1 //===----------- PPCVSXSwapRemoval.cpp - Remove VSX LE Swaps -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===---------------------------------------------------------------------===// 9 // 10 // This pass analyzes vector computations and removes unnecessary 11 // doubleword swaps (xxswapd instructions). This pass is performed 12 // only for little-endian VSX code generation. 13 // 14 // For this specific case, loads and stores of v4i32, v4f32, v2i64, 15 // and v2f64 vectors are inefficient. These are implemented using 16 // the lxvd2x and stxvd2x instructions, which invert the order of 17 // doublewords in a vector register. Thus code generation inserts 18 // an xxswapd after each such load, and prior to each such store. 19 // 20 // The extra xxswapd instructions reduce performance. The purpose 21 // of this pass is to reduce the number of xxswapd instructions 22 // required for correctness. 23 // 24 // The primary insight is that much code that operates on vectors 25 // does not care about the relative order of elements in a register, 26 // so long as the correct memory order is preserved. If we have a 27 // computation where all input values are provided by lxvd2x/xxswapd, 28 // all outputs are stored using xxswapd/lxvd2x, and all intermediate 29 // computations are lane-insensitive (independent of element order), 30 // then all the xxswapd instructions associated with the loads and 31 // stores may be removed without changing observable semantics. 32 // 33 // This pass uses standard equivalence class infrastructure to create 34 // maximal webs of computations fitting the above description. Each 35 // such web is then optimized by removing its unnecessary xxswapd 36 // instructions. 37 // 38 // There are some lane-sensitive operations for which we can still 39 // permit the optimization, provided we modify those operations 40 // accordingly. Such operations are identified as using "special 41 // handling" within this module. 42 // 43 //===---------------------------------------------------------------------===// 44 45 #include "PPCInstrInfo.h" 46 #include "PPC.h" 47 #include "PPCInstrBuilder.h" 48 #include "PPCTargetMachine.h" 49 #include "llvm/ADT/DenseMap.h" 50 #include "llvm/ADT/EquivalenceClasses.h" 51 #include "llvm/CodeGen/MachineFunctionPass.h" 52 #include "llvm/CodeGen/MachineInstrBuilder.h" 53 #include "llvm/CodeGen/MachineRegisterInfo.h" 54 #include "llvm/Support/Debug.h" 55 #include "llvm/Support/Format.h" 56 #include "llvm/Support/raw_ostream.h" 57 58 using namespace llvm; 59 60 #define DEBUG_TYPE "ppc-vsx-swaps" 61 62 namespace llvm { 63 void initializePPCVSXSwapRemovalPass(PassRegistry&); 64 } 65 66 namespace { 67 68 // A PPCVSXSwapEntry is created for each machine instruction that 69 // is relevant to a vector computation. 70 struct PPCVSXSwapEntry { 71 // Pointer to the instruction. 72 MachineInstr *VSEMI; 73 74 // Unique ID (position in the swap vector). 75 int VSEId; 76 77 // Attributes of this node. 78 unsigned int IsLoad : 1; 79 unsigned int IsStore : 1; 80 unsigned int IsSwap : 1; 81 unsigned int MentionsPhysVR : 1; 82 unsigned int IsSwappable : 1; 83 unsigned int MentionsPartialVR : 1; 84 unsigned int SpecialHandling : 3; 85 unsigned int WebRejected : 1; 86 unsigned int WillRemove : 1; 87 }; 88 89 enum SHValues { 90 SH_NONE = 0, 91 SH_EXTRACT, 92 SH_INSERT, 93 SH_NOSWAP_LD, 94 SH_NOSWAP_ST, 95 SH_SPLAT, 96 SH_XXPERMDI, 97 SH_COPYWIDEN 98 }; 99 100 struct PPCVSXSwapRemoval : public MachineFunctionPass { 101 102 static char ID; 103 const PPCInstrInfo *TII; 104 MachineFunction *MF; 105 MachineRegisterInfo *MRI; 106 107 // Swap entries are allocated in a vector for better performance. 108 std::vector<PPCVSXSwapEntry> SwapVector; 109 110 // A mapping is maintained between machine instructions and 111 // their swap entries. The key is the address of the MI. 112 DenseMap<MachineInstr*, int> SwapMap; 113 114 // Equivalence classes are used to gather webs of related computation. 115 // Swap entries are represented by their VSEId fields. 116 EquivalenceClasses<int> *EC; 117 118 PPCVSXSwapRemoval() : MachineFunctionPass(ID) { 119 initializePPCVSXSwapRemovalPass(*PassRegistry::getPassRegistry()); 120 } 121 122 private: 123 // Initialize data structures. 124 void initialize(MachineFunction &MFParm); 125 126 // Walk the machine instructions to gather vector usage information. 