1 //===--- CGExprComplex.cpp - Emit LLVM Code for Complex Exprs -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Expr nodes with complex types as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CodeGenModule.h" 16 #include "clang/AST/ASTContext.h" 17 #include "clang/AST/StmtVisitor.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallString.h" 20 #include "llvm/IR/Constants.h" 21 #include "llvm/IR/Function.h" 22 #include "llvm/IR/Instructions.h" 23 #include "llvm/IR/MDBuilder.h" 24 #include "llvm/IR/Metadata.h" 25 #include <algorithm> 26 using namespace clang; 27 using namespace CodeGen; 28 29 //===----------------------------------------------------------------------===// 30 // Complex Expression Emitter 31 //===----------------------------------------------------------------------===// 32 33 typedef CodeGenFunction::ComplexPairTy ComplexPairTy; 34 35 /// Return the complex type that we are meant to emit. 36 static const ComplexType *getComplexType(QualType type) { 37 type = type.getCanonicalType(); 38 if (const ComplexType *comp = dyn_cast<ComplexType>(type)) { 39 return comp; 40 } else { 41 return cast<ComplexType>(cast<AtomicType>(type)->getValueType()); 42 } 43 } 44 45 namespace { 46 class ComplexExprEmitter 47 : public StmtVisitor<ComplexExprEmitter, ComplexPairTy> { 48 CodeGenFunction &CGF; 49 CGBuilderTy &Builder; 50 bool IgnoreReal; 51 bool IgnoreImag; 52 public: 53 ComplexExprEmitter(CodeGenFunction &cgf, bool ir=false, bool ii=false) 54 : CGF(cgf), Builder(CGF.Builder), IgnoreReal(ir), IgnoreImag(ii) { 55 } 56 57 58 //===--------------------------------------------------------------------===// 59 // Utilities 60 //===--------------------------------------------------------------------===// 61 62 bool TestAndClearIgnoreReal() { 63 bool I = IgnoreReal; 64 IgnoreReal = false; 65 return I; 66 } 67 bool TestAndClearIgnoreImag() { 68 bool I = IgnoreImag; 69 IgnoreImag = false; 70 return I; 71 } 72 73 /// EmitLoadOfLValue - Given an expression with complex type that represents a 74 /// value l-value, this method emits the address of the l-value, then loads 75 /// and returns the result. 76 ComplexPairTy EmitLoadOfLValue(const Expr *E) { 77 return EmitLoadOfLValue(CGF.EmitLValue(E), E->getExprLoc()); 78 } 79 80 ComplexPairTy EmitLoadOfLValue(LValue LV, SourceLocation Loc); 81 82 /// EmitStoreOfComplex - Store the specified real/imag parts into the 83 /// specified value pointer. 84 void EmitStoreOfComplex(ComplexPairTy Val, LValue LV, bool isInit); 85 86 /// Emit a cast from complex value Val to DestType. 87 ComplexPairTy EmitComplexToComplexCast(ComplexPairTy Val, QualType SrcType, 88 QualType DestType, SourceLocation Loc); 89 /// Emit a cast from scalar value Val to DestType. 90 ComplexPairTy EmitScalarToComplexCast(llvm::Value *Val, QualType SrcType, 91 QualType DestType, SourceLocation Loc); 92 93 //===--------------------------------------------------------------------===// 94 // Visitor Methods 95 //===--------------------------------------------------------------------===// 96 97 ComplexPairTy Visit(Expr *E) { 98 ApplyDebugLocation DL(CGF, E); 99 return StmtVisitor<ComplexExprEmitter, ComplexPairTy>::Visit(E); 100 } 101 102 ComplexPairTy VisitStmt(Stmt *S) { 103 S->dump(CGF.getContext().getSourceManager()); 104 llvm_unreachable("Stmt can't have complex result type!"); 105 } 106 ComplexPairTy VisitExpr(Expr *S); 107 ComplexPairTy VisitParenExpr(ParenExpr *PE) { return Visit(PE->getSubExpr());} 108 ComplexPairTy VisitGenericSelectionExpr(GenericSelectionExpr *GE) { 109 return Visit(GE->getResultExpr()); 110 } 111 ComplexPairTy VisitImaginaryLiteral(const ImaginaryLiteral *IL); 112 ComplexPairTy 113 VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *PE) { 114 return Visit(PE->getReplacement()); 115 } 116 117 // l-values. 118 ComplexPairTy VisitDeclRefExpr(DeclRefExpr *E) { 119 if (CodeGenFunction::ConstantEmission result = CGF.tryEmitAsConstant(E)) { 120 if (result.isReference()) 121 return EmitLoadOfLValue(result.getReferenceLValue(CGF, E), 122 E->getExprLoc()); 123 124 llvm::Constant *pair = result.getValue(); 125 return ComplexPairTy(pair->getAggregateElement(0U), 126 pair->getAggregateElement(1U)); 127 } 128 return EmitLoadOfLValue(E); 129 } 130 ComplexPairTy VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 131 return EmitLoadOfLValue(E); 132 } 133 ComplexPairTy VisitObjCMessageExpr(ObjCMessageExpr *E) { 134 return CGF.EmitObjCMessageExpr(E).getComplexVal(); 135 } 136 ComplexPairTy VisitArraySubscriptExpr(Expr *E) { return EmitLoadOfLValue(E); } 137 ComplexPairTy VisitMemberExpr(const Expr *E) { return EmitLoadOfLValue(E); } 138 ComplexPairTy VisitOpaqueValueExpr(OpaqueValueExpr *E) { 139 if (E->isGLValue()) 140 return EmitLoadOfLValue(CGF.getOpaqueLValueMapping(E), E->getExprLoc()); 141 return CGF.getOpaqueRValueMapping(E).getComplexVal(); 142 } 143 144 ComplexPairTy VisitPseudoObjectExpr(PseudoObjectExpr *E) { 145 return CGF.EmitPseudoObjectRValue(E).getComplexVal(); 146 } 147 148 // FIXME: CompoundLiteralExpr 149 150 ComplexPairTy EmitCast(CastKind CK, Expr *Op, QualType DestTy); 151 ComplexPairTy VisitImplicitCastExpr(ImplicitCastExpr *E) { 152 // Unlike for scalars, we don't have to worry about function->ptr demotion 153 // here. 154 return EmitCast(E->getCastKind(), E->getSubExpr(), E->getType()); 155 } 156 ComplexPairTy VisitCastExpr(CastExpr *E) { 157 if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E)) 158 CGF.CGM.EmitExplicitCastExprType(ECE, &CGF); 159 return EmitCast(E->getCastKind(), E->getSubExpr(), E->getType()); 160 } 161 ComplexPairTy VisitCallExpr(const CallExpr *E); 162 ComplexPairTy VisitStmtExpr(const StmtExpr *E); 163 164 // Operators. 