1 //===--- BackendUtil.cpp - LLVM Backend Utilities -------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "clang/CodeGen/BackendUtil.h" 11 #include "clang/Basic/Diagnostic.h" 12 #include "clang/Basic/LangOptions.h" 13 #include "clang/Basic/TargetOptions.h" 14 #include "clang/Frontend/CodeGenOptions.h" 15 #include "clang/Frontend/FrontendDiagnostic.h" 16 #include "clang/Frontend/Utils.h" 17 #include "llvm/ADT/StringExtras.h" 18 #include "llvm/ADT/StringSwitch.h" 19 #include "llvm/Analysis/TargetLibraryInfo.h" 20 #include "llvm/Analysis/TargetTransformInfo.h" 21 #include "llvm/Bitcode/BitcodeWriterPass.h" 22 #include "llvm/CodeGen/RegAllocRegistry.h" 23 #include "llvm/CodeGen/SchedulerRegistry.h" 24 #include "llvm/IR/DataLayout.h" 25 #include "llvm/IR/FunctionInfo.h" 26 #include "llvm/IR/IRPrintingPasses.h" 27 #include "llvm/IR/LegacyPassManager.h" 28 #include "llvm/IR/Module.h" 29 #include "llvm/IR/Verifier.h" 30 #include "llvm/MC/SubtargetFeature.h" 31 #include "llvm/Support/CommandLine.h" 32 #include "llvm/Support/PrettyStackTrace.h" 33 #include "llvm/Support/TargetRegistry.h" 34 #include "llvm/Support/Timer.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include "llvm/Target/TargetMachine.h" 37 #include "llvm/Target/TargetOptions.h" 38 #include "llvm/Target/TargetSubtargetInfo.h" 39 #include "llvm/Transforms/IPO.h" 40 #include "llvm/Transforms/IPO/PassManagerBuilder.h" 41 #include "llvm/Transforms/Instrumentation.h" 42 #include "llvm/Transforms/ObjCARC.h" 43 #include "llvm/Transforms/Scalar.h" 44 #include "llvm/Transforms/Utils/SymbolRewriter.h" 45 #include <memory> 46 using namespace clang; 47 using namespace llvm; 48 49 namespace { 50 51 class EmitAssemblyHelper { 52 DiagnosticsEngine &Diags; 53 const CodeGenOptions &CodeGenOpts; 54 const clang::TargetOptions &TargetOpts; 55 const LangOptions &LangOpts; 56 Module *TheModule; 57 std::unique_ptr<FunctionInfoIndex> FunctionIndex; 58 59 Timer CodeGenerationTime; 60 61 mutable legacy::PassManager *CodeGenPasses; 62 mutable legacy::PassManager *PerModulePasses; 63 mutable legacy::FunctionPassManager *PerFunctionPasses; 64 65 private: 66 TargetIRAnalysis getTargetIRAnalysis() const { 67 if (TM) 68 return TM->getTargetIRAnalysis(); 69 70 return TargetIRAnalysis(); 71 } 72 73 legacy::PassManager *getCodeGenPasses() const { 74 if (!CodeGenPasses) { 75 CodeGenPasses = new legacy::PassManager(); 76 CodeGenPasses->add( 77 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 78 } 79 return CodeGenPasses; 80 } 81 82 legacy::PassManager *getPerModulePasses() const { 83 if (!PerModulePasses) { 84 PerModulePasses = new legacy::PassManager(); 85 PerModulePasses->add( 86 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 87 } 88 return PerModulePasses; 89 } 90 91 legacy::FunctionPassManager *getPerFunctionPasses() const { 92 if (!PerFunctionPasses) { 93 PerFunctionPasses = new legacy::FunctionPassManager(TheModule); 94 PerFunctionPasses->add( 95 createTargetTransformInfoWrapperPass(getTargetIRAnalysis())); 96 } 97 return PerFunctionPasses; 98 } 99 100 void CreatePasses(); 101 102 /// Generates the TargetMachine. 103 /// Returns Null if it is unable to create the target machine. 