1 // Copyright 2013 the V8 project authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style license that can be 3 // found in the LICENSE file. 4 5 #ifndef V8_ARM64_MACRO_ASSEMBLER_ARM64_H_ 6 #define V8_ARM64_MACRO_ASSEMBLER_ARM64_H_ 7 8 #include <vector> 9 10 #include "src/arm64/assembler-arm64.h" 11 #include "src/bailout-reason.h" 12 #include "src/base/bits.h" 13 #include "src/globals.h" 14 15 // Simulator specific helpers. 16 #if USE_SIMULATOR 17 // TODO(all): If possible automatically prepend an indicator like 18 // UNIMPLEMENTED or LOCATION. 19 #define ASM_UNIMPLEMENTED(message) \ 20 __ Debug(message, __LINE__, NO_PARAM) 21 #define ASM_UNIMPLEMENTED_BREAK(message) \ 22 __ Debug(message, __LINE__, \ 23 FLAG_ignore_asm_unimplemented_break ? NO_PARAM : BREAK) 24 #define ASM_LOCATION(message) \ 25 __ Debug("LOCATION: " message, __LINE__, NO_PARAM) 26 #else 27 #define ASM_UNIMPLEMENTED(message) 28 #define ASM_UNIMPLEMENTED_BREAK(message) 29 #define ASM_LOCATION(message) 30 #endif 31 32 33 namespace v8 { 34 namespace internal { 35 36 // Give alias names to registers for calling conventions. 37 // TODO(titzer): arm64 is a pain for aliasing; get rid of these macros 38 #define kReturnRegister0 x0 39 #define kReturnRegister1 x1 40 #define kJSFunctionRegister x1 41 #define kContextRegister cp 42 #define kInterpreterAccumulatorRegister x0 43 #define kInterpreterRegisterFileRegister x18 44 #define kInterpreterBytecodeOffsetRegister x19 45 #define kInterpreterBytecodeArrayRegister x20 46 #define kInterpreterDispatchTableRegister x21 47 #define kJavaScriptCallArgCountRegister x0 48 #define kJavaScriptCallNewTargetRegister x3 49 #define kRuntimeCallFunctionRegister x1 50 #define kRuntimeCallArgCountRegister x0 51 52 #define LS_MACRO_LIST(V) \ 53 V(Ldrb, Register&, rt, LDRB_w) \ 54 V(Strb, Register&, rt, STRB_w) \ 55 V(Ldrsb, Register&, rt, rt.Is64Bits() ? LDRSB_x : LDRSB_w) \ 56 V(Ldrh, Register&, rt, LDRH_w) \ 57 V(Strh, Register&, rt, STRH_w) \ 58 V(Ldrsh, Register&, rt, rt.Is64Bits() ? LDRSH_x : LDRSH_w) \ 59 V(Ldr, CPURegister&, rt, LoadOpFor(rt)) \ 60 V(Str, CPURegister&, rt, StoreOpFor(rt)) \ 61 V(Ldrsw, Register&, rt, LDRSW_x) 62 63 #define LSPAIR_MACRO_LIST(V) \ 64 V(Ldp, CPURegister&, rt, rt2, LoadPairOpFor(rt, rt2)) \ 65 V(Stp, CPURegister&, rt, rt2, StorePairOpFor(rt, rt2)) \ 66 V(Ldpsw, CPURegister&, rt, rt2, LDPSW_x) 67 68 69 // ---------------------------------------------------------------------------- 70 // Static helper functions 71 72 // Generate a MemOperand for loading a field from an object. 73 inline MemOperand FieldMemOperand(Register object, int offset); 74 inline MemOperand UntagSmiFieldMemOperand(Register object, int offset); 75 76 // Generate a MemOperand for loading a SMI from memory. 77 inline MemOperand UntagSmiMemOperand(Register object, int offset); 78 79 80 // ---------------------------------------------------------------------------- 81 // MacroAssembler 82 83 enum BranchType { 84 // Copies of architectural conditions. 85 // The associated conditions can be used in place of those, the code will 86 // take care of reinterpreting them with the correct type. 87 integer_eq = eq, 88 integer_ne = ne, 89 integer_hs = hs, 90 integer_lo = lo, 91 integer_mi = mi, 92 integer_pl = pl, 93 integer_vs = vs, 94 integer_vc = vc, 95 integer_hi = hi, 96 integer_ls = ls, 97 integer_ge = ge, 98 integer_lt = lt, 99 integer_gt = gt, 100 integer_le = le, 101 integer_al = al, 102 integer_nv = nv, 103 104 // These two are *different* from the architectural codes al and nv. 105 // 'always' is used to generate unconditional branches. 106 // 'never' is used to not generate a branch (generally as the inverse 107 // branch type of 'always). 108 always, never, 109 // cbz and cbnz 110 reg_zero, reg_not_zero, 111 // tbz and tbnz 112 reg_bit_clear, reg_bit_set, 113 114 // Aliases. 115 kBranchTypeFirstCondition = eq, 116 kBranchTypeLastCondition = nv, 117 kBranchTypeFirstUsingReg = reg_zero, 118 kBranchTypeFirstUsingBit = reg_bit_clear 119 }; 120 121 inline BranchType InvertBranchType(BranchType type) { 122 if (kBranchTypeFirstCondition <= type && type <= kBranchTypeLastCondition) { 123 return static_cast<BranchType>( 124 NegateCondition(static_cast<Condition>(type))); 125 } else { 126 return static_cast<BranchType>(type ^ 1); 127 } 128 } 129 130 enum RememberedSetAction { EMIT_REMEMBERED_SET, OMIT_REMEMBERED_SET }; 131 enum SmiCheck { INLINE_SMI_CHECK, OMIT_SMI_CHECK }; 132 enum PointersToHereCheck { 133 kPointersToHereMaybeInteresting, 134 kPointersToHereAreAlwaysInteresting 135 }; 136 enum LinkRegisterStatus { kLRHasNotBeenSaved, kLRHasBeenSaved }; 137 enum TargetAddressStorageMode { 138 CAN_INLINE_TARGET_ADDRESS, 139 NEVER_INLINE_TARGET_ADDRESS 140 }; 141 enum UntagMode { kNotSpeculativeUntag, kSpeculativeUntag }; 142 enum ArrayHasHoles { kArrayCantHaveHoles, kArrayCanHaveHoles }; 143 enum CopyHint { kCopyUnknown, kCopyShort, kCopyLong }; 144 enum DiscardMoveMode { kDontDiscardForSameWReg, kDiscardForSameWReg }; 145 enum SeqStringSetCharCheckIndexType { kIndexIsSmi, kIndexIsInteger32 }; 146 147 class MacroAssembler : public Assembler { 148 public: 149 MacroAssembler(Isolate* isolate, byte* buffer, unsigned buffer_size, 150 CodeObjectRequired create_code_object); 151 152 inline Handle<Object> CodeObject(); 153 154 // Instruction set functions ------------------------------------------------ 155 // Logical macros. 156 inline void And(const Register& rd, 157 const Register& rn, 158 const Operand& operand); 159 inline void Ands(const Register& rd, 160 const Register& rn, 161 const Operand& operand); 162 inline void Bic(const Register& rd, 163 const Register& rn, 164 const Operand& operand); 165 inline void Bics(const Register& rd, 166 const Register& rn, 167 const Operand& operand); 168 inline void Orr(const Register& rd, 169 const Register& rn, 170 const Operand& operand); 171 inline void Orn(const Register& rd, 172 const Register& rn, 173 const Operand& operand); 174 inline void Eor(const Register& rd, 175 const Register& rn, 176 const Operand& operand); 177 inline void Eon(const Register& rd, 178 const Register& rn, 179 const Operand& operand); 180 inline void Tst(const Register& rn, const Operand& operand); 181 void LogicalMacro(const Register& rd, 182 const Register& rn, 183 const Operand& operand, 184 LogicalOp op); 185 186 // Add and sub macros. 187 inline void Add(const Register& rd, 188 const Register& rn, 189 const Operand& operand); 190 inline void Adds(const Register& rd, 191 const Register& rn, 192 const Operand& operand); 193 inline void Sub(const Register& rd, 194 const Register& rn, 195 const Operand& operand); 196 inline void Subs(const Register& rd, 197 const Register& rn, 198 const Operand& operand); 199 inline void Cmn(const Register& rn, const Operand& operand); 200 inline void Cmp(const Register& rn, const Operand& operand); 201 inline void Neg(const Register& rd, 202 const Operand& operand); 203 inline void Negs(const Register& rd, 204 const Operand& operand); 205 206 void AddSubMacro(const Register& rd, 207 const Register& rn, 208 const Operand& operand, 209 FlagsUpdate S, 210 AddSubOp op); 211 212 // Add/sub with carry macros. 213 inline void Adc(const Register& rd, 214 const Register& rn, 215 const Operand& operand); 216 inline void Adcs(const Register& rd, 217 const Register& rn, 218 const Operand& operand); 219 inline void Sbc(const Register& rd, 220 const Register& rn, 221 const Operand& operand); 222 inline void Sbcs(const Register& rd, 223 const Register& rn, 224 const Operand& operand); 225 inline void Ngc(const Register& rd, 226 const Operand& operand); 227 inline void Ngcs(const Register& rd, 228 const Operand& operand); 229 void AddSubWithCarryMacro(const Register& rd, 230 const Register& rn, 231 const Operand& operand, 232 FlagsUpdate S, 233 AddSubWithCarryOp op); 234 235 // Move macros. 236 void Mov(const Register& rd, 237 const Operand& operand, 238 DiscardMoveMode discard_mode = kDontDiscardForSameWReg); 239 void Mov(const Register& rd, uint64_t imm); 240 inline void Mvn(const Register& rd, uint64_t imm); 241 void Mvn(const Register& rd, const Operand& operand); 242 static bool IsImmMovn(uint64_t imm, unsigned reg_size); 243 static bool IsImmMovz(uint64_t imm, unsigned reg_size); 244 static unsigned CountClearHalfWords(uint64_t imm, unsigned reg_size); 245 246 // Try to move an immediate into the destination register in a single 247 // instruction. Returns true for success, and updates the contents of dst. 248 // Returns false, otherwise. 249 bool TryOneInstrMoveImmediate(const Register& dst, int64_t imm); 250 251 // Move an immediate into register dst, and return an Operand object for use 252 // with a subsequent instruction that accepts a shift. The value moved into 253 // dst is not necessarily equal to imm; it may have had a shifting operation 254 // applied to it that will be subsequently undone by the shift applied in the 255 // Operand. 256 Operand MoveImmediateForShiftedOp(const Register& dst, int64_t imm); 257 258 // Conditional macros. 259 inline void Ccmp(const Register& rn, 260 const Operand& operand, 261 StatusFlags nzcv, 262 Condition cond); 263 inline void Ccmn(const Register& rn, 264 const Operand& operand, 265 StatusFlags nzcv, 266 Condition cond); 267 void ConditionalCompareMacro(const Register& rn, 268 const Operand& operand, 269 StatusFlags nzcv, 270 Condition cond, 271 ConditionalCompareOp op); 272 void Csel(const Register& rd, 273 const Register& rn, 274 const Operand& operand, 275 Condition cond); 276 277 // Load/store macros. 278 #define DECLARE_FUNCTION(FN, REGTYPE, REG, OP) \ 279 inline void FN(const REGTYPE REG, const MemOperand& addr); 280 LS_MACRO_LIST(DECLARE_FUNCTION) 281 #undef DECLARE_FUNCTION 282 283 void LoadStoreMacro(const CPURegister& rt, 284 const MemOperand& addr, 285 LoadStoreOp op); 286 287 #define DECLARE_FUNCTION(FN, REGTYPE, REG, REG2, OP) \ 288 inline void FN(const REGTYPE REG, const REGTYPE REG2, const MemOperand& addr); 289 LSPAIR_MACRO_LIST(DECLARE_FUNCTION) 290 #undef DECLARE_FUNCTION 291 292 void LoadStorePairMacro(const CPURegister& rt, const CPURegister& rt2, 293 const MemOperand& addr, LoadStorePairOp op); 294 295 // V8-specific load/store helpers. 296 void Load(const Register& rt, const MemOperand& addr, Representation r); 297 void Store(const Register& rt, const MemOperand& addr, Representation r); 298 299 enum AdrHint { 300 // The target must be within the immediate range of adr. 301 kAdrNear, 302 // The target may be outside of the immediate range of adr. Additional 303 // instructions may be emitted. 304 kAdrFar 305 }; 306 void Adr(const Register& rd, Label* label, AdrHint = kAdrNear); 307 308 // Remaining instructions are simple pass-through calls to the assembler. 309 inline void Asr(const Register& rd, const Register& rn, unsigned shift); 310 inline void Asr(const Register& rd, const Register& rn, const Register& rm); 311 312 // Branch type inversion relies on these relations. 