Home | History | Annotate | Download | only in ARM
      1 //===-- ARMISelLowering.cpp - ARM DAG Lowering Implementation -------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This file defines the interfaces that ARM uses to lower LLVM code into a
     11 // selection DAG.
     12 //
     13 //===----------------------------------------------------------------------===//
     14 
     15 #include "ARMISelLowering.h"
     16 #include "ARMCallingConv.h"
     17 #include "ARMConstantPoolValue.h"
     18 #include "ARMMachineFunctionInfo.h"
     19 #include "ARMPerfectShuffle.h"
     20 #include "ARMSubtarget.h"
     21 #include "ARMTargetMachine.h"
     22 #include "ARMTargetObjectFile.h"
     23 #include "MCTargetDesc/ARMAddressingModes.h"
     24 #include "llvm/ADT/Statistic.h"
     25 #include "llvm/ADT/StringExtras.h"
     26 #include "llvm/ADT/StringSwitch.h"
     27 #include "llvm/CodeGen/CallingConvLower.h"
     28 #include "llvm/CodeGen/IntrinsicLowering.h"
     29 #include "llvm/CodeGen/MachineBasicBlock.h"
     30 #include "llvm/CodeGen/MachineFrameInfo.h"
     31 #include "llvm/CodeGen/MachineFunction.h"
     32 #include "llvm/CodeGen/MachineInstrBuilder.h"
     33 #include "llvm/CodeGen/MachineJumpTableInfo.h"
     34 #include "llvm/CodeGen/MachineModuleInfo.h"
     35 #include "llvm/CodeGen/MachineRegisterInfo.h"
     36 #include "llvm/CodeGen/SelectionDAG.h"
     37 #include "llvm/IR/CallingConv.h"
     38 #include "llvm/IR/Constants.h"
     39 #include "llvm/IR/Function.h"
     40 #include "llvm/IR/GlobalValue.h"
     41 #include "llvm/IR/IRBuilder.h"
     42 #include "llvm/IR/Instruction.h"
     43 #include "llvm/IR/Instructions.h"
     44 #include "llvm/IR/IntrinsicInst.h"
     45 #include "llvm/IR/Intrinsics.h"
     46 #include "llvm/IR/Type.h"
     47 #include "llvm/MC/MCSectionMachO.h"
     48 #include "llvm/Support/CommandLine.h"
     49 #include "llvm/Support/Debug.h"
     50 #include "llvm/Support/ErrorHandling.h"
     51 #include "llvm/Support/MathExtras.h"
     52 #include "llvm/Support/raw_ostream.h"
     53 #include "llvm/Target/TargetOptions.h"
     54 #include <utility>
     55 using namespace llvm;
     56 
     57 #define DEBUG_TYPE "arm-isel"
     58 
     59 STATISTIC(NumTailCalls, "Number of tail calls");
     60 STATISTIC(NumMovwMovt, "Number of GAs materialized with movw + movt");
     61 STATISTIC(NumLoopByVals, "Number of loops generated for byval arguments");
     62 
     63 static cl::opt<bool>
     64 ARMInterworking("arm-interworking", cl::Hidden,
     65   cl::desc("Enable / disable ARM interworking (for debugging only)"),
     66   cl::init(true));
     67 
     68 namespace {
     69   class ARMCCState : public CCState {
     70   public:
     71     ARMCCState(CallingConv::ID CC, bool isVarArg, MachineFunction &MF,
     72                SmallVectorImpl<CCValAssign> &locs, LLVMContext &C,
     73                ParmContext PC)
     74         : CCState(CC, isVarArg, MF, locs, C) {
     75       assert(((PC == Call) || (PC == Prologue)) &&
     76              "ARMCCState users must specify whether their context is call"
     77              "or prologue generation.");
     78       CallOrPrologue = PC;
     79     }
     80   };
     81 }
     82 
     83 // The APCS parameter registers.
     84 static const MCPhysReg GPRArgRegs[] = {
     85   ARM::R0, ARM::R1, ARM::R2, ARM::R3
     86 };
     87 
     88 void ARMTargetLowering::addTypeForNEON(MVT VT, MVT PromotedLdStVT,
     89                                        MVT PromotedBitwiseVT) {
     90   if (VT != PromotedLdStVT) {
     91     setOperationAction(ISD::LOAD, VT, Promote);
     92     AddPromotedToType (ISD::LOAD, VT, PromotedLdStVT);
     93 
     94     setOperationAction(ISD::STORE, VT, Promote);
     95     AddPromotedToType (ISD::STORE, VT, PromotedLdStVT);
     96   }
     97 
     98   MVT ElemTy = VT.getVectorElementType();
     99   if (ElemTy != MVT::i64 && ElemTy != MVT::f64)
    100     setOperationAction(ISD::SETCC, VT, Custom);
    101   setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom);
    102   setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom);
    103   if (ElemTy == MVT::i32) {
    104     setOperationAction(ISD::SINT_TO_FP, VT, Custom);
    105     setOperationAction(ISD::UINT_TO_FP, VT, Custom);
    106     setOperationAction(ISD::FP_TO_SINT, VT, Custom);
    107     setOperationAction(ISD::FP_TO_UINT, VT, Custom);
    108   } else {
    109     setOperationAction(ISD::SINT_TO_FP, VT, Expand);
    110     setOperationAction(ISD::UINT_TO_FP, VT, Expand);
    111     setOperationAction(ISD::FP_TO_SINT, VT, Expand);
    112     setOperationAction(ISD::FP_TO_UINT, VT, Expand);
    113   }
    114   setOperationAction(ISD::BUILD_VECTOR,      VT, Custom);
    115   setOperationAction(ISD::VECTOR_SHUFFLE,    VT, Custom);
    116   setOperationAction(ISD::CONCAT_VECTORS,    VT, Legal);
    117   setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Legal);
    118   setOperationAction(ISD::SELECT,            VT, Expand);
    119   setOperationAction(ISD::SELECT_CC,         VT, Expand);
    120   setOperationAction(ISD::VSELECT,           VT, Expand);
    121   setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
    122   if (VT.isInteger()) {
    123     setOperationAction(ISD::SHL, VT, Custom);
    124     setOperationAction(ISD::SRA, VT, Custom);
    125     setOperationAction(ISD::SRL, VT, Custom);
    126   }
    127 
    128   // Promote all bit-wise operations.
    129   if (VT.isInteger() && VT != PromotedBitwiseVT) {
    130     setOperationAction(ISD::AND, VT, Promote);
    131     AddPromotedToType (ISD::AND, VT, PromotedBitwiseVT);
    132     setOperationAction(ISD::OR,  VT, Promote);
    133     AddPromotedToType (ISD::OR,  VT, PromotedBitwiseVT);
    134     setOperationAction(ISD::XOR, VT, Promote);
    135     AddPromotedToType (ISD::XOR, VT, PromotedBitwiseVT);
    136   }
    137 
    138   // Neon does not support vector divide/remainder operations.
    139   setOperationAction(ISD::SDIV, VT, Expand);
    140   setOperationAction(ISD::UDIV, VT, Expand);
    141   setOperationAction(ISD::FDIV, VT, Expand);
    142   setOperationAction(ISD::SREM, VT, Expand);
    143   setOperationAction(ISD::UREM, VT, Expand);
    144   setOperationAction(ISD::FREM, VT, Expand);
    145 
    146   if (!VT.isFloatingPoint() &&
    147       VT != MVT::v2i64 && VT != MVT::v1i64)
    148     for (unsigned Opcode : {ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX})
    149       setOperationAction(Opcode, VT, Legal);
    150 }
    151 
    152 void ARMTargetLowering::addDRTypeForNEON(MVT VT) {
    153   addRegisterClass(VT, &ARM::DPRRegClass);
    154   addTypeForNEON(VT, MVT::f64, MVT::v2i32);
    155 }
    156 
    157 void ARMTargetLowering::addQRTypeForNEON(MVT VT) {
    158   addRegisterClass(VT, &ARM::DPairRegClass);
    159   addTypeForNEON(VT, MVT::v2f64, MVT::v4i32);
    160 }
    161 
    162 ARMTargetLowering::ARMTargetLowering(const TargetMachine &TM,
    163                                      const ARMSubtarget &STI)
    164     : TargetLowering(TM), Subtarget(&STI) {
    165   RegInfo = Subtarget->getRegisterInfo();
    166   Itins = Subtarget->getInstrItineraryData();
    167 
    168   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
    169 
    170   if (Subtarget->isTargetMachO()) {
    171     // Uses VFP for Thumb libfuncs if available.
    172     if (Subtarget->isThumb() && Subtarget->hasVFP2() &&
    173         Subtarget->hasARMOps() && !Subtarget->useSoftFloat()) {
    174       static const struct {
    175         const RTLIB::Libcall Op;
    176         const char * const Name;
    177         const ISD::CondCode Cond;
    178       } LibraryCalls[] = {
    179         // Single-precision floating-point arithmetic.
    180         { RTLIB::ADD_F32, "__addsf3vfp", ISD::SETCC_INVALID },
    181         { RTLIB::SUB_F32, "__subsf3vfp", ISD::SETCC_INVALID },
    182         { RTLIB::MUL_F32, "__mulsf3vfp", ISD::SETCC_INVALID },
    183         { RTLIB::DIV_F32, "__divsf3vfp", ISD::SETCC_INVALID },
    184 
    185         // Double-precision floating-point arithmetic.
    186         { RTLIB::ADD_F64, "__adddf3vfp", ISD::SETCC_INVALID },
    187         { RTLIB::SUB_F64, "__subdf3vfp", ISD::SETCC_INVALID },
    188         { RTLIB::MUL_F64, "__muldf3vfp", ISD::SETCC_INVALID },
    189         { RTLIB::DIV_F64, "__divdf3vfp", ISD::SETCC_INVALID },
    190 
    191         // Single-precision comparisons.
    192         { RTLIB::OEQ_F32, "__eqsf2vfp",    ISD::SETNE },
    193         { RTLIB::UNE_F32, "__nesf2vfp",    ISD::SETNE },
    194         { RTLIB::OLT_F32, "__ltsf2vfp",    ISD::SETNE },
    195         { RTLIB::OLE_F32, "__lesf2vfp",    ISD::SETNE },
    196         { RTLIB::OGE_F32, "__gesf2vfp",    ISD::SETNE },
    197         { RTLIB::OGT_F32, "__gtsf2vfp",    ISD::SETNE },
    198         { RTLIB::UO_F32,  "__unordsf2vfp", ISD::SETNE },
    199         { RTLIB::O_F32,   "__unordsf2vfp", ISD::SETEQ },
    200 
    201         // Double-precision comparisons.
    202         { RTLIB::OEQ_F64, "__eqdf2vfp",    ISD::SETNE },
    203         { RTLIB::UNE_F64, "__nedf2vfp",    ISD::SETNE },
    204         { RTLIB::OLT_F64, "__ltdf2vfp",    ISD::SETNE },
    205         { RTLIB::OLE_F64, "__ledf2vfp",    ISD::SETNE },
    206         { RTLIB::OGE_F64, "__gedf2vfp",    ISD::SETNE },
    207         { RTLIB::OGT_F64, "__gtdf2vfp",    ISD::SETNE },
    208         { RTLIB::UO_F64,  "__unorddf2vfp", ISD::SETNE },
    209         { RTLIB::O_F64,   "__unorddf2vfp", ISD::SETEQ },
    210 
    211         // Floating-point to integer conversions.
    212         // i64 conversions are done via library routines even when generating VFP
    213         // instructions, so use the same ones.
    214         { RTLIB::FPTOSINT_F64_I32, "__fixdfsivfp",    ISD::SETCC_INVALID },
    215         { RTLIB::FPTOUINT_F64_I32, "__fixunsdfsivfp", ISD::SETCC_INVALID },
    216         { RTLIB::FPTOSINT_F32_I32, "__fixsfsivfp",    ISD::SETCC_INVALID },
    217         { RTLIB::FPTOUINT_F32_I32, "__fixunssfsivfp", ISD::SETCC_INVALID },
    218 
    219         // Conversions between floating types.
    220         { RTLIB::FPROUND_F64_F32, "__truncdfsf2vfp",  ISD::SETCC_INVALID },
    221         { RTLIB::FPEXT_F32_F64,   "__extendsfdf2vfp", ISD::SETCC_INVALID },
    222 
    223         // Integer to floating-point conversions.
    224         // i64 conversions are done via library routines even when generating VFP
    225         // instructions, so use the same ones.
    226         // FIXME: There appears to be some naming inconsistency in ARM libgcc:
    227         // e.g., __floatunsidf vs. __floatunssidfvfp.
    228         { RTLIB::SINTTOFP_I32_F64, "__floatsidfvfp",    ISD::SETCC_INVALID },
    229         { RTLIB::UINTTOFP_I32_F64, "__floatunssidfvfp", ISD::SETCC_INVALID },
    230         { RTLIB::SINTTOFP_I32_F32, "__floatsisfvfp",    ISD::SETCC_INVALID },
    231         { RTLIB::UINTTOFP_I32_F32, "__floatunssisfvfp", ISD::SETCC_INVALID },
    232       };
    233 
    234       for (const auto &LC : LibraryCalls) {
    235         setLibcallName(LC.Op, LC.Name);
    236         if (LC.Cond != ISD::SETCC_INVALID)
    237           setCmpLibcallCC(LC.Op, LC.Cond);
    238       }
    239     }
    240 
    241     // Set the correct calling convention for ARMv7k WatchOS. It's just
    242     // AAPCS_VFP for functions as simple as libcalls.
    243     if (Subtarget->isTargetWatchOS()) {
    244       for (int i = 0; i < RTLIB::UNKNOWN_LIBCALL; ++i)
    245         setLibcallCallingConv((RTLIB::Libcall)i, CallingConv::ARM_AAPCS_VFP);
    246     }
    247   }
    248 
    249   // These libcalls are not available in 32-bit.
    250   setLibcallName(RTLIB::SHL_I128, nullptr);
    251   setLibcallName(RTLIB::SRL_I128, nullptr);
    252   setLibcallName(RTLIB::SRA_I128, nullptr);
    253 
    254   // RTLIB
    255   if (Subtarget->isAAPCS_ABI() &&
    256       (Subtarget->isTargetAEABI() || Subtarget->isTargetGNUAEABI() ||
    257        Subtarget->isTargetAndroid())) {
    258     static const struct {
    259       const RTLIB::Libcall Op;
    260       const char * const Name;
    261       const CallingConv::ID CC;
    262       const ISD::CondCode Cond;
    263     } LibraryCalls[] = {
    264       // Double-precision floating-point arithmetic helper functions
    265       // RTABI chapter 4.1.2, Table 2
    266       { RTLIB::ADD_F64, "__aeabi_dadd", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    267       { RTLIB::DIV_F64, "__aeabi_ddiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    268       { RTLIB::MUL_F64, "__aeabi_dmul", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    269       { RTLIB::SUB_F64, "__aeabi_dsub", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    270 
    271       // Double-precision floating-point comparison helper functions
    272       // RTABI chapter 4.1.2, Table 3
    273       { RTLIB::OEQ_F64, "__aeabi_dcmpeq", CallingConv::ARM_AAPCS, ISD::SETNE },
    274       { RTLIB::UNE_F64, "__aeabi_dcmpeq", CallingConv::ARM_AAPCS, ISD::SETEQ },
    275       { RTLIB::OLT_F64, "__aeabi_dcmplt", CallingConv::ARM_AAPCS, ISD::SETNE },
    276       { RTLIB::OLE_F64, "__aeabi_dcmple", CallingConv::ARM_AAPCS, ISD::SETNE },
    277       { RTLIB::OGE_F64, "__aeabi_dcmpge", CallingConv::ARM_AAPCS, ISD::SETNE },
    278       { RTLIB::OGT_F64, "__aeabi_dcmpgt", CallingConv::ARM_AAPCS, ISD::SETNE },
    279       { RTLIB::UO_F64,  "__aeabi_dcmpun", CallingConv::ARM_AAPCS, ISD::SETNE },
    280       { RTLIB::O_F64,   "__aeabi_dcmpun", CallingConv::ARM_AAPCS, ISD::SETEQ },
    281 
    282       // Single-precision floating-point arithmetic helper functions
    283       // RTABI chapter 4.1.2, Table 4
    284       { RTLIB::ADD_F32, "__aeabi_fadd", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    285       { RTLIB::DIV_F32, "__aeabi_fdiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    286       { RTLIB::MUL_F32, "__aeabi_fmul", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    287       { RTLIB::SUB_F32, "__aeabi_fsub", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    288 
    289       // Single-precision floating-point comparison helper functions
    290       // RTABI chapter 4.1.2, Table 5
    291       { RTLIB::OEQ_F32, "__aeabi_fcmpeq", CallingConv::ARM_AAPCS, ISD::SETNE },
    292       { RTLIB::UNE_F32, "__aeabi_fcmpeq", CallingConv::ARM_AAPCS, ISD::SETEQ },
    293       { RTLIB::OLT_F32, "__aeabi_fcmplt", CallingConv::ARM_AAPCS, ISD::SETNE },
    294       { RTLIB::OLE_F32, "__aeabi_fcmple", CallingConv::ARM_AAPCS, ISD::SETNE },
    295       { RTLIB::OGE_F32, "__aeabi_fcmpge", CallingConv::ARM_AAPCS, ISD::SETNE },
    296       { RTLIB::OGT_F32, "__aeabi_fcmpgt", CallingConv::ARM_AAPCS, ISD::SETNE },
    297       { RTLIB::UO_F32,  "__aeabi_fcmpun", CallingConv::ARM_AAPCS, ISD::SETNE },
    298       { RTLIB::O_F32,   "__aeabi_fcmpun", CallingConv::ARM_AAPCS, ISD::SETEQ },
    299 
    300       // Floating-point to integer conversions.
    301       // RTABI chapter 4.1.2, Table 6
    302       { RTLIB::FPTOSINT_F64_I32, "__aeabi_d2iz",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    303       { RTLIB::FPTOUINT_F64_I32, "__aeabi_d2uiz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    304       { RTLIB::FPTOSINT_F64_I64, "__aeabi_d2lz",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    305       { RTLIB::FPTOUINT_F64_I64, "__aeabi_d2ulz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    306       { RTLIB::FPTOSINT_F32_I32, "__aeabi_f2iz",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    307       { RTLIB::FPTOUINT_F32_I32, "__aeabi_f2uiz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    308       { RTLIB::FPTOSINT_F32_I64, "__aeabi_f2lz",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    309       { RTLIB::FPTOUINT_F32_I64, "__aeabi_f2ulz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    310 
    311       // Conversions between floating types.
    312       // RTABI chapter 4.1.2, Table 7
    313       { RTLIB::FPROUND_F64_F32, "__aeabi_d2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    314       { RTLIB::FPROUND_F64_F16, "__aeabi_d2h", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    315       { RTLIB::FPEXT_F32_F64,   "__aeabi_f2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    316 
    317       // Integer to floating-point conversions.
    318       // RTABI chapter 4.1.2, Table 8
    319       { RTLIB::SINTTOFP_I32_F64, "__aeabi_i2d",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    320       { RTLIB::UINTTOFP_I32_F64, "__aeabi_ui2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    321       { RTLIB::SINTTOFP_I64_F64, "__aeabi_l2d",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    322       { RTLIB::UINTTOFP_I64_F64, "__aeabi_ul2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    323       { RTLIB::SINTTOFP_I32_F32, "__aeabi_i2f",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    324       { RTLIB::UINTTOFP_I32_F32, "__aeabi_ui2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    325       { RTLIB::SINTTOFP_I64_F32, "__aeabi_l2f",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    326       { RTLIB::UINTTOFP_I64_F32, "__aeabi_ul2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    327 
    328       // Long long helper functions
    329       // RTABI chapter 4.2, Table 9
    330       { RTLIB::MUL_I64, "__aeabi_lmul", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    331       { RTLIB::SHL_I64, "__aeabi_llsl", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    332       { RTLIB::SRL_I64, "__aeabi_llsr", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    333       { RTLIB::SRA_I64, "__aeabi_lasr", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    334 
    335       // Integer division functions
    336       // RTABI chapter 4.3.1
    337       { RTLIB::SDIV_I8,  "__aeabi_idiv",     CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    338       { RTLIB::SDIV_I16, "__aeabi_idiv",     CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    339       { RTLIB::SDIV_I32, "__aeabi_idiv",     CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    340       { RTLIB::SDIV_I64, "__aeabi_ldivmod",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    341       { RTLIB::UDIV_I8,  "__aeabi_uidiv",    CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    342       { RTLIB::UDIV_I16, "__aeabi_uidiv",    CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    343       { RTLIB::UDIV_I32, "__aeabi_uidiv",    CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    344       { RTLIB::UDIV_I64, "__aeabi_uldivmod", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    345     };
    346 
    347     for (const auto &LC : LibraryCalls) {
    348       setLibcallName(LC.Op, LC.Name);
    349       setLibcallCallingConv(LC.Op, LC.CC);
    350       if (LC.Cond != ISD::SETCC_INVALID)
    351         setCmpLibcallCC(LC.Op, LC.Cond);
    352     }
    353 
    354     // EABI dependent RTLIB
    355     if (TM.Options.EABIVersion == EABI::EABI4 ||
    356         TM.Options.EABIVersion == EABI::EABI5) {
    357       static const struct {
    358         const RTLIB::Libcall Op;
    359         const char *const Name;
    360         const CallingConv::ID CC;
    361         const ISD::CondCode Cond;
    362       } MemOpsLibraryCalls[] = {
    363         // Memory operations
    364         // RTABI chapter 4.3.4
    365         { RTLIB::MEMCPY,  "__aeabi_memcpy",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    366         { RTLIB::MEMMOVE, "__aeabi_memmove", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    367         { RTLIB::MEMSET,  "__aeabi_memset",  CallingConv::ARM_AAPCS, ISD::SETCC_INVALID },
    368       };
    369 
    370       for (const auto &LC : MemOpsLibraryCalls) {
    371         setLibcallName(LC.Op, LC.Name);
    372         setLibcallCallingConv(LC.Op, LC.CC);
    373         if (LC.Cond != ISD::SETCC_INVALID)
    374           setCmpLibcallCC(LC.Op, LC.Cond);
    375       }
    376     }
    377   }
    378 
    379   if (Subtarget->isTargetWindows()) {
    380     static const struct {
    381       const RTLIB::Libcall Op;
    382       const char * const Name;
    383       const CallingConv::ID CC;
    384     } LibraryCalls[] = {
    385       { RTLIB::FPTOSINT_F32_I64, "__stoi64", CallingConv::ARM_AAPCS_VFP },
    386       { RTLIB::FPTOSINT_F64_I64, "__dtoi64", CallingConv::ARM_AAPCS_VFP },
    387       { RTLIB::FPTOUINT_F32_I64, "__stou64", CallingConv::ARM_AAPCS_VFP },
    388       { RTLIB::FPTOUINT_F64_I64, "__dtou64", CallingConv::ARM_AAPCS_VFP },
    389       { RTLIB::SINTTOFP_I64_F32, "__i64tos", CallingConv::ARM_AAPCS_VFP },
    390       { RTLIB::SINTTOFP_I64_F64, "__i64tod", CallingConv::ARM_AAPCS_VFP },
    391       { RTLIB::UINTTOFP_I64_F32, "__u64tos", CallingConv::ARM_AAPCS_VFP },
    392       { RTLIB::UINTTOFP_I64_F64, "__u64tod", CallingConv::ARM_AAPCS_VFP },
    393       { RTLIB::SDIV_I32, "__rt_sdiv",   CallingConv::ARM_AAPCS_VFP },
    394       { RTLIB::UDIV_I32, "__rt_udiv",   CallingConv::ARM_AAPCS_VFP },
    395       { RTLIB::SDIV_I64, "__rt_sdiv64", CallingConv::ARM_AAPCS_VFP },
    396       { RTLIB::UDIV_I64, "__rt_udiv64", CallingConv::ARM_AAPCS_VFP },
    397     };
    398 
    399     for (const auto &LC : LibraryCalls) {
    400       setLibcallName(LC.Op, LC.Name);
    401       setLibcallCallingConv(LC.Op, LC.CC);
    402     }
    403   }
    404 
    405   // Use divmod compiler-rt calls for iOS 5.0 and later.
    406   if (Subtarget->isTargetWatchOS() ||
    407       (Subtarget->isTargetIOS() &&
    408        !Subtarget->getTargetTriple().isOSVersionLT(5, 0))) {
    409     setLibcallName(RTLIB::SDIVREM_I32, "__divmodsi4");
    410     setLibcallName(RTLIB::UDIVREM_I32, "__udivmodsi4");
    411   }
    412 
    413   // The half <-> float conversion functions are always soft-float, but are
    414   // needed for some targets which use a hard-float calling convention by
    415   // default.
    416   if (Subtarget->isAAPCS_ABI()) {
    417     setLibcallCallingConv(RTLIB::FPROUND_F32_F16, CallingConv::ARM_AAPCS);
    418     setLibcallCallingConv(RTLIB::FPROUND_F64_F16, CallingConv::ARM_AAPCS);
    419     setLibcallCallingConv(RTLIB::FPEXT_F16_F32, CallingConv::ARM_AAPCS);
    420   } else {
    421     setLibcallCallingConv(RTLIB::FPROUND_F32_F16, CallingConv::ARM_APCS);
    422     setLibcallCallingConv(RTLIB::FPROUND_F64_F16, CallingConv::ARM_APCS);
    423     setLibcallCallingConv(RTLIB::FPEXT_F16_F32, CallingConv::ARM_APCS);
    424   }
    425 
    426   // In EABI, these functions have an __aeabi_ prefix, but in GNUEABI they have
    427   // a __gnu_ prefix (which is the default).
    428   if (Subtarget->isTargetAEABI()) {
    429     setLibcallName(RTLIB::FPROUND_F32_F16, "__aeabi_f2h");
    430     setLibcallName(RTLIB::FPROUND_F64_F16, "__aeabi_d2h");
    431     setLibcallName(RTLIB::FPEXT_F16_F32,   "__aeabi_h2f");
    432   }
    433 
    434   if (Subtarget->isThumb1Only())
    435     addRegisterClass(MVT::i32, &ARM::tGPRRegClass);
    436   else
    437     addRegisterClass(MVT::i32, &ARM::GPRRegClass);
    438   if (!Subtarget->useSoftFloat() && Subtarget->hasVFP2() &&
    439       !Subtarget->isThumb1Only()) {
    440     addRegisterClass(MVT::f32, &ARM::SPRRegClass);
    441     addRegisterClass(MVT::f64, &ARM::DPRRegClass);
    442   }
    443 
    444   for (MVT VT : MVT::vector_valuetypes()) {
    445     for (MVT InnerVT : MVT::vector_valuetypes()) {
    446       setTruncStoreAction(VT, InnerVT, Expand);
    447       setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand);
    448       setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand);
    449       setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand);
    450     }
    451 
    452     setOperationAction(ISD::MULHS, VT, Expand);
    453     setOperationAction(ISD::SMUL_LOHI, VT, Expand);
    454     setOperationAction(ISD::MULHU, VT, Expand);
    455     setOperationAction(ISD::UMUL_LOHI, VT, Expand);
    456 
    457     setOperationAction(ISD::BSWAP, VT, Expand);
    458   }
    459 
    460   setOperationAction(ISD::ConstantFP, MVT::f32, Custom);
    461   setOperationAction(ISD::ConstantFP, MVT::f64, Custom);
    462 
    463   setOperationAction(ISD::READ_REGISTER, MVT::i64, Custom);
    464   setOperationAction(ISD::WRITE_REGISTER, MVT::i64, Custom);
    465 
    466   if (Subtarget->hasNEON()) {
    467     addDRTypeForNEON(MVT::v2f32);
    468     addDRTypeForNEON(MVT::v8i8);
    469     addDRTypeForNEON(MVT::v4i16);
    470     addDRTypeForNEON(MVT::v2i32);
    471     addDRTypeForNEON(MVT::v1i64);
    472 
    473     addQRTypeForNEON(MVT::v4f32);
    474     addQRTypeForNEON(MVT::v2f64);
    475     addQRTypeForNEON(MVT::v16i8);
    476     addQRTypeForNEON(MVT::v8i16);
    477     addQRTypeForNEON(MVT::v4i32);
    478     addQRTypeForNEON(MVT::v2i64);
    479 
    480     // v2f64 is legal so that QR subregs can be extracted as f64 elements, but
    481     // neither Neon nor VFP support any arithmetic operations on it.
    482     // The same with v4f32. But keep in mind that vadd, vsub, vmul are natively
    483     // supported for v4f32.
    484     setOperationAction(ISD::FADD, MVT::v2f64, Expand);
    485     setOperationAction(ISD::FSUB, MVT::v2f64, Expand);
    486     setOperationAction(ISD::FMUL, MVT::v2f64, Expand);
    487     // FIXME: Code duplication: FDIV and FREM are expanded always, see
    488     // ARMTargetLowering::addTypeForNEON method for details.
    489     setOperationAction(ISD::FDIV, MVT::v2f64, Expand);
    490     setOperationAction(ISD::FREM, MVT::v2f64, Expand);
    491     // FIXME: Create unittest.
    492     // In another words, find a way when "copysign" appears in DAG with vector
    493     // operands.
    494     setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Expand);
    495     // FIXME: Code duplication: SETCC has custom operation action, see
    496     // ARMTargetLowering::addTypeForNEON method for details.
    497     setOperationAction(ISD::SETCC, MVT::v2f64, Expand);
    498     // FIXME: Create unittest for FNEG and for FABS.
    499     setOperationAction(ISD::FNEG, MVT::v2f64, Expand);
    500     setOperationAction(ISD::FABS, MVT::v2f64, Expand);
    501     setOperationAction(ISD::FSQRT, MVT::v2f64, Expand);
    502     setOperationAction(ISD::FSIN, MVT::v2f64, Expand);
    503     setOperationAction(ISD::FCOS, MVT::v2f64, Expand);
    504     setOperationAction(ISD::FPOWI, MVT::v2f64, Expand);
    505     setOperationAction(ISD::FPOW, MVT::v2f64, Expand);
    506     setOperationAction(ISD::FLOG, MVT::v2f64, Expand);
    507     setOperationAction(ISD::FLOG2, MVT::v2f64, Expand);
    508     setOperationAction(ISD::FLOG10, MVT::v2f64, Expand);
    509     setOperationAction(ISD::FEXP, MVT::v2f64, Expand);
    510     setOperationAction(ISD::FEXP2, MVT::v2f64, Expand);
    511     // FIXME: Create unittest for FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR.
    512     setOperationAction(ISD::FCEIL, MVT::v2f64, Expand);
    513     setOperationAction(ISD::FTRUNC, MVT::v2f64, Expand);
    514     setOperationAction(ISD::FRINT, MVT::v2f64, Expand);
    515     setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Expand);
    516     setOperationAction(ISD::FFLOOR, MVT::v2f64, Expand);
    517     setOperationAction(ISD::FMA, MVT::v2f64, Expand);
    518 
    519     setOperationAction(ISD::FSQRT, MVT::v4f32, Expand);
    520     setOperationAction(ISD::FSIN, MVT::v4f32, Expand);
    521     setOperationAction(ISD::FCOS, MVT::v4f32, Expand);
    522     setOperationAction(ISD::FPOWI, MVT::v4f32, Expand);
    523     setOperationAction(ISD::FPOW, MVT::v4f32, Expand);
    524     setOperationAction(ISD::FLOG, MVT::v4f32, Expand);
    525     setOperationAction(ISD::FLOG2, MVT::v4f32, Expand);
    526     setOperationAction(ISD::FLOG10, MVT::v4f32, Expand);
    527     setOperationAction(ISD::FEXP, MVT::v4f32, Expand);
    528     setOperationAction(ISD::FEXP2, MVT::v4f32, Expand);
    529     setOperationAction(ISD::FCEIL, MVT::v4f32, Expand);
    530     setOperationAction(ISD::FTRUNC, MVT::v4f32, Expand);
    531     setOperationAction(ISD::FRINT, MVT::v4f32, Expand);
    532     setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand);
    533     setOperationAction(ISD::FFLOOR, MVT::v4f32, Expand);
    534 
    535     // Mark v2f32 intrinsics.
