1 //===-- LegalizeDAG.cpp - Implement SelectionDAG::Legalize ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the SelectionDAG::Legalize method. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/SelectionDAG.h" 15 #include "llvm/ADT/SetVector.h" 16 #include "llvm/ADT/SmallPtrSet.h" 17 #include "llvm/ADT/SmallSet.h" 18 #include "llvm/ADT/SmallVector.h" 19 #include "llvm/ADT/Triple.h" 20 #include "llvm/CodeGen/Analysis.h" 21 #include "llvm/CodeGen/MachineFunction.h" 22 #include "llvm/CodeGen/MachineJumpTableInfo.h" 23 #include "llvm/IR/CallingConv.h" 24 #include "llvm/IR/Constants.h" 25 #include "llvm/IR/DataLayout.h" 26 #include "llvm/IR/DebugInfo.h" 27 #include "llvm/IR/DerivedTypes.h" 28 #include "llvm/IR/Function.h" 29 #include "llvm/IR/LLVMContext.h" 30 #include "llvm/Support/Debug.h" 31 #include "llvm/Support/ErrorHandling.h" 32 #include "llvm/Support/MathExtras.h" 33 #include "llvm/Support/raw_ostream.h" 34 #include "llvm/Target/TargetFrameLowering.h" 35 #include "llvm/Target/TargetLowering.h" 36 #include "llvm/Target/TargetMachine.h" 37 #include "llvm/Target/TargetSubtargetInfo.h" 38 using namespace llvm; 39 40 #define DEBUG_TYPE "legalizedag" 41 42 namespace { 43 44 struct FloatSignAsInt; 45 46 //===----------------------------------------------------------------------===// 47 /// This takes an arbitrary SelectionDAG as input and 48 /// hacks on it until the target machine can handle it. This involves 49 /// eliminating value sizes the machine cannot handle (promoting small sizes to 50 /// large sizes or splitting up large values into small values) as well as 51 /// eliminating operations the machine cannot handle. 52 /// 53 /// This code also does a small amount of optimization and recognition of idioms 54 /// as part of its processing. For example, if a target does not support a 55 /// 'setcc' instruction efficiently, but does support 'brcc' instruction, this 56 /// will attempt merge setcc and brc instructions into brcc's. 57 /// 58 class SelectionDAGLegalize { 59 const TargetMachine &TM; 60 const TargetLowering &TLI; 61 SelectionDAG &DAG; 62 63 /// \brief The set of nodes which have already been legalized. We hold a 64 /// reference to it in order to update as necessary on node deletion. 65 SmallPtrSetImpl<SDNode *> &LegalizedNodes; 66 67 /// \brief A set of all the nodes updated during legalization. 68 SmallSetVector<SDNode *, 16> *UpdatedNodes; 69 70 EVT getSetCCResultType(EVT VT) const { 71 return TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT); 72 } 73 74 // Libcall insertion helpers. 75 76 public: 77 SelectionDAGLegalize(SelectionDAG &DAG, 78 SmallPtrSetImpl<SDNode *> &LegalizedNodes, 79 SmallSetVector<SDNode *, 16> *UpdatedNodes = nullptr) 80 : TM(DAG.getTarget()), TLI(DAG.getTargetLoweringInfo()), DAG(DAG), 81 LegalizedNodes(LegalizedNodes), UpdatedNodes(UpdatedNodes) {} 82 83 /// \brief Legalizes the given operation. 84 void LegalizeOp(SDNode *Node); 85 86 private: 87 SDValue OptimizeFloatStore(StoreSDNode *ST); 88 89 void LegalizeLoadOps(SDNode *Node); 90 void LegalizeStoreOps(SDNode *Node); 91 92 /// Some targets cannot handle a variable 93 /// insertion index for the INSERT_VECTOR_ELT instruction. In this case, it 94 /// is necessary to spill the vector being inserted into to memory, perform 95 /// the insert there, and then read the result back. 96 SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, 97 SDValue Idx, SDLoc dl); 98 SDValue ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, 99 SDValue Idx, SDLoc dl); 100 101 /// Return a vector shuffle operation which 102 /// performs the same shuffe in terms of order or result bytes, but on a type 103 /// whose vector element type is narrower than the original shuffle type. 104 /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3> 105 SDValue ShuffleWithNarrowerEltType(EVT NVT, EVT VT, SDLoc dl, 106 SDValue N1, SDValue N2, 107 ArrayRef<int> Mask) const; 108 109 bool LegalizeSetCCCondCode(EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC, 110 bool &NeedInvert, SDLoc dl); 111 112 SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned); 113 SDValue ExpandLibCall(RTLIB::Libcall LC, EVT RetVT, const SDValue *Ops, 114 unsigned NumOps, bool isSigned, SDLoc dl); 115 116 std::pair<SDValue, SDValue> ExpandChainLibCall(RTLIB::Libcall LC, 117 SDNode *Node, bool isSigned); 118 SDValue ExpandFPLibCall(SDNode *Node, RTLIB::Libcall Call_F32, 119 RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80, 120 RTLIB::Libcall Call_F128, 121 RTLIB::Libcall Call_PPCF128); 122 SDValue ExpandIntLibCall(SDNode *Node, bool isSigned, 123 RTLIB::Libcall Call_I8, 124 RTLIB::Libcall Call_I16, 125 RTLIB::Libcall Call_I32, 126 RTLIB::Libcall Call_I64, 127 RTLIB::Libcall Call_I128); 128 void ExpandDivRemLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results); 129 void ExpandSinCosLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results); 130 131 SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT, SDLoc dl); 132 SDValue ExpandBUILD_VECTOR(SDNode *Node); 133 SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node); 134 void ExpandDYNAMIC_STACKALLOC(SDNode *Node, 135 SmallVectorImpl<SDValue> &Results); 136 void getSignAsIntValue(FloatSignAsInt &State, SDLoc DL, SDValue Value) const; 137 SDValue modifySignAsInt(const FloatSignAsInt &State, SDLoc DL, 138 SDValue NewIntValue) const; 139 SDValue ExpandFCOPYSIGN(SDNode *Node) const; 140 SDValue ExpandFABS(SDNode *Node) const; 141 SDValue ExpandLegalINT_TO_FP(bool isSigned, SDValue LegalOp, EVT DestVT, 142 SDLoc dl); 143 SDValue PromoteLegalINT_TO_FP(SDValue LegalOp, EVT DestVT, bool isSigned, 144 SDLoc dl); 145 SDValue PromoteLegalFP_TO_INT(SDValue LegalOp, EVT DestVT, bool isSigned, 146 SDLoc dl); 147 148 SDValue ExpandBITREVERSE(SDValue Op, SDLoc dl); 149 SDValue ExpandBSWAP(SDValue Op, SDLoc dl); 150 SDValue ExpandBitCount(unsigned Opc, SDValue Op, SDLoc dl); 151 152 SDValue ExpandExtractFromVectorThroughStack(SDValue Op); 153 SDValue ExpandInsertToVectorThroughStack(SDValue Op); 154 SDValue ExpandVectorBuildThroughStack(SDNode* Node); 155 156 SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP); 157 SDValue ExpandConstant(ConstantSDNode *CP); 158 159 // if ExpandNode returns false, LegalizeOp falls back to ConvertNodeToLibcall 160 bool ExpandNode(SDNode *Node); 161 void ConvertNodeToLibcall(SDNode *Node); 162 void PromoteNode(SDNode *Node); 163 164 public: 165 // Node replacement helpers 166 void ReplacedNode(SDNode *N) { 167 LegalizedNodes.erase(N); 168 if (UpdatedNodes) 169 UpdatedNodes->insert(N); 170 } 171 void ReplaceNode(SDNode *Old, SDNode *New) { 172 DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG); 173 dbgs() << " with: "; New->dump(&DAG)); 174 175 assert(Old->getNumValues() == New->getNumValues() && 176 "Replacing one node with another that produces a different number " 177 "of values!"); 178 DAG.ReplaceAllUsesWith(Old, New); 179 for (unsigned i = 0, e = Old->getNumValues(); i != e; ++i) 180 DAG.TransferDbgValues(SDValue(Old, i), SDValue(New, i)); 181 if (UpdatedNodes) 182 UpdatedNodes->insert(New); 183 ReplacedNode(Old); 184 } 185 void ReplaceNode(SDValue Old, SDValue New) { 186 DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG); 187 dbgs() << " with: "; New->dump(&DAG)); 188 189 DAG.ReplaceAllUsesWith(Old, New); 190 DAG.TransferDbgValues(Old, New); 191 if (UpdatedNodes) 192 UpdatedNodes->insert(New.getNode()); 193 ReplacedNode(Old.getNode()); 194 } 195 void ReplaceNode(SDNode *Old, const SDValue *New) { 196 DEBUG(dbgs() << " ... replacing: "; Old->dump(&DAG)); 197 198 DAG.ReplaceAllUsesWith(Old, New); 199 for (unsigned i = 0, e = Old->getNumValues(); i != e; ++i) { 200 DEBUG(dbgs() << (i == 0 ? " with: " 201 : " and: "); 202 New[i]->dump(&DAG)); 203 DAG.TransferDbgValues(SDValue(Old, i), New[i]); 204 if (UpdatedNodes) 205 UpdatedNodes->insert(New[i].getNode()); 206 } 207 ReplacedNode(Old); 208 } 209 }; 210 } 211 212 /// Return a vector shuffle operation which 213 /// performs the same shuffe in terms of order or result bytes, but on a type 214 /// whose vector element type is narrower than the original shuffle type. 215 /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3> 216 SDValue 217 SelectionDAGLegalize::ShuffleWithNarrowerEltType(EVT NVT, EVT VT, SDLoc dl, 218 SDValue N1, SDValue N2, 219 ArrayRef<int> Mask) const { 220 unsigned NumMaskElts = VT.getVectorNumElements(); 221 unsigned NumDestElts = NVT.getVectorNumElements(); 222 unsigned NumEltsGrowth = NumDestElts / NumMaskElts; 223 224 assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!"); 225 226 if (NumEltsGrowth == 1) 227 return DAG.getVectorShuffle(NVT, dl, N1, N2, &Mask[0]); 228 229 SmallVector<int, 8> NewMask; 230 for (unsigned i = 0; i != NumMaskElts; ++i) { 231 int Idx = Mask[i]; 232 for (unsigned j = 0; j != NumEltsGrowth; ++j) { 233 if (Idx < 0) 234 NewMask.push_back(-1); 235 else 236 NewMask.push_back(Idx * NumEltsGrowth + j); 237 } 238 } 239 assert(NewMask.size() == NumDestElts && "Non-integer NumEltsGrowth?"); 240 assert(TLI.isShuffleMaskLegal(NewMask, NVT) && "Shuffle not legal?"); 241 return DAG.getVectorShuffle(NVT, dl, N1, N2, &NewMask[0]); 242 } 243 244 /// Expands the ConstantFP node to an integer constant or 245 /// a load from the constant pool. 246 SDValue 247 SelectionDAGLegalize::ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP) { 248 bool Extend = false; 249 SDLoc dl(CFP); 250 251 // If a FP immediate is precise when represented as a float and if the 252 // target can do an extending load from float to double, we put it into 253 // the constant pool as a float, even if it's is statically typed as a 254 // double. This shrinks FP constants and canonicalizes them for targets where 255 // an FP extending load is the same cost as a normal load (such as on the x87 256 // fp stack or PPC FP unit). 257 EVT VT = CFP->getValueType(0); 258 ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue()); 259 if (!UseCP) { 260 assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion"); 261 return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(), dl, 262 (VT == MVT::f64) ? MVT::i64 : MVT::i32); 263 } 264 265 EVT OrigVT = VT; 266 EVT SVT = VT; 267 while (SVT != MVT::f32 && SVT != MVT::f16) { 268 SVT = (MVT::SimpleValueType)(SVT.getSimpleVT().SimpleTy - 1); 269 if (ConstantFPSDNode::isValueValidForType(SVT, CFP->getValueAPF()) && 270 // Only do this if the target has a native EXTLOAD instruction from 271 // smaller type. 272 TLI.isLoadExtLegal(ISD::EXTLOAD, OrigVT, SVT) && 273 TLI.ShouldShrinkFPConstant(OrigVT)) { 274 Type *SType = SVT.getTypeForEVT(*DAG.getContext()); 275 LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType)); 276 VT = SVT; 277 Extend = true; 278 } 279 } 280 281 SDValue CPIdx = 282 DAG.getConstantPool(LLVMC, TLI.getPointerTy(DAG.getDataLayout())); 283 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); 284 if (Extend) { 285 SDValue Result = DAG.getExtLoad( 286 ISD::EXTLOAD, dl, OrigVT, DAG.getEntryNode(), CPIdx, 287 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), VT, 288 false, false, false, Alignment); 289 return Result; 290 } 291 SDValue Result = 292 DAG.getLoad(OrigVT, dl, DAG.getEntryNode(), CPIdx, 293 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), 294 false, false, false, Alignment); 295 return Result; 296 } 297 298 /// Expands the Constant node to a load from the constant pool. 299 SDValue SelectionDAGLegalize::ExpandConstant(ConstantSDNode *CP) { 300 SDLoc dl(CP); 301 EVT VT = CP->getValueType(0); 302 SDValue CPIdx = DAG.getConstantPool(CP->getConstantIntValue(), 303 TLI.getPointerTy(DAG.getDataLayout())); 304 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); 305 SDValue Result = 306 DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx, 307 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), 308 false, false, false, Alignment); 309 return Result; 310 } 311 312 /// Expands an unaligned store to 2 half-size stores. 313 static void ExpandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG, 314 const TargetLowering &TLI, 315 SelectionDAGLegalize *DAGLegalize) { 316 assert(ST->getAddressingMode() == ISD::UNINDEXED && 317 "unaligned indexed stores not implemented!"); 318 SDValue Chain = ST->getChain(); 319 SDValue Ptr = ST->getBasePtr(); 320 SDValue Val = ST->getValue(); 321 EVT VT = Val.getValueType(); 322 int Alignment = ST->getAlignment(); 323 unsigned AS = ST->getAddressSpace(); 324 325 SDLoc dl(ST); 326 if (ST->getMemoryVT().isFloatingPoint() || 327 ST->getMemoryVT().isVector()) { 328 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits()); 329 if (TLI.isTypeLegal(intVT)) { 330 // Expand to a bitconvert of the value to the integer type of the 331 // same size, then a (misaligned) int store. 332 // FIXME: Does not handle truncating floating point stores! 333 SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val); 334 Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(), 335 ST->isVolatile(), ST->isNonTemporal(), Alignment); 336 DAGLegalize->ReplaceNode(SDValue(ST, 0), Result); 337 return; 338 } 339 // Do a (aligned) store to a stack slot, then copy from the stack slot 340 // to the final destination using (unaligned) integer loads and stores. 341 EVT StoredVT = ST->getMemoryVT(); 342 MVT RegVT = 343 TLI.getRegisterType(*DAG.getContext(), 344 EVT::getIntegerVT(*DAG.getContext(), 345 StoredVT.getSizeInBits())); 346 unsigned StoredBytes = StoredVT.getSizeInBits() / 8; 347 unsigned RegBytes = RegVT.getSizeInBits() / 8; 348 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes; 349 350 // Make sure the stack slot is also aligned for the register type. 351 SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT); 352 353 // Perform the original store, only redirected to the stack slot. 354 SDValue Store = DAG.getTruncStore(Chain, dl, 355 Val, StackPtr, MachinePointerInfo(), 356 StoredVT, false, false, 0); 357 SDValue Increment = DAG.getConstant( 358 RegBytes, dl, TLI.getPointerTy(DAG.getDataLayout(), AS)); 359 SmallVector<SDValue, 8> Stores; 360 unsigned Offset = 0; 361 362 // Do all but one copies using the full register width. 363 for (unsigned i = 1; i < NumRegs; i++) { 364 // Load one integer register's worth from the stack slot. 365 SDValue Load = DAG.getLoad(RegVT, dl, Store, StackPtr, 366 MachinePointerInfo(), 367 false, false, false, 0); 368 // Store it to the final location. Remember the store. 369 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr, 370 ST->getPointerInfo().getWithOffset(Offset), 371 ST->isVolatile(), ST->isNonTemporal(), 372 MinAlign(ST->getAlignment(), Offset))); 373 // Increment the pointers. 374 Offset += RegBytes; 375 StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr, 376 Increment); 377 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); 378 } 379 380 // The last store may be partial. Do a truncating store. On big-endian 381 // machines this requires an extending load from the stack slot to ensure 382 // that the bits are in the right place. 383 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 384 8 * (StoredBytes - Offset)); 385 386 // Load from the stack slot. 387 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Store, StackPtr, 388 MachinePointerInfo(), 389 MemVT, false, false, false, 0); 390 391 Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr, 392 ST->getPointerInfo() 393 .getWithOffset(Offset), 394 MemVT, ST->isVolatile(), 395 ST->isNonTemporal(), 396 MinAlign(ST->getAlignment(), Offset), 397 ST->getAAInfo())); 398 // The order of the stores doesn't matter - say it with a TokenFactor. 399 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 400 DAGLegalize->ReplaceNode(SDValue(ST, 0), Result); 401 return; 402 } 403 assert(ST->getMemoryVT().isInteger() && 404 !ST->getMemoryVT().isVector() && 405 "Unaligned store of unknown type."); 406 // Get the half-size VT 407 EVT NewStoredVT = ST->getMemoryVT().getHalfSizedIntegerVT(*DAG.getContext()); 408 int NumBits = NewStoredVT.getSizeInBits(); 409 int IncrementSize = NumBits / 8; 410 411 // Divide the stored value in two parts. 412 SDValue ShiftAmount = 413 DAG.getConstant(NumBits, dl, TLI.getShiftAmountTy(Val.getValueType(), 414 DAG.getDataLayout())); 415 SDValue Lo = Val; 416 SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount); 417 418 // Store the two parts 419 SDValue Store1, Store2; 420 Store1 = DAG.getTruncStore(Chain, dl, 421 DAG.getDataLayout().isLittleEndian() ? Lo : Hi, 422 Ptr, ST->getPointerInfo(), NewStoredVT, 423 ST->isVolatile(), ST->isNonTemporal(), Alignment); 424 425 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 426 DAG.getConstant(IncrementSize, dl, 427 TLI.getPointerTy(DAG.getDataLayout(), AS))); 428 Alignment = MinAlign(Alignment, IncrementSize); 429 Store2 = DAG.getTruncStore( 430 Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr, 431 ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, 432 ST->isVolatile(), ST->isNonTemporal(), Alignment, ST->getAAInfo()); 433 434 SDValue Result = 435 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2); 436 DAGLegalize->ReplaceNode(SDValue(ST, 0), Result); 437 } 438 439 /// Expands an unaligned load to 2 half-size loads. 440 static void 441 ExpandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG, 442 const TargetLowering &TLI, 443 SDValue &ValResult, SDValue &ChainResult) { 444 assert(LD->getAddressingMode() == ISD::UNINDEXED && 445 "unaligned indexed loads not implemented!"); 446 SDValue Chain = LD->getChain(); 447 SDValue Ptr = LD->getBasePtr(); 448 EVT VT = LD->getValueType(0); 449 EVT LoadedVT = LD->getMemoryVT(); 450 SDLoc dl(LD); 451 if (VT.isFloatingPoint() || VT.isVector()) { 452 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits()); 453 if (TLI.isTypeLegal(intVT) && TLI.isTypeLegal(LoadedVT)) { 454 // Expand to a (misaligned) integer load of the same size, 455 // then bitconvert to floating point or vector. 456 SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, 457 LD->getMemOperand()); 458 SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad); 459 if (LoadedVT != VT) 460 Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND : 461 ISD::ANY_EXTEND, dl, VT, Result); 462 463 ValResult = Result; 464 ChainResult = newLoad.getValue(1); 465 return; 466 } 467 468 // Copy the value to a (aligned) stack slot using (unaligned) integer 469 // loads and stores, then do a (aligned) load from the stack slot. 470 MVT RegVT = TLI.getRegisterType(*DAG.getContext(), intVT); 471 unsigned LoadedBytes = LoadedVT.getSizeInBits() / 8; 472 unsigned RegBytes = RegVT.getSizeInBits() / 8; 473 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes; 474 475 // Make sure the stack slot is also aligned for the register type. 476 SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT); 477 478 SDValue Increment = 479 DAG.getConstant(RegBytes, dl, TLI.getPointerTy(DAG.getDataLayout())); 480 SmallVector<SDValue, 8> Stores; 481 SDValue StackPtr = StackBase; 482 unsigned Offset = 0; 483 484 // Do all but one copies using the full register width. 485 for (unsigned i = 1; i < NumRegs; i++) { 486 // Load one integer register's worth from the original location. 487 SDValue Load = DAG.getLoad(RegVT, dl, Chain, Ptr, 488 LD->getPointerInfo().getWithOffset(Offset), 489 LD->isVolatile(), LD->isNonTemporal(), 490 LD->isInvariant(), 491 MinAlign(LD->getAlignment(), Offset), 492 LD->getAAInfo()); 493 // Follow the load with a store to the stack slot. Remember the store. 494 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, StackPtr, 495 MachinePointerInfo(), false, false, 0)); 496 // Increment the pointers. 497 Offset += RegBytes; 498 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment); 499 StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr, 500 Increment); 501 } 502 503 // The last copy may be partial. Do an extending load. 504 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), 505 8 * (LoadedBytes - Offset)); 506 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr, 507 LD->getPointerInfo().getWithOffset(Offset), 508 MemVT, LD->isVolatile(), 509 LD->isNonTemporal(), 510 LD->isInvariant(), 511 MinAlign(LD->getAlignment(), Offset), 512 LD->getAAInfo()); 513 // Follow the load with a store to the stack slot. Remember the store. 514 // On big-endian machines this requires a truncating store to ensure 515 // that the bits end up in the right place. 516 Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, StackPtr, 517 MachinePointerInfo(), MemVT, 518 false, false, 0)); 519 520 // The order of the stores doesn't matter - say it with a TokenFactor. 521 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 522 523 // Finally, perform the original load only redirected to the stack slot. 524 Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase, 525 MachinePointerInfo(), LoadedVT, false,false, false, 526 0); 527 528 // Callers expect a MERGE_VALUES node. 529 ValResult = Load; 530 ChainResult = TF; 531 return; 532 } 533 assert(LoadedVT.isInteger() && !LoadedVT.isVector() && 534 "Unaligned load of unsupported type."); 535 536 // Compute the new VT that is half the size of the old one. This is an 537 // integer MVT. 538 unsigned NumBits = LoadedVT.getSizeInBits(); 539 EVT NewLoadedVT; 540 NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2); 541 NumBits >>= 1; 542 543 unsigned Alignment = LD->getAlignment(); 544 unsigned IncrementSize = NumBits / 8; 545 ISD::LoadExtType HiExtType = LD->getExtensionType(); 546 547 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD. 548 if (HiExtType == ISD::NON_EXTLOAD) 549 HiExtType = ISD::ZEXTLOAD; 550 551 // Load the value in two parts 552 SDValue Lo, Hi; 553 if (DAG.getDataLayout().isLittleEndian()) { 554 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(), 555 NewLoadedVT, LD->isVolatile(), 556 LD->isNonTemporal(), LD->isInvariant(), Alignment, 557 LD->getAAInfo()); 558 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 559 DAG.getConstant(IncrementSize, dl, Ptr.getValueType())); 560 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, 561 LD->getPointerInfo().getWithOffset(IncrementSize), 562 NewLoadedVT, LD->isVolatile(), 563 LD->isNonTemporal(),LD->isInvariant(), 564 MinAlign(Alignment, IncrementSize), LD->getAAInfo()); 565 } else { 566 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(), 567 NewLoadedVT, LD->isVolatile(), 568 LD->isNonTemporal(), LD->isInvariant(), Alignment, 569 LD->getAAInfo()); 570 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 571 DAG.getConstant(IncrementSize, dl, Ptr.getValueType())); 572 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, 573 LD->getPointerInfo().getWithOffset(IncrementSize), 574 NewLoadedVT, LD->isVolatile(), 575 LD->isNonTemporal(), LD->isInvariant(), 576 MinAlign(Alignment, IncrementSize), LD->getAAInfo()); 577 } 578 579 // aggregate the two parts 580 SDValue ShiftAmount = 581 DAG.getConstant(NumBits, dl, TLI.getShiftAmountTy(Hi.getValueType(), 582 DAG.getDataLayout())); 583 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount); 584 Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo); 585 586 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 587 Hi.getValue(1)); 588 589 ValResult = Result; 590 ChainResult = TF; 591 } 592 593 /// Some target cannot handle a variable insertion index for the 594 /// INSERT_VECTOR_ELT instruction. In this case, it 595 /// is necessary to spill the vector being inserted into to memory, perform 596 /// the insert there, and then read the result back. 597 SDValue SelectionDAGLegalize:: 598 PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx, 599 SDLoc dl) { 600 SDValue Tmp1 = Vec; 601 SDValue Tmp2 = Val; 602 SDValue Tmp3 = Idx; 603 604 // If the target doesn't support this, we have to spill the input vector 605 // to a temporary stack slot, update the element, then reload it. This is 606 // badness. We could also load the value into a vector register (either 607 // with a "move to register" or "extload into register" instruction, then 608 // permute it into place, if the idx is a constant and if the idx is 609 // supported by the target. 