127 // Return true iff vector mentions are present. 128 bool gatherVectorInstructions(); 129 130 // Add an entry to the swap vector and swap map. 131 int addSwapEntry(MachineInstr *MI, PPCVSXSwapEntry &SwapEntry); 132 133 // Hunt backwards through COPY and SUBREG_TO_REG chains for a 134 // source register. VecIdx indicates the swap vector entry to 135 // mark as mentioning a physical register if the search leads 136 // to one. 137 unsigned lookThruCopyLike(unsigned SrcReg, unsigned VecIdx); 138 139 // Generate equivalence classes for related computations (webs). 140 void formWebs(); 141 142 // Analyze webs and determine those that cannot be optimized. 143 void recordUnoptimizableWebs(); 144 145 // Record which swap instructions can be safely removed. 146 void markSwapsForRemoval(); 147 148 // Remove swaps and update other instructions requiring special 149 // handling. Return true iff any changes are made. 150 bool removeSwaps(); 151 152 // Insert a swap instruction from SrcReg to DstReg at the given 153 // InsertPoint. 154 void insertSwap(MachineInstr *MI, MachineBasicBlock::iterator InsertPoint, 155 unsigned DstReg, unsigned SrcReg); 156 157 // Update instructions requiring special handling. 158 void handleSpecialSwappables(int EntryIdx); 159 160 // Dump a description of the entries in the swap vector. 161 void dumpSwapVector(); 162 163 // Return true iff the given register is in the given class. 164 bool isRegInClass(unsigned Reg, const TargetRegisterClass *RC) { 165 if (TargetRegisterInfo::isVirtualRegister(Reg)) 166 return RC->hasSubClassEq(MRI->getRegClass(Reg)); 167 if (RC->contains(Reg)) 168 return true; 169 return false; 170 } 171 172 // Return true iff the given register is a full vector register. 173 bool isVecReg(unsigned Reg) { 174 return (isRegInClass(Reg, &PPC::VSRCRegClass) || 175 isRegInClass(Reg, &PPC::VRRCRegClass)); 176 } 177 178 // Return true iff the given register is a partial vector register. 179 bool isScalarVecReg(unsigned Reg) { 180 return (isRegInClass(Reg, &PPC::VSFRCRegClass) || 181 isRegInClass(Reg, &PPC::VSSRCRegClass)); 182 } 183 184 // Return true iff the given register mentions all or part of a 185 // vector register. Also sets Partial to true if the mention 186 // is for just the floating-point register overlap of the register. 187 bool isAnyVecReg(unsigned Reg, bool &Partial) { 188 if (isScalarVecReg(Reg)) 189 Partial = true; 190 return isScalarVecReg(Reg) || isVecReg(Reg); 191 } 192 193 public: 194 // Main entry point for this pass. 195 bool runOnMachineFunction(MachineFunction &MF) override { 196 // If we don't have VSX on the subtarget, don't do anything. 197 const PPCSubtarget &STI = MF.getSubtarget<PPCSubtarget>(); 198 if (!STI.hasVSX()) 199 return false; 200 201 bool Changed = false; 202 initialize(MF); 203 204 if (gatherVectorInstructions()) { 205 formWebs(); 206 recordUnoptimizableWebs(); 207 markSwapsForRemoval(); 208 Changed = removeSwaps(); 209 } 210 211 // FIXME: See the allocation of EC in initialize(). 212 delete EC; 213 return Changed; 214 } 215 }; 216 217 // Initialize data structures for this pass. In particular, clear the 218 // swap vector and allocate the equivalence class mapping before 219 // processing each function. 220 void PPCVSXSwapRemoval::initialize(MachineFunction &MFParm) { 221 MF = &MFParm; 222 MRI = &MF->getRegInfo(); 223 TII = MF->getSubtarget<PPCSubtarget>().getInstrInfo(); 224 225 // An initial vector size of 256 appears to work well in practice. 226 // Small/medium functions with vector content tend not to incur a 227 // reallocation at this size. Three of the vector tests in 228 // projects/test-suite reallocate, which seems like a reasonable rate. 229 const int InitialVectorSize(256); 230 SwapVector.clear(); 231 SwapVector.reserve(InitialVectorSize); 232 233 // FIXME: Currently we allocate EC each time because we don't have 234 // access to the set representation on which to call clear(). Should 235 // consider adding a clear() method to the EquivalenceClasses class. 236 EC = new EquivalenceClasses<int>; 237 } 238 239 // Create an entry in the swap vector for each instruction that mentions 240 // a full vector register, recording various characteristics of the 241 // instructions there. 