165 ComplexPairTy VisitPrePostIncDec(const UnaryOperator *E, 166 bool isInc, bool isPre) { 167 LValue LV = CGF.EmitLValue(E->getSubExpr()); 168 return CGF.EmitComplexPrePostIncDec(E, LV, isInc, isPre); 169 } 170 ComplexPairTy VisitUnaryPostDec(const UnaryOperator *E) { 171 return VisitPrePostIncDec(E, false, false); 172 } 173 ComplexPairTy VisitUnaryPostInc(const UnaryOperator *E) { 174 return VisitPrePostIncDec(E, true, false); 175 } 176 ComplexPairTy VisitUnaryPreDec(const UnaryOperator *E) { 177 return VisitPrePostIncDec(E, false, true); 178 } 179 ComplexPairTy VisitUnaryPreInc(const UnaryOperator *E) { 180 return VisitPrePostIncDec(E, true, true); 181 } 182 ComplexPairTy VisitUnaryDeref(const Expr *E) { return EmitLoadOfLValue(E); } 183 ComplexPairTy VisitUnaryPlus (const UnaryOperator *E) { 184 TestAndClearIgnoreReal(); 185 TestAndClearIgnoreImag(); 186 return Visit(E->getSubExpr()); 187 } 188 ComplexPairTy VisitUnaryMinus (const UnaryOperator *E); 189 ComplexPairTy VisitUnaryNot (const UnaryOperator *E); 190 // LNot,Real,Imag never return complex. 191 ComplexPairTy VisitUnaryExtension(const UnaryOperator *E) { 192 return Visit(E->getSubExpr()); 193 } 194 ComplexPairTy VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 195 return Visit(DAE->getExpr()); 196 } 197 ComplexPairTy VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) { 198 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF); 199 return Visit(DIE->getExpr()); 200 } 201 ComplexPairTy VisitExprWithCleanups(ExprWithCleanups *E) { 202 CGF.enterFullExpression(E); 203 CodeGenFunction::RunCleanupsScope Scope(CGF); 204 return Visit(E->getSubExpr()); 205 } 206 ComplexPairTy VisitCXXScalarValueInitExpr(CXXScalarValueInitExpr *E) { 207 assert(E->getType()->isAnyComplexType() && "Expected complex type!"); 208 QualType Elem = E->getType()->castAs<ComplexType>()->getElementType(); 209 llvm::Constant *Null = llvm::Constant::getNullValue(CGF.ConvertType(Elem)); 210 return ComplexPairTy(Null, Null); 211 } 212 ComplexPairTy VisitImplicitValueInitExpr(ImplicitValueInitExpr *E) { 213 assert(E->getType()->isAnyComplexType() && "Expected complex type!"); 214 QualType Elem = E->getType()->castAs<ComplexType>()->getElementType(); 215 llvm::Constant *Null = 216 llvm::Constant::getNullValue(CGF.ConvertType(Elem)); 217 return ComplexPairTy(Null, Null); 218 } 219 220 struct BinOpInfo { 221 ComplexPairTy LHS; 222 ComplexPairTy RHS; 223 QualType Ty; // Computation Type. 224 }; 225 226 BinOpInfo EmitBinOps(const BinaryOperator *E); 227 LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E, 228 ComplexPairTy (ComplexExprEmitter::*Func) 229 (const BinOpInfo &), 230 RValue &Val); 231 ComplexPairTy EmitCompoundAssign(const CompoundAssignOperator *E, 232 ComplexPairTy (ComplexExprEmitter::*Func) 233 (const BinOpInfo &)); 234 235 ComplexPairTy EmitBinAdd(const BinOpInfo &Op); 236 ComplexPairTy EmitBinSub(const BinOpInfo &Op); 237 ComplexPairTy EmitBinMul(const BinOpInfo &Op); 238 ComplexPairTy EmitBinDiv(const BinOpInfo &Op); 239 240 ComplexPairTy EmitComplexBinOpLibCall(StringRef LibCallName, 241 const BinOpInfo &Op); 242 243 ComplexPairTy VisitBinAdd(const BinaryOperator *E) { 244 return EmitBinAdd(EmitBinOps(E)); 245 } 246 ComplexPairTy VisitBinSub(const BinaryOperator *E) { 247 return EmitBinSub(EmitBinOps(E)); 248 } 249 ComplexPairTy VisitBinMul(const BinaryOperator *E) { 250 return EmitBinMul(EmitBinOps(E)); 251 } 252 ComplexPairTy VisitBinDiv(const BinaryOperator *E) { 253 return EmitBinDiv(EmitBinOps(E)); 254 } 255 256 // Compound assignments. 257 ComplexPairTy VisitBinAddAssign(const CompoundAssignOperator *E) { 258 return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinAdd); 259 } 260 ComplexPairTy VisitBinSubAssign(const CompoundAssignOperator *E) { 261 return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinSub); 262 } 263 ComplexPairTy VisitBinMulAssign(const CompoundAssignOperator *E) { 264 return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinMul); 265 } 266 ComplexPairTy VisitBinDivAssign(const CompoundAssignOperator *E) { 267 return EmitCompoundAssign(E, &ComplexExprEmitter::EmitBinDiv); 268 } 269 270 // GCC rejects rem/and/or/xor for integer complex. 271 // Logical and/or always return int, never complex. 272 273 // No comparisons produce a complex result. 274 275 LValue EmitBinAssignLValue(const BinaryOperator *E, 276 ComplexPairTy &Val); 277 ComplexPairTy VisitBinAssign (const BinaryOperator *E); 278 ComplexPairTy VisitBinComma (const BinaryOperator *E); 279 280 281 ComplexPairTy 282 VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO); 283 ComplexPairTy VisitChooseExpr(ChooseExpr *CE); 284 285 ComplexPairTy VisitInitListExpr(InitListExpr *E); 286 287 ComplexPairTy VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 288 return EmitLoadOfLValue(E); 289 } 290 291 ComplexPairTy VisitVAArgExpr(VAArgExpr *E); 292 293 ComplexPairTy VisitAtomicExpr(AtomicExpr *E) { 294 return CGF.EmitAtomicExpr(E).getComplexVal(); 295 } 296 }; 297 } // end anonymous namespace. 