    536     setOperationAction(ISD::FSQRT, MVT::v2f32, Expand);
    537     setOperationAction(ISD::FSIN, MVT::v2f32, Expand);
    538     setOperationAction(ISD::FCOS, MVT::v2f32, Expand);
    539     setOperationAction(ISD::FPOWI, MVT::v2f32, Expand);
    540     setOperationAction(ISD::FPOW, MVT::v2f32, Expand);
    541     setOperationAction(ISD::FLOG, MVT::v2f32, Expand);
    542     setOperationAction(ISD::FLOG2, MVT::v2f32, Expand);
    543     setOperationAction(ISD::FLOG10, MVT::v2f32, Expand);
    544     setOperationAction(ISD::FEXP, MVT::v2f32, Expand);
    545     setOperationAction(ISD::FEXP2, MVT::v2f32, Expand);
    546     setOperationAction(ISD::FCEIL, MVT::v2f32, Expand);
    547     setOperationAction(ISD::FTRUNC, MVT::v2f32, Expand);
    548     setOperationAction(ISD::FRINT, MVT::v2f32, Expand);
    549     setOperationAction(ISD::FNEARBYINT, MVT::v2f32, Expand);
    550     setOperationAction(ISD::FFLOOR, MVT::v2f32, Expand);
    551 
    552     // Neon does not support some operations on v1i64 and v2i64 types.
    553     setOperationAction(ISD::MUL, MVT::v1i64, Expand);
    554     // Custom handling for some quad-vector types to detect VMULL.
    555     setOperationAction(ISD::MUL, MVT::v8i16, Custom);
    556     setOperationAction(ISD::MUL, MVT::v4i32, Custom);
    557     setOperationAction(ISD::MUL, MVT::v2i64, Custom);
    558     // Custom handling for some vector types to avoid expensive expansions
    559     setOperationAction(ISD::SDIV, MVT::v4i16, Custom);
    560     setOperationAction(ISD::SDIV, MVT::v8i8, Custom);
    561     setOperationAction(ISD::UDIV, MVT::v4i16, Custom);
    562     setOperationAction(ISD::UDIV, MVT::v8i8, Custom);
    563     setOperationAction(ISD::SETCC, MVT::v1i64, Expand);
    564     setOperationAction(ISD::SETCC, MVT::v2i64, Expand);
    565     // Neon does not have single instruction SINT_TO_FP and UINT_TO_FP with
    566     // a destination type that is wider than the source, and nor does
    567     // it have a FP_TO_[SU]INT instruction with a narrower destination than
    568     // source.
    569     setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom);
    570     setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom);
    571     setOperationAction(ISD::FP_TO_UINT, MVT::v4i16, Custom);
    572     setOperationAction(ISD::FP_TO_SINT, MVT::v4i16, Custom);
    573 
    574     setOperationAction(ISD::FP_ROUND,   MVT::v2f32, Expand);
    575     setOperationAction(ISD::FP_EXTEND,  MVT::v2f64, Expand);
    576 
    577     // NEON does not have single instruction CTPOP for vectors with element
    578     // types wider than 8-bits.  However, custom lowering can leverage the
    579     // v8i8/v16i8 vcnt instruction.
    580     setOperationAction(ISD::CTPOP,      MVT::v2i32, Custom);
    581     setOperationAction(ISD::CTPOP,      MVT::v4i32, Custom);
    582     setOperationAction(ISD::CTPOP,      MVT::v4i16, Custom);
    583     setOperationAction(ISD::CTPOP,      MVT::v8i16, Custom);
    584 
    585     // NEON does not have single instruction CTTZ for vectors.
    586     setOperationAction(ISD::CTTZ, MVT::v8i8, Custom);
    587     setOperationAction(ISD::CTTZ, MVT::v4i16, Custom);
    588     setOperationAction(ISD::CTTZ, MVT::v2i32, Custom);
    589     setOperationAction(ISD::CTTZ, MVT::v1i64, Custom);
    590 
    591     setOperationAction(ISD::CTTZ, MVT::v16i8, Custom);
    592     setOperationAction(ISD::CTTZ, MVT::v8i16, Custom);
    593     setOperationAction(ISD::CTTZ, MVT::v4i32, Custom);
    594     setOperationAction(ISD::CTTZ, MVT::v2i64, Custom);
    595 
    596     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v8i8, Custom);
    597     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v4i16, Custom);
    598     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v2i32, Custom);
    599     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v1i64, Custom);
    600 
    601     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v16i8, Custom);
    602     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v8i16, Custom);
    603     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v4i32, Custom);
    604     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v2i64, Custom);
    605 
    606     // NEON only has FMA instructions as of VFP4.
    607     if (!Subtarget->hasVFP4()) {
    608       setOperationAction(ISD::FMA, MVT::v2f32, Expand);
    609       setOperationAction(ISD::FMA, MVT::v4f32, Expand);
    610     }
    611 
    612     setTargetDAGCombine(ISD::INTRINSIC_VOID);
    613     setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN);
    614     setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN);
    615     setTargetDAGCombine(ISD::SHL);
    616     setTargetDAGCombine(ISD::SRL);
    617     setTargetDAGCombine(ISD::SRA);
    618     setTargetDAGCombine(ISD::SIGN_EXTEND);
    619     setTargetDAGCombine(ISD::ZERO_EXTEND);
    620     setTargetDAGCombine(ISD::ANY_EXTEND);
    621     setTargetDAGCombine(ISD::BUILD_VECTOR);
    622     setTargetDAGCombine(ISD::VECTOR_SHUFFLE);
    623     setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
    624     setTargetDAGCombine(ISD::STORE);
    625     setTargetDAGCombine(ISD::FP_TO_SINT);
    626     setTargetDAGCombine(ISD::FP_TO_UINT);
    627     setTargetDAGCombine(ISD::FDIV);
    628     setTargetDAGCombine(ISD::LOAD);
    629 
    630     // It is legal to extload from v4i8 to v4i16 or v4i32.
    631     for (MVT Ty : {MVT::v8i8, MVT::v4i8, MVT::v2i8, MVT::v4i16, MVT::v2i16,
    632                    MVT::v2i32}) {
    633       for (MVT VT : MVT::integer_vector_valuetypes()) {
    634         setLoadExtAction(ISD::EXTLOAD, VT, Ty, Legal);
    635         setLoadExtAction(ISD::ZEXTLOAD, VT, Ty, Legal);
    636         setLoadExtAction(ISD::SEXTLOAD, VT, Ty, Legal);
    637       }
    638     }
    639   }
    640 
    641   // ARM and Thumb2 support UMLAL/SMLAL.
    642   if (!Subtarget->isThumb1Only())
    643     setTargetDAGCombine(ISD::ADDC);
    644 
    645   if (Subtarget->isFPOnlySP()) {
    646     // When targeting a floating-point unit with only single-precision
    647     // operations, f64 is legal for the few double-precision instructions which
    648     // are present However, no double-precision operations other than moves,
    649     // loads and stores are provided by the hardware.
    650     setOperationAction(ISD::FADD,       MVT::f64, Expand);
    651     setOperationAction(ISD::FSUB,       MVT::f64, Expand);
    652     setOperationAction(ISD::FMUL,       MVT::f64, Expand);
    653     setOperationAction(ISD::FMA,        MVT::f64, Expand);
    654     setOperationAction(ISD::FDIV,       MVT::f64, Expand);
    655     setOperationAction(ISD::FREM,       MVT::f64, Expand);
    656     setOperationAction(ISD::FCOPYSIGN,  MVT::f64, Expand);
    657     setOperationAction(ISD::FGETSIGN,   MVT::f64, Expand);
    658     setOperationAction(ISD::FNEG,       MVT::f64, Expand);
    659     setOperationAction(ISD::FABS,       MVT::f64, Expand);
    660     setOperationAction(ISD::FSQRT,      MVT::f64, Expand);
    661     setOperationAction(ISD::FSIN,       MVT::f64, Expand);
    662     setOperationAction(ISD::FCOS,       MVT::f64, Expand);
    663     setOperationAction(ISD::FPOWI,      MVT::f64, Expand);
    664     setOperationAction(ISD::FPOW,       MVT::f64, Expand);
    665     setOperationAction(ISD::FLOG,       MVT::f64, Expand);
    666     setOperationAction(ISD::FLOG2,      MVT::f64, Expand);
    667     setOperationAction(ISD::FLOG10,     MVT::f64, Expand);
    668     setOperationAction(ISD::FEXP,       MVT::f64, Expand);
    669     setOperationAction(ISD::FEXP2,      MVT::f64, Expand);
    670     setOperationAction(ISD::FCEIL,      MVT::f64, Expand);
    671     setOperationAction(ISD::FTRUNC,     MVT::f64, Expand);
    672     setOperationAction(ISD::FRINT,      MVT::f64, Expand);
    673     setOperationAction(ISD::FNEARBYINT, MVT::f64, Expand);
    674     setOperationAction(ISD::FFLOOR,     MVT::f64, Expand);
    675     setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
    676     setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom);
    677     setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
    678     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
    679     setOperationAction(ISD::FP_TO_SINT, MVT::f64, Custom);
    680     setOperationAction(ISD::FP_TO_UINT, MVT::f64, Custom);
    681     setOperationAction(ISD::FP_ROUND,   MVT::f32, Custom);
    682     setOperationAction(ISD::FP_EXTEND,  MVT::f64, Custom);
    683   }
    684 
    685   computeRegisterProperties(Subtarget->getRegisterInfo());
    686 
    687   // ARM does not have floating-point extending loads.
    688   for (MVT VT : MVT::fp_valuetypes()) {
    689     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand);
    690     setLoadExtAction(ISD::EXTLOAD, VT, MVT::f16, Expand);
    691   }
    692 
    693   // ... or truncating stores
    694   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
    695   setTruncStoreAction(MVT::f32, MVT::f16, Expand);
    696   setTruncStoreAction(MVT::f64, MVT::f16, Expand);
    697 
    698   // ARM does not have i1 sign extending load.
    699   for (MVT VT : MVT::integer_valuetypes())
    700     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
    701 
    702   // ARM supports all 4 flavors of integer indexed load / store.
    703   if (!Subtarget->isThumb1Only()) {
    704     for (unsigned im = (unsigned)ISD::PRE_INC;
    705          im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) {
    706       setIndexedLoadAction(im,  MVT::i1,  Legal);
    707       setIndexedLoadAction(im,  MVT::i8,  Legal);
    708       setIndexedLoadAction(im,  MVT::i16, Legal);
    709       setIndexedLoadAction(im,  MVT::i32, Legal);
    710       setIndexedStoreAction(im, MVT::i1,  Legal);
    711       setIndexedStoreAction(im, MVT::i8,  Legal);
    712       setIndexedStoreAction(im, MVT::i16, Legal);
    713       setIndexedStoreAction(im, MVT::i32, Legal);
    714     }
    715   }
    716 
    717   setOperationAction(ISD::SADDO, MVT::i32, Custom);
    718   setOperationAction(ISD::UADDO, MVT::i32, Custom);
    719   setOperationAction(ISD::SSUBO, MVT::i32, Custom);
    720   setOperationAction(ISD::USUBO, MVT::i32, Custom);
    721 
    722   // i64 operation support.
    723   setOperationAction(ISD::MUL,     MVT::i64, Expand);
    724   setOperationAction(ISD::MULHU,   MVT::i32, Expand);
    725   if (Subtarget->isThumb1Only()) {
    726     setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
    727     setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
    728   }
    729   if (Subtarget->isThumb1Only() || !Subtarget->hasV6Ops()
    730       || (Subtarget->isThumb2() && !Subtarget->hasDSP()))
    731     setOperationAction(ISD::MULHS, MVT::i32, Expand);
    732 
    733   setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
    734   setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
    735   setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
    736   setOperationAction(ISD::SRL,       MVT::i64, Custom);
    737   setOperationAction(ISD::SRA,       MVT::i64, Custom);
    738 
    739   if (!Subtarget->isThumb1Only()) {
    740     // FIXME: We should do this for Thumb1 as well.
    741     setOperationAction(ISD::ADDC,    MVT::i32, Custom);
    742     setOperationAction(ISD::ADDE,    MVT::i32, Custom);
    743     setOperationAction(ISD::SUBC,    MVT::i32, Custom);
    744     setOperationAction(ISD::SUBE,    MVT::i32, Custom);
    745   }
    746 
    747   if (!Subtarget->isThumb1Only())
    748     setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
    749 
    750   // ARM does not have ROTL.
    751   setOperationAction(ISD::ROTL, MVT::i32, Expand);
    752   for (MVT VT : MVT::vector_valuetypes()) {
    753     setOperationAction(ISD::ROTL, VT, Expand);
    754     setOperationAction(ISD::ROTR, VT, Expand);
    755   }
    756   setOperationAction(ISD::CTTZ,  MVT::i32, Custom);
    757   setOperationAction(ISD::CTPOP, MVT::i32, Expand);
    758   if (!Subtarget->hasV5TOps() || Subtarget->isThumb1Only())
    759     setOperationAction(ISD::CTLZ, MVT::i32, Expand);
    760 
    761   // These just redirect to CTTZ and CTLZ on ARM.
    762   setOperationAction(ISD::CTTZ_ZERO_UNDEF  , MVT::i32  , Expand);
    763   setOperationAction(ISD::CTLZ_ZERO_UNDEF  , MVT::i32  , Expand);
    764 
    765   // @llvm.readcyclecounter requires the Performance Monitors extension.
    766   // Default to the 0 expansion on unsupported platforms.
    767   // FIXME: Technically there are older ARM CPUs that have
    768   // implementation-specific ways of obtaining this information.
    769   if (Subtarget->hasPerfMon())
    770     setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Custom);
    771 
    772   // Only ARMv6 has BSWAP.
    773   if (!Subtarget->hasV6Ops())
    774     setOperationAction(ISD::BSWAP, MVT::i32, Expand);
    775 
    776   if (!(Subtarget->hasDivide() && Subtarget->isThumb2()) &&
    777       !(Subtarget->hasDivideInARMMode() && !Subtarget->isThumb())) {
    778     // These are expanded into libcalls if the cpu doesn't have HW divider.
    779     setOperationAction(ISD::SDIV,  MVT::i32, LibCall);
    780     setOperationAction(ISD::UDIV,  MVT::i32, LibCall);
    781   }
    782 
    783   setOperationAction(ISD::SREM,  MVT::i32, Expand);
    784   setOperationAction(ISD::UREM,  MVT::i32, Expand);
    785   // Register based DivRem for AEABI (RTABI 4.2)
    786   if (Subtarget->isTargetAEABI() || Subtarget->isTargetAndroid()) {
    787     setOperationAction(ISD::SREM, MVT::i64, Custom);
    788     setOperationAction(ISD::UREM, MVT::i64, Custom);
    789 
    790     setLibcallName(RTLIB::SDIVREM_I8,  "__aeabi_idivmod");
    791     setLibcallName(RTLIB::SDIVREM_I16, "__aeabi_idivmod");
    792     setLibcallName(RTLIB::SDIVREM_I32, "__aeabi_idivmod");
    793     setLibcallName(RTLIB::SDIVREM_I64, "__aeabi_ldivmod");
    794     setLibcallName(RTLIB::UDIVREM_I8,  "__aeabi_uidivmod");
    795     setLibcallName(RTLIB::UDIVREM_I16, "__aeabi_uidivmod");
    796     setLibcallName(RTLIB::UDIVREM_I32, "__aeabi_uidivmod");
    797     setLibcallName(RTLIB::UDIVREM_I64, "__aeabi_uldivmod");
    798 
    799     setLibcallCallingConv(RTLIB::SDIVREM_I8, CallingConv::ARM_AAPCS);
    800     setLibcallCallingConv(RTLIB::SDIVREM_I16, CallingConv::ARM_AAPCS);
    801     setLibcallCallingConv(RTLIB::SDIVREM_I32, CallingConv::ARM_AAPCS);
    802     setLibcallCallingConv(RTLIB::SDIVREM_I64, CallingConv::ARM_AAPCS);
    803     setLibcallCallingConv(RTLIB::UDIVREM_I8, CallingConv::ARM_AAPCS);
    804     setLibcallCallingConv(RTLIB::UDIVREM_I16, CallingConv::ARM_AAPCS);
    805     setLibcallCallingConv(RTLIB::UDIVREM_I32, CallingConv::ARM_AAPCS);
    806     setLibcallCallingConv(RTLIB::UDIVREM_I64, CallingConv::ARM_AAPCS);
    807 
    808     setOperationAction(ISD::SDIVREM, MVT::i32, Custom);
    809     setOperationAction(ISD::UDIVREM, MVT::i32, Custom);
    810   } else {
    811     setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
    812     setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
    813   }
    814 
    815   setOperationAction(ISD::GlobalAddress, MVT::i32,   Custom);
    816   setOperationAction(ISD::ConstantPool,  MVT::i32,   Custom);
    817   setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
    818   setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
    819 
    820   setOperationAction(ISD::TRAP, MVT::Other, Legal);
    821 
    822   // Use the default implementation.
    823   setOperationAction(ISD::VASTART,            MVT::Other, Custom);
    824   setOperationAction(ISD::VAARG,              MVT::Other, Expand);
    825   setOperationAction(ISD::VACOPY,             MVT::Other, Expand);
    826   setOperationAction(ISD::VAEND,              MVT::Other, Expand);
    827   setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand);
    828   setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand);
    829 
    830   if (Subtarget->getTargetTriple().isWindowsItaniumEnvironment())
    831     setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
    832   else
    833     setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand);
    834 
    835   // ARMv6 Thumb1 (except for CPUs that support dmb / dsb) and earlier use
    836   // the default expansion. If we are targeting a single threaded system,
    837   // then set them all for expand so we can lower them later into their
    838   // non-atomic form.
    839   if (TM.Options.ThreadModel == ThreadModel::Single)
    840     setOperationAction(ISD::ATOMIC_FENCE,   MVT::Other, Expand);
    841   else if (Subtarget->hasAnyDataBarrier() && !Subtarget->isThumb1Only()) {
    842     // ATOMIC_FENCE needs custom lowering; the others should have been expanded
    843     // to ldrex/strex loops already.
    844     setOperationAction(ISD::ATOMIC_FENCE,     MVT::Other, Custom);
    845 
    846     // On v8, we have particularly efficient implementations of atomic fences
    847     // if they can be combined with nearby atomic loads and stores.
    848     if (!Subtarget->hasV8Ops()) {
    849       // Automatically insert fences (dmb ish) around ATOMIC_SWAP etc.
    850       setInsertFencesForAtomic(true);
    851     }
    852   } else {
    853     // If there's anything we can use as a barrier, go through custom lowering
    854     // for ATOMIC_FENCE.
    855     setOperationAction(ISD::ATOMIC_FENCE,   MVT::Other,
    856                        Subtarget->hasAnyDataBarrier() ? Custom : Expand);
    857 
    858     // Set them all for expansion, which will force libcalls.
    859     setOperationAction(ISD::ATOMIC_CMP_SWAP,  MVT::i32, Expand);
    860     setOperationAction(ISD::ATOMIC_SWAP,      MVT::i32, Expand);
    861     setOperationAction(ISD::ATOMIC_LOAD_ADD,  MVT::i32, Expand);
    862     setOperationAction(ISD::ATOMIC_LOAD_SUB,  MVT::i32, Expand);
    863     setOperationAction(ISD::ATOMIC_LOAD_AND,  MVT::i32, Expand);
    864     setOperationAction(ISD::ATOMIC_LOAD_OR,   MVT::i32, Expand);
    865     setOperationAction(ISD::ATOMIC_LOAD_XOR,  MVT::i32, Expand);
    866     setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Expand);
    867     setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Expand);
    868     setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Expand);
    869     setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Expand);
    870     setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Expand);
    871     // Mark ATOMIC_LOAD and ATOMIC_STORE custom so we can handle the
    872     // Unordered/Monotonic case.
    873     setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Custom);
    874     setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Custom);
    875   }
    876 
    877   setOperationAction(ISD::PREFETCH,         MVT::Other, Custom);
    878 
    879   // Requires SXTB/SXTH, available on v6 and up in both ARM and Thumb modes.
    880   if (!Subtarget->hasV6Ops()) {
    881     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand);
    882     setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8,  Expand);
    883   }
    884   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
    885 
    886   if (!Subtarget->useSoftFloat() && Subtarget->hasVFP2() &&
    887       !Subtarget->isThumb1Only()) {
    888     // Turn f64->i64 into VMOVRRD, i64 -> f64 to VMOVDRR
    889     // iff target supports vfp2.
    890     setOperationAction(ISD::BITCAST, MVT::i64, Custom);
    891     setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
    892   }
    893 
    894   // We want to custom lower some of our intrinsics.
    895   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
    896   setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
    897   setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
    898   setOperationAction(ISD::EH_SJLJ_SETUP_DISPATCH, MVT::Other, Custom);
    899   if (Subtarget->useSjLjEH())
    900     setLibcallName(RTLIB::UNWIND_RESUME, "_Unwind_SjLj_Resume");
    901 
    902   setOperationAction(ISD::SETCC,     MVT::i32, Expand);
    903   setOperationAction(ISD::SETCC,     MVT::f32, Expand);
    904   setOperationAction(ISD::SETCC,     MVT::f64, Expand);
    905   setOperationAction(ISD::SELECT,    MVT::i32, Custom);
    906   setOperationAction(ISD::SELECT,    MVT::f32, Custom);
    907   setOperationAction(ISD::SELECT,    MVT::f64, Custom);
    908   setOperationAction(ISD::SELECT_CC, MVT::i32, Custom);
    909   setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
    910   setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
    911 
    912   setOperationAction(ISD::BRCOND,    MVT::Other, Expand);
    913   setOperationAction(ISD::BR_CC,     MVT::i32,   Custom);
    914   setOperationAction(ISD::BR_CC,     MVT::f32,   Custom);
    915   setOperationAction(ISD::BR_CC,     MVT::f64,   Custom);
    916   setOperationAction(ISD::BR_JT,     MVT::Other, Custom);
    917 
    918   // We don't support sin/cos/fmod/copysign/pow
    919   setOperationAction(ISD::FSIN,      MVT::f64, Expand);
    920   setOperationAction(ISD::FSIN,      MVT::f32, Expand);
    921   setOperationAction(ISD::FCOS,      MVT::f32, Expand);
    922   setOperationAction(ISD::FCOS,      MVT::f64, Expand);
    923   setOperationAction(ISD::FSINCOS,   MVT::f64, Expand);
    924   setOperationAction(ISD::FSINCOS,   MVT::f32, Expand);
    925   setOperationAction(ISD::FREM,      MVT::f64, Expand);
    926   setOperationAction(ISD::FREM,      MVT::f32, Expand);
    927   if (!Subtarget->useSoftFloat() && Subtarget->hasVFP2() &&
    928       !Subtarget->isThumb1Only()) {
    929     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom);
    930     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom);
    931   }
    932   setOperationAction(ISD::FPOW,      MVT::f64, Expand);
    933   setOperationAction(ISD::FPOW,      MVT::f32, Expand);
    934 
    935   if (!Subtarget->hasVFP4()) {
    936     setOperationAction(ISD::FMA, MVT::f64, Expand);
    937     setOperationAction(ISD::FMA, MVT::f32, Expand);
    938   }
    939 
    940   // Various VFP goodness
    941   if (!Subtarget->useSoftFloat() && !Subtarget->isThumb1Only()) {
    942     // FP-ARMv8 adds f64 <-> f16 conversion. Before that it should be expanded.
    943     if (!Subtarget->hasFPARMv8() || Subtarget->isFPOnlySP()) {
    944       setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
    945       setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand);
    946     }
    947 
    948     // fp16 is a special v7 extension that adds f16 <-> f32 conversions.
    949     if (!Subtarget->hasFP16()) {
    950       setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand);
    951       setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand);
    952     }
    953   }
    954 
    955   // Combine sin / cos into one node or libcall if possible.
    956   if (Subtarget->hasSinCos()) {
    957     setLibcallName(RTLIB::SINCOS_F32, "sincosf");
    958     setLibcallName(RTLIB::SINCOS_F64, "sincos");
    959     if (Subtarget->isTargetWatchOS()) {
    960       setLibcallCallingConv(RTLIB::SINCOS_F32, CallingConv::ARM_AAPCS_VFP);
    961       setLibcallCallingConv(RTLIB::SINCOS_F64, CallingConv::ARM_AAPCS_VFP);
    962     }
    963     if (Subtarget->isTargetIOS() || Subtarget->isTargetWatchOS()) {
    964       // For iOS, we don't want to the normal expansion of a libcall to
    965       // sincos. We want to issue a libcall to __sincos_stret.
    966       setOperationAction(ISD::FSINCOS, MVT::f64, Custom);
    967       setOperationAction(ISD::FSINCOS, MVT::f32, Custom);
    968     }
    969   }
    970 
    971   // FP-ARMv8 implements a lot of rounding-like FP operations.
    972   if (Subtarget->hasFPARMv8()) {
    973     setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
    974     setOperationAction(ISD::FCEIL, MVT::f32, Legal);
    975     setOperationAction(ISD::FROUND, MVT::f32, Legal);
    976     setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
    977     setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal);
    978     setOperationAction(ISD::FRINT, MVT::f32, Legal);
    979     setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
    980     setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
    981     setOperationAction(ISD::FMINNUM, MVT::v2f32, Legal);
    982     setOperationAction(ISD::FMAXNUM, MVT::v2f32, Legal);
    983     setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal);
    984     setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal);
    985 
    986     if (!Subtarget->isFPOnlySP()) {
    987       setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
    988       setOperationAction(ISD::FCEIL, MVT::f64, Legal);
    989       setOperationAction(ISD::FROUND, MVT::f64, Legal);
    990       setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
    991       setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal);
    992       setOperationAction(ISD::FRINT, MVT::f64, Legal);
    993       setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
    994       setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
    995     }
    996   }
    997 
    998   if (Subtarget->hasNEON()) {
    999     // vmin and vmax aren't available in a scalar form, so we use
   1000     // a NEON instruction with an undef lane instead.
   1001     setOperationAction(ISD::FMINNAN, MVT::f32, Legal);
   1002     setOperationAction(ISD::FMAXNAN, MVT::f32, Legal);
   1003     setOperationAction(ISD::FMINNAN, MVT::v2f32, Legal);
   1004     setOperationAction(ISD::FMAXNAN, MVT::v2f32, Legal);
   1005     setOperationAction(ISD::FMINNAN, MVT::v4f32, Legal);
   1006     setOperationAction(ISD::FMAXNAN, MVT::v4f32, Legal);
   1007   }
   1008 
   1009   // We have target-specific dag combine patterns for the following nodes:
   1010   // ARMISD::VMOVRRD  - No need to call setTargetDAGCombine
   1011   setTargetDAGCombine(ISD::ADD);
   1012   setTargetDAGCombine(ISD::SUB);
   1013   setTargetDAGCombine(ISD::MUL);
   1014   setTargetDAGCombine(ISD::AND);
   1015   setTargetDAGCombine(ISD::OR);
   1016   setTargetDAGCombine(ISD::XOR);
   1017 
   1018   if (Subtarget->hasV6Ops())
   1019     setTargetDAGCombine(ISD::SRL);
   1020 
   1021   setStackPointerRegisterToSaveRestore(ARM::SP);
   1022 
   1023   if (Subtarget->useSoftFloat() || Subtarget->isThumb1Only() ||
   1024       !Subtarget->hasVFP2())
   1025     setSchedulingPreference(Sched::RegPressure);
   1026   else
   1027     setSchedulingPreference(Sched::Hybrid);
   1028 
   1029   //// temporary - rewrite interface to use type
   1030   MaxStoresPerMemset = 8;
   1031   MaxStoresPerMemsetOptSize = 4;
   1032   MaxStoresPerMemcpy = 4; // For @llvm.memcpy -> sequence of stores
   1033   MaxStoresPerMemcpyOptSize = 2;
   1034   MaxStoresPerMemmove = 4; // For @llvm.memmove -> sequence of stores
   1035   MaxStoresPerMemmoveOptSize = 2;
   1036 
   1037   // On ARM arguments smaller than 4 bytes are extended, so all arguments
   1038   // are at least 4 bytes aligned.
   1039   setMinStackArgumentAlignment(4);
   1040 
   1041   // Prefer likely predicted branches to selects on out-of-order cores.
   1042   PredictableSelectIsExpensive = Subtarget->isLikeA9();
   1043 
   1044   setMinFunctionAlignment(Subtarget->isThumb() ? 1 : 2);
   1045 }
   1046 
   1047 bool ARMTargetLowering::useSoftFloat() const {
   1048   return Subtarget->useSoftFloat();
   1049 }
   1050 
   1051 // FIXME: It might make sense to define the representative register class as the
   1052 // nearest super-register that has a non-null superset. For example, DPR_VFP2 is
   1053 // a super-register of SPR, and DPR is a superset if DPR_VFP2. Consequently,
   1054 // SPR's representative would be DPR_VFP2. This should work well if register
   1055 // pressure tracking were modified such that a register use would increment the
   1056 // pressure of the register class's representative and all of it's super
   1057 // classes' representatives transitively. We have not implemented this because
   1058 // of the difficulty prior to coalescing of modeling operand register classes
   1059 // due to the common occurrence of cross class copies and subregister insertions
   1060 // and extractions.
   1061 std::pair<const TargetRegisterClass *, uint8_t>
   1062 ARMTargetLowering::findRepresentativeClass(const TargetRegisterInfo *TRI,
   1063                                            MVT VT) const {
   1064   const TargetRegisterClass *RRC = nullptr;
   1065   uint8_t Cost = 1;
   1066   switch (VT.SimpleTy) {
   1067   default:
   1068     return TargetLowering::findRepresentativeClass(TRI, VT);
   1069   // Use DPR as representative register class for all floating point
   1070   // and vector types. Since there are 32 SPR registers and 32 DPR registers so
   1071   // the cost is 1 for both f32 and f64.
   1072   case MVT::f32: case MVT::f64: case MVT::v8i8: case MVT::v4i16:
   1073   case MVT::v2i32: case MVT::v1i64: case MVT::v2f32:
   1074     RRC = &ARM::DPRRegClass;
   1075     // When NEON is used for SP, only half of the register file is available
   1076     // because operations that define both SP and DP results will be constrained
   1077     // to the VFP2 class (D0-D15). We currently model this constraint prior to
   1078     // coalescing by double-counting the SP regs. See the FIXME above.