610 EVT VT = Tmp1.getValueType(); 611 EVT EltVT = VT.getVectorElementType(); 612 EVT IdxVT = Tmp3.getValueType(); 613 EVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 614 SDValue StackPtr = DAG.CreateStackTemporary(VT); 615 616 int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 617 618 // Store the vector. 619 SDValue Ch = DAG.getStore( 620 DAG.getEntryNode(), dl, Tmp1, StackPtr, 621 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI), false, 622 false, 0); 623 624 // Truncate or zero extend offset to target pointer type. 625 Tmp3 = DAG.getZExtOrTrunc(Tmp3, dl, PtrVT); 626 // Add the offset to the index. 627 unsigned EltSize = EltVT.getSizeInBits()/8; 628 Tmp3 = DAG.getNode(ISD::MUL, dl, IdxVT, Tmp3, 629 DAG.getConstant(EltSize, dl, IdxVT)); 630 SDValue StackPtr2 = DAG.getNode(ISD::ADD, dl, IdxVT, Tmp3, StackPtr); 631 // Store the scalar value. 632 Ch = DAG.getTruncStore(Ch, dl, Tmp2, StackPtr2, MachinePointerInfo(), EltVT, 633 false, false, 0); 634 // Load the updated vector. 635 return DAG.getLoad(VT, dl, Ch, StackPtr, MachinePointerInfo::getFixedStack( 636 DAG.getMachineFunction(), SPFI), 637 false, false, false, 0); 638 } 639 640 641 SDValue SelectionDAGLegalize:: 642 ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, SDValue Idx, SDLoc dl) { 643 if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Idx)) { 644 // SCALAR_TO_VECTOR requires that the type of the value being inserted 645 // match the element type of the vector being created, except for 646 // integers in which case the inserted value can be over width. 647 EVT EltVT = Vec.getValueType().getVectorElementType(); 648 if (Val.getValueType() == EltVT || 649 (EltVT.isInteger() && Val.getValueType().bitsGE(EltVT))) { 650 SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, 651 Vec.getValueType(), Val); 652 653 unsigned NumElts = Vec.getValueType().getVectorNumElements(); 654 // We generate a shuffle of InVec and ScVec, so the shuffle mask 655 // should be 0,1,2,3,4,5... with the appropriate element replaced with 656 // elt 0 of the RHS. 657 SmallVector<int, 8> ShufOps; 658 for (unsigned i = 0; i != NumElts; ++i) 659 ShufOps.push_back(i != InsertPos->getZExtValue() ? i : NumElts); 660 661 return DAG.getVectorShuffle(Vec.getValueType(), dl, Vec, ScVec, 662 &ShufOps[0]); 663 } 664 } 665 return PerformInsertVectorEltInMemory(Vec, Val, Idx, dl); 666 } 667 668 SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) { 669 // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr' 670 // FIXME: We shouldn't do this for TargetConstantFP's. 671 // FIXME: move this to the DAG Combiner! Note that we can't regress due 672 // to phase ordering between legalized code and the dag combiner. This 673 // probably means that we need to integrate dag combiner and legalizer 674 // together. 675 // We generally can't do this one for long doubles. 676 SDValue Chain = ST->getChain(); 677 SDValue Ptr = ST->getBasePtr(); 678 unsigned Alignment = ST->getAlignment(); 679 bool isVolatile = ST->isVolatile(); 680 bool isNonTemporal = ST->isNonTemporal(); 681 AAMDNodes AAInfo = ST->getAAInfo(); 682 SDLoc dl(ST); 683 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(ST->getValue())) { 684 if (CFP->getValueType(0) == MVT::f32 && 685 TLI.isTypeLegal(MVT::i32)) { 686 SDValue Con = DAG.getConstant(CFP->getValueAPF(). 687 bitcastToAPInt().zextOrTrunc(32), 688 SDLoc(CFP), MVT::i32); 689 return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(), 690 isVolatile, isNonTemporal, Alignment, AAInfo); 691 } 692 693 if (CFP->getValueType(0) == MVT::f64) { 694 // If this target supports 64-bit registers, do a single 64-bit store. 695 if (TLI.isTypeLegal(MVT::i64)) { 696 SDValue Con = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt(). 697 zextOrTrunc(64), SDLoc(CFP), MVT::i64); 698 return DAG.getStore(Chain, dl, Con, Ptr, ST->getPointerInfo(), 699 isVolatile, isNonTemporal, Alignment, AAInfo); 700 } 701 702 if (TLI.isTypeLegal(MVT::i32) && !ST->isVolatile()) { 703 // Otherwise, if the target supports 32-bit registers, use 2 32-bit 704 // stores. If the target supports neither 32- nor 64-bits, this 705 // xform is certainly not worth it. 706 const APInt &IntVal = CFP->getValueAPF().bitcastToAPInt(); 707 SDValue Lo = DAG.getConstant(IntVal.trunc(32), dl, MVT::i32); 708 SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), dl, MVT::i32); 709 if (DAG.getDataLayout().isBigEndian()) 710 std::swap(Lo, Hi); 711 712 Lo = DAG.getStore(Chain, dl, Lo, Ptr, ST->getPointerInfo(), isVolatile, 713 isNonTemporal, Alignment, AAInfo); 714 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 715 DAG.getConstant(4, dl, Ptr.getValueType())); 716 Hi = DAG.getStore(Chain, dl, Hi, Ptr, 717 ST->getPointerInfo().getWithOffset(4), 718 isVolatile, isNonTemporal, MinAlign(Alignment, 4U), 719 AAInfo); 720 721 return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi); 722 } 723 } 724 } 725 return SDValue(nullptr, 0); 726 } 727 728 void SelectionDAGLegalize::LegalizeStoreOps(SDNode *Node) { 729 StoreSDNode *ST = cast<StoreSDNode>(Node); 730 SDValue Chain = ST->getChain(); 731 SDValue Ptr = ST->getBasePtr(); 732 SDLoc dl(Node); 733 734 unsigned Alignment = ST->getAlignment(); 735 bool isVolatile = ST->isVolatile(); 736 bool isNonTemporal = ST->isNonTemporal(); 737 AAMDNodes AAInfo = ST->getAAInfo(); 738 739 if (!ST->isTruncatingStore()) { 740 if (SDNode *OptStore = OptimizeFloatStore(ST).getNode()) { 741 ReplaceNode(ST, OptStore); 742 return; 743 } 744 745 { 746 SDValue Value = ST->getValue(); 747 MVT VT = Value.getSimpleValueType(); 748 switch (TLI.getOperationAction(ISD::STORE, VT)) { 749 default: llvm_unreachable("This action is not supported yet!"); 750 case TargetLowering::Legal: { 751 // If this is an unaligned store and the target doesn't support it, 752 // expand it. 753 EVT MemVT = ST->getMemoryVT(); 754 unsigned AS = ST->getAddressSpace(); 755 unsigned Align = ST->getAlignment(); 756 const DataLayout &DL = DAG.getDataLayout(); 757 if (!TLI.allowsMemoryAccess(*DAG.getContext(), DL, MemVT, AS, Align)) 758 ExpandUnalignedStore(cast<StoreSDNode>(Node), DAG, TLI, this); 759 break; 760 } 761 case TargetLowering::Custom: { 762 SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG); 763 if (Res && Res != SDValue(Node, 0)) 764 ReplaceNode(SDValue(Node, 0), Res); 765 return; 766 } 767 case TargetLowering::Promote: { 768 MVT NVT = TLI.getTypeToPromoteTo(ISD::STORE, VT); 769 assert(NVT.getSizeInBits() == VT.getSizeInBits() && 770 "Can only promote stores to same size type"); 771 Value = DAG.getNode(ISD::BITCAST, dl, NVT, Value); 772 SDValue Result = 773 DAG.getStore(Chain, dl, Value, Ptr, 774 ST->getPointerInfo(), isVolatile, 775 isNonTemporal, Alignment, AAInfo); 776 ReplaceNode(SDValue(Node, 0), Result); 777 break; 778 } 779 } 780 return; 781 } 782 } else { 783 SDValue Value = ST->getValue(); 784 785 EVT StVT = ST->getMemoryVT(); 786 unsigned StWidth = StVT.getSizeInBits(); 787 auto &DL = DAG.getDataLayout(); 788 789 if (StWidth != StVT.getStoreSizeInBits()) { 790 // Promote to a byte-sized store with upper bits zero if not 791 // storing an integral number of bytes. For example, promote 792 // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1) 793 EVT NVT = EVT::getIntegerVT(*DAG.getContext(), 794 StVT.getStoreSizeInBits()); 795 Value = DAG.getZeroExtendInReg(Value, dl, StVT); 796 SDValue Result = 797 DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), 798 NVT, isVolatile, isNonTemporal, Alignment, AAInfo); 799 ReplaceNode(SDValue(Node, 0), Result); 800 } else if (StWidth & (StWidth - 1)) { 801 // If not storing a power-of-2 number of bits, expand as two stores. 802 assert(!StVT.isVector() && "Unsupported truncstore!"); 803 unsigned RoundWidth = 1 << Log2_32(StWidth); 804 assert(RoundWidth < StWidth); 805 unsigned ExtraWidth = StWidth - RoundWidth; 806 assert(ExtraWidth < RoundWidth); 807 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) && 808 "Store size not an integral number of bytes!"); 809 EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth); 810 EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth); 811 SDValue Lo, Hi; 812 unsigned IncrementSize; 813 814 if (DL.isLittleEndian()) { 815 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16) 816 // Store the bottom RoundWidth bits. 817 Lo = DAG.getTruncStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), 818 RoundVT, 819 isVolatile, isNonTemporal, Alignment, 820 AAInfo); 821 822 // Store the remaining ExtraWidth bits. 823 IncrementSize = RoundWidth / 8; 824 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 825 DAG.getConstant(IncrementSize, dl, 826 Ptr.getValueType())); 827 Hi = DAG.getNode( 828 ISD::SRL, dl, Value.getValueType(), Value, 829 DAG.getConstant(RoundWidth, dl, 830 TLI.getShiftAmountTy(Value.getValueType(), DL))); 831 Hi = DAG.getTruncStore(Chain, dl, Hi, Ptr, 832 ST->getPointerInfo().getWithOffset(IncrementSize), 833 ExtraVT, isVolatile, isNonTemporal, 834 MinAlign(Alignment, IncrementSize), AAInfo); 835 } else { 836 // Big endian - avoid unaligned stores. 837 // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X 838 // Store the top RoundWidth bits. 839 Hi = DAG.getNode( 840 ISD::SRL, dl, Value.getValueType(), Value, 841 DAG.getConstant(ExtraWidth, dl, 842 TLI.getShiftAmountTy(Value.getValueType(), DL))); 843 Hi = DAG.getTruncStore(Chain, dl, Hi, Ptr, ST->getPointerInfo(), 844 RoundVT, isVolatile, isNonTemporal, Alignment, 845 AAInfo); 846 847 // Store the remaining ExtraWidth bits. 848 IncrementSize = RoundWidth / 8; 849 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 850 DAG.getConstant(IncrementSize, dl, 851 Ptr.getValueType())); 852 Lo = DAG.getTruncStore(Chain, dl, Value, Ptr, 853 ST->getPointerInfo().getWithOffset(IncrementSize), 854 ExtraVT, isVolatile, isNonTemporal, 855 MinAlign(Alignment, IncrementSize), AAInfo); 856 } 857 858 // The order of the stores doesn't matter. 859 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi); 860 ReplaceNode(SDValue(Node, 0), Result); 861 } else { 862 switch (TLI.getTruncStoreAction(ST->getValue().getValueType(), StVT)) { 863 default: llvm_unreachable("This action is not supported yet!"); 864 case TargetLowering::Legal: { 865 EVT MemVT = ST->getMemoryVT(); 866 unsigned AS = ST->getAddressSpace(); 867 unsigned Align = ST->getAlignment(); 868 // If this is an unaligned store and the target doesn't support it, 869 // expand it. 870 if (!TLI.allowsMemoryAccess(*DAG.getContext(), DL, MemVT, AS, Align)) 871 ExpandUnalignedStore(cast<StoreSDNode>(Node), DAG, TLI, this); 872 break; 873 } 874 case TargetLowering::Custom: { 875 SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG); 876 if (Res && Res != SDValue(Node, 0)) 877 ReplaceNode(SDValue(Node, 0), Res); 878 return; 879 } 880 case TargetLowering::Expand: 881 assert(!StVT.isVector() && 882 "Vector Stores are handled in LegalizeVectorOps"); 883 884 // TRUNCSTORE:i16 i32 -> STORE i16 885 assert(TLI.isTypeLegal(StVT) && 886 "Do not know how to expand this store!"); 887 Value = DAG.getNode(ISD::TRUNCATE, dl, StVT, Value); 888 SDValue Result = 889 DAG.getStore(Chain, dl, Value, Ptr, ST->getPointerInfo(), 890 isVolatile, isNonTemporal, Alignment, AAInfo); 891 ReplaceNode(SDValue(Node, 0), Result); 892 break; 893 } 894 } 895 } 896 } 897 898 void SelectionDAGLegalize::LegalizeLoadOps(SDNode *Node) { 899 LoadSDNode *LD = cast<LoadSDNode>(Node); 900 SDValue Chain = LD->getChain(); // The chain. 901 SDValue Ptr = LD->getBasePtr(); // The base pointer. 902 SDValue Value; // The value returned by the load op. 903 SDLoc dl(Node); 904 905 ISD::LoadExtType ExtType = LD->getExtensionType(); 906 if (ExtType == ISD::NON_EXTLOAD) { 907 MVT VT = Node->getSimpleValueType(0); 908 SDValue RVal = SDValue(Node, 0); 909 SDValue RChain = SDValue(Node, 1); 910 911 switch (TLI.getOperationAction(Node->getOpcode(), VT)) { 912 default: llvm_unreachable("This action is not supported yet!"); 913 case TargetLowering::Legal: { 914 EVT MemVT = LD->getMemoryVT(); 915 unsigned AS = LD->getAddressSpace(); 916 unsigned Align = LD->getAlignment(); 917 const DataLayout &DL = DAG.getDataLayout(); 918 // If this is an unaligned load and the target doesn't support it, 919 // expand it. 920 if (!TLI.allowsMemoryAccess(*DAG.getContext(), DL, MemVT, AS, Align)) 921 ExpandUnalignedLoad(cast<LoadSDNode>(Node), DAG, TLI, RVal, RChain); 922 break; 923 } 924 case TargetLowering::Custom: { 925 SDValue Res = TLI.LowerOperation(RVal, DAG); 926 if (Res.getNode()) { 927 RVal = Res; 928 RChain = Res.getValue(1); 929 } 930 break; 931 } 932 case TargetLowering::Promote: { 933 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT); 934 assert(NVT.getSizeInBits() == VT.getSizeInBits() && 935 "Can only promote loads to same size type"); 936 937 SDValue Res = DAG.getLoad(NVT, dl, Chain, Ptr, LD->getMemOperand()); 938 RVal = DAG.getNode(ISD::BITCAST, dl, VT, Res); 939 RChain = Res.getValue(1); 940 break; 941 } 942 } 943 if (RChain.getNode() != Node) { 944 assert(RVal.getNode() != Node && "Load must be completely replaced"); 945 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), RVal); 946 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), RChain); 947 if (UpdatedNodes) { 948 UpdatedNodes->insert(RVal.getNode()); 949 UpdatedNodes->insert(RChain.getNode()); 950 } 951 ReplacedNode(Node); 952 } 953 return; 954 } 955 956 EVT SrcVT = LD->getMemoryVT(); 957 unsigned SrcWidth = SrcVT.getSizeInBits(); 958 unsigned Alignment = LD->getAlignment(); 959 bool isVolatile = LD->isVolatile(); 960 bool isNonTemporal = LD->isNonTemporal(); 961 bool isInvariant = LD->isInvariant(); 962 AAMDNodes AAInfo = LD->getAAInfo(); 963 964 if (SrcWidth != SrcVT.getStoreSizeInBits() && 965 // Some targets pretend to have an i1 loading operation, and actually 966 // load an i8. This trick is correct for ZEXTLOAD because the top 7 967 // bits are guaranteed to be zero; it helps the optimizers understand 968 // that these bits are zero. It is also useful for EXTLOAD, since it 969 // tells the optimizers that those bits are undefined. It would be 970 // nice to have an effective generic way of getting these benefits... 971 // Until such a way is found, don't insist on promoting i1 here. 972 (SrcVT != MVT::i1 || 973 TLI.getLoadExtAction(ExtType, Node->getValueType(0), MVT::i1) == 974 TargetLowering::Promote)) { 975 // Promote to a byte-sized load if not loading an integral number of 976 // bytes. For example, promote EXTLOAD:i20 -> EXTLOAD:i24. 977 unsigned NewWidth = SrcVT.getStoreSizeInBits(); 978 EVT NVT = EVT::getIntegerVT(*DAG.getContext(), NewWidth); 979 SDValue Ch; 980 981 // The extra bits are guaranteed to be zero, since we stored them that 982 // way. A zext load from NVT thus automatically gives zext from SrcVT. 983 984 ISD::LoadExtType NewExtType = 985 ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD; 986 987 SDValue Result = 988 DAG.getExtLoad(NewExtType, dl, Node->getValueType(0), 989 Chain, Ptr, LD->getPointerInfo(), 990 NVT, isVolatile, isNonTemporal, isInvariant, Alignment, 991 AAInfo); 992 993 Ch = Result.getValue(1); // The chain. 994 995 if (ExtType == ISD::SEXTLOAD) 996 // Having the top bits zero doesn't help when sign extending. 997 Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, 998 Result.getValueType(), 999 Result, DAG.getValueType(SrcVT)); 1000 else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType()) 1001 // All the top bits are guaranteed to be zero - inform the optimizers. 1002 Result = DAG.getNode(ISD::AssertZext, dl, 1003 Result.getValueType(), Result, 1004 DAG.getValueType(SrcVT)); 1005 1006 Value = Result; 1007 Chain = Ch; 1008 } else if (SrcWidth & (SrcWidth - 1)) { 1009 // If not loading a power-of-2 number of bits, expand as two loads. 1010 assert(!SrcVT.isVector() && "Unsupported extload!"); 1011 unsigned RoundWidth = 1 << Log2_32(SrcWidth); 1012 assert(RoundWidth < SrcWidth); 1013 unsigned ExtraWidth = SrcWidth - RoundWidth; 1014 assert(ExtraWidth < RoundWidth); 1015 assert(!(RoundWidth % 8) && !(ExtraWidth % 8) && 1016 "Load size not an integral number of bytes!"); 1017 EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth); 1018 EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth); 1019 SDValue Lo, Hi, Ch; 1020 unsigned IncrementSize; 1021 auto &DL = DAG.getDataLayout(); 1022 1023 if (DL.isLittleEndian()) { 1024 // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16) 1025 // Load the bottom RoundWidth bits. 1026 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0), 1027 Chain, Ptr, 1028 LD->getPointerInfo(), RoundVT, isVolatile, 1029 isNonTemporal, isInvariant, Alignment, AAInfo); 1030 1031 // Load the remaining ExtraWidth bits. 1032 IncrementSize = RoundWidth / 8; 1033 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 1034 DAG.getConstant(IncrementSize, dl, 1035 Ptr.getValueType())); 1036 Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr, 1037 LD->getPointerInfo().getWithOffset(IncrementSize), 1038 ExtraVT, isVolatile, isNonTemporal, isInvariant, 1039 MinAlign(Alignment, IncrementSize), AAInfo); 1040 1041 // Build a factor node to remember that this load is independent of 1042 // the other one. 1043 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 1044 Hi.getValue(1)); 1045 1046 // Move the top bits to the right place. 1047 Hi = DAG.getNode( 1048 ISD::SHL, dl, Hi.getValueType(), Hi, 1049 DAG.getConstant(RoundWidth, dl, 1050 TLI.getShiftAmountTy(Hi.getValueType(), DL))); 1051 1052 // Join the hi and lo parts. 1053 Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi); 1054 } else { 1055 // Big endian - avoid unaligned loads. 1056 // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8 1057 // Load the top RoundWidth bits. 1058 Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Chain, Ptr, 1059 LD->getPointerInfo(), RoundVT, isVolatile, 1060 isNonTemporal, isInvariant, Alignment, AAInfo); 1061 1062 // Load the remaining ExtraWidth bits. 1063 IncrementSize = RoundWidth / 8; 1064 Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, 1065 DAG.getConstant(IncrementSize, dl, 1066 Ptr.getValueType())); 1067 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, 1068 dl, Node->getValueType(0), Chain, Ptr, 1069 LD->getPointerInfo().getWithOffset(IncrementSize), 1070 ExtraVT, isVolatile, isNonTemporal, isInvariant, 1071 MinAlign(Alignment, IncrementSize), AAInfo); 1072 1073 // Build a factor node to remember that this load is independent of 1074 // the other one. 1075 Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1), 1076 Hi.getValue(1)); 1077 1078 // Move the top bits to the right place. 1079 Hi = DAG.getNode( 1080 ISD::SHL, dl, Hi.getValueType(), Hi, 1081 DAG.getConstant(ExtraWidth, dl, 1082 TLI.getShiftAmountTy(Hi.getValueType(), DL))); 1083 1084 // Join the hi and lo parts. 1085 Value = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi); 1086 } 1087 1088 Chain = Ch; 1089 } else { 1090 bool isCustom = false; 1091 switch (TLI.getLoadExtAction(ExtType, Node->getValueType(0), 1092 SrcVT.getSimpleVT())) { 1093 default: llvm_unreachable("This action is not supported yet!"); 1094 case TargetLowering::Custom: 1095 isCustom = true; 1096 // FALLTHROUGH 1097 case TargetLowering::Legal: { 1098 Value = SDValue(Node, 0); 1099 Chain = SDValue(Node, 1); 1100 1101 if (isCustom) { 1102 SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG); 1103 if (Res.getNode()) { 1104 Value = Res; 1105 Chain = Res.getValue(1); 1106 } 1107 } else { 1108 // If this is an unaligned load and the target doesn't support it, 1109 // expand it. 1110 EVT MemVT = LD->getMemoryVT(); 1111 unsigned AS = LD->getAddressSpace(); 1112 unsigned Align = LD->getAlignment(); 1113 const DataLayout &DL = DAG.getDataLayout(); 1114 if (!TLI.allowsMemoryAccess(*DAG.getContext(), DL, MemVT, AS, Align)) 1115 ExpandUnalignedLoad(cast<LoadSDNode>(Node), DAG, TLI, Value, Chain); 1116 } 1117 break; 1118 } 1119 case TargetLowering::Expand: 1120 EVT DestVT = Node->getValueType(0); 1121 if (!TLI.isLoadExtLegal(ISD::EXTLOAD, DestVT, SrcVT)) { 1122 // If the source type is not legal, see if there is a legal extload to 1123 // an intermediate type that we can then extend further. 1124 EVT LoadVT = TLI.getRegisterType(SrcVT.getSimpleVT()); 1125 if (TLI.isTypeLegal(SrcVT) || // Same as SrcVT == LoadVT? 1126 TLI.isLoadExtLegal(ExtType, LoadVT, SrcVT)) { 1127 // If we are loading a legal type, this is a non-extload followed by a 1128 // full extend. 1129 ISD::LoadExtType MidExtType = 1130 (LoadVT == SrcVT) ? ISD::NON_EXTLOAD : ExtType; 1131 1132 SDValue Load = DAG.getExtLoad(MidExtType, dl, LoadVT, Chain, Ptr, 1133 SrcVT, LD->getMemOperand()); 1134 unsigned ExtendOp = 1135 ISD::getExtForLoadExtType(SrcVT.isFloatingPoint(), ExtType); 1136 Value = DAG.getNode(ExtendOp, dl, Node->getValueType(0), Load); 1137 Chain = Load.getValue(1); 1138 break; 1139 } 1140 1141 // Handle the special case of fp16 extloads. EXTLOAD doesn't have the 1142 // normal undefined upper bits behavior to allow using an in-reg extend 1143 // with the illegal FP type, so load as an integer and do the 1144 // from-integer conversion. 