298 299 //===----------------------------------------------------------------------===// 300 // Utilities 301 //===----------------------------------------------------------------------===// 302 303 Address CodeGenFunction::emitAddrOfRealComponent(Address addr, 304 QualType complexType) { 305 CharUnits offset = CharUnits::Zero(); 306 return Builder.CreateStructGEP(addr, 0, offset, addr.getName() + ".realp"); 307 } 308 309 Address CodeGenFunction::emitAddrOfImagComponent(Address addr, 310 QualType complexType) { 311 QualType eltType = complexType->castAs<ComplexType>()->getElementType(); 312 CharUnits offset = getContext().getTypeSizeInChars(eltType); 313 return Builder.CreateStructGEP(addr, 1, offset, addr.getName() + ".imagp"); 314 } 315 316 /// EmitLoadOfLValue - Given an RValue reference for a complex, emit code to 317 /// load the real and imaginary pieces, returning them as Real/Imag. 318 ComplexPairTy ComplexExprEmitter::EmitLoadOfLValue(LValue lvalue, 319 SourceLocation loc) { 320 assert(lvalue.isSimple() && "non-simple complex l-value?"); 321 if (lvalue.getType()->isAtomicType()) 322 return CGF.EmitAtomicLoad(lvalue, loc).getComplexVal(); 323 324 Address SrcPtr = lvalue.getAddress(); 325 bool isVolatile = lvalue.isVolatileQualified(); 326 327 llvm::Value *Real = nullptr, *Imag = nullptr; 328 329 if (!IgnoreReal || isVolatile) { 330 Address RealP = CGF.emitAddrOfRealComponent(SrcPtr, lvalue.getType()); 331 Real = Builder.CreateLoad(RealP, isVolatile, SrcPtr.getName() + ".real"); 332 } 333 334 if (!IgnoreImag || isVolatile) { 335 Address ImagP = CGF.emitAddrOfImagComponent(SrcPtr, lvalue.getType()); 336 Imag = Builder.CreateLoad(ImagP, isVolatile, SrcPtr.getName() + ".imag"); 337 } 338 339 return ComplexPairTy(Real, Imag); 340 } 341 342 /// EmitStoreOfComplex - Store the specified real/imag parts into the 343 /// specified value pointer. 344 void ComplexExprEmitter::EmitStoreOfComplex(ComplexPairTy Val, LValue lvalue, 345 bool isInit) { 346 if (lvalue.getType()->isAtomicType() || 347 (!isInit && CGF.LValueIsSuitableForInlineAtomic(lvalue))) 348 return CGF.EmitAtomicStore(RValue::getComplex(Val), lvalue, isInit); 349 350 Address Ptr = lvalue.getAddress(); 351 Address RealPtr = CGF.emitAddrOfRealComponent(Ptr, lvalue.getType()); 352 Address ImagPtr = CGF.emitAddrOfImagComponent(Ptr, lvalue.getType()); 353 354 Builder.CreateStore(Val.first, RealPtr, lvalue.isVolatileQualified()); 355 Builder.CreateStore(Val.second, ImagPtr, lvalue.isVolatileQualified()); 356 } 357 358 359 360 //===----------------------------------------------------------------------===// 361 // Visitor Methods 362 //===----------------------------------------------------------------------===// 363 364 ComplexPairTy ComplexExprEmitter::VisitExpr(Expr *E) { 365 CGF.ErrorUnsupported(E, "complex expression"); 366 llvm::Type *EltTy = 367 CGF.ConvertType(getComplexType(E->getType())->getElementType()); 368 llvm::Value *U = llvm::UndefValue::get(EltTy); 369 return ComplexPairTy(U, U); 370 } 371 372 ComplexPairTy ComplexExprEmitter:: 373 VisitImaginaryLiteral(const ImaginaryLiteral *IL) { 374 llvm::Value *Imag = CGF.EmitScalarExpr(IL->getSubExpr()); 375 return ComplexPairTy(llvm::Constant::getNullValue(Imag->getType()), Imag); 376 } 377 378 379 ComplexPairTy ComplexExprEmitter::VisitCallExpr(const CallExpr *E) { 380 if (E->getCallReturnType(CGF.getContext())->isReferenceType()) 381 return EmitLoadOfLValue(E); 382 383 return CGF.EmitCallExpr(E).getComplexVal(); 384 } 385 386 ComplexPairTy ComplexExprEmitter::VisitStmtExpr(const StmtExpr *E) { 387 CodeGenFunction::StmtExprEvaluation eval(CGF); 388 Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(), true); 389 assert(RetAlloca.isValid() && "Expected complex return value"); 390 return EmitLoadOfLValue(CGF.MakeAddrLValue(RetAlloca, E->getType()), 391 E->getExprLoc()); 392 } 393 394 /// Emit a cast from complex value Val to DestType. 395 ComplexPairTy ComplexExprEmitter::EmitComplexToComplexCast(ComplexPairTy Val, 396 QualType SrcType, 397 QualType DestType, 398 SourceLocation Loc) { 399 // Get the src/dest element type. 400 SrcType = SrcType->castAs<ComplexType>()->getElementType(); 401 DestType = DestType->castAs<ComplexType>()->getElementType(); 402 403 // C99 6.3.1.6: When a value of complex type is converted to another 404 // complex type, both the real and imaginary parts follow the conversion 405 // rules for the corresponding real types. 406 Val.first = CGF.EmitScalarConversion(Val.first, SrcType, DestType, Loc); 407 Val.second = CGF.EmitScalarConversion(Val.second, SrcType, DestType, Loc); 408 return Val; 409 } 410 411 ComplexPairTy ComplexExprEmitter::EmitScalarToComplexCast(llvm::Value *Val, 412 QualType SrcType, 413 QualType DestType, 414 SourceLocation Loc) { 415 // Convert the input element to the element type of the complex. 416 DestType = DestType->castAs<ComplexType>()->getElementType(); 417 Val = CGF.EmitScalarConversion(Val, SrcType, DestType, Loc); 418 419 // Return (realval, 0). 