242 bool PPCVSXSwapRemoval::gatherVectorInstructions() { 243 bool RelevantFunction = false; 244 245 for (MachineBasicBlock &MBB : *MF) { 246 for (MachineInstr &MI : MBB) { 247 248 if (MI.isDebugValue()) 249 continue; 250 251 bool RelevantInstr = false; 252 bool Partial = false; 253 254 for (const MachineOperand &MO : MI.operands()) { 255 if (!MO.isReg()) 256 continue; 257 unsigned Reg = MO.getReg(); 258 if (isAnyVecReg(Reg, Partial)) { 259 RelevantInstr = true; 260 break; 261 } 262 } 263 264 if (!RelevantInstr) 265 continue; 266 267 RelevantFunction = true; 268 269 // Create a SwapEntry initialized to zeros, then fill in the 270 // instruction and ID fields before pushing it to the back 271 // of the swap vector. 272 PPCVSXSwapEntry SwapEntry{}; 273 int VecIdx = addSwapEntry(&MI, SwapEntry); 274 275 switch(MI.getOpcode()) { 276 default: 277 // Unless noted otherwise, an instruction is considered 278 // safe for the optimization. There are a large number of 279 // such true-SIMD instructions (all vector math, logical, 280 // select, compare, etc.). However, if the instruction 281 // mentions a partial vector register and does not have 282 // special handling defined, it is not swappable. 283 if (Partial) 284 SwapVector[VecIdx].MentionsPartialVR = 1; 285 else 286 SwapVector[VecIdx].IsSwappable = 1; 287 break; 288 case PPC::XXPERMDI: { 289 // This is a swap if it is of the form XXPERMDI t, s, s, 2. 290 // Unfortunately, MachineCSE ignores COPY and SUBREG_TO_REG, so we 291 // can also see XXPERMDI t, SUBREG_TO_REG(s), SUBREG_TO_REG(s), 2, 292 // for example. We have to look through chains of COPY and 293 // SUBREG_TO_REG to find the real source value for comparison. 294 // If the real source value is a physical register, then mark the 295 // XXPERMDI as mentioning a physical register. 296 int immed = MI.getOperand(3).getImm(); 297 if (immed == 2) { 298 unsigned trueReg1 = lookThruCopyLike(MI.getOperand(1).getReg(), 299 VecIdx); 300 unsigned trueReg2 = lookThruCopyLike(MI.getOperand(2).getReg(), 301 VecIdx); 302 if (trueReg1 == trueReg2) 303 SwapVector[VecIdx].IsSwap = 1; 304 else { 305 // We can still handle these if the two registers are not 306 // identical, by adjusting the form of the XXPERMDI. 307 SwapVector[VecIdx].IsSwappable = 1; 308 SwapVector[VecIdx].SpecialHandling = SHValues::SH_XXPERMDI; 309 } 310 // This is a doubleword splat if it is of the form 311 // XXPERMDI t, s, s, 0 or XXPERMDI t, s, s, 3. As above we 312 // must look through chains of copy-likes to find the source 313 // register. We turn off the marking for mention of a physical 314 // register, because splatting it is safe; the optimization 315 // will not swap the value in the physical register. Whether 316 // or not the two input registers are identical, we can handle 317 // these by adjusting the form of the XXPERMDI. 318 } else if (immed == 0 || immed == 3) { 319 320 SwapVector[VecIdx].IsSwappable = 1; 321 SwapVector[VecIdx].SpecialHandling = SHValues::SH_XXPERMDI; 322 323 unsigned trueReg1 = lookThruCopyLike(MI.getOperand(1).getReg(), 324 VecIdx); 325 unsigned trueReg2 = lookThruCopyLike(MI.getOperand(2).getReg(), 326 VecIdx); 327 if (trueReg1 == trueReg2) 328 SwapVector[VecIdx].MentionsPhysVR = 0; 329 330 } else { 331 // We can still handle these by adjusting the form of the XXPERMDI. 332 SwapVector[VecIdx].IsSwappable = 1; 333 SwapVector[VecIdx].SpecialHandling = SHValues::SH_XXPERMDI; 334 } 335 break; 336 } 337 case PPC::LVX: 338 // Non-permuting loads are currently unsafe. We can use special 339 // handling for this in the future. By not marking these as 340 // IsSwap, we ensure computations containing them will be rejected 341 // for now. 342 SwapVector[VecIdx].IsLoad = 1; 343 break; 344 case PPC::LXVD2X: 345 case PPC::LXVW4X: 346 // Permuting loads are marked as both load and swap, and are 347 // safe for optimization. 348 SwapVector[VecIdx].IsLoad = 1; 349 SwapVector[VecIdx].IsSwap = 1; 350 break; 351 case PPC::LXSDX: 352 case PPC::LXSSPX: 353 // A load of a floating-point value into the high-order half of 354 // a vector register is safe, provided that we introduce a swap 355 // following the load, which will be done by the SUBREG_TO_REG 356 // support. So just mark these as safe. 357 SwapVector[VecIdx].IsLoad = 1; 358 SwapVector[VecIdx].IsSwappable = 1; 359 break; 360 case PPC::STVX: 361 // Non-permuting stores are currently unsafe. We can use special 362 // handling for this in the future. By not marking these as 363 // IsSwap, we ensure computations containing them will be rejected 364 // for now. 365 SwapVector[VecIdx].IsStore = 1; 366 break; 367 case PPC::STXVD2X: 368 case PPC::STXVW4X: 369 // Permuting stores are marked as both store and swap, and are 370 // safe for optimization. 