RS = S2; 1298 MachineInstr *RDef = getReachingDefForPred(RS, CI, RP.Reg, false); 1299 if (!RDef || !HII->isPredicable(RDef)) 1300 Done = coalesceRegisters(RD, RegisterRef(S2)); 1301 } 1302 Changed |= Done; 1303 } 1304 return Changed; 1305 } 1306 1307 1308 bool HexagonExpandCondsets::runOnMachineFunction(MachineFunction &MF) { 1309 HII = static_cast<const HexagonInstrInfo*>(MF.getSubtarget().getInstrInfo()); 1310 TRI = MF.getSubtarget().getRegisterInfo(); 1311 LIS = &getAnalysis<LiveIntervals>(); 1312 MRI = &MF.getRegInfo(); 1313 1314 bool Changed = false; 1315 1316 // Try to coalesce the target of a mux with one of its sources. 1317 // This could eliminate a register copy in some circumstances. 1318 Changed |= coalesceSegments(MF); 1319 1320 for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) { 1321 // First, simply split all muxes into a pair of conditional transfers 1322 // and update the live intervals to reflect the new arrangement. 1323 // This is done mainly to make the live interval update simpler, than it 1324 // would be while trying to predicate instructions at the same time. 1325 Changed |= splitInBlock(*I); 1326 // Traverse all blocks and collapse predicable instructions feeding 1327 // conditional transfers into predicated instructions. 1328 // Walk over all the instructions again, so we may catch pre-existing 1329 // cases that were not created in the previous step. 1330 Changed |= predicateInBlock(*I); 1331 } 1332 1333 for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) 1334 postprocessUndefImplicitUses(*I); 1335 return Changed; 1336 } 1337 1338 1339 //===----------------------------------------------------------------------===// 1340 // Public Constructor Functions 1341 //===----------------------------------------------------------------------===// 1342 1343 static void initializePassOnce(PassRegistry &Registry) { 1344 const char *Name = "Hexagon Expand Condsets"; 1345 PassInfo *PI = new PassInfo(Name, "expand-condsets", 1346 &HexagonExpandCondsets::ID, 0, false, false); 1347 Registry.registerPass(*PI, true); 1348 } 1349 1350 void llvm::initializeHexagonExpandCondsetsPass(PassRegistry &Registry) { 1351 CALL_ONCE_INITIALIZATION(initializePassOnce) 1352 } 1353 1354 1355 FunctionPass *llvm::createHexagonExpandCondsets() { 1356 return new HexagonExpandCondsets(); 1357 } 1358