420 return ComplexPairTy(Val, llvm::Constant::getNullValue(Val->getType())); 421 } 422 423 ComplexPairTy ComplexExprEmitter::EmitCast(CastKind CK, Expr *Op, 424 QualType DestTy) { 425 switch (CK) { 426 case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!"); 427 428 // Atomic to non-atomic casts may be more than a no-op for some platforms and 429 // for some types. 430 case CK_AtomicToNonAtomic: 431 case CK_NonAtomicToAtomic: 432 case CK_NoOp: 433 case CK_LValueToRValue: 434 case CK_UserDefinedConversion: 435 return Visit(Op); 436 437 case CK_LValueBitCast: { 438 LValue origLV = CGF.EmitLValue(Op); 439 Address V = origLV.getAddress(); 440 V = Builder.CreateElementBitCast(V, CGF.ConvertType(DestTy)); 441 return EmitLoadOfLValue(CGF.MakeAddrLValue(V, DestTy), Op->getExprLoc()); 442 } 443 444 case CK_BitCast: 445 case CK_BaseToDerived: 446 case CK_DerivedToBase: 447 case CK_UncheckedDerivedToBase: 448 case CK_Dynamic: 449 case CK_ToUnion: 450 case CK_ArrayToPointerDecay: 451 case CK_FunctionToPointerDecay: 452 case CK_NullToPointer: 453 case CK_NullToMemberPointer: 454 case CK_BaseToDerivedMemberPointer: 455 case CK_DerivedToBaseMemberPointer: 456 case CK_MemberPointerToBoolean: 457 case CK_ReinterpretMemberPointer: 458 case CK_ConstructorConversion: 459 case CK_IntegralToPointer: 460 case CK_PointerToIntegral: 461 case CK_PointerToBoolean: 462 case CK_ToVoid: 463 case CK_VectorSplat: 464 case CK_IntegralCast: 465 case CK_IntegralToBoolean: 466 case CK_IntegralToFloating: 467 case CK_FloatingToIntegral: 468 case CK_FloatingToBoolean: 469 case CK_FloatingCast: 470 case CK_CPointerToObjCPointerCast: 471 case CK_BlockPointerToObjCPointerCast: 472 case CK_AnyPointerToBlockPointerCast: 473 case CK_ObjCObjectLValueCast: 474 case CK_FloatingComplexToReal: 475 case CK_FloatingComplexToBoolean: 476 case CK_IntegralComplexToReal: 477 case CK_IntegralComplexToBoolean: 478 case CK_ARCProduceObject: 479 case CK_ARCConsumeObject: 480 case CK_ARCReclaimReturnedObject: 481 case CK_ARCExtendBlockObject: 482 case CK_CopyAndAutoreleaseBlockObject: 483 case CK_BuiltinFnToFnPtr: 484 case CK_ZeroToOCLEvent: 485 case CK_AddressSpaceConversion: 486 llvm_unreachable("invalid cast kind for complex value"); 487 488 case CK_FloatingRealToComplex: 489 case CK_IntegralRealToComplex: 490 return EmitScalarToComplexCast(CGF.EmitScalarExpr(Op), Op->getType(), 491 DestTy, Op->getExprLoc()); 492 493 case CK_FloatingComplexCast: 494 case CK_FloatingComplexToIntegralComplex: 495 case CK_IntegralComplexCast: 496 case CK_IntegralComplexToFloatingComplex: 497 return EmitComplexToComplexCast(Visit(Op), Op->getType(), DestTy, 498 Op->getExprLoc()); 499 } 500 501 llvm_unreachable("unknown cast resulting in complex value"); 502 } 503 504 ComplexPairTy ComplexExprEmitter::VisitUnaryMinus(const UnaryOperator *E) { 505 TestAndClearIgnoreReal(); 506 TestAndClearIgnoreImag(); 507 ComplexPairTy Op = Visit(E->getSubExpr()); 508 509 llvm::Value *ResR, *ResI; 510 if (Op.first->getType()->isFloatingPointTy()) { 511 ResR = Builder.CreateFNeg(Op.first, "neg.r"); 512 ResI = Builder.CreateFNeg(Op.second, "neg.i"); 513 } else { 514 ResR = Builder.CreateNeg(Op.first, "neg.r"); 515 ResI = Builder.CreateNeg(Op.second, "neg.i"); 516 } 517 return ComplexPairTy(ResR, ResI); 518 } 519 520 ComplexPairTy ComplexExprEmitter::VisitUnaryNot(const UnaryOperator *E) { 521 TestAndClearIgnoreReal(); 522 TestAndClearIgnoreImag(); 523 // ~(a+ib) = a + i*-b 524 ComplexPairTy Op = Visit(E->getSubExpr()); 525 llvm::Value *ResI; 526 if (Op.second->getType()->isFloatingPointTy()) 527 ResI = Builder.CreateFNeg(Op.second, "conj.i"); 528 else 529 ResI = Builder.CreateNeg(Op.second, "conj.i"); 530 531 return ComplexPairTy(Op.first, ResI); 532 } 533 534 ComplexPairTy ComplexExprEmitter::EmitBinAdd(const BinOpInfo &Op) { 535 llvm::Value *ResR, *ResI; 536 537 if (Op.LHS.first->getType()->isFloatingPointTy()) { 538 ResR = Builder.CreateFAdd(Op.LHS.first, Op.RHS.first, "add.r"); 539 if (Op.LHS.second && Op.RHS.second) 540 ResI = Builder.CreateFAdd(Op.LHS.second, Op.RHS.second, "add.i"); 541 else 542 ResI = Op.LHS.second ? Op.LHS.second : Op.RHS.second; 543 assert(ResI && "Only one operand may be real!"); 544 } else { 545 ResR = Builder.CreateAdd(Op.LHS.first, Op.RHS.first, "add.r"); 546 assert(Op.LHS.second && Op.RHS.second && 547 "Both operands of integer complex operators must be complex!"); 548 ResI = Builder.CreateAdd(Op.LHS.second, Op.RHS.second, "add.i"); 549 } 550 return ComplexPairTy(ResR, ResI); 551 } 552 553 ComplexPairTy ComplexExprEmitter::EmitBinSub(const BinOpInfo &Op) { 554 llvm::Value *ResR, *ResI; 555 if (Op.LHS.first->getType()->isFloatingPointTy()) { 556 ResR = Builder.CreateFSub(Op.LHS.first, Op.RHS.first, "sub.r"); 557 if (Op.LHS.second && Op.RHS.second) 558 ResI = Builder.CreateFSub(Op.LHS.second, Op.RHS.second, "sub.i"); 559 else 560 ResI = Op.LHS.second ? Op.LHS.second 561 : Builder.CreateFNeg(Op.RHS.second, "sub.i"); 562 assert(ResI && "Only one operand may be real!"); 563 } else { 564 ResR = Builder.CreateSub(Op.LHS.first, Op.RHS.first, "sub.r"); 565 assert(Op.LHS.second && Op.RHS.second && 566 "Both operands of integer complex operators must be complex!"); 567 ResI = Builder.CreateSub(Op.LHS.second, Op.RHS.second, "sub.i"); 568 } 569 return ComplexPairTy(ResR, ResI); 570 } 571 572 /// \brief Emit a libcall for a binary operation on complex types. 