104 /// Some of our clang tests specify triples which are not built 105 /// into clang. This is okay because these tests check the generated 106 /// IR, and they require DataLayout which depends on the triple. 107 /// In this case, we allow this method to fail and not report an error. 108 /// When MustCreateTM is used, we print an error if we are unable to load 109 /// the requested target. 110 TargetMachine *CreateTargetMachine(bool MustCreateTM); 111 112 /// Add passes necessary to emit assembly or LLVM IR. 113 /// 114 /// \return True on success. 115 bool AddEmitPasses(BackendAction Action, raw_pwrite_stream &OS); 116 117 public: 118 EmitAssemblyHelper(DiagnosticsEngine &_Diags, const CodeGenOptions &CGOpts, 119 const clang::TargetOptions &TOpts, 120 const LangOptions &LOpts, Module *M, 121 std::unique_ptr<FunctionInfoIndex> Index) 122 : Diags(_Diags), CodeGenOpts(CGOpts), TargetOpts(TOpts), LangOpts(LOpts), 123 TheModule(M), FunctionIndex(std::move(Index)), 124 CodeGenerationTime("Code Generation Time"), CodeGenPasses(nullptr), 125 PerModulePasses(nullptr), PerFunctionPasses(nullptr) {} 126 127 ~EmitAssemblyHelper() { 128 delete CodeGenPasses; 129 delete PerModulePasses; 130 delete PerFunctionPasses; 131 if (CodeGenOpts.DisableFree) 132 BuryPointer(std::move(TM)); 133 } 134 135 std::unique_ptr<TargetMachine> TM; 136 137 void EmitAssembly(BackendAction Action, raw_pwrite_stream *OS); 138 }; 139 140 // We need this wrapper to access LangOpts and CGOpts from extension functions 141 // that we add to the PassManagerBuilder. 142 class PassManagerBuilderWrapper : public PassManagerBuilder { 143 public: 144 PassManagerBuilderWrapper(const CodeGenOptions &CGOpts, 145 const LangOptions &LangOpts) 146 : PassManagerBuilder(), CGOpts(CGOpts), LangOpts(LangOpts) {} 147 const CodeGenOptions &getCGOpts() const { return CGOpts; } 148 const LangOptions &getLangOpts() const { return LangOpts; } 149 private: 150 const CodeGenOptions &CGOpts; 151 const LangOptions &LangOpts; 152 }; 153 154 } 155 156 static void addObjCARCAPElimPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 157 if (Builder.OptLevel > 0) 158 PM.add(createObjCARCAPElimPass()); 159 } 160 161 static void addObjCARCExpandPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 162 if (Builder.OptLevel > 0) 163 PM.add(createObjCARCExpandPass()); 164 } 165 166 static void addObjCARCOptPass(const PassManagerBuilder &Builder, PassManagerBase &PM) { 167 if (Builder.OptLevel > 0) 168 PM.add(createObjCARCOptPass()); 169 } 170 171 static void addAddDiscriminatorsPass(const PassManagerBuilder &Builder, 172 legacy::PassManagerBase &PM) { 173 PM.add(createAddDiscriminatorsPass()); 174 } 175 176 static void addBoundsCheckingPass(const PassManagerBuilder &Builder, 177 legacy::PassManagerBase &PM) { 178 PM.add(createBoundsCheckingPass()); 179 } 180 181 static void addSanitizerCoveragePass(const PassManagerBuilder &Builder, 182 legacy::PassManagerBase &PM) { 183 const PassManagerBuilderWrapper &BuilderWrapper = 184 static_cast<const PassManagerBuilderWrapper&>(Builder); 185 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 186 SanitizerCoverageOptions Opts; 187 Opts.CoverageType = 188 static_cast<SanitizerCoverageOptions::Type>(CGOpts.SanitizeCoverageType); 189 