   1079     if (Subtarget->useNEONForSinglePrecisionFP())
   1080       Cost = 2;
   1081     break;
   1082   case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64:
   1083   case MVT::v4f32: case MVT::v2f64:
   1084     RRC = &ARM::DPRRegClass;
   1085     Cost = 2;
   1086     break;
   1087   case MVT::v4i64:
   1088     RRC = &ARM::DPRRegClass;
   1089     Cost = 4;
   1090     break;
   1091   case MVT::v8i64:
   1092     RRC = &ARM::DPRRegClass;
   1093     Cost = 8;
   1094     break;
   1095   }
   1096   return std::make_pair(RRC, Cost);
   1097 }
   1098 
   1099 const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode) const {
   1100   switch ((ARMISD::NodeType)Opcode) {
   1101   case ARMISD::FIRST_NUMBER:  break;
   1102   case ARMISD::Wrapper:       return "ARMISD::Wrapper";
   1103   case ARMISD::WrapperPIC:    return "ARMISD::WrapperPIC";
   1104   case ARMISD::WrapperJT:     return "ARMISD::WrapperJT";
   1105   case ARMISD::COPY_STRUCT_BYVAL: return "ARMISD::COPY_STRUCT_BYVAL";
   1106   case ARMISD::CALL:          return "ARMISD::CALL";
   1107   case ARMISD::CALL_PRED:     return "ARMISD::CALL_PRED";
   1108   case ARMISD::CALL_NOLINK:   return "ARMISD::CALL_NOLINK";
   1109   case ARMISD::tCALL:         return "ARMISD::tCALL";
   1110   case ARMISD::BRCOND:        return "ARMISD::BRCOND";
   1111   case ARMISD::BR_JT:         return "ARMISD::BR_JT";
   1112   case ARMISD::BR2_JT:        return "ARMISD::BR2_JT";
   1113   case ARMISD::RET_FLAG:      return "ARMISD::RET_FLAG";
   1114   case ARMISD::INTRET_FLAG:   return "ARMISD::INTRET_FLAG";
   1115   case ARMISD::PIC_ADD:       return "ARMISD::PIC_ADD";
   1116   case ARMISD::CMP:           return "ARMISD::CMP";
   1117   case ARMISD::CMN:           return "ARMISD::CMN";
   1118   case ARMISD::CMPZ:          return "ARMISD::CMPZ";
   1119   case ARMISD::CMPFP:         return "ARMISD::CMPFP";
   1120   case ARMISD::CMPFPw0:       return "ARMISD::CMPFPw0";
   1121   case ARMISD::BCC_i64:       return "ARMISD::BCC_i64";
   1122   case ARMISD::FMSTAT:        return "ARMISD::FMSTAT";
   1123 
   1124   case ARMISD::CMOV:          return "ARMISD::CMOV";
   1125 
   1126   case ARMISD::SRL_FLAG:      return "ARMISD::SRL_FLAG";
   1127   case ARMISD::SRA_FLAG:      return "ARMISD::SRA_FLAG";
   1128   case ARMISD::RRX:           return "ARMISD::RRX";
   1129 
   1130   case ARMISD::ADDC:          return "ARMISD::ADDC";
   1131   case ARMISD::ADDE:          return "ARMISD::ADDE";
   1132   case ARMISD::SUBC:          return "ARMISD::SUBC";
   1133   case ARMISD::SUBE:          return "ARMISD::SUBE";
   1134 
   1135   case ARMISD::VMOVRRD:       return "ARMISD::VMOVRRD";
   1136   case ARMISD::VMOVDRR:       return "ARMISD::VMOVDRR";
   1137 
   1138   case ARMISD::EH_SJLJ_SETJMP: return "ARMISD::EH_SJLJ_SETJMP";
   1139   case ARMISD::EH_SJLJ_LONGJMP: return "ARMISD::EH_SJLJ_LONGJMP";
   1140   case ARMISD::EH_SJLJ_SETUP_DISPATCH: return "ARMISD::EH_SJLJ_SETUP_DISPATCH";
   1141 
   1142   case ARMISD::TC_RETURN:     return "ARMISD::TC_RETURN";
   1143 
   1144   case ARMISD::THREAD_POINTER:return "ARMISD::THREAD_POINTER";
   1145 
   1146   case ARMISD::DYN_ALLOC:     return "ARMISD::DYN_ALLOC";
   1147 
   1148   case ARMISD::MEMBARRIER_MCR: return "ARMISD::MEMBARRIER_MCR";
   1149 
   1150   case ARMISD::PRELOAD:       return "ARMISD::PRELOAD";
   1151 
   1152   case ARMISD::WIN__CHKSTK:   return "ARMISD:::WIN__CHKSTK";
   1153   case ARMISD::WIN__DBZCHK:   return "ARMISD::WIN__DBZCHK";
   1154 
   1155   case ARMISD::VCEQ:          return "ARMISD::VCEQ";
   1156   case ARMISD::VCEQZ:         return "ARMISD::VCEQZ";
   1157   case ARMISD::VCGE:          return "ARMISD::VCGE";
   1158   case ARMISD::VCGEZ:         return "ARMISD::VCGEZ";
   1159   case ARMISD::VCLEZ:         return "ARMISD::VCLEZ";
   1160   case ARMISD::VCGEU:         return "ARMISD::VCGEU";
   1161   case ARMISD::VCGT:          return "ARMISD::VCGT";
   1162   case ARMISD::VCGTZ:         return "ARMISD::VCGTZ";
   1163   case ARMISD::VCLTZ:         return "ARMISD::VCLTZ";
   1164   case ARMISD::VCGTU:         return "ARMISD::VCGTU";
   1165   case ARMISD::VTST:          return "ARMISD::VTST";
   1166 
   1167   case ARMISD::VSHL:          return "ARMISD::VSHL";
   1168   case ARMISD::VSHRs:         return "ARMISD::VSHRs";
   1169   case ARMISD::VSHRu:         return "ARMISD::VSHRu";
   1170   case ARMISD::VRSHRs:        return "ARMISD::VRSHRs";
   1171   case ARMISD::VRSHRu:        return "ARMISD::VRSHRu";
   1172   case ARMISD::VRSHRN:        return "ARMISD::VRSHRN";
   1173   case ARMISD::VQSHLs:        return "ARMISD::VQSHLs";
   1174   case ARMISD::VQSHLu:        return "ARMISD::VQSHLu";
   1175   case ARMISD::VQSHLsu:       return "ARMISD::VQSHLsu";
   1176   case ARMISD::VQSHRNs:       return "ARMISD::VQSHRNs";
   1177   case ARMISD::VQSHRNu:       return "ARMISD::VQSHRNu";
   1178   case ARMISD::VQSHRNsu:      return "ARMISD::VQSHRNsu";
   1179   case ARMISD::VQRSHRNs:      return "ARMISD::VQRSHRNs";
   1180   case ARMISD::VQRSHRNu:      return "ARMISD::VQRSHRNu";
   1181   case ARMISD::VQRSHRNsu:     return "ARMISD::VQRSHRNsu";
   1182   case ARMISD::VSLI:          return "ARMISD::VSLI";
   1183   case ARMISD::VSRI:          return "ARMISD::VSRI";
   1184   case ARMISD::VGETLANEu:     return "ARMISD::VGETLANEu";
   1185   case ARMISD::VGETLANEs:     return "ARMISD::VGETLANEs";
   1186   case ARMISD::VMOVIMM:       return "ARMISD::VMOVIMM";
   1187   case ARMISD::VMVNIMM:       return "ARMISD::VMVNIMM";
   1188   case ARMISD::VMOVFPIMM:     return "ARMISD::VMOVFPIMM";
   1189   case ARMISD::VDUP:          return "ARMISD::VDUP";
   1190   case ARMISD::VDUPLANE:      return "ARMISD::VDUPLANE";
   1191   case ARMISD::VEXT:          return "ARMISD::VEXT";
   1192   case ARMISD::VREV64:        return "ARMISD::VREV64";
   1193   case ARMISD::VREV32:        return "ARMISD::VREV32";
   1194   case ARMISD::VREV16:        return "ARMISD::VREV16";
   1195   case ARMISD::VZIP:          return "ARMISD::VZIP";
   1196   case ARMISD::VUZP:          return "ARMISD::VUZP";
   1197   case ARMISD::VTRN:          return "ARMISD::VTRN";
   1198   case ARMISD::VTBL1:         return "ARMISD::VTBL1";
   1199   case ARMISD::VTBL2:         return "ARMISD::VTBL2";
   1200   case ARMISD::VMULLs:        return "ARMISD::VMULLs";
   1201   case ARMISD::VMULLu:        return "ARMISD::VMULLu";
   1202   case ARMISD::UMLAL:         return "ARMISD::UMLAL";
   1203   case ARMISD::SMLAL:         return "ARMISD::SMLAL";
   1204   case ARMISD::BUILD_VECTOR:  return "ARMISD::BUILD_VECTOR";
   1205   case ARMISD::BFI:           return "ARMISD::BFI";
   1206   case ARMISD::VORRIMM:       return "ARMISD::VORRIMM";
   1207   case ARMISD::VBICIMM:       return "ARMISD::VBICIMM";
   1208   case ARMISD::VBSL:          return "ARMISD::VBSL";
   1209   case ARMISD::MEMCPY:        return "ARMISD::MEMCPY";
   1210   case ARMISD::VLD2DUP:       return "ARMISD::VLD2DUP";
   1211   case ARMISD::VLD3DUP:       return "ARMISD::VLD3DUP";
   1212   case ARMISD::VLD4DUP:       return "ARMISD::VLD4DUP";
   1213   case ARMISD::VLD1_UPD:      return "ARMISD::VLD1_UPD";
   1214   case ARMISD::VLD2_UPD:      return "ARMISD::VLD2_UPD";
   1215   case ARMISD::VLD3_UPD:      return "ARMISD::VLD3_UPD";
   1216   case ARMISD::VLD4_UPD:      return "ARMISD::VLD4_UPD";
   1217   case ARMISD::VLD2LN_UPD:    return "ARMISD::VLD2LN_UPD";
   1218   case ARMISD::VLD3LN_UPD:    return "ARMISD::VLD3LN_UPD";
   1219   case ARMISD::VLD4LN_UPD:    return "ARMISD::VLD4LN_UPD";
   1220   case ARMISD::VLD2DUP_UPD:   return "ARMISD::VLD2DUP_UPD";
   1221   case ARMISD::VLD3DUP_UPD:   return "ARMISD::VLD3DUP_UPD";
   1222   case ARMISD::VLD4DUP_UPD:   return "ARMISD::VLD4DUP_UPD";
   1223   case ARMISD::VST1_UPD:      return "ARMISD::VST1_UPD";
   1224   case ARMISD::VST2_UPD:      return "ARMISD::VST2_UPD";
   1225   case ARMISD::VST3_UPD:      return "ARMISD::VST3_UPD";
   1226   case ARMISD::VST4_UPD:      return "ARMISD::VST4_UPD";
   1227   case ARMISD::VST2LN_UPD:    return "ARMISD::VST2LN_UPD";
   1228   case ARMISD::VST3LN_UPD:    return "ARMISD::VST3LN_UPD";
   1229   case ARMISD::VST4LN_UPD:    return "ARMISD::VST4LN_UPD";
   1230   }
   1231   return nullptr;
   1232 }
   1233 
   1234 EVT ARMTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &,
   1235                                           EVT VT) const {
   1236   if (!VT.isVector())
   1237     return getPointerTy(DL);
   1238   return VT.changeVectorElementTypeToInteger();
   1239 }
   1240 
   1241 /// getRegClassFor - Return the register class that should be used for the
   1242 /// specified value type.
   1243 const TargetRegisterClass *ARMTargetLowering::getRegClassFor(MVT VT) const {
   1244   // Map v4i64 to QQ registers but do not make the type legal. Similarly map
   1245   // v8i64 to QQQQ registers. v4i64 and v8i64 are only used for REG_SEQUENCE to
   1246   // load / store 4 to 8 consecutive D registers.
   1247   if (Subtarget->hasNEON()) {
   1248     if (VT == MVT::v4i64)
   1249       return &ARM::QQPRRegClass;
   1250     if (VT == MVT::v8i64)
   1251       return &ARM::QQQQPRRegClass;
   1252   }
   1253   return TargetLowering::getRegClassFor(VT);
   1254 }
   1255 
   1256 // memcpy, and other memory intrinsics, typically tries to use LDM/STM if the
   1257 // source/dest is aligned and the copy size is large enough. We therefore want
   1258 // to align such objects passed to memory intrinsics.
   1259 bool ARMTargetLowering::shouldAlignPointerArgs(CallInst *CI, unsigned &MinSize,
   1260                                                unsigned &PrefAlign) const {
   1261   if (!isa<MemIntrinsic>(CI))
   1262     return false;
   1263   MinSize = 8;
   1264   // On ARM11 onwards (excluding M class) 8-byte aligned LDM is typically 1
   1265   // cycle faster than 4-byte aligned LDM.
   1266   PrefAlign = (Subtarget->hasV6Ops() && !Subtarget->isMClass() ? 8 : 4);
   1267   return true;
   1268 }
   1269 
   1270 // Create a fast isel object.
   1271 FastISel *
   1272 ARMTargetLowering::createFastISel(FunctionLoweringInfo &funcInfo,
   1273                                   const TargetLibraryInfo *libInfo) const {
   1274   return ARM::createFastISel(funcInfo, libInfo);
   1275 }
   1276 
   1277 Sched::Preference ARMTargetLowering::getSchedulingPreference(SDNode *N) const {
   1278   unsigned NumVals = N->getNumValues();
   1279   if (!NumVals)
   1280     return Sched::RegPressure;
   1281 
   1282   for (unsigned i = 0; i != NumVals; ++i) {
   1283     EVT VT = N->getValueType(i);
   1284     if (VT == MVT::Glue || VT == MVT::Other)
   1285       continue;
   1286     if (VT.isFloatingPoint() || VT.isVector())
   1287       return Sched::ILP;
   1288   }
   1289 
   1290   if (!N->isMachineOpcode())
   1291     return Sched::RegPressure;
   1292 
   1293   // Load are scheduled for latency even if there instruction itinerary
   1294   // is not available.
   1295   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
   1296   const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
   1297 
   1298   if (MCID.getNumDefs() == 0)
   1299     return Sched::RegPressure;
   1300   if (!Itins->isEmpty() &&
   1301       Itins->getOperandCycle(MCID.getSchedClass(), 0) > 2)
   1302     return Sched::ILP;
   1303 
   1304   return Sched::RegPressure;
   1305 }
   1306 
   1307 //===----------------------------------------------------------------------===//
   1308 // Lowering Code
   1309 //===----------------------------------------------------------------------===//
   1310 
   1311 /// IntCCToARMCC - Convert a DAG integer condition code to an ARM CC
   1312 static ARMCC::CondCodes IntCCToARMCC(ISD::CondCode CC) {
   1313   switch (CC) {
   1314   default: llvm_unreachable("Unknown condition code!");
   1315   case ISD::SETNE:  return ARMCC::NE;
   1316   case ISD::SETEQ:  return ARMCC::EQ;
   1317   case ISD::SETGT:  return ARMCC::GT;
   1318   case ISD::SETGE:  return ARMCC::GE;
   1319   case ISD::SETLT:  return ARMCC::LT;
   1320   case ISD::SETLE:  return ARMCC::LE;
   1321   case ISD::SETUGT: return ARMCC::HI;
   1322   case ISD::SETUGE: return ARMCC::HS;
   1323   case ISD::SETULT: return ARMCC::LO;
   1324   case ISD::SETULE: return ARMCC::LS;
   1325   }
   1326 }
   1327 
   1328 /// FPCCToARMCC - Convert a DAG fp condition code to an ARM CC.
   1329 static void FPCCToARMCC(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
   1330                         ARMCC::CondCodes &CondCode2) {
   1331   CondCode2 = ARMCC::AL;
   1332   switch (CC) {
   1333   default: llvm_unreachable("Unknown FP condition!");
   1334   case ISD::SETEQ:
   1335   case ISD::SETOEQ: CondCode = ARMCC::EQ; break;
   1336   case ISD::SETGT:
   1337   case ISD::SETOGT: CondCode = ARMCC::GT; break;
   1338   case ISD::SETGE:
   1339   case ISD::SETOGE: CondCode = ARMCC::GE; break;
   1340   case ISD::SETOLT: CondCode = ARMCC::MI; break;
   1341   case ISD::SETOLE: CondCode = ARMCC::LS; break;
   1342   case ISD::SETONE: CondCode = ARMCC::MI; CondCode2 = ARMCC::GT; break;
   1343   case ISD::SETO:   CondCode = ARMCC::VC; break;
   1344   case ISD::SETUO:  CondCode = ARMCC::VS; break;
   1345   case ISD::SETUEQ: CondCode = ARMCC::EQ; CondCode2 = ARMCC::VS; break;
   1346   case ISD::SETUGT: CondCode = ARMCC::HI; break;
   1347   case ISD::SETUGE: CondCode = ARMCC::PL; break;
   1348   case ISD::SETLT:
   1349   case ISD::SETULT: CondCode = ARMCC::LT; break;
   1350   case ISD::SETLE:
   1351   case ISD::SETULE: CondCode = ARMCC::LE; break;
   1352   case ISD::SETNE:
   1353   case ISD::SETUNE: CondCode = ARMCC::NE; break;
   1354   }
   1355 }
   1356 
   1357 //===----------------------------------------------------------------------===//
   1358 //                      Calling Convention Implementation
   1359 //===----------------------------------------------------------------------===//
   1360 
   1361 #include "ARMGenCallingConv.inc"
   1362 
   1363 /// getEffectiveCallingConv - Get the effective calling convention, taking into
   1364 /// account presence of floating point hardware and calling convention
   1365 /// limitations, such as support for variadic functions.
   1366 CallingConv::ID
   1367 ARMTargetLowering::getEffectiveCallingConv(CallingConv::ID CC,
   1368                                            bool isVarArg) const {
   1369   switch (CC) {
   1370   default:
   1371     llvm_unreachable("Unsupported calling convention");
   1372   case CallingConv::ARM_AAPCS:
   1373   case CallingConv::ARM_APCS:
   1374   case CallingConv::GHC:
   1375     return CC;
   1376   case CallingConv::ARM_AAPCS_VFP:
   1377     return isVarArg ? CallingConv::ARM_AAPCS : CallingConv::ARM_AAPCS_VFP;
   1378   case CallingConv::C:
   1379     if (!Subtarget->isAAPCS_ABI())
   1380       return CallingConv::ARM_APCS;
   1381     else if (Subtarget->hasVFP2() && !Subtarget->isThumb1Only() &&
   1382              getTargetMachine().Options.FloatABIType == FloatABI::Hard &&
   1383              !isVarArg)
   1384       return CallingConv::ARM_AAPCS_VFP;
   1385     else
   1386       return CallingConv::ARM_AAPCS;
   1387   case CallingConv::Fast:
   1388     if (!Subtarget->isAAPCS_ABI()) {
   1389       if (Subtarget->hasVFP2() && !Subtarget->isThumb1Only() && !isVarArg)
   1390         return CallingConv::Fast;
   1391       return CallingConv::ARM_APCS;
   1392     } else if (Subtarget->hasVFP2() && !Subtarget->isThumb1Only() && !isVarArg)
   1393       return CallingConv::ARM_AAPCS_VFP;
   1394     else
   1395       return CallingConv::ARM_AAPCS;
   1396   }
   1397 }
   1398 
   1399 /// CCAssignFnForNode - Selects the correct CCAssignFn for the given
   1400 /// CallingConvention.
   1401 CCAssignFn *ARMTargetLowering::CCAssignFnForNode(CallingConv::ID CC,
   1402                                                  bool Return,
   1403                                                  bool isVarArg) const {
   1404   switch (getEffectiveCallingConv(CC, isVarArg)) {
   1405   default:
   1406     llvm_unreachable("Unsupported calling convention");
   1407   case CallingConv::ARM_APCS:
   1408     return (Return ? RetCC_ARM_APCS : CC_ARM_APCS);
   1409   case CallingConv::ARM_AAPCS:
   1410     return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS);
   1411   case CallingConv::ARM_AAPCS_VFP:
   1412     return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP);
   1413   case CallingConv::Fast:
   1414     return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS);
   1415   case CallingConv::GHC:
   1416     return (Return ? RetCC_ARM_APCS : CC_ARM_APCS_GHC);
   1417   }
   1418 }
   1419 
   1420 /// LowerCallResult - Lower the result values of a call into the
   1421 /// appropriate copies out of appropriate physical registers.
   1422 SDValue
   1423 ARMTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
   1424                                    CallingConv::ID CallConv, bool isVarArg,
   1425                                    const SmallVectorImpl<ISD::InputArg> &Ins,
   1426                                    SDLoc dl, SelectionDAG &DAG,
   1427                                    SmallVectorImpl<SDValue> &InVals,
   1428                                    bool isThisReturn, SDValue ThisVal) const {
   1429 
   1430   // Assign locations to each value returned by this call.
   1431   SmallVector<CCValAssign, 16> RVLocs;
   1432   ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
   1433                     *DAG.getContext(), Call);
   1434   CCInfo.AnalyzeCallResult(Ins,
   1435                            CCAssignFnForNode(CallConv, /* Return*/ true,
   1436                                              isVarArg));
   1437 
   1438   // Copy all of the result registers out of their specified physreg.
   1439   for (unsigned i = 0; i != RVLocs.size(); ++i) {
   1440     CCValAssign VA = RVLocs[i];
   1441 
   1442     // Pass 'this' value directly from the argument to return value, to avoid
   1443     // reg unit interference
   1444     if (i == 0 && isThisReturn) {
   1445       assert(!VA.needsCustom() && VA.getLocVT() == MVT::i32 &&
   1446              "unexpected return calling convention register assignment");
   1447       InVals.push_back(ThisVal);
   1448       continue;
   1449     }
   1450 
   1451     SDValue Val;
   1452     if (VA.needsCustom()) {
   1453       // Handle f64 or half of a v2f64.
   1454       SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
   1455                                       InFlag);
   1456       Chain = Lo.getValue(1);
   1457       InFlag = Lo.getValue(2);
   1458       VA = RVLocs[++i]; // skip ahead to next loc
   1459       SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32,
   1460                                       InFlag);
   1461       Chain = Hi.getValue(1);
   1462       InFlag = Hi.getValue(2);
   1463       if (!Subtarget->isLittle())
   1464         std::swap (Lo, Hi);
   1465       Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
   1466 
   1467       if (VA.getLocVT() == MVT::v2f64) {
   1468         SDValue Vec = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
   1469         Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
   1470                           DAG.getConstant(0, dl, MVT::i32));
   1471 
   1472         VA = RVLocs[++i]; // skip ahead to next loc
   1473         Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
   1474         Chain = Lo.getValue(1);
   1475         InFlag = Lo.getValue(2);
   1476         VA = RVLocs[++i]; // skip ahead to next loc
   1477         Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag);
   1478         Chain = Hi.getValue(1);
   1479         InFlag = Hi.getValue(2);
   1480         if (!Subtarget->isLittle())
   1481           std::swap (Lo, Hi);
   1482         Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
   1483         Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val,
   1484                           DAG.getConstant(1, dl, MVT::i32));
   1485       }
   1486     } else {
   1487       Val = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getLocVT(),
   1488                                InFlag);
   1489       Chain = Val.getValue(1);
   1490       InFlag = Val.getValue(2);
   1491     }
   1492 
   1493     switch (VA.getLocInfo()) {
   1494     default: llvm_unreachable("Unknown loc info!");
   1495     case CCValAssign::Full: break;
   1496     case CCValAssign::BCvt:
   1497       Val = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), Val);
   1498       break;
   1499     }
   1500 
   1501     InVals.push_back(Val);
   1502   }
   1503 
   1504   return Chain;
   1505 }
   1506 
   1507 /// LowerMemOpCallTo - Store the argument to the stack.
   1508 SDValue
   1509 ARMTargetLowering::LowerMemOpCallTo(SDValue Chain,
   1510                                     SDValue StackPtr, SDValue Arg,
   1511                                     SDLoc dl, SelectionDAG &DAG,
   1512                                     const CCValAssign &VA,
   1513                                     ISD::ArgFlagsTy Flags) const {
   1514   unsigned LocMemOffset = VA.getLocMemOffset();
   1515   SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
   1516   PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()),
   1517                        StackPtr, PtrOff);
   1518   return DAG.getStore(
   1519       Chain, dl, Arg, PtrOff,
   1520       MachinePointerInfo::getStack(DAG.getMachineFunction(), LocMemOffset),
   1521       false, false, 0);
   1522 }
   1523 
   1524 void ARMTargetLowering::PassF64ArgInRegs(SDLoc dl, SelectionDAG &DAG,
   1525                                          SDValue Chain, SDValue &Arg,
   1526                                          RegsToPassVector &RegsToPass,
   1527                                          CCValAssign &VA, CCValAssign &NextVA,
   1528                                          SDValue &StackPtr,
   1529                                          SmallVectorImpl<SDValue> &MemOpChains,
   1530                                          ISD::ArgFlagsTy Flags) const {
   1531 
   1532   SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
   1533                               DAG.getVTList(MVT::i32, MVT::i32), Arg);
   1534   unsigned id = Subtarget->isLittle() ? 0 : 1;
   1535   RegsToPass.push_back(std::make_pair(VA.getLocReg(), fmrrd.getValue(id)));
   1536 
   1537   if (NextVA.isRegLoc())
   1538     RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), fmrrd.getValue(1-id)));
   1539   else {
   1540     assert(NextVA.isMemLoc());
   1541     if (!StackPtr.getNode())
   1542       StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP,
   1543                                     getPointerTy(DAG.getDataLayout()));
   1544 
   1545     MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, fmrrd.getValue(1-id),
   1546                                            dl, DAG, NextVA,
   1547                                            Flags));
   1548   }
   1549 }
   1550 
   1551 /// LowerCall - Lowering a call into a callseq_start <-
   1552 /// ARMISD:CALL <- callseq_end chain. Also add input and output parameter
   1553 /// nodes.
   1554 SDValue
   1555 ARMTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
   1556                              SmallVectorImpl<SDValue> &InVals) const {
   1557   SelectionDAG &DAG                     = CLI.DAG;
   1558   SDLoc &dl                             = CLI.DL;
   1559   SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
   1560   SmallVectorImpl<SDValue> &OutVals     = CLI.OutVals;
   1561   SmallVectorImpl<ISD::InputArg> &Ins   = CLI.Ins;
   1562   SDValue Chain                         = CLI.Chain;
   1563   SDValue Callee                        = CLI.Callee;
   1564   bool &isTailCall                      = CLI.IsTailCall;
   1565   CallingConv::ID CallConv              = CLI.CallConv;
   1566   bool doesNotRet                       = CLI.DoesNotReturn;
   1567   bool isVarArg                         = CLI.IsVarArg;
   1568 
   1569   MachineFunction &MF = DAG.getMachineFunction();
   1570   bool isStructRet    = (Outs.empty()) ? false : Outs[0].Flags.isSRet();
   1571   bool isThisReturn   = false;
   1572   bool isSibCall      = false;
   1573   auto Attr = MF.getFunction()->getFnAttribute("disable-tail-calls");
   1574 
   1575   // Disable tail calls if they're not supported.
   1576   if (!Subtarget->supportsTailCall() || Attr.getValueAsString() == "true")
   1577     isTailCall = false;
   1578 
   1579   if (isTailCall) {
   1580     // Check if it's really possible to do a tail call.
   1581     isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
   1582                     isVarArg, isStructRet, MF.getFunction()->hasStructRetAttr(),
   1583                                                    Outs, OutVals, Ins, DAG);
   1584     if (!isTailCall && CLI.CS && CLI.CS->isMustTailCall())
   1585       report_fatal_error("failed to perform tail call elimination on a call "
   1586                          "site marked musttail");
   1587     // We don't support GuaranteedTailCallOpt for ARM, only automatically
   1588     // detected sibcalls.
   1589     if (isTailCall) {
   1590       ++NumTailCalls;
   1591       isSibCall = true;
   1592     }
   1593   }
   1594 
   1595   // Analyze operands of the call, assigning locations to each operand.
   1596   SmallVector<CCValAssign, 16> ArgLocs;
   1597   ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
   1598                     *DAG.getContext(), Call);
   1599   CCInfo.AnalyzeCallOperands(Outs,
   1600                              CCAssignFnForNode(CallConv, /* Return*/ false,
   1601                                                isVarArg));
   1602 
   1603   // Get a count of how many bytes are to be pushed on the stack.
   1604   unsigned NumBytes = CCInfo.getNextStackOffset();
   1605 
   1606   // For tail calls, memory operands are available in our caller's stack.
   1607   if (isSibCall)
   1608     NumBytes = 0;
   1609 
   1610   // Adjust the stack pointer for the new arguments...
   1611   // These operations are automatically eliminated by the prolog/epilog pass
   1612   if (!isSibCall)
   1613     Chain = DAG.getCALLSEQ_START(Chain,
   1614                                  DAG.getIntPtrConstant(NumBytes, dl, true), dl);
   1615 
   1616   SDValue StackPtr =
   1617       DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy(DAG.getDataLayout()));
   1618 
   1619   RegsToPassVector RegsToPass;
   1620   SmallVector<SDValue, 8> MemOpChains;
   1621 
   1622   // Walk the register/memloc assignments, inserting copies/loads.  In the case
   1623   // of tail call optimization, arguments are handled later.
   1624   for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
   1625        i != e;
   1626        ++i, ++realArgIdx) {
   1627     CCValAssign &VA = ArgLocs[i];
   1628     SDValue Arg = OutVals[realArgIdx];
   1629     ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
   1630     bool isByVal = Flags.isByVal();
   1631 
   1632     // Promote the value if needed.
   1633     switch (VA.getLocInfo()) {
   1634     default: llvm_unreachable("Unknown loc info!");
   1635     case CCValAssign::Full: break;
   1636     case CCValAssign::SExt:
   1637       Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
   1638       break;
   1639     case CCValAssign::ZExt:
   1640       Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
   1641       break;
   1642     case CCValAssign::AExt:
   1643       Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
   1644       break;
   1645     case CCValAssign::BCvt:
   1646       Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
   1647       break;
   1648     }
   1649 
   1650     // f64 and v2f64 might be passed in i32 pairs and must be split into pieces
   1651     if (VA.needsCustom()) {
   1652       if (VA.getLocVT() == MVT::v2f64) {
   1653         SDValue Op0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
   1654                                   DAG.getConstant(0, dl, MVT::i32));
   1655         SDValue Op1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
   1656                                   DAG.getConstant(1, dl, MVT::i32));
   1657 
   1658         PassF64ArgInRegs(dl, DAG, Chain, Op0, RegsToPass,
   1659                          VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
   1660 
   1661         VA = ArgLocs[++i]; // skip ahead to next loc
   1662         if (VA.isRegLoc()) {
   1663           PassF64ArgInRegs(dl, DAG, Chain, Op1, RegsToPass,
   1664                            VA, ArgLocs[++i], StackPtr, MemOpChains, Flags);
   1665         } else {
   1666           assert(VA.isMemLoc());
   1667 
   1668           MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Op1,
   1669                                                  dl, DAG, VA, Flags));
   1670         }
   1671       } else {
   1672         PassF64ArgInRegs(dl, DAG, Chain, Arg, RegsToPass, VA, ArgLocs[++i],
   1673                          StackPtr, MemOpChains, Flags);
   1674       }
   1675     } else if (VA.isRegLoc()) {
   1676       if (realArgIdx == 0 && Flags.isReturned() && Outs[0].VT == MVT::i32) {
   1677         assert(VA.getLocVT() == MVT::i32 &&
   1678                "unexpected calling convention register assignment");
   1679         assert(!Ins.empty() && Ins[0].VT == MVT::i32 &&
   1680                "unexpected use of 'returned'");
   1681         isThisReturn = true;
   1682       }
   1683       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
   1684     } else if (isByVal) {
   1685       assert(VA.isMemLoc());
   1686       unsigned offset = 0;
   1687 
   1688       // True if this byval aggregate will be split between registers
   1689       // and memory.
   1690       unsigned ByValArgsCount = CCInfo.getInRegsParamsCount();
   1691       unsigned CurByValIdx = CCInfo.getInRegsParamsProcessed();
   1692 
   1693       if (CurByValIdx < ByValArgsCount) {
   1694 
   1695         unsigned RegBegin, RegEnd;
   1696         CCInfo.getInRegsParamInfo(CurByValIdx, RegBegin, RegEnd);
   1697 
   1698         EVT PtrVT =
   1699             DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
   1700         unsigned int i, j;
   1701         for (i = 0, j = RegBegin; j < RegEnd; i++, j++) {
   1702           SDValue Const = DAG.getConstant(4*i, dl, MVT::i32);
   1703           SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
   1704           SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
   1705                                      MachinePointerInfo(),
   1706                                      false, false, false,
   1707                                      DAG.InferPtrAlignment(AddArg));
   1708           MemOpChains.push_back(Load.getValue(1));
   1709           RegsToPass.push_back(std::make_pair(j, Load));
   1710         }
   1711 
   1712         // If parameter size outsides register area, "offset" value
   1713         // helps us to calculate stack slot for remained part properly.
   1714         offset = RegEnd - RegBegin;
   1715 
   1716         CCInfo.nextInRegsParam();
   1717       }
   1718 
   1719       if (Flags.getByValSize() > 4*offset) {
   1720         auto PtrVT = getPointerTy(DAG.getDataLayout());
   1721         unsigned LocMemOffset = VA.getLocMemOffset();
   1722         SDValue StkPtrOff = DAG.getIntPtrConstant(LocMemOffset, dl);
   1723         SDValue Dst = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, StkPtrOff);
   1724         SDValue SrcOffset = DAG.getIntPtrConstant(4*offset, dl);
   1725         SDValue Src = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, SrcOffset);
   1726         SDValue SizeNode = DAG.getConstant(Flags.getByValSize() - 4*offset, dl,
   1727                                            MVT::i32);
   1728         SDValue AlignNode = DAG.getConstant(Flags.getByValAlign(), dl,
   1729                                             MVT::i32);
   1730 
   1731         SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
   1732         SDValue Ops[] = { Chain, Dst, Src, SizeNode, AlignNode};
   1733         MemOpChains.push_back(DAG.getNode(ARMISD::COPY_STRUCT_BYVAL, dl, VTs,
   1734                                           Ops));
   1735       }
   1736     } else if (!isSibCall) {
   1737       assert(VA.isMemLoc());
   1738 
   1739       MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg,
   1740                                              dl, DAG, VA, Flags));
   1741     }
   1742   }
   1743 
   1744   if (!MemOpChains.empty())
   1745     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
   1746 
   1747   // Build a sequence of copy-to-reg nodes chained together with token chain
   1748   // and flag operands which copy the outgoing args into the appropriate regs.