573 ComplexPairTy ComplexExprEmitter::EmitComplexBinOpLibCall(StringRef LibCallName, 574 const BinOpInfo &Op) { 575 CallArgList Args; 576 Args.add(RValue::get(Op.LHS.first), 577 Op.Ty->castAs<ComplexType>()->getElementType()); 578 Args.add(RValue::get(Op.LHS.second), 579 Op.Ty->castAs<ComplexType>()->getElementType()); 580 Args.add(RValue::get(Op.RHS.first), 581 Op.Ty->castAs<ComplexType>()->getElementType()); 582 Args.add(RValue::get(Op.RHS.second), 583 Op.Ty->castAs<ComplexType>()->getElementType()); 584 585 // We *must* use the full CG function call building logic here because the 586 // complex type has special ABI handling. We also should not forget about 587 // special calling convention which may be used for compiler builtins. 588 589 // We create a function qualified type to state that this call does not have 590 // any exceptions. 591 FunctionProtoType::ExtProtoInfo EPI; 592 EPI = EPI.withExceptionSpec( 593 FunctionProtoType::ExceptionSpecInfo(EST_BasicNoexcept)); 594 SmallVector<QualType, 4> ArgsQTys( 595 4, Op.Ty->castAs<ComplexType>()->getElementType()); 596 QualType FQTy = CGF.getContext().getFunctionType(Op.Ty, ArgsQTys, EPI); 597 const CGFunctionInfo &FuncInfo = CGF.CGM.getTypes().arrangeFreeFunctionCall( 598 Args, cast<FunctionType>(FQTy.getTypePtr()), false); 599 600 llvm::FunctionType *FTy = CGF.CGM.getTypes().GetFunctionType(FuncInfo); 601 llvm::Constant *Func = CGF.CGM.CreateBuiltinFunction(FTy, LibCallName); 602 llvm::Instruction *Call; 603 604 RValue Res = CGF.EmitCall(FuncInfo, Func, ReturnValueSlot(), Args, 605 FQTy->getAs<FunctionProtoType>(), &Call); 606 cast<llvm::CallInst>(Call)->setCallingConv(CGF.CGM.getBuiltinCC()); 607 return Res.getComplexVal(); 608 } 609 610 /// \brief Lookup the libcall name for a given floating point type complex 611 /// multiply. 612 static StringRef getComplexMultiplyLibCallName(llvm::Type *Ty) { 613 switch (Ty->getTypeID()) { 614 default: 615 llvm_unreachable("Unsupported floating point type!"); 616 case llvm::Type::HalfTyID: 617 return "__mulhc3"; 618 case llvm::Type::FloatTyID: 619 return "__mulsc3"; 620 case llvm::Type::DoubleTyID: 621 return "__muldc3"; 622 case llvm::Type::PPC_FP128TyID: 623 return "__multc3"; 624 case llvm::Type::X86_FP80TyID: 625 return "__mulxc3"; 626 case llvm::Type::FP128TyID: 627 return "__multc3"; 628 } 629 } 630 631 // See C11 Annex G.5.1 for the semantics of multiplicative operators on complex 632 // typed values. 633 ComplexPairTy ComplexExprEmitter::EmitBinMul(const BinOpInfo &Op) { 634 using llvm::Value; 635 Value *ResR, *ResI; 636 llvm::MDBuilder MDHelper(CGF.getLLVMContext()); 637 638 if (Op.LHS.first->getType()->isFloatingPointTy()) { 639 // The general formulation is: 640 // (a + ib) * (c + id) = (a * c - b * d) + i(a * d + b * c) 641 // 642 // But we can fold away components which would be zero due to a real 643 // operand according to C11 Annex G.5.1p2. 644 // FIXME: C11 also provides for imaginary types which would allow folding 645 // still more of this within the type system. 646 647 if (Op.LHS.second && Op.RHS.second) { 648 // If both operands are complex, emit the core math directly, and then 649 // test for NaNs. If we find NaNs in the result, we delegate to a libcall 650 // to carefully re-compute the correct infinity representation if 651 // possible. The expectation is that the presence of NaNs here is 652 // *extremely* rare, and so the cost of the libcall is almost irrelevant. 653 // This is good, because the libcall re-computes the core multiplication 654 // exactly the same as we do here and re-tests for NaNs in order to be 655 // a generic complex*complex libcall. 656 657 // First compute the four products. 658 Value *AC = Builder.CreateFMul(Op.LHS.first, Op.RHS.first, "mul_ac"); 659 Value *BD = Builder.CreateFMul(Op.LHS.second, Op.RHS.second, "mul_bd"); 660 Value *AD = Builder.CreateFMul(Op.LHS.first, Op.RHS.second, "mul_ad"); 661 Value *BC = Builder.CreateFMul(Op.LHS.second, Op.RHS.first, "mul_bc"); 662 663 // The real part is the difference of the first two, the imaginary part is 664 // the sum of the second. 665 ResR = Builder.CreateFSub(AC, BD, "mul_r"); 666 ResI = Builder.CreateFAdd(AD, BC, "mul_i"); 667 668 // Emit the test for the real part becoming NaN and create a branch to 669 // handle it. We test for NaN by comparing the number to itself. 670 Value *IsRNaN = Builder.CreateFCmpUNO(ResR, ResR, "isnan_cmp"); 671 llvm::BasicBlock *ContBB = CGF.createBasicBlock("complex_mul_cont"); 672 llvm::BasicBlock *INaNBB = CGF.createBasicBlock("complex_mul_imag_nan"); 673 llvm::Instruction *Branch = Builder.CreateCondBr(IsRNaN, INaNBB, ContBB); 674 llvm::BasicBlock *OrigBB = Branch->getParent(); 675 676 // Give hint that we very much don't expect to see NaNs. 677 // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp 678 llvm::MDNode *BrWeight = MDHelper.createBranchWeights(1, (1U << 20) - 1); 679 Branch->setMetadata(llvm::LLVMContext::MD_prof, BrWeight); 680 681 // Now test the imaginary part and create its branch. 682 CGF.EmitBlock(INaNBB); 683 Value *IsINaN = Builder.CreateFCmpUNO(ResI, ResI, "isnan_cmp"); 684 llvm::BasicBlock *LibCallBB = CGF.createBasicBlock("complex_mul_libcall"); 685 Branch = Builder.CreateCondBr(IsINaN, LibCallBB, ContBB); 686 Branch->setMetadata(llvm::LLVMContext::MD_prof, BrWeight); 687 688 // Now emit the libcall on this slowest of the slow paths. 