Opts.IndirectCalls = CGOpts.SanitizeCoverageIndirectCalls; 190 Opts.TraceBB = CGOpts.SanitizeCoverageTraceBB; 191 Opts.TraceCmp = CGOpts.SanitizeCoverageTraceCmp; 192 Opts.Use8bitCounters = CGOpts.SanitizeCoverage8bitCounters; 193 PM.add(createSanitizerCoverageModulePass(Opts)); 194 } 195 196 static void addAddressSanitizerPasses(const PassManagerBuilder &Builder, 197 legacy::PassManagerBase &PM) { 198 const PassManagerBuilderWrapper &BuilderWrapper = 199 static_cast<const PassManagerBuilderWrapper&>(Builder); 200 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 201 bool Recover = CGOpts.SanitizeRecover.has(SanitizerKind::Address); 202 PM.add(createAddressSanitizerFunctionPass(/*CompileKernel*/false, Recover)); 203 PM.add(createAddressSanitizerModulePass(/*CompileKernel*/false, Recover)); 204 } 205 206 static void addKernelAddressSanitizerPasses(const PassManagerBuilder &Builder, 207 legacy::PassManagerBase &PM) { 208 PM.add(createAddressSanitizerFunctionPass(/*CompileKernel*/true, 209 /*Recover*/true)); 210 PM.add(createAddressSanitizerModulePass(/*CompileKernel*/true, 211 /*Recover*/true)); 212 } 213 214 static void addMemorySanitizerPass(const PassManagerBuilder &Builder, 215 legacy::PassManagerBase &PM) { 216 const PassManagerBuilderWrapper &BuilderWrapper = 217 static_cast<const PassManagerBuilderWrapper&>(Builder); 218 const CodeGenOptions &CGOpts = BuilderWrapper.getCGOpts(); 219 PM.add(createMemorySanitizerPass(CGOpts.SanitizeMemoryTrackOrigins)); 220 221 // MemorySanitizer inserts complex instrumentation that mostly follows 222 // the logic of the original code, but operates on "shadow" values. 223 // It can benefit from re-running some general purpose optimization passes. 224 if (Builder.OptLevel > 0) { 225 PM.add(createEarlyCSEPass()); 226 PM.add(createReassociatePass()); 227 PM.add(createLICMPass()); 228 PM.add(createGVNPass()); 229 PM.add(createInstructionCombiningPass()); 230 PM.add(createDeadStoreEliminationPass()); 231 } 232 } 233 234 static void addThreadSanitizerPass(const PassManagerBuilder &Builder, 235 legacy::PassManagerBase &PM) { 236 PM.add(createThreadSanitizerPass()); 237 } 238 239 static void addDataFlowSanitizerPass(const PassManagerBuilder &Builder, 240 legacy::PassManagerBase &PM) { 241 const PassManagerBuilderWrapper &BuilderWrapper = 242 static_cast<const PassManagerBuilderWrapper&>(Builder); 243 const LangOptions &LangOpts = BuilderWrapper.getLangOpts(); 244 PM.add(createDataFlowSanitizerPass(LangOpts.SanitizerBlacklistFiles)); 245 } 246 247 static TargetLibraryInfoImpl *createTLII(llvm::Triple &TargetTriple, 248 const CodeGenOptions &CodeGenOpts) { 249 TargetLibraryInfoImpl *TLII = new TargetLibraryInfoImpl(TargetTriple); 250 if (!CodeGenOpts.SimplifyLibCalls) 251 TLII->disableAllFunctions(); 252 253 switch (CodeGenOpts.getVecLib()) { 254 case CodeGenOptions::Accelerate: 255 TLII->addVectorizableFunctionsFromVecLib(TargetLibraryInfoImpl::Accelerate); 256 break; 257 default: 258 break; 259 } 260 return TLII; 261 } 262 263 static void addSymbolRewriterPass(const CodeGenOptions &Opts, 264 legacy::PassManager *MPM) { 265 llvm::SymbolRewriter::RewriteDescriptorList DL; 266 267 llvm::SymbolRewriter::RewriteMapParser MapParser; 268 for (const auto &MapFile : Opts.RewriteMapFiles) 269 MapParser.parse(MapFile, &DL); 270 271 MPM->add(createRewriteSymbolsPass(DL)); 272 } 273 274 void EmitAssemblyHelper::CreatePasses() { 275 if (CodeGenOpts.DisableLLVMPasses) 276 return; 277 278 unsigned OptLevel = CodeGenOpts.OptimizationLevel; 279 CodeGenOptions::InliningMethod Inlining = CodeGenOpts.getInlining(); 280 281 // Handle disabling of LLVM optimization, where we want to preserve the 282 // internal module before any optimization. 283 if (CodeGenOpts.DisableLLVMOpts) { 284 OptLevel = 0; 285 Inlining = CodeGenOpts.NoInlining; 286 } 287 288 PassManagerBuilderWrapper PMBuilder(CodeGenOpts, LangOpts); 289 290 // Figure out TargetLibraryInfo. 291 Triple TargetTriple(TheModule->getTargetTriple()); 292 PMBuilder.LibraryInfo = createTLII(TargetTriple, CodeGenOpts); 293 294 switch (Inlining) { 295 case CodeGenOptions::NoInlining: 296 break; 297 case CodeGenOptions::NormalInlining: { 298 PMBuilder.Inliner = 299 createFunctionInliningPass(OptLevel, CodeGenOpts.OptimizeSize); 300 break; 301 } 302 case CodeGenOptions::OnlyAlwaysInlining: 303 // Respect always_inline. 304 if (OptLevel == 0) 305 // Do not insert lifetime intrinsics at -O0. 306 PMBuilder.Inliner = createAlwaysInlinerPass(false); 307 else 308 PMBuilder.Inliner = createAlwaysInlinerPass(); 309 break; 310 } 311 312 PMBuilder.OptLevel = OptLevel; 313 PMBuilder.SizeLevel = CodeGenOpts.OptimizeSize; 314 PMBuilder.BBVectorize = CodeGenOpts.VectorizeBB; 315 PMBuilder.SLPVectorize = CodeGenOpts.VectorizeSLP; 316 PMBuilder.LoopVectorize = CodeGenOpts.VectorizeLoop; 317 318 PMBuilder.DisableUnitAtATime = !CodeGenOpts.UnitAtATime; 319 PMBuilder.DisableUnrollLoops = !CodeGenOpts.UnrollLoops; 320 PMBuilder.MergeFunctions = CodeGenOpts.MergeFunctions; 321 PMBuilder.PrepareForLTO = CodeGenOpts.PrepareForLTO; 322 PMBuilder.RerollLoops = CodeGenOpts.RerollLoops; 323 324 legacy::PassManager *MPM = getPerModulePasses(); 325 326 // If we are performing a ThinLTO importing compile, invoke the LTO 327 // pipeline and pass down the in-memory function index. 328 if (!CodeGenOpts.ThinLTOIndexFile.empty()) { 329 assert(FunctionIndex && "Expected non-empty function index"); 330 PMBuilder.FunctionIndex = FunctionIndex.get(); 331 PMBuilder.populateLTOPassManager(*MPM); 332 return; 333 } 334 335 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 336 addAddDiscriminatorsPass); 337 338 // In ObjC ARC mode, add the main ARC optimization passes. 339 if (LangOpts.ObjCAutoRefCount) { 340 PMBuilder.addExtension(PassManagerBuilder::EP_EarlyAsPossible, 341 addObjCARCExpandPass); 342 PMBuilder.addExtension(PassManagerBuilder::EP_ModuleOptimizerEarly, 343 addObjCARCAPElimPass); 344 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 345 addObjCARCOptPass); 346 } 347 348 if (LangOpts.Sanitize.has(SanitizerKind::LocalBounds)) { 349 PMBuilder.addExtension(PassManagerBuilder::EP_ScalarOptimizerLate, 350 addBoundsCheckingPass); 351 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 352 addBoundsCheckingPass); 353 } 354 355 if (CodeGenOpts.SanitizeCoverageType || 356 CodeGenOpts.SanitizeCoverageIndirectCalls || 357 CodeGenOpts.SanitizeCoverageTraceCmp) { 358 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 