   1749   SDValue InFlag;
   1750   // Tail call byval lowering might overwrite argument registers so in case of
   1751   // tail call optimization the copies to registers are lowered later.
   1752   if (!isTailCall)
   1753     for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
   1754       Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
   1755                                RegsToPass[i].second, InFlag);
   1756       InFlag = Chain.getValue(1);
   1757     }
   1758 
   1759   // For tail calls lower the arguments to the 'real' stack slot.
   1760   if (isTailCall) {
   1761     // Force all the incoming stack arguments to be loaded from the stack
   1762     // before any new outgoing arguments are stored to the stack, because the
   1763     // outgoing stack slots may alias the incoming argument stack slots, and
   1764     // the alias isn't otherwise explicit. This is slightly more conservative
   1765     // than necessary, because it means that each store effectively depends
   1766     // on every argument instead of just those arguments it would clobber.
   1767 
   1768     // Do not flag preceding copytoreg stuff together with the following stuff.
   1769     InFlag = SDValue();
   1770     for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
   1771       Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
   1772                                RegsToPass[i].second, InFlag);
   1773       InFlag = Chain.getValue(1);
   1774     }
   1775     InFlag = SDValue();
   1776   }
   1777 
   1778   // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
   1779   // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
   1780   // node so that legalize doesn't hack it.
   1781   bool isDirect = false;
   1782   bool isARMFunc = false;
   1783   bool isLocalARMFunc = false;
   1784   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
   1785   auto PtrVt = getPointerTy(DAG.getDataLayout());
   1786 
   1787   if (Subtarget->genLongCalls()) {
   1788     assert((Subtarget->isTargetWindows() ||
   1789             getTargetMachine().getRelocationModel() == Reloc::Static) &&
   1790            "long-calls with non-static relocation model!");
   1791     // Handle a global address or an external symbol. If it's not one of
   1792     // those, the target's already in a register, so we don't need to do
   1793     // anything extra.
   1794     if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
   1795       const GlobalValue *GV = G->getGlobal();
   1796       // Create a constant pool entry for the callee address
   1797       unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
   1798       ARMConstantPoolValue *CPV =
   1799         ARMConstantPoolConstant::Create(GV, ARMPCLabelIndex, ARMCP::CPValue, 0);
   1800 
   1801       // Get the address of the callee into a register
   1802       SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVt, 4);
   1803       CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
   1804       Callee = DAG.getLoad(
   1805           PtrVt, dl, DAG.getEntryNode(), CPAddr,
   1806           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false,
   1807           false, false, 0);
   1808     } else if (ExternalSymbolSDNode *S=dyn_cast<ExternalSymbolSDNode>(Callee)) {
   1809       const char *Sym = S->getSymbol();
   1810 
   1811       // Create a constant pool entry for the callee address
   1812       unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
   1813       ARMConstantPoolValue *CPV =
   1814         ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym,
   1815                                       ARMPCLabelIndex, 0);
   1816       // Get the address of the callee into a register
   1817       SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVt, 4);
   1818       CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
   1819       Callee = DAG.getLoad(
   1820           PtrVt, dl, DAG.getEntryNode(), CPAddr,
   1821           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false,
   1822           false, false, 0);
   1823     }
   1824   } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
   1825     const GlobalValue *GV = G->getGlobal();
   1826     isDirect = true;
   1827     bool isDef = GV->isStrongDefinitionForLinker();
   1828     bool isStub = (!isDef && Subtarget->isTargetMachO()) &&
   1829                    getTargetMachine().getRelocationModel() != Reloc::Static;
   1830     isARMFunc = !Subtarget->isThumb() || (isStub && !Subtarget->isMClass());
   1831     // ARM call to a local ARM function is predicable.
   1832     isLocalARMFunc = !Subtarget->isThumb() && (isDef || !ARMInterworking);
   1833     // tBX takes a register source operand.
   1834     if (isStub && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
   1835       assert(Subtarget->isTargetMachO() && "WrapperPIC use on non-MachO?");
   1836       Callee = DAG.getNode(
   1837           ARMISD::WrapperPIC, dl, PtrVt,
   1838           DAG.getTargetGlobalAddress(GV, dl, PtrVt, 0, ARMII::MO_NONLAZY));
   1839       Callee = DAG.getLoad(PtrVt, dl, DAG.getEntryNode(), Callee,
   1840                            MachinePointerInfo::getGOT(DAG.getMachineFunction()),
   1841                            false, false, true, 0);
   1842     } else if (Subtarget->isTargetCOFF()) {
   1843       assert(Subtarget->isTargetWindows() &&
   1844              "Windows is the only supported COFF target");
   1845       unsigned TargetFlags = GV->hasDLLImportStorageClass()
   1846                                  ? ARMII::MO_DLLIMPORT
   1847                                  : ARMII::MO_NO_FLAG;
   1848       Callee =
   1849           DAG.getTargetGlobalAddress(GV, dl, PtrVt, /*Offset=*/0, TargetFlags);
   1850       if (GV->hasDLLImportStorageClass())
   1851         Callee =
   1852             DAG.getLoad(PtrVt, dl, DAG.getEntryNode(),
   1853                         DAG.getNode(ARMISD::Wrapper, dl, PtrVt, Callee),
   1854                         MachinePointerInfo::getGOT(DAG.getMachineFunction()),
   1855                         false, false, false, 0);
   1856     } else {
   1857       // On ELF targets for PIC code, direct calls should go through the PLT
   1858       unsigned OpFlags = 0;
   1859       if (Subtarget->isTargetELF() &&
   1860           getTargetMachine().getRelocationModel() == Reloc::PIC_)
   1861         OpFlags = ARMII::MO_PLT;
   1862       Callee = DAG.getTargetGlobalAddress(GV, dl, PtrVt, 0, OpFlags);
   1863     }
   1864   } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
   1865     isDirect = true;
   1866     bool isStub = Subtarget->isTargetMachO() &&
   1867                   getTargetMachine().getRelocationModel() != Reloc::Static;
   1868     isARMFunc = !Subtarget->isThumb() || (isStub && !Subtarget->isMClass());
   1869     // tBX takes a register source operand.
   1870     const char *Sym = S->getSymbol();
   1871     if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) {
   1872       unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
   1873       ARMConstantPoolValue *CPV =
   1874         ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym,
   1875                                       ARMPCLabelIndex, 4);
   1876       SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVt, 4);
   1877       CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
   1878       Callee = DAG.getLoad(
   1879           PtrVt, dl, DAG.getEntryNode(), CPAddr,
   1880           MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false,
   1881           false, false, 0);
   1882       SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
   1883       Callee = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVt, Callee, PICLabel);
   1884     } else {
   1885       unsigned OpFlags = 0;
   1886       // On ELF targets for PIC code, direct calls should go through the PLT
   1887       if (Subtarget->isTargetELF() &&
   1888                   getTargetMachine().getRelocationModel() == Reloc::PIC_)
   1889         OpFlags = ARMII::MO_PLT;
   1890       Callee = DAG.getTargetExternalSymbol(Sym, PtrVt, OpFlags);
   1891     }
   1892   }
   1893 
   1894   // FIXME: handle tail calls differently.
   1895   unsigned CallOpc;
   1896   if (Subtarget->isThumb()) {
   1897     if ((!isDirect || isARMFunc) && !Subtarget->hasV5TOps())
   1898       CallOpc = ARMISD::CALL_NOLINK;
   1899     else
   1900       CallOpc = isARMFunc ? ARMISD::CALL : ARMISD::tCALL;
   1901   } else {
   1902     if (!isDirect && !Subtarget->hasV5TOps())
   1903       CallOpc = ARMISD::CALL_NOLINK;
   1904     else if (doesNotRet && isDirect && Subtarget->hasRAS() &&
   1905              // Emit regular call when code size is the priority
   1906              !MF.getFunction()->optForMinSize())
   1907       // "mov lr, pc; b _foo" to avoid confusing the RSP
   1908       CallOpc = ARMISD::CALL_NOLINK;
   1909     else
   1910       CallOpc = isLocalARMFunc ? ARMISD::CALL_PRED : ARMISD::CALL;
   1911   }
   1912 
   1913   std::vector<SDValue> Ops;
   1914   Ops.push_back(Chain);
   1915   Ops.push_back(Callee);
   1916 
   1917   // Add argument registers to the end of the list so that they are known live
   1918   // into the call.
   1919   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
   1920     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
   1921                                   RegsToPass[i].second.getValueType()));
   1922 
   1923   // Add a register mask operand representing the call-preserved registers.
   1924   if (!isTailCall) {
   1925     const uint32_t *Mask;
   1926     const ARMBaseRegisterInfo *ARI = Subtarget->getRegisterInfo();
   1927     if (isThisReturn) {
   1928       // For 'this' returns, use the R0-preserving mask if applicable
   1929       Mask = ARI->getThisReturnPreservedMask(MF, CallConv);
   1930       if (!Mask) {
   1931         // Set isThisReturn to false if the calling convention is not one that
   1932         // allows 'returned' to be modeled in this way, so LowerCallResult does
   1933         // not try to pass 'this' straight through
   1934         isThisReturn = false;
   1935         Mask = ARI->getCallPreservedMask(MF, CallConv);
   1936       }
   1937     } else
   1938       Mask = ARI->getCallPreservedMask(MF, CallConv);
   1939 
   1940     assert(Mask && "Missing call preserved mask for calling convention");
   1941     Ops.push_back(DAG.getRegisterMask(Mask));
   1942   }
   1943 
   1944   if (InFlag.getNode())
   1945     Ops.push_back(InFlag);
   1946 
   1947   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
   1948   if (isTailCall) {
   1949     MF.getFrameInfo()->setHasTailCall();
   1950     return DAG.getNode(ARMISD::TC_RETURN, dl, NodeTys, Ops);
   1951   }
   1952 
   1953   // Returns a chain and a flag for retval copy to use.
   1954   Chain = DAG.getNode(CallOpc, dl, NodeTys, Ops);
   1955   InFlag = Chain.getValue(1);
   1956 
   1957   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true),
   1958                              DAG.getIntPtrConstant(0, dl, true), InFlag, dl);
   1959   if (!Ins.empty())
   1960     InFlag = Chain.getValue(1);
   1961 
   1962   // Handle result values, copying them out of physregs into vregs that we
   1963   // return.
   1964   return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins, dl, DAG,
   1965                          InVals, isThisReturn,
   1966                          isThisReturn ? OutVals[0] : SDValue());
   1967 }
   1968 
   1969 /// HandleByVal - Every parameter *after* a byval parameter is passed
   1970 /// on the stack.  Remember the next parameter register to allocate,
   1971 /// and then confiscate the rest of the parameter registers to insure
   1972 /// this.
   1973 void ARMTargetLowering::HandleByVal(CCState *State, unsigned &Size,
   1974                                     unsigned Align) const {
   1975   assert((State->getCallOrPrologue() == Prologue ||
   1976           State->getCallOrPrologue() == Call) &&
   1977          "unhandled ParmContext");
   1978 
   1979   // Byval (as with any stack) slots are always at least 4 byte aligned.
   1980   Align = std::max(Align, 4U);
   1981 
   1982   unsigned Reg = State->AllocateReg(GPRArgRegs);
   1983   if (!Reg)
   1984     return;
   1985 
   1986   unsigned AlignInRegs = Align / 4;
   1987   unsigned Waste = (ARM::R4 - Reg) % AlignInRegs;
   1988   for (unsigned i = 0; i < Waste; ++i)
   1989     Reg = State->AllocateReg(GPRArgRegs);
   1990 
   1991   if (!Reg)
   1992     return;
   1993 
   1994   unsigned Excess = 4 * (ARM::R4 - Reg);
   1995 
   1996   // Special case when NSAA != SP and parameter size greater than size of
   1997   // all remained GPR regs. In that case we can't split parameter, we must
   1998   // send it to stack. We also must set NCRN to R4, so waste all
   1999   // remained registers.
   2000   const unsigned NSAAOffset = State->getNextStackOffset();
   2001   if (NSAAOffset != 0 && Size > Excess) {
   2002     while (State->AllocateReg(GPRArgRegs))
   2003       ;
   2004     return;
   2005   }
   2006 
   2007   // First register for byval parameter is the first register that wasn't
   2008   // allocated before this method call, so it would be "reg".
   2009   // If parameter is small enough to be saved in range [reg, r4), then
   2010   // the end (first after last) register would be reg + param-size-in-regs,
   2011   // else parameter would be splitted between registers and stack,
   2012   // end register would be r4 in this case.
   2013   unsigned ByValRegBegin = Reg;
   2014   unsigned ByValRegEnd = std::min<unsigned>(Reg + Size / 4, ARM::R4);
   2015   State->addInRegsParamInfo(ByValRegBegin, ByValRegEnd);
   2016   // Note, first register is allocated in the beginning of function already,
   2017   // allocate remained amount of registers we need.
   2018   for (unsigned i = Reg + 1; i != ByValRegEnd; ++i)
   2019     State->AllocateReg(GPRArgRegs);
   2020   // A byval parameter that is split between registers and memory needs its
   2021   // size truncated here.
   2022   // In the case where the entire structure fits in registers, we set the
   2023   // size in memory to zero.
   2024   Size = std::max<int>(Size - Excess, 0);
   2025 }
   2026 
   2027 /// MatchingStackOffset - Return true if the given stack call argument is
   2028 /// already available in the same position (relatively) of the caller's
   2029 /// incoming argument stack.
   2030 static
   2031 bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags,
   2032                          MachineFrameInfo *MFI, const MachineRegisterInfo *MRI,
   2033                          const TargetInstrInfo *TII) {
   2034   unsigned Bytes = Arg.getValueType().getSizeInBits() / 8;
   2035   int FI = INT_MAX;
   2036   if (Arg.getOpcode() == ISD::CopyFromReg) {
   2037     unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg();
   2038     if (!TargetRegisterInfo::isVirtualRegister(VR))
   2039       return false;
   2040     MachineInstr *Def = MRI->getVRegDef(VR);
   2041     if (!Def)
   2042       return false;
   2043     if (!Flags.isByVal()) {
   2044       if (!TII->isLoadFromStackSlot(Def, FI))
   2045         return false;
   2046     } else {
   2047       return false;
   2048     }
   2049   } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) {
   2050     if (Flags.isByVal())
   2051       // ByVal argument is passed in as a pointer but it's now being
   2052       // dereferenced. e.g.
   2053       // define @foo(%struct.X* %A) {
   2054       //   tail call @bar(%struct.X* byval %A)
   2055       // }
   2056       return false;
   2057     SDValue Ptr = Ld->getBasePtr();
   2058     FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr);
   2059     if (!FINode)
   2060       return false;
   2061     FI = FINode->getIndex();
   2062   } else
   2063     return false;
   2064 
   2065   assert(FI != INT_MAX);
   2066   if (!MFI->isFixedObjectIndex(FI))
   2067     return false;
   2068   return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI);
   2069 }
   2070 
   2071 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
   2072 /// for tail call optimization. Targets which want to do tail call
   2073 /// optimization should implement this function.
   2074 bool
   2075 ARMTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
   2076                                                      CallingConv::ID CalleeCC,
   2077                                                      bool isVarArg,
   2078                                                      bool isCalleeStructRet,
   2079                                                      bool isCallerStructRet,
   2080                                     const SmallVectorImpl<ISD::OutputArg> &Outs,
   2081                                     const SmallVectorImpl<SDValue> &OutVals,
   2082                                     const SmallVectorImpl<ISD::InputArg> &Ins,
   2083                                                      SelectionDAG& DAG) const {
   2084   const Function *CallerF = DAG.getMachineFunction().getFunction();
   2085   CallingConv::ID CallerCC = CallerF->getCallingConv();
   2086   bool CCMatch = CallerCC == CalleeCC;
   2087 
   2088   assert(Subtarget->supportsTailCall());
   2089 
   2090   // Look for obvious safe cases to perform tail call optimization that do not
   2091   // require ABI changes. This is what gcc calls sibcall.
   2092 
   2093   // Do not sibcall optimize vararg calls unless the call site is not passing
   2094   // any arguments.
   2095   if (isVarArg && !Outs.empty())
   2096     return false;
   2097 
   2098   // Exception-handling functions need a special set of instructions to indicate
   2099   // a return to the hardware. Tail-calling another function would probably
   2100   // break this.
   2101   if (CallerF->hasFnAttribute("interrupt"))
   2102     return false;
   2103 
   2104   // Also avoid sibcall optimization if either caller or callee uses struct
   2105   // return semantics.
   2106   if (isCalleeStructRet || isCallerStructRet)
   2107     return false;
   2108 
   2109   // Externally-defined functions with weak linkage should not be
   2110   // tail-called on ARM when the OS does not support dynamic
   2111   // pre-emption of symbols, as the AAELF spec requires normal calls
   2112   // to undefined weak functions to be replaced with a NOP or jump to the
   2113   // next instruction. The behaviour of branch instructions in this
   2114   // situation (as used for tail calls) is implementation-defined, so we
   2115   // cannot rely on the linker replacing the tail call with a return.
   2116   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
   2117     const GlobalValue *GV = G->getGlobal();
   2118     const Triple &TT = getTargetMachine().getTargetTriple();
   2119     if (GV->hasExternalWeakLinkage() &&
   2120         (!TT.isOSWindows() || TT.isOSBinFormatELF() || TT.isOSBinFormatMachO()))
   2121       return false;
   2122   }
   2123 
   2124   // If the calling conventions do not match, then we'd better make sure the
   2125   // results are returned in the same way as what the caller expects.
   2126   if (!CCMatch) {
   2127     SmallVector<CCValAssign, 16> RVLocs1;
   2128     ARMCCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(), RVLocs1,
   2129                        *DAG.getContext(), Call);
   2130     CCInfo1.AnalyzeCallResult(Ins, CCAssignFnForNode(CalleeCC, true, isVarArg));
   2131 
   2132     SmallVector<CCValAssign, 16> RVLocs2;
   2133     ARMCCState CCInfo2(CallerCC, false, DAG.getMachineFunction(), RVLocs2,
   2134                        *DAG.getContext(), Call);
   2135     CCInfo2.AnalyzeCallResult(Ins, CCAssignFnForNode(CallerCC, true, isVarArg));
   2136 
   2137     if (RVLocs1.size() != RVLocs2.size())
   2138       return false;
   2139     for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) {
   2140       if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc())
   2141         return false;
   2142       if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo())
   2143         return false;
   2144       if (RVLocs1[i].isRegLoc()) {
   2145         if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg())
   2146           return false;
   2147       } else {
   2148         if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset())
   2149           return false;
   2150       }
   2151     }
   2152   }
   2153 
   2154   // If Caller's vararg or byval argument has been split between registers and
   2155   // stack, do not perform tail call, since part of the argument is in caller's
   2156   // local frame.
   2157   const ARMFunctionInfo *AFI_Caller = DAG.getMachineFunction().
   2158                                       getInfo<ARMFunctionInfo>();
   2159   if (AFI_Caller->getArgRegsSaveSize())
   2160     return false;
   2161 
   2162   // If the callee takes no arguments then go on to check the results of the
   2163   // call.
   2164   if (!Outs.empty()) {
   2165     // Check if stack adjustment is needed. For now, do not do this if any
   2166     // argument is passed on the stack.
   2167     SmallVector<CCValAssign, 16> ArgLocs;
   2168     ARMCCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(), ArgLocs,
   2169                       *DAG.getContext(), Call);
   2170     CCInfo.AnalyzeCallOperands(Outs,
   2171                                CCAssignFnForNode(CalleeCC, false, isVarArg));
   2172     if (CCInfo.getNextStackOffset()) {
   2173       MachineFunction &MF = DAG.getMachineFunction();
   2174 
   2175       // Check if the arguments are already laid out in the right way as
   2176       // the caller's fixed stack objects.
   2177       MachineFrameInfo *MFI = MF.getFrameInfo();
   2178       const MachineRegisterInfo *MRI = &MF.getRegInfo();
   2179       const TargetInstrInfo *TII = Subtarget->getInstrInfo();
   2180       for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size();
   2181            i != e;
   2182            ++i, ++realArgIdx) {
   2183         CCValAssign &VA = ArgLocs[i];
   2184         EVT RegVT = VA.getLocVT();
   2185         SDValue Arg = OutVals[realArgIdx];
   2186         ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
   2187         if (VA.getLocInfo() == CCValAssign::Indirect)
   2188           return false;
   2189         if (VA.needsCustom()) {
   2190           // f64 and vector types are split into multiple registers or
   2191           // register/stack-slot combinations.  The types will not match
   2192           // the registers; give up on memory f64 refs until we figure
   2193           // out what to do about this.
   2194           if (!VA.isRegLoc())
   2195             return false;
   2196           if (!ArgLocs[++i].isRegLoc())
   2197             return false;
   2198           if (RegVT == MVT::v2f64) {
   2199             if (!ArgLocs[++i].isRegLoc())
   2200               return false;
   2201             if (!ArgLocs[++i].isRegLoc())
   2202               return false;
   2203           }
   2204         } else if (!VA.isRegLoc()) {
   2205           if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags,
   2206                                    MFI, MRI, TII))
   2207             return false;
   2208         }
   2209       }
   2210     }
   2211   }
   2212 
   2213   return true;
   2214 }
   2215 
   2216 bool
   2217 ARMTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
   2218                                   MachineFunction &MF, bool isVarArg,
   2219                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
   2220                                   LLVMContext &Context) const {
   2221   SmallVector<CCValAssign, 16> RVLocs;
   2222   CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context);
   2223   return CCInfo.CheckReturn(Outs, CCAssignFnForNode(CallConv, /*Return=*/true,
   2224                                                     isVarArg));
   2225 }
   2226 
   2227 static SDValue LowerInterruptReturn(SmallVectorImpl<SDValue> &RetOps,
   2228                                     SDLoc DL, SelectionDAG &DAG) {
   2229   const MachineFunction &MF = DAG.getMachineFunction();
   2230   const Function *F = MF.getFunction();
   2231 
   2232   StringRef IntKind = F->getFnAttribute("interrupt").getValueAsString();
   2233 
   2234   // See ARM ARM v7 B1.8.3. On exception entry LR is set to a possibly offset
   2235   // version of the "preferred return address". These offsets affect the return
   2236   // instruction if this is a return from PL1 without hypervisor extensions.
   2237   //    IRQ/FIQ: +4     "subs pc, lr, #4"
   2238   //    SWI:     0      "subs pc, lr, #0"
   2239   //    ABORT:   +4     "subs pc, lr, #4"
   2240   //    UNDEF:   +4/+2  "subs pc, lr, #0"
   2241   // UNDEF varies depending on where the exception came from ARM or Thumb
   2242   // mode. Alongside GCC, we throw our hands up in disgust and pretend it's 0.
   2243 
   2244   int64_t LROffset;
   2245   if (IntKind == "" || IntKind == "IRQ" || IntKind == "FIQ" ||
   2246       IntKind == "ABORT")
   2247     LROffset = 4;
   2248   else if (IntKind == "SWI" || IntKind == "UNDEF")
   2249     LROffset = 0;
   2250   else
   2251     report_fatal_error("Unsupported interrupt attribute. If present, value "
   2252                        "must be one of: IRQ, FIQ, SWI, ABORT or UNDEF");
   2253 
   2254   RetOps.insert(RetOps.begin() + 1,
   2255                 DAG.getConstant(LROffset, DL, MVT::i32, false));
   2256 
   2257   return DAG.getNode(ARMISD::INTRET_FLAG, DL, MVT::Other, RetOps);
   2258 }
   2259 
   2260 SDValue
   2261 ARMTargetLowering::LowerReturn(SDValue Chain,
   2262                                CallingConv::ID CallConv, bool isVarArg,
   2263                                const SmallVectorImpl<ISD::OutputArg> &Outs,
   2264                                const SmallVectorImpl<SDValue> &OutVals,
   2265                                SDLoc dl, SelectionDAG &DAG) const {
   2266 
   2267   // CCValAssign - represent the assignment of the return value to a location.
   2268   SmallVector<CCValAssign, 16> RVLocs;
   2269 
   2270   // CCState - Info about the registers and stack slots.
   2271   ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
   2272                     *DAG.getContext(), Call);
   2273 
   2274   // Analyze outgoing return values.
   2275   CCInfo.AnalyzeReturn(Outs, CCAssignFnForNode(CallConv, /* Return */ true,
   2276                                                isVarArg));
   2277 
   2278   SDValue Flag;
   2279   SmallVector<SDValue, 4> RetOps;
   2280   RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
   2281   bool isLittleEndian = Subtarget->isLittle();
   2282 
   2283   MachineFunction &MF = DAG.getMachineFunction();
   2284   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
   2285   AFI->setReturnRegsCount(RVLocs.size());
   2286 
   2287   // Copy the result values into the output registers.
   2288   for (unsigned i = 0, realRVLocIdx = 0;
   2289        i != RVLocs.size();
   2290        ++i, ++realRVLocIdx) {
   2291     CCValAssign &VA = RVLocs[i];
   2292     assert(VA.isRegLoc() && "Can only return in registers!");
   2293 
   2294     SDValue Arg = OutVals[realRVLocIdx];
   2295 
   2296     switch (VA.getLocInfo()) {
   2297     default: llvm_unreachable("Unknown loc info!");
   2298     case CCValAssign::Full: break;
   2299     case CCValAssign::BCvt:
   2300       Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg);
   2301       break;
   2302     }
   2303 
   2304     if (VA.needsCustom()) {
   2305       if (VA.getLocVT() == MVT::v2f64) {
   2306         // Extract the first half and return it in two registers.
   2307         SDValue Half = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
   2308                                    DAG.getConstant(0, dl, MVT::i32));
   2309         SDValue HalfGPRs = DAG.getNode(ARMISD::VMOVRRD, dl,
   2310                                        DAG.getVTList(MVT::i32, MVT::i32), Half);
   2311 
   2312         Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
   2313                                  HalfGPRs.getValue(isLittleEndian ? 0 : 1),
   2314                                  Flag);
   2315         Flag = Chain.getValue(1);
   2316         RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
   2317         VA = RVLocs[++i]; // skip ahead to next loc
   2318         Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
   2319                                  HalfGPRs.getValue(isLittleEndian ? 1 : 0),
   2320                                  Flag);
   2321         Flag = Chain.getValue(1);
   2322         RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
   2323         VA = RVLocs[++i]; // skip ahead to next loc
   2324 
   2325         // Extract the 2nd half and fall through to handle it as an f64 value.
   2326         Arg = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg,
   2327                           DAG.getConstant(1, dl, MVT::i32));
   2328       }
   2329       // Legalize ret f64 -> ret 2 x i32.  We always have fmrrd if f64 is
   2330       // available.
   2331       SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl,
   2332                                   DAG.getVTList(MVT::i32, MVT::i32), Arg);
   2333       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
   2334                                fmrrd.getValue(isLittleEndian ? 0 : 1),
   2335                                Flag);
   2336       Flag = Chain.getValue(1);
   2337       RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
   2338       VA = RVLocs[++i]; // skip ahead to next loc
   2339       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
   2340                                fmrrd.getValue(isLittleEndian ? 1 : 0),
   2341                                Flag);
   2342     } else
   2343       Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
   2344 
   2345     // Guarantee that all emitted copies are
   2346     // stuck together, avoiding something bad.
   2347     Flag = Chain.getValue(1);
   2348     RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
   2349   }
   2350 
   2351   // Update chain and glue.
   2352   RetOps[0] = Chain;
   2353   if (Flag.getNode())
   2354     RetOps.push_back(Flag);
   2355 
   2356   // CPUs which aren't M-class use a special sequence to return from
   2357   // exceptions (roughly, any instruction setting pc and cpsr simultaneously,
   2358   // though we use "subs pc, lr, #N").
   2359   //
   2360   // M-class CPUs actually use a normal return sequence with a special
   2361   // (hardware-provided) value in LR, so the normal code path works.
   2362   if (DAG.getMachineFunction().getFunction()->hasFnAttribute("interrupt") &&
   2363       !Subtarget->isMClass()) {
   2364     if (Subtarget->isThumb1Only())
   2365       report_fatal_error("interrupt attribute is not supported in Thumb1");
   2366     return LowerInterruptReturn(RetOps, dl, DAG);
   2367   }
   2368 
   2369   return DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, RetOps);
   2370 }
   2371 
   2372 bool ARMTargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const {
   2373   if (N->getNumValues() != 1)
   2374     return false;
   2375   if (!N->hasNUsesOfValue(1, 0))
   2376     return false;
   2377 
   2378   SDValue TCChain = Chain;
   2379   SDNode *Copy = *N->use_begin();
   2380   if (Copy->getOpcode() == ISD::CopyToReg) {
   2381     // If the copy has a glue operand, we conservatively assume it isn't safe to
   2382     // perform a tail call.
   2383     if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
   2384       return false;
   2385     TCChain = Copy->getOperand(0);
   2386   } else if (Copy->getOpcode() == ARMISD::VMOVRRD) {
   2387     SDNode *VMov = Copy;
   2388     // f64 returned in a pair of GPRs.
   2389     SmallPtrSet<SDNode*, 2> Copies;
   2390     for (SDNode::use_iterator UI = VMov->use_begin(), UE = VMov->use_end();
   2391          UI != UE; ++UI) {
   2392       if (UI->getOpcode() != ISD::CopyToReg)
   2393         return false;
   2394       Copies.insert(*UI);
   2395     }
   2396     if (Copies.size() > 2)
   2397       return false;
   2398 
   2399     for (SDNode::use_iterator UI = VMov->use_begin(), UE = VMov->use_end();
   2400          UI != UE; ++UI) {
   2401       SDValue UseChain = UI->getOperand(0);
   2402       if (Copies.count(UseChain.getNode()))
   2403         // Second CopyToReg
   2404         Copy = *UI;
   2405       else {
   2406         // We are at the top of this chain.
   2407         // If the copy has a glue operand, we conservatively assume it
   2408         // isn't safe to perform a tail call.
   2409         if (UI->getOperand(UI->getNumOperands()-1).getValueType() == MVT::Glue)
   2410           return false;
   2411         // First CopyToReg
   2412         TCChain = UseChain;
   2413       }
   2414     }
   2415   } else if (Copy->getOpcode() == ISD::BITCAST) {
   2416     // f32 returned in a single GPR.
   2417     if (!Copy->hasOneUse())
   2418       return false;
   2419     Copy = *Copy->use_begin();
   2420     if (Copy->getOpcode() != ISD::CopyToReg || !Copy->hasNUsesOfValue(1, 0))
   2421       return false;
   2422     // If the copy has a glue operand, we conservatively assume it isn't safe to
   2423     // perform a tail call.
   2424     if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue)
   2425       return false;
   2426     TCChain = Copy->getOperand(0);
   2427   } else {
   2428     return false;
   2429   }
   2430 
   2431   bool HasRet = false;
   2432   for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end();
   2433        UI != UE; ++UI) {
   2434     if (UI->getOpcode() != ARMISD::RET_FLAG &&
   2435         UI->getOpcode() != ARMISD::INTRET_FLAG)
   2436       return false;
   2437     HasRet = true;
   2438   }
   2439 
   2440   if (!HasRet)
   2441     return false;
   2442 
   2443   Chain = TCChain;
   2444   return true;
   2445 }
   2446 
   2447 bool ARMTargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const {
   2448   if (!Subtarget->supportsTailCall())
   2449     return false;
   2450 
   2451   auto Attr =
   2452       CI->getParent()->getParent()->getFnAttribute("disable-tail-calls");
   2453   if (!CI->isTailCall() || Attr.getValueAsString() == "true")
   2454     return false;
   2455 
   2456   return true;
   2457 }
   2458 
   2459 // Trying to write a 64 bit value so need to split into two 32 bit values first,
   2460 // and pass the lower and high parts through.
   2461 static SDValue LowerWRITE_REGISTER(SDValue Op, SelectionDAG &DAG) {
   2462   SDLoc DL(Op);
   2463   SDValue WriteValue = Op->getOperand(2);
   2464 
   2465   // This function is only supposed to be called for i64 type argument.
