1 //===-- AMDGPUTargetTransformInfo.cpp - AMDGPU specific TTI pass ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // \file 11 // This file implements a TargetTransformInfo analysis pass specific to the 12 // AMDGPU target machine. It uses the target's detailed information to provide 13 // more precise answers to certain TTI queries, while letting the target 14 // independent and default TTI implementations handle the rest. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "AMDGPUTargetTransformInfo.h" 19 #include "llvm/Analysis/LoopInfo.h" 20 #include "llvm/Analysis/TargetTransformInfo.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/CodeGen/BasicTTIImpl.h" 23 #include "llvm/IR/Module.h" 24 #include "llvm/Support/Debug.h" 25 #include "llvm/Target/CostTable.h" 26 #include "llvm/Target/TargetLowering.h" 27 using namespace llvm; 28 29 #define DEBUG_TYPE "AMDGPUtti" 30 31 void AMDGPUTTIImpl::getUnrollingPreferences(Loop *L, 32 TTI::UnrollingPreferences &UP) { 33 UP.Threshold = 300; // Twice the default. 34 UP.MaxCount = UINT_MAX; 35 UP.Partial = true; 36 37 // TODO: Do we want runtime unrolling? 38 39 for (const BasicBlock *BB : L->getBlocks()) { 40 const DataLayout &DL = BB->getModule()->getDataLayout(); 41 for (const Instruction &I : *BB) { 42 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I); 43 if (!GEP || GEP->getAddressSpace() != AMDGPUAS::PRIVATE_ADDRESS) 44 continue; 45 46 const Value *Ptr = GEP->getPointerOperand(); 47 const AllocaInst *Alloca = 48 dyn_cast<AllocaInst>(GetUnderlyingObject(Ptr, DL)); 49 if (Alloca) { 50 // We want to do whatever we can to limit the number of alloca 51 // instructions that make it through to the code generator. allocas 52 // require us to use indirect addressing, which is slow and prone to 53 // compiler bugs. If this loop does an address calculation on an 54 // alloca ptr, then we want to use a higher than normal loop unroll 55 // threshold. This will give SROA a better chance to eliminate these 56 // allocas. 57 // 58 // Don't use the maximum allowed value here as it will make some 59 // programs way too big. 60 UP.Threshold = 800; 61 } 62 } 63 } 64 } 65 66 unsigned AMDGPUTTIImpl::getNumberOfRegisters(bool Vec) { 67 if (Vec) 68 return 0; 69 70 // Number of VGPRs on SI. 71 if (ST->getGeneration() >= AMDGPUSubtarget::SOUTHERN_ISLANDS) 72 return 256; 73 74 return 4 * 128; // XXX - 4 channels. Should these count as vector instead? 75 } 76 77 unsigned AMDGPUTTIImpl::getRegisterBitWidth(bool) { return 32; } 78 79 unsigned AMDGPUTTIImpl::getMaxInterleaveFactor(unsigned VF) { 80 // Semi-arbitrary large amount. 81 return 64; 82 } 83 84 unsigned AMDGPUTTIImpl::getCFInstrCost(unsigned Opcode) { 85 // XXX - For some reason this isn't called for switch. 86 switch (Opcode) { 87 case Instruction::Br: 88 case Instruction::Ret: 89 return 10; 90 default: 91 return BaseT::getCFInstrCost(Opcode); 92 } 93 } 94 95 int AMDGPUTTIImpl::getVectorInstrCost(unsigned Opcode, Type *ValTy, 96 unsigned Index) { 97 switch (Opcode) { 98 case Instruction::ExtractElement: 99 // Dynamic indexing isn't free and is best avoided. 100 return Index == ~0u ? 2 : 0; 101 default: 102 return BaseT::getVectorInstrCost(Opcode, ValTy, Index); 103 } 104 } 105 106 static bool isIntrinsicSourceOfDivergence(const TargetIntrinsicInfo *TII, 107 const IntrinsicInst *I) { 108 switch (I->getIntrinsicID()) { 109 default: 110 return false; 111 case Intrinsic::not_intrinsic: 112 // This means we have an intrinsic that isn't defined in 113 // IntrinsicsAMDGPU.td 114 break; 115 116 case Intrinsic::amdgcn_interp_p1: 117 case Intrinsic::amdgcn_interp_p2: 118 case Intrinsic::amdgcn_mbcnt_hi: 119 case Intrinsic::amdgcn_mbcnt_lo: 120 case Intrinsic::r600_read_tidig_x: 121 case Intrinsic::r600_read_tidig_y: 122 case Intrinsic::r600_read_tidig_z: 123 return true; 124 } 125 126 StringRef Name = I->getCalledFunction()->getName(); 127 switch (TII->lookupName((const char *)Name.bytes_begin(), Name.size())) { 128 default: 129 return false; 130 case AMDGPUIntrinsic::SI_tid: 131 case AMDGPUIntrinsic::SI_fs_interp: 132 return true; 133 } 134 } 135 136 static bool isArgPassedInSGPR(const Argument *A) { 137 const Function *F = A->getParent(); 138 unsigned ShaderType = AMDGPU::getShaderType(*F); 139 140 // Arguments to compute shaders are never a source of divergence. 141 if (ShaderType == ShaderType::COMPUTE) 142 return true; 143 144 // For non-compute shaders, SGPR inputs are marked with either inreg or byval. 145 if (F->getAttributes().hasAttribute(A->getArgNo() + 1, Attribute::InReg) || 146 F->getAttributes().hasAttribute(A->getArgNo() + 1, Attribute::ByVal)) 147 return true; 148 149 // Everything else is in VGPRs. 150 return false; 151 } 152 153 /// 154 /// \returns true if the result of the value could potentially be 155 /// different across workitems in a wavefront. 156 bool AMDGPUTTIImpl::isSourceOfDivergence(const Value *V) const { 157 158 if (const Argument *A = dyn_cast<Argument>(V)) 159 return !isArgPassedInSGPR(A); 160 161 // Loads from the private address space are divergent, because threads 162 // can execute the load instruction with the same inputs and get different 163 // results. 164 // 165 // All other loads are not divergent, because if threads issue loads with the 166 // same arguments, they will always get the same result. 167 if (const LoadInst *Load = dyn_cast<LoadInst>(V)) 168 return Load->getPointerAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS; 169 170 if (const IntrinsicInst *Intrinsic = dyn_cast<IntrinsicInst>(V)) { 171 const TargetMachine &TM = getTLI()->getTargetMachine(); 172 return isIntrinsicSourceOfDivergence(TM.getIntrinsicInfo(), Intrinsic); 173 } 174 175 // Assume all function calls are a source of divergence. 176 if (isa<CallInst>(V) || isa<InvokeInst>(V)) 177 return true; 178 179 return false; 180 } 181