1145 if (SrcVT.getScalarType() == MVT::f16) { 1146 EVT ISrcVT = SrcVT.changeTypeToInteger(); 1147 EVT IDestVT = DestVT.changeTypeToInteger(); 1148 EVT LoadVT = TLI.getRegisterType(IDestVT.getSimpleVT()); 1149 1150 SDValue Result = DAG.getExtLoad(ISD::ZEXTLOAD, dl, LoadVT, 1151 Chain, Ptr, ISrcVT, 1152 LD->getMemOperand()); 1153 Value = DAG.getNode(ISD::FP16_TO_FP, dl, DestVT, Result); 1154 Chain = Result.getValue(1); 1155 break; 1156 } 1157 } 1158 1159 assert(!SrcVT.isVector() && 1160 "Vector Loads are handled in LegalizeVectorOps"); 1161 1162 // FIXME: This does not work for vectors on most targets. Sign- 1163 // and zero-extend operations are currently folded into extending 1164 // loads, whether they are legal or not, and then we end up here 1165 // without any support for legalizing them. 1166 assert(ExtType != ISD::EXTLOAD && 1167 "EXTLOAD should always be supported!"); 1168 // Turn the unsupported load into an EXTLOAD followed by an 1169 // explicit zero/sign extend inreg. 1170 SDValue Result = DAG.getExtLoad(ISD::EXTLOAD, dl, 1171 Node->getValueType(0), 1172 Chain, Ptr, SrcVT, 1173 LD->getMemOperand()); 1174 SDValue ValRes; 1175 if (ExtType == ISD::SEXTLOAD) 1176 ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl, 1177 Result.getValueType(), 1178 Result, DAG.getValueType(SrcVT)); 1179 else 1180 ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT.getScalarType()); 1181 Value = ValRes; 1182 Chain = Result.getValue(1); 1183 break; 1184 } 1185 } 1186 1187 // Since loads produce two values, make sure to remember that we legalized 1188 // both of them. 1189 if (Chain.getNode() != Node) { 1190 assert(Value.getNode() != Node && "Load must be completely replaced"); 1191 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Value); 1192 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain); 1193 if (UpdatedNodes) { 1194 UpdatedNodes->insert(Value.getNode()); 1195 UpdatedNodes->insert(Chain.getNode()); 1196 } 1197 ReplacedNode(Node); 1198 } 1199 } 1200 1201 /// Return a legal replacement for the given operation, with all legal operands. 1202 void SelectionDAGLegalize::LegalizeOp(SDNode *Node) { 1203 DEBUG(dbgs() << "\nLegalizing: "; Node->dump(&DAG)); 1204 1205 if (Node->getOpcode() == ISD::TargetConstant) // Allow illegal target nodes. 1206 return; 1207 1208 #ifndef NDEBUG 1209 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 1210 assert((TLI.getTypeAction(*DAG.getContext(), Node->getValueType(i)) == 1211 TargetLowering::TypeLegal || 1212 TLI.isTypeLegal(Node->getValueType(i))) && 1213 "Unexpected illegal type!"); 1214 1215 for (const SDValue &Op : Node->op_values()) 1216 assert((TLI.getTypeAction(*DAG.getContext(), Op.getValueType()) == 1217 TargetLowering::TypeLegal || 1218 TLI.isTypeLegal(Op.getValueType()) || 1219 Op.getOpcode() == ISD::TargetConstant) && 1220 "Unexpected illegal type!"); 1221 #endif 1222 1223 // Figure out the correct action; the way to query this varies by opcode 1224 TargetLowering::LegalizeAction Action = TargetLowering::Legal; 1225 bool SimpleFinishLegalizing = true; 1226 switch (Node->getOpcode()) { 1227 case ISD::INTRINSIC_W_CHAIN: 1228 case ISD::INTRINSIC_WO_CHAIN: 1229 case ISD::INTRINSIC_VOID: 1230 case ISD::STACKSAVE: 1231 Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other); 1232 break; 1233 case ISD::GET_DYNAMIC_AREA_OFFSET: 1234 Action = TLI.getOperationAction(Node->getOpcode(), 1235 Node->getValueType(0)); 1236 break; 1237 case ISD::VAARG: 1238 Action = TLI.getOperationAction(Node->getOpcode(), 1239 Node->getValueType(0)); 1240 if (Action != TargetLowering::Promote) 1241 Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other); 1242 break; 1243 case ISD::FP_TO_FP16: 1244 case ISD::SINT_TO_FP: 1245 case ISD::UINT_TO_FP: 1246 case ISD::EXTRACT_VECTOR_ELT: 1247 Action = TLI.getOperationAction(Node->getOpcode(), 1248 Node->getOperand(0).getValueType()); 1249 break; 1250 case ISD::FP_ROUND_INREG: 1251 case ISD::SIGN_EXTEND_INREG: { 1252 EVT InnerType = cast<VTSDNode>(Node->getOperand(1))->getVT(); 1253 Action = TLI.getOperationAction(Node->getOpcode(), InnerType); 1254 break; 1255 } 1256 case ISD::ATOMIC_STORE: { 1257 Action = TLI.getOperationAction(Node->getOpcode(), 1258 Node->getOperand(2).getValueType()); 1259 break; 1260 } 1261 case ISD::SELECT_CC: 1262 case ISD::SETCC: 1263 case ISD::BR_CC: { 1264 unsigned CCOperand = Node->getOpcode() == ISD::SELECT_CC ? 4 : 1265 Node->getOpcode() == ISD::SETCC ? 2 : 1266 Node->getOpcode() == ISD::SETCCE ? 3 : 1; 1267 unsigned CompareOperand = Node->getOpcode() == ISD::BR_CC ? 2 : 0; 1268 MVT OpVT = Node->getOperand(CompareOperand).getSimpleValueType(); 1269 ISD::CondCode CCCode = 1270 cast<CondCodeSDNode>(Node->getOperand(CCOperand))->get(); 1271 Action = TLI.getCondCodeAction(CCCode, OpVT); 1272 if (Action == TargetLowering::Legal) { 1273 if (Node->getOpcode() == ISD::SELECT_CC) 1274 Action = TLI.getOperationAction(Node->getOpcode(), 1275 Node->getValueType(0)); 1276 else 1277 Action = TLI.getOperationAction(Node->getOpcode(), OpVT); 1278 } 1279 break; 1280 } 1281 case ISD::LOAD: 1282 case ISD::STORE: 1283 // FIXME: Model these properly. LOAD and STORE are complicated, and 1284 // STORE expects the unlegalized operand in some cases. 1285 SimpleFinishLegalizing = false; 1286 break; 1287 case ISD::CALLSEQ_START: 1288 case ISD::CALLSEQ_END: 1289 // FIXME: This shouldn't be necessary. These nodes have special properties 1290 // dealing with the recursive nature of legalization. Removing this 1291 // special case should be done as part of making LegalizeDAG non-recursive. 1292 SimpleFinishLegalizing = false; 1293 break; 1294 case ISD::EXTRACT_ELEMENT: 1295 case ISD::FLT_ROUNDS_: 1296 case ISD::FPOWI: 1297 case ISD::MERGE_VALUES: 1298 case ISD::EH_RETURN: 1299 case ISD::FRAME_TO_ARGS_OFFSET: 1300 case ISD::EH_SJLJ_SETJMP: 1301 case ISD::EH_SJLJ_LONGJMP: 1302 case ISD::EH_SJLJ_SETUP_DISPATCH: 1303 // These operations lie about being legal: when they claim to be legal, 1304 // they should actually be expanded. 1305 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1306 if (Action == TargetLowering::Legal) 1307 Action = TargetLowering::Expand; 1308 break; 1309 case ISD::INIT_TRAMPOLINE: 1310 case ISD::ADJUST_TRAMPOLINE: 1311 case ISD::FRAMEADDR: 1312 case ISD::RETURNADDR: 1313 // These operations lie about being legal: when they claim to be legal, 1314 // they should actually be custom-lowered. 1315 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1316 if (Action == TargetLowering::Legal) 1317 Action = TargetLowering::Custom; 1318 break; 1319 case ISD::READCYCLECOUNTER: 1320 // READCYCLECOUNTER returns an i64, even if type legalization might have 1321 // expanded that to several smaller types. 1322 Action = TLI.getOperationAction(Node->getOpcode(), MVT::i64); 1323 break; 1324 case ISD::READ_REGISTER: 1325 case ISD::WRITE_REGISTER: 1326 // Named register is legal in the DAG, but blocked by register name 1327 // selection if not implemented by target (to chose the correct register) 1328 // They'll be converted to Copy(To/From)Reg. 1329 Action = TargetLowering::Legal; 1330 break; 1331 case ISD::DEBUGTRAP: 1332 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1333 if (Action == TargetLowering::Expand) { 1334 // replace ISD::DEBUGTRAP with ISD::TRAP 1335 SDValue NewVal; 1336 NewVal = DAG.getNode(ISD::TRAP, SDLoc(Node), Node->getVTList(), 1337 Node->getOperand(0)); 1338 ReplaceNode(Node, NewVal.getNode()); 1339 LegalizeOp(NewVal.getNode()); 1340 return; 1341 } 1342 break; 1343 1344 default: 1345 if (Node->getOpcode() >= ISD::BUILTIN_OP_END) { 1346 Action = TargetLowering::Legal; 1347 } else { 1348 Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0)); 1349 } 1350 break; 1351 } 1352 1353 if (SimpleFinishLegalizing) { 1354 SDNode *NewNode = Node; 1355 switch (Node->getOpcode()) { 1356 default: break; 1357 case ISD::SHL: 1358 case ISD::SRL: 1359 case ISD::SRA: 1360 case ISD::ROTL: 1361 case ISD::ROTR: 1362 // Legalizing shifts/rotates requires adjusting the shift amount 1363 // to the appropriate width. 1364 if (!Node->getOperand(1).getValueType().isVector()) { 1365 SDValue SAO = 1366 DAG.getShiftAmountOperand(Node->getOperand(0).getValueType(), 1367 Node->getOperand(1)); 1368 HandleSDNode Handle(SAO); 1369 LegalizeOp(SAO.getNode()); 1370 NewNode = DAG.UpdateNodeOperands(Node, Node->getOperand(0), 1371 Handle.getValue()); 1372 } 1373 break; 1374 case ISD::SRL_PARTS: 1375 case ISD::SRA_PARTS: 1376 case ISD::SHL_PARTS: 1377 // Legalizing shifts/rotates requires adjusting the shift amount 1378 // to the appropriate width. 1379 if (!Node->getOperand(2).getValueType().isVector()) { 1380 SDValue SAO = 1381 DAG.getShiftAmountOperand(Node->getOperand(0).getValueType(), 1382 Node->getOperand(2)); 1383 HandleSDNode Handle(SAO); 1384 LegalizeOp(SAO.getNode()); 1385 NewNode = DAG.UpdateNodeOperands(Node, Node->getOperand(0), 1386 Node->getOperand(1), 1387 Handle.getValue()); 1388 } 1389 break; 1390 } 1391 1392 if (NewNode != Node) { 1393 ReplaceNode(Node, NewNode); 1394 Node = NewNode; 1395 } 1396 switch (Action) { 1397 case TargetLowering::Legal: 1398 return; 1399 case TargetLowering::Custom: { 1400 // FIXME: The handling for custom lowering with multiple results is 1401 // a complete mess. 1402 SDValue Res = TLI.LowerOperation(SDValue(Node, 0), DAG); 1403 if (Res.getNode()) { 1404 if (!(Res.getNode() != Node || Res.getResNo() != 0)) 1405 return; 1406 1407 if (Node->getNumValues() == 1) { 1408 // We can just directly replace this node with the lowered value. 1409 ReplaceNode(SDValue(Node, 0), Res); 1410 return; 1411 } 1412 1413 SmallVector<SDValue, 8> ResultVals; 1414 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) 1415 ResultVals.push_back(Res.getValue(i)); 1416 ReplaceNode(Node, ResultVals.data()); 1417 return; 1418 } 1419 } 1420 // FALL THROUGH 1421 case TargetLowering::Expand: 1422 if (ExpandNode(Node)) 1423 return; 1424 // FALL THROUGH 1425 case TargetLowering::LibCall: 1426 ConvertNodeToLibcall(Node); 1427 return; 1428 case TargetLowering::Promote: 1429 PromoteNode(Node); 1430 return; 1431 } 1432 } 1433 1434 switch (Node->getOpcode()) { 1435 default: 1436 #ifndef NDEBUG 1437 dbgs() << "NODE: "; 1438 Node->dump( &DAG); 1439 dbgs() << "\n"; 1440 #endif 1441 llvm_unreachable("Do not know how to legalize this operator!"); 1442 1443 case ISD::CALLSEQ_START: 1444 case ISD::CALLSEQ_END: 1445 break; 1446 case ISD::LOAD: { 1447 return LegalizeLoadOps(Node); 1448 } 1449 case ISD::STORE: { 1450 return LegalizeStoreOps(Node); 1451 } 1452 } 1453 } 1454 1455 SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) { 1456 SDValue Vec = Op.getOperand(0); 1457 SDValue Idx = Op.getOperand(1); 1458 SDLoc dl(Op); 1459 1460 // Before we generate a new store to a temporary stack slot, see if there is 1461 // already one that we can use. There often is because when we scalarize 1462 // vector operations (using SelectionDAG::UnrollVectorOp for example) a whole 1463 // series of EXTRACT_VECTOR_ELT nodes are generated, one for each element in 1464 // the vector. If all are expanded here, we don't want one store per vector 1465 // element. 1466 1467 // Caches for hasPredecessorHelper 1468 SmallPtrSet<const SDNode *, 32> Visited; 1469 SmallVector<const SDNode *, 16> Worklist; 1470 1471 SDValue StackPtr, Ch; 1472 for (SDNode::use_iterator UI = Vec.getNode()->use_begin(), 1473 UE = Vec.getNode()->use_end(); UI != UE; ++UI) { 1474 SDNode *User = *UI; 1475 if (StoreSDNode *ST = dyn_cast<StoreSDNode>(User)) { 1476 if (ST->isIndexed() || ST->isTruncatingStore() || 1477 ST->getValue() != Vec) 1478 continue; 1479 1480 // Make sure that nothing else could have stored into the destination of 1481 // this store. 1482 if (!ST->getChain().reachesChainWithoutSideEffects(DAG.getEntryNode())) 1483 continue; 1484 1485 // If the index is dependent on the store we will introduce a cycle when 1486 // creating the load (the load uses the index, and by replacing the chain 1487 // we will make the index dependent on the load). 1488 if (Idx.getNode()->hasPredecessorHelper(ST, Visited, Worklist)) 1489 continue; 1490 1491 StackPtr = ST->getBasePtr(); 1492 Ch = SDValue(ST, 0); 1493 break; 1494 } 1495 } 1496 1497 if (!Ch.getNode()) { 1498 // Store the value to a temporary stack slot, then LOAD the returned part. 1499 StackPtr = DAG.CreateStackTemporary(Vec.getValueType()); 1500 Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, 1501 MachinePointerInfo(), false, false, 0); 1502 } 1503 1504 // Add the offset to the index. 1505 unsigned EltSize = 1506 Vec.getValueType().getVectorElementType().getSizeInBits()/8; 1507 Idx = DAG.getNode(ISD::MUL, dl, Idx.getValueType(), Idx, 1508 DAG.getConstant(EltSize, SDLoc(Vec), Idx.getValueType())); 1509 1510 Idx = DAG.getZExtOrTrunc(Idx, dl, TLI.getPointerTy(DAG.getDataLayout())); 1511 StackPtr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx, StackPtr); 1512 1513 SDValue NewLoad; 1514 1515 if (Op.getValueType().isVector()) 1516 NewLoad = DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, 1517 MachinePointerInfo(), false, false, false, 0); 1518 else 1519 NewLoad = DAG.getExtLoad( 1520 ISD::EXTLOAD, dl, Op.getValueType(), Ch, StackPtr, MachinePointerInfo(), 1521 Vec.getValueType().getVectorElementType(), false, false, false, 0); 1522 1523 // Replace the chain going out of the store, by the one out of the load. 1524 DAG.ReplaceAllUsesOfValueWith(Ch, SDValue(NewLoad.getNode(), 1)); 1525 1526 // We introduced a cycle though, so update the loads operands, making sure 1527 // to use the original store's chain as an incoming chain. 1528 SmallVector<SDValue, 6> NewLoadOperands(NewLoad->op_begin(), 1529 NewLoad->op_end()); 1530 NewLoadOperands[0] = Ch; 1531 NewLoad = 1532 SDValue(DAG.UpdateNodeOperands(NewLoad.getNode(), NewLoadOperands), 0); 1533 return NewLoad; 1534 } 1535 1536 SDValue SelectionDAGLegalize::ExpandInsertToVectorThroughStack(SDValue Op) { 1537 assert(Op.getValueType().isVector() && "Non-vector insert subvector!"); 1538 1539 SDValue Vec = Op.getOperand(0); 1540 SDValue Part = Op.getOperand(1); 1541 SDValue Idx = Op.getOperand(2); 1542 SDLoc dl(Op); 1543 1544 // Store the value to a temporary stack slot, then LOAD the returned part. 1545 1546 SDValue StackPtr = DAG.CreateStackTemporary(Vec.getValueType()); 1547 int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 1548 MachinePointerInfo PtrInfo = 1549 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 1550 1551 // First store the whole vector. 1552 SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, PtrInfo, 1553 false, false, 0); 1554 1555 // Then store the inserted part. 1556 1557 // Add the offset to the index. 1558 unsigned EltSize = 1559 Vec.getValueType().getVectorElementType().getSizeInBits()/8; 1560 1561 Idx = DAG.getNode(ISD::MUL, dl, Idx.getValueType(), Idx, 1562 DAG.getConstant(EltSize, SDLoc(Vec), Idx.getValueType())); 1563 Idx = DAG.getZExtOrTrunc(Idx, dl, TLI.getPointerTy(DAG.getDataLayout())); 1564 1565 SDValue SubStackPtr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx, 1566 StackPtr); 1567 1568 // Store the subvector. 1569 Ch = DAG.getStore(Ch, dl, Part, SubStackPtr, 1570 MachinePointerInfo(), false, false, 0); 1571 1572 // Finally, load the updated vector. 1573 return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, PtrInfo, 1574 false, false, false, 0); 1575 } 1576 1577 SDValue SelectionDAGLegalize::ExpandVectorBuildThroughStack(SDNode* Node) { 1578 // We can't handle this case efficiently. Allocate a sufficiently 1579 // aligned object on the stack, store each element into it, then load 1580 // the result as a vector. 1581 // Create the stack frame object. 1582 EVT VT = Node->getValueType(0); 1583 EVT EltVT = VT.getVectorElementType(); 1584 SDLoc dl(Node); 1585 SDValue FIPtr = DAG.CreateStackTemporary(VT); 1586 int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex(); 1587 MachinePointerInfo PtrInfo = 1588 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI); 1589 1590 // Emit a store of each element to the stack slot. 1591 SmallVector<SDValue, 8> Stores; 1592 unsigned TypeByteSize = EltVT.getSizeInBits() / 8; 1593 // Store (in the right endianness) the elements to memory. 1594 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) { 1595 // Ignore undef elements. 1596 if (Node->getOperand(i).getOpcode() == ISD::UNDEF) continue; 1597 1598 unsigned Offset = TypeByteSize*i; 1599 1600 SDValue Idx = DAG.getConstant(Offset, dl, FIPtr.getValueType()); 1601 Idx = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, Idx); 1602 1603 // If the destination vector element type is narrower than the source 1604 // element type, only store the bits necessary. 1605 if (EltVT.bitsLT(Node->getOperand(i).getValueType().getScalarType())) { 1606 Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl, 1607 Node->getOperand(i), Idx, 1608 PtrInfo.getWithOffset(Offset), 1609 EltVT, false, false, 0)); 1610 } else 1611 Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl, 1612 Node->getOperand(i), Idx, 1613 PtrInfo.getWithOffset(Offset), 1614 false, false, 0)); 1615 } 1616 1617 SDValue StoreChain; 1618 if (!Stores.empty()) // Not all undef elements? 1619 StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores); 1620 else 1621 StoreChain = DAG.getEntryNode(); 1622 1623 // Result is a load from the stack slot. 1624 return DAG.getLoad(VT, dl, StoreChain, FIPtr, PtrInfo, 1625 false, false, false, 0); 1626 } 1627 1628 namespace { 1629 /// Keeps track of state when getting the sign of a floating-point value as an 1630 /// integer. 1631 struct FloatSignAsInt { 1632 EVT FloatVT; 1633 SDValue Chain; 1634 SDValue FloatPtr; 1635 SDValue IntPtr; 1636 MachinePointerInfo IntPointerInfo; 1637 MachinePointerInfo FloatPointerInfo; 1638 SDValue IntValue; 1639 APInt SignMask; 1640 }; 1641 } 1642 1643 /// Bitcast a floating-point value to an integer value. Only bitcast the part 1644 /// containing the sign bit if the target has no integer value capable of 1645 /// holding all bits of the floating-point value. 1646 void SelectionDAGLegalize::getSignAsIntValue(FloatSignAsInt &State, 1647 SDLoc DL, SDValue Value) const { 1648 EVT FloatVT = Value.getValueType(); 1649 unsigned NumBits = FloatVT.getSizeInBits(); 1650 State.FloatVT = FloatVT; 1651 EVT IVT = EVT::getIntegerVT(*DAG.getContext(), NumBits); 1652 // Convert to an integer of the same size. 1653 if (TLI.isTypeLegal(IVT)) { 1654 State.IntValue = DAG.getNode(ISD::BITCAST, DL, IVT, Value); 1655 State.SignMask = APInt::getSignBit(NumBits); 1656 return; 1657 } 1658 1659 auto &DataLayout = DAG.getDataLayout(); 1660 // Store the float to memory, then load the sign part out as an integer. 1661 MVT LoadTy = TLI.getRegisterType(*DAG.getContext(), MVT::i8); 1662 // First create a temporary that is aligned for both the load and store. 1663 SDValue StackPtr = DAG.CreateStackTemporary(FloatVT, LoadTy); 1664 int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex(); 1665 // Then store the float to it. 1666 State.FloatPtr = StackPtr; 1667 MachineFunction &MF = DAG.getMachineFunction(); 1668 State.FloatPointerInfo = MachinePointerInfo::getFixedStack(MF, FI); 1669 State.Chain = DAG.getStore(DAG.getEntryNode(), DL, Value, State.FloatPtr, 1670 State.FloatPointerInfo, false, false, 0); 1671 1672 SDValue IntPtr; 1673 if (DataLayout.isBigEndian()) { 1674 assert(FloatVT.isByteSized() && "Unsupported floating point type!"); 1675 // Load out a legal integer with the same sign bit as the float. 1676 IntPtr = StackPtr; 1677 State.IntPointerInfo = State.FloatPointerInfo; 1678 } else { 1679 // Advance the pointer so that the loaded byte will contain the sign bit. 1680 unsigned ByteOffset = (FloatVT.getSizeInBits() / 8) - 1; 1681 IntPtr = DAG.getNode(ISD::ADD, DL, StackPtr.getValueType(), StackPtr, 1682 DAG.getConstant(ByteOffset, DL, StackPtr.getValueType())); 1683 State.IntPointerInfo = MachinePointerInfo::getFixedStack(MF, FI, 1684 ByteOffset); 1685 } 1686 1687 State.IntPtr = IntPtr; 1688 State.IntValue = DAG.getExtLoad(ISD::EXTLOAD, DL, LoadTy, State.Chain, 1689 IntPtr, State.IntPointerInfo, MVT::i8, 1690 false, false, false, 0); 1691 State.SignMask = APInt::getOneBitSet(LoadTy.getSizeInBits(), 7); 1692 } 1693 1694 /// Replace the integer value produced by getSignAsIntValue() with a new value 1695 /// and cast the result back to a floating-point type. 1696 SDValue SelectionDAGLegalize::modifySignAsInt(const FloatSignAsInt &State, 1697 SDLoc DL, SDValue NewIntValue) const { 1698 if (!State.Chain) 1699 return DAG.getNode(ISD::BITCAST, DL, State.FloatVT, NewIntValue); 1700 1701 // Override the part containing the sign bit in the value stored on the stack. 1702 SDValue Chain = DAG.getTruncStore(State.Chain, DL, NewIntValue, State.IntPtr, 1703 State.IntPointerInfo, MVT::i8, false, false, 1704 0); 1705 return DAG.getLoad(State.FloatVT, DL, Chain, State.FloatPtr, 1706 State.FloatPointerInfo, false, false, false, 0); 1707 } 1708 1709 SDValue SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode *Node) const { 1710 SDLoc DL(Node); 1711 SDValue Mag = Node->getOperand(0); 1712 SDValue Sign = Node->getOperand(1); 1713 1714 // Get sign bit into an integer value. 1715 FloatSignAsInt SignAsInt; 1716 getSignAsIntValue(SignAsInt, DL, Sign); 1717 1718 EVT IntVT = SignAsInt.IntValue.getValueType(); 1719 SDValue SignMask = DAG.getConstant(SignAsInt.SignMask, DL, IntVT); 1720 SDValue SignBit = DAG.getNode(ISD::AND, DL, IntVT, SignAsInt.IntValue, 1721 SignMask); 1722 1723 // If FABS is legal transform FCOPYSIGN(x, y) => sign(x) ? -FABS(x) : FABS(X) 1724 EVT FloatVT = Mag.getValueType(); 1725 if (TLI.isOperationLegalOrCustom(ISD::FABS, FloatVT) && 1726 TLI.isOperationLegalOrCustom(ISD::FNEG, FloatVT)) { 1727 SDValue AbsValue = DAG.getNode(ISD::FABS, DL, FloatVT, Mag); 1728 SDValue NegValue = DAG.getNode(ISD::FNEG, DL, FloatVT, AbsValue); 1729 SDValue Cond = DAG.getSetCC(DL, getSetCCResultType(IntVT), SignBit, 1730 DAG.getConstant(0, DL, IntVT), ISD::SETNE); 1731 return DAG.getSelect(DL, FloatVT, Cond, NegValue, AbsValue); 1732 } 1733 1734 // Transform values to integer, copy the sign bit and transform back. 1735 FloatSignAsInt MagAsInt; 1736 getSignAsIntValue(MagAsInt, DL, Mag); 1737 assert(SignAsInt.SignMask == MagAsInt.SignMask); 1738 SDValue ClearSignMask = DAG.getConstant(~SignAsInt.SignMask, DL, IntVT); 1739 SDValue ClearedSign = DAG.getNode(ISD::AND, DL, IntVT, MagAsInt.IntValue, 1740 ClearSignMask); 1741 SDValue CopiedSign = DAG.getNode(ISD::OR, DL, IntVT, ClearedSign, SignBit); 1742 1743 return modifySignAsInt(MagAsInt, DL, CopiedSign); 1744 } 1745 1746 SDValue SelectionDAGLegalize::ExpandFABS(SDNode *Node) const { 1747 SDLoc DL(Node); 1748 SDValue Value = Node->getOperand(0); 1749 1750 // Transform FABS(x) => FCOPYSIGN(x, 0.0) if FCOPYSIGN is legal. 