371 SwapVector[VecIdx].IsStore = 1; 372 SwapVector[VecIdx].IsSwap = 1; 373 break; 374 case PPC::COPY: 375 // These are fine provided they are moving between full vector 376 // register classes. 377 if (isVecReg(MI.getOperand(0).getReg()) && 378 isVecReg(MI.getOperand(1).getReg())) 379 SwapVector[VecIdx].IsSwappable = 1; 380 // If we have a copy from one scalar floating-point register 381 // to another, we can accept this even if it is a physical 382 // register. The only way this gets involved is if it feeds 383 // a SUBREG_TO_REG, which is handled by introducing a swap. 384 else if (isScalarVecReg(MI.getOperand(0).getReg()) && 385 isScalarVecReg(MI.getOperand(1).getReg())) 386 SwapVector[VecIdx].IsSwappable = 1; 387 break; 388 case PPC::SUBREG_TO_REG: { 389 // These are fine provided they are moving between full vector 390 // register classes. If they are moving from a scalar 391 // floating-point class to a vector class, we can handle those 392 // as well, provided we introduce a swap. It is generally the 393 // case that we will introduce fewer swaps than we remove, but 394 // (FIXME) a cost model could be used. However, introduced 395 // swaps could potentially be CSEd, so this is not trivial. 396 if (isVecReg(MI.getOperand(0).getReg()) && 397 isVecReg(MI.getOperand(2).getReg())) 398 SwapVector[VecIdx].IsSwappable = 1; 399 else if (isVecReg(MI.getOperand(0).getReg()) && 400 isScalarVecReg(MI.getOperand(2).getReg())) { 401 SwapVector[VecIdx].IsSwappable = 1; 402 SwapVector[VecIdx].SpecialHandling = SHValues::SH_COPYWIDEN; 403 } 404 break; 405 } 406 case PPC::VSPLTB: 407 case PPC::VSPLTH: 408 case PPC::VSPLTW: 409 // Splats are lane-sensitive, but we can use special handling 410 // to adjust the source lane for the splat. This is not yet 411 // implemented. When it is, we need to uncomment the following: 412 SwapVector[VecIdx].IsSwappable = 1; 413 SwapVector[VecIdx].SpecialHandling = SHValues::SH_SPLAT; 414 break; 415 // The presence of the following lane-sensitive operations in a 416 // web will kill the optimization, at least for now. For these 417 // we do nothing, causing the optimization to fail. 418 // FIXME: Some of these could be permitted with special handling, 419 // and will be phased in as time permits. 420 // FIXME: There is no simple and maintainable way to express a set 421 // of opcodes having a common attribute in TableGen. Should this 422 // change, this is a prime candidate to use such a mechanism. 423 case PPC::INLINEASM: 424 case PPC::EXTRACT_SUBREG: 425 case PPC::INSERT_SUBREG: 426 case PPC::COPY_TO_REGCLASS: 427 case PPC::LVEBX: 428 case PPC::LVEHX: 429 case PPC::LVEWX: 430 case PPC::LVSL: 431 case PPC::LVSR: 432 case PPC::LVXL: 433 case PPC::STVEBX: 434 case PPC::STVEHX: 435 case PPC::STVEWX: 436 case PPC::STVXL: 437 // We can handle STXSDX and STXSSPX similarly to LXSDX and LXSSPX, 438 // by adding special handling for narrowing copies as well as 439 // widening ones. However, I've experimented with this, and in 440 // practice we currently do not appear to use STXSDX fed by 441 // a narrowing copy from a full vector register. Since I can't 442 // generate any useful test cases, I've left this alone for now. 443 case PPC::STXSDX: 444 case PPC::STXSSPX: 445 case PPC::VCIPHER: 446 case PPC::VCIPHERLAST: 447 case PPC::VMRGHB: 448 case PPC::VMRGHH: 449 case PPC::VMRGHW: 450 case PPC::VMRGLB: 451 case PPC::VMRGLH: 452 case PPC::VMRGLW: 453 case PPC::VMULESB: 454 case PPC::VMULESH: 455 case PPC::VMULESW: 456 case PPC::VMULEUB: 457 case PPC::VMULEUH: 458 case PPC::VMULEUW: 459 case PPC::VMULOSB: 460 case PPC::VMULOSH: 461 case PPC::VMULOSW: 462 case PPC::VMULOUB: 463 case PPC::VMULOUH: 464 case PPC::VMULOUW: 465 case PPC::VNCIPHER: 466 case PPC::VNCIPHERLAST: 467 case PPC::VPERM: 468 case PPC::VPERMXOR: 469 case PPC::VPKPX: 470 case PPC::VPKSHSS: 471 case PPC::VPKSHUS: 472 case PPC::VPKSDSS: 473 case PPC::VPKSDUS: 474 case PPC::VPKSWSS: 475 case PPC::VPKSWUS: 476 case PPC::VPKUDUM: 477 case PPC::VPKUDUS: 478 case PPC::VPKUHUM: 479 case PPC::VPKUHUS: 480 case PPC::VPKUWUM: 481 case PPC::VPKUWUS: 482 case PPC::VPMSUMB: 483 case PPC::VPMSUMD: 