689 CGF.EmitBlock(LibCallBB); 690 Value *LibCallR, *LibCallI; 691 std::tie(LibCallR, LibCallI) = EmitComplexBinOpLibCall( 692 getComplexMultiplyLibCallName(Op.LHS.first->getType()), Op); 693 Builder.CreateBr(ContBB); 694 695 // Finally continue execution by phi-ing together the different 696 // computation paths. 697 CGF.EmitBlock(ContBB); 698 llvm::PHINode *RealPHI = Builder.CreatePHI(ResR->getType(), 3, "real_mul_phi"); 699 RealPHI->addIncoming(ResR, OrigBB); 700 RealPHI->addIncoming(ResR, INaNBB); 701 RealPHI->addIncoming(LibCallR, LibCallBB); 702 llvm::PHINode *ImagPHI = Builder.CreatePHI(ResI->getType(), 3, "imag_mul_phi"); 703 ImagPHI->addIncoming(ResI, OrigBB); 704 ImagPHI->addIncoming(ResI, INaNBB); 705 ImagPHI->addIncoming(LibCallI, LibCallBB); 706 return ComplexPairTy(RealPHI, ImagPHI); 707 } 708 assert((Op.LHS.second || Op.RHS.second) && 709 "At least one operand must be complex!"); 710 711 // If either of the operands is a real rather than a complex, the 712 // imaginary component is ignored when computing the real component of the 713 // result. 714 ResR = Builder.CreateFMul(Op.LHS.first, Op.RHS.first, "mul.rl"); 715 716 ResI = Op.LHS.second 717 ? Builder.CreateFMul(Op.LHS.second, Op.RHS.first, "mul.il") 718 : Builder.CreateFMul(Op.LHS.first, Op.RHS.second, "mul.ir"); 719 } else { 720 assert(Op.LHS.second && Op.RHS.second && 721 "Both operands of integer complex operators must be complex!"); 722 Value *ResRl = Builder.CreateMul(Op.LHS.first, Op.RHS.first, "mul.rl"); 723 Value *ResRr = Builder.CreateMul(Op.LHS.second, Op.RHS.second, "mul.rr"); 724 ResR = Builder.CreateSub(ResRl, ResRr, "mul.r"); 725 726 Value *ResIl = Builder.CreateMul(Op.LHS.second, Op.RHS.first, "mul.il"); 727 Value *ResIr = Builder.CreateMul(Op.LHS.first, Op.RHS.second, "mul.ir"); 728 ResI = Builder.CreateAdd(ResIl, ResIr, "mul.i"); 729 } 730 return ComplexPairTy(ResR, ResI); 731 } 732 733 // See C11 Annex G.5.1 for the semantics of multiplicative operators on complex 734 // typed values. 735 ComplexPairTy ComplexExprEmitter::EmitBinDiv(const BinOpInfo &Op) { 736 llvm::Value *LHSr = Op.LHS.first, *LHSi = Op.LHS.second; 737 llvm::Value *RHSr = Op.RHS.first, *RHSi = Op.RHS.second; 738 739 740 llvm::Value *DSTr, *DSTi; 741 if (LHSr->getType()->isFloatingPointTy()) { 742 // If we have a complex operand on the RHS, we delegate to a libcall to 743 // handle all of the complexities and minimize underflow/overflow cases. 744 // 745 // FIXME: We would be able to avoid the libcall in many places if we 746 // supported imaginary types in addition to complex types. 747 if (RHSi) { 748 BinOpInfo LibCallOp = Op; 749 // If LHS was a real, supply a null imaginary part. 750 if (!LHSi) 751 LibCallOp.LHS.second = llvm::Constant::getNullValue(LHSr->getType()); 752 753 StringRef LibCallName; 754 switch (LHSr->getType()->getTypeID()) { 755 default: 756 llvm_unreachable("Unsupported floating point type!"); 757 case llvm::Type::HalfTyID: 758 return EmitComplexBinOpLibCall("__divhc3", LibCallOp); 759 case llvm::Type::FloatTyID: 760 return EmitComplexBinOpLibCall("__divsc3", LibCallOp); 761 case llvm::Type::DoubleTyID: 762 return EmitComplexBinOpLibCall("__divdc3", LibCallOp); 763 case llvm::Type::PPC_FP128TyID: 764 return EmitComplexBinOpLibCall("__divtc3", LibCallOp); 765 case llvm::Type::X86_FP80TyID: 766 return EmitComplexBinOpLibCall("__divxc3", LibCallOp); 767 case llvm::Type::FP128TyID: 768 return EmitComplexBinOpLibCall("__divtc3", LibCallOp); 769 } 770 } 771 assert(LHSi && "Can have at most one non-complex operand!"); 772 773 DSTr = Builder.CreateFDiv(LHSr, RHSr); 774 DSTi = Builder.CreateFDiv(LHSi, RHSr); 775 } else { 776 assert(Op.LHS.second && Op.RHS.second && 777 "Both operands of integer complex operators must be complex!"); 778 // (a+ib) / (c+id) = ((ac+bd)/(cc+dd)) + i((bc-ad)/(cc+dd)) 779 llvm::Value *Tmp1 = Builder.CreateMul(LHSr, RHSr); // a*c 780 llvm::Value *Tmp2 = Builder.CreateMul(LHSi, RHSi); // b*d 781 llvm::Value *Tmp3 = Builder.CreateAdd(Tmp1, Tmp2); // ac+bd 782 783 llvm::Value *Tmp4 = Builder.CreateMul(RHSr, RHSr); // c*c 784 llvm::Value *Tmp5 = Builder.CreateMul(RHSi, RHSi); // d*d 785 llvm::Value *Tmp6 = Builder.CreateAdd(Tmp4, Tmp5); // cc+dd 786 787 llvm::Value *Tmp7 = Builder.CreateMul(LHSi, RHSr); // b*c 788 llvm::Value *Tmp8 = Builder.CreateMul(LHSr, RHSi); // a*d 789 llvm::Value *Tmp9 = Builder.CreateSub(Tmp7, Tmp8); // bc-ad 790 791 if (Op.Ty->castAs<ComplexType>()->getElementType()->isUnsignedIntegerType()) { 792 DSTr = Builder.CreateUDiv(Tmp3, Tmp6); 793 DSTi = Builder.CreateUDiv(Tmp9, Tmp6); 794 } else { 795 DSTr = Builder.CreateSDiv(Tmp3, Tmp6); 796 DSTi = Builder.CreateSDiv(Tmp9, Tmp6); 797 } 798 } 799 800 return ComplexPairTy(DSTr, DSTi); 801 } 802 803 ComplexExprEmitter::BinOpInfo 804 ComplexExprEmitter::EmitBinOps(const BinaryOperator *E) { 805 TestAndClearIgnoreReal(); 806 TestAndClearIgnoreImag(); 807 BinOpInfo Ops; 808 if (E->getLHS()->getType()->isRealFloatingType()) 809 Ops.LHS = ComplexPairTy(CGF.EmitScalarExpr(E->getLHS()), nullptr); 810 else 811 Ops.LHS = Visit(E->getLHS()); 812 if (E->getRHS()->getType()->isRealFloatingType()) 813 Ops.RHS = ComplexPairTy(CGF.EmitScalarExpr(E->getRHS()), nullptr); 814 else 815 Ops.RHS = Visit(E->getRHS()); 816 817 Ops.Ty = E->getType(); 818 return Ops; 819 } 820 821 822 LValue ComplexExprEmitter:: 823 EmitCompoundAssignLValue(const CompoundAssignOperator *E, 824 ComplexPairTy (ComplexExprEmitter::*Func)(const BinOpInfo&), 825 RValue &Val) { 826 TestAndClearIgnoreReal(); 827 TestAndClearIgnoreImag(); 828 QualType LHSTy = E->getLHS()->getType(); 829 if (const AtomicType *AT = LHSTy->getAs<AtomicType>()) 830 LHSTy = AT->getValueType(); 831 832 BinOpInfo OpInfo; 833 834 // Load the RHS and LHS operands. 