313 STATIC_ASSERT((reg_zero == (reg_not_zero ^ 1)) && 314 (reg_bit_clear == (reg_bit_set ^ 1)) && 315 (always == (never ^ 1))); 316 317 void B(Label* label, BranchType type, Register reg = NoReg, int bit = -1); 318 319 inline void B(Label* label); 320 inline void B(Condition cond, Label* label); 321 void B(Label* label, Condition cond); 322 inline void Bfi(const Register& rd, 323 const Register& rn, 324 unsigned lsb, 325 unsigned width); 326 inline void Bfxil(const Register& rd, 327 const Register& rn, 328 unsigned lsb, 329 unsigned width); 330 inline void Bind(Label* label); 331 inline void Bl(Label* label); 332 inline void Blr(const Register& xn); 333 inline void Br(const Register& xn); 334 inline void Brk(int code); 335 void Cbnz(const Register& rt, Label* label); 336 void Cbz(const Register& rt, Label* label); 337 inline void Cinc(const Register& rd, const Register& rn, Condition cond); 338 inline void Cinv(const Register& rd, const Register& rn, Condition cond); 339 inline void Cls(const Register& rd, const Register& rn); 340 inline void Clz(const Register& rd, const Register& rn); 341 inline void Cneg(const Register& rd, const Register& rn, Condition cond); 342 inline void CzeroX(const Register& rd, Condition cond); 343 inline void CmovX(const Register& rd, const Register& rn, Condition cond); 344 inline void Cset(const Register& rd, Condition cond); 345 inline void Csetm(const Register& rd, Condition cond); 346 inline void Csinc(const Register& rd, 347 const Register& rn, 348 const Register& rm, 349 Condition cond); 350 inline void Csinv(const Register& rd, 351 const Register& rn, 352 const Register& rm, 353 Condition cond); 354 inline void Csneg(const Register& rd, 355 const Register& rn, 356 const Register& rm, 357 Condition cond); 358 inline void Dmb(BarrierDomain domain, BarrierType type); 359 inline void Dsb(BarrierDomain domain, BarrierType type); 360 inline void Debug(const char* message, uint32_t code, Instr params = BREAK); 361 inline void Extr(const Register& rd, 362 const Register& rn, 363 const Register& rm, 364 unsigned lsb); 365 inline void Fabs(const FPRegister& fd, const FPRegister& fn); 366 inline void Fadd(const FPRegister& fd, 367 const FPRegister& fn, 368 const FPRegister& fm); 369 inline void Fccmp(const FPRegister& fn, 370 const FPRegister& fm, 371 StatusFlags nzcv, 372 Condition cond); 373 inline void Fcmp(const FPRegister& fn, const FPRegister& fm); 374 inline void Fcmp(const FPRegister& fn, double value); 375 inline void Fcsel(const FPRegister& fd, 376 const FPRegister& fn, 377 const FPRegister& fm, 378 Condition cond); 379 inline void Fcvt(const FPRegister& fd, const FPRegister& fn); 380 inline void Fcvtas(const Register& rd, const FPRegister& fn); 381 inline void Fcvtau(const Register& rd, const FPRegister& fn); 382 inline void Fcvtms(const Register& rd, const FPRegister& fn); 383 inline void Fcvtmu(const Register& rd, const FPRegister& fn); 384 inline void Fcvtns(const Register& rd, const FPRegister& fn); 385 inline void Fcvtnu(const Register& rd, const FPRegister& fn); 386 inline void Fcvtzs(const Register& rd, const FPRegister& fn); 387 inline void Fcvtzu(const Register& rd, const FPRegister& fn); 388 inline void Fdiv(const FPRegister& fd, 389 const FPRegister& fn, 390 const FPRegister& fm); 391 inline void Fmadd(const FPRegister& fd, 392 const FPRegister& fn, 393 const FPRegister& fm, 394 const FPRegister& fa); 395 inline void Fmax(const FPRegister& fd, 396 const FPRegister& fn, 397 const FPRegister& fm); 398 inline void Fmaxnm(const FPRegister& fd, 399 const FPRegister& fn, 400 const FPRegister& fm); 401 inline void Fmin(const FPRegister& fd, 402 const FPRegister& fn, 403 const FPRegister& fm); 404 inline void Fminnm(const FPRegister& fd, 405 const FPRegister& fn, 406 const FPRegister& fm); 407 inline void Fmov(FPRegister fd, FPRegister fn); 408 inline void Fmov(FPRegister fd, Register rn); 409 // Provide explicit double and float interfaces for FP immediate moves, rather 410 // than relying on implicit C++ casts. This allows signalling NaNs to be 411 // preserved when the immediate matches the format of fd. Most systems convert 412 // signalling NaNs to quiet NaNs when converting between float and double. 413 inline void Fmov(FPRegister fd, double imm); 414 inline void Fmov(FPRegister fd, float imm); 415 // Provide a template to allow other types to be converted automatically. 416 template<typename T> 417 void Fmov(FPRegister fd, T imm) { 418 DCHECK(allow_macro_instructions_); 419 Fmov(fd, static_cast<double>(imm)); 420 } 421 inline void Fmov(Register rd, FPRegister fn); 422 inline void Fmsub(const FPRegister& fd, 423 const FPRegister& fn, 424 const FPRegister& fm, 425 const FPRegister& fa); 426 inline void Fmul(const FPRegister& fd, 427 const FPRegister& fn, 428 const FPRegister& fm); 429 inline void Fneg(const FPRegister& fd, const FPRegister& fn); 430 inline void Fnmadd(const FPRegister& fd, 431 const FPRegister& fn, 432 const FPRegister& fm, 433 const FPRegister& fa); 434 inline void Fnmsub(const FPRegister& fd, 435 const FPRegister& fn, 436 const FPRegister& fm, 437 const FPRegister& fa); 438 inline void Frinta(const FPRegister& fd, const FPRegister& fn); 439 inline void Frintm(const FPRegister& fd, const FPRegister& fn); 440 inline void Frintn(const FPRegister& fd, const FPRegister& fn); 441 inline void Frintp(const FPRegister& fd, const FPRegister& fn); 442 inline void Frintz(const FPRegister& fd, const FPRegister& fn); 443 inline void Fsqrt(const FPRegister& fd, const FPRegister& fn); 444 inline void Fsub(const FPRegister& fd, 445 const FPRegister& fn, 446 const FPRegister& fm); 447 inline void Hint(SystemHint code); 448 inline void Hlt(int code); 449 inline void Isb(); 450 inline void Ldnp(const CPURegister& rt, 451 const CPURegister& rt2, 452 const MemOperand& src); 453 // Load a literal from the inline constant pool. 454 inline void Ldr(const CPURegister& rt, const Immediate& imm); 455 // Helper function for double immediate. 456 inline void Ldr(const CPURegister& rt, double imm); 457 inline void Lsl(const Register& rd, const Register& rn, unsigned shift); 458 inline void Lsl(const Register& rd, const Register& rn, const Register& rm); 459 inline void Lsr(const Register& rd, const Register& rn, unsigned shift); 460 inline void Lsr(const Register& rd, const Register& rn, const Register& rm); 461 inline void Madd(const Register& rd, 462 const Register& rn, 463 const Register& rm, 464 const Register& ra); 465 inline void Mneg(const Register& rd, const Register& rn, const Register& rm); 466 inline void Mov(const Register& rd, const Register& rm); 467 inline void Movk(const Register& rd, uint64_t imm, int shift = -1); 468 inline void Mrs(const Register& rt, SystemRegister sysreg); 469 inline void Msr(SystemRegister sysreg, const Register& rt); 470 inline void Msub(const Register& rd, 471 const Register& rn, 472 const Register& rm, 473 const Register& ra); 474 inline void Mul(const Register& rd, const Register& rn, const Register& rm); 475 inline void Nop() { nop(); } 476 inline void Rbit(const Register& rd, const Register& rn); 477 inline void Ret(const Register& xn = lr); 478 inline void Rev(const Register& rd, const Register& rn); 479 inline void Rev16(const Register& rd, const Register& rn); 480 inline void Rev32(const Register& rd, const Register& rn); 481 inline void Ror(const Register& rd, const Register& rs, unsigned shift); 482 inline void Ror(const Register& rd, const Register& rn, const Register& rm); 483 inline void Sbfiz(const Register& rd, 484 const Register& rn, 485 unsigned lsb, 486 unsigned width); 487 inline void Sbfx(const Register& rd, 488 const Register& rn, 489 unsigned lsb, 490 unsigned width); 491 inline void Scvtf(const FPRegister& fd, 492 const Register& rn, 493 unsigned fbits = 0); 494 inline void Sdiv(const Register& rd, const Register& rn, const Register& rm); 495 inline void Smaddl(const Register& rd, 496 const Register& rn, 497 const Register& rm, 498 const Register& ra); 499 inline void Smsubl(const Register& rd, 500 const Register& rn, 501 const Register& rm, 502 const Register& ra); 503 inline void Smull(const Register& rd, 504 const Register& rn, 505 const Register& rm); 506 inline void Smulh(const Register& rd, 507 const Register& rn, 508 const Register& rm); 509 inline void Umull(const Register& rd, const Register& rn, const Register& rm); 510 inline void Stnp(const CPURegister& rt, 511 const CPURegister& rt2, 512 const MemOperand& dst); 513 inline void Sxtb(const Register& rd, const Register& rn); 514 inline void Sxth(const Register& rd, const Register& rn); 515 inline void Sxtw(const Register& rd, const Register& rn); 516 void Tbnz(const Register& rt, unsigned bit_pos, Label* label); 517 void Tbz(const Register& rt, unsigned bit_pos, Label* label); 518 inline void Ubfiz(const Register& rd, 519 const Register& rn, 520 unsigned lsb, 521 unsigned width); 522 inline void Ubfx(const Register& rd, 523 const Register& rn, 524 unsigned lsb, 525 unsigned width); 526 inline void Ucvtf(const FPRegister& fd, 527 const Register& rn, 528 unsigned fbits = 0); 529 inline void Udiv(const Register& rd, const Register& rn, const Register& rm); 530 inline void Umaddl(const Register& rd, 531 const Register& rn, 532 const Register& rm, 533 const Register& ra); 534 inline void Umsubl(const Register& rd, 535 const Register& rn, 536 const Register& rm, 537 const Register& ra); 538 inline void Uxtb(const Register& rd, const Register& rn); 539 inline void Uxth(const Register& rd, const Register& rn); 540 inline void Uxtw(const Register& rd, const Register& rn); 541 542 // Pseudo-instructions ------------------------------------------------------ 543 544 // Compute rd = abs(rm). 545 // This function clobbers the condition flags. On output the overflow flag is 546 // set iff the negation overflowed. 547 // 548 // If rm is the minimum representable value, the result is not representable. 549 // Handlers for each case can be specified using the relevant labels. 550 void Abs(const Register& rd, const Register& rm, 551 Label * is_not_representable = NULL, 552 Label * is_representable = NULL); 553 554 // Push or pop up to 4 registers of the same width to or from the stack, 555 // using the current stack pointer as set by SetStackPointer. 556 // 557 // If an argument register is 'NoReg', all further arguments are also assumed 558 // to be 'NoReg', and are thus not pushed or popped. 559 // 560 // Arguments are ordered such that "Push(a, b);" is functionally equivalent 561 // to "Push(a); Push(b);". 562 // 563 // It is valid to push the same register more than once, and there is no 564 // restriction on the order in which registers are specified. 565 // 566 // It is not valid to pop into the same register more than once in one 567 // operation, not even into the zero register. 568 // 569 // If the current stack pointer (as set by SetStackPointer) is csp, then it 570 // must be aligned to 16 bytes on entry and the total size of the specified 571 // registers must also be a multiple of 16 bytes. 572 // 573 // Even if the current stack pointer is not the system stack pointer (csp), 574 // Push (and derived methods) will still modify the system stack pointer in 575 // order to comply with ABI rules about accessing memory below the system 576 // stack pointer. 577 // 578 // Other than the registers passed into Pop, the stack pointer and (possibly) 579 // the system stack pointer, these methods do not modify any other registers. 