   2466   assert(WriteValue.getValueType() == MVT::i64
   2467           && "LowerWRITE_REGISTER called for non-i64 type argument.");
   2468 
   2469   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, WriteValue,
   2470                            DAG.getConstant(0, DL, MVT::i32));
   2471   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, WriteValue,
   2472                            DAG.getConstant(1, DL, MVT::i32));
   2473   SDValue Ops[] = { Op->getOperand(0), Op->getOperand(1), Lo, Hi };
   2474   return DAG.getNode(ISD::WRITE_REGISTER, DL, MVT::Other, Ops);
   2475 }
   2476 
   2477 // ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as
   2478 // their target counterpart wrapped in the ARMISD::Wrapper node. Suppose N is
   2479 // one of the above mentioned nodes. It has to be wrapped because otherwise
   2480 // Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only
   2481 // be used to form addressing mode. These wrapped nodes will be selected
   2482 // into MOVi.
   2483 static SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) {
   2484   EVT PtrVT = Op.getValueType();
   2485   // FIXME there is no actual debug info here
   2486   SDLoc dl(Op);
   2487   ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
   2488   SDValue Res;
   2489   if (CP->isMachineConstantPoolEntry())
   2490     Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT,
   2491                                     CP->getAlignment());
   2492   else
   2493     Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT,
   2494                                     CP->getAlignment());
   2495   return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Res);
   2496 }
   2497 
   2498 unsigned ARMTargetLowering::getJumpTableEncoding() const {
   2499   return MachineJumpTableInfo::EK_Inline;
   2500 }
   2501 
   2502 SDValue ARMTargetLowering::LowerBlockAddress(SDValue Op,
   2503                                              SelectionDAG &DAG) const {
   2504   MachineFunction &MF = DAG.getMachineFunction();
   2505   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
   2506   unsigned ARMPCLabelIndex = 0;
   2507   SDLoc DL(Op);
   2508   EVT PtrVT = getPointerTy(DAG.getDataLayout());
   2509   const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
   2510   Reloc::Model RelocM = getTargetMachine().getRelocationModel();
   2511   SDValue CPAddr;
   2512   if (RelocM == Reloc::Static) {
   2513     CPAddr = DAG.getTargetConstantPool(BA, PtrVT, 4);
   2514   } else {
   2515     unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
   2516     ARMPCLabelIndex = AFI->createPICLabelUId();
   2517     ARMConstantPoolValue *CPV =
   2518       ARMConstantPoolConstant::Create(BA, ARMPCLabelIndex,
   2519                                       ARMCP::CPBlockAddress, PCAdj);
   2520     CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
   2521   }
   2522   CPAddr = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, CPAddr);
   2523   SDValue Result =
   2524       DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), CPAddr,
   2525                   MachinePointerInfo::getConstantPool(DAG.getMachineFunction()),
   2526                   false, false, false, 0);
   2527   if (RelocM == Reloc::Static)
   2528     return Result;
   2529   SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, DL, MVT::i32);
   2530   return DAG.getNode(ARMISD::PIC_ADD, DL, PtrVT, Result, PICLabel);
   2531 }
   2532 
   2533 // Lower ISD::GlobalTLSAddress using the "general dynamic" model
   2534 SDValue
   2535 ARMTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA,
   2536                                                  SelectionDAG &DAG) const {
   2537   SDLoc dl(GA);
   2538   EVT PtrVT = getPointerTy(DAG.getDataLayout());
   2539   unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
   2540   MachineFunction &MF = DAG.getMachineFunction();
   2541   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
   2542   unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
   2543   ARMConstantPoolValue *CPV =
   2544     ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex,
   2545                                     ARMCP::CPValue, PCAdj, ARMCP::TLSGD, true);
   2546   SDValue Argument = DAG.getTargetConstantPool(CPV, PtrVT, 4);
   2547   Argument = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Argument);
   2548   Argument =
   2549       DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Argument,
   2550                   MachinePointerInfo::getConstantPool(DAG.getMachineFunction()),
   2551                   false, false, false, 0);
   2552   SDValue Chain = Argument.getValue(1);
   2553 
   2554   SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
   2555   Argument = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Argument, PICLabel);
   2556 
   2557   // call __tls_get_addr.
   2558   ArgListTy Args;
   2559   ArgListEntry Entry;
   2560   Entry.Node = Argument;
   2561   Entry.Ty = (Type *) Type::getInt32Ty(*DAG.getContext());
   2562   Args.push_back(Entry);
   2563 
   2564   // FIXME: is there useful debug info available here?
   2565   TargetLowering::CallLoweringInfo CLI(DAG);
   2566   CLI.setDebugLoc(dl).setChain(Chain)
   2567     .setCallee(CallingConv::C, Type::getInt32Ty(*DAG.getContext()),
   2568                DAG.getExternalSymbol("__tls_get_addr", PtrVT), std::move(Args),
   2569                0);
   2570 
   2571   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
   2572   return CallResult.first;
   2573 }
   2574 
   2575 // Lower ISD::GlobalTLSAddress using the "initial exec" or
   2576 // "local exec" model.
   2577 SDValue
   2578 ARMTargetLowering::LowerToTLSExecModels(GlobalAddressSDNode *GA,
   2579                                         SelectionDAG &DAG,
   2580                                         TLSModel::Model model) const {
   2581   const GlobalValue *GV = GA->getGlobal();
   2582   SDLoc dl(GA);
   2583   SDValue Offset;
   2584   SDValue Chain = DAG.getEntryNode();
   2585   EVT PtrVT = getPointerTy(DAG.getDataLayout());
   2586   // Get the Thread Pointer
   2587   SDValue ThreadPointer = DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
   2588 
   2589   if (model == TLSModel::InitialExec) {
   2590     MachineFunction &MF = DAG.getMachineFunction();
   2591     ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
   2592     unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
   2593     // Initial exec model.
   2594     unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8;
   2595     ARMConstantPoolValue *CPV =
   2596       ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex,
   2597                                       ARMCP::CPValue, PCAdj, ARMCP::GOTTPOFF,
   2598                                       true);
   2599     Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
   2600     Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
   2601     Offset = DAG.getLoad(
   2602         PtrVT, dl, Chain, Offset,
   2603         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false,
   2604         false, false, 0);
   2605     Chain = Offset.getValue(1);
   2606 
   2607     SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
   2608     Offset = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Offset, PICLabel);
   2609 
   2610     Offset = DAG.getLoad(
   2611         PtrVT, dl, Chain, Offset,
   2612         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false,
   2613         false, false, 0);
   2614   } else {
   2615     // local exec model
   2616     assert(model == TLSModel::LocalExec);
   2617     ARMConstantPoolValue *CPV =
   2618       ARMConstantPoolConstant::Create(GV, ARMCP::TPOFF);
   2619     Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4);
   2620     Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset);
   2621     Offset = DAG.getLoad(
   2622         PtrVT, dl, Chain, Offset,
   2623         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false,
   2624         false, false, 0);
   2625   }
   2626 
   2627   // The address of the thread local variable is the add of the thread
   2628   // pointer with the offset of the variable.
   2629   return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset);
   2630 }
   2631 
   2632 SDValue
   2633 ARMTargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const {
   2634   // TODO: implement the "local dynamic" model
   2635   assert(Subtarget->isTargetELF() &&
   2636          "TLS not implemented for non-ELF targets");
   2637   GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
   2638   if (DAG.getTarget().Options.EmulatedTLS)
   2639     return LowerToTLSEmulatedModel(GA, DAG);
   2640 
   2641   TLSModel::Model model = getTargetMachine().getTLSModel(GA->getGlobal());
   2642 
   2643   switch (model) {
   2644     case TLSModel::GeneralDynamic:
   2645     case TLSModel::LocalDynamic:
   2646       return LowerToTLSGeneralDynamicModel(GA, DAG);
   2647     case TLSModel::InitialExec:
   2648     case TLSModel::LocalExec:
   2649       return LowerToTLSExecModels(GA, DAG, model);
   2650   }
   2651   llvm_unreachable("bogus TLS model");
   2652 }
   2653 
   2654 SDValue ARMTargetLowering::LowerGlobalAddressELF(SDValue Op,
   2655                                                  SelectionDAG &DAG) const {
   2656   EVT PtrVT = getPointerTy(DAG.getDataLayout());
   2657   SDLoc dl(Op);
   2658   const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
   2659   if (getTargetMachine().getRelocationModel() == Reloc::PIC_) {
   2660     bool UseGOT_PREL =
   2661         !(GV->hasHiddenVisibility() || GV->hasLocalLinkage());
   2662 
   2663     MachineFunction &MF = DAG.getMachineFunction();
   2664     ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
   2665     unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
   2666     EVT PtrVT = getPointerTy(DAG.getDataLayout());
   2667     SDLoc dl(Op);
   2668     unsigned PCAdj = Subtarget->isThumb() ? 4 : 8;
   2669     ARMConstantPoolValue *CPV = ARMConstantPoolConstant::Create(
   2670         GV, ARMPCLabelIndex, ARMCP::CPValue, PCAdj,
   2671         UseGOT_PREL ? ARMCP::GOT_PREL : ARMCP::no_modifier,
   2672         /*AddCurrentAddress=*/UseGOT_PREL);
   2673     SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
   2674     CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
   2675     SDValue Result = DAG.getLoad(
   2676         PtrVT, dl, DAG.getEntryNode(), CPAddr,
   2677         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false,
   2678         false, false, 0);
   2679     SDValue Chain = Result.getValue(1);
   2680     SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
   2681     Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
   2682     if (UseGOT_PREL)
   2683       Result = DAG.getLoad(PtrVT, dl, Chain, Result,
   2684                            MachinePointerInfo::getGOT(DAG.getMachineFunction()),
   2685                            false, false, false, 0);
   2686     return Result;
   2687   }
   2688 
   2689   // If we have T2 ops, we can materialize the address directly via movt/movw
   2690   // pair. This is always cheaper.
   2691   if (Subtarget->useMovt(DAG.getMachineFunction())) {
   2692     ++NumMovwMovt;
   2693     // FIXME: Once remat is capable of dealing with instructions with register
   2694     // operands, expand this into two nodes.
   2695     return DAG.getNode(ARMISD::Wrapper, dl, PtrVT,
   2696                        DAG.getTargetGlobalAddress(GV, dl, PtrVT));
   2697   } else {
   2698     SDValue CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4);
   2699     CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
   2700     return DAG.getLoad(
   2701         PtrVT, dl, DAG.getEntryNode(), CPAddr,
   2702         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false,
   2703         false, false, 0);
   2704   }
   2705 }
   2706 
   2707 SDValue ARMTargetLowering::LowerGlobalAddressDarwin(SDValue Op,
   2708                                                     SelectionDAG &DAG) const {
   2709   EVT PtrVT = getPointerTy(DAG.getDataLayout());
   2710   SDLoc dl(Op);
   2711   const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
   2712   Reloc::Model RelocM = getTargetMachine().getRelocationModel();
   2713 
   2714   if (Subtarget->useMovt(DAG.getMachineFunction()))
   2715     ++NumMovwMovt;
   2716 
   2717   // FIXME: Once remat is capable of dealing with instructions with register
   2718   // operands, expand this into multiple nodes
   2719   unsigned Wrapper =
   2720       RelocM == Reloc::PIC_ ? ARMISD::WrapperPIC : ARMISD::Wrapper;
   2721 
   2722   SDValue G = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, ARMII::MO_NONLAZY);
   2723   SDValue Result = DAG.getNode(Wrapper, dl, PtrVT, G);
   2724 
   2725   if (Subtarget->GVIsIndirectSymbol(GV, RelocM))
   2726     Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Result,
   2727                          MachinePointerInfo::getGOT(DAG.getMachineFunction()),
   2728                          false, false, false, 0);
   2729   return Result;
   2730 }
   2731 
   2732 SDValue ARMTargetLowering::LowerGlobalAddressWindows(SDValue Op,
   2733                                                      SelectionDAG &DAG) const {
   2734   assert(Subtarget->isTargetWindows() && "non-Windows COFF is not supported");
   2735   assert(Subtarget->useMovt(DAG.getMachineFunction()) &&
   2736          "Windows on ARM expects to use movw/movt");
   2737 
   2738   const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
   2739   const ARMII::TOF TargetFlags =
   2740     (GV->hasDLLImportStorageClass() ? ARMII::MO_DLLIMPORT : ARMII::MO_NO_FLAG);
   2741   EVT PtrVT = getPointerTy(DAG.getDataLayout());
   2742   SDValue Result;
   2743   SDLoc DL(Op);
   2744 
   2745   ++NumMovwMovt;
   2746 
   2747   // FIXME: Once remat is capable of dealing with instructions with register
   2748   // operands, expand this into two nodes.
   2749   Result = DAG.getNode(ARMISD::Wrapper, DL, PtrVT,
   2750                        DAG.getTargetGlobalAddress(GV, DL, PtrVT, /*Offset=*/0,
   2751                                                   TargetFlags));
   2752   if (GV->hasDLLImportStorageClass())
   2753     Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result,
   2754                          MachinePointerInfo::getGOT(DAG.getMachineFunction()),
   2755                          false, false, false, 0);
   2756   return Result;
   2757 }
   2758 
   2759 SDValue
   2760 ARMTargetLowering::LowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const {
   2761   SDLoc dl(Op);
   2762   SDValue Val = DAG.getConstant(0, dl, MVT::i32);
   2763   return DAG.getNode(ARMISD::EH_SJLJ_SETJMP, dl,
   2764                      DAG.getVTList(MVT::i32, MVT::Other), Op.getOperand(0),
   2765                      Op.getOperand(1), Val);
   2766 }
   2767 
   2768 SDValue
   2769 ARMTargetLowering::LowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const {
   2770   SDLoc dl(Op);
   2771   return DAG.getNode(ARMISD::EH_SJLJ_LONGJMP, dl, MVT::Other, Op.getOperand(0),
   2772                      Op.getOperand(1), DAG.getConstant(0, dl, MVT::i32));
   2773 }
   2774 
   2775 SDValue ARMTargetLowering::LowerEH_SJLJ_SETUP_DISPATCH(SDValue Op,
   2776                                                       SelectionDAG &DAG) const {
   2777   SDLoc dl(Op);
   2778   return DAG.getNode(ARMISD::EH_SJLJ_SETUP_DISPATCH, dl, MVT::Other,
   2779                      Op.getOperand(0));
   2780 }
   2781 
   2782 SDValue
   2783 ARMTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG,
   2784                                           const ARMSubtarget *Subtarget) const {
   2785   unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
   2786   SDLoc dl(Op);
   2787   switch (IntNo) {
   2788   default: return SDValue();    // Don't custom lower most intrinsics.
   2789   case Intrinsic::arm_rbit: {
   2790     assert(Op.getOperand(1).getValueType() == MVT::i32 &&
   2791            "RBIT intrinsic must have i32 type!");
   2792     return DAG.getNode(ISD::BITREVERSE, dl, MVT::i32, Op.getOperand(1));
   2793   }
   2794   case Intrinsic::arm_thread_pointer: {
   2795     EVT PtrVT = getPointerTy(DAG.getDataLayout());
   2796     return DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT);
   2797   }
   2798   case Intrinsic::eh_sjlj_lsda: {
   2799     MachineFunction &MF = DAG.getMachineFunction();
   2800     ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
   2801     unsigned ARMPCLabelIndex = AFI->createPICLabelUId();
   2802     EVT PtrVT = getPointerTy(DAG.getDataLayout());
   2803     Reloc::Model RelocM = getTargetMachine().getRelocationModel();
   2804     SDValue CPAddr;
   2805     unsigned PCAdj = (RelocM != Reloc::PIC_)
   2806       ? 0 : (Subtarget->isThumb() ? 4 : 8);
   2807     ARMConstantPoolValue *CPV =
   2808       ARMConstantPoolConstant::Create(MF.getFunction(), ARMPCLabelIndex,
   2809                                       ARMCP::CPLSDA, PCAdj);
   2810     CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4);
   2811     CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr);
   2812     SDValue Result = DAG.getLoad(
   2813         PtrVT, dl, DAG.getEntryNode(), CPAddr,
   2814         MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false,
   2815         false, false, 0);
   2816 
   2817     if (RelocM == Reloc::PIC_) {
   2818       SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32);
   2819       Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel);
   2820     }
   2821     return Result;
   2822   }
   2823   case Intrinsic::arm_neon_vmulls:
   2824   case Intrinsic::arm_neon_vmullu: {
   2825     unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmulls)
   2826       ? ARMISD::VMULLs : ARMISD::VMULLu;
   2827     return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
   2828                        Op.getOperand(1), Op.getOperand(2));
   2829   }
   2830   case Intrinsic::arm_neon_vminnm:
   2831   case Intrinsic::arm_neon_vmaxnm: {
   2832     unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vminnm)
   2833       ? ISD::FMINNUM : ISD::FMAXNUM;
   2834     return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
   2835                        Op.getOperand(1), Op.getOperand(2));
   2836   }
   2837   case Intrinsic::arm_neon_vminu:
   2838   case Intrinsic::arm_neon_vmaxu: {
   2839     if (Op.getValueType().isFloatingPoint())
   2840       return SDValue();
   2841     unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vminu)
   2842       ? ISD::UMIN : ISD::UMAX;
   2843     return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
   2844                          Op.getOperand(1), Op.getOperand(2));
   2845   }
   2846   case Intrinsic::arm_neon_vmins:
   2847   case Intrinsic::arm_neon_vmaxs: {
   2848     // v{min,max}s is overloaded between signed integers and floats.
   2849     if (!Op.getValueType().isFloatingPoint()) {
   2850       unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmins)
   2851         ? ISD::SMIN : ISD::SMAX;
   2852       return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
   2853                          Op.getOperand(1), Op.getOperand(2));
   2854     }
   2855     unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmins)
   2856       ? ISD::FMINNAN : ISD::FMAXNAN;
   2857     return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(),
   2858                        Op.getOperand(1), Op.getOperand(2));
   2859   }
   2860   }
   2861 }
   2862 
   2863 static SDValue LowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG,
   2864                                  const ARMSubtarget *Subtarget) {
   2865   // FIXME: handle "fence singlethread" more efficiently.
   2866   SDLoc dl(Op);
   2867   if (!Subtarget->hasDataBarrier()) {
   2868     // Some ARMv6 cpus can support data barriers with an mcr instruction.
   2869     // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
   2870     // here.
   2871     assert(Subtarget->hasV6Ops() && !Subtarget->isThumb() &&
   2872            "Unexpected ISD::ATOMIC_FENCE encountered. Should be libcall!");
   2873     return DAG.getNode(ARMISD::MEMBARRIER_MCR, dl, MVT::Other, Op.getOperand(0),
   2874                        DAG.getConstant(0, dl, MVT::i32));
   2875   }
   2876 
   2877   ConstantSDNode *OrdN = cast<ConstantSDNode>(Op.getOperand(1));
   2878   AtomicOrdering Ord = static_cast<AtomicOrdering>(OrdN->getZExtValue());
   2879   ARM_MB::MemBOpt Domain = ARM_MB::ISH;
   2880   if (Subtarget->isMClass()) {
   2881     // Only a full system barrier exists in the M-class architectures.
   2882     Domain = ARM_MB::SY;
   2883   } else if (Subtarget->isSwift() && Ord == Release) {
   2884     // Swift happens to implement ISHST barriers in a way that's compatible with
   2885     // Release semantics but weaker than ISH so we'd be fools not to use
   2886     // it. Beware: other processors probably don't!
   2887     Domain = ARM_MB::ISHST;
   2888   }
   2889 
   2890   return DAG.getNode(ISD::INTRINSIC_VOID, dl, MVT::Other, Op.getOperand(0),
   2891                      DAG.getConstant(Intrinsic::arm_dmb, dl, MVT::i32),
   2892                      DAG.getConstant(Domain, dl, MVT::i32));
   2893 }
   2894 
   2895 static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG,
   2896                              const ARMSubtarget *Subtarget) {
   2897   // ARM pre v5TE and Thumb1 does not have preload instructions.
   2898   if (!(Subtarget->isThumb2() ||
   2899         (!Subtarget->isThumb1Only() && Subtarget->hasV5TEOps())))
   2900     // Just preserve the chain.
   2901     return Op.getOperand(0);
   2902 
   2903   SDLoc dl(Op);
   2904   unsigned isRead = ~cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue() & 1;
   2905   if (!isRead &&
   2906       (!Subtarget->hasV7Ops() || !Subtarget->hasMPExtension()))
   2907     // ARMv7 with MP extension has PLDW.
   2908     return Op.getOperand(0);
   2909 
   2910   unsigned isData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue();
   2911   if (Subtarget->isThumb()) {
   2912     // Invert the bits.
   2913     isRead = ~isRead & 1;
   2914     isData = ~isData & 1;
   2915   }
   2916 
   2917   return DAG.getNode(ARMISD::PRELOAD, dl, MVT::Other, Op.getOperand(0),
   2918                      Op.getOperand(1), DAG.getConstant(isRead, dl, MVT::i32),
   2919                      DAG.getConstant(isData, dl, MVT::i32));
   2920 }
   2921 
   2922 static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) {
   2923   MachineFunction &MF = DAG.getMachineFunction();
   2924   ARMFunctionInfo *FuncInfo = MF.getInfo<ARMFunctionInfo>();
   2925 
   2926   // vastart just stores the address of the VarArgsFrameIndex slot into the
   2927   // memory location argument.
   2928   SDLoc dl(Op);
   2929   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
   2930   SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
   2931   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
   2932   return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
   2933                       MachinePointerInfo(SV), false, false, 0);
   2934 }
   2935 
   2936 SDValue
   2937 ARMTargetLowering::GetF64FormalArgument(CCValAssign &VA, CCValAssign &NextVA,
   2938                                         SDValue &Root, SelectionDAG &DAG,
   2939                                         SDLoc dl) const {
   2940   MachineFunction &MF = DAG.getMachineFunction();
   2941   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
   2942 
   2943   const TargetRegisterClass *RC;
   2944   if (AFI->isThumb1OnlyFunction())
   2945     RC = &ARM::tGPRRegClass;
   2946   else
   2947     RC = &ARM::GPRRegClass;
   2948 
   2949   // Transform the arguments stored in physical registers into virtual ones.
   2950   unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
   2951   SDValue ArgValue = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
   2952 
   2953   SDValue ArgValue2;
   2954   if (NextVA.isMemLoc()) {
   2955     MachineFrameInfo *MFI = MF.getFrameInfo();
   2956     int FI = MFI->CreateFixedObject(4, NextVA.getLocMemOffset(), true);
   2957 
   2958     // Create load node to retrieve arguments from the stack.
   2959     SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout()));
   2960     ArgValue2 = DAG.getLoad(
   2961         MVT::i32, dl, Root, FIN,
   2962         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), false,
   2963         false, false, 0);
   2964   } else {
   2965     Reg = MF.addLiveIn(NextVA.getLocReg(), RC);
   2966     ArgValue2 = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32);
   2967   }
   2968   if (!Subtarget->isLittle())
   2969     std::swap (ArgValue, ArgValue2);
   2970   return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, ArgValue, ArgValue2);
   2971 }
   2972 
   2973 // The remaining GPRs hold either the beginning of variable-argument
   2974 // data, or the beginning of an aggregate passed by value (usually
   2975 // byval).  Either way, we allocate stack slots adjacent to the data
   2976 // provided by our caller, and store the unallocated registers there.
   2977 // If this is a variadic function, the va_list pointer will begin with
   2978 // these values; otherwise, this reassembles a (byval) structure that
   2979 // was split between registers and memory.
   2980 // Return: The frame index registers were stored into.
   2981 int
   2982 ARMTargetLowering::StoreByValRegs(CCState &CCInfo, SelectionDAG &DAG,
   2983                                   SDLoc dl, SDValue &Chain,
   2984                                   const Value *OrigArg,
   2985                                   unsigned InRegsParamRecordIdx,
   2986                                   int ArgOffset,
   2987                                   unsigned ArgSize) const {
   2988   // Currently, two use-cases possible:
   2989   // Case #1. Non-var-args function, and we meet first byval parameter.
   2990   //          Setup first unallocated register as first byval register;
   2991   //          eat all remained registers
   2992   //          (these two actions are performed by HandleByVal method).
   2993   //          Then, here, we initialize stack frame with
   2994   //          "store-reg" instructions.
   2995   // Case #2. Var-args function, that doesn't contain byval parameters.
   2996   //          The same: eat all remained unallocated registers,
   2997   //          initialize stack frame.
   2998 
   2999   MachineFunction &MF = DAG.getMachineFunction();
   3000   MachineFrameInfo *MFI = MF.getFrameInfo();
   3001   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
   3002   unsigned RBegin, REnd;
   3003   if (InRegsParamRecordIdx < CCInfo.getInRegsParamsCount()) {
   3004     CCInfo.getInRegsParamInfo(InRegsParamRecordIdx, RBegin, REnd);
   3005   } else {
   3006     unsigned RBeginIdx = CCInfo.getFirstUnallocated(GPRArgRegs);
   3007     RBegin = RBeginIdx == 4 ? (unsigned)ARM::R4 : GPRArgRegs[RBeginIdx];
   3008     REnd = ARM::R4;
   3009   }
   3010 
   3011   if (REnd != RBegin)
   3012     ArgOffset = -4 * (ARM::R4 - RBegin);
   3013 
   3014   auto PtrVT = getPointerTy(DAG.getDataLayout());
   3015   int FrameIndex = MFI->CreateFixedObject(ArgSize, ArgOffset, false);
   3016   SDValue FIN = DAG.getFrameIndex(FrameIndex, PtrVT);
   3017 
   3018   SmallVector<SDValue, 4> MemOps;
   3019   const TargetRegisterClass *RC =
   3020       AFI->isThumb1OnlyFunction() ? &ARM::tGPRRegClass : &ARM::GPRRegClass;
   3021 
   3022   for (unsigned Reg = RBegin, i = 0; Reg < REnd; ++Reg, ++i) {
   3023     unsigned VReg = MF.addLiveIn(Reg, RC);
   3024     SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
   3025     SDValue Store =
   3026         DAG.getStore(Val.getValue(1), dl, Val, FIN,
   3027                      MachinePointerInfo(OrigArg, 4 * i), false, false, 0);
   3028     MemOps.push_back(Store);
   3029     FIN = DAG.getNode(ISD::ADD, dl, PtrVT, FIN, DAG.getConstant(4, dl, PtrVT));
   3030   }
   3031 
   3032   if (!MemOps.empty())
   3033     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
   3034   return FrameIndex;
   3035 }
   3036 
   3037 // Setup stack frame, the va_list pointer will start from.
   3038 void
   3039 ARMTargetLowering::VarArgStyleRegisters(CCState &CCInfo, SelectionDAG &DAG,
   3040                                         SDLoc dl, SDValue &Chain,
   3041                                         unsigned ArgOffset,
   3042                                         unsigned TotalArgRegsSaveSize,
   3043                                         bool ForceMutable) const {
   3044   MachineFunction &MF = DAG.getMachineFunction();
   3045   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
   3046 
   3047   // Try to store any remaining integer argument regs
   3048   // to their spots on the stack so that they may be loaded by deferencing
   3049   // the result of va_next.
   3050   // If there is no regs to be stored, just point address after last
   3051   // argument passed via stack.
   3052   int FrameIndex = StoreByValRegs(CCInfo, DAG, dl, Chain, nullptr,
   3053                                   CCInfo.getInRegsParamsCount(),
   3054                                   CCInfo.getNextStackOffset(), 4);
   3055   AFI->setVarArgsFrameIndex(FrameIndex);
   3056 }
   3057 
   3058 SDValue
   3059 ARMTargetLowering::LowerFormalArguments(SDValue Chain,
   3060                                         CallingConv::ID CallConv, bool isVarArg,
   3061                                         const SmallVectorImpl<ISD::InputArg>
   3062                                           &Ins,
   3063                                         SDLoc dl, SelectionDAG &DAG,
   3064                                         SmallVectorImpl<SDValue> &InVals)
   3065                                           const {
   3066   MachineFunction &MF = DAG.getMachineFunction();
   3067   MachineFrameInfo *MFI = MF.getFrameInfo();
   3068 
   3069   ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
   3070 
   3071   // Assign locations to all of the incoming arguments.
   3072   SmallVector<CCValAssign, 16> ArgLocs;
   3073   ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
   3074                     *DAG.getContext(), Prologue);
   3075   CCInfo.AnalyzeFormalArguments(Ins,
   3076                                 CCAssignFnForNode(CallConv, /* Return*/ false,
   3077                                                   isVarArg));
   3078 
   3079   SmallVector<SDValue, 16> ArgValues;
   3080   SDValue ArgValue;
   3081   Function::const_arg_iterator CurOrigArg = MF.getFunction()->arg_begin();
   3082   unsigned CurArgIdx = 0;
   3083 
   3084   // Initially ArgRegsSaveSize is zero.
   3085   // Then we increase this value each time we meet byval parameter.
   3086   // We also increase this value in case of varargs function.
   3087   AFI->setArgRegsSaveSize(0);
   3088 
   3089   // Calculate the amount of stack space that we need to allocate to store
   3090   // byval and variadic arguments that are passed in registers.
   3091   // We need to know this before we allocate the first byval or variadic
   3092   // argument, as they will be allocated a stack slot below the CFA (Canonical
   3093   // Frame Address, the stack pointer at entry to the function).
   3094   unsigned ArgRegBegin = ARM::R4;
   3095   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
   3096     if (CCInfo.getInRegsParamsProcessed() >= CCInfo.getInRegsParamsCount())
   3097       break;
   3098 
   3099     CCValAssign &VA = ArgLocs[i];
   3100     unsigned Index = VA.getValNo();
   3101     ISD::ArgFlagsTy Flags = Ins[Index].Flags;
   3102     if (!Flags.isByVal())
   3103       continue;
   3104 
   3105     assert(VA.isMemLoc() && "unexpected byval pointer in reg");
   3106     unsigned RBegin, REnd;
   3107     CCInfo.getInRegsParamInfo(CCInfo.getInRegsParamsProcessed(), RBegin, REnd);
   3108     ArgRegBegin = std::min(ArgRegBegin, RBegin);
   3109 
   3110     CCInfo.nextInRegsParam();
   3111   }
   3112   CCInfo.rewindByValRegsInfo();
   3113 
   3114   int lastInsIndex = -1;
   3115   if (isVarArg && MFI->hasVAStart()) {
   3116     unsigned RegIdx = CCInfo.getFirstUnallocated(GPRArgRegs);
   3117     if (RegIdx != array_lengthof(GPRArgRegs))
   3118       ArgRegBegin = std::min(ArgRegBegin, (unsigned)GPRArgRegs[RegIdx]);
   3119   }
   3120 
   3121   unsigned TotalArgRegsSaveSize = 4 * (ARM::R4 - ArgRegBegin);
   3122   AFI->setArgRegsSaveSize(TotalArgRegsSaveSize);
   3123   auto PtrVT = getPointerTy(DAG.getDataLayout());
   3124 
   3125   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
   3126     CCValAssign &VA = ArgLocs[i];
   3127     if (Ins[VA.getValNo()].isOrigArg()) {
   3128       std::advance(CurOrigArg,
   3129                    Ins[VA.getValNo()].getOrigArgIndex() - CurArgIdx);
   3130       CurArgIdx = Ins[VA.getValNo()].getOrigArgIndex();
   3131     }
   3132     // Arguments stored in registers.
   3133     if (VA.isRegLoc()) {
   3134       EVT RegVT = VA.getLocVT();
   3135 
   3136       if (VA.needsCustom()) {
   3137         // f64 and vector types are split up into multiple registers or
   3138         // combinations of registers and stack slots.
   3139         if (VA.getLocVT() == MVT::v2f64) {
   3140           SDValue ArgValue1 = GetF64FormalArgument(VA, ArgLocs[++i],
   3141                                                    Chain, DAG, dl);
   3142           VA = ArgLocs[++i]; // skip ahead to next loc
   3143           SDValue ArgValue2;
   3144           if (VA.isMemLoc()) {
   3145             int FI = MFI->CreateFixedObject(8, VA.getLocMemOffset(), true);
   3146             SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
   3147             ArgValue2 = DAG.getLoad(
   3148                 MVT::f64, dl, Chain, FIN,
   3149                 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
   3150                 false, false, false, 0);
   3151           } else {
   3152             ArgValue2 = GetF64FormalArgument(VA, ArgLocs[++i],
   3153                                              Chain, DAG, dl);
   3154           }
   3155           ArgValue = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64);
   3156           ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
   3157                                  ArgValue, ArgValue1,
   3158                                  DAG.getIntPtrConstant(0, dl));
   3159           ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64,
   3160                                  ArgValue, ArgValue2,
   3161                                  DAG.getIntPtrConstant(1, dl));
   3162         } else
   3163           ArgValue = GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl);
   3164 
   3165       } else {
   3166         const TargetRegisterClass *RC;
   3167 
   3168         if (RegVT == MVT::f32)
   3169           RC = &ARM::SPRRegClass;
   3170         else if (RegVT == MVT::f64)
   3171           RC = &ARM::DPRRegClass;
   3172         else if (RegVT == MVT::v2f64)
   3173           RC = &ARM::QPRRegClass;
   3174         else if (RegVT == MVT::i32)
   3175           RC = AFI->isThumb1OnlyFunction() ? &ARM::tGPRRegClass
   3176                                            : &ARM::GPRRegClass;
   3177         else
   3178           llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering");
   3179 
   3180         // Transform the arguments in physical registers into virtual ones.