1751 EVT FloatVT = Value.getValueType(); 1752 if (TLI.isOperationLegalOrCustom(ISD::FCOPYSIGN, FloatVT)) { 1753 SDValue Zero = DAG.getConstantFP(0.0, DL, FloatVT); 1754 return DAG.getNode(ISD::FCOPYSIGN, DL, FloatVT, Value, Zero); 1755 } 1756 1757 // Transform value to integer, clear the sign bit and transform back. 1758 FloatSignAsInt ValueAsInt; 1759 getSignAsIntValue(ValueAsInt, DL, Value); 1760 EVT IntVT = ValueAsInt.IntValue.getValueType(); 1761 SDValue ClearSignMask = DAG.getConstant(~ValueAsInt.SignMask, DL, IntVT); 1762 SDValue ClearedSign = DAG.getNode(ISD::AND, DL, IntVT, ValueAsInt.IntValue, 1763 ClearSignMask); 1764 return modifySignAsInt(ValueAsInt, DL, ClearedSign); 1765 } 1766 1767 void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node, 1768 SmallVectorImpl<SDValue> &Results) { 1769 unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore(); 1770 assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and" 1771 " not tell us which reg is the stack pointer!"); 1772 SDLoc dl(Node); 1773 EVT VT = Node->getValueType(0); 1774 SDValue Tmp1 = SDValue(Node, 0); 1775 SDValue Tmp2 = SDValue(Node, 1); 1776 SDValue Tmp3 = Node->getOperand(2); 1777 SDValue Chain = Tmp1.getOperand(0); 1778 1779 // Chain the dynamic stack allocation so that it doesn't modify the stack 1780 // pointer when other instructions are using the stack. 1781 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, dl, true), dl); 1782 1783 SDValue Size = Tmp2.getOperand(1); 1784 SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT); 1785 Chain = SP.getValue(1); 1786 unsigned Align = cast<ConstantSDNode>(Tmp3)->getZExtValue(); 1787 unsigned StackAlign = 1788 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 1789 Tmp1 = DAG.getNode(ISD::SUB, dl, VT, SP, Size); // Value 1790 if (Align > StackAlign) 1791 Tmp1 = DAG.getNode(ISD::AND, dl, VT, Tmp1, 1792 DAG.getConstant(-(uint64_t)Align, dl, VT)); 1793 Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1); // Output chain 1794 1795 Tmp2 = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(0, dl, true), 1796 DAG.getIntPtrConstant(0, dl, true), SDValue(), dl); 1797 1798 Results.push_back(Tmp1); 1799 Results.push_back(Tmp2); 1800 } 1801 1802 /// Legalize a SETCC with given LHS and RHS and condition code CC on the current 1803 /// target. 1804 /// 1805 /// If the SETCC has been legalized using AND / OR, then the legalized node 1806 /// will be stored in LHS. RHS and CC will be set to SDValue(). NeedInvert 1807 /// will be set to false. 1808 /// 1809 /// If the SETCC has been legalized by using getSetCCSwappedOperands(), 1810 /// then the values of LHS and RHS will be swapped, CC will be set to the 1811 /// new condition, and NeedInvert will be set to false. 1812 /// 1813 /// If the SETCC has been legalized using the inverse condcode, then LHS and 1814 /// RHS will be unchanged, CC will set to the inverted condcode, and NeedInvert 1815 /// will be set to true. The caller must invert the result of the SETCC with 1816 /// SelectionDAG::getLogicalNOT() or take equivalent action to swap the effect 1817 /// of a true/false result. 1818 /// 1819 /// \returns true if the SetCC has been legalized, false if it hasn't. 1820 bool SelectionDAGLegalize::LegalizeSetCCCondCode(EVT VT, 1821 SDValue &LHS, SDValue &RHS, 1822 SDValue &CC, 1823 bool &NeedInvert, 1824 SDLoc dl) { 1825 MVT OpVT = LHS.getSimpleValueType(); 1826 ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get(); 1827 NeedInvert = false; 1828 switch (TLI.getCondCodeAction(CCCode, OpVT)) { 1829 default: llvm_unreachable("Unknown condition code action!"); 1830 case TargetLowering::Legal: 1831 // Nothing to do. 1832 break; 1833 case TargetLowering::Expand: { 1834 ISD::CondCode InvCC = ISD::getSetCCSwappedOperands(CCCode); 1835 if (TLI.isCondCodeLegal(InvCC, OpVT)) { 1836 std::swap(LHS, RHS); 1837 CC = DAG.getCondCode(InvCC); 1838 return true; 1839 } 1840 ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID; 1841 unsigned Opc = 0; 1842 switch (CCCode) { 1843 default: llvm_unreachable("Don't know how to expand this condition!"); 1844 case ISD::SETO: 1845 assert(TLI.getCondCodeAction(ISD::SETOEQ, OpVT) 1846 == TargetLowering::Legal 1847 && "If SETO is expanded, SETOEQ must be legal!"); 1848 CC1 = ISD::SETOEQ; CC2 = ISD::SETOEQ; Opc = ISD::AND; break; 1849 case ISD::SETUO: 1850 assert(TLI.getCondCodeAction(ISD::SETUNE, OpVT) 1851 == TargetLowering::Legal 1852 && "If SETUO is expanded, SETUNE must be legal!"); 1853 CC1 = ISD::SETUNE; CC2 = ISD::SETUNE; Opc = ISD::OR; break; 1854 case ISD::SETOEQ: 1855 case ISD::SETOGT: 1856 case ISD::SETOGE: 1857 case ISD::SETOLT: 1858 case ISD::SETOLE: 1859 case ISD::SETONE: 1860 case ISD::SETUEQ: 1861 case ISD::SETUNE: 1862 case ISD::SETUGT: 1863 case ISD::SETUGE: 1864 case ISD::SETULT: 1865 case ISD::SETULE: 1866 // If we are floating point, assign and break, otherwise fall through. 1867 if (!OpVT.isInteger()) { 1868 // We can use the 4th bit to tell if we are the unordered 1869 // or ordered version of the opcode. 1870 CC2 = ((unsigned)CCCode & 0x8U) ? ISD::SETUO : ISD::SETO; 1871 Opc = ((unsigned)CCCode & 0x8U) ? ISD::OR : ISD::AND; 1872 CC1 = (ISD::CondCode)(((int)CCCode & 0x7) | 0x10); 1873 break; 1874 } 1875 // Fallthrough if we are unsigned integer. 1876 case ISD::SETLE: 1877 case ISD::SETGT: 1878 case ISD::SETGE: 1879 case ISD::SETLT: 1880 // We only support using the inverted operation, which is computed above 1881 // and not a different manner of supporting expanding these cases. 1882 llvm_unreachable("Don't know how to expand this condition!"); 1883 case ISD::SETNE: 1884 case ISD::SETEQ: 1885 // Try inverting the result of the inverse condition. 1886 InvCC = CCCode == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ; 1887 if (TLI.isCondCodeLegal(InvCC, OpVT)) { 1888 CC = DAG.getCondCode(InvCC); 1889 NeedInvert = true; 1890 return true; 1891 } 1892 // If inverting the condition didn't work then we have no means to expand 1893 // the condition. 1894 llvm_unreachable("Don't know how to expand this condition!"); 1895 } 1896 1897 SDValue SetCC1, SetCC2; 1898 if (CCCode != ISD::SETO && CCCode != ISD::SETUO) { 1899 // If we aren't the ordered or unorder operation, 1900 // then the pattern is (LHS CC1 RHS) Opc (LHS CC2 RHS). 1901 SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1); 1902 SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2); 1903 } else { 1904 // Otherwise, the pattern is (LHS CC1 LHS) Opc (RHS CC2 RHS) 1905 SetCC1 = DAG.getSetCC(dl, VT, LHS, LHS, CC1); 1906 SetCC2 = DAG.getSetCC(dl, VT, RHS, RHS, CC2); 1907 } 1908 LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2); 1909 RHS = SDValue(); 1910 CC = SDValue(); 1911 return true; 1912 } 1913 } 1914 return false; 1915 } 1916 1917 /// Emit a store/load combination to the stack. This stores 1918 /// SrcOp to a stack slot of type SlotVT, truncating it if needed. It then does 1919 /// a load from the stack slot to DestVT, extending it if needed. 1920 /// The resultant code need not be legal. 1921 SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp, 1922 EVT SlotVT, 1923 EVT DestVT, 1924 SDLoc dl) { 1925 // Create the stack frame object. 1926 unsigned SrcAlign = DAG.getDataLayout().getPrefTypeAlignment( 1927 SrcOp.getValueType().getTypeForEVT(*DAG.getContext())); 1928 SDValue FIPtr = DAG.CreateStackTemporary(SlotVT, SrcAlign); 1929 1930 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr); 1931 int SPFI = StackPtrFI->getIndex(); 1932 MachinePointerInfo PtrInfo = 1933 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI); 1934 1935 unsigned SrcSize = SrcOp.getValueType().getSizeInBits(); 1936 unsigned SlotSize = SlotVT.getSizeInBits(); 1937 unsigned DestSize = DestVT.getSizeInBits(); 1938 Type *DestType = DestVT.getTypeForEVT(*DAG.getContext()); 1939 unsigned DestAlign = DAG.getDataLayout().getPrefTypeAlignment(DestType); 1940 1941 // Emit a store to the stack slot. Use a truncstore if the input value is 1942 // later than DestVT. 1943 SDValue Store; 1944 1945 if (SrcSize > SlotSize) 1946 Store = DAG.getTruncStore(DAG.getEntryNode(), dl, SrcOp, FIPtr, 1947 PtrInfo, SlotVT, false, false, SrcAlign); 1948 else { 1949 assert(SrcSize == SlotSize && "Invalid store"); 1950 Store = DAG.getStore(DAG.getEntryNode(), dl, SrcOp, FIPtr, 1951 PtrInfo, false, false, SrcAlign); 1952 } 1953 1954 // Result is a load from the stack slot. 1955 if (SlotSize == DestSize) 1956 return DAG.getLoad(DestVT, dl, Store, FIPtr, PtrInfo, 1957 false, false, false, DestAlign); 1958 1959 assert(SlotSize < DestSize && "Unknown extension!"); 1960 return DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, Store, FIPtr, 1961 PtrInfo, SlotVT, false, false, false, DestAlign); 1962 } 1963 1964 SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) { 1965 SDLoc dl(Node); 1966 // Create a vector sized/aligned stack slot, store the value to element #0, 1967 // then load the whole vector back out. 1968 SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0)); 1969 1970 FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr); 1971 int SPFI = StackPtrFI->getIndex(); 1972 1973 SDValue Ch = DAG.getTruncStore( 1974 DAG.getEntryNode(), dl, Node->getOperand(0), StackPtr, 1975 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI), 1976 Node->getValueType(0).getVectorElementType(), false, false, 0); 1977 return DAG.getLoad( 1978 Node->getValueType(0), dl, Ch, StackPtr, 1979 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI), false, 1980 false, false, 0); 1981 } 1982 1983 static bool 1984 ExpandBVWithShuffles(SDNode *Node, SelectionDAG &DAG, 1985 const TargetLowering &TLI, SDValue &Res) { 1986 unsigned NumElems = Node->getNumOperands(); 1987 SDLoc dl(Node); 1988 EVT VT = Node->getValueType(0); 1989 1990 // Try to group the scalars into pairs, shuffle the pairs together, then 1991 // shuffle the pairs of pairs together, etc. until the vector has 1992 // been built. This will work only if all of the necessary shuffle masks 1993 // are legal. 1994 1995 // We do this in two phases; first to check the legality of the shuffles, 1996 // and next, assuming that all shuffles are legal, to create the new nodes. 1997 for (int Phase = 0; Phase < 2; ++Phase) { 1998 SmallVector<std::pair<SDValue, SmallVector<int, 16> >, 16> IntermedVals, 1999 NewIntermedVals; 2000 for (unsigned i = 0; i < NumElems; ++i) { 2001 SDValue V = Node->getOperand(i); 2002 if (V.getOpcode() == ISD::UNDEF) 2003 continue; 2004 2005 SDValue Vec; 2006 if (Phase) 2007 Vec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, V); 2008 IntermedVals.push_back(std::make_pair(Vec, SmallVector<int, 16>(1, i))); 2009 } 2010 2011 while (IntermedVals.size() > 2) { 2012 NewIntermedVals.clear(); 2013 for (unsigned i = 0, e = (IntermedVals.size() & ~1u); i < e; i += 2) { 2014 // This vector and the next vector are shuffled together (simply to 2015 // append the one to the other). 2016 SmallVector<int, 16> ShuffleVec(NumElems, -1); 2017 2018 SmallVector<int, 16> FinalIndices; 2019 FinalIndices.reserve(IntermedVals[i].second.size() + 2020 IntermedVals[i+1].second.size()); 2021 2022 int k = 0; 2023 for (unsigned j = 0, f = IntermedVals[i].second.size(); j != f; 2024 ++j, ++k) { 2025 ShuffleVec[k] = j; 2026 FinalIndices.push_back(IntermedVals[i].second[j]); 2027 } 2028 for (unsigned j = 0, f = IntermedVals[i+1].second.size(); j != f; 2029 ++j, ++k) { 2030 ShuffleVec[k] = NumElems + j; 2031 FinalIndices.push_back(IntermedVals[i+1].second[j]); 2032 } 2033 2034 SDValue Shuffle; 2035 if (Phase) 2036 Shuffle = DAG.getVectorShuffle(VT, dl, IntermedVals[i].first, 2037 IntermedVals[i+1].first, 2038 ShuffleVec.data()); 2039 else if (!TLI.isShuffleMaskLegal(ShuffleVec, VT)) 2040 return false; 2041 NewIntermedVals.push_back( 2042 std::make_pair(Shuffle, std::move(FinalIndices))); 2043 } 2044 2045 // If we had an odd number of defined values, then append the last 2046 // element to the array of new vectors. 2047 if ((IntermedVals.size() & 1) != 0) 2048 NewIntermedVals.push_back(IntermedVals.back()); 2049 2050 IntermedVals.swap(NewIntermedVals); 2051 } 2052 2053 assert(IntermedVals.size() <= 2 && IntermedVals.size() > 0 && 2054 "Invalid number of intermediate vectors"); 2055 SDValue Vec1 = IntermedVals[0].first; 2056 SDValue Vec2; 2057 if (IntermedVals.size() > 1) 2058 Vec2 = IntermedVals[1].first; 2059 else if (Phase) 2060 Vec2 = DAG.getUNDEF(VT); 2061 2062 SmallVector<int, 16> ShuffleVec(NumElems, -1); 2063 for (unsigned i = 0, e = IntermedVals[0].second.size(); i != e; ++i) 2064 ShuffleVec[IntermedVals[0].second[i]] = i; 2065 for (unsigned i = 0, e = IntermedVals[1].second.size(); i != e; ++i) 2066 ShuffleVec[IntermedVals[1].second[i]] = NumElems + i; 2067 2068 if (Phase) 2069 Res = DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec.data()); 2070 else if (!TLI.isShuffleMaskLegal(ShuffleVec, VT)) 2071 return false; 2072 } 2073 2074 return true; 2075 } 2076 2077 /// Expand a BUILD_VECTOR node on targets that don't 2078 /// support the operation, but do support the resultant vector type. 2079 SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) { 2080 unsigned NumElems = Node->getNumOperands(); 2081 SDValue Value1, Value2; 2082 SDLoc dl(Node); 2083 EVT VT = Node->getValueType(0); 2084 EVT OpVT = Node->getOperand(0).getValueType(); 2085 EVT EltVT = VT.getVectorElementType(); 2086 2087 // If the only non-undef value is the low element, turn this into a 2088 // SCALAR_TO_VECTOR node. If this is { X, X, X, X }, determine X. 2089 bool isOnlyLowElement = true; 2090 bool MoreThanTwoValues = false; 2091 bool isConstant = true; 2092 for (unsigned i = 0; i < NumElems; ++i) { 2093 SDValue V = Node->getOperand(i); 2094 if (V.getOpcode() == ISD::UNDEF) 2095 continue; 2096 if (i > 0) 2097 isOnlyLowElement = false; 2098 if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V)) 2099 isConstant = false; 2100 2101 if (!Value1.getNode()) { 2102 Value1 = V; 2103 } else if (!Value2.getNode()) { 2104 if (V != Value1) 2105 Value2 = V; 2106 } else if (V != Value1 && V != Value2) { 2107 MoreThanTwoValues = true; 2108 } 2109 } 2110 2111 if (!Value1.getNode()) 2112 return DAG.getUNDEF(VT); 2113 2114 if (isOnlyLowElement) 2115 return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Node->getOperand(0)); 2116 2117 // If all elements are constants, create a load from the constant pool. 2118 if (isConstant) { 2119 SmallVector<Constant*, 16> CV; 2120 for (unsigned i = 0, e = NumElems; i != e; ++i) { 2121 if (ConstantFPSDNode *V = 2122 dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) { 2123 CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue())); 2124 } else if (ConstantSDNode *V = 2125 dyn_cast<ConstantSDNode>(Node->getOperand(i))) { 2126 if (OpVT==EltVT) 2127 CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue())); 2128 else { 2129 // If OpVT and EltVT don't match, EltVT is not legal and the 2130 // element values have been promoted/truncated earlier. Undo this; 2131 // we don't want a v16i8 to become a v16i32 for example. 2132 const ConstantInt *CI = V->getConstantIntValue(); 2133 CV.push_back(ConstantInt::get(EltVT.getTypeForEVT(*DAG.getContext()), 2134 CI->getZExtValue())); 2135 } 2136 } else { 2137 assert(Node->getOperand(i).getOpcode() == ISD::UNDEF); 2138 Type *OpNTy = EltVT.getTypeForEVT(*DAG.getContext()); 2139 CV.push_back(UndefValue::get(OpNTy)); 2140 } 2141 } 2142 Constant *CP = ConstantVector::get(CV); 2143 SDValue CPIdx = 2144 DAG.getConstantPool(CP, TLI.getPointerTy(DAG.getDataLayout())); 2145 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); 2146 return DAG.getLoad( 2147 VT, dl, DAG.getEntryNode(), CPIdx, 2148 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false, 2149 false, false, Alignment); 2150 } 2151 2152 SmallSet<SDValue, 16> DefinedValues; 2153 for (unsigned i = 0; i < NumElems; ++i) { 2154 if (Node->getOperand(i).getOpcode() == ISD::UNDEF) 2155 continue; 2156 DefinedValues.insert(Node->getOperand(i)); 2157 } 2158 2159 if (TLI.shouldExpandBuildVectorWithShuffles(VT, DefinedValues.size())) { 2160 if (!MoreThanTwoValues) { 2161 SmallVector<int, 8> ShuffleVec(NumElems, -1); 2162 for (unsigned i = 0; i < NumElems; ++i) { 2163 SDValue V = Node->getOperand(i); 2164 if (V.getOpcode() == ISD::UNDEF) 2165 continue; 2166 ShuffleVec[i] = V == Value1 ? 0 : NumElems; 2167 } 2168 if (TLI.isShuffleMaskLegal(ShuffleVec, Node->getValueType(0))) { 2169 // Get the splatted value into the low element of a vector register. 2170 SDValue Vec1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value1); 2171 SDValue Vec2; 2172 if (Value2.getNode()) 2173 Vec2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value2); 2174 else 2175 Vec2 = DAG.getUNDEF(VT); 2176 2177 // Return shuffle(LowValVec, undef, <0,0,0,0>) 2178 return DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec.data()); 2179 } 2180 } else { 2181 SDValue Res; 2182 if (ExpandBVWithShuffles(Node, DAG, TLI, Res)) 2183 return Res; 2184 } 2185 } 2186 2187 // Otherwise, we can't handle this case efficiently. 2188 return ExpandVectorBuildThroughStack(Node); 2189 } 2190 2191 // Expand a node into a call to a libcall. If the result value 2192 // does not fit into a register, return the lo part and set the hi part to the 2193 // by-reg argument. If it does fit into a single register, return the result 2194 // and leave the Hi part unset. 2195 SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, 2196 bool isSigned) { 2197 TargetLowering::ArgListTy Args; 2198 TargetLowering::ArgListEntry Entry; 2199 for (const SDValue &Op : Node->op_values()) { 2200 EVT ArgVT = Op.getValueType(); 2201 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); 2202 Entry.Node = Op; 2203 Entry.Ty = ArgTy; 2204 Entry.isSExt = isSigned; 2205 Entry.isZExt = !isSigned; 2206 Args.push_back(Entry); 2207 } 2208 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 2209 TLI.getPointerTy(DAG.getDataLayout())); 2210 2211 Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext()); 2212 2213 // By default, the input chain to this libcall is the entry node of the 2214 // function. If the libcall is going to be emitted as a tail call then 2215 // TLI.isUsedByReturnOnly will change it to the right chain if the return 2216 // node which is being folded has a non-entry input chain. 2217 SDValue InChain = DAG.getEntryNode(); 2218 2219 // isTailCall may be true since the callee does not reference caller stack 2220 // frame. Check if it's in the right position. 2221 SDValue TCChain = InChain; 2222 bool isTailCall = TLI.isInTailCallPosition(DAG, Node, TCChain); 2223 if (isTailCall) 2224 InChain = TCChain; 2225 2226 TargetLowering::CallLoweringInfo CLI(DAG); 2227 CLI.setDebugLoc(SDLoc(Node)).setChain(InChain) 2228 .setCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee, std::move(Args), 0) 2229 .setTailCall(isTailCall).setSExtResult(isSigned).setZExtResult(!isSigned); 2230 2231 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); 2232 2233 if (!CallInfo.second.getNode()) 2234 // It's a tailcall, return the chain (which is the DAG root). 2235 return DAG.getRoot(); 2236 2237 return CallInfo.first; 2238 } 2239 2240 /// Generate a libcall taking the given operands as arguments 2241 /// and returning a result of type RetVT. 2242 SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, EVT RetVT, 2243 const SDValue *Ops, unsigned NumOps, 2244 bool isSigned, SDLoc dl) { 2245 TargetLowering::ArgListTy Args; 2246 Args.reserve(NumOps); 2247 2248 TargetLowering::ArgListEntry Entry; 2249 for (unsigned i = 0; i != NumOps; ++i) { 2250 Entry.Node = Ops[i]; 2251 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext()); 2252 Entry.isSExt = isSigned; 2253 Entry.isZExt = !isSigned; 2254 Args.push_back(Entry); 2255 } 2256 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 2257 TLI.getPointerTy(DAG.getDataLayout())); 2258 2259 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 2260 2261 TargetLowering::CallLoweringInfo CLI(DAG); 2262 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode()) 2263 .setCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee, std::move(Args), 0) 2264 .setSExtResult(isSigned).setZExtResult(!isSigned); 2265 2266 std::pair<SDValue,SDValue> CallInfo = TLI.LowerCallTo(CLI); 2267 2268 return CallInfo.first; 2269 } 2270 2271 // Expand a node into a call to a libcall. Similar to 2272 // ExpandLibCall except that the first operand is the in-chain. 2273 std::pair<SDValue, SDValue> 2274 SelectionDAGLegalize::ExpandChainLibCall(RTLIB::Libcall LC, 2275 SDNode *Node, 2276 bool isSigned) { 2277 SDValue InChain = Node->getOperand(0); 2278 2279 TargetLowering::ArgListTy Args; 2280 TargetLowering::ArgListEntry Entry; 2281 for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) { 2282 EVT ArgVT = Node->getOperand(i).getValueType(); 2283 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); 2284 Entry.Node = Node->getOperand(i); 2285 Entry.Ty = ArgTy; 2286 Entry.isSExt = isSigned; 2287 Entry.isZExt = !isSigned; 2288 Args.push_back(Entry); 2289 } 2290 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 2291 TLI.getPointerTy(DAG.getDataLayout())); 2292 2293 Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext()); 2294 2295 TargetLowering::CallLoweringInfo CLI(DAG); 2296 CLI.setDebugLoc(SDLoc(Node)).setChain(InChain) 2297 .setCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee, std::move(Args), 0) 2298 .setSExtResult(isSigned).setZExtResult(!isSigned); 2299 2300 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); 2301 2302 return CallInfo; 2303 } 2304 2305 SDValue SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node, 2306 RTLIB::Libcall Call_F32, 2307 RTLIB::Libcall Call_F64, 2308 RTLIB::Libcall Call_F80, 2309 RTLIB::Libcall Call_F128, 2310 RTLIB::Libcall Call_PPCF128) { 2311 RTLIB::Libcall LC; 2312 switch (Node->getSimpleValueType(0).SimpleTy) { 2313 default: llvm_unreachable("Unexpected request for libcall!"); 2314 case MVT::f32: LC = Call_F32; break; 2315 case MVT::f64: LC = Call_F64; break; 2316 case MVT::f80: LC = Call_F80; break; 2317 case MVT::f128: LC = Call_F128; break; 2318 case MVT::ppcf128: LC = Call_PPCF128; break; 2319 } 2320 return ExpandLibCall(LC, Node, false); 2321 } 2322 2323 SDValue SelectionDAGLegalize::ExpandIntLibCall(SDNode* Node, bool isSigned, 2324 RTLIB::Libcall Call_I8, 2325 RTLIB::Libcall Call_I16, 2326 RTLIB::Libcall Call_I32, 2327 RTLIB::Libcall Call_I64, 2328 RTLIB::Libcall Call_I128) { 2329 RTLIB::Libcall LC; 2330 switch (Node->getSimpleValueType(0).SimpleTy) { 2331 default: llvm_unreachable("Unexpected request for libcall!"); 2332 case MVT::i8: LC = Call_I8; break; 2333 case MVT::i16: LC = Call_I16; break; 2334 case MVT::i32: LC = Call_I32; break; 2335 case MVT::i64: LC = Call_I64; break; 2336 case MVT::i128: LC = Call_I128; break; 2337 } 2338 return ExpandLibCall(LC, Node, isSigned); 2339 } 2340 2341 /// Issue libcalls to __{u}divmod to compute div / rem pairs. 