484 case PPC::VPMSUMH: 485 case PPC::VPMSUMW: 486 case PPC::VRLB: 487 case PPC::VRLD: 488 case PPC::VRLH: 489 case PPC::VRLW: 490 case PPC::VSBOX: 491 case PPC::VSHASIGMAD: 492 case PPC::VSHASIGMAW: 493 case PPC::VSL: 494 case PPC::VSLDOI: 495 case PPC::VSLO: 496 case PPC::VSR: 497 case PPC::VSRO: 498 case PPC::VSUM2SWS: 499 case PPC::VSUM4SBS: 500 case PPC::VSUM4SHS: 501 case PPC::VSUM4UBS: 502 case PPC::VSUMSWS: 503 case PPC::VUPKHPX: 504 case PPC::VUPKHSB: 505 case PPC::VUPKHSH: 506 case PPC::VUPKHSW: 507 case PPC::VUPKLPX: 508 case PPC::VUPKLSB: 509 case PPC::VUPKLSH: 510 case PPC::VUPKLSW: 511 case PPC::XXMRGHW: 512 case PPC::XXMRGLW: 513 // XXSLDWI could be replaced by a general permute with one of three 514 // permute control vectors (for shift values 1, 2, 3). However, 515 // VPERM has a more restrictive register class. 516 case PPC::XXSLDWI: 517 case PPC::XXSPLTW: 518 break; 519 } 520 } 521 } 522 523 if (RelevantFunction) { 524 DEBUG(dbgs() << "Swap vector when first built\n\n"); 525 dumpSwapVector(); 526 } 527 528 return RelevantFunction; 529 } 530 531 // Add an entry to the swap vector and swap map, and make a 532 // singleton equivalence class for the entry. 533 int PPCVSXSwapRemoval::addSwapEntry(MachineInstr *MI, 534 PPCVSXSwapEntry& SwapEntry) { 535 SwapEntry.VSEMI = MI; 536 SwapEntry.VSEId = SwapVector.size(); 537 SwapVector.push_back(SwapEntry); 538 EC->insert(SwapEntry.VSEId); 539 SwapMap[MI] = SwapEntry.VSEId; 540 return SwapEntry.VSEId; 541 } 542 543 // This is used to find the "true" source register for an 544 // XXPERMDI instruction, since MachineCSE does not handle the 545 // "copy-like" operations (Copy and SubregToReg). Returns 546 // the original SrcReg unless it is the target of a copy-like 547 // operation, in which case we chain backwards through all 548 // such operations to the ultimate source register. If a 549 // physical register is encountered, we stop the search and 550 // flag the swap entry indicated by VecIdx (the original 551 // XXPERMDI) as mentioning a physical register. 552 unsigned PPCVSXSwapRemoval::lookThruCopyLike(unsigned SrcReg, 553 unsigned VecIdx) { 554 MachineInstr *MI = MRI->getVRegDef(SrcReg); 555 if (!MI->isCopyLike()) 556 return SrcReg; 557 558 unsigned CopySrcReg; 559 if (MI->isCopy()) 560 CopySrcReg = MI->getOperand(1).getReg(); 561 else { 562 assert(MI->isSubregToReg() && "bad opcode for lookThruCopyLike"); 563 CopySrcReg = MI->getOperand(2).getReg(); 564 } 565 566 if (!TargetRegisterInfo::isVirtualRegister(CopySrcReg)) { 567 if (!isScalarVecReg(CopySrcReg)) 568 SwapVector[VecIdx].MentionsPhysVR = 1; 569 return CopySrcReg; 570 } 571 572 return lookThruCopyLike(CopySrcReg, VecIdx); 573 } 574 575 // Generate equivalence classes for related computations (webs) by 576 // def-use relationships of virtual registers. Mention of a physical 577 // register terminates the generation of equivalence classes as this 578 // indicates a use of a parameter, definition of a return value, use 579 // of a value returned from a call, or definition of a parameter to a 580 // call. Computations with physical register mentions are flagged 581 // as such so their containing webs will not be optimized. 582 void PPCVSXSwapRemoval::formWebs() { 583 584 DEBUG(dbgs() << "\n*** Forming webs for swap removal ***\n\n"); 585 586 for (unsigned EntryIdx = 0; EntryIdx < SwapVector.size(); ++EntryIdx) { 587 588 MachineInstr *MI = SwapVector[EntryIdx].VSEMI; 589 590 DEBUG(dbgs() << "\n" << SwapVector[EntryIdx].VSEId << " "); 591 DEBUG(MI->dump()); 592 593 // It's sufficient to walk vector uses and join them to their unique 594 // definitions. In addition, check full vector register operands 595 // for physical regs. We exclude partial-vector register operands 596 // because we can handle them if copied to a full vector. 597 for (const MachineOperand &MO : MI->operands()) { 598 if (!MO.isReg()) 599 continue; 600 601 unsigned Reg = MO.getReg(); 602 if (!isVecReg(Reg) && !isScalarVecReg(Reg)) 603 continue; 604 605 if (!TargetRegisterInfo::isVirtualRegister(Reg)) { 606 if (!