   3181         unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
   3182         ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT);
   3183       }
   3184 
   3185       // If this is an 8 or 16-bit value, it is really passed promoted
   3186       // to 32 bits.  Insert an assert[sz]ext to capture this, then
   3187       // truncate to the right size.
   3188       switch (VA.getLocInfo()) {
   3189       default: llvm_unreachable("Unknown loc info!");
   3190       case CCValAssign::Full: break;
   3191       case CCValAssign::BCvt:
   3192         ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue);
   3193         break;
   3194       case CCValAssign::SExt:
   3195         ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue,
   3196                                DAG.getValueType(VA.getValVT()));
   3197         ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
   3198         break;
   3199       case CCValAssign::ZExt:
   3200         ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue,
   3201                                DAG.getValueType(VA.getValVT()));
   3202         ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue);
   3203         break;
   3204       }
   3205 
   3206       InVals.push_back(ArgValue);
   3207 
   3208     } else { // VA.isRegLoc()
   3209 
   3210       // sanity check
   3211       assert(VA.isMemLoc());
   3212       assert(VA.getValVT() != MVT::i64 && "i64 should already be lowered");
   3213 
   3214       int index = VA.getValNo();
   3215 
   3216       // Some Ins[] entries become multiple ArgLoc[] entries.
   3217       // Process them only once.
   3218       if (index != lastInsIndex)
   3219         {
   3220           ISD::ArgFlagsTy Flags = Ins[index].Flags;
   3221           // FIXME: For now, all byval parameter objects are marked mutable.
   3222           // This can be changed with more analysis.
   3223           // In case of tail call optimization mark all arguments mutable.
   3224           // Since they could be overwritten by lowering of arguments in case of
   3225           // a tail call.
   3226           if (Flags.isByVal()) {
   3227             assert(Ins[index].isOrigArg() &&
   3228                    "Byval arguments cannot be implicit");
   3229             unsigned CurByValIndex = CCInfo.getInRegsParamsProcessed();
   3230 
   3231             int FrameIndex = StoreByValRegs(
   3232                 CCInfo, DAG, dl, Chain, &*CurOrigArg, CurByValIndex,
   3233                 VA.getLocMemOffset(), Flags.getByValSize());
   3234             InVals.push_back(DAG.getFrameIndex(FrameIndex, PtrVT));
   3235             CCInfo.nextInRegsParam();
   3236           } else {
   3237             unsigned FIOffset = VA.getLocMemOffset();
   3238             int FI = MFI->CreateFixedObject(VA.getLocVT().getSizeInBits()/8,
   3239                                             FIOffset, true);
   3240 
   3241             // Create load nodes to retrieve arguments from the stack.
   3242             SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
   3243             InVals.push_back(DAG.getLoad(
   3244                 VA.getValVT(), dl, Chain, FIN,
   3245                 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
   3246                 false, false, false, 0));
   3247           }
   3248           lastInsIndex = index;
   3249         }
   3250     }
   3251   }
   3252 
   3253   // varargs
   3254   if (isVarArg && MFI->hasVAStart())
   3255     VarArgStyleRegisters(CCInfo, DAG, dl, Chain,
   3256                          CCInfo.getNextStackOffset(),
   3257                          TotalArgRegsSaveSize);
   3258 
   3259   AFI->setArgumentStackSize(CCInfo.getNextStackOffset());
   3260 
   3261   return Chain;
   3262 }
   3263 
   3264 /// isFloatingPointZero - Return true if this is +0.0.
   3265 static bool isFloatingPointZero(SDValue Op) {
   3266   if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
   3267     return CFP->getValueAPF().isPosZero();
   3268   else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
   3269     // Maybe this has already been legalized into the constant pool?
   3270     if (Op.getOperand(1).getOpcode() == ARMISD::Wrapper) {
   3271       SDValue WrapperOp = Op.getOperand(1).getOperand(0);
   3272       if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(WrapperOp))
   3273         if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
   3274           return CFP->getValueAPF().isPosZero();
   3275     }
   3276   } else if (Op->getOpcode() == ISD::BITCAST &&
   3277              Op->getValueType(0) == MVT::f64) {
   3278     // Handle (ISD::BITCAST (ARMISD::VMOVIMM (ISD::TargetConstant 0)) MVT::f64)
   3279     // created by LowerConstantFP().
   3280     SDValue BitcastOp = Op->getOperand(0);
   3281     if (BitcastOp->getOpcode() == ARMISD::VMOVIMM &&
   3282         isNullConstant(BitcastOp->getOperand(0)))
   3283       return true;
   3284   }
   3285   return false;
   3286 }
   3287 
   3288 /// Returns appropriate ARM CMP (cmp) and corresponding condition code for
   3289 /// the given operands.
   3290 SDValue
   3291 ARMTargetLowering::getARMCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC,
   3292                              SDValue &ARMcc, SelectionDAG &DAG,
   3293                              SDLoc dl) const {
   3294   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) {
   3295     unsigned C = RHSC->getZExtValue();
   3296     if (!isLegalICmpImmediate(C)) {
   3297       // Constant does not fit, try adjusting it by one?
   3298       switch (CC) {
   3299       default: break;
   3300       case ISD::SETLT:
   3301       case ISD::SETGE:
   3302         if (C != 0x80000000 && isLegalICmpImmediate(C-1)) {
   3303           CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT;
   3304           RHS = DAG.getConstant(C - 1, dl, MVT::i32);
   3305         }
   3306         break;
   3307       case ISD::SETULT:
   3308       case ISD::SETUGE:
   3309         if (C != 0 && isLegalICmpImmediate(C-1)) {
   3310           CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT;
   3311           RHS = DAG.getConstant(C - 1, dl, MVT::i32);
   3312         }
   3313         break;
   3314       case ISD::SETLE:
   3315       case ISD::SETGT:
   3316         if (C != 0x7fffffff && isLegalICmpImmediate(C+1)) {
   3317           CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE;
   3318           RHS = DAG.getConstant(C + 1, dl, MVT::i32);
   3319         }
   3320         break;
   3321       case ISD::SETULE:
   3322       case ISD::SETUGT:
   3323         if (C != 0xffffffff && isLegalICmpImmediate(C+1)) {
   3324           CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
   3325           RHS = DAG.getConstant(C + 1, dl, MVT::i32);
   3326         }
   3327         break;
   3328       }
   3329     }
   3330   }
   3331 
   3332   ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
   3333   ARMISD::NodeType CompareType;
   3334   switch (CondCode) {
   3335   default:
   3336     CompareType = ARMISD::CMP;
   3337     break;
   3338   case ARMCC::EQ:
   3339   case ARMCC::NE:
   3340     // Uses only Z Flag
   3341     CompareType = ARMISD::CMPZ;
   3342     break;
   3343   }
   3344   ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
   3345   return DAG.getNode(CompareType, dl, MVT::Glue, LHS, RHS);
   3346 }
   3347 
   3348 /// Returns a appropriate VFP CMP (fcmp{s|d}+fmstat) for the given operands.
   3349 SDValue
   3350 ARMTargetLowering::getVFPCmp(SDValue LHS, SDValue RHS, SelectionDAG &DAG,
   3351                              SDLoc dl) const {
   3352   assert(!Subtarget->isFPOnlySP() || RHS.getValueType() != MVT::f64);
   3353   SDValue Cmp;
   3354   if (!isFloatingPointZero(RHS))
   3355     Cmp = DAG.getNode(ARMISD::CMPFP, dl, MVT::Glue, LHS, RHS);
   3356   else
   3357     Cmp = DAG.getNode(ARMISD::CMPFPw0, dl, MVT::Glue, LHS);
   3358   return DAG.getNode(ARMISD::FMSTAT, dl, MVT::Glue, Cmp);
   3359 }
   3360 
   3361 /// duplicateCmp - Glue values can have only one use, so this function
   3362 /// duplicates a comparison node.
   3363 SDValue
   3364 ARMTargetLowering::duplicateCmp(SDValue Cmp, SelectionDAG &DAG) const {
   3365   unsigned Opc = Cmp.getOpcode();
   3366   SDLoc DL(Cmp);
   3367   if (Opc == ARMISD::CMP || Opc == ARMISD::CMPZ)
   3368     return DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1));
   3369 
   3370   assert(Opc == ARMISD::FMSTAT && "unexpected comparison operation");
   3371   Cmp = Cmp.getOperand(0);
   3372   Opc = Cmp.getOpcode();
   3373   if (Opc == ARMISD::CMPFP)
   3374     Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1));
   3375   else {
   3376     assert(Opc == ARMISD::CMPFPw0 && "unexpected operand of FMSTAT");
   3377     Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0));
   3378   }
   3379   return DAG.getNode(ARMISD::FMSTAT, DL, MVT::Glue, Cmp);
   3380 }
   3381 
   3382 std::pair<SDValue, SDValue>
   3383 ARMTargetLowering::getARMXALUOOp(SDValue Op, SelectionDAG &DAG,
   3384                                  SDValue &ARMcc) const {
   3385   assert(Op.getValueType() == MVT::i32 &&  "Unsupported value type");
   3386 
   3387   SDValue Value, OverflowCmp;
   3388   SDValue LHS = Op.getOperand(0);
   3389   SDValue RHS = Op.getOperand(1);
   3390   SDLoc dl(Op);
   3391 
   3392   // FIXME: We are currently always generating CMPs because we don't support
   3393   // generating CMN through the backend. This is not as good as the natural
   3394   // CMP case because it causes a register dependency and cannot be folded
   3395   // later.
   3396 
   3397   switch (Op.getOpcode()) {
   3398   default:
   3399     llvm_unreachable("Unknown overflow instruction!");
   3400   case ISD::SADDO:
   3401     ARMcc = DAG.getConstant(ARMCC::VC, dl, MVT::i32);
   3402     Value = DAG.getNode(ISD::ADD, dl, Op.getValueType(), LHS, RHS);
   3403     OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, Value, LHS);
   3404     break;
   3405   case ISD::UADDO:
   3406     ARMcc = DAG.getConstant(ARMCC::HS, dl, MVT::i32);
   3407     Value = DAG.getNode(ISD::ADD, dl, Op.getValueType(), LHS, RHS);
   3408     OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, Value, LHS);
   3409     break;
   3410   case ISD::SSUBO:
   3411     ARMcc = DAG.getConstant(ARMCC::VC, dl, MVT::i32);
   3412     Value = DAG.getNode(ISD::SUB, dl, Op.getValueType(), LHS, RHS);
   3413     OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, LHS, RHS);
   3414     break;
   3415   case ISD::USUBO:
   3416     ARMcc = DAG.getConstant(ARMCC::HS, dl, MVT::i32);
   3417     Value = DAG.getNode(ISD::SUB, dl, Op.getValueType(), LHS, RHS);
   3418     OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, LHS, RHS);
   3419     break;
   3420   } // switch (...)
   3421 
   3422   return std::make_pair(Value, OverflowCmp);
   3423 }
   3424 
   3425 
   3426 SDValue
   3427 ARMTargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) const {
   3428   // Let legalize expand this if it isn't a legal type yet.
   3429   if (!DAG.getTargetLoweringInfo().isTypeLegal(Op.getValueType()))
   3430     return SDValue();
   3431 
   3432   SDValue Value, OverflowCmp;
   3433   SDValue ARMcc;
   3434   std::tie(Value, OverflowCmp) = getARMXALUOOp(Op, DAG, ARMcc);
   3435   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
   3436   SDLoc dl(Op);
   3437   // We use 0 and 1 as false and true values.
   3438   SDValue TVal = DAG.getConstant(1, dl, MVT::i32);
   3439   SDValue FVal = DAG.getConstant(0, dl, MVT::i32);
   3440   EVT VT = Op.getValueType();
   3441 
   3442   SDValue Overflow = DAG.getNode(ARMISD::CMOV, dl, VT, TVal, FVal,
   3443                                  ARMcc, CCR, OverflowCmp);
   3444 
   3445   SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32);
   3446   return DAG.getNode(ISD::MERGE_VALUES, dl, VTs, Value, Overflow);
   3447 }
   3448 
   3449 
   3450 SDValue ARMTargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
   3451   SDValue Cond = Op.getOperand(0);
   3452   SDValue SelectTrue = Op.getOperand(1);
   3453   SDValue SelectFalse = Op.getOperand(2);
   3454   SDLoc dl(Op);
   3455   unsigned Opc = Cond.getOpcode();
   3456 
   3457   if (Cond.getResNo() == 1 &&
   3458       (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO ||
   3459        Opc == ISD::USUBO)) {
   3460     if (!DAG.getTargetLoweringInfo().isTypeLegal(Cond->getValueType(0)))
   3461       return SDValue();
   3462 
   3463     SDValue Value, OverflowCmp;
   3464     SDValue ARMcc;
   3465     std::tie(Value, OverflowCmp) = getARMXALUOOp(Cond, DAG, ARMcc);
   3466     SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
   3467     EVT VT = Op.getValueType();
   3468 
   3469     return getCMOV(dl, VT, SelectTrue, SelectFalse, ARMcc, CCR,
   3470                    OverflowCmp, DAG);
   3471   }
   3472 
   3473   // Convert:
   3474   //
   3475   //   (select (cmov 1, 0, cond), t, f) -> (cmov t, f, cond)
   3476   //   (select (cmov 0, 1, cond), t, f) -> (cmov f, t, cond)
   3477   //
   3478   if (Cond.getOpcode() == ARMISD::CMOV && Cond.hasOneUse()) {
   3479     const ConstantSDNode *CMOVTrue =
   3480       dyn_cast<ConstantSDNode>(Cond.getOperand(0));
   3481     const ConstantSDNode *CMOVFalse =
   3482       dyn_cast<ConstantSDNode>(Cond.getOperand(1));
   3483 
   3484     if (CMOVTrue && CMOVFalse) {
   3485       unsigned CMOVTrueVal = CMOVTrue->getZExtValue();
   3486       unsigned CMOVFalseVal = CMOVFalse->getZExtValue();
   3487 
   3488       SDValue True;
   3489       SDValue False;
   3490       if (CMOVTrueVal == 1 && CMOVFalseVal == 0) {
   3491         True = SelectTrue;
   3492         False = SelectFalse;
   3493       } else if (CMOVTrueVal == 0 && CMOVFalseVal == 1) {
   3494         True = SelectFalse;
   3495         False = SelectTrue;
   3496       }
   3497 
   3498       if (True.getNode() && False.getNode()) {
   3499         EVT VT = Op.getValueType();
   3500         SDValue ARMcc = Cond.getOperand(2);
   3501         SDValue CCR = Cond.getOperand(3);
   3502         SDValue Cmp = duplicateCmp(Cond.getOperand(4), DAG);
   3503         assert(True.getValueType() == VT);
   3504         return getCMOV(dl, VT, True, False, ARMcc, CCR, Cmp, DAG);
   3505       }
   3506     }
   3507   }
   3508 
   3509   // ARM's BooleanContents value is UndefinedBooleanContent. Mask out the
   3510   // undefined bits before doing a full-word comparison with zero.
   3511   Cond = DAG.getNode(ISD::AND, dl, Cond.getValueType(), Cond,
   3512                      DAG.getConstant(1, dl, Cond.getValueType()));
   3513 
   3514   return DAG.getSelectCC(dl, Cond,
   3515                          DAG.getConstant(0, dl, Cond.getValueType()),
   3516                          SelectTrue, SelectFalse, ISD::SETNE);
   3517 }
   3518 
   3519 static void checkVSELConstraints(ISD::CondCode CC, ARMCC::CondCodes &CondCode,
   3520                                  bool &swpCmpOps, bool &swpVselOps) {
   3521   // Start by selecting the GE condition code for opcodes that return true for
   3522   // 'equality'
   3523   if (CC == ISD::SETUGE || CC == ISD::SETOGE || CC == ISD::SETOLE ||
   3524       CC == ISD::SETULE)
   3525     CondCode = ARMCC::GE;
   3526 
   3527   // and GT for opcodes that return false for 'equality'.
   3528   else if (CC == ISD::SETUGT || CC == ISD::SETOGT || CC == ISD::SETOLT ||
   3529            CC == ISD::SETULT)
   3530     CondCode = ARMCC::GT;
   3531 
   3532   // Since we are constrained to GE/GT, if the opcode contains 'less', we need
   3533   // to swap the compare operands.
   3534   if (CC == ISD::SETOLE || CC == ISD::SETULE || CC == ISD::SETOLT ||
   3535       CC == ISD::SETULT)
   3536     swpCmpOps = true;
   3537 
   3538   // Both GT and GE are ordered comparisons, and return false for 'unordered'.
   3539   // If we have an unordered opcode, we need to swap the operands to the VSEL
   3540   // instruction (effectively negating the condition).
   3541   //
   3542   // This also has the effect of swapping which one of 'less' or 'greater'
   3543   // returns true, so we also swap the compare operands. It also switches
   3544   // whether we return true for 'equality', so we compensate by picking the
   3545   // opposite condition code to our original choice.
   3546   if (CC == ISD::SETULE || CC == ISD::SETULT || CC == ISD::SETUGE ||
   3547       CC == ISD::SETUGT) {
   3548     swpCmpOps = !swpCmpOps;
   3549     swpVselOps = !swpVselOps;
   3550     CondCode = CondCode == ARMCC::GT ? ARMCC::GE : ARMCC::GT;
   3551   }
   3552 
   3553   // 'ordered' is 'anything but unordered', so use the VS condition code and
   3554   // swap the VSEL operands.
   3555   if (CC == ISD::SETO) {
   3556     CondCode = ARMCC::VS;
   3557     swpVselOps = true;
   3558   }
   3559 
   3560   // 'unordered or not equal' is 'anything but equal', so use the EQ condition
   3561   // code and swap the VSEL operands.
   3562   if (CC == ISD::SETUNE) {
   3563     CondCode = ARMCC::EQ;
   3564     swpVselOps = true;
   3565   }
   3566 }
   3567 
   3568 SDValue ARMTargetLowering::getCMOV(SDLoc dl, EVT VT, SDValue FalseVal,
   3569                                    SDValue TrueVal, SDValue ARMcc, SDValue CCR,
   3570                                    SDValue Cmp, SelectionDAG &DAG) const {
   3571   if (Subtarget->isFPOnlySP() && VT == MVT::f64) {
   3572     FalseVal = DAG.getNode(ARMISD::VMOVRRD, dl,
   3573                            DAG.getVTList(MVT::i32, MVT::i32), FalseVal);
   3574     TrueVal = DAG.getNode(ARMISD::VMOVRRD, dl,
   3575                           DAG.getVTList(MVT::i32, MVT::i32), TrueVal);
   3576 
   3577     SDValue TrueLow = TrueVal.getValue(0);
   3578     SDValue TrueHigh = TrueVal.getValue(1);
   3579     SDValue FalseLow = FalseVal.getValue(0);
   3580     SDValue FalseHigh = FalseVal.getValue(1);
   3581 
   3582     SDValue Low = DAG.getNode(ARMISD::CMOV, dl, MVT::i32, FalseLow, TrueLow,
   3583                               ARMcc, CCR, Cmp);
   3584     SDValue High = DAG.getNode(ARMISD::CMOV, dl, MVT::i32, FalseHigh, TrueHigh,
   3585                                ARMcc, CCR, duplicateCmp(Cmp, DAG));
   3586 
   3587     return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Low, High);
   3588   } else {
   3589     return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc, CCR,
   3590                        Cmp);
   3591   }
   3592 }
   3593 
   3594 SDValue ARMTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
   3595   EVT VT = Op.getValueType();
   3596   SDValue LHS = Op.getOperand(0);
   3597   SDValue RHS = Op.getOperand(1);
   3598   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
   3599   SDValue TrueVal = Op.getOperand(2);
   3600   SDValue FalseVal = Op.getOperand(3);
   3601   SDLoc dl(Op);
   3602 
   3603   if (Subtarget->isFPOnlySP() && LHS.getValueType() == MVT::f64) {
   3604     DAG.getTargetLoweringInfo().softenSetCCOperands(DAG, MVT::f64, LHS, RHS, CC,
   3605                                                     dl);
   3606 
   3607     // If softenSetCCOperands only returned one value, we should compare it to
   3608     // zero.
   3609     if (!RHS.getNode()) {
   3610       RHS = DAG.getConstant(0, dl, LHS.getValueType());
   3611       CC = ISD::SETNE;
   3612     }
   3613   }
   3614 
   3615   if (LHS.getValueType() == MVT::i32) {
   3616     // Try to generate VSEL on ARMv8.
   3617     // The VSEL instruction can't use all the usual ARM condition
   3618     // codes: it only has two bits to select the condition code, so it's
   3619     // constrained to use only GE, GT, VS and EQ.
   3620     //
   3621     // To implement all the various ISD::SETXXX opcodes, we sometimes need to
   3622     // swap the operands of the previous compare instruction (effectively
   3623     // inverting the compare condition, swapping 'less' and 'greater') and
   3624     // sometimes need to swap the operands to the VSEL (which inverts the
   3625     // condition in the sense of firing whenever the previous condition didn't)
   3626     if (Subtarget->hasFPARMv8() && (TrueVal.getValueType() == MVT::f32 ||
   3627                                     TrueVal.getValueType() == MVT::f64)) {
   3628       ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
   3629       if (CondCode == ARMCC::LT || CondCode == ARMCC::LE ||
   3630           CondCode == ARMCC::VC || CondCode == ARMCC::NE) {
   3631         CC = ISD::getSetCCInverse(CC, true);
   3632         std::swap(TrueVal, FalseVal);
   3633       }
   3634     }
   3635 
   3636     SDValue ARMcc;
   3637     SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
   3638     SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
   3639     return getCMOV(dl, VT, FalseVal, TrueVal, ARMcc, CCR, Cmp, DAG);
   3640   }
   3641 
   3642   ARMCC::CondCodes CondCode, CondCode2;
   3643   FPCCToARMCC(CC, CondCode, CondCode2);
   3644 
   3645   // Try to generate VMAXNM/VMINNM on ARMv8.
   3646   if (Subtarget->hasFPARMv8() && (TrueVal.getValueType() == MVT::f32 ||
   3647                                   TrueVal.getValueType() == MVT::f64)) {
   3648     bool swpCmpOps = false;
   3649     bool swpVselOps = false;
   3650     checkVSELConstraints(CC, CondCode, swpCmpOps, swpVselOps);
   3651 
   3652     if (CondCode == ARMCC::GT || CondCode == ARMCC::GE ||
   3653         CondCode == ARMCC::VS || CondCode == ARMCC::EQ) {
   3654       if (swpCmpOps)
   3655         std::swap(LHS, RHS);
   3656       if (swpVselOps)
   3657         std::swap(TrueVal, FalseVal);
   3658     }
   3659   }
   3660 
   3661   SDValue ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
   3662   SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
   3663   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
   3664   SDValue Result = getCMOV(dl, VT, FalseVal, TrueVal, ARMcc, CCR, Cmp, DAG);
   3665   if (CondCode2 != ARMCC::AL) {
   3666     SDValue ARMcc2 = DAG.getConstant(CondCode2, dl, MVT::i32);
   3667     // FIXME: Needs another CMP because flag can have but one use.
   3668     SDValue Cmp2 = getVFPCmp(LHS, RHS, DAG, dl);
   3669     Result = getCMOV(dl, VT, Result, TrueVal, ARMcc2, CCR, Cmp2, DAG);
   3670   }
   3671   return Result;
   3672 }
   3673 
   3674 /// canChangeToInt - Given the fp compare operand, return true if it is suitable
   3675 /// to morph to an integer compare sequence.
   3676 static bool canChangeToInt(SDValue Op, bool &SeenZero,
   3677                            const ARMSubtarget *Subtarget) {
   3678   SDNode *N = Op.getNode();
   3679   if (!N->hasOneUse())
   3680     // Otherwise it requires moving the value from fp to integer registers.
   3681     return false;
   3682   if (!N->getNumValues())
   3683     return false;
   3684   EVT VT = Op.getValueType();
   3685   if (VT != MVT::f32 && !Subtarget->isFPBrccSlow())
   3686     // f32 case is generally profitable. f64 case only makes sense when vcmpe +
   3687     // vmrs are very slow, e.g. cortex-a8.
   3688     return false;
   3689 
   3690   if (isFloatingPointZero(Op)) {
   3691     SeenZero = true;
   3692     return true;
   3693   }
   3694   return ISD::isNormalLoad(N);
   3695 }
   3696 
   3697 static SDValue bitcastf32Toi32(SDValue Op, SelectionDAG &DAG) {
   3698   if (isFloatingPointZero(Op))
   3699     return DAG.getConstant(0, SDLoc(Op), MVT::i32);
   3700 
   3701   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op))
   3702     return DAG.getLoad(MVT::i32, SDLoc(Op),
   3703                        Ld->getChain(), Ld->getBasePtr(), Ld->getPointerInfo(),
   3704                        Ld->isVolatile(), Ld->isNonTemporal(),
   3705                        Ld->isInvariant(), Ld->getAlignment());
   3706 
   3707   llvm_unreachable("Unknown VFP cmp argument!");
   3708 }
   3709 
   3710 static void expandf64Toi32(SDValue Op, SelectionDAG &DAG,
   3711                            SDValue &RetVal1, SDValue &RetVal2) {
   3712   SDLoc dl(Op);
   3713 
   3714   if (isFloatingPointZero(Op)) {
   3715     RetVal1 = DAG.getConstant(0, dl, MVT::i32);
   3716     RetVal2 = DAG.getConstant(0, dl, MVT::i32);
   3717     return;
   3718   }
   3719 
   3720   if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op)) {
   3721     SDValue Ptr = Ld->getBasePtr();
   3722     RetVal1 = DAG.getLoad(MVT::i32, dl,
   3723                           Ld->getChain(), Ptr,
   3724                           Ld->getPointerInfo(),
   3725                           Ld->isVolatile(), Ld->isNonTemporal(),
   3726                           Ld->isInvariant(), Ld->getAlignment());
   3727 
   3728     EVT PtrType = Ptr.getValueType();
   3729     unsigned NewAlign = MinAlign(Ld->getAlignment(), 4);
   3730     SDValue NewPtr = DAG.getNode(ISD::ADD, dl,
   3731                                  PtrType, Ptr, DAG.getConstant(4, dl, PtrType));
   3732     RetVal2 = DAG.getLoad(MVT::i32, dl,
   3733                           Ld->getChain(), NewPtr,
   3734                           Ld->getPointerInfo().getWithOffset(4),
   3735                           Ld->isVolatile(), Ld->isNonTemporal(),
   3736                           Ld->isInvariant(), NewAlign);
   3737     return;
   3738   }
   3739 
   3740   llvm_unreachable("Unknown VFP cmp argument!");
   3741 }
   3742 
   3743 /// OptimizeVFPBrcond - With -enable-unsafe-fp-math, it's legal to optimize some
   3744 /// f32 and even f64 comparisons to integer ones.
   3745 SDValue
   3746 ARMTargetLowering::OptimizeVFPBrcond(SDValue Op, SelectionDAG &DAG) const {
   3747   SDValue Chain = Op.getOperand(0);
   3748   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
   3749   SDValue LHS = Op.getOperand(2);
   3750   SDValue RHS = Op.getOperand(3);
   3751   SDValue Dest = Op.getOperand(4);
   3752   SDLoc dl(Op);
   3753 
   3754   bool LHSSeenZero = false;
   3755   bool LHSOk = canChangeToInt(LHS, LHSSeenZero, Subtarget);
   3756   bool RHSSeenZero = false;
   3757   bool RHSOk = canChangeToInt(RHS, RHSSeenZero, Subtarget);
   3758   if (LHSOk && RHSOk && (LHSSeenZero || RHSSeenZero)) {
   3759     // If unsafe fp math optimization is enabled and there are no other uses of
   3760     // the CMP operands, and the condition code is EQ or NE, we can optimize it
   3761     // to an integer comparison.
   3762     if (CC == ISD::SETOEQ)
   3763       CC = ISD::SETEQ;
   3764     else if (CC == ISD::SETUNE)
   3765       CC = ISD::SETNE;
   3766 
   3767     SDValue Mask = DAG.getConstant(0x7fffffff, dl, MVT::i32);
   3768     SDValue ARMcc;
   3769     if (LHS.getValueType() == MVT::f32) {
   3770       LHS = DAG.getNode(ISD::AND, dl, MVT::i32,
   3771                         bitcastf32Toi32(LHS, DAG), Mask);
   3772       RHS = DAG.getNode(ISD::AND, dl, MVT::i32,
   3773                         bitcastf32Toi32(RHS, DAG), Mask);
   3774       SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
   3775       SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
   3776       return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
   3777                          Chain, Dest, ARMcc, CCR, Cmp);
   3778     }
   3779 
   3780     SDValue LHS1, LHS2;
   3781     SDValue RHS1, RHS2;
   3782     expandf64Toi32(LHS, DAG, LHS1, LHS2);
   3783     expandf64Toi32(RHS, DAG, RHS1, RHS2);
   3784     LHS2 = DAG.getNode(ISD::AND, dl, MVT::i32, LHS2, Mask);
   3785     RHS2 = DAG.getNode(ISD::AND, dl, MVT::i32, RHS2, Mask);
   3786     ARMCC::CondCodes CondCode = IntCCToARMCC(CC);
   3787     ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
   3788     SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
   3789     SDValue Ops[] = { Chain, ARMcc, LHS1, LHS2, RHS1, RHS2, Dest };
   3790     return DAG.getNode(ARMISD::BCC_i64, dl, VTList, Ops);
   3791   }
   3792 
   3793   return SDValue();
   3794 }
   3795 
   3796 SDValue ARMTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const {
   3797   SDValue Chain = Op.getOperand(0);
   3798   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get();
   3799   SDValue LHS = Op.getOperand(2);
   3800   SDValue RHS = Op.getOperand(3);
   3801   SDValue Dest = Op.getOperand(4);
   3802   SDLoc dl(Op);
   3803 
   3804   if (Subtarget->isFPOnlySP() && LHS.getValueType() == MVT::f64) {
   3805     DAG.getTargetLoweringInfo().softenSetCCOperands(DAG, MVT::f64, LHS, RHS, CC,
   3806                                                     dl);
   3807 
   3808     // If softenSetCCOperands only returned one value, we should compare it to
   3809     // zero.
   3810     if (!RHS.getNode()) {
   3811       RHS = DAG.getConstant(0, dl, LHS.getValueType());
   3812       CC = ISD::SETNE;
   3813     }
   3814   }
   3815 
   3816   if (LHS.getValueType() == MVT::i32) {
   3817     SDValue ARMcc;
   3818     SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl);
   3819     SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
   3820     return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other,
   3821                        Chain, Dest, ARMcc, CCR, Cmp);
   3822   }
   3823 
   3824   assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64);
   3825 
   3826   if (getTargetMachine().Options.UnsafeFPMath &&
   3827       (CC == ISD::SETEQ || CC == ISD::SETOEQ ||
   3828        CC == ISD::SETNE || CC == ISD::SETUNE)) {
   3829     SDValue Result = OptimizeVFPBrcond(Op, DAG);
   3830     if (Result.getNode())
   3831       return Result;
   3832   }
   3833 
   3834   ARMCC::CondCodes CondCode, CondCode2;
   3835   FPCCToARMCC(CC, CondCode, CondCode2);
   3836 
   3837   SDValue ARMcc = DAG.getConstant(CondCode, dl, MVT::i32);
   3838   SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl);
   3839   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
   3840   SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue);
   3841   SDValue Ops[] = { Chain, Dest, ARMcc, CCR, Cmp };
   3842   SDValue Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops);
   3843   if (CondCode2 != ARMCC::AL) {
   3844     ARMcc = DAG.getConstant(CondCode2, dl, MVT::i32);
   3845     SDValue Ops[] = { Res, Dest, ARMcc, CCR, Res.getValue(1) };
   3846     Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops);
   3847   }
   3848   return Res;
   3849 }
   3850 
   3851 SDValue ARMTargetLowering::LowerBR_JT(SDValue Op, SelectionDAG &DAG) const {
   3852   SDValue Chain = Op.getOperand(0);
   3853   SDValue Table = Op.getOperand(1);
   3854   SDValue Index = Op.getOperand(2);
   3855   SDLoc dl(Op);
   3856 
   3857   EVT PTy = getPointerTy(DAG.getDataLayout());
   3858   JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
   3859   SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PTy);
   3860   Table = DAG.getNode(ARMISD::WrapperJT, dl, MVT::i32, JTI);
   3861   Index = DAG.getNode(ISD::MUL, dl, PTy, Index, DAG.getConstant(4, dl, PTy));
   3862   SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table);
   3863   if (Subtarget->isThumb2()) {
   3864     // Thumb2 uses a two-level jump. That is, it jumps into the jump table
   3865     // which does another jump to the destination. This also makes it easier
   3866     // to translate it to TBB / TBH later.