2342 void 2343 SelectionDAGLegalize::ExpandDivRemLibCall(SDNode *Node, 2344 SmallVectorImpl<SDValue> &Results) { 2345 unsigned Opcode = Node->getOpcode(); 2346 bool isSigned = Opcode == ISD::SDIVREM; 2347 2348 RTLIB::Libcall LC; 2349 switch (Node->getSimpleValueType(0).SimpleTy) { 2350 default: llvm_unreachable("Unexpected request for libcall!"); 2351 case MVT::i8: LC= isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break; 2352 case MVT::i16: LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break; 2353 case MVT::i32: LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break; 2354 case MVT::i64: LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break; 2355 case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break; 2356 } 2357 2358 // The input chain to this libcall is the entry node of the function. 2359 // Legalizing the call will automatically add the previous call to the 2360 // dependence. 2361 SDValue InChain = DAG.getEntryNode(); 2362 2363 EVT RetVT = Node->getValueType(0); 2364 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 2365 2366 TargetLowering::ArgListTy Args; 2367 TargetLowering::ArgListEntry Entry; 2368 for (const SDValue &Op : Node->op_values()) { 2369 EVT ArgVT = Op.getValueType(); 2370 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); 2371 Entry.Node = Op; 2372 Entry.Ty = ArgTy; 2373 Entry.isSExt = isSigned; 2374 Entry.isZExt = !isSigned; 2375 Args.push_back(Entry); 2376 } 2377 2378 // Also pass the return address of the remainder. 2379 SDValue FIPtr = DAG.CreateStackTemporary(RetVT); 2380 Entry.Node = FIPtr; 2381 Entry.Ty = RetTy->getPointerTo(); 2382 Entry.isSExt = isSigned; 2383 Entry.isZExt = !isSigned; 2384 Args.push_back(Entry); 2385 2386 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 2387 TLI.getPointerTy(DAG.getDataLayout())); 2388 2389 SDLoc dl(Node); 2390 TargetLowering::CallLoweringInfo CLI(DAG); 2391 CLI.setDebugLoc(dl).setChain(InChain) 2392 .setCallee(TLI.getLibcallCallingConv(LC), RetTy, Callee, std::move(Args), 0) 2393 .setSExtResult(isSigned).setZExtResult(!isSigned); 2394 2395 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); 2396 2397 // Remainder is loaded back from the stack frame. 2398 SDValue Rem = DAG.getLoad(RetVT, dl, CallInfo.second, FIPtr, 2399 MachinePointerInfo(), false, false, false, 0); 2400 Results.push_back(CallInfo.first); 2401 Results.push_back(Rem); 2402 } 2403 2404 /// Return true if sincos libcall is available. 2405 static bool isSinCosLibcallAvailable(SDNode *Node, const TargetLowering &TLI) { 2406 RTLIB::Libcall LC; 2407 switch (Node->getSimpleValueType(0).SimpleTy) { 2408 default: llvm_unreachable("Unexpected request for libcall!"); 2409 case MVT::f32: LC = RTLIB::SINCOS_F32; break; 2410 case MVT::f64: LC = RTLIB::SINCOS_F64; break; 2411 case MVT::f80: LC = RTLIB::SINCOS_F80; break; 2412 case MVT::f128: LC = RTLIB::SINCOS_F128; break; 2413 case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break; 2414 } 2415 return TLI.getLibcallName(LC) != nullptr; 2416 } 2417 2418 /// Return true if sincos libcall is available and can be used to combine sin 2419 /// and cos. 2420 static bool canCombineSinCosLibcall(SDNode *Node, const TargetLowering &TLI, 2421 const TargetMachine &TM) { 2422 if (!isSinCosLibcallAvailable(Node, TLI)) 2423 return false; 2424 // GNU sin/cos functions set errno while sincos does not. Therefore 2425 // combining sin and cos is only safe if unsafe-fpmath is enabled. 2426 bool isGNU = Triple(TM.getTargetTriple()).getEnvironment() == Triple::GNU; 2427 if (isGNU && !TM.Options.UnsafeFPMath) 2428 return false; 2429 return true; 2430 } 2431 2432 /// Only issue sincos libcall if both sin and cos are needed. 2433 static bool useSinCos(SDNode *Node) { 2434 unsigned OtherOpcode = Node->getOpcode() == ISD::FSIN 2435 ? ISD::FCOS : ISD::FSIN; 2436 2437 SDValue Op0 = Node->getOperand(0); 2438 for (SDNode::use_iterator UI = Op0.getNode()->use_begin(), 2439 UE = Op0.getNode()->use_end(); UI != UE; ++UI) { 2440 SDNode *User = *UI; 2441 if (User == Node) 2442 continue; 2443 // The other user might have been turned into sincos already. 2444 if (User->getOpcode() == OtherOpcode || User->getOpcode() == ISD::FSINCOS) 2445 return true; 2446 } 2447 return false; 2448 } 2449 2450 /// Issue libcalls to sincos to compute sin / cos pairs. 2451 void 2452 SelectionDAGLegalize::ExpandSinCosLibCall(SDNode *Node, 2453 SmallVectorImpl<SDValue> &Results) { 2454 RTLIB::Libcall LC; 2455 switch (Node->getSimpleValueType(0).SimpleTy) { 2456 default: llvm_unreachable("Unexpected request for libcall!"); 2457 case MVT::f32: LC = RTLIB::SINCOS_F32; break; 2458 case MVT::f64: LC = RTLIB::SINCOS_F64; break; 2459 case MVT::f80: LC = RTLIB::SINCOS_F80; break; 2460 case MVT::f128: LC = RTLIB::SINCOS_F128; break; 2461 case MVT::ppcf128: LC = RTLIB::SINCOS_PPCF128; break; 2462 } 2463 2464 // The input chain to this libcall is the entry node of the function. 2465 // Legalizing the call will automatically add the previous call to the 2466 // dependence. 2467 SDValue InChain = DAG.getEntryNode(); 2468 2469 EVT RetVT = Node->getValueType(0); 2470 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext()); 2471 2472 TargetLowering::ArgListTy Args; 2473 TargetLowering::ArgListEntry Entry; 2474 2475 // Pass the argument. 2476 Entry.Node = Node->getOperand(0); 2477 Entry.Ty = RetTy; 2478 Entry.isSExt = false; 2479 Entry.isZExt = false; 2480 Args.push_back(Entry); 2481 2482 // Pass the return address of sin. 2483 SDValue SinPtr = DAG.CreateStackTemporary(RetVT); 2484 Entry.Node = SinPtr; 2485 Entry.Ty = RetTy->getPointerTo(); 2486 Entry.isSExt = false; 2487 Entry.isZExt = false; 2488 Args.push_back(Entry); 2489 2490 // Also pass the return address of the cos. 2491 SDValue CosPtr = DAG.CreateStackTemporary(RetVT); 2492 Entry.Node = CosPtr; 2493 Entry.Ty = RetTy->getPointerTo(); 2494 Entry.isSExt = false; 2495 Entry.isZExt = false; 2496 Args.push_back(Entry); 2497 2498 SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC), 2499 TLI.getPointerTy(DAG.getDataLayout())); 2500 2501 SDLoc dl(Node); 2502 TargetLowering::CallLoweringInfo CLI(DAG); 2503 CLI.setDebugLoc(dl).setChain(InChain) 2504 .setCallee(TLI.getLibcallCallingConv(LC), 2505 Type::getVoidTy(*DAG.getContext()), Callee, std::move(Args), 0); 2506 2507 std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI); 2508 2509 Results.push_back(DAG.getLoad(RetVT, dl, CallInfo.second, SinPtr, 2510 MachinePointerInfo(), false, false, false, 0)); 2511 Results.push_back(DAG.getLoad(RetVT, dl, CallInfo.second, CosPtr, 2512 MachinePointerInfo(), false, false, false, 0)); 2513 } 2514 2515 /// This function is responsible for legalizing a 2516 /// INT_TO_FP operation of the specified operand when the target requests that 2517 /// we expand it. At this point, we know that the result and operand types are 2518 /// legal for the target. 2519 SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(bool isSigned, 2520 SDValue Op0, 2521 EVT DestVT, 2522 SDLoc dl) { 2523 // TODO: Should any fast-math-flags be set for the created nodes? 2524 2525 if (Op0.getValueType() == MVT::i32 && TLI.isTypeLegal(MVT::f64)) { 2526 // simple 32-bit [signed|unsigned] integer to float/double expansion 2527 2528 // Get the stack frame index of a 8 byte buffer. 2529 SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64); 2530 2531 // word offset constant for Hi/Lo address computation 2532 SDValue WordOff = DAG.getConstant(sizeof(int), dl, 2533 StackSlot.getValueType()); 2534 // set up Hi and Lo (into buffer) address based on endian 2535 SDValue Hi = StackSlot; 2536 SDValue Lo = DAG.getNode(ISD::ADD, dl, StackSlot.getValueType(), 2537 StackSlot, WordOff); 2538 if (DAG.getDataLayout().isLittleEndian()) 2539 std::swap(Hi, Lo); 2540 2541 // if signed map to unsigned space 2542 SDValue Op0Mapped; 2543 if (isSigned) { 2544 // constant used to invert sign bit (signed to unsigned mapping) 2545 SDValue SignBit = DAG.getConstant(0x80000000u, dl, MVT::i32); 2546 Op0Mapped = DAG.getNode(ISD::XOR, dl, MVT::i32, Op0, SignBit); 2547 } else { 2548 Op0Mapped = Op0; 2549 } 2550 // store the lo of the constructed double - based on integer input 2551 SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl, 2552 Op0Mapped, Lo, MachinePointerInfo(), 2553 false, false, 0); 2554 // initial hi portion of constructed double 2555 SDValue InitialHi = DAG.getConstant(0x43300000u, dl, MVT::i32); 2556 // store the hi of the constructed double - biased exponent 2557 SDValue Store2 = DAG.getStore(Store1, dl, InitialHi, Hi, 2558 MachinePointerInfo(), 2559 false, false, 0); 2560 // load the constructed double 2561 SDValue Load = DAG.getLoad(MVT::f64, dl, Store2, StackSlot, 2562 MachinePointerInfo(), false, false, false, 0); 2563 // FP constant to bias correct the final result 2564 SDValue Bias = DAG.getConstantFP(isSigned ? 2565 BitsToDouble(0x4330000080000000ULL) : 2566 BitsToDouble(0x4330000000000000ULL), 2567 dl, MVT::f64); 2568 // subtract the bias 2569 SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias); 2570 // final result 2571 SDValue Result; 2572 // handle final rounding 2573 if (DestVT == MVT::f64) { 2574 // do nothing 2575 Result = Sub; 2576 } else if (DestVT.bitsLT(MVT::f64)) { 2577 Result = DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub, 2578 DAG.getIntPtrConstant(0, dl)); 2579 } else if (DestVT.bitsGT(MVT::f64)) { 2580 Result = DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub); 2581 } 2582 return Result; 2583 } 2584 assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet"); 2585 // Code below here assumes !isSigned without checking again. 2586 2587 // Implementation of unsigned i64 to f64 following the algorithm in 2588 // __floatundidf in compiler_rt. This implementation has the advantage 2589 // of performing rounding correctly, both in the default rounding mode 2590 // and in all alternate rounding modes. 2591 // TODO: Generalize this for use with other types. 2592 if (Op0.getValueType() == MVT::i64 && DestVT == MVT::f64) { 2593 SDValue TwoP52 = 2594 DAG.getConstant(UINT64_C(0x4330000000000000), dl, MVT::i64); 2595 SDValue TwoP84PlusTwoP52 = 2596 DAG.getConstantFP(BitsToDouble(UINT64_C(0x4530000000100000)), dl, 2597 MVT::f64); 2598 SDValue TwoP84 = 2599 DAG.getConstant(UINT64_C(0x4530000000000000), dl, MVT::i64); 2600 2601 SDValue Lo = DAG.getZeroExtendInReg(Op0, dl, MVT::i32); 2602 SDValue Hi = DAG.getNode(ISD::SRL, dl, MVT::i64, Op0, 2603 DAG.getConstant(32, dl, MVT::i64)); 2604 SDValue LoOr = DAG.getNode(ISD::OR, dl, MVT::i64, Lo, TwoP52); 2605 SDValue HiOr = DAG.getNode(ISD::OR, dl, MVT::i64, Hi, TwoP84); 2606 SDValue LoFlt = DAG.getNode(ISD::BITCAST, dl, MVT::f64, LoOr); 2607 SDValue HiFlt = DAG.getNode(ISD::BITCAST, dl, MVT::f64, HiOr); 2608 SDValue HiSub = DAG.getNode(ISD::FSUB, dl, MVT::f64, HiFlt, 2609 TwoP84PlusTwoP52); 2610 return DAG.getNode(ISD::FADD, dl, MVT::f64, LoFlt, HiSub); 2611 } 2612 2613 // Implementation of unsigned i64 to f32. 2614 // TODO: Generalize this for use with other types. 2615 if (Op0.getValueType() == MVT::i64 && DestVT == MVT::f32) { 2616 // For unsigned conversions, convert them to signed conversions using the 2617 // algorithm from the x86_64 __floatundidf in compiler_rt. 2618 if (!isSigned) { 2619 SDValue Fast = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, Op0); 2620 2621 SDValue ShiftConst = DAG.getConstant( 2622 1, dl, TLI.getShiftAmountTy(Op0.getValueType(), DAG.getDataLayout())); 2623 SDValue Shr = DAG.getNode(ISD::SRL, dl, MVT::i64, Op0, ShiftConst); 2624 SDValue AndConst = DAG.getConstant(1, dl, MVT::i64); 2625 SDValue And = DAG.getNode(ISD::AND, dl, MVT::i64, Op0, AndConst); 2626 SDValue Or = DAG.getNode(ISD::OR, dl, MVT::i64, And, Shr); 2627 2628 SDValue SignCvt = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, Or); 2629 SDValue Slow = DAG.getNode(ISD::FADD, dl, MVT::f32, SignCvt, SignCvt); 2630 2631 // TODO: This really should be implemented using a branch rather than a 2632 // select. We happen to get lucky and machinesink does the right 2633 // thing most of the time. This would be a good candidate for a 2634 //pseudo-op, or, even better, for whole-function isel. 2635 SDValue SignBitTest = DAG.getSetCC(dl, getSetCCResultType(MVT::i64), 2636 Op0, DAG.getConstant(0, dl, MVT::i64), ISD::SETLT); 2637 return DAG.getSelect(dl, MVT::f32, SignBitTest, Slow, Fast); 2638 } 2639 2640 // Otherwise, implement the fully general conversion. 2641 2642 SDValue And = DAG.getNode(ISD::AND, dl, MVT::i64, Op0, 2643 DAG.getConstant(UINT64_C(0xfffffffffffff800), dl, MVT::i64)); 2644 SDValue Or = DAG.getNode(ISD::OR, dl, MVT::i64, And, 2645 DAG.getConstant(UINT64_C(0x800), dl, MVT::i64)); 2646 SDValue And2 = DAG.getNode(ISD::AND, dl, MVT::i64, Op0, 2647 DAG.getConstant(UINT64_C(0x7ff), dl, MVT::i64)); 2648 SDValue Ne = DAG.getSetCC(dl, getSetCCResultType(MVT::i64), And2, 2649 DAG.getConstant(UINT64_C(0), dl, MVT::i64), 2650 ISD::SETNE); 2651 SDValue Sel = DAG.getSelect(dl, MVT::i64, Ne, Or, Op0); 2652 SDValue Ge = DAG.getSetCC(dl, getSetCCResultType(MVT::i64), Op0, 2653 DAG.getConstant(UINT64_C(0x0020000000000000), dl, 2654 MVT::i64), 2655 ISD::SETUGE); 2656 SDValue Sel2 = DAG.getSelect(dl, MVT::i64, Ge, Sel, Op0); 2657 EVT SHVT = TLI.getShiftAmountTy(Sel2.getValueType(), DAG.getDataLayout()); 2658 2659 SDValue Sh = DAG.getNode(ISD::SRL, dl, MVT::i64, Sel2, 2660 DAG.getConstant(32, dl, SHVT)); 2661 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Sh); 2662 SDValue Fcvt = DAG.getNode(ISD::UINT_TO_FP, dl, MVT::f64, Trunc); 2663 SDValue TwoP32 = 2664 DAG.getConstantFP(BitsToDouble(UINT64_C(0x41f0000000000000)), dl, 2665 MVT::f64); 2666 SDValue Fmul = DAG.getNode(ISD::FMUL, dl, MVT::f64, TwoP32, Fcvt); 2667 SDValue Lo = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Sel2); 2668 SDValue Fcvt2 = DAG.getNode(ISD::UINT_TO_FP, dl, MVT::f64, Lo); 2669 SDValue Fadd = DAG.getNode(ISD::FADD, dl, MVT::f64, Fmul, Fcvt2); 2670 return DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Fadd, 2671 DAG.getIntPtrConstant(0, dl)); 2672 } 2673 2674 SDValue Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0); 2675 2676 SDValue SignSet = DAG.getSetCC(dl, getSetCCResultType(Op0.getValueType()), 2677 Op0, 2678 DAG.getConstant(0, dl, Op0.getValueType()), 2679 ISD::SETLT); 2680 SDValue Zero = DAG.getIntPtrConstant(0, dl), 2681 Four = DAG.getIntPtrConstant(4, dl); 2682 SDValue CstOffset = DAG.getSelect(dl, Zero.getValueType(), 2683 SignSet, Four, Zero); 2684 2685 // If the sign bit of the integer is set, the large number will be treated 2686 // as a negative number. To counteract this, the dynamic code adds an 2687 // offset depending on the data type. 2688 uint64_t FF; 2689 switch (Op0.getSimpleValueType().SimpleTy) { 2690 default: llvm_unreachable("Unsupported integer type!"); 2691 case MVT::i8 : FF = 0x43800000ULL; break; // 2^8 (as a float) 2692 case MVT::i16: FF = 0x47800000ULL; break; // 2^16 (as a float) 2693 case MVT::i32: FF = 0x4F800000ULL; break; // 2^32 (as a float) 2694 case MVT::i64: FF = 0x5F800000ULL; break; // 2^64 (as a float) 2695 } 2696 if (DAG.getDataLayout().isLittleEndian()) 2697 FF <<= 32; 2698 Constant *FudgeFactor = ConstantInt::get( 2699 Type::getInt64Ty(*DAG.getContext()), FF); 2700 2701 SDValue CPIdx = 2702 DAG.getConstantPool(FudgeFactor, TLI.getPointerTy(DAG.getDataLayout())); 2703 unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment(); 2704 CPIdx = DAG.getNode(ISD::ADD, dl, CPIdx.getValueType(), CPIdx, CstOffset); 2705 Alignment = std::min(Alignment, 4u); 2706 SDValue FudgeInReg; 2707 if (DestVT == MVT::f32) 2708 FudgeInReg = DAG.getLoad( 2709 MVT::f32, dl, DAG.getEntryNode(), CPIdx, 2710 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false, 2711 false, false, Alignment); 2712 else { 2713 SDValue Load = DAG.getExtLoad( 2714 ISD::EXTLOAD, dl, DestVT, DAG.getEntryNode(), CPIdx, 2715 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), MVT::f32, 2716 false, false, false, Alignment); 2717 HandleSDNode Handle(Load); 2718 LegalizeOp(Load.getNode()); 2719 FudgeInReg = Handle.getValue(); 2720 } 2721 2722 return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg); 2723 } 2724 2725 /// This function is responsible for legalizing a 2726 /// *INT_TO_FP operation of the specified operand when the target requests that 2727 /// we promote it. At this point, we know that the result and operand types are 2728 /// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP 2729 /// operation that takes a larger input. 2730 SDValue SelectionDAGLegalize::PromoteLegalINT_TO_FP(SDValue LegalOp, 2731 EVT DestVT, 2732 bool isSigned, 2733 SDLoc dl) { 2734 // First step, figure out the appropriate *INT_TO_FP operation to use. 2735 EVT NewInTy = LegalOp.getValueType(); 2736 2737 unsigned OpToUse = 0; 2738 2739 // Scan for the appropriate larger type to use. 2740 while (1) { 2741 NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT().SimpleTy+1); 2742 assert(NewInTy.isInteger() && "Ran out of possibilities!"); 2743 2744 // If the target supports SINT_TO_FP of this type, use it. 2745 if (TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, NewInTy)) { 2746 OpToUse = ISD::SINT_TO_FP; 2747 break; 2748 } 2749 if (isSigned) continue; 2750 2751 // If the target supports UINT_TO_FP of this type, use it. 2752 if (TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, NewInTy)) { 2753 OpToUse = ISD::UINT_TO_FP; 2754 break; 2755 } 2756 2757 // Otherwise, try a larger type. 2758 } 2759 2760 // Okay, we found the operation and type to use. Zero extend our input to the 2761 // desired type then run the operation on it. 2762 return DAG.getNode(OpToUse, dl, DestVT, 2763 DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 2764 dl, NewInTy, LegalOp)); 2765 } 2766 2767 /// This function is responsible for legalizing a 2768 /// FP_TO_*INT operation of the specified operand when the target requests that 2769 /// we promote it. At this point, we know that the result and operand types are 2770 /// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT 2771 /// operation that returns a larger result. 2772 SDValue SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDValue LegalOp, 2773 EVT DestVT, 2774 bool isSigned, 2775 SDLoc dl) { 2776 // First step, figure out the appropriate FP_TO*INT operation to use. 2777 EVT NewOutTy = DestVT; 2778 2779 unsigned OpToUse = 0; 2780 2781 // Scan for the appropriate larger type to use. 2782 while (1) { 2783 NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy+1); 2784 assert(NewOutTy.isInteger() && "Ran out of possibilities!"); 2785 2786 // A larger signed type can hold all unsigned values of the requested type, 2787 // so using FP_TO_SINT is valid 2788 if (TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NewOutTy)) { 2789 OpToUse = ISD::FP_TO_SINT; 2790 break; 2791 } 2792 2793 // However, if the value may be < 0.0, we *must* use some FP_TO_SINT. 2794 if (!isSigned && TLI.isOperationLegalOrCustom(ISD::FP_TO_UINT, NewOutTy)) { 2795 OpToUse = ISD::FP_TO_UINT; 2796 break; 2797 } 2798 2799 // Otherwise, try a larger type. 2800 } 2801 2802 2803 // Okay, we found the operation and type to use. 2804 SDValue Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp); 2805 2806 // Truncate the result of the extended FP_TO_*INT operation to the desired 2807 // size. 2808 return DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation); 2809 } 2810 2811 /// Open code the operations for BITREVERSE. 2812 SDValue SelectionDAGLegalize::ExpandBITREVERSE(SDValue Op, SDLoc dl) { 2813 EVT VT = Op.getValueType(); 2814 EVT SHVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 2815 unsigned Sz = VT.getScalarSizeInBits(); 2816 2817 SDValue Tmp, Tmp2; 2818 Tmp = DAG.getConstant(0, dl, VT); 2819 for (unsigned I = 0, J = Sz-1; I < Sz; ++I, --J) { 2820 if (I < J) 2821 Tmp2 = 2822 DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(J - I, dl, SHVT)); 2823 else 2824 Tmp2 = 2825 DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(I - J, dl, SHVT)); 2826 2827 APInt Shift(Sz, 1); 2828 Shift = Shift.shl(J); 2829 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(Shift, dl, VT)); 2830 Tmp = DAG.getNode(ISD::OR, dl, VT, Tmp, Tmp2); 2831 } 2832 2833 return Tmp; 2834 } 2835 2836 /// Open code the operations for BSWAP of the specified operation. 2837 SDValue SelectionDAGLegalize::ExpandBSWAP(SDValue Op, SDLoc dl) { 2838 EVT VT = Op.getValueType(); 2839 EVT SHVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 2840 SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8; 2841 switch (VT.getSimpleVT().SimpleTy) { 2842 default: llvm_unreachable("Unhandled Expand type in BSWAP!"); 2843 case MVT::i16: 2844 Tmp2 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 2845 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 2846 return DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2); 2847 case MVT::i32: 2848 Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 2849 Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 2850 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 2851 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 2852 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, 2853 DAG.getConstant(0xFF0000, dl, VT)); 2854 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, dl, VT)); 2855 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 2856 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 2857 return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 2858 case MVT::i64: 2859 Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, dl, SHVT)); 2860 Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, dl, SHVT)); 2861 Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 2862 Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 2863 Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, dl, SHVT)); 2864 Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, dl, SHVT)); 2865 Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, dl, SHVT)); 2866 Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, dl, SHVT)); 2867 Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7, 2868 DAG.getConstant(255ULL<<48, dl, VT)); 2869 Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6, 2870 DAG.getConstant(255ULL<<40, dl, VT)); 2871 Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5, 2872 DAG.getConstant(255ULL<<32, dl, VT)); 2873 Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, 2874 DAG.getConstant(255ULL<<24, dl, VT)); 2875 Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, 2876 DAG.getConstant(255ULL<<16, dl, VT)); 2877 Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, 2878 DAG.getConstant(255ULL<<8 , dl, VT)); 2879 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7); 2880 Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5); 2881 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3); 2882 Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1); 2883 Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6); 2884 Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2); 2885 return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4); 2886 } 2887 } 2888 2889 /// Expand the specified bitcount instruction into operations. 