359 addSanitizerCoveragePass); 360 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 361 addSanitizerCoveragePass); 362 } 363 364 if (LangOpts.Sanitize.has(SanitizerKind::Address)) { 365 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 366 addAddressSanitizerPasses); 367 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 368 addAddressSanitizerPasses); 369 } 370 371 if (LangOpts.Sanitize.has(SanitizerKind::KernelAddress)) { 372 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 373 addKernelAddressSanitizerPasses); 374 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 375 addKernelAddressSanitizerPasses); 376 } 377 378 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) { 379 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 380 addMemorySanitizerPass); 381 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 382 addMemorySanitizerPass); 383 } 384 385 if (LangOpts.Sanitize.has(SanitizerKind::Thread)) { 386 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 387 addThreadSanitizerPass); 388 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 389 addThreadSanitizerPass); 390 } 391 392 if (LangOpts.Sanitize.has(SanitizerKind::DataFlow)) { 393 PMBuilder.addExtension(PassManagerBuilder::EP_OptimizerLast, 394 addDataFlowSanitizerPass); 395 PMBuilder.addExtension(PassManagerBuilder::EP_EnabledOnOptLevel0, 396 addDataFlowSanitizerPass); 397 } 398 399 // Set up the per-function pass manager. 400 legacy::FunctionPassManager *FPM = getPerFunctionPasses(); 401 if (CodeGenOpts.VerifyModule) 402 FPM->add(createVerifierPass()); 403 PMBuilder.populateFunctionPassManager(*FPM); 404 405 // Set up the per-module pass manager. 406 if (!CodeGenOpts.RewriteMapFiles.empty()) 407 addSymbolRewriterPass(CodeGenOpts, MPM); 408 409 if (!CodeGenOpts.DisableGCov && 410 (CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes)) { 411 // Not using 'GCOVOptions::getDefault' allows us to avoid exiting if 412 // LLVM's -default-gcov-version flag is set to something invalid. 413 GCOVOptions Options; 414 Options.EmitNotes = CodeGenOpts.EmitGcovNotes; 415 Options.EmitData = CodeGenOpts.EmitGcovArcs; 416 memcpy(Options.Version, CodeGenOpts.CoverageVersion, 4); 417 Options.UseCfgChecksum = CodeGenOpts.CoverageExtraChecksum; 418 Options.NoRedZone = CodeGenOpts.DisableRedZone; 419 Options.FunctionNamesInData = 420 !CodeGenOpts.CoverageNoFunctionNamesInData; 421 Options.ExitBlockBeforeBody = CodeGenOpts.CoverageExitBlockBeforeBody; 422 MPM->add(createGCOVProfilerPass(Options)); 423 if (CodeGenOpts.getDebugInfo() == CodeGenOptions::NoDebugInfo) 424 MPM->add(createStripSymbolsPass(true)); 425 } 426 427 if (CodeGenOpts.ProfileInstrGenerate) { 428 InstrProfOptions Options; 429 Options.NoRedZone = CodeGenOpts.DisableRedZone; 430 Options.InstrProfileOutput = CodeGenOpts.InstrProfileOutput; 431 MPM->add(createInstrProfilingPass(Options)); 432 } 433 434 if (!CodeGenOpts.SampleProfileFile.empty()) 435 MPM->add(createSampleProfileLoaderPass(CodeGenOpts.SampleProfileFile)); 436 437 PMBuilder.populateModulePassManager(*MPM); 438 } 439 440 TargetMachine *EmitAssemblyHelper::CreateTargetMachine(bool MustCreateTM) { 441 // Create the TargetMachine for generating code. 442 std::string