835 // __block variables need to have the rhs evaluated first, plus this should 836 // improve codegen a little. 837 OpInfo.Ty = E->getComputationResultType(); 838 QualType ComplexElementTy = cast<ComplexType>(OpInfo.Ty)->getElementType(); 839 840 // The RHS should have been converted to the computation type. 841 if (E->getRHS()->getType()->isRealFloatingType()) { 842 assert( 843 CGF.getContext() 844 .hasSameUnqualifiedType(ComplexElementTy, E->getRHS()->getType())); 845 OpInfo.RHS = ComplexPairTy(CGF.EmitScalarExpr(E->getRHS()), nullptr); 846 } else { 847 assert(CGF.getContext() 848 .hasSameUnqualifiedType(OpInfo.Ty, E->getRHS()->getType())); 849 OpInfo.RHS = Visit(E->getRHS()); 850 } 851 852 LValue LHS = CGF.EmitLValue(E->getLHS()); 853 854 // Load from the l-value and convert it. 855 SourceLocation Loc = E->getExprLoc(); 856 if (LHSTy->isAnyComplexType()) { 857 ComplexPairTy LHSVal = EmitLoadOfLValue(LHS, Loc); 858 OpInfo.LHS = EmitComplexToComplexCast(LHSVal, LHSTy, OpInfo.Ty, Loc); 859 } else { 860 llvm::Value *LHSVal = CGF.EmitLoadOfScalar(LHS, Loc); 861 // For floating point real operands we can directly pass the scalar form 862 // to the binary operator emission and potentially get more efficient code. 863 if (LHSTy->isRealFloatingType()) { 864 if (!CGF.getContext().hasSameUnqualifiedType(ComplexElementTy, LHSTy)) 865 LHSVal = CGF.EmitScalarConversion(LHSVal, LHSTy, ComplexElementTy, Loc); 866 OpInfo.LHS = ComplexPairTy(LHSVal, nullptr); 867 } else { 868 OpInfo.LHS = EmitScalarToComplexCast(LHSVal, LHSTy, OpInfo.Ty, Loc); 869 } 870 } 871 872 // Expand the binary operator. 873 ComplexPairTy Result = (this->*Func)(OpInfo); 874 875 // Truncate the result and store it into the LHS lvalue. 876 if (LHSTy->isAnyComplexType()) { 877 ComplexPairTy ResVal = 878 EmitComplexToComplexCast(Result, OpInfo.Ty, LHSTy, Loc); 879 EmitStoreOfComplex(ResVal, LHS, /*isInit*/ false); 880 Val = RValue::getComplex(ResVal); 881 } else { 882 llvm::Value *ResVal = 883 CGF.EmitComplexToScalarConversion(Result, OpInfo.Ty, LHSTy, Loc); 884 CGF.EmitStoreOfScalar(ResVal, LHS, /*isInit*/ false); 885 Val = RValue::get(ResVal); 886 } 887 888 return LHS; 889 } 890 891 // Compound assignments. 892 ComplexPairTy ComplexExprEmitter:: 893 EmitCompoundAssign(const CompoundAssignOperator *E, 894 ComplexPairTy (ComplexExprEmitter::*Func)(const BinOpInfo&)){ 895 RValue Val; 896 LValue LV = EmitCompoundAssignLValue(E, Func, Val); 897 898 // The result of an assignment in C is the assigned r-value. 899 if (!CGF.getLangOpts().CPlusPlus) 900 return Val.getComplexVal(); 901 902 // If the lvalue is non-volatile, return the computed value of the assignment. 903 if (!LV.isVolatileQualified()) 904 return Val.getComplexVal(); 905 906 return EmitLoadOfLValue(LV, E->getExprLoc()); 907 } 908 909 LValue ComplexExprEmitter::EmitBinAssignLValue(const BinaryOperator *E, 910 ComplexPairTy &Val) { 911 assert(CGF.getContext().hasSameUnqualifiedType(E->getLHS()->getType(), 912 E->getRHS()->getType()) && 913 "Invalid assignment"); 914 TestAndClearIgnoreReal(); 915 TestAndClearIgnoreImag(); 916 917 // Emit the RHS. __block variables need the RHS evaluated first. 918 Val = Visit(E->getRHS()); 919 920 // Compute the address to store into. 921 LValue LHS = CGF.EmitLValue(E->getLHS()); 922 923 // Store the result value into the LHS lvalue. 924 EmitStoreOfComplex(Val, LHS, /*isInit*/ false); 925 926 return LHS; 927 } 928 929 ComplexPairTy ComplexExprEmitter::VisitBinAssign(const BinaryOperator *E) { 930 ComplexPairTy Val; 931 LValue LV = EmitBinAssignLValue(E, Val); 932 933 // The result of an assignment in C is the assigned r-value. 934 if (!CGF.getLangOpts().CPlusPlus) 935 return Val; 936 937 // If the lvalue is non-volatile, return the computed value of the assignment. 938 if (!LV.isVolatileQualified()) 939 return Val; 940 941 return EmitLoadOfLValue(LV, E->getExprLoc()); 942 } 943 944 ComplexPairTy ComplexExprEmitter::VisitBinComma(const BinaryOperator *E) { 945 CGF.EmitIgnoredExpr(E->getLHS()); 946 return Visit(E->getRHS()); 947 } 948 949 ComplexPairTy ComplexExprEmitter:: 950 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { 951 TestAndClearIgnoreReal(); 952 TestAndClearIgnoreImag(); 953 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 954 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 955 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 956 957 // Bind the common expression if necessary. 