   3867     // FIXME: This might not work if the function is extremely large.
   3868     return DAG.getNode(ARMISD::BR2_JT, dl, MVT::Other, Chain,
   3869                        Addr, Op.getOperand(2), JTI);
   3870   }
   3871   if (getTargetMachine().getRelocationModel() == Reloc::PIC_) {
   3872     Addr =
   3873         DAG.getLoad((EVT)MVT::i32, dl, Chain, Addr,
   3874                     MachinePointerInfo::getJumpTable(DAG.getMachineFunction()),
   3875                     false, false, false, 0);
   3876     Chain = Addr.getValue(1);
   3877     Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, Table);
   3878     return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI);
   3879   } else {
   3880     Addr =
   3881         DAG.getLoad(PTy, dl, Chain, Addr,
   3882                     MachinePointerInfo::getJumpTable(DAG.getMachineFunction()),
   3883                     false, false, false, 0);
   3884     Chain = Addr.getValue(1);
   3885     return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI);
   3886   }
   3887 }
   3888 
   3889 static SDValue LowerVectorFP_TO_INT(SDValue Op, SelectionDAG &DAG) {
   3890   EVT VT = Op.getValueType();
   3891   SDLoc dl(Op);
   3892 
   3893   if (Op.getValueType().getVectorElementType() == MVT::i32) {
   3894     if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::f32)
   3895       return Op;
   3896     return DAG.UnrollVectorOp(Op.getNode());
   3897   }
   3898 
   3899   assert(Op.getOperand(0).getValueType() == MVT::v4f32 &&
   3900          "Invalid type for custom lowering!");
   3901   if (VT != MVT::v4i16)
   3902     return DAG.UnrollVectorOp(Op.getNode());
   3903 
   3904   Op = DAG.getNode(Op.getOpcode(), dl, MVT::v4i32, Op.getOperand(0));
   3905   return DAG.getNode(ISD::TRUNCATE, dl, VT, Op);
   3906 }
   3907 
   3908 SDValue ARMTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) const {
   3909   EVT VT = Op.getValueType();
   3910   if (VT.isVector())
   3911     return LowerVectorFP_TO_INT(Op, DAG);
   3912   if (Subtarget->isFPOnlySP() && Op.getOperand(0).getValueType() == MVT::f64) {
   3913     RTLIB::Libcall LC;
   3914     if (Op.getOpcode() == ISD::FP_TO_SINT)
   3915       LC = RTLIB::getFPTOSINT(Op.getOperand(0).getValueType(),
   3916                               Op.getValueType());
   3917     else
   3918       LC = RTLIB::getFPTOUINT(Op.getOperand(0).getValueType(),
   3919                               Op.getValueType());
   3920     return makeLibCall(DAG, LC, Op.getValueType(), Op.getOperand(0),
   3921                        /*isSigned*/ false, SDLoc(Op)).first;
   3922   }
   3923 
   3924   return Op;
   3925 }
   3926 
   3927 static SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG) {
   3928   EVT VT = Op.getValueType();
   3929   SDLoc dl(Op);
   3930 
   3931   if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i32) {
   3932     if (VT.getVectorElementType() == MVT::f32)
   3933       return Op;
   3934     return DAG.UnrollVectorOp(Op.getNode());
   3935   }
   3936 
   3937   assert(Op.getOperand(0).getValueType() == MVT::v4i16 &&
   3938          "Invalid type for custom lowering!");
   3939   if (VT != MVT::v4f32)
   3940     return DAG.UnrollVectorOp(Op.getNode());
   3941 
   3942   unsigned CastOpc;
   3943   unsigned Opc;
   3944   switch (Op.getOpcode()) {
   3945   default: llvm_unreachable("Invalid opcode!");
   3946   case ISD::SINT_TO_FP:
   3947     CastOpc = ISD::SIGN_EXTEND;
   3948     Opc = ISD::SINT_TO_FP;
   3949     break;
   3950   case ISD::UINT_TO_FP:
   3951     CastOpc = ISD::ZERO_EXTEND;
   3952     Opc = ISD::UINT_TO_FP;
   3953     break;
   3954   }
   3955 
   3956   Op = DAG.getNode(CastOpc, dl, MVT::v4i32, Op.getOperand(0));
   3957   return DAG.getNode(Opc, dl, VT, Op);
   3958 }
   3959 
   3960 SDValue ARMTargetLowering::LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) const {
   3961   EVT VT = Op.getValueType();
   3962   if (VT.isVector())
   3963     return LowerVectorINT_TO_FP(Op, DAG);
   3964   if (Subtarget->isFPOnlySP() && Op.getValueType() == MVT::f64) {
   3965     RTLIB::Libcall LC;
   3966     if (Op.getOpcode() == ISD::SINT_TO_FP)
   3967       LC = RTLIB::getSINTTOFP(Op.getOperand(0).getValueType(),
   3968                               Op.getValueType());
   3969     else
   3970       LC = RTLIB::getUINTTOFP(Op.getOperand(0).getValueType(),
   3971                               Op.getValueType());
   3972     return makeLibCall(DAG, LC, Op.getValueType(), Op.getOperand(0),
   3973                        /*isSigned*/ false, SDLoc(Op)).first;
   3974   }
   3975 
   3976   return Op;
   3977 }
   3978 
   3979 SDValue ARMTargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const {
   3980   // Implement fcopysign with a fabs and a conditional fneg.
   3981   SDValue Tmp0 = Op.getOperand(0);
   3982   SDValue Tmp1 = Op.getOperand(1);
   3983   SDLoc dl(Op);
   3984   EVT VT = Op.getValueType();
   3985   EVT SrcVT = Tmp1.getValueType();
   3986   bool InGPR = Tmp0.getOpcode() == ISD::BITCAST ||
   3987     Tmp0.getOpcode() == ARMISD::VMOVDRR;
   3988   bool UseNEON = !InGPR && Subtarget->hasNEON();
   3989 
   3990   if (UseNEON) {
   3991     // Use VBSL to copy the sign bit.
   3992     unsigned EncodedVal = ARM_AM::createNEONModImm(0x6, 0x80);
   3993     SDValue Mask = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v2i32,
   3994                                DAG.getTargetConstant(EncodedVal, dl, MVT::i32));
   3995     EVT OpVT = (VT == MVT::f32) ? MVT::v2i32 : MVT::v1i64;
   3996     if (VT == MVT::f64)
   3997       Mask = DAG.getNode(ARMISD::VSHL, dl, OpVT,
   3998                          DAG.getNode(ISD::BITCAST, dl, OpVT, Mask),
   3999                          DAG.getConstant(32, dl, MVT::i32));
   4000     else /*if (VT == MVT::f32)*/
   4001       Tmp0 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp0);
   4002     if (SrcVT == MVT::f32) {
   4003       Tmp1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp1);
   4004       if (VT == MVT::f64)
   4005         Tmp1 = DAG.getNode(ARMISD::VSHL, dl, OpVT,
   4006                            DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1),
   4007                            DAG.getConstant(32, dl, MVT::i32));
   4008     } else if (VT == MVT::f32)
   4009       Tmp1 = DAG.getNode(ARMISD::VSHRu, dl, MVT::v1i64,
   4010                          DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, Tmp1),
   4011                          DAG.getConstant(32, dl, MVT::i32));
   4012     Tmp0 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp0);
   4013     Tmp1 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1);
   4014 
   4015     SDValue AllOnes = DAG.getTargetConstant(ARM_AM::createNEONModImm(0xe, 0xff),
   4016                                             dl, MVT::i32);
   4017     AllOnes = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v8i8, AllOnes);
   4018     SDValue MaskNot = DAG.getNode(ISD::XOR, dl, OpVT, Mask,
   4019                                   DAG.getNode(ISD::BITCAST, dl, OpVT, AllOnes));
   4020 
   4021     SDValue Res = DAG.getNode(ISD::OR, dl, OpVT,
   4022                               DAG.getNode(ISD::AND, dl, OpVT, Tmp1, Mask),
   4023                               DAG.getNode(ISD::AND, dl, OpVT, Tmp0, MaskNot));
   4024     if (VT == MVT::f32) {
   4025       Res = DAG.getNode(ISD::BITCAST, dl, MVT::v2f32, Res);
   4026       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, Res,
   4027                         DAG.getConstant(0, dl, MVT::i32));
   4028     } else {
   4029       Res = DAG.getNode(ISD::BITCAST, dl, MVT::f64, Res);
   4030     }
   4031 
   4032     return Res;
   4033   }
   4034 
   4035   // Bitcast operand 1 to i32.
   4036   if (SrcVT == MVT::f64)
   4037     Tmp1 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
   4038                        Tmp1).getValue(1);
   4039   Tmp1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp1);
   4040 
   4041   // Or in the signbit with integer operations.
   4042   SDValue Mask1 = DAG.getConstant(0x80000000, dl, MVT::i32);
   4043   SDValue Mask2 = DAG.getConstant(0x7fffffff, dl, MVT::i32);
   4044   Tmp1 = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp1, Mask1);
   4045   if (VT == MVT::f32) {
   4046     Tmp0 = DAG.getNode(ISD::AND, dl, MVT::i32,
   4047                        DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp0), Mask2);
   4048     return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
   4049                        DAG.getNode(ISD::OR, dl, MVT::i32, Tmp0, Tmp1));
   4050   }
   4051 
   4052   // f64: Or the high part with signbit and then combine two parts.
   4053   Tmp0 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32),
   4054                      Tmp0);
   4055   SDValue Lo = Tmp0.getValue(0);
   4056   SDValue Hi = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp0.getValue(1), Mask2);
   4057   Hi = DAG.getNode(ISD::OR, dl, MVT::i32, Hi, Tmp1);
   4058   return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi);
   4059 }
   4060 
   4061 SDValue ARMTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const{
   4062   MachineFunction &MF = DAG.getMachineFunction();
   4063   MachineFrameInfo *MFI = MF.getFrameInfo();
   4064   MFI->setReturnAddressIsTaken(true);
   4065 
   4066   if (verifyReturnAddressArgumentIsConstant(Op, DAG))
   4067     return SDValue();
   4068 
   4069   EVT VT = Op.getValueType();
   4070   SDLoc dl(Op);
   4071   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
   4072   if (Depth) {
   4073     SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
   4074     SDValue Offset = DAG.getConstant(4, dl, MVT::i32);
   4075     return DAG.getLoad(VT, dl, DAG.getEntryNode(),
   4076                        DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset),
   4077                        MachinePointerInfo(), false, false, false, 0);
   4078   }
   4079 
   4080   // Return LR, which contains the return address. Mark it an implicit live-in.
   4081   unsigned Reg = MF.addLiveIn(ARM::LR, getRegClassFor(MVT::i32));
   4082   return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT);
   4083 }
   4084 
   4085 SDValue ARMTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
   4086   const ARMBaseRegisterInfo &ARI =
   4087     *static_cast<const ARMBaseRegisterInfo*>(RegInfo);
   4088   MachineFunction &MF = DAG.getMachineFunction();
   4089   MachineFrameInfo *MFI = MF.getFrameInfo();
   4090   MFI->setFrameAddressIsTaken(true);
   4091 
   4092   EVT VT = Op.getValueType();
   4093   SDLoc dl(Op);  // FIXME probably not meaningful
   4094   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
   4095   unsigned FrameReg = ARI.getFrameRegister(MF);
   4096   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT);
   4097   while (Depth--)
   4098     FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
   4099                             MachinePointerInfo(),
   4100                             false, false, false, 0);
   4101   return FrameAddr;
   4102 }
   4103 
   4104 // FIXME? Maybe this could be a TableGen attribute on some registers and
   4105 // this table could be generated automatically from RegInfo.
   4106 unsigned ARMTargetLowering::getRegisterByName(const char* RegName, EVT VT,
   4107                                               SelectionDAG &DAG) const {
   4108   unsigned Reg = StringSwitch<unsigned>(RegName)
   4109                        .Case("sp", ARM::SP)
   4110                        .Default(0);
   4111   if (Reg)
   4112     return Reg;
   4113   report_fatal_error(Twine("Invalid register name \""
   4114                               + StringRef(RegName)  + "\"."));
   4115 }
   4116 
   4117 // Result is 64 bit value so split into two 32 bit values and return as a
   4118 // pair of values.
   4119 static void ExpandREAD_REGISTER(SDNode *N, SmallVectorImpl<SDValue> &Results,
   4120                                 SelectionDAG &DAG) {
   4121   SDLoc DL(N);
   4122 
   4123   // This function is only supposed to be called for i64 type destination.
   4124   assert(N->getValueType(0) == MVT::i64
   4125           && "ExpandREAD_REGISTER called for non-i64 type result.");
   4126 
   4127   SDValue Read = DAG.getNode(ISD::READ_REGISTER, DL,
   4128                              DAG.getVTList(MVT::i32, MVT::i32, MVT::Other),
   4129                              N->getOperand(0),
   4130                              N->getOperand(1));
   4131 
   4132   Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Read.getValue(0),
   4133                     Read.getValue(1)));
   4134   Results.push_back(Read.getOperand(0));
   4135 }
   4136 
   4137 /// \p BC is a bitcast that is about to be turned into a VMOVDRR.
   4138 /// When \p DstVT, the destination type of \p BC, is on the vector
   4139 /// register bank and the source of bitcast, \p Op, operates on the same bank,
   4140 /// it might be possible to combine them, such that everything stays on the
   4141 /// vector register bank.
   4142 /// \p return The node that would replace \p BT, if the combine
   4143 /// is possible.
   4144 static SDValue CombineVMOVDRRCandidateWithVecOp(const SDNode *BC,
   4145                                                 SelectionDAG &DAG) {
   4146   SDValue Op = BC->getOperand(0);
   4147   EVT DstVT = BC->getValueType(0);
   4148 
   4149   // The only vector instruction that can produce a scalar (remember,
   4150   // since the bitcast was about to be turned into VMOVDRR, the source
   4151   // type is i64) from a vector is EXTRACT_VECTOR_ELT.
   4152   // Moreover, we can do this combine only if there is one use.
   4153   // Finally, if the destination type is not a vector, there is not
   4154   // much point on forcing everything on the vector bank.
   4155   if (!DstVT.isVector() || Op.getOpcode() != ISD::EXTRACT_VECTOR_ELT ||
   4156       !Op.hasOneUse())
   4157     return SDValue();
   4158 
   4159   // If the index is not constant, we will introduce an additional
   4160   // multiply that will stick.
   4161   // Give up in that case.
   4162   ConstantSDNode *Index = dyn_cast<ConstantSDNode>(Op.getOperand(1));
   4163   if (!Index)
   4164     return SDValue();
   4165   unsigned DstNumElt = DstVT.getVectorNumElements();
   4166 
   4167   // Compute the new index.
   4168   const APInt &APIntIndex = Index->getAPIntValue();
   4169   APInt NewIndex(APIntIndex.getBitWidth(), DstNumElt);
   4170   NewIndex *= APIntIndex;
   4171   // Check if the new constant index fits into i32.
   4172   if (NewIndex.getBitWidth() > 32)
   4173     return SDValue();
   4174 
   4175   // vMTy bitcast(i64 extractelt vNi64 src, i32 index) ->
   4176   // vMTy extractsubvector vNxMTy (bitcast vNi64 src), i32 index*M)
   4177   SDLoc dl(Op);
   4178   SDValue ExtractSrc = Op.getOperand(0);
   4179   EVT VecVT = EVT::getVectorVT(
   4180       *DAG.getContext(), DstVT.getScalarType(),
   4181       ExtractSrc.getValueType().getVectorNumElements() * DstNumElt);
   4182   SDValue BitCast = DAG.getNode(ISD::BITCAST, dl, VecVT, ExtractSrc);
   4183   return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DstVT, BitCast,
   4184                      DAG.getConstant(NewIndex.getZExtValue(), dl, MVT::i32));
   4185 }
   4186 
   4187 /// ExpandBITCAST - If the target supports VFP, this function is called to
   4188 /// expand a bit convert where either the source or destination type is i64 to
   4189 /// use a VMOVDRR or VMOVRRD node.  This should not be done when the non-i64
   4190 /// operand type is illegal (e.g., v2f32 for a target that doesn't support
   4191 /// vectors), since the legalizer won't know what to do with that.
   4192 static SDValue ExpandBITCAST(SDNode *N, SelectionDAG &DAG) {
   4193   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   4194   SDLoc dl(N);
   4195   SDValue Op = N->getOperand(0);
   4196 
   4197   // This function is only supposed to be called for i64 types, either as the
   4198   // source or destination of the bit convert.
   4199   EVT SrcVT = Op.getValueType();
   4200   EVT DstVT = N->getValueType(0);
   4201   assert((SrcVT == MVT::i64 || DstVT == MVT::i64) &&
   4202          "ExpandBITCAST called for non-i64 type");
   4203 
   4204   // Turn i64->f64 into VMOVDRR.
   4205   if (SrcVT == MVT::i64 && TLI.isTypeLegal(DstVT)) {
   4206     // Do not force values to GPRs (this is what VMOVDRR does for the inputs)
   4207     // if we can combine the bitcast with its source.
   4208     if (SDValue Val = CombineVMOVDRRCandidateWithVecOp(N, DAG))
   4209       return Val;
   4210 
   4211     SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
   4212                              DAG.getConstant(0, dl, MVT::i32));
   4213     SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op,
   4214                              DAG.getConstant(1, dl, MVT::i32));
   4215     return DAG.getNode(ISD::BITCAST, dl, DstVT,
   4216                        DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi));
   4217   }
   4218 
   4219   // Turn f64->i64 into VMOVRRD.
   4220   if (DstVT == MVT::i64 && TLI.isTypeLegal(SrcVT)) {
   4221     SDValue Cvt;
   4222     if (DAG.getDataLayout().isBigEndian() && SrcVT.isVector() &&
   4223         SrcVT.getVectorNumElements() > 1)
   4224       Cvt = DAG.getNode(ARMISD::VMOVRRD, dl,
   4225                         DAG.getVTList(MVT::i32, MVT::i32),
   4226                         DAG.getNode(ARMISD::VREV64, dl, SrcVT, Op));
   4227     else
   4228       Cvt = DAG.getNode(ARMISD::VMOVRRD, dl,
   4229                         DAG.getVTList(MVT::i32, MVT::i32), Op);
   4230     // Merge the pieces into a single i64 value.
   4231     return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Cvt, Cvt.getValue(1));
   4232   }
   4233 
   4234   return SDValue();
   4235 }
   4236 
   4237 /// getZeroVector - Returns a vector of specified type with all zero elements.
   4238 /// Zero vectors are used to represent vector negation and in those cases
   4239 /// will be implemented with the NEON VNEG instruction.  However, VNEG does
   4240 /// not support i64 elements, so sometimes the zero vectors will need to be
   4241 /// explicitly constructed.  Regardless, use a canonical VMOV to create the
   4242 /// zero vector.
   4243 static SDValue getZeroVector(EVT VT, SelectionDAG &DAG, SDLoc dl) {
   4244   assert(VT.isVector() && "Expected a vector type");
   4245   // The canonical modified immediate encoding of a zero vector is....0!
   4246   SDValue EncodedVal = DAG.getTargetConstant(0, dl, MVT::i32);
   4247   EVT VmovVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
   4248   SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, EncodedVal);
   4249   return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
   4250 }
   4251 
   4252 /// LowerShiftRightParts - Lower SRA_PARTS, which returns two
   4253 /// i32 values and take a 2 x i32 value to shift plus a shift amount.
   4254 SDValue ARMTargetLowering::LowerShiftRightParts(SDValue Op,
   4255                                                 SelectionDAG &DAG) const {
   4256   assert(Op.getNumOperands() == 3 && "Not a double-shift!");
   4257   EVT VT = Op.getValueType();
   4258   unsigned VTBits = VT.getSizeInBits();
   4259   SDLoc dl(Op);
   4260   SDValue ShOpLo = Op.getOperand(0);
   4261   SDValue ShOpHi = Op.getOperand(1);
   4262   SDValue ShAmt  = Op.getOperand(2);
   4263   SDValue ARMcc;
   4264   unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
   4265 
   4266   assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS);
   4267 
   4268   SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
   4269                                  DAG.getConstant(VTBits, dl, MVT::i32), ShAmt);
   4270   SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
   4271   SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
   4272                                    DAG.getConstant(VTBits, dl, MVT::i32));
   4273   SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
   4274   SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
   4275   SDValue TrueVal = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
   4276 
   4277   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
   4278   SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, dl, MVT::i32),
   4279                           ISD::SETGE, ARMcc, DAG, dl);
   4280   SDValue Hi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
   4281   SDValue Lo = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc,
   4282                            CCR, Cmp);
   4283 
   4284   SDValue Ops[2] = { Lo, Hi };
   4285   return DAG.getMergeValues(Ops, dl);
   4286 }
   4287 
   4288 /// LowerShiftLeftParts - Lower SHL_PARTS, which returns two
   4289 /// i32 values and take a 2 x i32 value to shift plus a shift amount.
   4290 SDValue ARMTargetLowering::LowerShiftLeftParts(SDValue Op,
   4291                                                SelectionDAG &DAG) const {
   4292   assert(Op.getNumOperands() == 3 && "Not a double-shift!");
   4293   EVT VT = Op.getValueType();
   4294   unsigned VTBits = VT.getSizeInBits();
   4295   SDLoc dl(Op);
   4296   SDValue ShOpLo = Op.getOperand(0);
   4297   SDValue ShOpHi = Op.getOperand(1);
   4298   SDValue ShAmt  = Op.getOperand(2);
   4299   SDValue ARMcc;
   4300 
   4301   assert(Op.getOpcode() == ISD::SHL_PARTS);
   4302   SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
   4303                                  DAG.getConstant(VTBits, dl, MVT::i32), ShAmt);
   4304   SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
   4305   SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
   4306                                    DAG.getConstant(VTBits, dl, MVT::i32));
   4307   SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
   4308   SDValue Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
   4309 
   4310   SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
   4311   SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32);
   4312   SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, dl, MVT::i32),
   4313                           ISD::SETGE, ARMcc, DAG, dl);
   4314   SDValue Lo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
   4315   SDValue Hi = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, Tmp3, ARMcc,
   4316                            CCR, Cmp);
   4317 
   4318   SDValue Ops[2] = { Lo, Hi };
   4319   return DAG.getMergeValues(Ops, dl);
   4320 }
   4321 
   4322 SDValue ARMTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
   4323                                             SelectionDAG &DAG) const {
   4324   // The rounding mode is in bits 23:22 of the FPSCR.
   4325   // The ARM rounding mode value to FLT_ROUNDS mapping is 0->1, 1->2, 2->3, 3->0
   4326   // The formula we use to implement this is (((FPSCR + 1 << 22) >> 22) & 3)
   4327   // so that the shift + and get folded into a bitfield extract.
   4328   SDLoc dl(Op);
   4329   SDValue FPSCR = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::i32,
   4330                               DAG.getConstant(Intrinsic::arm_get_fpscr, dl,
   4331                                               MVT::i32));
   4332   SDValue FltRounds = DAG.getNode(ISD::ADD, dl, MVT::i32, FPSCR,
   4333                                   DAG.getConstant(1U << 22, dl, MVT::i32));
   4334   SDValue RMODE = DAG.getNode(ISD::SRL, dl, MVT::i32, FltRounds,
   4335                               DAG.getConstant(22, dl, MVT::i32));
   4336   return DAG.getNode(ISD::AND, dl, MVT::i32, RMODE,
   4337                      DAG.getConstant(3, dl, MVT::i32));
   4338 }
   4339 
   4340 static SDValue LowerCTTZ(SDNode *N, SelectionDAG &DAG,
   4341                          const ARMSubtarget *ST) {
   4342   SDLoc dl(N);
   4343   EVT VT = N->getValueType(0);
   4344   if (VT.isVector()) {
   4345     assert(ST->hasNEON());
   4346 
   4347     // Compute the least significant set bit: LSB = X & -X
   4348     SDValue X = N->getOperand(0);
   4349     SDValue NX = DAG.getNode(ISD::SUB, dl, VT, getZeroVector(VT, DAG, dl), X);
   4350     SDValue LSB = DAG.getNode(ISD::AND, dl, VT, X, NX);
   4351 
   4352     EVT ElemTy = VT.getVectorElementType();
   4353 
   4354     if (ElemTy == MVT::i8) {
   4355       // Compute with: cttz(x) = ctpop(lsb - 1)
   4356       SDValue One = DAG.getNode(ARMISD::VMOVIMM, dl, VT,
   4357                                 DAG.getTargetConstant(1, dl, ElemTy));
   4358       SDValue Bits = DAG.getNode(ISD::SUB, dl, VT, LSB, One);
   4359       return DAG.getNode(ISD::CTPOP, dl, VT, Bits);
   4360     }
   4361 
   4362     if ((ElemTy == MVT::i16 || ElemTy == MVT::i32) &&
   4363         (N->getOpcode() == ISD::CTTZ_ZERO_UNDEF)) {
   4364       // Compute with: cttz(x) = (width - 1) - ctlz(lsb), if x != 0
   4365       unsigned NumBits = ElemTy.getSizeInBits();
   4366       SDValue WidthMinus1 =
   4367           DAG.getNode(ARMISD::VMOVIMM, dl, VT,
   4368                       DAG.getTargetConstant(NumBits - 1, dl, ElemTy));
   4369       SDValue CTLZ = DAG.getNode(ISD::CTLZ, dl, VT, LSB);
   4370       return DAG.getNode(ISD::SUB, dl, VT, WidthMinus1, CTLZ);
   4371     }
   4372 
   4373     // Compute with: cttz(x) = ctpop(lsb - 1)
   4374 
   4375     // Since we can only compute the number of bits in a byte with vcnt.8, we
   4376     // have to gather the result with pairwise addition (vpaddl) for i16, i32,
   4377     // and i64.
   4378 
   4379     // Compute LSB - 1.
   4380     SDValue Bits;
   4381     if (ElemTy == MVT::i64) {
   4382       // Load constant 0xffff'ffff'ffff'ffff to register.
   4383       SDValue FF = DAG.getNode(ARMISD::VMOVIMM, dl, VT,
   4384                                DAG.getTargetConstant(0x1eff, dl, MVT::i32));
   4385       Bits = DAG.getNode(ISD::ADD, dl, VT, LSB, FF);
   4386     } else {
   4387       SDValue One = DAG.getNode(ARMISD::VMOVIMM, dl, VT,
   4388                                 DAG.getTargetConstant(1, dl, ElemTy));
   4389       Bits = DAG.getNode(ISD::SUB, dl, VT, LSB, One);
   4390     }
   4391 
   4392     // Count #bits with vcnt.8.
   4393     EVT VT8Bit = VT.is64BitVector() ? MVT::v8i8 : MVT::v16i8;
   4394     SDValue BitsVT8 = DAG.getNode(ISD::BITCAST, dl, VT8Bit, Bits);
   4395     SDValue Cnt8 = DAG.getNode(ISD::CTPOP, dl, VT8Bit, BitsVT8);
   4396 
   4397     // Gather the #bits with vpaddl (pairwise add.)
   4398     EVT VT16Bit = VT.is64BitVector() ? MVT::v4i16 : MVT::v8i16;
   4399     SDValue Cnt16 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT16Bit,
   4400         DAG.getTargetConstant(Intrinsic::arm_neon_vpaddlu, dl, MVT::i32),
   4401         Cnt8);
   4402     if (ElemTy == MVT::i16)
   4403       return Cnt16;
   4404 
   4405     EVT VT32Bit = VT.is64BitVector() ? MVT::v2i32 : MVT::v4i32;
   4406     SDValue Cnt32 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT32Bit,
   4407         DAG.getTargetConstant(Intrinsic::arm_neon_vpaddlu, dl, MVT::i32),
   4408         Cnt16);
   4409     if (ElemTy == MVT::i32)
   4410       return Cnt32;
   4411 
   4412     assert(ElemTy == MVT::i64);
   4413     SDValue Cnt64 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
   4414         DAG.getTargetConstant(Intrinsic::arm_neon_vpaddlu, dl, MVT::i32),
   4415         Cnt32);
   4416     return Cnt64;
   4417   }
   4418 
   4419   if (!ST->hasV6T2Ops())
   4420     return SDValue();
   4421 
   4422   SDValue rbit = DAG.getNode(ISD::BITREVERSE, dl, VT, N->getOperand(0));
   4423   return DAG.getNode(ISD::CTLZ, dl, VT, rbit);
   4424 }
   4425 
   4426 /// getCTPOP16BitCounts - Returns a v8i8/v16i8 vector containing the bit-count
   4427 /// for each 16-bit element from operand, repeated.  The basic idea is to
   4428 /// leverage vcnt to get the 8-bit counts, gather and add the results.
   4429 ///
   4430 /// Trace for v4i16:
   4431 /// input    = [v0    v1    v2    v3   ] (vi 16-bit element)
   4432 /// cast: N0 = [w0 w1 w2 w3 w4 w5 w6 w7] (v0 = [w0 w1], wi 8-bit element)
   4433 /// vcnt: N1 = [b0 b1 b2 b3 b4 b5 b6 b7] (bi = bit-count of 8-bit element wi)
   4434 /// vrev: N2 = [b1 b0 b3 b2 b5 b4 b7 b6]
   4435 ///            [b0 b1 b2 b3 b4 b5 b6 b7]
   4436 ///           +[b1 b0 b3 b2 b5 b4 b7 b6]
   4437 /// N3=N1+N2 = [k0 k0 k1 k1 k2 k2 k3 k3] (k0 = b0+b1 = bit-count of 16-bit v0,
   4438 /// vuzp:    = [k0 k1 k2 k3 k0 k1 k2 k3]  each ki is 8-bits)
   4439 static SDValue getCTPOP16BitCounts(SDNode *N, SelectionDAG &DAG) {
   4440   EVT VT = N->getValueType(0);
   4441   SDLoc DL(N);
   4442 
   4443   EVT VT8Bit = VT.is64BitVector() ? MVT::v8i8 : MVT::v16i8;
   4444   SDValue N0 = DAG.getNode(ISD::BITCAST, DL, VT8Bit, N->getOperand(0));
   4445   SDValue N1 = DAG.getNode(ISD::CTPOP, DL, VT8Bit, N0);
   4446   SDValue N2 = DAG.getNode(ARMISD::VREV16, DL, VT8Bit, N1);
   4447   SDValue N3 = DAG.getNode(ISD::ADD, DL, VT8Bit, N1, N2);
   4448   return DAG.getNode(ARMISD::VUZP, DL, VT8Bit, N3, N3);
   4449 }
   4450 
   4451 /// lowerCTPOP16BitElements - Returns a v4i16/v8i16 vector containing the
   4452 /// bit-count for each 16-bit element from the operand.  We need slightly
   4453 /// different sequencing for v4i16 and v8i16 to stay within NEON's available
   4454 /// 64/128-bit registers.