(MI->isCopy() && isScalarVecReg(Reg))) 607 SwapVector[EntryIdx].MentionsPhysVR = 1; 608 continue; 609 } 610 611 if (!MO.isUse()) 612 continue; 613 614 MachineInstr* DefMI = MRI->getVRegDef(Reg); 615 assert(SwapMap.find(DefMI) != SwapMap.end() && 616 "Inconsistency: def of vector reg not found in swap map!"); 617 int DefIdx = SwapMap[DefMI]; 618 (void)EC->unionSets(SwapVector[DefIdx].VSEId, 619 SwapVector[EntryIdx].VSEId); 620 621 DEBUG(dbgs() << format("Unioning %d with %d\n", SwapVector[DefIdx].VSEId, 622 SwapVector[EntryIdx].VSEId)); 623 DEBUG(dbgs() << " Def: "); 624 DEBUG(DefMI->dump()); 625 } 626 } 627 } 628 629 // Walk the swap vector entries looking for conditions that prevent their 630 // containing computations from being optimized. When such conditions are 631 // found, mark the representative of the computation's equivalence class 632 // as rejected. 633 void PPCVSXSwapRemoval::recordUnoptimizableWebs() { 634 635 DEBUG(dbgs() << "\n*** Rejecting webs for swap removal ***\n\n"); 636 637 for (unsigned EntryIdx = 0; EntryIdx < SwapVector.size(); ++EntryIdx) { 638 int Repr = EC->getLeaderValue(SwapVector[EntryIdx].VSEId); 639 640 // If representative is already rejected, don't waste further time. 641 if (SwapVector[Repr].WebRejected) 642 continue; 643 644 // Reject webs containing mentions of physical or partial registers, or 645 // containing operations that we don't know how to handle in a lane- 646 // permuted region. 647 if (SwapVector[EntryIdx].MentionsPhysVR || 648 SwapVector[EntryIdx].MentionsPartialVR || 649 !(SwapVector[EntryIdx].IsSwappable || SwapVector[EntryIdx].IsSwap)) { 650 651 SwapVector[Repr].WebRejected = 1; 652 653 DEBUG(dbgs() << 654 format("Web %d rejected for physreg, partial reg, or not " 655 "swap[pable]\n", Repr)); 656 DEBUG(dbgs() << " in " << EntryIdx << ": "); 657 DEBUG(SwapVector[EntryIdx].VSEMI->dump()); 658 DEBUG(dbgs() << "\n"); 659 } 660 661 // Reject webs than contain swapping loads that feed something other 662 // than a swap instruction. 663 else if (SwapVector[EntryIdx].IsLoad && SwapVector[EntryIdx].IsSwap) { 664 MachineInstr *MI = SwapVector[EntryIdx].VSEMI; 665 unsigned DefReg = MI->getOperand(0).getReg(); 666 667 // We skip debug instructions in the analysis. (Note that debug 668 // location information is still maintained by this optimization 669 // because it remains on the LXVD2X and STXVD2X instructions after 670 // the XXPERMDIs are removed.) 671 for (MachineInstr &UseMI : MRI->use_nodbg_instructions(DefReg)) { 672 int UseIdx = SwapMap[&UseMI]; 673 674 if (!SwapVector[UseIdx].IsSwap || SwapVector[UseIdx].IsLoad || 675 SwapVector[UseIdx].IsStore) { 676 677 SwapVector[Repr].WebRejected = 1; 678 679 DEBUG(dbgs() << 680 format("Web %d rejected for load not feeding swap\n", Repr)); 681 DEBUG(dbgs() << " def " << EntryIdx << ": "); 682 DEBUG(MI->dump()); 683 DEBUG(dbgs() << " use " << UseIdx << ": "); 684 DEBUG(UseMI.dump()); 685 DEBUG(dbgs() << "\n"); 686 } 687 } 688 689 // Reject webs that contain swapping stores that are fed by something 690 // other than a swap instruction. 691 } else if (SwapVector[EntryIdx].IsStore && SwapVector[EntryIdx].IsSwap) { 692 MachineInstr *MI = SwapVector[EntryIdx].VSEMI; 693 unsigned UseReg = MI->getOperand(0).getReg(); 694 MachineInstr *DefMI = MRI->getVRegDef(UseReg); 695 int DefIdx = SwapMap[DefMI]; 696 697 if (!SwapVector[DefIdx].IsSwap || SwapVector[DefIdx].IsLoad || 698 SwapVector[DefIdx].IsStore) { 699 700 SwapVector[Repr].WebRejected = 1; 701 702 DEBUG(dbgs() << 703 format("Web %d rejected for store not fed by swap\n", Repr)); 704 DEBUG(dbgs() << " def " << DefIdx << ": "); 705 DEBUG(DefMI->dump()); 706 DEBUG(dbgs() << " use " << EntryIdx << ": "); 707 DEBUG(MI->dump()); 708 DEBUG(dbgs() << "\n"); 709 } 710 } 711 } 712 713 DEBUG(dbgs() << "Swap vector after web analysis:\n\n"); 714 dumpSwapVector(); 715 } 716 717 // Walk the swap vector entries looking for swaps fed by permuting loads 718 // and swaps that feed permuting stores. If the containing computation 719 // has not been marked rejected, mark each such swap for removal. 