580 void Push(const CPURegister& src0, const CPURegister& src1 = NoReg, 581 const CPURegister& src2 = NoReg, const CPURegister& src3 = NoReg); 582 void Push(const CPURegister& src0, const CPURegister& src1, 583 const CPURegister& src2, const CPURegister& src3, 584 const CPURegister& src4, const CPURegister& src5 = NoReg, 585 const CPURegister& src6 = NoReg, const CPURegister& src7 = NoReg); 586 void Pop(const CPURegister& dst0, const CPURegister& dst1 = NoReg, 587 const CPURegister& dst2 = NoReg, const CPURegister& dst3 = NoReg); 588 void Pop(const CPURegister& dst0, const CPURegister& dst1, 589 const CPURegister& dst2, const CPURegister& dst3, 590 const CPURegister& dst4, const CPURegister& dst5 = NoReg, 591 const CPURegister& dst6 = NoReg, const CPURegister& dst7 = NoReg); 592 void Push(const Register& src0, const FPRegister& src1); 593 594 // Alternative forms of Push and Pop, taking a RegList or CPURegList that 595 // specifies the registers that are to be pushed or popped. Higher-numbered 596 // registers are associated with higher memory addresses (as in the A32 push 597 // and pop instructions). 598 // 599 // (Push|Pop)SizeRegList allow you to specify the register size as a 600 // parameter. Only kXRegSizeInBits, kWRegSizeInBits, kDRegSizeInBits and 601 // kSRegSizeInBits are supported. 602 // 603 // Otherwise, (Push|Pop)(CPU|X|W|D|S)RegList is preferred. 604 void PushCPURegList(CPURegList registers); 605 void PopCPURegList(CPURegList registers); 606 607 inline void PushSizeRegList(RegList registers, unsigned reg_size, 608 CPURegister::RegisterType type = CPURegister::kRegister) { 609 PushCPURegList(CPURegList(type, reg_size, registers)); 610 } 611 inline void PopSizeRegList(RegList registers, unsigned reg_size, 612 CPURegister::RegisterType type = CPURegister::kRegister) { 613 PopCPURegList(CPURegList(type, reg_size, registers)); 614 } 615 inline void PushXRegList(RegList regs) { 616 PushSizeRegList(regs, kXRegSizeInBits); 617 } 618 inline void PopXRegList(RegList regs) { 619 PopSizeRegList(regs, kXRegSizeInBits); 620 } 621 inline void PushWRegList(RegList regs) { 622 PushSizeRegList(regs, kWRegSizeInBits); 623 } 624 inline void PopWRegList(RegList regs) { 625 PopSizeRegList(regs, kWRegSizeInBits); 626 } 627 inline void PushDRegList(RegList regs) { 628 PushSizeRegList(regs, kDRegSizeInBits, CPURegister::kFPRegister); 629 } 630 inline void PopDRegList(RegList regs) { 631 PopSizeRegList(regs, kDRegSizeInBits, CPURegister::kFPRegister); 632 } 633 inline void PushSRegList(RegList regs) { 634 PushSizeRegList(regs, kSRegSizeInBits, CPURegister::kFPRegister); 635 } 636 inline void PopSRegList(RegList regs) { 637 PopSizeRegList(regs, kSRegSizeInBits, CPURegister::kFPRegister); 638 } 639 640 // Push the specified register 'count' times. 641 void PushMultipleTimes(CPURegister src, Register count); 642 void PushMultipleTimes(CPURegister src, int count); 643 644 // This is a convenience method for pushing a single Handle<Object>. 645 inline void Push(Handle<Object> handle); 646 void Push(Smi* smi) { Push(Handle<Smi>(smi, isolate())); } 647 648 // Aliases of Push and Pop, required for V8 compatibility. 649 inline void push(Register src) { 650 Push(src); 651 } 652 inline void pop(Register dst) { 653 Pop(dst); 654 } 655 656 // Sometimes callers need to push or pop multiple registers in a way that is 657 // difficult to structure efficiently for fixed Push or Pop calls. This scope 658 // allows push requests to be queued up, then flushed at once. The 659 // MacroAssembler will try to generate the most efficient sequence required. 660 // 661 // Unlike the other Push and Pop macros, PushPopQueue can handle mixed sets of 662 // register sizes and types. 663 class PushPopQueue { 664 public: 665 explicit PushPopQueue(MacroAssembler* masm) : masm_(masm), size_(0) { } 666 667 ~PushPopQueue() { 668 DCHECK(queued_.empty()); 669 } 670 671 void Queue(const CPURegister& rt) { 672 size_ += rt.SizeInBytes(); 673 queued_.push_back(rt); 674 } 675 676 enum PreambleDirective { 677 WITH_PREAMBLE, 678 SKIP_PREAMBLE 679 }; 680 void PushQueued(PreambleDirective preamble_directive = WITH_PREAMBLE); 681 void PopQueued(); 682 683 private: 684 MacroAssembler* masm_; 685 int size_; 686 std::vector<CPURegister> queued_; 687 }; 688 689 // Poke 'src' onto the stack. The offset is in bytes. 690 // 691 // If the current stack pointer (according to StackPointer()) is csp, then 692 // csp must be aligned to 16 bytes. 693 void Poke(const CPURegister& src, const Operand& offset); 694 695 // Peek at a value on the stack, and put it in 'dst'. The offset is in bytes. 696 // 697 // If the current stack pointer (according to StackPointer()) is csp, then 698 // csp must be aligned to 16 bytes. 699 void Peek(const CPURegister& dst, const Operand& offset); 700 701 // Poke 'src1' and 'src2' onto the stack. The values written will be adjacent 702 // with 'src2' at a higher address than 'src1'. The offset is in bytes. 703 // 704 // If the current stack pointer (according to StackPointer()) is csp, then 705 // csp must be aligned to 16 bytes. 706 void PokePair(const CPURegister& src1, const CPURegister& src2, int offset); 707 708 // Peek at two values on the stack, and put them in 'dst1' and 'dst2'. The 709 // values peeked will be adjacent, with the value in 'dst2' being from a 710 // higher address than 'dst1'. The offset is in bytes. 711 // 712 // If the current stack pointer (according to StackPointer()) is csp, then 713 // csp must be aligned to 16 bytes. 714 void PeekPair(const CPURegister& dst1, const CPURegister& dst2, int offset); 715 716 // Claim or drop stack space without actually accessing memory. 717 // 718 // In debug mode, both of these will write invalid data into the claimed or 719 // dropped space. 720 // 721 // If the current stack pointer (according to StackPointer()) is csp, then it 722 // must be aligned to 16 bytes and the size claimed or dropped must be a 723 // multiple of 16 bytes. 724 // 725 // Note that unit_size must be specified in bytes. For variants which take a 726 // Register count, the unit size must be a power of two. 727 inline void Claim(int64_t count, uint64_t unit_size = kXRegSize); 728 inline void Claim(const Register& count, 729 uint64_t unit_size = kXRegSize); 730 inline void Drop(int64_t count, uint64_t unit_size = kXRegSize); 731 inline void Drop(const Register& count, 732 uint64_t unit_size = kXRegSize); 733 734 // Variants of Claim and Drop, where the 'count' parameter is a SMI held in a 735 // register. 736 inline void ClaimBySMI(const Register& count_smi, 737 uint64_t unit_size = kXRegSize); 738 inline void DropBySMI(const Register& count_smi, 739 uint64_t unit_size = kXRegSize); 740 741 // Compare a register with an operand, and branch to label depending on the 742 // condition. May corrupt the status flags. 743 inline void CompareAndBranch(const Register& lhs, 744 const Operand& rhs, 745 Condition cond, 746 Label* label); 747 748 // Test the bits of register defined by bit_pattern, and branch if ANY of 749 // those bits are set. May corrupt the status flags. 750 inline void TestAndBranchIfAnySet(const Register& reg, 751 const uint64_t bit_pattern, 752 Label* label); 753 754 // Test the bits of register defined by bit_pattern, and branch if ALL of 755 // those bits are clear (ie. not set.) May corrupt the status flags. 756 inline void TestAndBranchIfAllClear(const Register& reg, 757 const uint64_t bit_pattern, 758 Label* label); 759 760 // Insert one or more instructions into the instruction stream that encode 761 // some caller-defined data. The instructions used will be executable with no 762 // side effects. 763 inline void InlineData(uint64_t data); 764 765 // Insert an instrumentation enable marker into the instruction stream. 766 inline void EnableInstrumentation(); 767 768 // Insert an instrumentation disable marker into the instruction stream. 769 inline void DisableInstrumentation(); 770 771 // Insert an instrumentation event marker into the instruction stream. These 772 // will be picked up by the instrumentation system to annotate an instruction 773 // profile. The argument marker_name must be a printable two character string; 774 // it will be encoded in the event marker. 775 inline void AnnotateInstrumentation(const char* marker_name); 776 777 // If emit_debug_code() is true, emit a run-time check to ensure that 778 // StackPointer() does not point below the system stack pointer. 779 // 780 // Whilst it is architecturally legal for StackPointer() to point below csp, 781 // it can be evidence of a potential bug because the ABI forbids accesses 782 // below csp. 783 // 784 // If StackPointer() is the system stack pointer (csp), then csp will be 785 // dereferenced to cause the processor (or simulator) to abort if it is not 786 // properly aligned. 787 // 788 // If emit_debug_code() is false, this emits no code. 789 void AssertStackConsistency(); 790 791 // Preserve the callee-saved registers (as defined by AAPCS64). 792 // 793 // Higher-numbered registers are pushed before lower-numbered registers, and 794 // thus get higher addresses. 795 // Floating-point registers are pushed before general-purpose registers, and 796 // thus get higher addresses. 797 // 798 // Note that registers are not checked for invalid values. Use this method 799 // only if you know that the GC won't try to examine the values on the stack. 800 // 801 // This method must not be called unless the current stack pointer (as set by 802 // SetStackPointer) is the system stack pointer (csp), and is aligned to 803 // ActivationFrameAlignment(). 804 void PushCalleeSavedRegisters(); 805 806 // Restore the callee-saved registers (as defined by AAPCS64). 807 // 808 // Higher-numbered registers are popped after lower-numbered registers, and 809 // thus come from higher addresses. 810 // Floating-point registers are popped after general-purpose registers, and 811 // thus come from higher addresses. 812 // 813 // This method must not be called unless the current stack pointer (as set by 814 // SetStackPointer) is the system stack pointer (csp), and is aligned to 815 // ActivationFrameAlignment(). 816 void PopCalleeSavedRegisters(); 817 818 // Set the current stack pointer, but don't generate any code. 819 inline void SetStackPointer(const Register& stack_pointer) { 820 DCHECK(!TmpList()->IncludesAliasOf(stack_pointer)); 821 sp_ = stack_pointer; 822 } 823 824 // Return the current stack pointer, as set by SetStackPointer. 825 inline const Register& StackPointer() const { 826 return sp_; 827 } 828 829 // Align csp for a frame, as per ActivationFrameAlignment, and make it the 830 // current stack pointer. 831 inline void AlignAndSetCSPForFrame() { 832 int sp_alignment = ActivationFrameAlignment(); 833 // AAPCS64 mandates at least 16-byte alignment. 834 DCHECK(sp_alignment >= 16); 835 DCHECK(base::bits::IsPowerOfTwo32(sp_alignment)); 836 Bic(csp, StackPointer(), sp_alignment - 1); 837 SetStackPointer(csp); 838 } 839 840 // Push the system stack pointer (csp) down to allow the same to be done to 841 // the current stack pointer (according to StackPointer()). This must be 842 // called _before_ accessing the memory. 843 // 844 // This is necessary when pushing or otherwise adding things to the stack, to 845 // satisfy the AAPCS64 constraint that the memory below the system stack 846 // pointer is not accessed. The amount pushed will be increased as necessary 847 // to ensure csp remains aligned to 16 bytes. 848 // 849 // This method asserts that StackPointer() is not csp, since the call does 850 // not make sense in that context. 