2890 SDValue SelectionDAGLegalize::ExpandBitCount(unsigned Opc, SDValue Op, 2891 SDLoc dl) { 2892 switch (Opc) { 2893 default: llvm_unreachable("Cannot expand this yet!"); 2894 case ISD::CTPOP: { 2895 EVT VT = Op.getValueType(); 2896 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 2897 unsigned Len = VT.getSizeInBits(); 2898 2899 assert(VT.isInteger() && Len <= 128 && Len % 8 == 0 && 2900 "CTPOP not implemented for this type."); 2901 2902 // This is the "best" algorithm from 2903 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel 2904 2905 SDValue Mask55 = DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), 2906 dl, VT); 2907 SDValue Mask33 = DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), 2908 dl, VT); 2909 SDValue Mask0F = DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), 2910 dl, VT); 2911 SDValue Mask01 = DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), 2912 dl, VT); 2913 2914 // v = v - ((v >> 1) & 0x55555555...) 2915 Op = DAG.getNode(ISD::SUB, dl, VT, Op, 2916 DAG.getNode(ISD::AND, dl, VT, 2917 DAG.getNode(ISD::SRL, dl, VT, Op, 2918 DAG.getConstant(1, dl, ShVT)), 2919 Mask55)); 2920 // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...) 2921 Op = DAG.getNode(ISD::ADD, dl, VT, 2922 DAG.getNode(ISD::AND, dl, VT, Op, Mask33), 2923 DAG.getNode(ISD::AND, dl, VT, 2924 DAG.getNode(ISD::SRL, dl, VT, Op, 2925 DAG.getConstant(2, dl, ShVT)), 2926 Mask33)); 2927 // v = (v + (v >> 4)) & 0x0F0F0F0F... 2928 Op = DAG.getNode(ISD::AND, dl, VT, 2929 DAG.getNode(ISD::ADD, dl, VT, Op, 2930 DAG.getNode(ISD::SRL, dl, VT, Op, 2931 DAG.getConstant(4, dl, ShVT))), 2932 Mask0F); 2933 // v = (v * 0x01010101...) >> (Len - 8) 2934 Op = DAG.getNode(ISD::SRL, dl, VT, 2935 DAG.getNode(ISD::MUL, dl, VT, Op, Mask01), 2936 DAG.getConstant(Len - 8, dl, ShVT)); 2937 2938 return Op; 2939 } 2940 case ISD::CTLZ_ZERO_UNDEF: 2941 // This trivially expands to CTLZ. 2942 return DAG.getNode(ISD::CTLZ, dl, Op.getValueType(), Op); 2943 case ISD::CTLZ: { 2944 // for now, we do this: 2945 // x = x | (x >> 1); 2946 // x = x | (x >> 2); 2947 // ... 2948 // x = x | (x >>16); 2949 // x = x | (x >>32); // for 64-bit input 2950 // return popcount(~x); 2951 // 2952 // Ref: "Hacker's Delight" by Henry Warren 2953 EVT VT = Op.getValueType(); 2954 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 2955 unsigned len = VT.getSizeInBits(); 2956 for (unsigned i = 0; (1U << i) <= (len / 2); ++i) { 2957 SDValue Tmp3 = DAG.getConstant(1ULL << i, dl, ShVT); 2958 Op = DAG.getNode(ISD::OR, dl, VT, Op, 2959 DAG.getNode(ISD::SRL, dl, VT, Op, Tmp3)); 2960 } 2961 Op = DAG.getNOT(dl, Op, VT); 2962 return DAG.getNode(ISD::CTPOP, dl, VT, Op); 2963 } 2964 case ISD::CTTZ_ZERO_UNDEF: 2965 // This trivially expands to CTTZ. 2966 return DAG.getNode(ISD::CTTZ, dl, Op.getValueType(), Op); 2967 case ISD::CTTZ: { 2968 // for now, we use: { return popcount(~x & (x - 1)); } 2969 // unless the target has ctlz but not ctpop, in which case we use: 2970 // { return 32 - nlz(~x & (x-1)); } 2971 // Ref: "Hacker's Delight" by Henry Warren 2972 EVT VT = Op.getValueType(); 2973 SDValue Tmp3 = DAG.getNode(ISD::AND, dl, VT, 2974 DAG.getNOT(dl, Op, VT), 2975 DAG.getNode(ISD::SUB, dl, VT, Op, 2976 DAG.getConstant(1, dl, VT))); 2977 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead. 2978 if (!TLI.isOperationLegalOrCustom(ISD::CTPOP, VT) && 2979 TLI.isOperationLegalOrCustom(ISD::CTLZ, VT)) 2980 return DAG.getNode(ISD::SUB, dl, VT, 2981 DAG.getConstant(VT.getSizeInBits(), dl, VT), 2982 DAG.getNode(ISD::CTLZ, dl, VT, Tmp3)); 2983 return DAG.getNode(ISD::CTPOP, dl, VT, Tmp3); 2984 } 2985 } 2986 } 2987 2988 bool SelectionDAGLegalize::ExpandNode(SDNode *Node) { 2989 SmallVector<SDValue, 8> Results; 2990 SDLoc dl(Node); 2991 SDValue Tmp1, Tmp2, Tmp3, Tmp4; 2992 bool NeedInvert; 2993 switch (Node->getOpcode()) { 2994 case ISD::CTPOP: 2995 case ISD::CTLZ: 2996 case ISD::CTLZ_ZERO_UNDEF: 2997 case ISD::CTTZ: 2998 case ISD::CTTZ_ZERO_UNDEF: 2999 Tmp1 = ExpandBitCount(Node->getOpcode(), Node->getOperand(0), dl); 3000 Results.push_back(Tmp1); 3001 break; 3002 case ISD::BITREVERSE: 3003 Results.push_back(ExpandBITREVERSE(Node->getOperand(0), dl)); 3004 break; 3005 case ISD::BSWAP: 3006 Results.push_back(ExpandBSWAP(Node->getOperand(0), dl)); 3007 break; 3008 case ISD::FRAMEADDR: 3009 case ISD::RETURNADDR: 3010 case ISD::FRAME_TO_ARGS_OFFSET: 3011 Results.push_back(DAG.getConstant(0, dl, Node->getValueType(0))); 3012 break; 3013 case ISD::FLT_ROUNDS_: 3014 Results.push_back(DAG.getConstant(1, dl, Node->getValueType(0))); 3015 break; 3016 case ISD::EH_RETURN: 3017 case ISD::EH_LABEL: 3018 case ISD::PREFETCH: 3019 case ISD::VAEND: 3020 case ISD::EH_SJLJ_LONGJMP: 3021 // If the target didn't expand these, there's nothing to do, so just 3022 // preserve the chain and be done. 3023 Results.push_back(Node->getOperand(0)); 3024 break; 3025 case ISD::READCYCLECOUNTER: 3026 // If the target didn't expand this, just return 'zero' and preserve the 3027 // chain. 3028 Results.append(Node->getNumValues() - 1, 3029 DAG.getConstant(0, dl, Node->getValueType(0))); 3030 Results.push_back(Node->getOperand(0)); 3031 break; 3032 case ISD::EH_SJLJ_SETJMP: 3033 // If the target didn't expand this, just return 'zero' and preserve the 3034 // chain. 3035 Results.push_back(DAG.getConstant(0, dl, MVT::i32)); 3036 Results.push_back(Node->getOperand(0)); 3037 break; 3038 case ISD::ATOMIC_LOAD: { 3039 // There is no libcall for atomic load; fake it with ATOMIC_CMP_SWAP. 3040 SDValue Zero = DAG.getConstant(0, dl, Node->getValueType(0)); 3041 SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other); 3042 SDValue Swap = DAG.getAtomicCmpSwap( 3043 ISD::ATOMIC_CMP_SWAP, dl, cast<AtomicSDNode>(Node)->getMemoryVT(), VTs, 3044 Node->getOperand(0), Node->getOperand(1), Zero, Zero, 3045 cast<AtomicSDNode>(Node)->getMemOperand(), 3046 cast<AtomicSDNode>(Node)->getOrdering(), 3047 cast<AtomicSDNode>(Node)->getOrdering(), 3048 cast<AtomicSDNode>(Node)->getSynchScope()); 3049 Results.push_back(Swap.getValue(0)); 3050 Results.push_back(Swap.getValue(1)); 3051 break; 3052 } 3053 case ISD::ATOMIC_STORE: { 3054 // There is no libcall for atomic store; fake it with ATOMIC_SWAP. 3055 SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl, 3056 cast<AtomicSDNode>(Node)->getMemoryVT(), 3057 Node->getOperand(0), 3058 Node->getOperand(1), Node->getOperand(2), 3059 cast<AtomicSDNode>(Node)->getMemOperand(), 3060 cast<AtomicSDNode>(Node)->getOrdering(), 3061 cast<AtomicSDNode>(Node)->getSynchScope()); 3062 Results.push_back(Swap.getValue(1)); 3063 break; 3064 } 3065 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: { 3066 // Expanding an ATOMIC_CMP_SWAP_WITH_SUCCESS produces an ATOMIC_CMP_SWAP and 3067 // splits out the success value as a comparison. Expanding the resulting 3068 // ATOMIC_CMP_SWAP will produce a libcall. 3069 SDVTList VTs = DAG.getVTList(Node->getValueType(0), MVT::Other); 3070 SDValue Res = DAG.getAtomicCmpSwap( 3071 ISD::ATOMIC_CMP_SWAP, dl, cast<AtomicSDNode>(Node)->getMemoryVT(), VTs, 3072 Node->getOperand(0), Node->getOperand(1), Node->getOperand(2), 3073 Node->getOperand(3), cast<MemSDNode>(Node)->getMemOperand(), 3074 cast<AtomicSDNode>(Node)->getSuccessOrdering(), 3075 cast<AtomicSDNode>(Node)->getFailureOrdering(), 3076 cast<AtomicSDNode>(Node)->getSynchScope()); 3077 3078 SDValue Success = DAG.getSetCC(SDLoc(Node), Node->getValueType(1), 3079 Res, Node->getOperand(2), ISD::SETEQ); 3080 3081 Results.push_back(Res.getValue(0)); 3082 Results.push_back(Success); 3083 Results.push_back(Res.getValue(1)); 3084 break; 3085 } 3086 case ISD::DYNAMIC_STACKALLOC: 3087 ExpandDYNAMIC_STACKALLOC(Node, Results); 3088 break; 3089 case ISD::MERGE_VALUES: 3090 for (unsigned i = 0; i < Node->getNumValues(); i++) 3091 Results.push_back(Node->getOperand(i)); 3092 break; 3093 case ISD::UNDEF: { 3094 EVT VT = Node->getValueType(0); 3095 if (VT.isInteger()) 3096 Results.push_back(DAG.getConstant(0, dl, VT)); 3097 else { 3098 assert(VT.isFloatingPoint() && "Unknown value type!"); 3099 Results.push_back(DAG.getConstantFP(0, dl, VT)); 3100 } 3101 break; 3102 } 3103 case ISD::FP_ROUND: 3104 case ISD::BITCAST: 3105 Tmp1 = EmitStackConvert(Node->getOperand(0), Node->getValueType(0), 3106 Node->getValueType(0), dl); 3107 Results.push_back(Tmp1); 3108 break; 3109 case ISD::FP_EXTEND: 3110 Tmp1 = EmitStackConvert(Node->getOperand(0), 3111 Node->getOperand(0).getValueType(), 3112 Node->getValueType(0), dl); 3113 Results.push_back(Tmp1); 3114 break; 3115 case ISD::SIGN_EXTEND_INREG: { 3116 // NOTE: we could fall back on load/store here too for targets without 3117 // SAR. However, it is doubtful that any exist. 3118 EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT(); 3119 EVT VT = Node->getValueType(0); 3120 EVT ShiftAmountTy = TLI.getShiftAmountTy(VT, DAG.getDataLayout()); 3121 if (VT.isVector()) 3122 ShiftAmountTy = VT; 3123 unsigned BitsDiff = VT.getScalarType().getSizeInBits() - 3124 ExtraVT.getScalarType().getSizeInBits(); 3125 SDValue ShiftCst = DAG.getConstant(BitsDiff, dl, ShiftAmountTy); 3126 Tmp1 = DAG.getNode(ISD::SHL, dl, Node->getValueType(0), 3127 Node->getOperand(0), ShiftCst); 3128 Tmp1 = DAG.getNode(ISD::SRA, dl, Node->getValueType(0), Tmp1, ShiftCst); 3129 Results.push_back(Tmp1); 3130 break; 3131 } 3132 case ISD::FP_ROUND_INREG: { 3133 // The only way we can lower this is to turn it into a TRUNCSTORE, 3134 // EXTLOAD pair, targeting a temporary location (a stack slot). 3135 3136 // NOTE: there is a choice here between constantly creating new stack 3137 // slots and always reusing the same one. We currently always create 3138 // new ones, as reuse may inhibit scheduling. 3139 EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT(); 3140 Tmp1 = EmitStackConvert(Node->getOperand(0), ExtraVT, 3141 Node->getValueType(0), dl); 3142 Results.push_back(Tmp1); 3143 break; 3144 } 3145 case ISD::SINT_TO_FP: 3146 case ISD::UINT_TO_FP: 3147 Tmp1 = ExpandLegalINT_TO_FP(Node->getOpcode() == ISD::SINT_TO_FP, 3148 Node->getOperand(0), Node->getValueType(0), dl); 3149 Results.push_back(Tmp1); 3150 break; 3151 case ISD::FP_TO_SINT: 3152 if (TLI.expandFP_TO_SINT(Node, Tmp1, DAG)) 3153 Results.push_back(Tmp1); 3154 break; 3155 case ISD::FP_TO_UINT: { 3156 SDValue True, False; 3157 EVT VT = Node->getOperand(0).getValueType(); 3158 EVT NVT = Node->getValueType(0); 3159 APFloat apf(DAG.EVTToAPFloatSemantics(VT), 3160 APInt::getNullValue(VT.getSizeInBits())); 3161 APInt x = APInt::getSignBit(NVT.getSizeInBits()); 3162 (void)apf.convertFromAPInt(x, false, APFloat::rmNearestTiesToEven); 3163 Tmp1 = DAG.getConstantFP(apf, dl, VT); 3164 Tmp2 = DAG.getSetCC(dl, getSetCCResultType(VT), 3165 Node->getOperand(0), 3166 Tmp1, ISD::SETLT); 3167 True = DAG.getNode(ISD::FP_TO_SINT, dl, NVT, Node->getOperand(0)); 3168 // TODO: Should any fast-math-flags be set for the FSUB? 3169 False = DAG.getNode(ISD::FP_TO_SINT, dl, NVT, 3170 DAG.getNode(ISD::FSUB, dl, VT, 3171 Node->getOperand(0), Tmp1)); 3172 False = DAG.getNode(ISD::XOR, dl, NVT, False, 3173 DAG.getConstant(x, dl, NVT)); 3174 Tmp1 = DAG.getSelect(dl, NVT, Tmp2, True, False); 3175 Results.push_back(Tmp1); 3176 break; 3177 } 3178 case ISD::VAARG: 3179 Results.push_back(DAG.expandVAArg(Node)); 3180 Results.push_back(Results[0].getValue(1)); 3181 break; 3182 case ISD::VACOPY: 3183 Results.push_back(DAG.expandVACopy(Node)); 3184 break; 3185 case ISD::EXTRACT_VECTOR_ELT: 3186 if (Node->getOperand(0).getValueType().getVectorNumElements() == 1) 3187 // This must be an access of the only element. Return it. 3188 Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), 3189 Node->getOperand(0)); 3190 else 3191 Tmp1 = ExpandExtractFromVectorThroughStack(SDValue(Node, 0)); 3192 Results.push_back(Tmp1); 3193 break; 3194 case ISD::EXTRACT_SUBVECTOR: 3195 Results.push_back(ExpandExtractFromVectorThroughStack(SDValue(Node, 0))); 3196 break; 3197 case ISD::INSERT_SUBVECTOR: 3198 Results.push_back(ExpandInsertToVectorThroughStack(SDValue(Node, 0))); 3199 break; 3200 case ISD::CONCAT_VECTORS: { 3201 Results.push_back(ExpandVectorBuildThroughStack(Node)); 3202 break; 3203 } 3204 case ISD::SCALAR_TO_VECTOR: 3205 Results.push_back(ExpandSCALAR_TO_VECTOR(Node)); 3206 break; 3207 case ISD::INSERT_VECTOR_ELT: 3208 Results.push_back(ExpandINSERT_VECTOR_ELT(Node->getOperand(0), 3209 Node->getOperand(1), 3210 Node->getOperand(2), dl)); 3211 break; 3212 case ISD::VECTOR_SHUFFLE: { 3213 SmallVector<int, 32> NewMask; 3214 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask(); 3215 3216 EVT VT = Node->getValueType(0); 3217 EVT EltVT = VT.getVectorElementType(); 3218 SDValue Op0 = Node->getOperand(0); 3219 SDValue Op1 = Node->getOperand(1); 3220 if (!TLI.isTypeLegal(EltVT)) { 3221 3222 EVT NewEltVT = TLI.getTypeToTransformTo(*DAG.getContext(), EltVT); 3223 3224 // BUILD_VECTOR operands are allowed to be wider than the element type. 3225 // But if NewEltVT is smaller that EltVT the BUILD_VECTOR does not accept 3226 // it. 3227 if (NewEltVT.bitsLT(EltVT)) { 3228 3229 // Convert shuffle node. 3230 // If original node was v4i64 and the new EltVT is i32, 3231 // cast operands to v8i32 and re-build the mask. 3232 3233 // Calculate new VT, the size of the new VT should be equal to original. 3234 EVT NewVT = 3235 EVT::getVectorVT(*DAG.getContext(), NewEltVT, 3236 VT.getSizeInBits() / NewEltVT.getSizeInBits()); 3237 assert(NewVT.bitsEq(VT)); 3238 3239 // cast operands to new VT 3240 Op0 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op0); 3241 Op1 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op1); 3242 3243 // Convert the shuffle mask 3244 unsigned int factor = 3245 NewVT.getVectorNumElements()/VT.getVectorNumElements(); 3246 3247 // EltVT gets smaller 3248 assert(factor > 0); 3249 3250 for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) { 3251 if (Mask[i] < 0) { 3252 for (unsigned fi = 0; fi < factor; ++fi) 3253 NewMask.push_back(Mask[i]); 3254 } 3255 else { 3256 for (unsigned fi = 0; fi < factor; ++fi) 3257 NewMask.push_back(Mask[i]*factor+fi); 3258 } 3259 } 3260 Mask = NewMask; 3261 VT = NewVT; 3262 } 3263 EltVT = NewEltVT; 3264 } 3265 unsigned NumElems = VT.getVectorNumElements(); 3266 SmallVector<SDValue, 16> Ops; 3267 for (unsigned i = 0; i != NumElems; ++i) { 3268 if (Mask[i] < 0) { 3269 Ops.push_back(DAG.getUNDEF(EltVT)); 3270 continue; 3271 } 3272 unsigned Idx = Mask[i]; 3273 if (Idx < NumElems) 3274 Ops.push_back(DAG.getNode( 3275 ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op0, 3276 DAG.getConstant(Idx, dl, TLI.getVectorIdxTy(DAG.getDataLayout())))); 3277 else 3278 Ops.push_back(DAG.getNode( 3279 ISD::EXTRACT_VECTOR_ELT, dl, EltVT, Op1, 3280 DAG.getConstant(Idx - NumElems, dl, 3281 TLI.getVectorIdxTy(DAG.getDataLayout())))); 3282 } 3283 3284 Tmp1 = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); 3285 // We may have changed the BUILD_VECTOR type. Cast it back to the Node type. 3286 Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), Tmp1); 3287 Results.push_back(Tmp1); 3288 break; 3289 } 3290 case ISD::EXTRACT_ELEMENT: { 3291 EVT OpTy = Node->getOperand(0).getValueType(); 3292 if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) { 3293 // 1 -> Hi 3294 Tmp1 = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0), 3295 DAG.getConstant(OpTy.getSizeInBits() / 2, dl, 3296 TLI.getShiftAmountTy( 3297 Node->getOperand(0).getValueType(), 3298 DAG.getDataLayout()))); 3299 Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Tmp1); 3300 } else { 3301 // 0 -> Lo 3302 Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), 3303 Node->getOperand(0)); 3304 } 3305 Results.push_back(Tmp1); 3306 break; 3307 } 3308 case ISD::STACKSAVE: 3309 // Expand to CopyFromReg if the target set 3310 // StackPointerRegisterToSaveRestore. 3311 if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) { 3312 Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, SP, 3313 Node->getValueType(0))); 3314 Results.push_back(Results[0].getValue(1)); 3315 } else { 3316 Results.push_back(DAG.getUNDEF(Node->getValueType(0))); 3317 Results.push_back(Node->getOperand(0)); 3318 } 3319 break; 3320 case ISD::STACKRESTORE: 3321 // Expand to CopyToReg if the target set 3322 // StackPointerRegisterToSaveRestore. 3323 if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) { 3324 Results.push_back(DAG.getCopyToReg(Node->getOperand(0), dl, SP, 3325 Node->getOperand(1))); 3326 } else { 3327 Results.push_back(Node->getOperand(0)); 3328 } 3329 break; 3330 case ISD::GET_DYNAMIC_AREA_OFFSET: 3331 Results.push_back(DAG.getConstant(0, dl, Node->getValueType(0))); 3332 Results.push_back(Results[0].getValue(0)); 3333 break; 3334 case ISD::FCOPYSIGN: 3335 Results.push_back(ExpandFCOPYSIGN(Node)); 3336 break; 3337 case ISD::FNEG: 3338 // Expand Y = FNEG(X) -> Y = SUB -0.0, X 3339 Tmp1 = DAG.getConstantFP(-0.0, dl, Node->getValueType(0)); 3340 // TODO: If FNEG has fast-math-flags, propagate them to the FSUB. 3341 Tmp1 = DAG.getNode(ISD::FSUB, dl, Node->getValueType(0), Tmp1, 3342 Node->getOperand(0)); 3343 Results.push_back(Tmp1); 3344 break; 3345 case ISD::FABS: 3346 Results.push_back(ExpandFABS(Node)); 3347 break; 3348 case ISD::SMIN: 3349 case ISD::SMAX: 3350 case ISD::UMIN: 3351 case ISD::UMAX: { 3352 // Expand Y = MAX(A, B) -> Y = (A > B) ? A : B 3353 ISD::CondCode Pred; 3354 switch (Node->getOpcode()) { 3355 default: llvm_unreachable("How did we get here?"); 3356 case ISD::SMAX: Pred = ISD::SETGT; break; 3357 case ISD::SMIN: Pred = ISD::SETLT; break; 3358 case ISD::UMAX: Pred = ISD::SETUGT; break; 3359 case ISD::UMIN: Pred = ISD::SETULT; break; 3360 } 3361 Tmp1 = Node->getOperand(0); 3362 Tmp2 = Node->getOperand(1); 3363 Tmp1 = DAG.getSelectCC(dl, Tmp1, Tmp2, Tmp1, Tmp2, Pred); 3364 Results.push_back(Tmp1); 3365 break; 3366 } 3367 3368 case ISD::FSIN: 3369 case ISD::FCOS: { 3370 EVT VT = Node->getValueType(0); 3371 // Turn fsin / fcos into ISD::FSINCOS node if there are a pair of fsin / 3372 // fcos which share the same operand and both are used. 3373 if ((TLI.isOperationLegalOrCustom(ISD::FSINCOS, VT) || 3374 canCombineSinCosLibcall(Node, TLI, TM)) 3375 && useSinCos(Node)) { 3376 SDVTList VTs = DAG.getVTList(VT, VT); 3377 Tmp1 = DAG.getNode(ISD::FSINCOS, dl, VTs, Node->getOperand(0)); 3378 if (Node->getOpcode() == ISD::FCOS) 3379 Tmp1 = Tmp1.getValue(1); 3380 Results.push_back(Tmp1); 3381 } 3382 break; 3383 } 3384 case ISD::FMAD: 3385 llvm_unreachable("Illegal fmad should never be formed"); 3386 3387 case ISD::FP16_TO_FP: 3388 if (Node->getValueType(0) != MVT::f32) { 3389 // We can extend to types bigger than f32 in two steps without changing 3390 // the result. Since "f16 -> f32" is much more commonly available, give 3391 // CodeGen the option of emitting that before resorting to a libcall. 3392 SDValue Res = 3393 DAG.getNode(ISD::FP16_TO_FP, dl, MVT::f32, Node->getOperand(0)); 3394 Results.push_back( 3395 DAG.getNode(ISD::FP_EXTEND, dl, Node->getValueType(0), Res)); 3396 } 3397 break; 3398 case ISD::FP_TO_FP16: 3399 if (!TLI.useSoftFloat() && TM.Options.UnsafeFPMath) { 3400 SDValue Op = Node->getOperand(0); 3401 MVT SVT = Op.getSimpleValueType(); 3402 if ((SVT == MVT::f64 || SVT == MVT::f80) && 3403 TLI.isOperationLegalOrCustom(ISD::FP_TO_FP16, MVT::f32)) { 3404 // Under fastmath, we can expand this node into a fround followed by 3405 // a float-half conversion. 3406 SDValue FloatVal = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Op, 3407 DAG.getIntPtrConstant(0, dl)); 3408 Results.push_back( 3409 DAG.getNode(ISD::FP_TO_FP16, dl, MVT::i16, FloatVal)); 3410 } 3411 } 3412 break; 3413 case ISD::ConstantFP: { 3414 ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node); 3415 // Check to see if this FP immediate is already legal. 