720 // (Removal is delayed in case optimization has disturbed the pattern, 721 // such that multiple loads feed the same swap, etc.) 722 void PPCVSXSwapRemoval::markSwapsForRemoval() { 723 724 DEBUG(dbgs() << "\n*** Marking swaps for removal ***\n\n"); 725 726 for (unsigned EntryIdx = 0; EntryIdx < SwapVector.size(); ++EntryIdx) { 727 728 if (SwapVector[EntryIdx].IsLoad && SwapVector[EntryIdx].IsSwap) { 729 int Repr = EC->getLeaderValue(SwapVector[EntryIdx].VSEId); 730 731 if (!SwapVector[Repr].WebRejected) { 732 MachineInstr *MI = SwapVector[EntryIdx].VSEMI; 733 unsigned DefReg = MI->getOperand(0).getReg(); 734 735 for (MachineInstr &UseMI : MRI->use_nodbg_instructions(DefReg)) { 736 int UseIdx = SwapMap[&UseMI]; 737 SwapVector[UseIdx].WillRemove = 1; 738 739 DEBUG(dbgs() << "Marking swap fed by load for removal: "); 740 DEBUG(UseMI.dump()); 741 } 742 } 743 744 } else if (SwapVector[EntryIdx].IsStore && SwapVector[EntryIdx].IsSwap) { 745 int Repr = EC->getLeaderValue(SwapVector[EntryIdx].VSEId); 746 747 if (!SwapVector[Repr].WebRejected) { 748 MachineInstr *MI = SwapVector[EntryIdx].VSEMI; 749 unsigned UseReg = MI->getOperand(0).getReg(); 750 MachineInstr *DefMI = MRI->getVRegDef(UseReg); 751 int DefIdx = SwapMap[DefMI]; 752 SwapVector[DefIdx].WillRemove = 1; 753 754 DEBUG(dbgs() << "Marking swap feeding store for removal: "); 755 DEBUG(DefMI->dump()); 756 } 757 758 } else if (SwapVector[EntryIdx].IsSwappable && 759 SwapVector[EntryIdx].SpecialHandling != 0) { 760 int Repr = EC->getLeaderValue(SwapVector[EntryIdx].VSEId); 761 762 if (!SwapVector[Repr].WebRejected) 763 handleSpecialSwappables(EntryIdx); 764 } 765 } 766 } 767 768 // Create an xxswapd instruction and insert it prior to the given point. 769 // MI is used to determine basic block and debug loc information. 770 // FIXME: When inserting a swap, we should check whether SrcReg is 771 // defined by another swap: SrcReg = XXPERMDI Reg, Reg, 2; If so, 772 // then instead we should generate a copy from Reg to DstReg. 773 void PPCVSXSwapRemoval::insertSwap(MachineInstr *MI, 774 MachineBasicBlock::iterator InsertPoint, 775 unsigned DstReg, unsigned SrcReg) { 776 BuildMI(*MI->getParent(), InsertPoint, MI->getDebugLoc(), 777 TII->get(PPC::XXPERMDI), DstReg) 778 .addReg(SrcReg) 779 .addReg(SrcReg) 780 .addImm(2); 781 } 782 783 // The identified swap entry requires special handling to allow its 784 // containing computation to be optimized. Perform that handling 785 // here. 786 // FIXME: Additional opportunities will be phased in with subsequent 787 // patches. 788 void PPCVSXSwapRemoval::handleSpecialSwappables(int EntryIdx) { 789 switch (SwapVector[EntryIdx].SpecialHandling) { 790 791 default: 792 llvm_unreachable("Unexpected special handling type"); 793 794 // For splats based on an index into a vector, add N/2 modulo N 795 // to the index, where N is the number of vector elements. 796 case SHValues::SH_SPLAT: { 797 MachineInstr *MI = SwapVector[EntryIdx].VSEMI; 798 unsigned NElts; 799 800 DEBUG(dbgs() << "Changing splat: "); 801 DEBUG(MI->dump()); 802 803 switch (MI->getOpcode()) { 804 default: 805 llvm_unreachable("Unexpected splat opcode"); 806 case PPC::VSPLTB: NElts = 16; break; 807 case PPC::VSPLTH: NElts = 8; break; 808 case PPC::VSPLTW: NElts = 4; break; 809 } 810 811 unsigned EltNo = MI->getOperand(1).getImm(); 812 EltNo = (EltNo + NElts / 2) % NElts; 813 MI->getOperand(1).setImm(EltNo); 814 815 DEBUG(dbgs() << " Into: "); 816 DEBUG(MI->dump()); 817 break; 818 } 819 820 // For an XXPERMDI that isn't handled otherwise, we need to 821 // reverse the order of the operands. If the selector operand 822 // has a value of 0 or 3, we need to change it to 3 or 0, 823 // respectively. Otherwise we should leave it alone. (This 824 // is equivalent to reversing the two bits of the selector 825 // operand and complementing the result.) 826 case SHValues::SH_XXPERMDI: { 827 MachineInstr *MI = SwapVector[EntryIdx].VSEMI; 828 829 DEBUG(dbgs() << "Changing XXPERMDI: "); 830 DEBUG(MI->dump()); 831 832 unsigned Selector = MI->getOperand(3).getImm(); 833 if (Selector == 0 || Selector == 3) 834 Selector = 3 - Selector; 835 MI->getOperand(3).setImm(Selector); 836 837 unsigned Reg1 = MI->getOperand(1).getReg(); 838 unsigned Reg2 = MI->getOperand(2).getReg(); 839 MI->getOperand(1).setReg(Reg2); 840 MI->getOperand(2).setReg(Reg1); 841 842 DEBUG(dbgs() << " Into: "); 843 DEBUG(MI->dump()); 844 break; 845 } 846 847 // For a copy from a scalar floating-point register to a vector 848 // register, removing swaps will leave the copied value in the 849 // wrong lane. Insert a swap following the copy to fix this. 850 case SHValues::SH_COPYWIDEN: { 851 MachineInstr *MI = SwapVector[EntryIdx].VSEMI; 852 853 DEBUG(dbgs() << "Changing SUBREG_TO_REG: "); 854 DEBUG(MI->dump()); 855 856 unsigned DstReg = MI->getOperand(0).getReg(); 857 const TargetRegisterClass *DstRC = MRI->getRegClass(DstReg); 858 unsigned NewVReg = MRI->createVirtualRegister(DstRC); 859 860 