851 inline void BumpSystemStackPointer(const Operand& space); 852 853 // Re-synchronizes the system stack pointer (csp) with the current stack 854 // pointer (according to StackPointer()). 855 // 856 // This method asserts that StackPointer() is not csp, since the call does 857 // not make sense in that context. 858 inline void SyncSystemStackPointer(); 859 860 // Helpers ------------------------------------------------------------------ 861 // Root register. 862 inline void InitializeRootRegister(); 863 864 void AssertFPCRState(Register fpcr = NoReg); 865 void ConfigureFPCR(); 866 void CanonicalizeNaN(const FPRegister& dst, const FPRegister& src); 867 void CanonicalizeNaN(const FPRegister& reg) { 868 CanonicalizeNaN(reg, reg); 869 } 870 871 // Load an object from the root table. 872 void LoadRoot(CPURegister destination, 873 Heap::RootListIndex index); 874 // Store an object to the root table. 875 void StoreRoot(Register source, 876 Heap::RootListIndex index); 877 878 // Load both TrueValue and FalseValue roots. 879 void LoadTrueFalseRoots(Register true_root, Register false_root); 880 881 void LoadHeapObject(Register dst, Handle<HeapObject> object); 882 883 void LoadObject(Register result, Handle<Object> object) { 884 AllowDeferredHandleDereference heap_object_check; 885 if (object->IsHeapObject()) { 886 LoadHeapObject(result, Handle<HeapObject>::cast(object)); 887 } else { 888 DCHECK(object->IsSmi()); 889 Mov(result, Operand(object)); 890 } 891 } 892 893 static int SafepointRegisterStackIndex(int reg_code); 894 895 // This is required for compatibility with architecture independant code. 896 // Remove if not needed. 897 inline void Move(Register dst, Register src) { Mov(dst, src); } 898 inline void Move(Register dst, Smi* src) { Mov(dst, src); } 899 900 void LoadInstanceDescriptors(Register map, 901 Register descriptors); 902 void EnumLengthUntagged(Register dst, Register map); 903 void EnumLengthSmi(Register dst, Register map); 904 void NumberOfOwnDescriptors(Register dst, Register map); 905 void LoadAccessor(Register dst, Register holder, int accessor_index, 906 AccessorComponent accessor); 907 908 template<typename Field> 909 void DecodeField(Register dst, Register src) { 910 static const int shift = Field::kShift; 911 static const int setbits = CountSetBits(Field::kMask, 32); 912 Ubfx(dst, src, shift, setbits); 913 } 914 915 template<typename Field> 916 void DecodeField(Register reg) { 917 DecodeField<Field>(reg, reg); 918 } 919 920 // ---- SMI and Number Utilities ---- 921 922 inline void SmiTag(Register dst, Register src); 923 inline void SmiTag(Register smi); 924 inline void SmiUntag(Register dst, Register src); 925 inline void SmiUntag(Register smi); 926 inline void SmiUntagToDouble(FPRegister dst, 927 Register src, 928 UntagMode mode = kNotSpeculativeUntag); 929 inline void SmiUntagToFloat(FPRegister dst, 930 Register src, 931 UntagMode mode = kNotSpeculativeUntag); 932 933 // Tag and push in one step. 934 inline void SmiTagAndPush(Register src); 935 inline void SmiTagAndPush(Register src1, Register src2); 936 937 inline void JumpIfSmi(Register value, 938 Label* smi_label, 939 Label* not_smi_label = NULL); 940 inline void JumpIfNotSmi(Register value, Label* not_smi_label); 941 inline void JumpIfBothSmi(Register value1, 942 Register value2, 943 Label* both_smi_label, 944 Label* not_smi_label = NULL); 945 inline void JumpIfEitherSmi(Register value1, 946 Register value2, 947 Label* either_smi_label, 948 Label* not_smi_label = NULL); 949 inline void JumpIfEitherNotSmi(Register value1, 950 Register value2, 951 Label* not_smi_label); 952 inline void JumpIfBothNotSmi(Register value1, 953 Register value2, 954 Label* not_smi_label); 955 956 // Abort execution if argument is a smi, enabled via --debug-code. 957 void AssertNotSmi(Register object, BailoutReason reason = kOperandIsASmi); 958 void AssertSmi(Register object, BailoutReason reason = kOperandIsNotASmi); 959 960 inline void ObjectTag(Register tagged_obj, Register obj); 961 inline void ObjectUntag(Register untagged_obj, Register obj); 962 963 // Abort execution if argument is not a name, enabled via --debug-code. 964 void AssertName(Register object); 965 966 // Abort execution if argument is not a JSFunction, enabled via --debug-code. 967 void AssertFunction(Register object); 968 969 // Abort execution if argument is not a JSBoundFunction, 970 // enabled via --debug-code. 971 void AssertBoundFunction(Register object); 972 973 // Abort execution if argument is not undefined or an AllocationSite, enabled 974 // via --debug-code. 975 void AssertUndefinedOrAllocationSite(Register object, Register scratch); 976 977 // Abort execution if argument is not a string, enabled via --debug-code. 978 void AssertString(Register object); 979 980 // Abort execution if argument is not a positive or zero integer, enabled via 981 // --debug-code. 982 void AssertPositiveOrZero(Register value); 983 984 void JumpIfHeapNumber(Register object, Label* on_heap_number, 985 SmiCheckType smi_check_type = DONT_DO_SMI_CHECK); 986 void JumpIfNotHeapNumber(Register object, Label* on_not_heap_number, 987 SmiCheckType smi_check_type = DONT_DO_SMI_CHECK); 988 989 // Sets the vs flag if the input is -0.0. 990 void TestForMinusZero(DoubleRegister input); 991 992 // Jump to label if the input double register contains -0.0. 993 void JumpIfMinusZero(DoubleRegister input, Label* on_negative_zero); 994 995 // Jump to label if the input integer register contains the double precision 996 // floating point representation of -0.0. 997 void JumpIfMinusZero(Register input, Label* on_negative_zero); 998 999 // Saturate a signed 32-bit integer in input to an unsigned 8-bit integer in 1000 // output. 1001 void ClampInt32ToUint8(Register in_out); 1002 void ClampInt32ToUint8(Register output, Register input); 1003 1004 // Saturate a double in input to an unsigned 8-bit integer in output. 1005 void ClampDoubleToUint8(Register output, 1006 DoubleRegister input, 1007 DoubleRegister dbl_scratch); 1008 1009 // Try to represent a double as a signed 32-bit int. 1010 // This succeeds if the result compares equal to the input, so inputs of -0.0 1011 // are represented as 0 and handled as a success. 1012 // 1013 // On output the Z flag is set if the operation was successful. 1014 void TryRepresentDoubleAsInt32(Register as_int, 1015 FPRegister value, 1016 FPRegister scratch_d, 1017 Label* on_successful_conversion = NULL, 1018 Label* on_failed_conversion = NULL) { 1019 DCHECK(as_int.Is32Bits()); 1020 TryRepresentDoubleAsInt(as_int, value, scratch_d, on_successful_conversion, 1021 on_failed_conversion); 1022 } 1023 1024 // Try to represent a double as a signed 64-bit int. 1025 // This succeeds if the result compares equal to the input, so inputs of -0.0 1026 // are represented as 0 and handled as a success. 1027 // 1028 // On output the Z flag is set if the operation was successful. 1029 void TryRepresentDoubleAsInt64(Register as_int, 1030 FPRegister value, 1031 FPRegister scratch_d, 1032 Label* on_successful_conversion = NULL, 1033 Label* on_failed_conversion = NULL) { 1034 DCHECK(as_int.Is64Bits()); 1035 TryRepresentDoubleAsInt(as_int, value, scratch_d, on_successful_conversion, 1036 on_failed_conversion); 1037 } 1038 1039 // ---- Object Utilities ---- 1040 1041 // Initialize fields with filler values. Fields starting at |current_address| 1042 // not including |end_address| are overwritten with the value in |filler|. At 1043 // the end the loop, |current_address| takes the value of |end_address|. 1044 void InitializeFieldsWithFiller(Register current_address, 1045 Register end_address, Register filler); 1046 1047 // Copies a number of bytes from src to dst. All passed registers are 1048 // clobbered. On exit src and dst will point to the place just after where the 1049 // last byte was read or written and length will be zero. Hint may be used to 1050 // determine which is the most efficient algorithm to use for copying. 1051 void CopyBytes(Register dst, 1052 Register src, 1053 Register length, 1054 Register scratch, 1055 CopyHint hint = kCopyUnknown); 1056 1057 // ---- String Utilities ---- 1058 1059 1060 // Jump to label if either object is not a sequential one-byte string. 1061 // Optionally perform a smi check on the objects first. 1062 void JumpIfEitherIsNotSequentialOneByteStrings( 1063 Register first, Register second, Register scratch1, Register scratch2, 1064 Label* failure, SmiCheckType smi_check = DO_SMI_CHECK); 1065 1066 // Check if instance type is sequential one-byte string and jump to label if 1067 // it is not. 1068 void JumpIfInstanceTypeIsNotSequentialOneByte(Register type, Register scratch, 1069 Label* failure); 1070 1071 // Checks if both instance types are sequential one-byte strings and jumps to 1072 // label if either is not. 1073 void JumpIfEitherInstanceTypeIsNotSequentialOneByte( 1074 Register first_object_instance_type, Register second_object_instance_type, 1075 Register scratch1, Register scratch2, Label* failure); 1076 1077 // Checks if both instance types are sequential one-byte strings and jumps to 1078 // label if either is not. 1079 void JumpIfBothInstanceTypesAreNotSequentialOneByte( 1080 Register first_object_instance_type, Register second_object_instance_type, 1081 Register scratch1, Register scratch2, Label* failure); 1082 1083 void JumpIfNotUniqueNameInstanceType(Register type, Label* not_unique_name); 1084 1085 // ---- Calling / Jumping helpers ---- 1086 1087 // This is required for compatibility in architecture indepenedant code. 1088 inline void jmp(Label* L) { B(L); } 1089 1090 void CallStub(CodeStub* stub, TypeFeedbackId ast_id = TypeFeedbackId::None()); 1091 void TailCallStub(CodeStub* stub); 1092 1093 void CallRuntime(const Runtime::Function* f, 1094 int num_arguments, 1095 SaveFPRegsMode save_doubles = kDontSaveFPRegs); 1096 1097 // Convenience function: Same as above, but takes the fid instead. 1098 void CallRuntime(Runtime::FunctionId fid, int num_arguments, 1099 SaveFPRegsMode save_doubles = kDontSaveFPRegs) { 1100 CallRuntime(Runtime::FunctionForId(fid), num_arguments, save_doubles); 1101 } 1102 1103 // Convenience function: Same as above, but takes the fid instead. 1104 void CallRuntime(Runtime::FunctionId fid, 1105 SaveFPRegsMode save_doubles = kDontSaveFPRegs) { 1106 const Runtime::Function* function = Runtime::FunctionForId(fid); 1107 CallRuntime(function, function->nargs, save_doubles); 1108 } 1109 1110 void CallRuntimeSaveDoubles(Runtime::FunctionId fid) { 1111 const Runtime::Function* function = Runtime::FunctionForId(fid); 1112 CallRuntime(function, function->nargs, kSaveFPRegs); 1113 } 1114 1115 void TailCallRuntime(Runtime::FunctionId fid); 1116 1117 int ActivationFrameAlignment(); 1118 1119 // Calls a C function. 1120 // The called function is not allowed to trigger a 1121 // garbage collection, since that might move the code and invalidate the 1122 // return address (unless this is somehow accounted for by the called 1123 // function). 1124 void CallCFunction(ExternalReference function, 1125 int num_reg_arguments); 1126 void CallCFunction(ExternalReference function, 1127 int num_reg_arguments, 1128 int num_double_arguments); 1129 void CallCFunction(Register function, 1130 int num_reg_arguments, 1131 int num_double_arguments); 1132 1133 // Jump to a runtime routine. 1134 void JumpToExternalReference(const ExternalReference& builtin); 1135 1136 // Convenience function: call an external reference. 