Error; 443 std::string Triple = TheModule->getTargetTriple(); 444 const llvm::Target *TheTarget = TargetRegistry::lookupTarget(Triple, Error); 445 if (!TheTarget) { 446 if (MustCreateTM) 447 Diags.Report(diag::err_fe_unable_to_create_target) << Error; 448 return nullptr; 449 } 450 451 unsigned CodeModel = 452 llvm::StringSwitch<unsigned>(CodeGenOpts.CodeModel) 453 .Case("small", llvm::CodeModel::Small) 454 .Case("kernel", llvm::CodeModel::Kernel) 455 .Case("medium", llvm::CodeModel::Medium) 456 .Case("large", llvm::CodeModel::Large) 457 .Case("default", llvm::CodeModel::Default) 458 .Default(~0u); 459 assert(CodeModel != ~0u && "invalid code model!"); 460 llvm::CodeModel::Model CM = static_cast<llvm::CodeModel::Model>(CodeModel); 461 462 SmallVector<const char *, 16> BackendArgs; 463 BackendArgs.push_back("clang"); // Fake program name. 464 if (!CodeGenOpts.DebugPass.empty()) { 465 BackendArgs.push_back("-debug-pass"); 466 BackendArgs.push_back(CodeGenOpts.DebugPass.c_str()); 467 } 468 if (!CodeGenOpts.LimitFloatPrecision.empty()) { 469 BackendArgs.push_back("-limit-float-precision"); 470 BackendArgs.push_back(CodeGenOpts.LimitFloatPrecision.c_str()); 471 } 472 for (const std::string &BackendOption : CodeGenOpts.BackendOptions) 473 BackendArgs.push_back(BackendOption.c_str()); 474 BackendArgs.push_back(nullptr); 475 llvm::cl::ParseCommandLineOptions(BackendArgs.size() - 1, 476 BackendArgs.data()); 477 478 std::string FeaturesStr = 479 llvm::join(TargetOpts.Features.begin(), TargetOpts.Features.end(), ","); 480 481 // Keep this synced with the equivalent code in tools/driver/cc1as_main.cpp. 482 llvm::Reloc::Model RM = llvm::Reloc::Default; 483 if (CodeGenOpts.RelocationModel == "static") { 484 RM = llvm::Reloc::Static; 485 } else if (CodeGenOpts.RelocationModel == "pic") { 486 RM = llvm::Reloc::PIC_; 487 } else { 488 assert(CodeGenOpts.RelocationModel == "dynamic-no-pic" && 489 "Invalid PIC model!"); 490 RM = llvm::Reloc::DynamicNoPIC; 491 } 492 493 CodeGenOpt::Level OptLevel = CodeGenOpt::Default; 494 switch (CodeGenOpts.OptimizationLevel) { 495 default: break; 496 case 0: OptLevel = CodeGenOpt::None; break; 497 case 3: OptLevel = CodeGenOpt::Aggressive; break; 498 } 499 500 llvm::TargetOptions Options; 501 502 if (!TargetOpts.Reciprocals.empty()) 503 Options.Reciprocals = TargetRecip(TargetOpts.Reciprocals); 504 505 Options.ThreadModel = 506 llvm::StringSwitch<llvm::ThreadModel::Model>(CodeGenOpts.ThreadModel) 507 .Case("posix", llvm::ThreadModel::POSIX) 508 .Case("single", llvm::ThreadModel::Single); 509 510 // Set float ABI type. 511 assert((CodeGenOpts.FloatABI == "soft" || CodeGenOpts.FloatABI == "softfp" || 512 CodeGenOpts.FloatABI == "hard" || CodeGenOpts.FloatABI.empty()) && 513 "Invalid Floating Point ABI!"); 514 Options.FloatABIType = 515 llvm::StringSwitch<llvm::FloatABI::ABIType>(CodeGenOpts.FloatABI) 516 .Case("soft", llvm::FloatABI::Soft) 517 .Case("softfp", llvm::FloatABI::Soft) 518 .Case("hard", llvm::FloatABI::Hard) 519 .Default(llvm::FloatABI::Default); 520 521 // Set FP fusion mode. 522 switch (CodeGenOpts.getFPContractMode()) { 523 case CodeGenOptions::FPC_Off: 524 Options.AllowFPOpFusion = llvm::FPOpFusion::Strict; 525 break; 526 case CodeGenOptions::FPC_On: 527 Options.AllowFPOpFusion = llvm::FPOpFusion::Standard; 528 break; 529 case CodeGenOptions::FPC_Fast: 530 Options.AllowFPOpFusion = llvm::FPOpFusion::Fast; 531 break; 532 } 533 534 Options.UseInitArray = CodeGenOpts.UseInitArray; 535 Options.DisableIntegratedAS = CodeGenOpts.DisableIntegratedAS; 536 Options.CompressDebugSections = CodeGenOpts.CompressDebugSections; 537 538 // Set EABI version. 