3416 // If this is a legal constant, turn it into a TargetConstantFP node. 3417 if (!TLI.isFPImmLegal(CFP->getValueAPF(), Node->getValueType(0))) 3418 Results.push_back(ExpandConstantFP(CFP, true)); 3419 break; 3420 } 3421 case ISD::Constant: { 3422 ConstantSDNode *CP = cast<ConstantSDNode>(Node); 3423 Results.push_back(ExpandConstant(CP)); 3424 break; 3425 } 3426 case ISD::FSUB: { 3427 EVT VT = Node->getValueType(0); 3428 if (TLI.isOperationLegalOrCustom(ISD::FADD, VT) && 3429 TLI.isOperationLegalOrCustom(ISD::FNEG, VT)) { 3430 const SDNodeFlags *Flags = &cast<BinaryWithFlagsSDNode>(Node)->Flags; 3431 Tmp1 = DAG.getNode(ISD::FNEG, dl, VT, Node->getOperand(1)); 3432 Tmp1 = DAG.getNode(ISD::FADD, dl, VT, Node->getOperand(0), Tmp1, Flags); 3433 Results.push_back(Tmp1); 3434 } 3435 break; 3436 } 3437 case ISD::SUB: { 3438 EVT VT = Node->getValueType(0); 3439 assert(TLI.isOperationLegalOrCustom(ISD::ADD, VT) && 3440 TLI.isOperationLegalOrCustom(ISD::XOR, VT) && 3441 "Don't know how to expand this subtraction!"); 3442 Tmp1 = DAG.getNode(ISD::XOR, dl, VT, Node->getOperand(1), 3443 DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), dl, 3444 VT)); 3445 Tmp1 = DAG.getNode(ISD::ADD, dl, VT, Tmp1, DAG.getConstant(1, dl, VT)); 3446 Results.push_back(DAG.getNode(ISD::ADD, dl, VT, Node->getOperand(0), Tmp1)); 3447 break; 3448 } 3449 case ISD::UREM: 3450 case ISD::SREM: { 3451 EVT VT = Node->getValueType(0); 3452 bool isSigned = Node->getOpcode() == ISD::SREM; 3453 unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV; 3454 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; 3455 Tmp2 = Node->getOperand(0); 3456 Tmp3 = Node->getOperand(1); 3457 if (TLI.isOperationLegalOrCustom(DivRemOpc, VT)) { 3458 SDVTList VTs = DAG.getVTList(VT, VT); 3459 Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Tmp2, Tmp3).getValue(1); 3460 Results.push_back(Tmp1); 3461 } else if (TLI.isOperationLegalOrCustom(DivOpc, VT)) { 3462 // X % Y -> X-X/Y*Y 3463 Tmp1 = DAG.getNode(DivOpc, dl, VT, Tmp2, Tmp3); 3464 Tmp1 = DAG.getNode(ISD::MUL, dl, VT, Tmp1, Tmp3); 3465 Tmp1 = DAG.getNode(ISD::SUB, dl, VT, Tmp2, Tmp1); 3466 Results.push_back(Tmp1); 3467 } 3468 break; 3469 } 3470 case ISD::UDIV: 3471 case ISD::SDIV: { 3472 bool isSigned = Node->getOpcode() == ISD::SDIV; 3473 unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM; 3474 EVT VT = Node->getValueType(0); 3475 if (TLI.isOperationLegalOrCustom(DivRemOpc, VT)) { 3476 SDVTList VTs = DAG.getVTList(VT, VT); 3477 Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Node->getOperand(0), 3478 Node->getOperand(1)); 3479 Results.push_back(Tmp1); 3480 } 3481 break; 3482 } 3483 case ISD::MULHU: 3484 case ISD::MULHS: { 3485 unsigned ExpandOpcode = Node->getOpcode() == ISD::MULHU ? ISD::UMUL_LOHI : 3486 ISD::SMUL_LOHI; 3487 EVT VT = Node->getValueType(0); 3488 SDVTList VTs = DAG.getVTList(VT, VT); 3489 assert(TLI.isOperationLegalOrCustom(ExpandOpcode, VT) && 3490 "If this wasn't legal, it shouldn't have been created!"); 3491 Tmp1 = DAG.getNode(ExpandOpcode, dl, VTs, Node->getOperand(0), 3492 Node->getOperand(1)); 3493 Results.push_back(Tmp1.getValue(1)); 3494 break; 3495 } 3496 case ISD::MUL: { 3497 EVT VT = Node->getValueType(0); 3498 SDVTList VTs = DAG.getVTList(VT, VT); 3499 // See if multiply or divide can be lowered using two-result operations. 3500 // We just need the low half of the multiply; try both the signed 3501 // and unsigned forms. If the target supports both SMUL_LOHI and 3502 // UMUL_LOHI, form a preference by checking which forms of plain 3503 // MULH it supports. 3504 bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT); 3505 bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT); 3506 bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT); 3507 bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT); 3508 unsigned OpToUse = 0; 3509 if (HasSMUL_LOHI && !HasMULHS) { 3510 OpToUse = ISD::SMUL_LOHI; 3511 } else if (HasUMUL_LOHI && !HasMULHU) { 3512 OpToUse = ISD::UMUL_LOHI; 3513 } else if (HasSMUL_LOHI) { 3514 OpToUse = ISD::SMUL_LOHI; 3515 } else if (HasUMUL_LOHI) { 3516 OpToUse = ISD::UMUL_LOHI; 3517 } 3518 if (OpToUse) { 3519 Results.push_back(DAG.getNode(OpToUse, dl, VTs, Node->getOperand(0), 3520 Node->getOperand(1))); 3521 break; 3522 } 3523 3524 SDValue Lo, Hi; 3525 EVT HalfType = VT.getHalfSizedIntegerVT(*DAG.getContext()); 3526 if (TLI.isOperationLegalOrCustom(ISD::ZERO_EXTEND, VT) && 3527 TLI.isOperationLegalOrCustom(ISD::ANY_EXTEND, VT) && 3528 TLI.isOperationLegalOrCustom(ISD::SHL, VT) && 3529 TLI.isOperationLegalOrCustom(ISD::OR, VT) && 3530 TLI.expandMUL(Node, Lo, Hi, HalfType, DAG)) { 3531 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo); 3532 Hi = DAG.getNode(ISD::ANY_EXTEND, dl, VT, Hi); 3533 SDValue Shift = 3534 DAG.getConstant(HalfType.getSizeInBits(), dl, 3535 TLI.getShiftAmountTy(HalfType, DAG.getDataLayout())); 3536 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift); 3537 Results.push_back(DAG.getNode(ISD::OR, dl, VT, Lo, Hi)); 3538 } 3539 break; 3540 } 3541 case ISD::SADDO: 3542 case ISD::SSUBO: { 3543 SDValue LHS = Node->getOperand(0); 3544 SDValue RHS = Node->getOperand(1); 3545 SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::SADDO ? 3546 ISD::ADD : ISD::SUB, dl, LHS.getValueType(), 3547 LHS, RHS); 3548 Results.push_back(Sum); 3549 EVT ResultType = Node->getValueType(1); 3550 EVT OType = getSetCCResultType(Node->getValueType(0)); 3551 3552 SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType()); 3553 3554 // LHSSign -> LHS >= 0 3555 // RHSSign -> RHS >= 0 3556 // SumSign -> Sum >= 0 3557 // 3558 // Add: 3559 // Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign) 3560 // Sub: 3561 // Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign) 3562 // 3563 SDValue LHSSign = DAG.getSetCC(dl, OType, LHS, Zero, ISD::SETGE); 3564 SDValue RHSSign = DAG.getSetCC(dl, OType, RHS, Zero, ISD::SETGE); 3565 SDValue SignsMatch = DAG.getSetCC(dl, OType, LHSSign, RHSSign, 3566 Node->getOpcode() == ISD::SADDO ? 3567 ISD::SETEQ : ISD::SETNE); 3568 3569 SDValue SumSign = DAG.getSetCC(dl, OType, Sum, Zero, ISD::SETGE); 3570 SDValue SumSignNE = DAG.getSetCC(dl, OType, LHSSign, SumSign, ISD::SETNE); 3571 3572 SDValue Cmp = DAG.getNode(ISD::AND, dl, OType, SignsMatch, SumSignNE); 3573 Results.push_back(DAG.getBoolExtOrTrunc(Cmp, dl, ResultType, ResultType)); 3574 break; 3575 } 3576 case ISD::UADDO: 3577 case ISD::USUBO: { 3578 SDValue LHS = Node->getOperand(0); 3579 SDValue RHS = Node->getOperand(1); 3580 SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::UADDO ? 3581 ISD::ADD : ISD::SUB, dl, LHS.getValueType(), 3582 LHS, RHS); 3583 Results.push_back(Sum); 3584 3585 EVT ResultType = Node->getValueType(1); 3586 EVT SetCCType = getSetCCResultType(Node->getValueType(0)); 3587 ISD::CondCode CC 3588 = Node->getOpcode() == ISD::UADDO ? ISD::SETULT : ISD::SETUGT; 3589 SDValue SetCC = DAG.getSetCC(dl, SetCCType, Sum, LHS, CC); 3590 3591 Results.push_back(DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType)); 3592 break; 3593 } 3594 case ISD::UMULO: 3595 case ISD::SMULO: { 3596 EVT VT = Node->getValueType(0); 3597 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits() * 2); 3598 SDValue LHS = Node->getOperand(0); 3599 SDValue RHS = Node->getOperand(1); 3600 SDValue BottomHalf; 3601 SDValue TopHalf; 3602 static const unsigned Ops[2][3] = 3603 { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND }, 3604 { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }}; 3605 bool isSigned = Node->getOpcode() == ISD::SMULO; 3606 if (TLI.isOperationLegalOrCustom(Ops[isSigned][0], VT)) { 3607 BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS); 3608 TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS); 3609 } else if (TLI.isOperationLegalOrCustom(Ops[isSigned][1], VT)) { 3610 BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS, 3611 RHS); 3612 TopHalf = BottomHalf.getValue(1); 3613 } else if (TLI.isTypeLegal(WideVT)) { 3614 LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS); 3615 RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS); 3616 Tmp1 = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS); 3617 BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1, 3618 DAG.getIntPtrConstant(0, dl)); 3619 TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1, 3620 DAG.getIntPtrConstant(1, dl)); 3621 } else { 3622 // We can fall back to a libcall with an illegal type for the MUL if we 3623 // have a libcall big enough. 3624 // Also, we can fall back to a division in some cases, but that's a big 3625 // performance hit in the general case. 3626 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; 3627 if (WideVT == MVT::i16) 3628 LC = RTLIB::MUL_I16; 3629 else if (WideVT == MVT::i32) 3630 LC = RTLIB::MUL_I32; 3631 else if (WideVT == MVT::i64) 3632 LC = RTLIB::MUL_I64; 3633 else if (WideVT == MVT::i128) 3634 LC = RTLIB::MUL_I128; 3635 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!"); 3636 3637 // The high part is obtained by SRA'ing all but one of the bits of low 3638 // part. 3639 unsigned LoSize = VT.getSizeInBits(); 3640 SDValue HiLHS = 3641 DAG.getNode(ISD::SRA, dl, VT, RHS, 3642 DAG.getConstant(LoSize - 1, dl, 3643 TLI.getPointerTy(DAG.getDataLayout()))); 3644 SDValue HiRHS = 3645 DAG.getNode(ISD::SRA, dl, VT, LHS, 3646 DAG.getConstant(LoSize - 1, dl, 3647 TLI.getPointerTy(DAG.getDataLayout()))); 3648 3649 // Here we're passing the 2 arguments explicitly as 4 arguments that are 3650 // pre-lowered to the correct types. This all depends upon WideVT not 3651 // being a legal type for the architecture and thus has to be split to 3652 // two arguments. 3653 SDValue Args[] = { LHS, HiLHS, RHS, HiRHS }; 3654 SDValue Ret = ExpandLibCall(LC, WideVT, Args, 4, isSigned, dl); 3655 BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Ret, 3656 DAG.getIntPtrConstant(0, dl)); 3657 TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Ret, 3658 DAG.getIntPtrConstant(1, dl)); 3659 // Ret is a node with an illegal type. Because such things are not 3660 // generally permitted during this phase of legalization, make sure the 3661 // node has no more uses. The above EXTRACT_ELEMENT nodes should have been 3662 // folded. 3663 assert(Ret->use_empty() && 3664 "Unexpected uses of illegally type from expanded lib call."); 3665 } 3666 3667 if (isSigned) { 3668 Tmp1 = DAG.getConstant( 3669 VT.getSizeInBits() - 1, dl, 3670 TLI.getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout())); 3671 Tmp1 = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, Tmp1); 3672 TopHalf = DAG.getSetCC(dl, getSetCCResultType(VT), TopHalf, Tmp1, 3673 ISD::SETNE); 3674 } else { 3675 TopHalf = DAG.getSetCC(dl, getSetCCResultType(VT), TopHalf, 3676 DAG.getConstant(0, dl, VT), ISD::SETNE); 3677 } 3678 Results.push_back(BottomHalf); 3679 Results.push_back(TopHalf); 3680 break; 3681 } 3682 case ISD::BUILD_PAIR: { 3683 EVT PairTy = Node->getValueType(0); 3684 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Node->getOperand(0)); 3685 Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Node->getOperand(1)); 3686 Tmp2 = DAG.getNode( 3687 ISD::SHL, dl, PairTy, Tmp2, 3688 DAG.getConstant(PairTy.getSizeInBits() / 2, dl, 3689 TLI.getShiftAmountTy(PairTy, DAG.getDataLayout()))); 3690 Results.push_back(DAG.getNode(ISD::OR, dl, PairTy, Tmp1, Tmp2)); 3691 break; 3692 } 3693 case ISD::SELECT: 3694 Tmp1 = Node->getOperand(0); 3695 Tmp2 = Node->getOperand(1); 3696 Tmp3 = Node->getOperand(2); 3697 if (Tmp1.getOpcode() == ISD::SETCC) { 3698 Tmp1 = DAG.getSelectCC(dl, Tmp1.getOperand(0), Tmp1.getOperand(1), 3699 Tmp2, Tmp3, 3700 cast<CondCodeSDNode>(Tmp1.getOperand(2))->get()); 3701 } else { 3702 Tmp1 = DAG.getSelectCC(dl, Tmp1, 3703 DAG.getConstant(0, dl, Tmp1.getValueType()), 3704 Tmp2, Tmp3, ISD::SETNE); 3705 } 3706 Results.push_back(Tmp1); 3707 break; 3708 case ISD::BR_JT: { 3709 SDValue Chain = Node->getOperand(0); 3710 SDValue Table = Node->getOperand(1); 3711 SDValue Index = Node->getOperand(2); 3712 3713 EVT PTy = TLI.getPointerTy(DAG.getDataLayout()); 3714 3715 const DataLayout &TD = DAG.getDataLayout(); 3716 unsigned EntrySize = 3717 DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(TD); 3718 3719 Index = DAG.getNode(ISD::MUL, dl, Index.getValueType(), Index, 3720 DAG.getConstant(EntrySize, dl, Index.getValueType())); 3721 SDValue Addr = DAG.getNode(ISD::ADD, dl, Index.getValueType(), 3722 Index, Table); 3723 3724 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8); 3725 SDValue LD = DAG.getExtLoad( 3726 ISD::SEXTLOAD, dl, PTy, Chain, Addr, 3727 MachinePointerInfo::getJumpTable(DAG.getMachineFunction()), MemVT, 3728 false, false, false, 0); 3729 Addr = LD; 3730 if (TM.getRelocationModel() == Reloc::PIC_) { 3731 // For PIC, the sequence is: 3732 // BRIND(load(Jumptable + index) + RelocBase) 3733 // RelocBase can be JumpTable, GOT or some sort of global base. 3734 Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, 3735 TLI.getPICJumpTableRelocBase(Table, DAG)); 3736 } 3737 Tmp1 = DAG.getNode(ISD::BRIND, dl, MVT::Other, LD.getValue(1), Addr); 3738 Results.push_back(Tmp1); 3739 break; 3740 } 3741 case ISD::BRCOND: 3742 // Expand brcond's setcc into its constituent parts and create a BR_CC 3743 // Node. 3744 Tmp1 = Node->getOperand(0); 3745 Tmp2 = Node->getOperand(1); 3746 if (Tmp2.getOpcode() == ISD::SETCC) { 3747 Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, 3748 Tmp1, Tmp2.getOperand(2), 3749 Tmp2.getOperand(0), Tmp2.getOperand(1), 3750 Node->getOperand(2)); 3751 } else { 3752 // We test only the i1 bit. Skip the AND if UNDEF. 3753 Tmp3 = (Tmp2.getOpcode() == ISD::UNDEF) ? Tmp2 : 3754 DAG.getNode(ISD::AND, dl, Tmp2.getValueType(), Tmp2, 3755 DAG.getConstant(1, dl, Tmp2.getValueType())); 3756 Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1, 3757 DAG.getCondCode(ISD::SETNE), Tmp3, 3758 DAG.getConstant(0, dl, Tmp3.getValueType()), 3759 Node->getOperand(2)); 3760 } 3761 Results.push_back(Tmp1); 3762 break; 3763 case ISD::SETCC: { 3764 Tmp1 = Node->getOperand(0); 3765 Tmp2 = Node->getOperand(1); 3766 Tmp3 = Node->getOperand(2); 3767 bool Legalized = LegalizeSetCCCondCode(Node->getValueType(0), Tmp1, Tmp2, 3768 Tmp3, NeedInvert, dl); 3769 3770 if (Legalized) { 3771 // If we expanded the SETCC by swapping LHS and RHS, or by inverting the 3772 // condition code, create a new SETCC node. 3773 if (Tmp3.getNode()) 3774 Tmp1 = DAG.getNode(ISD::SETCC, dl, Node->getValueType(0), 3775 Tmp1, Tmp2, Tmp3); 3776 3777 // If we expanded the SETCC by inverting the condition code, then wrap 3778 // the existing SETCC in a NOT to restore the intended condition. 3779 if (NeedInvert) 3780 Tmp1 = DAG.getLogicalNOT(dl, Tmp1, Tmp1->getValueType(0)); 3781 3782 Results.push_back(Tmp1); 3783 break; 3784 } 3785 3786 // Otherwise, SETCC for the given comparison type must be completely 3787 // illegal; expand it into a SELECT_CC. 3788 EVT VT = Node->getValueType(0); 3789 int TrueValue; 3790 switch (TLI.getBooleanContents(Tmp1->getValueType(0))) { 3791 case TargetLowering::ZeroOrOneBooleanContent: 3792 case TargetLowering::UndefinedBooleanContent: 3793 TrueValue = 1; 3794 break; 3795 case TargetLowering::ZeroOrNegativeOneBooleanContent: 3796 TrueValue = -1; 3797 break; 3798 } 3799 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2, 3800 DAG.getConstant(TrueValue, dl, VT), 3801 DAG.getConstant(0, dl, VT), 3802 Tmp3); 3803 Results.push_back(Tmp1); 3804 break; 3805 } 3806 case ISD::SELECT_CC: { 3807 Tmp1 = Node->getOperand(0); // LHS 3808 Tmp2 = Node->getOperand(1); // RHS 3809 Tmp3 = Node->getOperand(2); // True 3810 Tmp4 = Node->getOperand(3); // False 3811 EVT VT = Node->getValueType(0); 3812 SDValue CC = Node->getOperand(4); 3813 ISD::CondCode CCOp = cast<CondCodeSDNode>(CC)->get(); 3814 3815 if (TLI.isCondCodeLegal(CCOp, Tmp1.getSimpleValueType())) { 3816 // If the condition code is legal, then we need to expand this 3817 // node using SETCC and SELECT. 3818 EVT CmpVT = Tmp1.getValueType(); 3819 assert(!TLI.isOperationExpand(ISD::SELECT, VT) && 3820 "Cannot expand ISD::SELECT_CC when ISD::SELECT also needs to be " 3821 "expanded."); 3822 EVT CCVT = 3823 TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), CmpVT); 3824 SDValue Cond = DAG.getNode(ISD::SETCC, dl, CCVT, Tmp1, Tmp2, CC); 3825 Results.push_back(DAG.getSelect(dl, VT, Cond, Tmp3, Tmp4)); 3826 break; 3827 } 3828 3829 // SELECT_CC is legal, so the condition code must not be. 3830 bool Legalized = false; 3831 // Try to legalize by inverting the condition. This is for targets that 3832 // might support an ordered version of a condition, but not the unordered 3833 // version (or vice versa). 3834 ISD::CondCode InvCC = ISD::getSetCCInverse(CCOp, 3835 Tmp1.getValueType().isInteger()); 3836 if (TLI.isCondCodeLegal(InvCC, Tmp1.getSimpleValueType())) { 3837 // Use the new condition code and swap true and false 3838 Legalized = true; 3839 Tmp1 = DAG.getSelectCC(dl, Tmp1, Tmp2, Tmp4, Tmp3, InvCC); 3840 } else { 3841 // If The inverse is not legal, then try to swap the arguments using 3842 // the inverse condition code. 3843 ISD::CondCode SwapInvCC = ISD::getSetCCSwappedOperands(InvCC); 3844 if (TLI.isCondCodeLegal(SwapInvCC, Tmp1.getSimpleValueType())) { 3845 // The swapped inverse condition is legal, so swap true and false, 3846 // lhs and rhs. 3847 Legalized = true; 3848 Tmp1 = DAG.getSelectCC(dl, Tmp2, Tmp1, Tmp4, Tmp3, SwapInvCC); 3849 } 3850 } 3851 3852 if (!Legalized) { 3853 Legalized = LegalizeSetCCCondCode( 3854 getSetCCResultType(Tmp1.getValueType()), Tmp1, Tmp2, CC, NeedInvert, 3855 dl); 3856 3857 assert(Legalized && "Can't legalize SELECT_CC with legal condition!"); 3858 3859 // If we expanded the SETCC by inverting the condition code, then swap 3860 // the True/False operands to match. 3861 if (NeedInvert) 3862 std::swap(Tmp3, Tmp4); 3863 3864 // If we expanded the SETCC by swapping LHS and RHS, or by inverting the 3865 // condition code, create a new SELECT_CC node. 3866 if (CC.getNode()) { 3867 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), 3868 Tmp1, Tmp2, Tmp3, Tmp4, CC); 3869 } else { 3870 Tmp2 = DAG.getConstant(0, dl, Tmp1.getValueType()); 3871 CC = DAG.getCondCode(ISD::SETNE); 3872 Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), Tmp1, 3873 Tmp2, Tmp3, Tmp4, CC); 3874 } 3875 } 3876 Results.push_back(Tmp1); 3877 break; 3878 } 3879 case ISD::BR_CC: { 3880 Tmp1 = Node->getOperand(0); // Chain 3881 Tmp2 = Node->getOperand(2); // LHS 3882 Tmp3 = Node->getOperand(3); // RHS 3883 Tmp4 = Node->getOperand(1); // CC 3884 3885 bool Legalized = LegalizeSetCCCondCode(getSetCCResultType( 3886 Tmp2.getValueType()), Tmp2, Tmp3, Tmp4, NeedInvert, dl); 3887 (void)Legalized; 3888 assert(Legalized && "Can't legalize BR_CC with legal condition!"); 3889 3890 // If we expanded the SETCC by inverting the condition code, then wrap 3891 // the existing SETCC in a NOT to restore the intended condition. 3892 if (NeedInvert) 3893 Tmp4 = DAG.getNOT(dl, Tmp4, Tmp4->getValueType(0)); 3894 3895 // If we expanded the SETCC by swapping LHS and RHS, create a new BR_CC 3896 // node. 3897 if (Tmp4.getNode()) { 3898 Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, 3899 Tmp4, Tmp2, Tmp3, Node->getOperand(4)); 3900 } else { 3901 Tmp3 = DAG.getConstant(0, dl, Tmp2.getValueType()); 3902 Tmp4 = DAG.getCondCode(ISD::SETNE); 3903 Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, Tmp4, 3904 Tmp2, Tmp3, Node->getOperand(4)); 3905 } 3906 Results.push_back(Tmp1); 3907 break; 3908 } 3909 case ISD::BUILD_VECTOR: 3910 Results.push_back(ExpandBUILD_VECTOR(Node)); 3911 break; 3912 case ISD::SRA: 3913 case ISD::SRL: 3914 case ISD::SHL: { 3915 // Scalarize vector SRA/SRL/SHL. 3916 EVT VT = Node->getValueType(0); 3917 assert(VT.isVector() && "Unable to legalize non-vector shift"); 3918 assert(TLI.isTypeLegal(VT.getScalarType())&& "Element type must be legal"); 3919 unsigned NumElem = VT.getVectorNumElements(); 3920 3921 SmallVector<SDValue, 8> Scalars; 3922 for (unsigned Idx = 0; Idx < NumElem; Idx++) { 3923 SDValue Ex = DAG.getNode( 3924 ISD::EXTRACT_VECTOR_ELT, dl, VT.getScalarType(), Node->getOperand(0), 3925 DAG.getConstant(Idx, dl, TLI.getVectorIdxTy(DAG.getDataLayout()))); 3926 SDValue Sh = DAG.getNode( 3927 ISD::EXTRACT_VECTOR_ELT, dl, VT.getScalarType(), Node->getOperand(1), 3928 DAG.getConstant(Idx, dl, TLI.getVectorIdxTy(DAG.getDataLayout()))); 3929 Scalars.push_back(DAG.getNode(Node->getOpcode(), dl, 3930 VT.getScalarType(), Ex, Sh)); 3931 } 3932 SDValue Result = 3933 DAG.getNode(ISD::BUILD_VECTOR, dl, Node->getValueType(0), Scalars); 3934 ReplaceNode(SDValue(Node, 0), Result); 3935 break; 3936 } 3937 case ISD::GLOBAL_OFFSET_TABLE: 3938 case ISD::GlobalAddress: 3939 case ISD::GlobalTLSAddress: 3940 case ISD::ExternalSymbol: 3941 case ISD::ConstantPool: 3942 case ISD::JumpTable: 3943 case ISD::INTRINSIC_W_CHAIN: 3944 case ISD::INTRINSIC_WO_CHAIN: 3945 case ISD::INTRINSIC_VOID: 3946 // FIXME: Custom lowering for these operations shouldn't return null! 3947 break; 3948 } 3949 3950 // Replace the original node with the legalized result. 3951 if (Results.empty()) 3952 return false; 3953 3954 ReplaceNode(Node, Results.data()); 3955 return true; 3956 } 3957 3958 void SelectionDAGLegalize::ConvertNodeToLibcall(SDNode *Node) { 3959 SmallVector<SDValue, 8> Results; 3960 SDLoc dl(Node); 3961 SDValue Tmp1, Tmp2, Tmp3, Tmp4; 3962 unsigned Opc = Node->getOpcode(); 3963 switch (Opc) { 3964 case ISD::ATOMIC_FENCE: { 3965 // If the target didn't lower this, lower it to '__sync_synchronize()' call 3966 // FIXME: handle "fence singlethread" more efficiently. 3967 TargetLowering::ArgListTy Args; 3968 3969 TargetLowering::CallLoweringInfo CLI(DAG); 3970 CLI.setDebugLoc(dl) 3971 .setChain(Node->getOperand(0)) 3972 .setCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()), 3973 DAG.getExternalSymbol("__sync_synchronize", 3974 TLI.getPointerTy(DAG.getDataLayout())), 3975 std::move(Args), 0); 3976 3977 std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI); 3978 3979 Results.push_back(CallResult.second); 3980 break; 3981 } 3982 // By default, atomic intrinsics are marked Legal and lowered. Targets 3983 // which don't support them directly, however, may want libcalls, in which 3984 // case they mark them Expand, and we get here. 3985 case ISD::ATOMIC_SWAP: 3986 case ISD::ATOMIC_LOAD_ADD: 3987 case ISD::ATOMIC_LOAD_SUB: 3988 case ISD::ATOMIC_LOAD_AND: 3989 case ISD::ATOMIC_LOAD_OR: 3990 case ISD::ATOMIC_LOAD_XOR: 3991 case ISD::ATOMIC_LOAD_NAND: 3992 case ISD::ATOMIC_LOAD_MIN: 3993 case ISD::ATOMIC_LOAD_MAX: 3994 case ISD::ATOMIC_LOAD_UMIN: 3995 case ISD::ATOMIC_LOAD_UMAX: 3996 case ISD::ATOMIC_CMP_SWAP: { 3997 MVT VT = cast<AtomicSDNode>(Node)->getMemoryVT().getSimpleVT(); 3998 RTLIB::Libcall LC = RTLIB::getATOMIC(Opc, VT); 3999 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unexpected atomic op or value type!"); 4000 4001 std::pair<SDValue, SDValue> Tmp = ExpandChainLibCall(LC, Node, false); 4002 Results.push_back(Tmp.first); 4003 Results.push_back(Tmp.second); 4004 break; 4005 } 4006 case ISD::TRAP: { 4007 // If this operation is not supported, lower it to 'abort()' call 4008 TargetLowering::ArgListTy Args; 4009 TargetLowering::CallLoweringInfo CLI(DAG); 4010 CLI.setDebugLoc(dl) 4011 .setChain(Node->getOperand(0)) 4012 .setCallee(CallingConv::C, Type::getVoidTy(*DAG.getContext()), 4013 DAG.getExternalSymbol("abort", 4014 TLI.getPointerTy(DAG.getDataLayout())), 4015 std::move(Args), 0); 4016 std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI); 4017 4018 Results.push_back(CallResult.second); 4019 break; 4020 } 4021 case ISD::FMINNUM: 4022 Results.push_back(ExpandFPLibCall(Node, RTLIB::FMIN_F32, RTLIB::FMIN_F64, 4023 RTLIB::FMIN_F80, RTLIB::FMIN_F128, 4024 RTLIB::FMIN_PPCF128)); 4025 break; 4026 case ISD::FMAXNUM: 4027 Results.push_back(ExpandFPLibCall(Node, RTLIB::FMAX_F32, RTLIB::FMAX_F64, 4028 RTLIB::FMAX_F80, RTLIB::FMAX_F128, 4029 RTLIB::FMAX_PPCF128)); 4030 break; 4031 case ISD::FSQRT: 4032 Results.push_back(ExpandFPLibCall(Node, RTLIB::SQRT_F32, RTLIB::SQRT_F64, 4033 RTLIB::SQRT_F80, RTLIB::SQRT_F128, 4034 RTLIB::SQRT_PPCF128)); 4035 break; 4036 case ISD::FSIN: 4037 Results.push_back(ExpandFPLibCall(Node, RTLIB::SIN_F32, RTLIB::SIN_F64, 4038 RTLIB::SIN_F80, RTLIB::SIN_F128, 4039 RTLIB::SIN_PPCF128)); 4040 break; 4041 case ISD::FCOS: 4042 Results.push_back(ExpandFPLibCall(Node, RTLIB::COS_F32, RTLIB::COS_F64, 4043 RTLIB::COS_F80, RTLIB::COS_F128, 4044 RTLIB::COS_PPCF128)); 4045 break; 4046 case ISD::FSINCOS: 4047 // Expand into sincos libcall. 