1137 void CallExternalReference(const ExternalReference& ext, 1138 int num_arguments); 1139 1140 1141 // Invoke specified builtin JavaScript function. 1142 void InvokeBuiltin(int native_context_index, InvokeFlag flag, 1143 const CallWrapper& call_wrapper = NullCallWrapper()); 1144 1145 void Jump(Register target); 1146 void Jump(Address target, RelocInfo::Mode rmode, Condition cond = al); 1147 void Jump(Handle<Code> code, RelocInfo::Mode rmode, Condition cond = al); 1148 void Jump(intptr_t target, RelocInfo::Mode rmode, Condition cond = al); 1149 1150 void Call(Register target); 1151 void Call(Label* target); 1152 void Call(Address target, RelocInfo::Mode rmode); 1153 void Call(Handle<Code> code, 1154 RelocInfo::Mode rmode = RelocInfo::CODE_TARGET, 1155 TypeFeedbackId ast_id = TypeFeedbackId::None()); 1156 1157 // For every Call variant, there is a matching CallSize function that returns 1158 // the size (in bytes) of the call sequence. 1159 static int CallSize(Register target); 1160 static int CallSize(Label* target); 1161 static int CallSize(Address target, RelocInfo::Mode rmode); 1162 static int CallSize(Handle<Code> code, 1163 RelocInfo::Mode rmode = RelocInfo::CODE_TARGET, 1164 TypeFeedbackId ast_id = TypeFeedbackId::None()); 1165 1166 // Registers used through the invocation chain are hard-coded. 1167 // We force passing the parameters to ensure the contracts are correctly 1168 // honoured by the caller. 1169 // 'function' must be x1. 1170 // 'actual' must use an immediate or x0. 1171 // 'expected' must use an immediate or x2. 1172 // 'call_kind' must be x5. 1173 void InvokePrologue(const ParameterCount& expected, 1174 const ParameterCount& actual, 1175 Label* done, 1176 InvokeFlag flag, 1177 bool* definitely_mismatches, 1178 const CallWrapper& call_wrapper); 1179 void FloodFunctionIfStepping(Register fun, Register new_target, 1180 const ParameterCount& expected, 1181 const ParameterCount& actual); 1182 void InvokeFunctionCode(Register function, Register new_target, 1183 const ParameterCount& expected, 1184 const ParameterCount& actual, InvokeFlag flag, 1185 const CallWrapper& call_wrapper); 1186 // Invoke the JavaScript function in the given register. 1187 // Changes the current context to the context in the function before invoking. 1188 void InvokeFunction(Register function, 1189 Register new_target, 1190 const ParameterCount& actual, 1191 InvokeFlag flag, 1192 const CallWrapper& call_wrapper); 1193 void InvokeFunction(Register function, 1194 const ParameterCount& expected, 1195 const ParameterCount& actual, 1196 InvokeFlag flag, 1197 const CallWrapper& call_wrapper); 1198 void InvokeFunction(Handle<JSFunction> function, 1199 const ParameterCount& expected, 1200 const ParameterCount& actual, 1201 InvokeFlag flag, 1202 const CallWrapper& call_wrapper); 1203 1204 1205 // ---- Floating point helpers ---- 1206 1207 // Perform a conversion from a double to a signed int64. If the input fits in 1208 // range of the 64-bit result, execution branches to done. Otherwise, 1209 // execution falls through, and the sign of the result can be used to 1210 // determine if overflow was towards positive or negative infinity. 1211 // 1212 // On successful conversion, the least significant 32 bits of the result are 1213 // equivalent to the ECMA-262 operation "ToInt32". 1214 // 1215 // Only public for the test code in test-code-stubs-arm64.cc. 1216 void TryConvertDoubleToInt64(Register result, 1217 DoubleRegister input, 1218 Label* done); 1219 1220 // Performs a truncating conversion of a floating point number as used by 1221 // the JS bitwise operations. See ECMA-262 9.5: ToInt32. 1222 // Exits with 'result' holding the answer. 1223 void TruncateDoubleToI(Register result, DoubleRegister double_input); 1224 1225 // Performs a truncating conversion of a heap number as used by 1226 // the JS bitwise operations. See ECMA-262 9.5: ToInt32. 'result' and 'input' 1227 // must be different registers. Exits with 'result' holding the answer. 1228 void TruncateHeapNumberToI(Register result, Register object); 1229 1230 // Converts the smi or heap number in object to an int32 using the rules 1231 // for ToInt32 as described in ECMAScript 9.5.: the value is truncated 1232 // and brought into the range -2^31 .. +2^31 - 1. 'result' and 'input' must be 1233 // different registers. 1234 void TruncateNumberToI(Register object, 1235 Register result, 1236 Register heap_number_map, 1237 Label* not_int32); 1238 1239 // ---- Code generation helpers ---- 1240 1241 void set_generating_stub(bool value) { generating_stub_ = value; } 1242 bool generating_stub() const { return generating_stub_; } 1243 #if DEBUG 1244 void set_allow_macro_instructions(bool value) { 1245 allow_macro_instructions_ = value; 1246 } 1247 bool allow_macro_instructions() const { return allow_macro_instructions_; } 1248 #endif 1249 bool use_real_aborts() const { return use_real_aborts_; } 1250 void set_has_frame(bool value) { has_frame_ = value; } 1251 bool has_frame() const { return has_frame_; } 1252 bool AllowThisStubCall(CodeStub* stub); 1253 1254 class NoUseRealAbortsScope { 1255 public: 1256 explicit NoUseRealAbortsScope(MacroAssembler* masm) : 1257 saved_(masm->use_real_aborts_), masm_(masm) { 1258 masm_->use_real_aborts_ = false; 1259 } 1260 ~NoUseRealAbortsScope() { 1261 masm_->use_real_aborts_ = saved_; 1262 } 1263 private: 1264 bool saved_; 1265 MacroAssembler* masm_; 1266 }; 1267 1268 // --------------------------------------------------------------------------- 1269 // Debugger Support 1270 1271 void DebugBreak(); 1272 1273 // --------------------------------------------------------------------------- 1274 // Exception handling 1275 1276 // Push a new stack handler and link into stack handler chain. 1277 void PushStackHandler(); 1278 1279 // Unlink the stack handler on top of the stack from the stack handler chain. 1280 // Must preserve the result register. 1281 void PopStackHandler(); 1282 1283 1284 // --------------------------------------------------------------------------- 1285 // Allocation support 1286 1287 // Allocate an object in new space or old space. The object_size is 1288 // specified either in bytes or in words if the allocation flag SIZE_IN_WORDS 1289 // is passed. The allocated object is returned in result. 1290 // 1291 // If the new space is exhausted control continues at the gc_required label. 1292 // In this case, the result and scratch registers may still be clobbered. 1293 // If flags includes TAG_OBJECT, the result is tagged as as a heap object. 1294 void Allocate(Register object_size, Register result, Register result_end, 1295 Register scratch, Label* gc_required, AllocationFlags flags); 1296 1297 void Allocate(int object_size, 1298 Register result, 1299 Register scratch1, 1300 Register scratch2, 1301 Label* gc_required, 1302 AllocationFlags flags); 1303 1304 void AllocateTwoByteString(Register result, 1305 Register length, 1306 Register scratch1, 1307 Register scratch2, 1308 Register scratch3, 1309 Label* gc_required); 1310 void AllocateOneByteString(Register result, Register length, 1311 Register scratch1, Register scratch2, 1312 Register scratch3, Label* gc_required); 1313 void AllocateTwoByteConsString(Register result, 1314 Register length, 1315 Register scratch1, 1316 Register scratch2, 1317 Label* gc_required); 1318 void AllocateOneByteConsString(Register result, Register length, 1319 Register scratch1, Register scratch2, 1320 Label* gc_required); 1321 void AllocateTwoByteSlicedString(Register result, 1322 Register length, 1323 Register scratch1, 1324 Register scratch2, 1325 Label* gc_required); 1326 void AllocateOneByteSlicedString(Register result, Register length, 1327 Register scratch1, Register scratch2, 1328 Label* gc_required); 1329 1330 // Allocates a heap number or jumps to the gc_required label if the young 1331 // space is full and a scavenge is needed. 1332 // All registers are clobbered. 1333 // If no heap_number_map register is provided, the function will take care of 1334 // loading it. 1335 void AllocateHeapNumber(Register result, 1336 Label* gc_required, 1337 Register scratch1, 1338 Register scratch2, 1339 CPURegister value = NoFPReg, 1340 CPURegister heap_number_map = NoReg, 1341 MutableMode mode = IMMUTABLE); 1342 1343 // Allocate and initialize a JSValue wrapper with the specified {constructor} 1344 // and {value}. 1345 void AllocateJSValue(Register result, Register constructor, Register value, 1346 Register scratch1, Register scratch2, 1347 Label* gc_required); 1348 1349 // --------------------------------------------------------------------------- 1350 // Support functions. 1351 1352 // Machine code version of Map::GetConstructor(). 1353 // |temp| holds |result|'s map when done, and |temp2| its instance type. 1354 void GetMapConstructor(Register result, Register map, Register temp, 1355 Register temp2); 1356 1357 void TryGetFunctionPrototype(Register function, Register result, 1358 Register scratch, Label* miss); 1359 1360 // Compare object type for heap object. heap_object contains a non-Smi 1361 // whose object type should be compared with the given type. This both 1362 // sets the flags and leaves the object type in the type_reg register. 1363 // It leaves the map in the map register (unless the type_reg and map register 1364 // are the same register). It leaves the heap object in the heap_object 1365 // register unless the heap_object register is the same register as one of the 1366 // other registers. 1367 void CompareObjectType(Register heap_object, 1368 Register map, 1369 Register type_reg, 1370 InstanceType type); 1371 1372 1373 // Compare object type for heap object, and branch if equal (or not.) 1374 // heap_object contains a non-Smi whose object type should be compared with 1375 // the given type. This both sets the flags and leaves the object type in 1376 // the type_reg register. It leaves the map in the map register (unless the 1377 // type_reg and map register are the same register). It leaves the heap 1378 // object in the heap_object register unless the heap_object register is the 1379 // same register as one of the other registers. 1380 void JumpIfObjectType(Register object, 1381 Register map, 1382 Register type_reg, 1383 InstanceType type, 1384 Label* if_cond_pass, 1385 Condition cond = eq); 1386 1387 void JumpIfNotObjectType(Register object, 1388 Register map, 1389 Register type_reg, 1390 InstanceType type, 1391 Label* if_not_object); 1392 1393 // Compare instance type in a map. map contains a valid map object whose 1394 // object type should be compared with the given type. This both 1395 // sets the flags and leaves the object type in the type_reg register. 1396 void CompareInstanceType(Register map, 1397 Register type_reg, 1398 InstanceType type); 1399 1400 // Compare an object's map with the specified map. Condition flags are set 1401 // with result of map compare. 1402 void CompareObjectMap(Register obj, Heap::RootListIndex index); 1403 1404 // Compare an object's map with the specified map. Condition flags are set 1405 // with result of map compare. 1406 void CompareObjectMap(Register obj, Register scratch, Handle<Map> map); 1407 1408 // As above, but the map of the object is already loaded into the register 1409 // which is preserved by the code generated. 