539 Options.EABIVersion = llvm::StringSwitch<llvm::EABI>(CodeGenOpts.EABIVersion) 540 .Case("4", llvm::EABI::EABI4) 541 .Case("5", llvm::EABI::EABI5) 542 .Case("gnu", llvm::EABI::GNU) 543 .Default(llvm::EABI::Default); 544 545 Options.LessPreciseFPMADOption = CodeGenOpts.LessPreciseFPMAD; 546 Options.NoInfsFPMath = CodeGenOpts.NoInfsFPMath; 547 Options.NoNaNsFPMath = CodeGenOpts.NoNaNsFPMath; 548 Options.NoZerosInBSS = CodeGenOpts.NoZeroInitializedInBSS; 549 Options.UnsafeFPMath = CodeGenOpts.UnsafeFPMath; 550 Options.StackAlignmentOverride = CodeGenOpts.StackAlignment; 551 Options.PositionIndependentExecutable = LangOpts.PIELevel != 0; 552 Options.FunctionSections = CodeGenOpts.FunctionSections; 553 Options.DataSections = CodeGenOpts.DataSections; 554 Options.UniqueSectionNames = CodeGenOpts.UniqueSectionNames; 555 Options.EmulatedTLS = CodeGenOpts.EmulatedTLS; 556 switch (CodeGenOpts.getDebuggerTuning()) { 557 case CodeGenOptions::DebuggerKindGDB: 558 Options.DebuggerTuning = llvm::DebuggerKind::GDB; 559 break; 560 case CodeGenOptions::DebuggerKindLLDB: 561 Options.DebuggerTuning = llvm::DebuggerKind::LLDB; 562 break; 563 case CodeGenOptions::DebuggerKindSCE: 564 Options.DebuggerTuning = llvm::DebuggerKind::SCE; 565 break; 566 default: 567 break; 568 } 569 570 Options.MCOptions.MCRelaxAll = CodeGenOpts.RelaxAll; 571 Options.MCOptions.MCSaveTempLabels = CodeGenOpts.SaveTempLabels; 572 Options.MCOptions.MCUseDwarfDirectory = !CodeGenOpts.NoDwarfDirectoryAsm; 573 Options.MCOptions.MCNoExecStack = CodeGenOpts.NoExecStack; 574 Options.MCOptions.MCIncrementalLinkerCompatible = 575 CodeGenOpts.IncrementalLinkerCompatible; 576 Options.MCOptions.MCFatalWarnings = CodeGenOpts.FatalWarnings; 577 Options.MCOptions.AsmVerbose = CodeGenOpts.AsmVerbose; 578 Options.MCOptions.ABIName = TargetOpts.ABI; 579 580 TargetMachine *TM = TheTarget->createTargetMachine(Triple, TargetOpts.CPU, 581 FeaturesStr, Options, 582 RM, CM, OptLevel); 583 584 return TM; 585 } 586 587 bool EmitAssemblyHelper::AddEmitPasses(BackendAction Action, 588 raw_pwrite_stream &OS) { 589 590 // Create the code generator passes. 591 legacy::PassManager *PM = getCodeGenPasses(); 592 593 // Add LibraryInfo. 594 llvm::Triple TargetTriple(TheModule->getTargetTriple()); 595 std::unique_ptr<TargetLibraryInfoImpl> TLII( 596 createTLII(TargetTriple, CodeGenOpts)); 597 PM->add(new TargetLibraryInfoWrapperPass(*TLII)); 598 599 // Normal mode, emit a .s or .o file by running the code generator. Note, 600 // this also adds codegenerator level optimization passes. 601 TargetMachine::CodeGenFileType CGFT = TargetMachine::CGFT_AssemblyFile; 602 if (Action == Backend_EmitObj) 603 CGFT = TargetMachine::CGFT_ObjectFile; 604 else if (Action == Backend_EmitMCNull) 605 CGFT = TargetMachine::CGFT_Null; 606 else 607 assert(Action == Backend_EmitAssembly && "Invalid action!"); 608 609 // Add ObjC ARC final-cleanup optimizations. This is done as part of the 610 // "codegen" passes so that it isn't run multiple times when there is 611 // inlining happening. 