4048 ExpandSinCosLibCall(Node, Results); 4049 break; 4050 case ISD::FLOG: 4051 Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG_F32, RTLIB::LOG_F64, 4052 RTLIB::LOG_F80, RTLIB::LOG_F128, 4053 RTLIB::LOG_PPCF128)); 4054 break; 4055 case ISD::FLOG2: 4056 Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG2_F32, RTLIB::LOG2_F64, 4057 RTLIB::LOG2_F80, RTLIB::LOG2_F128, 4058 RTLIB::LOG2_PPCF128)); 4059 break; 4060 case ISD::FLOG10: 4061 Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG10_F32, RTLIB::LOG10_F64, 4062 RTLIB::LOG10_F80, RTLIB::LOG10_F128, 4063 RTLIB::LOG10_PPCF128)); 4064 break; 4065 case ISD::FEXP: 4066 Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP_F32, RTLIB::EXP_F64, 4067 RTLIB::EXP_F80, RTLIB::EXP_F128, 4068 RTLIB::EXP_PPCF128)); 4069 break; 4070 case ISD::FEXP2: 4071 Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP2_F32, RTLIB::EXP2_F64, 4072 RTLIB::EXP2_F80, RTLIB::EXP2_F128, 4073 RTLIB::EXP2_PPCF128)); 4074 break; 4075 case ISD::FTRUNC: 4076 Results.push_back(ExpandFPLibCall(Node, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64, 4077 RTLIB::TRUNC_F80, RTLIB::TRUNC_F128, 4078 RTLIB::TRUNC_PPCF128)); 4079 break; 4080 case ISD::FFLOOR: 4081 Results.push_back(ExpandFPLibCall(Node, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64, 4082 RTLIB::FLOOR_F80, RTLIB::FLOOR_F128, 4083 RTLIB::FLOOR_PPCF128)); 4084 break; 4085 case ISD::FCEIL: 4086 Results.push_back(ExpandFPLibCall(Node, RTLIB::CEIL_F32, RTLIB::CEIL_F64, 4087 RTLIB::CEIL_F80, RTLIB::CEIL_F128, 4088 RTLIB::CEIL_PPCF128)); 4089 break; 4090 case ISD::FRINT: 4091 Results.push_back(ExpandFPLibCall(Node, RTLIB::RINT_F32, RTLIB::RINT_F64, 4092 RTLIB::RINT_F80, RTLIB::RINT_F128, 4093 RTLIB::RINT_PPCF128)); 4094 break; 4095 case ISD::FNEARBYINT: 4096 Results.push_back(ExpandFPLibCall(Node, RTLIB::NEARBYINT_F32, 4097 RTLIB::NEARBYINT_F64, 4098 RTLIB::NEARBYINT_F80, 4099 RTLIB::NEARBYINT_F128, 4100 RTLIB::NEARBYINT_PPCF128)); 4101 break; 4102 case ISD::FROUND: 4103 Results.push_back(ExpandFPLibCall(Node, RTLIB::ROUND_F32, 4104 RTLIB::ROUND_F64, 4105 RTLIB::ROUND_F80, 4106 RTLIB::ROUND_F128, 4107 RTLIB::ROUND_PPCF128)); 4108 break; 4109 case ISD::FPOWI: 4110 Results.push_back(ExpandFPLibCall(Node, RTLIB::POWI_F32, RTLIB::POWI_F64, 4111 RTLIB::POWI_F80, RTLIB::POWI_F128, 4112 RTLIB::POWI_PPCF128)); 4113 break; 4114 case ISD::FPOW: 4115 Results.push_back(ExpandFPLibCall(Node, RTLIB::POW_F32, RTLIB::POW_F64, 4116 RTLIB::POW_F80, RTLIB::POW_F128, 4117 RTLIB::POW_PPCF128)); 4118 break; 4119 case ISD::FDIV: 4120 Results.push_back(ExpandFPLibCall(Node, RTLIB::DIV_F32, RTLIB::DIV_F64, 4121 RTLIB::DIV_F80, RTLIB::DIV_F128, 4122 RTLIB::DIV_PPCF128)); 4123 break; 4124 case ISD::FREM: 4125 Results.push_back(ExpandFPLibCall(Node, RTLIB::REM_F32, RTLIB::REM_F64, 4126 RTLIB::REM_F80, RTLIB::REM_F128, 4127 RTLIB::REM_PPCF128)); 4128 break; 4129 case ISD::FMA: 4130 Results.push_back(ExpandFPLibCall(Node, RTLIB::FMA_F32, RTLIB::FMA_F64, 4131 RTLIB::FMA_F80, RTLIB::FMA_F128, 4132 RTLIB::FMA_PPCF128)); 4133 break; 4134 case ISD::FADD: 4135 Results.push_back(ExpandFPLibCall(Node, RTLIB::ADD_F32, RTLIB::ADD_F64, 4136 RTLIB::ADD_F80, RTLIB::ADD_F128, 4137 RTLIB::ADD_PPCF128)); 4138 break; 4139 case ISD::FMUL: 4140 Results.push_back(ExpandFPLibCall(Node, RTLIB::MUL_F32, RTLIB::MUL_F64, 4141 RTLIB::MUL_F80, RTLIB::MUL_F128, 4142 RTLIB::MUL_PPCF128)); 4143 break; 4144 case ISD::FP16_TO_FP: 4145 if (Node->getValueType(0) == MVT::f32) { 4146 Results.push_back(ExpandLibCall(RTLIB::FPEXT_F16_F32, Node, false)); 4147 } 4148 break; 4149 case ISD::FP_TO_FP16: { 4150 RTLIB::Libcall LC = 4151 RTLIB::getFPROUND(Node->getOperand(0).getValueType(), MVT::f16); 4152 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unable to expand fp_to_fp16"); 4153 Results.push_back(ExpandLibCall(LC, Node, false)); 4154 break; 4155 } 4156 case ISD::FSUB: 4157 Results.push_back(ExpandFPLibCall(Node, RTLIB::SUB_F32, RTLIB::SUB_F64, 4158 RTLIB::SUB_F80, RTLIB::SUB_F128, 4159 RTLIB::SUB_PPCF128)); 4160 break; 4161 case ISD::SREM: 4162 Results.push_back(ExpandIntLibCall(Node, true, 4163 RTLIB::SREM_I8, 4164 RTLIB::SREM_I16, RTLIB::SREM_I32, 4165 RTLIB::SREM_I64, RTLIB::SREM_I128)); 4166 break; 4167 case ISD::UREM: 4168 Results.push_back(ExpandIntLibCall(Node, false, 4169 RTLIB::UREM_I8, 4170 RTLIB::UREM_I16, RTLIB::UREM_I32, 4171 RTLIB::UREM_I64, RTLIB::UREM_I128)); 4172 break; 4173 case ISD::SDIV: 4174 Results.push_back(ExpandIntLibCall(Node, true, 4175 RTLIB::SDIV_I8, 4176 RTLIB::SDIV_I16, RTLIB::SDIV_I32, 4177 RTLIB::SDIV_I64, RTLIB::SDIV_I128)); 4178 break; 4179 case ISD::UDIV: 4180 Results.push_back(ExpandIntLibCall(Node, false, 4181 RTLIB::UDIV_I8, 4182 RTLIB::UDIV_I16, RTLIB::UDIV_I32, 4183 RTLIB::UDIV_I64, RTLIB::UDIV_I128)); 4184 break; 4185 case ISD::SDIVREM: 4186 case ISD::UDIVREM: 4187 // Expand into divrem libcall 4188 ExpandDivRemLibCall(Node, Results); 4189 break; 4190 case ISD::MUL: 4191 Results.push_back(ExpandIntLibCall(Node, false, 4192 RTLIB::MUL_I8, 4193 RTLIB::MUL_I16, RTLIB::MUL_I32, 4194 RTLIB::MUL_I64, RTLIB::MUL_I128)); 4195 break; 4196 } 4197 4198 // Replace the original node with the legalized result. 4199 if (!Results.empty()) 4200 ReplaceNode(Node, Results.data()); 4201 } 4202 4203 // Determine the vector type to use in place of an original scalar element when 4204 // promoting equally sized vectors. 4205 static MVT getPromotedVectorElementType(const TargetLowering &TLI, 4206 MVT EltVT, MVT NewEltVT) { 4207 unsigned OldEltsPerNewElt = EltVT.getSizeInBits() / NewEltVT.getSizeInBits(); 4208 MVT MidVT = MVT::getVectorVT(NewEltVT, OldEltsPerNewElt); 4209 assert(TLI.isTypeLegal(MidVT) && "unexpected"); 4210 return MidVT; 4211 } 4212 4213 void SelectionDAGLegalize::PromoteNode(SDNode *Node) { 4214 SmallVector<SDValue, 8> Results; 4215 MVT OVT = Node->getSimpleValueType(0); 4216 if (Node->getOpcode() == ISD::UINT_TO_FP || 4217 Node->getOpcode() == ISD::SINT_TO_FP || 4218 Node->getOpcode() == ISD::SETCC || 4219 Node->getOpcode() == ISD::EXTRACT_VECTOR_ELT || 4220 Node->getOpcode() == ISD::INSERT_VECTOR_ELT) { 4221 OVT = Node->getOperand(0).getSimpleValueType(); 4222 } 4223 if (Node->getOpcode() == ISD::BR_CC) 4224 OVT = Node->getOperand(2).getSimpleValueType(); 4225 MVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT); 4226 SDLoc dl(Node); 4227 SDValue Tmp1, Tmp2, Tmp3; 4228 switch (Node->getOpcode()) { 4229 case ISD::CTTZ: 4230 case ISD::CTTZ_ZERO_UNDEF: 4231 case ISD::CTLZ: 4232 case ISD::CTLZ_ZERO_UNDEF: 4233 case ISD::CTPOP: 4234 // Zero extend the argument. 4235 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0)); 4236 // Perform the larger operation. For CTPOP and CTTZ_ZERO_UNDEF, this is 4237 // already the correct result. 4238 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); 4239 if (Node->getOpcode() == ISD::CTTZ) { 4240 // FIXME: This should set a bit in the zero extended value instead. 4241 Tmp2 = DAG.getSetCC(dl, getSetCCResultType(NVT), 4242 Tmp1, DAG.getConstant(NVT.getSizeInBits(), dl, NVT), 4243 ISD::SETEQ); 4244 Tmp1 = DAG.getSelect(dl, NVT, Tmp2, 4245 DAG.getConstant(OVT.getSizeInBits(), dl, NVT), Tmp1); 4246 } else if (Node->getOpcode() == ISD::CTLZ || 4247 Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF) { 4248 // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT)) 4249 Tmp1 = DAG.getNode(ISD::SUB, dl, NVT, Tmp1, 4250 DAG.getConstant(NVT.getSizeInBits() - 4251 OVT.getSizeInBits(), dl, NVT)); 4252 } 4253 Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1)); 4254 break; 4255 case ISD::BSWAP: { 4256 unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits(); 4257 Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0)); 4258 Tmp1 = DAG.getNode(ISD::BSWAP, dl, NVT, Tmp1); 4259 Tmp1 = DAG.getNode( 4260 ISD::SRL, dl, NVT, Tmp1, 4261 DAG.getConstant(DiffBits, dl, 4262 TLI.getShiftAmountTy(NVT, DAG.getDataLayout()))); 4263 Results.push_back(Tmp1); 4264 break; 4265 } 4266 case ISD::FP_TO_UINT: 4267 case ISD::FP_TO_SINT: 4268 Tmp1 = PromoteLegalFP_TO_INT(Node->getOperand(0), Node->getValueType(0), 4269 Node->getOpcode() == ISD::FP_TO_SINT, dl); 4270 Results.push_back(Tmp1); 4271 break; 4272 case ISD::UINT_TO_FP: 4273 case ISD::SINT_TO_FP: 4274 Tmp1 = PromoteLegalINT_TO_FP(Node->getOperand(0), Node->getValueType(0), 4275 Node->getOpcode() == ISD::SINT_TO_FP, dl); 4276 Results.push_back(Tmp1); 4277 break; 4278 case ISD::VAARG: { 4279 SDValue Chain = Node->getOperand(0); // Get the chain. 4280 SDValue Ptr = Node->getOperand(1); // Get the pointer. 4281 4282 unsigned TruncOp; 4283 if (OVT.isVector()) { 4284 TruncOp = ISD::BITCAST; 4285 } else { 4286 assert(OVT.isInteger() 4287 && "VAARG promotion is supported only for vectors or integer types"); 4288 TruncOp = ISD::TRUNCATE; 4289 } 4290 4291 // Perform the larger operation, then convert back 4292 Tmp1 = DAG.getVAArg(NVT, dl, Chain, Ptr, Node->getOperand(2), 4293 Node->getConstantOperandVal(3)); 4294 Chain = Tmp1.getValue(1); 4295 4296 Tmp2 = DAG.getNode(TruncOp, dl, OVT, Tmp1); 4297 4298 // Modified the chain result - switch anything that used the old chain to 4299 // use the new one. 4300 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Tmp2); 4301 DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain); 4302 if (UpdatedNodes) { 4303 UpdatedNodes->insert(Tmp2.getNode()); 4304 UpdatedNodes->insert(Chain.getNode()); 4305 } 4306 ReplacedNode(Node); 4307 break; 4308 } 4309 case ISD::AND: 4310 case ISD::OR: 4311 case ISD::XOR: { 4312 unsigned ExtOp, TruncOp; 4313 if (OVT.isVector()) { 4314 ExtOp = ISD::BITCAST; 4315 TruncOp = ISD::BITCAST; 4316 } else { 4317 assert(OVT.isInteger() && "Cannot promote logic operation"); 4318 ExtOp = ISD::ANY_EXTEND; 4319 TruncOp = ISD::TRUNCATE; 4320 } 4321 // Promote each of the values to the new type. 4322 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); 4323 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 4324 // Perform the larger operation, then convert back 4325 Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2); 4326 Results.push_back(DAG.getNode(TruncOp, dl, OVT, Tmp1)); 4327 break; 4328 } 4329 case ISD::SELECT: { 4330 unsigned ExtOp, TruncOp; 4331 if (Node->getValueType(0).isVector() || 4332 Node->getValueType(0).getSizeInBits() == NVT.getSizeInBits()) { 4333 ExtOp = ISD::BITCAST; 4334 TruncOp = ISD::BITCAST; 4335 } else if (Node->getValueType(0).isInteger()) { 4336 ExtOp = ISD::ANY_EXTEND; 4337 TruncOp = ISD::TRUNCATE; 4338 } else { 4339 ExtOp = ISD::FP_EXTEND; 4340 TruncOp = ISD::FP_ROUND; 4341 } 4342 Tmp1 = Node->getOperand(0); 4343 // Promote each of the values to the new type. 4344 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 4345 Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2)); 4346 // Perform the larger operation, then round down. 4347 Tmp1 = DAG.getSelect(dl, NVT, Tmp1, Tmp2, Tmp3); 4348 if (TruncOp != ISD::FP_ROUND) 4349 Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1); 4350 else 4351 Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1, 4352 DAG.getIntPtrConstant(0, dl)); 4353 Results.push_back(Tmp1); 4354 break; 4355 } 4356 case ISD::VECTOR_SHUFFLE: { 4357 ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask(); 4358 4359 // Cast the two input vectors. 4360 Tmp1 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(0)); 4361 Tmp2 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(1)); 4362 4363 // Convert the shuffle mask to the right # elements. 4364 Tmp1 = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask); 4365 Tmp1 = DAG.getNode(ISD::BITCAST, dl, OVT, Tmp1); 4366 Results.push_back(Tmp1); 4367 break; 4368 } 4369 case ISD::SETCC: { 4370 unsigned ExtOp = ISD::FP_EXTEND; 4371 if (NVT.isInteger()) { 4372 ISD::CondCode CCCode = 4373 cast<CondCodeSDNode>(Node->getOperand(2))->get(); 4374 ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 4375 } 4376 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0)); 4377 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1)); 4378 Results.push_back(DAG.getNode(ISD::SETCC, dl, Node->getValueType(0), 4379 Tmp1, Tmp2, Node->getOperand(2))); 4380 break; 4381 } 4382 case ISD::BR_CC: { 4383 unsigned ExtOp = ISD::FP_EXTEND; 4384 if (NVT.isInteger()) { 4385 ISD::CondCode CCCode = 4386 cast<CondCodeSDNode>(Node->getOperand(1))->get(); 4387 ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND; 4388 } 4389 Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2)); 4390 Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(3)); 4391 Results.push_back(DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), 4392 Node->getOperand(0), Node->getOperand(1), 4393 Tmp1, Tmp2, Node->getOperand(4))); 4394 break; 4395 } 4396 case ISD::FADD: 4397 case ISD::FSUB: 4398 case ISD::FMUL: 4399 case ISD::FDIV: 4400 case ISD::FREM: 4401 case ISD::FMINNUM: 4402 case ISD::FMAXNUM: 4403 case ISD::FPOW: { 4404 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 4405 Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1)); 4406 Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2, 4407 Node->getFlags()); 4408 Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT, 4409 Tmp3, DAG.getIntPtrConstant(0, dl))); 4410 break; 4411 } 4412 case ISD::FMA: { 4413 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 4414 Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1)); 4415 Tmp3 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(2)); 4416 Results.push_back( 4417 DAG.getNode(ISD::FP_ROUND, dl, OVT, 4418 DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2, Tmp3), 4419 DAG.getIntPtrConstant(0, dl))); 4420 break; 4421 } 4422 case ISD::FCOPYSIGN: 4423 case ISD::FPOWI: { 4424 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 4425 Tmp2 = Node->getOperand(1); 4426 Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2); 4427 4428 // fcopysign doesn't change anything but the sign bit, so 4429 // (fp_round (fcopysign (fpext a), b)) 4430 // is as precise as 4431 // (fp_round (fpext a)) 4432 // which is a no-op. Mark it as a TRUNCating FP_ROUND. 4433 const bool isTrunc = (Node->getOpcode() == ISD::FCOPYSIGN); 4434 Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT, 4435 Tmp3, DAG.getIntPtrConstant(isTrunc, dl))); 4436 break; 4437 } 4438 case ISD::FFLOOR: 4439 case ISD::FCEIL: 4440 case ISD::FRINT: 4441 case ISD::FNEARBYINT: 4442 case ISD::FROUND: 4443 case ISD::FTRUNC: 4444 case ISD::FNEG: 4445 case ISD::FSQRT: 4446 case ISD::FSIN: 4447 case ISD::FCOS: 4448 case ISD::FLOG: 4449 case ISD::FLOG2: 4450 case ISD::FLOG10: 4451 case ISD::FABS: 4452 case ISD::FEXP: 4453 case ISD::FEXP2: { 4454 Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0)); 4455 Tmp2 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1); 4456 Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT, 4457 Tmp2, DAG.getIntPtrConstant(0, dl))); 4458 break; 4459 } 4460 case ISD::BUILD_VECTOR: { 4461 MVT EltVT = OVT.getVectorElementType(); 4462 MVT NewEltVT = NVT.getVectorElementType(); 4463 4464 // Handle bitcasts to a different vector type with the same total bit size 4465 // 4466 // e.g. v2i64 = build_vector i64:x, i64:y => v4i32 4467 // => 4468 // v4i32 = concat_vectors (v2i32 (bitcast i64:x)), (v2i32 (bitcast i64:y)) 4469 4470 assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() && 4471 "Invalid promote type for build_vector"); 4472 assert(NewEltVT.bitsLT(EltVT) && "not handled"); 4473 4474 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); 4475 4476 SmallVector<SDValue, 8> NewOps; 4477 for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I) { 4478 SDValue Op = Node->getOperand(I); 4479 NewOps.push_back(DAG.getNode(ISD::BITCAST, SDLoc(Op), MidVT, Op)); 4480 } 4481 4482 SDLoc SL(Node); 4483 SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SL, NVT, NewOps); 4484 SDValue CvtVec = DAG.getNode(ISD::BITCAST, SL, OVT, Concat); 4485 Results.push_back(CvtVec); 4486 break; 4487 } 4488 case ISD::EXTRACT_VECTOR_ELT: { 4489 MVT EltVT = OVT.getVectorElementType(); 4490 MVT NewEltVT = NVT.getVectorElementType(); 4491 4492 // Handle bitcasts to a different vector type with the same total bit size. 4493 // 4494 // e.g. v2i64 = extract_vector_elt x:v2i64, y:i32 4495 // => 4496 // v4i32:castx = bitcast x:v2i64 4497 // 4498 // i64 = bitcast 4499 // (v2i32 build_vector (i32 (extract_vector_elt castx, (2 * y))), 4500 // (i32 (extract_vector_elt castx, (2 * y + 1))) 4501 // 4502 4503 assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() && 4504 "Invalid promote type for extract_vector_elt"); 4505 assert(NewEltVT.bitsLT(EltVT) && "not handled"); 4506 4507 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); 4508 unsigned NewEltsPerOldElt = MidVT.getVectorNumElements(); 4509 4510 SDValue Idx = Node->getOperand(1); 4511 EVT IdxVT = Idx.getValueType(); 4512 SDLoc SL(Node); 4513 SDValue Factor = DAG.getConstant(NewEltsPerOldElt, SL, IdxVT); 4514 SDValue NewBaseIdx = DAG.getNode(ISD::MUL, SL, IdxVT, Idx, Factor); 4515 4516 SDValue CastVec = DAG.getNode(ISD::BITCAST, SL, NVT, Node->getOperand(0)); 4517 4518 SmallVector<SDValue, 8> NewOps; 4519 for (unsigned I = 0; I < NewEltsPerOldElt; ++I) { 4520 SDValue IdxOffset = DAG.getConstant(I, SL, IdxVT); 4521 SDValue TmpIdx = DAG.getNode(ISD::ADD, SL, IdxVT, NewBaseIdx, IdxOffset); 4522 4523 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, NewEltVT, 4524 CastVec, TmpIdx); 4525 NewOps.push_back(Elt); 4526 } 4527 4528 SDValue NewVec = DAG.getNode(ISD::BUILD_VECTOR, SL, MidVT, NewOps); 4529 4530 Results.push_back(DAG.getNode(ISD::BITCAST, SL, EltVT, NewVec)); 4531 break; 4532 } 4533 case ISD::INSERT_VECTOR_ELT: { 4534 MVT EltVT = OVT.getVectorElementType(); 4535 MVT NewEltVT = NVT.getVectorElementType(); 4536 4537 // Handle bitcasts to a different vector type with the same total bit size 4538 // 4539 // e.g. v2i64 = insert_vector_elt x:v2i64, y:i64, z:i32 4540 // => 4541 // v4i32:castx = bitcast x:v2i64 4542 // v2i32:casty = bitcast y:i64 4543 // 4544 // v2i64 = bitcast 4545 // (v4i32 insert_vector_elt 4546 // (v4i32 insert_vector_elt v4i32:castx, 4547 // (extract_vector_elt casty, 0), 2 * z), 4548 // (extract_vector_elt casty, 1), (2 * z + 1)) 4549 4550 assert(NVT.isVector() && OVT.getSizeInBits() == NVT.getSizeInBits() && 4551 "Invalid promote type for insert_vector_elt"); 4552 assert(NewEltVT.bitsLT(EltVT) && "not handled"); 4553 4554 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); 4555 unsigned NewEltsPerOldElt = MidVT.getVectorNumElements(); 4556 4557 SDValue Val = Node->getOperand(1); 4558 SDValue Idx = Node->getOperand(2); 4559 EVT IdxVT = Idx.getValueType(); 4560 SDLoc SL(Node); 4561 4562 SDValue Factor = DAG.getConstant(NewEltsPerOldElt, SDLoc(), IdxVT); 4563 SDValue NewBaseIdx = DAG.getNode(ISD::MUL, SL, IdxVT, Idx, Factor); 4564 4565 SDValue CastVec = DAG.getNode(ISD::BITCAST, SL, NVT, Node->getOperand(0)); 4566 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, MidVT, Val); 4567 4568 SDValue NewVec = CastVec; 4569 for (unsigned I = 0; I < NewEltsPerOldElt; ++I) { 4570 SDValue IdxOffset = DAG.getConstant(I, SL, IdxVT); 4571 SDValue InEltIdx = DAG.getNode(ISD::ADD, SL, IdxVT, NewBaseIdx, IdxOffset); 4572 4573 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, NewEltVT, 4574 CastVal, IdxOffset); 4575 4576 NewVec = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, NVT, 4577 NewVec, Elt, InEltIdx); 4578 } 4579 4580 Results.push_back(DAG.getNode(ISD::BITCAST, SL, OVT, NewVec)); 4581 break; 4582 } 4583 case ISD::SCALAR_TO_VECTOR: { 4584 MVT EltVT = OVT.getVectorElementType(); 4585 MVT NewEltVT = NVT.getVectorElementType(); 4586 4587 // Handle bitcasts to different vector type with the smae total bit size. 4588 // 4589 // e.g. v2i64 = scalar_to_vector x:i64 4590 // => 4591 // concat_vectors (v2i32 bitcast x:i64), (v2i32 undef) 4592 // 4593 4594 MVT MidVT = getPromotedVectorElementType(TLI, EltVT, NewEltVT); 4595 SDValue Val = Node->getOperand(0); 4596 SDLoc SL(Node); 4597 4598 SDValue CastVal = DAG.getNode(ISD::BITCAST, SL, MidVT, Val); 4599 SDValue Undef = DAG.getUNDEF(MidVT); 4600 4601 SmallVector<SDValue, 8> NewElts; 4602 NewElts.push_back(CastVal); 4603 for (unsigned I = 1, NElts = OVT.getVectorNumElements(); I != NElts; ++I) 4604 NewElts.push_back(Undef); 4605 4606 SDValue Concat = DAG.getNode(ISD::CONCAT_VECTORS, SL, NVT, NewElts); 4607 SDValue CvtVec = DAG.getNode(ISD::BITCAST, SL, OVT, Concat); 4608 Results.push_back(CvtVec); 4609 break; 4610 } 4611 } 4612 4613 // Replace the original node with the legalized result. 4614 if (!Results.empty()) 4615 ReplaceNode(Node, Results.data()); 4616 } 4617 4618 /// This is the entry point for the file. 4619 void SelectionDAG::Legalize() { 4620 AssignTopologicalOrder(); 4621 4622 SmallPtrSet<SDNode *, 16> LegalizedNodes; 4623 SelectionDAGLegalize Legalizer(*this, LegalizedNodes); 4624 4625 // Visit all the nodes. We start in topological order, so that we see 4626 // nodes with their original operands intact. Legalization can produce 4627 // new nodes which may themselves need to be legalized. Iterate until all 4628 // nodes have been legalized. 4629 for (;;) { 4630 bool AnyLegalized = false; 4631 for (auto NI = allnodes_end(); NI != allnodes_begin();) { 4632 --NI; 4633 4634 SDNode *N = &*NI; 4635 if (N->use_empty() && N != getRoot().getNode()) { 4636 ++NI; 4637 DeleteNode(N); 4638 continue; 4639 } 4640 4641 if (LegalizedNodes.insert(N).second) { 4642 AnyLegalized = true; 4643 Legalizer.LegalizeOp(N); 4644 4645 if (N->use_empty() && N != getRoot().getNode()) { 4646 ++NI; 4647 DeleteNode(N); 4648 } 4649 } 4650 } 4651 if (!AnyLegalized) 4652 break; 4653 4654 } 4655 4656 // Remove dead nodes now. 4657 RemoveDeadNodes(); 4658 } 4659 4660 bool SelectionDAG::LegalizeOp(SDNode *N, 4661 SmallSetVector<SDNode *, 16> &UpdatedNodes) { 4662 SmallPtrSet<SDNode *, 16> LegalizedNodes; 4663 SelectionDAGLegalize Legalizer(*this, LegalizedNodes, &UpdatedNodes); 4664 4665 // Directly insert the node in question, and legalize it. This will recurse 4666 // as needed through operands. 4667 LegalizedNodes.insert(N); 4668 Legalizer.LegalizeOp(N); 4669 4670 return LegalizedNodes.count(N); 4671 } 4672