1410 void CompareMap(Register obj_map, 1411 Handle<Map> map); 1412 1413 // Check if the map of an object is equal to a specified map and branch to 1414 // label if not. Skip the smi check if not required (object is known to be a 1415 // heap object). If mode is ALLOW_ELEMENT_TRANSITION_MAPS, then also match 1416 // against maps that are ElementsKind transition maps of the specified map. 1417 void CheckMap(Register obj, 1418 Register scratch, 1419 Handle<Map> map, 1420 Label* fail, 1421 SmiCheckType smi_check_type); 1422 1423 1424 void CheckMap(Register obj, 1425 Register scratch, 1426 Heap::RootListIndex index, 1427 Label* fail, 1428 SmiCheckType smi_check_type); 1429 1430 // As above, but the map of the object is already loaded into obj_map, and is 1431 // preserved. 1432 void CheckMap(Register obj_map, 1433 Handle<Map> map, 1434 Label* fail, 1435 SmiCheckType smi_check_type); 1436 1437 // Check if the map of an object is equal to a specified weak map and branch 1438 // to a specified target if equal. Skip the smi check if not required 1439 // (object is known to be a heap object) 1440 void DispatchWeakMap(Register obj, Register scratch1, Register scratch2, 1441 Handle<WeakCell> cell, Handle<Code> success, 1442 SmiCheckType smi_check_type); 1443 1444 // Compare the given value and the value of weak cell. 1445 void CmpWeakValue(Register value, Handle<WeakCell> cell, Register scratch); 1446 1447 void GetWeakValue(Register value, Handle<WeakCell> cell); 1448 1449 // Load the value of the weak cell in the value register. Branch to the given 1450 // miss label if the weak cell was cleared. 1451 void LoadWeakValue(Register value, Handle<WeakCell> cell, Label* miss); 1452 1453 // Test the bitfield of the heap object map with mask and set the condition 1454 // flags. The object register is preserved. 1455 void TestMapBitfield(Register object, uint64_t mask); 1456 1457 // Load the elements kind field from a map, and return it in the result 1458 // register. 1459 void LoadElementsKindFromMap(Register result, Register map); 1460 1461 // Load the value from the root list and push it onto the stack. 1462 void PushRoot(Heap::RootListIndex index); 1463 1464 // Compare the object in a register to a value from the root list. 1465 void CompareRoot(const Register& obj, Heap::RootListIndex index); 1466 1467 // Compare the object in a register to a value and jump if they are equal. 1468 void JumpIfRoot(const Register& obj, 1469 Heap::RootListIndex index, 1470 Label* if_equal); 1471 1472 // Compare the object in a register to a value and jump if they are not equal. 1473 void JumpIfNotRoot(const Register& obj, 1474 Heap::RootListIndex index, 1475 Label* if_not_equal); 1476 1477 // Load and check the instance type of an object for being a unique name. 1478 // Loads the type into the second argument register. 1479 // The object and type arguments can be the same register; in that case it 1480 // will be overwritten with the type. 1481 // Fall-through if the object was a string and jump on fail otherwise. 1482 inline void IsObjectNameType(Register object, Register type, Label* fail); 1483 1484 // Load and check the instance type of an object for being a string. 1485 // Loads the type into the second argument register. 1486 // The object and type arguments can be the same register; in that case it 1487 // will be overwritten with the type. 1488 // Jumps to not_string or string appropriate. If the appropriate label is 1489 // NULL, fall through. 1490 inline void IsObjectJSStringType(Register object, Register type, 1491 Label* not_string, Label* string = NULL); 1492 1493 // Compare the contents of a register with an operand, and branch to true, 1494 // false or fall through, depending on condition. 1495 void CompareAndSplit(const Register& lhs, 1496 const Operand& rhs, 1497 Condition cond, 1498 Label* if_true, 1499 Label* if_false, 1500 Label* fall_through); 1501 1502 // Test the bits of register defined by bit_pattern, and branch to 1503 // if_any_set, if_all_clear or fall_through accordingly. 1504 void TestAndSplit(const Register& reg, 1505 uint64_t bit_pattern, 1506 Label* if_all_clear, 1507 Label* if_any_set, 1508 Label* fall_through); 1509 1510 // Check if a map for a JSObject indicates that the object has fast elements. 1511 // Jump to the specified label if it does not. 1512 void CheckFastElements(Register map, Register scratch, Label* fail); 1513 1514 // Check if a map for a JSObject indicates that the object can have both smi 1515 // and HeapObject elements. Jump to the specified label if it does not. 1516 void CheckFastObjectElements(Register map, Register scratch, Label* fail); 1517 1518 // Check to see if number can be stored as a double in FastDoubleElements. 1519 // If it can, store it at the index specified by key_reg in the array, 1520 // otherwise jump to fail. 1521 void StoreNumberToDoubleElements(Register value_reg, 1522 Register key_reg, 1523 Register elements_reg, 1524 Register scratch1, 1525 FPRegister fpscratch1, 1526 Label* fail, 1527 int elements_offset = 0); 1528 1529 // Picks out an array index from the hash field. 1530 // Register use: 1531 // hash - holds the index's hash. Clobbered. 1532 // index - holds the overwritten index on exit. 1533 void IndexFromHash(Register hash, Register index); 1534 1535 // --------------------------------------------------------------------------- 1536 // Inline caching support. 1537 1538 void EmitSeqStringSetCharCheck(Register string, 1539 Register index, 1540 SeqStringSetCharCheckIndexType index_type, 1541 Register scratch, 1542 uint32_t encoding_mask); 1543 1544 // Generate code for checking access rights - used for security checks 1545 // on access to global objects across environments. The holder register 1546 // is left untouched, whereas both scratch registers are clobbered. 1547 void CheckAccessGlobalProxy(Register holder_reg, 1548 Register scratch1, 1549 Register scratch2, 1550 Label* miss); 1551 1552 // Hash the interger value in 'key' register. 1553 // It uses the same algorithm as ComputeIntegerHash in utils.h. 1554 void GetNumberHash(Register key, Register scratch); 1555 1556 // Load value from the dictionary. 1557 // 1558 // elements - holds the slow-case elements of the receiver on entry. 1559 // Unchanged unless 'result' is the same register. 1560 // 1561 // key - holds the smi key on entry. 1562 // Unchanged unless 'result' is the same register. 1563 // 1564 // result - holds the result on exit if the load succeeded. 1565 // Allowed to be the same as 'key' or 'result'. 1566 // Unchanged on bailout so 'key' or 'result' can be used 1567 // in further computation. 1568 void LoadFromNumberDictionary(Label* miss, 1569 Register elements, 1570 Register key, 1571 Register result, 1572 Register scratch0, 1573 Register scratch1, 1574 Register scratch2, 1575 Register scratch3); 1576 1577 // --------------------------------------------------------------------------- 1578 // Frames. 1579 1580 // Load the type feedback vector from a JavaScript frame. 1581 void EmitLoadTypeFeedbackVector(Register vector); 1582 1583 // Activation support. 1584 void EnterFrame(StackFrame::Type type); 1585 void EnterFrame(StackFrame::Type type, bool load_constant_pool_pointer_reg); 1586 void LeaveFrame(StackFrame::Type type); 1587 1588 // Returns map with validated enum cache in object register. 1589 void CheckEnumCache(Register object, 1590 Register null_value, 1591 Register scratch0, 1592 Register scratch1, 1593 Register scratch2, 1594 Register scratch3, 1595 Label* call_runtime); 1596 1597 // AllocationMemento support. Arrays may have an associated 1598 // AllocationMemento object that can be checked for in order to pretransition 1599 // to another type. 1600 // On entry, receiver should point to the array object. 1601 // If allocation info is present, the Z flag is set (so that the eq 1602 // condition will pass). 1603 void TestJSArrayForAllocationMemento(Register receiver, 1604 Register scratch1, 1605 Register scratch2, 1606 Label* no_memento_found); 1607 1608 void JumpIfJSArrayHasAllocationMemento(Register receiver, 1609 Register scratch1, 1610 Register scratch2, 1611 Label* memento_found) { 1612 Label no_memento_found; 1613 TestJSArrayForAllocationMemento(receiver, scratch1, scratch2, 1614 &no_memento_found); 1615 B(eq, memento_found); 1616 Bind(&no_memento_found); 1617 } 1618 1619 // The stack pointer has to switch between csp and jssp when setting up and 1620 // destroying the exit frame. Hence preserving/restoring the registers is 1621 // slightly more complicated than simple push/pop operations. 1622 void ExitFramePreserveFPRegs(); 1623 void ExitFrameRestoreFPRegs(); 1624 1625 // Generates function and stub prologue code. 1626 void StubPrologue(); 1627 void Prologue(bool code_pre_aging); 1628 1629 // Enter exit frame. Exit frames are used when calling C code from generated 1630 // (JavaScript) code. 1631 // 1632 // The stack pointer must be jssp on entry, and will be set to csp by this 1633 // function. The frame pointer is also configured, but the only other 1634 // registers modified by this function are the provided scratch register, and 1635 // jssp. 1636 // 1637 // The 'extra_space' argument can be used to allocate some space in the exit 1638 // frame that will be ignored by the GC. This space will be reserved in the 1639 // bottom of the frame immediately above the return address slot. 1640 // 1641 // Set up a stack frame and registers as follows: 1642 // fp[8]: CallerPC (lr) 1643 // fp -> fp[0]: CallerFP (old fp) 1644 // fp[-8]: SPOffset (new csp) 1645 // fp[-16]: CodeObject() 1646 // fp[-16 - fp-size]: Saved doubles, if saved_doubles is true. 1647 // csp[8]: Memory reserved for the caller if extra_space != 0. 1648 // Alignment padding, if necessary. 1649 // csp -> csp[0]: Space reserved for the return address. 1650 // 1651 // This function also stores the new frame information in the top frame, so 1652 // that the new frame becomes the current frame. 1653 void EnterExitFrame(bool save_doubles, 1654 const Register& scratch, 1655 int extra_space = 0); 1656 1657 // Leave the current exit frame, after a C function has returned to generated 1658 // (JavaScript) code. 1659 // 1660 // This effectively unwinds the operation of EnterExitFrame: 1661 // * Preserved doubles are restored (if restore_doubles is true). 1662 // * The frame information is removed from the top frame. 1663 // * The exit frame is dropped. 1664 // * The stack pointer is reset to jssp. 1665 // 1666 // The stack pointer must be csp on entry. 1667 void LeaveExitFrame(bool save_doubles, 1668 const Register& scratch, 1669 bool restore_context); 1670 1671 void LoadContext(Register dst, int context_chain_length); 1672 1673 // Load the global object from the current context. 1674 void LoadGlobalObject(Register dst) { 1675 LoadNativeContextSlot(Context::EXTENSION_INDEX, dst); 1676 } 1677 1678 // Load the global proxy from the current context. 1679 void LoadGlobalProxy(Register dst) { 1680 LoadNativeContextSlot(Context::GLOBAL_PROXY_INDEX, dst); 1681 } 1682 1683 // Emit code for a truncating division by a constant. The dividend register is 1684 // unchanged. Dividend and result must be different. 