958 CodeGenFunction::OpaqueValueMapping binding(CGF, E); 959 960 961 CodeGenFunction::ConditionalEvaluation eval(CGF); 962 CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock, 963 CGF.getProfileCount(E)); 964 965 eval.begin(CGF); 966 CGF.EmitBlock(LHSBlock); 967 CGF.incrementProfileCounter(E); 968 ComplexPairTy LHS = Visit(E->getTrueExpr()); 969 LHSBlock = Builder.GetInsertBlock(); 970 CGF.EmitBranch(ContBlock); 971 eval.end(CGF); 972 973 eval.begin(CGF); 974 CGF.EmitBlock(RHSBlock); 975 ComplexPairTy RHS = Visit(E->getFalseExpr()); 976 RHSBlock = Builder.GetInsertBlock(); 977 CGF.EmitBlock(ContBlock); 978 eval.end(CGF); 979 980 // Create a PHI node for the real part. 981 llvm::PHINode *RealPN = Builder.CreatePHI(LHS.first->getType(), 2, "cond.r"); 982 RealPN->addIncoming(LHS.first, LHSBlock); 983 RealPN->addIncoming(RHS.first, RHSBlock); 984 985 // Create a PHI node for the imaginary part. 986 llvm::PHINode *ImagPN = Builder.CreatePHI(LHS.first->getType(), 2, "cond.i"); 987 ImagPN->addIncoming(LHS.second, LHSBlock); 988 ImagPN->addIncoming(RHS.second, RHSBlock); 989 990 return ComplexPairTy(RealPN, ImagPN); 991 } 992 993 ComplexPairTy ComplexExprEmitter::VisitChooseExpr(ChooseExpr *E) { 994 return Visit(E->getChosenSubExpr()); 995 } 996 997 ComplexPairTy ComplexExprEmitter::VisitInitListExpr(InitListExpr *E) { 998 bool Ignore = TestAndClearIgnoreReal(); 999 (void)Ignore; 1000 assert (Ignore == false && "init list ignored"); 1001 Ignore = TestAndClearIgnoreImag(); 1002 (void)Ignore; 1003 assert (Ignore == false && "init list ignored"); 1004 1005 if (E->getNumInits() == 2) { 1006 llvm::Value *Real = CGF.EmitScalarExpr(E->getInit(0)); 1007 llvm::Value *Imag = CGF.EmitScalarExpr(E->getInit(1)); 1008 return ComplexPairTy(Real, Imag); 1009 } else if (E->getNumInits() == 1) { 1010 return Visit(E->getInit(0)); 1011 } 1012 1013 // Empty init list intializes to null 1014 assert(E->getNumInits() == 0 && "Unexpected number of inits"); 1015 QualType Ty = E->getType()->castAs<ComplexType>()->getElementType(); 1016 llvm::Type* LTy = CGF.ConvertType(Ty); 1017 llvm::Value* zeroConstant = llvm::Constant::getNullValue(LTy); 1018 return ComplexPairTy(zeroConstant, zeroConstant); 1019 } 1020 1021 ComplexPairTy ComplexExprEmitter::VisitVAArgExpr(VAArgExpr *E) { 1022 Address ArgValue = Address::invalid(); 1023 Address ArgPtr = CGF.EmitVAArg(E, ArgValue); 1024 1025 if (!ArgPtr.isValid()) { 1026 CGF.ErrorUnsupported(E, "complex va_arg expression"); 1027 llvm::Type *EltTy = 1028 CGF.ConvertType(E->getType()->castAs<ComplexType>()->getElementType()); 1029 llvm::Value *U = llvm::UndefValue::get(EltTy); 1030 return ComplexPairTy(U, U); 1031 } 1032 1033 return EmitLoadOfLValue(CGF.MakeAddrLValue(ArgPtr, E->getType()), 1034 E->getExprLoc()); 1035 } 1036 1037 //===----------------------------------------------------------------------===// 1038 // Entry Point into this File 1039 //===----------------------------------------------------------------------===// 1040 1041 /// EmitComplexExpr - Emit the computation of the specified expression of 1042 /// complex type, ignoring the result. 1043 ComplexPairTy CodeGenFunction::EmitComplexExpr(const Expr *E, bool IgnoreReal, 1044 bool IgnoreImag) { 1045 assert(E && getComplexType(E->getType()) && 1046 "Invalid complex expression to emit"); 1047 1048 return ComplexExprEmitter(*this, IgnoreReal, IgnoreImag) 1049 .Visit(const_cast<Expr *>(E)); 1050 } 1051 1052 void CodeGenFunction::EmitComplexExprIntoLValue(const Expr *E, LValue dest, 1053 bool isInit) { 1054 assert(E && getComplexType(E->getType()) && 1055 "Invalid complex expression to emit"); 1056 ComplexExprEmitter Emitter(*this); 1057 ComplexPairTy Val = Emitter.Visit(const_cast<Expr*>(E)); 1058 Emitter.EmitStoreOfComplex(Val, dest, isInit); 1059 } 1060 1061 /// EmitStoreOfComplex - Store a complex number into the specified l-value. 1062 void CodeGenFunction::EmitStoreOfComplex(ComplexPairTy V, LValue dest, 1063 bool isInit) { 1064 ComplexExprEmitter(*this).EmitStoreOfComplex(V, dest, isInit); 1065 } 1066 1067 /// EmitLoadOfComplex - Load a complex number from the specified address. 1068 ComplexPairTy CodeGenFunction::EmitLoadOfComplex(LValue src, 1069 SourceLocation loc) { 1070 return ComplexExprEmitter(*this).EmitLoadOfLValue(src, loc); 1071 } 1072 1073 LValue CodeGenFunction::EmitComplexAssignmentLValue(const BinaryOperator *E) { 1074 assert(E->getOpcode() == BO_Assign); 1075 ComplexPairTy Val; // ignored 1076 return ComplexExprEmitter(*this).EmitBinAssignLValue(E, Val); 1077 } 1078 1079 typedef ComplexPairTy (ComplexExprEmitter::*CompoundFunc)( 1080 const ComplexExprEmitter::BinOpInfo &); 1081 1082 static CompoundFunc getComplexOp(BinaryOperatorKind Op) { 1083 switch (Op) { 1084 case BO_MulAssign: return &ComplexExprEmitter::EmitBinMul; 1085 case BO_DivAssign: return &ComplexExprEmitter::EmitBinDiv; 1086 case BO_SubAssign: return &ComplexExprEmitter::EmitBinSub; 1087 case BO_AddAssign: return &ComplexExprEmitter::EmitBinAdd; 1088 default: 1089 llvm_unreachable("unexpected complex compound assignment"); 1090 } 1091 } 1092 1093 LValue CodeGenFunction:: 1094 EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E) { 1095 CompoundFunc Op = getComplexOp(E->getOpcode()); 1096 RValue Val; 1097 return ComplexExprEmitter(*this).EmitCompoundAssignLValue(E, Op, Val); 1098 } 1099 1100 LValue CodeGenFunction:: 1101 EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E, 1102 llvm::Value *&Result) { 1103 CompoundFunc Op = getComplexOp(E->getOpcode()); 1104 RValue Val; 1105 LValue Ret = ComplexExprEmitter(*this).EmitCompoundAssignLValue(E, Op, Val); 1106 Result = Val.getScalarVal(); 1107 return Ret; 1108 } 1109