612 if (CodeGenOpts.OptimizationLevel > 0) 613 PM->add(createObjCARCContractPass()); 614 615 if (TM->addPassesToEmitFile(*PM, OS, CGFT, 616 /*DisableVerify=*/!CodeGenOpts.VerifyModule)) { 617 Diags.Report(diag::err_fe_unable_to_interface_with_target); 618 return false; 619 } 620 621 return true; 622 } 623 624 void EmitAssemblyHelper::EmitAssembly(BackendAction Action, 625 raw_pwrite_stream *OS) { 626 TimeRegion Region(llvm::TimePassesIsEnabled ? &CodeGenerationTime : nullptr); 627 628 bool UsesCodeGen = (Action != Backend_EmitNothing && 629 Action != Backend_EmitBC && 630 Action != Backend_EmitLL); 631 if (!TM) 632 TM.reset(CreateTargetMachine(UsesCodeGen)); 633 634 if (UsesCodeGen && !TM) 635 return; 636 if (TM) 637 TheModule->setDataLayout(TM->createDataLayout()); 638 CreatePasses(); 639 640 switch (Action) { 641 case Backend_EmitNothing: 642 break; 643 644 case Backend_EmitBC: 645 getPerModulePasses()->add(createBitcodeWriterPass( 646 *OS, CodeGenOpts.EmitLLVMUseLists, CodeGenOpts.EmitFunctionSummary)); 647 break; 648 649 case Backend_EmitLL: 650 getPerModulePasses()->add( 651 createPrintModulePass(*OS, "", CodeGenOpts.EmitLLVMUseLists)); 652 break; 653 654 default: 655 if (!AddEmitPasses(Action, *OS)) 656 return; 657 } 658 659 // Before executing passes, print the final values of the LLVM options. 660 cl::PrintOptionValues(); 661 662 // Run passes. For now we do all passes at once, but eventually we 663 // would like to have the option of streaming code generation. 664 665 if (PerFunctionPasses) { 666 PrettyStackTraceString CrashInfo("Per-function optimization"); 667 668 PerFunctionPasses->doInitialization(); 669 for (Function &F : *TheModule) 670 if (!F.isDeclaration()) 671 PerFunctionPasses->run(F); 672 PerFunctionPasses->doFinalization(); 673 } 674 675 if (PerModulePasses) { 676 PrettyStackTraceString CrashInfo("Per-module optimization passes"); 677 PerModulePasses->run(*TheModule); 678 } 679 680 if (CodeGenPasses) { 681 PrettyStackTraceString CrashInfo("Code generation"); 682 CodeGenPasses->run(*TheModule); 683 } 684 } 685 686 void clang::EmitBackendOutput(DiagnosticsEngine &Diags, 687 const CodeGenOptions &CGOpts, 688 const clang::TargetOptions &TOpts, 689 const LangOptions &LOpts, StringRef TDesc, 690 Module *M, BackendAction Action, 691 raw_pwrite_stream *OS, 692 std::unique_ptr<FunctionInfoIndex> Index) { 693 EmitAssemblyHelper AsmHelper(Diags, CGOpts, TOpts, LOpts, M, 694 std::move(Index)); 695 696 AsmHelper.EmitAssembly(Action, OS); 697 698 // If an optional clang TargetInfo description string was passed in, use it to 699 // verify the LLVM TargetMachine's DataLayout. 700 if (AsmHelper.TM && !TDesc.empty()) { 701 std::string DLDesc = M->getDataLayout().getStringRepresentation(); 702 if (DLDesc != TDesc) { 703 unsigned DiagID = Diags.getCustomDiagID( 704 DiagnosticsEngine::Error, "backend data layout '%0' does not match " 705 "expected target description '%1'"); 706 Diags.Report(DiagID) << DLDesc << TDesc; 707 } 708 } 709 } 710