1685 void TruncatingDiv(Register result, Register dividend, int32_t divisor); 1686 1687 // --------------------------------------------------------------------------- 1688 // StatsCounter support 1689 1690 void SetCounter(StatsCounter* counter, int value, Register scratch1, 1691 Register scratch2); 1692 void IncrementCounter(StatsCounter* counter, int value, Register scratch1, 1693 Register scratch2); 1694 void DecrementCounter(StatsCounter* counter, int value, Register scratch1, 1695 Register scratch2); 1696 1697 // --------------------------------------------------------------------------- 1698 // Garbage collector support (GC). 1699 1700 enum RememberedSetFinalAction { 1701 kReturnAtEnd, 1702 kFallThroughAtEnd 1703 }; 1704 1705 // Record in the remembered set the fact that we have a pointer to new space 1706 // at the address pointed to by the addr register. Only works if addr is not 1707 // in new space. 1708 void RememberedSetHelper(Register object, // Used for debug code. 1709 Register addr, 1710 Register scratch1, 1711 SaveFPRegsMode save_fp, 1712 RememberedSetFinalAction and_then); 1713 1714 // Push and pop the registers that can hold pointers, as defined by the 1715 // RegList constant kSafepointSavedRegisters. 1716 void PushSafepointRegisters(); 1717 void PopSafepointRegisters(); 1718 1719 void PushSafepointRegistersAndDoubles(); 1720 void PopSafepointRegistersAndDoubles(); 1721 1722 // Store value in register src in the safepoint stack slot for register dst. 1723 void StoreToSafepointRegisterSlot(Register src, Register dst) { 1724 Poke(src, SafepointRegisterStackIndex(dst.code()) * kPointerSize); 1725 } 1726 1727 // Load the value of the src register from its safepoint stack slot 1728 // into register dst. 1729 void LoadFromSafepointRegisterSlot(Register dst, Register src) { 1730 Peek(src, SafepointRegisterStackIndex(dst.code()) * kPointerSize); 1731 } 1732 1733 void CheckPageFlagSet(const Register& object, 1734 const Register& scratch, 1735 int mask, 1736 Label* if_any_set); 1737 1738 void CheckPageFlagClear(const Register& object, 1739 const Register& scratch, 1740 int mask, 1741 Label* if_all_clear); 1742 1743 // Check if object is in new space and jump accordingly. 1744 // Register 'object' is preserved. 1745 void JumpIfNotInNewSpace(Register object, 1746 Label* branch) { 1747 InNewSpace(object, ne, branch); 1748 } 1749 1750 void JumpIfInNewSpace(Register object, 1751 Label* branch) { 1752 InNewSpace(object, eq, branch); 1753 } 1754 1755 // Notify the garbage collector that we wrote a pointer into an object. 1756 // |object| is the object being stored into, |value| is the object being 1757 // stored. value and scratch registers are clobbered by the operation. 1758 // The offset is the offset from the start of the object, not the offset from 1759 // the tagged HeapObject pointer. For use with FieldMemOperand(reg, off). 1760 void RecordWriteField( 1761 Register object, 1762 int offset, 1763 Register value, 1764 Register scratch, 1765 LinkRegisterStatus lr_status, 1766 SaveFPRegsMode save_fp, 1767 RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET, 1768 SmiCheck smi_check = INLINE_SMI_CHECK, 1769 PointersToHereCheck pointers_to_here_check_for_value = 1770 kPointersToHereMaybeInteresting); 1771 1772 // As above, but the offset has the tag presubtracted. For use with 1773 // MemOperand(reg, off). 1774 inline void RecordWriteContextSlot( 1775 Register context, 1776 int offset, 1777 Register value, 1778 Register scratch, 1779 LinkRegisterStatus lr_status, 1780 SaveFPRegsMode save_fp, 1781 RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET, 1782 SmiCheck smi_check = INLINE_SMI_CHECK, 1783 PointersToHereCheck pointers_to_here_check_for_value = 1784 kPointersToHereMaybeInteresting) { 1785 RecordWriteField(context, 1786 offset + kHeapObjectTag, 1787 value, 1788 scratch, 1789 lr_status, 1790 save_fp, 1791 remembered_set_action, 1792 smi_check, 1793 pointers_to_here_check_for_value); 1794 } 1795 1796 void RecordWriteForMap( 1797 Register object, 1798 Register map, 1799 Register dst, 1800 LinkRegisterStatus lr_status, 1801 SaveFPRegsMode save_fp); 1802 1803 // For a given |object| notify the garbage collector that the slot |address| 1804 // has been written. |value| is the object being stored. The value and 1805 // address registers are clobbered by the operation. 1806 void RecordWrite( 1807 Register object, 1808 Register address, 1809 Register value, 1810 LinkRegisterStatus lr_status, 1811 SaveFPRegsMode save_fp, 1812 RememberedSetAction remembered_set_action = EMIT_REMEMBERED_SET, 1813 SmiCheck smi_check = INLINE_SMI_CHECK, 1814 PointersToHereCheck pointers_to_here_check_for_value = 1815 kPointersToHereMaybeInteresting); 1816 1817 // Checks the color of an object. If the object is white we jump to the 1818 // incremental marker. 1819 void JumpIfWhite(Register value, Register scratch1, Register scratch2, 1820 Register scratch3, Register scratch4, Label* value_is_white); 1821 1822 // Helper for finding the mark bits for an address. 1823 // Note that the behaviour slightly differs from other architectures. 1824 // On exit: 1825 // - addr_reg is unchanged. 1826 // - The bitmap register points at the word with the mark bits. 1827 // - The shift register contains the index of the first color bit for this 1828 // object in the bitmap. 1829 inline void GetMarkBits(Register addr_reg, 1830 Register bitmap_reg, 1831 Register shift_reg); 1832 1833 // Check if an object has a given incremental marking color. 1834 void HasColor(Register object, 1835 Register scratch0, 1836 Register scratch1, 1837 Label* has_color, 1838 int first_bit, 1839 int second_bit); 1840 1841 void JumpIfBlack(Register object, 1842 Register scratch0, 1843 Register scratch1, 1844 Label* on_black); 1845 1846 1847 // --------------------------------------------------------------------------- 1848 // Debugging. 1849 1850 // Calls Abort(msg) if the condition cond is not satisfied. 1851 // Use --debug_code to enable. 1852 void Assert(Condition cond, BailoutReason reason); 1853 void AssertRegisterIsClear(Register reg, BailoutReason reason); 1854 void AssertRegisterIsRoot( 1855 Register reg, 1856 Heap::RootListIndex index, 1857 BailoutReason reason = kRegisterDidNotMatchExpectedRoot); 1858 void AssertFastElements(Register elements); 1859 1860 // Abort if the specified register contains the invalid color bit pattern. 1861 // The pattern must be in bits [1:0] of 'reg' register. 1862 // 1863 // If emit_debug_code() is false, this emits no code. 1864 void AssertHasValidColor(const Register& reg); 1865 1866 // Abort if 'object' register doesn't point to a string object. 1867 // 1868 // If emit_debug_code() is false, this emits no code. 1869 void AssertIsString(const Register& object); 1870 1871 // Like Assert(), but always enabled. 1872 void Check(Condition cond, BailoutReason reason); 1873 void CheckRegisterIsClear(Register reg, BailoutReason reason); 1874 1875 // Print a message to stderr and abort execution. 1876 void Abort(BailoutReason reason); 1877 1878 // Conditionally load the cached Array transitioned map of type 1879 // transitioned_kind from the native context if the map in register 1880 // map_in_out is the cached Array map in the native context of 1881 // expected_kind. 1882 void LoadTransitionedArrayMapConditional( 1883 ElementsKind expected_kind, 1884 ElementsKind transitioned_kind, 1885 Register map_in_out, 1886 Register scratch1, 1887 Register scratch2, 1888 Label* no_map_match); 1889 1890 void LoadNativeContextSlot(int index, Register dst); 1891 1892 // Load the initial map from the global function. The registers function and 1893 // map can be the same, function is then overwritten. 1894 void LoadGlobalFunctionInitialMap(Register function, 1895 Register map, 1896 Register scratch); 1897 1898 CPURegList* TmpList() { return &tmp_list_; } 1899 CPURegList* FPTmpList() { return &fptmp_list_; } 1900 1901 static CPURegList DefaultTmpList(); 1902 static CPURegList DefaultFPTmpList(); 1903 1904 // Like printf, but print at run-time from generated code. 1905 // 1906 // The caller must ensure that arguments for floating-point placeholders 1907 // (such as %e, %f or %g) are FPRegisters, and that arguments for integer 1908 // placeholders are Registers. 1909 // 1910 // At the moment it is only possible to print the value of csp if it is the 1911 // current stack pointer. Otherwise, the MacroAssembler will automatically 1912 // update csp on every push (using BumpSystemStackPointer), so determining its 1913 // value is difficult. 1914 // 1915 // Format placeholders that refer to more than one argument, or to a specific 1916 // argument, are not supported. This includes formats like "%1$d" or "%.*d". 1917 // 1918 // This function automatically preserves caller-saved registers so that 1919 // calling code can use Printf at any point without having to worry about 1920 // corruption. The preservation mechanism generates a lot of code. If this is 1921 // a problem, preserve the important registers manually and then call 1922 // PrintfNoPreserve. Callee-saved registers are not used by Printf, and are 1923 // implicitly preserved. 1924 void Printf(const char * format, 1925 CPURegister arg0 = NoCPUReg, 1926 CPURegister arg1 = NoCPUReg, 1927 CPURegister arg2 = NoCPUReg, 1928 CPURegister arg3 = NoCPUReg); 1929 1930 // Like Printf, but don't preserve any caller-saved registers, not even 'lr'. 1931 // 1932 // The return code from the system printf call will be returned in x0. 1933 void PrintfNoPreserve(const char * format, 1934 const CPURegister& arg0 = NoCPUReg, 1935 const CPURegister& arg1 = NoCPUReg, 1936 const CPURegister& arg2 = NoCPUReg, 1937 const CPURegister& arg3 = NoCPUReg); 1938 1939 // Code ageing support functions. 1940 1941 // Code ageing on ARM64 works similarly to on ARM. When V8 wants to mark a 1942 // function as old, it replaces some of the function prologue (generated by 1943 // FullCodeGenerator::Generate) with a call to a special stub (ultimately 1944 // generated by GenerateMakeCodeYoungAgainCommon). The stub restores the 1945 // function prologue to its initial young state (indicating that it has been 1946 // recently run) and continues. A young function is therefore one which has a 1947 // normal frame setup sequence, and an old function has a code age sequence 1948 // which calls a code ageing stub. 1949 1950 // Set up a basic stack frame for young code (or code exempt from ageing) with 1951 // type FUNCTION. It may be patched later for code ageing support. This is 1952 // done by to Code::PatchPlatformCodeAge and EmitCodeAgeSequence. 1953 // 1954 // This function takes an Assembler so it can be called from either a 1955 // MacroAssembler or a PatchingAssembler context. 1956 static void EmitFrameSetupForCodeAgePatching(Assembler* assm); 1957 1958 // Call EmitFrameSetupForCodeAgePatching from a MacroAssembler context. 1959 void EmitFrameSetupForCodeAgePatching(); 1960 1961 // Emit a code age sequence that calls the relevant code age stub. The code 1962 // generated by this sequence is expected to replace the code generated by 1963 // EmitFrameSetupForCodeAgePatching, and represents an old function. 1964 // 1965 // If stub is NULL, this function generates the code age sequence but omits 1966 // the stub address that is normally embedded in the instruction stream. This 1967 // can be used by debug code to verify code age sequences. 1968 static void EmitCodeAgeSequence(Assembler* assm, Code* stub); 1969 1970 // Call EmitCodeAgeSequence from a MacroAssembler context. 