MI->getOperand(0).setReg(NewVReg); 861 DEBUG(dbgs() << " Into: "); 862 DEBUG(MI->dump()); 863 864 auto InsertPoint = ++MachineBasicBlock::iterator(MI); 865 866 // Note that an XXPERMDI requires a VSRC, so if the SUBREG_TO_REG 867 // is copying to a VRRC, we need to be careful to avoid a register 868 // assignment problem. In this case we must copy from VRRC to VSRC 869 // prior to the swap, and from VSRC to VRRC following the swap. 870 // Coalescing will usually remove all this mess. 871 if (DstRC == &PPC::VRRCRegClass) { 872 unsigned VSRCTmp1 = MRI->createVirtualRegister(&PPC::VSRCRegClass); 873 unsigned VSRCTmp2 = MRI->createVirtualRegister(&PPC::VSRCRegClass); 874 875 BuildMI(*MI->getParent(), InsertPoint, MI->getDebugLoc(), 876 TII->get(PPC::COPY), VSRCTmp1) 877 .addReg(NewVReg); 878 DEBUG(std::prev(InsertPoint)->dump()); 879 880 insertSwap(MI, InsertPoint, VSRCTmp2, VSRCTmp1); 881 DEBUG(std::prev(InsertPoint)->dump()); 882 883 BuildMI(*MI->getParent(), InsertPoint, MI->getDebugLoc(), 884 TII->get(PPC::COPY), DstReg) 885 .addReg(VSRCTmp2); 886 DEBUG(std::prev(InsertPoint)->dump()); 887 888 } else { 889 insertSwap(MI, InsertPoint, DstReg, NewVReg); 890 DEBUG(std::prev(InsertPoint)->dump()); 891 } 892 break; 893 } 894 } 895 } 896 897 // Walk the swap vector and replace each entry marked for removal with 898 // a copy operation. 899 bool PPCVSXSwapRemoval::removeSwaps() { 900 901 DEBUG(dbgs() << "\n*** Removing swaps ***\n\n"); 902 903 bool Changed = false; 904 905 for (unsigned EntryIdx = 0; EntryIdx < SwapVector.size(); ++EntryIdx) { 906 if (SwapVector[EntryIdx].WillRemove) { 907 Changed = true; 908 MachineInstr *MI = SwapVector[EntryIdx].VSEMI; 909 MachineBasicBlock *MBB = MI->getParent(); 910 BuildMI(*MBB, MI, MI->getDebugLoc(), 911 TII->get(TargetOpcode::COPY), MI->getOperand(0).getReg()) 912 .addOperand(MI->getOperand(1)); 913 914 DEBUG(dbgs() << format("Replaced %d with copy: ", 915 SwapVector[EntryIdx].VSEId)); 916 DEBUG(MI->dump()); 917 918 MI->eraseFromParent(); 919 } 920 } 921 922 return Changed; 923 } 924 925 // For debug purposes, dump the contents of the swap vector. 926 void PPCVSXSwapRemoval::dumpSwapVector() { 927 928 for (unsigned EntryIdx = 0; EntryIdx < SwapVector.size(); ++EntryIdx) { 929 930 MachineInstr *MI = SwapVector[EntryIdx].VSEMI; 931 int ID = SwapVector[EntryIdx].VSEId; 932 933 DEBUG(dbgs() << format("%6d", ID)); 934 DEBUG(dbgs() << format("%6d", EC->getLeaderValue(ID))); 935 DEBUG(dbgs() << format(" BB#%3d", MI->getParent()->getNumber())); 936 DEBUG(dbgs() << format(" %14s ", TII->getName(MI->getOpcode()))); 937 938 if (SwapVector[EntryIdx].IsLoad) 939 DEBUG(dbgs() << "load "); 940 if (SwapVector[EntryIdx].IsStore) 941 DEBUG(dbgs() << "store "); 942 if (SwapVector[EntryIdx].IsSwap) 943 DEBUG(dbgs() << "swap "); 944 if (SwapVector[EntryIdx].MentionsPhysVR) 945 DEBUG(dbgs() << "physreg "); 946 if (SwapVector[EntryIdx].MentionsPartialVR) 947 DEBUG(dbgs() << "partialreg "); 948 949 if (SwapVector[EntryIdx].IsSwappable) { 950 DEBUG(dbgs() << "swappable "); 951 switch(SwapVector[EntryIdx].SpecialHandling) { 952 default: 953 DEBUG(dbgs() << "special:**unknown**"); 954 break; 955 case SH_NONE: 956 break; 957 case SH_EXTRACT: 958 DEBUG(dbgs() << "special:extract "); 959 break; 960 case SH_INSERT: 961 DEBUG(dbgs() << "special:insert "); 962 break; 963 case SH_NOSWAP_LD: 964 DEBUG(dbgs() << "special:load "); 965 break; 966 case SH_NOSWAP_ST: 967 DEBUG(dbgs() << "special:store "); 968 break; 969 case SH_SPLAT: 970 DEBUG(dbgs() << "special:splat "); 971 break; 972 case SH_XXPERMDI: 973 DEBUG(dbgs() << "special:xxpermdi "); 974 break; 975 case SH_COPYWIDEN: 976 DEBUG(dbgs() << "special:copywiden "); 977 break; 978 } 979 } 980 981 if (SwapVector[EntryIdx].WebRejected) 982 DEBUG(dbgs() << "rejected "); 983 if (SwapVector[EntryIdx].WillRemove) 984 DEBUG(dbgs() << "remove "); 985 986 DEBUG(dbgs() << "\n"); 987 988 // For no-asserts builds. 989 (void)MI; 990 (void)ID; 991 } 992 993 DEBUG(dbgs() << "\n"); 994 } 995 996 } // end default namespace 997 998 INITIALIZE_PASS_BEGIN(PPCVSXSwapRemoval, DEBUG_TYPE, 999 "PowerPC VSX Swap Removal", false, false) 1000 INITIALIZE_PASS_END(PPCVSXSwapRemoval, DEBUG_TYPE, 1001 "PowerPC VSX Swap Removal", false, false) 1002 1003 char PPCVSXSwapRemoval::ID = 0; 1004 FunctionPass* 1005 llvm::createPPCVSXSwapRemovalPass() { return new PPCVSXSwapRemoval(); } 1006