1971 void EmitCodeAgeSequence(Code* stub); 1972 1973 // Return true if the sequence is a young sequence geneated by 1974 // EmitFrameSetupForCodeAgePatching. Otherwise, this method asserts that the 1975 // sequence is a code age sequence (emitted by EmitCodeAgeSequence). 1976 static bool IsYoungSequence(Isolate* isolate, byte* sequence); 1977 1978 // Jumps to found label if a prototype map has dictionary elements. 1979 void JumpIfDictionaryInPrototypeChain(Register object, Register scratch0, 1980 Register scratch1, Label* found); 1981 1982 // Perform necessary maintenance operations before a push or after a pop. 1983 // 1984 // Note that size is specified in bytes. 1985 void PushPreamble(Operand total_size); 1986 void PopPostamble(Operand total_size); 1987 1988 void PushPreamble(int count, int size) { PushPreamble(count * size); } 1989 void PopPostamble(int count, int size) { PopPostamble(count * size); } 1990 1991 private: 1992 // The actual Push and Pop implementations. These don't generate any code 1993 // other than that required for the push or pop. This allows 1994 // (Push|Pop)CPURegList to bundle together run-time assertions for a large 1995 // block of registers. 1996 // 1997 // Note that size is per register, and is specified in bytes. 1998 void PushHelper(int count, int size, 1999 const CPURegister& src0, const CPURegister& src1, 2000 const CPURegister& src2, const CPURegister& src3); 2001 void PopHelper(int count, int size, 2002 const CPURegister& dst0, const CPURegister& dst1, 2003 const CPURegister& dst2, const CPURegister& dst3); 2004 2005 // Call Printf. On a native build, a simple call will be generated, but if the 2006 // simulator is being used then a suitable pseudo-instruction is used. The 2007 // arguments and stack (csp) must be prepared by the caller as for a normal 2008 // AAPCS64 call to 'printf'. 2009 // 2010 // The 'args' argument should point to an array of variable arguments in their 2011 // proper PCS registers (and in calling order). The argument registers can 2012 // have mixed types. The format string (x0) should not be included. 2013 void CallPrintf(int arg_count = 0, const CPURegister * args = NULL); 2014 2015 // Helper for implementing JumpIfNotInNewSpace and JumpIfInNewSpace. 2016 void InNewSpace(Register object, 2017 Condition cond, // eq for new space, ne otherwise. 2018 Label* branch); 2019 2020 // Try to represent a double as an int so that integer fast-paths may be 2021 // used. Not every valid integer value is guaranteed to be caught. 2022 // It supports both 32-bit and 64-bit integers depending whether 'as_int' 2023 // is a W or X register. 2024 // 2025 // This does not distinguish between +0 and -0, so if this distinction is 2026 // important it must be checked separately. 2027 // 2028 // On output the Z flag is set if the operation was successful. 2029 void TryRepresentDoubleAsInt(Register as_int, 2030 FPRegister value, 2031 FPRegister scratch_d, 2032 Label* on_successful_conversion = NULL, 2033 Label* on_failed_conversion = NULL); 2034 2035 bool generating_stub_; 2036 #if DEBUG 2037 // Tell whether any of the macro instruction can be used. When false the 2038 // MacroAssembler will assert if a method which can emit a variable number 2039 // of instructions is called. 2040 bool allow_macro_instructions_; 2041 #endif 2042 bool has_frame_; 2043 2044 // The Abort method should call a V8 runtime function, but the CallRuntime 2045 // mechanism depends on CEntryStub. If use_real_aborts is false, Abort will 2046 // use a simpler abort mechanism that doesn't depend on CEntryStub. 2047 // 2048 // The purpose of this is to allow Aborts to be compiled whilst CEntryStub is 2049 // being generated. 2050 bool use_real_aborts_; 2051 2052 // This handle will be patched with the code object on installation. 2053 Handle<Object> code_object_; 2054 2055 // The register to use as a stack pointer for stack operations. 2056 Register sp_; 2057 2058 // Scratch registers available for use by the MacroAssembler. 2059 CPURegList tmp_list_; 2060 CPURegList fptmp_list_; 2061 2062 void InitializeNewString(Register string, 2063 Register length, 2064 Heap::RootListIndex map_index, 2065 Register scratch1, 2066 Register scratch2); 2067 2068 public: 2069 // Far branches resolving. 2070 // 2071 // The various classes of branch instructions with immediate offsets have 2072 // different ranges. While the Assembler will fail to assemble a branch 2073 // exceeding its range, the MacroAssembler offers a mechanism to resolve 2074 // branches to too distant targets, either by tweaking the generated code to 2075 // use branch instructions with wider ranges or generating veneers. 2076 // 2077 // Currently branches to distant targets are resolved using unconditional 2078 // branch isntructions with a range of +-128MB. If that becomes too little 2079 // (!), the mechanism can be extended to generate special veneers for really 2080 // far targets. 2081 2082 // Helps resolve branching to labels potentially out of range. 2083 // If the label is not bound, it registers the information necessary to later 2084 // be able to emit a veneer for this branch if necessary. 2085 // If the label is bound, it returns true if the label (or the previous link 2086 // in the label chain) is out of range. In that case the caller is responsible 2087 // for generating appropriate code. 2088 // Otherwise it returns false. 2089 // This function also checks wether veneers need to be emitted. 2090 bool NeedExtraInstructionsOrRegisterBranch(Label *label, 2091 ImmBranchType branch_type); 2092 }; 2093 2094 2095 // Use this scope when you need a one-to-one mapping bewteen methods and 2096 // instructions. This scope prevents the MacroAssembler from being called and 2097 // literal pools from being emitted. It also asserts the number of instructions 2098 // emitted is what you specified when creating the scope. 2099 class InstructionAccurateScope BASE_EMBEDDED { 2100 public: 2101 explicit InstructionAccurateScope(MacroAssembler* masm, size_t count = 0) 2102 : masm_(masm) 2103 #ifdef DEBUG 2104 , 2105 size_(count * kInstructionSize) 2106 #endif 2107 { 2108 // Before blocking the const pool, see if it needs to be emitted. 2109 masm_->CheckConstPool(false, true); 2110 masm_->CheckVeneerPool(false, true); 2111 2112 masm_->StartBlockPools(); 2113 #ifdef DEBUG 2114 if (count != 0) { 2115 masm_->bind(&start_); 2116 } 2117 previous_allow_macro_instructions_ = masm_->allow_macro_instructions(); 2118 masm_->set_allow_macro_instructions(false); 2119 #endif 2120 } 2121 2122 ~InstructionAccurateScope() { 2123 masm_->EndBlockPools(); 2124 #ifdef DEBUG 2125 if (start_.is_bound()) { 2126 DCHECK(masm_->SizeOfCodeGeneratedSince(&start_) == size_); 2127 } 2128 masm_->set_allow_macro_instructions(previous_allow_macro_instructions_); 2129 #endif 2130 } 2131 2132 private: 2133 MacroAssembler* masm_; 2134 #ifdef DEBUG 2135 size_t size_; 2136 Label start_; 2137 bool previous_allow_macro_instructions_; 2138 #endif 2139 }; 2140 2141 2142 // This scope utility allows scratch registers to be managed safely. The 2143 // MacroAssembler's TmpList() (and FPTmpList()) is used as a pool of scratch 2144 // registers. These registers can be allocated on demand, and will be returned 2145 // at the end of the scope. 2146 // 2147 // When the scope ends, the MacroAssembler's lists will be restored to their 2148 // original state, even if the lists were modified by some other means. 2149 class UseScratchRegisterScope { 2150 public: 2151 explicit UseScratchRegisterScope(MacroAssembler* masm) 2152 : available_(masm->TmpList()), 2153 availablefp_(masm->FPTmpList()), 2154 old_available_(available_->list()), 2155 old_availablefp_(availablefp_->list()) { 2156 DCHECK(available_->type() == CPURegister::kRegister); 2157 DCHECK(availablefp_->type() == CPURegister::kFPRegister); 2158 } 2159 2160 ~UseScratchRegisterScope(); 2161 2162 // Take a register from the appropriate temps list. It will be returned 2163 // automatically when the scope ends. 2164 Register AcquireW() { return AcquireNextAvailable(available_).W(); } 2165 Register AcquireX() { return AcquireNextAvailable(available_).X(); } 2166 FPRegister AcquireS() { return AcquireNextAvailable(availablefp_).S(); } 2167 FPRegister AcquireD() { return AcquireNextAvailable(availablefp_).D(); } 2168 2169 Register UnsafeAcquire(const Register& reg) { 2170 return Register(UnsafeAcquire(available_, reg)); 2171 } 2172 2173 Register AcquireSameSizeAs(const Register& reg); 2174 FPRegister AcquireSameSizeAs(const FPRegister& reg); 2175 2176 private: 2177 static CPURegister AcquireNextAvailable(CPURegList* available); 2178 static CPURegister UnsafeAcquire(CPURegList* available, 2179 const CPURegister& reg); 2180 2181 // Available scratch registers. 2182 CPURegList* available_; // kRegister 2183 CPURegList* availablefp_; // kFPRegister 2184 2185 // The state of the available lists at the start of this scope. 2186 RegList old_available_; // kRegister 2187 RegList old_availablefp_; // kFPRegister 2188 }; 2189 2190 2191 inline MemOperand ContextMemOperand(Register context, int index = 0) { 2192 return MemOperand(context, Context::SlotOffset(index)); 2193 } 2194 2195 inline MemOperand NativeContextMemOperand() { 2196 return ContextMemOperand(cp, Context::NATIVE_CONTEXT_INDEX); 2197 } 2198 2199 2200 // Encode and decode information about patchable inline SMI checks. 2201 class InlineSmiCheckInfo { 2202 public: 2203 explicit InlineSmiCheckInfo(Address info); 2204 2205 bool HasSmiCheck() const { 2206 return smi_check_ != NULL; 2207 } 2208 2209 const Register& SmiRegister() const { 2210 return reg_; 2211 } 2212 2213 Instruction* SmiCheck() const { 2214 return smi_check_; 2215 } 2216 2217 // Use MacroAssembler::InlineData to emit information about patchable inline 2218 // SMI checks. The caller may specify 'reg' as NoReg and an unbound 'site' to 2219 // indicate that there is no inline SMI check. Note that 'reg' cannot be csp. 2220 // 2221 // The generated patch information can be read using the InlineSMICheckInfo 2222 // class. 2223 static void Emit(MacroAssembler* masm, const Register& reg, 2224 const Label* smi_check); 2225 2226 // Emit information to indicate that there is no inline SMI check. 2227 static void EmitNotInlined(MacroAssembler* masm) { 2228 Label unbound; 2229 Emit(masm, NoReg, &unbound); 2230 } 2231 2232 private: 2233 Register reg_; 2234 Instruction* smi_check_; 2235 2236 // Fields in the data encoded by InlineData. 2237 2238 // A width of 5 (Rd_width) for the SMI register preclues the use of csp, 2239 // since kSPRegInternalCode is 63. However, csp should never hold a SMI or be 2240 // used in a patchable check. The Emit() method checks this. 2241 // 2242 // Note that the total size of the fields is restricted by the underlying 2243 // storage size handled by the BitField class, which is a uint32_t. 2244 class RegisterBits : public BitField<unsigned, 0, 5> {}; 2245 class DeltaBits : public BitField<uint32_t, 5, 32-5> {}; 2246 }; 2247 2248 } // namespace internal 2249 } // namespace v8 2250 2251 #ifdef GENERATED_CODE_COVERAGE 2252 #error "Unsupported option" 2253 #define CODE_COVERAGE_STRINGIFY(x) #x 2254 #define CODE_COVERAGE_TOSTRING(x) CODE_COVERAGE_STRINGIFY(x) 2255 #define __FILE_LINE__ __FILE__ ":" CODE_COVERAGE_TOSTRING(__LINE__) 2256 #define ACCESS_MASM(masm) masm->stop(__FILE_LINE__); masm-> 2257 #else 2258 #define ACCESS_MASM(masm) masm-> 2259 #endif 2260 2261 #endif // V8_ARM64_MACRO_ASSEMBLER_ARM64_H_ 2262