   4455 ///
   4456 /// Trace for v4i16:
   4457 /// input           = [v0    v1    v2    v3    ] (vi 16-bit element)
   4458 /// v8i8: BitCounts = [k0 k1 k2 k3 k0 k1 k2 k3 ] (ki is the bit-count of vi)
   4459 /// v8i16:Extended  = [k0    k1    k2    k3    k0    k1    k2    k3    ]
   4460 /// v4i16:Extracted = [k0    k1    k2    k3    ]
   4461 static SDValue lowerCTPOP16BitElements(SDNode *N, SelectionDAG &DAG) {
   4462   EVT VT = N->getValueType(0);
   4463   SDLoc DL(N);
   4464 
   4465   SDValue BitCounts = getCTPOP16BitCounts(N, DAG);
   4466   if (VT.is64BitVector()) {
   4467     SDValue Extended = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v8i16, BitCounts);
   4468     return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i16, Extended,
   4469                        DAG.getIntPtrConstant(0, DL));
   4470   } else {
   4471     SDValue Extracted = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v8i8,
   4472                                     BitCounts, DAG.getIntPtrConstant(0, DL));
   4473     return DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v8i16, Extracted);
   4474   }
   4475 }
   4476 
   4477 /// lowerCTPOP32BitElements - Returns a v2i32/v4i32 vector containing the
   4478 /// bit-count for each 32-bit element from the operand.  The idea here is
   4479 /// to split the vector into 16-bit elements, leverage the 16-bit count
   4480 /// routine, and then combine the results.
   4481 ///
   4482 /// Trace for v2i32 (v4i32 similar with Extracted/Extended exchanged):
   4483 /// input    = [v0    v1    ] (vi: 32-bit elements)
   4484 /// Bitcast  = [w0 w1 w2 w3 ] (wi: 16-bit elements, v0 = [w0 w1])
   4485 /// Counts16 = [k0 k1 k2 k3 ] (ki: 16-bit elements, bit-count of wi)
   4486 /// vrev: N0 = [k1 k0 k3 k2 ]
   4487 ///            [k0 k1 k2 k3 ]
   4488 ///       N1 =+[k1 k0 k3 k2 ]
   4489 ///            [k0 k2 k1 k3 ]
   4490 ///       N2 =+[k1 k3 k0 k2 ]
   4491 ///            [k0    k2    k1    k3    ]
   4492 /// Extended =+[k1    k3    k0    k2    ]
   4493 ///            [k0    k2    ]
   4494 /// Extracted=+[k1    k3    ]
   4495 ///
   4496 static SDValue lowerCTPOP32BitElements(SDNode *N, SelectionDAG &DAG) {
   4497   EVT VT = N->getValueType(0);
   4498   SDLoc DL(N);
   4499 
   4500   EVT VT16Bit = VT.is64BitVector() ? MVT::v4i16 : MVT::v8i16;
   4501 
   4502   SDValue Bitcast = DAG.getNode(ISD::BITCAST, DL, VT16Bit, N->getOperand(0));
   4503   SDValue Counts16 = lowerCTPOP16BitElements(Bitcast.getNode(), DAG);
   4504   SDValue N0 = DAG.getNode(ARMISD::VREV32, DL, VT16Bit, Counts16);
   4505   SDValue N1 = DAG.getNode(ISD::ADD, DL, VT16Bit, Counts16, N0);
   4506   SDValue N2 = DAG.getNode(ARMISD::VUZP, DL, VT16Bit, N1, N1);
   4507 
   4508   if (VT.is64BitVector()) {
   4509     SDValue Extended = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v4i32, N2);
   4510     return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i32, Extended,
   4511                        DAG.getIntPtrConstant(0, DL));
   4512   } else {
   4513     SDValue Extracted = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i16, N2,
   4514                                     DAG.getIntPtrConstant(0, DL));
   4515     return DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v4i32, Extracted);
   4516   }
   4517 }
   4518 
   4519 static SDValue LowerCTPOP(SDNode *N, SelectionDAG &DAG,
   4520                           const ARMSubtarget *ST) {
   4521   EVT VT = N->getValueType(0);
   4522 
   4523   assert(ST->hasNEON() && "Custom ctpop lowering requires NEON.");
   4524   assert((VT == MVT::v2i32 || VT == MVT::v4i32 ||
   4525           VT == MVT::v4i16 || VT == MVT::v8i16) &&
   4526          "Unexpected type for custom ctpop lowering");
   4527 
   4528   if (VT.getVectorElementType() == MVT::i32)
   4529     return lowerCTPOP32BitElements(N, DAG);
   4530   else
   4531     return lowerCTPOP16BitElements(N, DAG);
   4532 }
   4533 
   4534 static SDValue LowerShift(SDNode *N, SelectionDAG &DAG,
   4535                           const ARMSubtarget *ST) {
   4536   EVT VT = N->getValueType(0);
   4537   SDLoc dl(N);
   4538 
   4539   if (!VT.isVector())
   4540     return SDValue();
   4541 
   4542   // Lower vector shifts on NEON to use VSHL.
   4543   assert(ST->hasNEON() && "unexpected vector shift");
   4544 
   4545   // Left shifts translate directly to the vshiftu intrinsic.
   4546   if (N->getOpcode() == ISD::SHL)
   4547     return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
   4548                        DAG.getConstant(Intrinsic::arm_neon_vshiftu, dl,
   4549                                        MVT::i32),
   4550                        N->getOperand(0), N->getOperand(1));
   4551 
   4552   assert((N->getOpcode() == ISD::SRA ||
   4553           N->getOpcode() == ISD::SRL) && "unexpected vector shift opcode");
   4554 
   4555   // NEON uses the same intrinsics for both left and right shifts.  For
   4556   // right shifts, the shift amounts are negative, so negate the vector of
   4557   // shift amounts.
   4558   EVT ShiftVT = N->getOperand(1).getValueType();
   4559   SDValue NegatedCount = DAG.getNode(ISD::SUB, dl, ShiftVT,
   4560                                      getZeroVector(ShiftVT, DAG, dl),
   4561                                      N->getOperand(1));
   4562   Intrinsic::ID vshiftInt = (N->getOpcode() == ISD::SRA ?
   4563                              Intrinsic::arm_neon_vshifts :
   4564                              Intrinsic::arm_neon_vshiftu);
   4565   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT,
   4566                      DAG.getConstant(vshiftInt, dl, MVT::i32),
   4567                      N->getOperand(0), NegatedCount);
   4568 }
   4569 
   4570 static SDValue Expand64BitShift(SDNode *N, SelectionDAG &DAG,
   4571                                 const ARMSubtarget *ST) {
   4572   EVT VT = N->getValueType(0);
   4573   SDLoc dl(N);
   4574 
   4575   // We can get here for a node like i32 = ISD::SHL i32, i64
   4576   if (VT != MVT::i64)
   4577     return SDValue();
   4578 
   4579   assert((N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA) &&
   4580          "Unknown shift to lower!");
   4581 
   4582   // We only lower SRA, SRL of 1 here, all others use generic lowering.
   4583   if (!isOneConstant(N->getOperand(1)))
   4584     return SDValue();
   4585 
   4586   // If we are in thumb mode, we don't have RRX.
   4587   if (ST->isThumb1Only()) return SDValue();
   4588 
   4589   // Okay, we have a 64-bit SRA or SRL of 1.  Lower this to an RRX expr.
   4590   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
   4591                            DAG.getConstant(0, dl, MVT::i32));
   4592   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0),
   4593                            DAG.getConstant(1, dl, MVT::i32));
   4594 
   4595   // First, build a SRA_FLAG/SRL_FLAG op, which shifts the top part by one and
   4596   // captures the result into a carry flag.
   4597   unsigned Opc = N->getOpcode() == ISD::SRL ? ARMISD::SRL_FLAG:ARMISD::SRA_FLAG;
   4598   Hi = DAG.getNode(Opc, dl, DAG.getVTList(MVT::i32, MVT::Glue), Hi);
   4599 
   4600   // The low part is an ARMISD::RRX operand, which shifts the carry in.
   4601   Lo = DAG.getNode(ARMISD::RRX, dl, MVT::i32, Lo, Hi.getValue(1));
   4602 
   4603   // Merge the pieces into a single i64 value.
   4604  return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi);
   4605 }
   4606 
   4607 static SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG) {
   4608   SDValue TmpOp0, TmpOp1;
   4609   bool Invert = false;
   4610   bool Swap = false;
   4611   unsigned Opc = 0;
   4612 
   4613   SDValue Op0 = Op.getOperand(0);
   4614   SDValue Op1 = Op.getOperand(1);
   4615   SDValue CC = Op.getOperand(2);
   4616   EVT CmpVT = Op0.getValueType().changeVectorElementTypeToInteger();
   4617   EVT VT = Op.getValueType();
   4618   ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get();
   4619   SDLoc dl(Op);
   4620 
   4621   if (CmpVT.getVectorElementType() == MVT::i64)
   4622     // 64-bit comparisons are not legal. We've marked SETCC as non-Custom,
   4623     // but it's possible that our operands are 64-bit but our result is 32-bit.
   4624     // Bail in this case.
   4625     return SDValue();
   4626 
   4627   if (Op1.getValueType().isFloatingPoint()) {
   4628     switch (SetCCOpcode) {
   4629     default: llvm_unreachable("Illegal FP comparison");
   4630     case ISD::SETUNE:
   4631     case ISD::SETNE:  Invert = true; // Fallthrough
   4632     case ISD::SETOEQ:
   4633     case ISD::SETEQ:  Opc = ARMISD::VCEQ; break;
   4634     case ISD::SETOLT:
   4635     case ISD::SETLT: Swap = true; // Fallthrough
   4636     case ISD::SETOGT:
   4637     case ISD::SETGT:  Opc = ARMISD::VCGT; break;
   4638     case ISD::SETOLE:
   4639     case ISD::SETLE:  Swap = true; // Fallthrough
   4640     case ISD::SETOGE:
   4641     case ISD::SETGE: Opc = ARMISD::VCGE; break;
   4642     case ISD::SETUGE: Swap = true; // Fallthrough
   4643     case ISD::SETULE: Invert = true; Opc = ARMISD::VCGT; break;
   4644     case ISD::SETUGT: Swap = true; // Fallthrough
   4645     case ISD::SETULT: Invert = true; Opc = ARMISD::VCGE; break;
   4646     case ISD::SETUEQ: Invert = true; // Fallthrough
   4647     case ISD::SETONE:
   4648       // Expand this to (OLT | OGT).
   4649       TmpOp0 = Op0;
   4650       TmpOp1 = Op1;
   4651       Opc = ISD::OR;
   4652       Op0 = DAG.getNode(ARMISD::VCGT, dl, CmpVT, TmpOp1, TmpOp0);
   4653       Op1 = DAG.getNode(ARMISD::VCGT, dl, CmpVT, TmpOp0, TmpOp1);
   4654       break;
   4655     case ISD::SETUO: Invert = true; // Fallthrough
   4656     case ISD::SETO:
   4657       // Expand this to (OLT | OGE).
   4658       TmpOp0 = Op0;
   4659       TmpOp1 = Op1;
   4660       Opc = ISD::OR;
   4661       Op0 = DAG.getNode(ARMISD::VCGT, dl, CmpVT, TmpOp1, TmpOp0);
   4662       Op1 = DAG.getNode(ARMISD::VCGE, dl, CmpVT, TmpOp0, TmpOp1);
   4663       break;
   4664     }
   4665   } else {
   4666     // Integer comparisons.
   4667     switch (SetCCOpcode) {
   4668     default: llvm_unreachable("Illegal integer comparison");
   4669     case ISD::SETNE:  Invert = true;
   4670     case ISD::SETEQ:  Opc = ARMISD::VCEQ; break;
   4671     case ISD::SETLT:  Swap = true;
   4672     case ISD::SETGT:  Opc = ARMISD::VCGT; break;
   4673     case ISD::SETLE:  Swap = true;
   4674     case ISD::SETGE:  Opc = ARMISD::VCGE; break;
   4675     case ISD::SETULT: Swap = true;
   4676     case ISD::SETUGT: Opc = ARMISD::VCGTU; break;
   4677     case ISD::SETULE: Swap = true;
   4678     case ISD::SETUGE: Opc = ARMISD::VCGEU; break;
   4679     }
   4680 
   4681     // Detect VTST (Vector Test Bits) = icmp ne (and (op0, op1), zero).
   4682     if (Opc == ARMISD::VCEQ) {
   4683 
   4684       SDValue AndOp;
   4685       if (ISD::isBuildVectorAllZeros(Op1.getNode()))
   4686         AndOp = Op0;
   4687       else if (ISD::isBuildVectorAllZeros(Op0.getNode()))
   4688         AndOp = Op1;
   4689 
   4690       // Ignore bitconvert.
   4691       if (AndOp.getNode() && AndOp.getOpcode() == ISD::BITCAST)
   4692         AndOp = AndOp.getOperand(0);
   4693 
   4694       if (AndOp.getNode() && AndOp.getOpcode() == ISD::AND) {
   4695         Opc = ARMISD::VTST;
   4696         Op0 = DAG.getNode(ISD::BITCAST, dl, CmpVT, AndOp.getOperand(0));
   4697         Op1 = DAG.getNode(ISD::BITCAST, dl, CmpVT, AndOp.getOperand(1));
   4698         Invert = !Invert;
   4699       }
   4700     }
   4701   }
   4702 
   4703   if (Swap)
   4704     std::swap(Op0, Op1);
   4705 
   4706   // If one of the operands is a constant vector zero, attempt to fold the
   4707   // comparison to a specialized compare-against-zero form.
   4708   SDValue SingleOp;
   4709   if (ISD::isBuildVectorAllZeros(Op1.getNode()))
   4710     SingleOp = Op0;
   4711   else if (ISD::isBuildVectorAllZeros(Op0.getNode())) {
   4712     if (Opc == ARMISD::VCGE)
   4713       Opc = ARMISD::VCLEZ;
   4714     else if (Opc == ARMISD::VCGT)
   4715       Opc = ARMISD::VCLTZ;
   4716     SingleOp = Op1;
   4717   }
   4718 
   4719   SDValue Result;
   4720   if (SingleOp.getNode()) {
   4721     switch (Opc) {
   4722     case ARMISD::VCEQ:
   4723       Result = DAG.getNode(ARMISD::VCEQZ, dl, CmpVT, SingleOp); break;
   4724     case ARMISD::VCGE:
   4725       Result = DAG.getNode(ARMISD::VCGEZ, dl, CmpVT, SingleOp); break;
   4726     case ARMISD::VCLEZ:
   4727       Result = DAG.getNode(ARMISD::VCLEZ, dl, CmpVT, SingleOp); break;
   4728     case ARMISD::VCGT:
   4729       Result = DAG.getNode(ARMISD::VCGTZ, dl, CmpVT, SingleOp); break;
   4730     case ARMISD::VCLTZ:
   4731       Result = DAG.getNode(ARMISD::VCLTZ, dl, CmpVT, SingleOp); break;
   4732     default:
   4733       Result = DAG.getNode(Opc, dl, CmpVT, Op0, Op1);
   4734     }
   4735   } else {
   4736      Result = DAG.getNode(Opc, dl, CmpVT, Op0, Op1);
   4737   }
   4738 
   4739   Result = DAG.getSExtOrTrunc(Result, dl, VT);
   4740 
   4741   if (Invert)
   4742     Result = DAG.getNOT(dl, Result, VT);
   4743 
   4744   return Result;
   4745 }
   4746 
   4747 /// isNEONModifiedImm - Check if the specified splat value corresponds to a
   4748 /// valid vector constant for a NEON instruction with a "modified immediate"
   4749 /// operand (e.g., VMOV).  If so, return the encoded value.
   4750 static SDValue isNEONModifiedImm(uint64_t SplatBits, uint64_t SplatUndef,
   4751                                  unsigned SplatBitSize, SelectionDAG &DAG,
   4752                                  SDLoc dl, EVT &VT, bool is128Bits,
   4753                                  NEONModImmType type) {
   4754   unsigned OpCmode, Imm;
   4755 
   4756   // SplatBitSize is set to the smallest size that splats the vector, so a
   4757   // zero vector will always have SplatBitSize == 8.  However, NEON modified
   4758   // immediate instructions others than VMOV do not support the 8-bit encoding
   4759   // of a zero vector, and the default encoding of zero is supposed to be the
   4760   // 32-bit version.
   4761   if (SplatBits == 0)
   4762     SplatBitSize = 32;
   4763 
   4764   switch (SplatBitSize) {
   4765   case 8:
   4766     if (type != VMOVModImm)
   4767       return SDValue();
   4768     // Any 1-byte value is OK.  Op=0, Cmode=1110.
   4769     assert((SplatBits & ~0xff) == 0 && "one byte splat value is too big");
   4770     OpCmode = 0xe;
   4771     Imm = SplatBits;
   4772     VT = is128Bits ? MVT::v16i8 : MVT::v8i8;
   4773     break;
   4774 
   4775   case 16:
   4776     // NEON's 16-bit VMOV supports splat values where only one byte is nonzero.
   4777     VT = is128Bits ? MVT::v8i16 : MVT::v4i16;
   4778     if ((SplatBits & ~0xff) == 0) {
   4779       // Value = 0x00nn: Op=x, Cmode=100x.
   4780       OpCmode = 0x8;
   4781       Imm = SplatBits;
   4782       break;
   4783     }
   4784     if ((SplatBits & ~0xff00) == 0) {
   4785       // Value = 0xnn00: Op=x, Cmode=101x.
   4786       OpCmode = 0xa;
   4787       Imm = SplatBits >> 8;
   4788       break;
   4789     }
   4790     return SDValue();
   4791 
   4792   case 32:
   4793     // NEON's 32-bit VMOV supports splat values where:
   4794     // * only one byte is nonzero, or
   4795     // * the least significant byte is 0xff and the second byte is nonzero, or
   4796     // * the least significant 2 bytes are 0xff and the third is nonzero.
   4797     VT = is128Bits ? MVT::v4i32 : MVT::v2i32;
   4798     if ((SplatBits & ~0xff) == 0) {
   4799       // Value = 0x000000nn: Op=x, Cmode=000x.
   4800       OpCmode = 0;
   4801       Imm = SplatBits;
   4802       break;
   4803     }
   4804     if ((SplatBits & ~0xff00) == 0) {
   4805       // Value = 0x0000nn00: Op=x, Cmode=001x.
   4806       OpCmode = 0x2;
   4807       Imm = SplatBits >> 8;
   4808       break;
   4809     }
   4810     if ((SplatBits & ~0xff0000) == 0) {
   4811       // Value = 0x00nn0000: Op=x, Cmode=010x.
   4812       OpCmode = 0x4;
   4813       Imm = SplatBits >> 16;
   4814       break;
   4815     }
   4816     if ((SplatBits & ~0xff000000) == 0) {
   4817       // Value = 0xnn000000: Op=x, Cmode=011x.
   4818       OpCmode = 0x6;
   4819       Imm = SplatBits >> 24;
   4820       break;
   4821     }
   4822 
   4823     // cmode == 0b1100 and cmode == 0b1101 are not supported for VORR or VBIC
   4824     if (type == OtherModImm) return SDValue();
   4825 
   4826     if ((SplatBits & ~0xffff) == 0 &&
   4827         ((SplatBits | SplatUndef) & 0xff) == 0xff) {
   4828       // Value = 0x0000nnff: Op=x, Cmode=1100.
   4829       OpCmode = 0xc;
   4830       Imm = SplatBits >> 8;
   4831       break;
   4832     }
   4833 
   4834     if ((SplatBits & ~0xffffff) == 0 &&
   4835         ((SplatBits | SplatUndef) & 0xffff) == 0xffff) {
   4836       // Value = 0x00nnffff: Op=x, Cmode=1101.
   4837       OpCmode = 0xd;
   4838       Imm = SplatBits >> 16;
   4839       break;
   4840     }
   4841 
   4842     // Note: there are a few 32-bit splat values (specifically: 00ffff00,
   4843     // ff000000, ff0000ff, and ffff00ff) that are valid for VMOV.I64 but not
   4844     // VMOV.I32.  A (very) minor optimization would be to replicate the value
   4845     // and fall through here to test for a valid 64-bit splat.  But, then the
   4846     // caller would also need to check and handle the change in size.
   4847     return SDValue();
   4848 
   4849   case 64: {
   4850     if (type != VMOVModImm)
   4851       return SDValue();
   4852     // NEON has a 64-bit VMOV splat where each byte is either 0 or 0xff.
   4853     uint64_t BitMask = 0xff;
   4854     uint64_t Val = 0;
   4855     unsigned ImmMask = 1;
   4856     Imm = 0;
   4857     for (int ByteNum = 0; ByteNum < 8; ++ByteNum) {
   4858       if (((SplatBits | SplatUndef) & BitMask) == BitMask) {
   4859         Val |= BitMask;
   4860         Imm |= ImmMask;
   4861       } else if ((SplatBits & BitMask) != 0) {
   4862         return SDValue();
   4863       }
   4864       BitMask <<= 8;
   4865       ImmMask <<= 1;
   4866     }
   4867 
   4868     if (DAG.getDataLayout().isBigEndian())
   4869       // swap higher and lower 32 bit word
   4870       Imm = ((Imm & 0xf) << 4) | ((Imm & 0xf0) >> 4);
   4871 
   4872     // Op=1, Cmode=1110.
   4873     OpCmode = 0x1e;
   4874     VT = is128Bits ? MVT::v2i64 : MVT::v1i64;
   4875     break;
   4876   }
   4877 
   4878   default:
   4879     llvm_unreachable("unexpected size for isNEONModifiedImm");
   4880   }
   4881 
   4882   unsigned EncodedVal = ARM_AM::createNEONModImm(OpCmode, Imm);
   4883   return DAG.getTargetConstant(EncodedVal, dl, MVT::i32);
   4884 }
   4885 
   4886 SDValue ARMTargetLowering::LowerConstantFP(SDValue Op, SelectionDAG &DAG,
   4887                                            const ARMSubtarget *ST) const {
   4888   if (!ST->hasVFP3())
   4889     return SDValue();
   4890 
   4891   bool IsDouble = Op.getValueType() == MVT::f64;
   4892   ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Op);
   4893 
   4894   // Use the default (constant pool) lowering for double constants when we have
   4895   // an SP-only FPU
   4896   if (IsDouble && Subtarget->isFPOnlySP())
   4897     return SDValue();
   4898 
   4899   // Try splatting with a VMOV.f32...
   4900   APFloat FPVal = CFP->getValueAPF();
   4901   int ImmVal = IsDouble ? ARM_AM::getFP64Imm(FPVal) : ARM_AM::getFP32Imm(FPVal);
   4902 
   4903   if (ImmVal != -1) {
   4904     if (IsDouble || !ST->useNEONForSinglePrecisionFP()) {
   4905       // We have code in place to select a valid ConstantFP already, no need to
   4906       // do any mangling.
   4907       return Op;
   4908     }
   4909 
   4910     // It's a float and we are trying to use NEON operations where
   4911     // possible. Lower it to a splat followed by an extract.
   4912     SDLoc DL(Op);
   4913     SDValue NewVal = DAG.getTargetConstant(ImmVal, DL, MVT::i32);
   4914     SDValue VecConstant = DAG.getNode(ARMISD::VMOVFPIMM, DL, MVT::v2f32,
   4915                                       NewVal);
   4916     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecConstant,
   4917                        DAG.getConstant(0, DL, MVT::i32));
   4918   }
   4919 
   4920   // The rest of our options are NEON only, make sure that's allowed before
   4921   // proceeding..
   4922   if (!ST->hasNEON() || (!IsDouble && !ST->useNEONForSinglePrecisionFP()))
   4923     return SDValue();
   4924 
   4925   EVT VMovVT;
   4926   uint64_t iVal = FPVal.bitcastToAPInt().getZExtValue();
   4927 
   4928   // It wouldn't really be worth bothering for doubles except for one very
   4929   // important value, which does happen to match: 0.0. So make sure we don't do
   4930   // anything stupid.
   4931   if (IsDouble && (iVal & 0xffffffff) != (iVal >> 32))
   4932     return SDValue();
   4933 
   4934   // Try a VMOV.i32 (FIXME: i8, i16, or i64 could work too).
   4935   SDValue NewVal = isNEONModifiedImm(iVal & 0xffffffffU, 0, 32, DAG, SDLoc(Op),
   4936                                      VMovVT, false, VMOVModImm);
   4937   if (NewVal != SDValue()) {
   4938     SDLoc DL(Op);
   4939     SDValue VecConstant = DAG.getNode(ARMISD::VMOVIMM, DL, VMovVT,
   4940                                       NewVal);
   4941     if (IsDouble)
   4942       return DAG.getNode(ISD::BITCAST, DL, MVT::f64, VecConstant);
   4943 
   4944     // It's a float: cast and extract a vector element.
   4945     SDValue VecFConstant = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32,
   4946                                        VecConstant);
   4947     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecFConstant,
   4948                        DAG.getConstant(0, DL, MVT::i32));
   4949   }
   4950 
   4951   // Finally, try a VMVN.i32
   4952   NewVal = isNEONModifiedImm(~iVal & 0xffffffffU, 0, 32, DAG, SDLoc(Op), VMovVT,
   4953                              false, VMVNModImm);
   4954   if (NewVal != SDValue()) {
   4955     SDLoc DL(Op);
   4956     SDValue VecConstant = DAG.getNode(ARMISD::VMVNIMM, DL, VMovVT, NewVal);
   4957 
   4958     if (IsDouble)
   4959       return DAG.getNode(ISD::BITCAST, DL, MVT::f64, VecConstant);
   4960 
   4961     // It's a float: cast and extract a vector element.
   4962     SDValue VecFConstant = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32,
   4963                                        VecConstant);
   4964     return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecFConstant,
   4965                        DAG.getConstant(0, DL, MVT::i32));
   4966   }
   4967 
   4968   return SDValue();
   4969 }
   4970 
   4971 // check if an VEXT instruction can handle the shuffle mask when the
   4972 // vector sources of the shuffle are the same.
   4973 static bool isSingletonVEXTMask(ArrayRef<int> M, EVT VT, unsigned &Imm) {
   4974   unsigned NumElts = VT.getVectorNumElements();
   4975 
   4976   // Assume that the first shuffle index is not UNDEF.  Fail if it is.
   4977   if (M[0] < 0)
   4978     return false;
   4979 
   4980   Imm = M[0];
   4981 
   4982   // If this is a VEXT shuffle, the immediate value is the index of the first
   4983   // element.  The other shuffle indices must be the successive elements after
   4984   // the first one.
   4985   unsigned ExpectedElt = Imm;
   4986   for (unsigned i = 1; i < NumElts; ++i) {
   4987     // Increment the expected index.  If it wraps around, just follow it
   4988     // back to index zero and keep going.
   4989     ++ExpectedElt;
   4990     if (ExpectedElt == NumElts)
   4991       ExpectedElt = 0;
   4992 
   4993     if (M[i] < 0) continue; // ignore UNDEF indices
   4994     if (ExpectedElt != static_cast<unsigned>(M[i]))
   4995       return false;
   4996   }
   4997 
   4998   return true;
   4999 }
   5000 
   5001 
   5002 static bool isVEXTMask(ArrayRef<int> M, EVT VT,
   5003                        bool &ReverseVEXT, unsigned &Imm) {
   5004   unsigned NumElts = VT.getVectorNumElements();
   5005   ReverseVEXT = false;
   5006 
   5007   // Assume that the first shuffle index is not UNDEF.  Fail if it is.
   5008   if (M[0] < 0)
   5009     return false;
   5010 
   5011   Imm = M[0];
   5012 
   5013   // If this is a VEXT shuffle, the immediate value is the index of the first
   5014   // element.  The other shuffle indices must be the successive elements after
   5015   // the first one.
   5016   unsigned ExpectedElt = Imm;
   5017   for (unsigned i = 1; i < NumElts; ++i) {
   5018     // Increment the expected index.  If it wraps around, it may still be
   5019     // a VEXT but the source vectors must be swapped.
   5020     ExpectedElt += 1;
   5021     if (ExpectedElt == NumElts * 2) {
   5022       ExpectedElt = 0;
   5023       ReverseVEXT = true;
   5024     }
   5025 
   5026     if (M[i] < 0) continue; // ignore UNDEF indices
   5027     if (ExpectedElt != static_cast<unsigned>(M[i]))
   5028       return false;
   5029   }
   5030 
   5031   // Adjust the index value if the source operands will be swapped.
   5032   if (ReverseVEXT)
   5033     Imm -= NumElts;
   5034 
   5035   return true;
   5036 }
   5037 
   5038 /// isVREVMask - Check if a vector shuffle corresponds to a VREV
   5039 /// instruction with the specified blocksize.  (The order of the elements
   5040 /// within each block of the vector is reversed.)
   5041 static bool isVREVMask(ArrayRef<int> M, EVT VT, unsigned BlockSize) {
   5042   assert((BlockSize==16 || BlockSize==32 || BlockSize==64) &&
   5043          "Only possible block sizes for VREV are: 16, 32, 64");
   5044 
   5045   unsigned EltSz = VT.getVectorElementType().getSizeInBits();
   5046   if (EltSz == 64)
   5047     return false;
   5048 
   5049   unsigned NumElts = VT.getVectorNumElements();
   5050   unsigned BlockElts = M[0] + 1;
   5051   // If the first shuffle index is UNDEF, be optimistic.
   5052   if (M[0] < 0)
   5053     BlockElts = BlockSize / EltSz;
   5054 
   5055   if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz)
   5056     return false;
   5057 
   5058   for (unsigned i = 0; i < NumElts; ++i) {
   5059     if (M[i] < 0) continue; // ignore UNDEF indices
   5060     if ((unsigned) M[i] != (i - i%BlockElts) + (BlockElts - 1 - i%BlockElts))
   5061       return false;
   5062   }
   5063 
   5064   return true;
   5065 }
   5066 
   5067 static bool isVTBLMask(ArrayRef<int> M, EVT VT) {
   5068   // We can handle <8 x i8> vector shuffles. If the index in the mask is out of
   5069   // range, then 0 is placed into the resulting vector. So pretty much any mask
   5070   // of 8 elements can work here.
   5071   return VT == MVT::v8i8 && M.size() == 8;
   5072 }
   5073 
   5074 // Checks whether the shuffle mask represents a vector transpose (VTRN) by
   5075 // checking that pairs of elements in the shuffle mask represent the same index
   5076 // in each vector, incrementing the expected index by 2 at each step.
   5077 // e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 4, 2, 6]
   5078 //  v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,e,c,g}
   5079 //  v2={e,f,g,h}
   5080 // WhichResult gives the offset for each element in the mask based on which
   5081 // of the two results it belongs to.
   5082 //
   5083 // The transpose can be represented either as:
   5084 // result1 = shufflevector v1, v2, result1_shuffle_mask
   5085 // result2 = shufflevector v1, v2, result2_shuffle_mask
   5086 // where v1/v2 and the shuffle masks have the same number of elements
   5087 // (here WhichResult (see below) indicates which result is being checked)
   5088 //
   5089 // or as:
   5090 // results = shufflevector v1, v2, shuffle_mask
   5091 // where both results are returned in one vector and the shuffle mask has twice
   5092 // as many elements as v1/v2 (here WhichResult will always be 0 if true) here we
   5093 // want to check the low half and high half of the shuffle mask as if it were
   5094 // the other case
   5095 static bool isVTRNMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
   5096   unsigned EltSz = VT.getVectorElementType().getSizeInBits();
   5097   if (EltSz == 64)
   5098     return false;
   5099 
   5100   unsigned NumElts = VT.getVectorNumElements();
   5101   if (M.size() != NumElts && M.size() != NumElts*2)
   5102     return false;
   5103 
   5104   // If the mask is twice as long as the input vector then we need to check the
   5105   // upper and lower parts of the mask with a matching value for WhichResult
   5106   // FIXME: A mask with only even values will be rejected in case the first
   5107   // element is undefined, e.g. [-1, 4, 2, 6] will be rejected, because only
   5108   // M[0] is used to determine WhichResult
   5109   for (unsigned i = 0; i < M.size(); i += NumElts) {
   5110     if (M.size() == NumElts * 2)
   5111       WhichResult = i / NumElts;
   5112     else
   5113       WhichResult = M[i] == 0 ? 0 : 1;
   5114     for (unsigned j = 0; j < NumElts; j += 2) {
   5115       if ((M[i+j] >= 0 && (unsigned) M[i+j] != j + WhichResult) ||
   5116           (M[i+j+1] >= 0 && (unsigned) M[i+j+1] != j + NumElts + WhichResult))
   5117         return false;
   5118     }
   5119   }
   5120 
   5121   if (M.size() == NumElts*2)
   5122     WhichResult = 0;
   5123 
   5124   return true;
   5125 }
   5126 
   5127 /// isVTRN_v_undef_Mask - Special case of isVTRNMask for canonical form of
   5128 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
   5129 /// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>.
   5130 static bool isVTRN_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
   5131   unsigned EltSz = VT.getVectorElementType().getSizeInBits();
   5132   if (EltSz == 64)
   5133     return false;
   5134 
   5135   unsigned NumElts = VT.getVectorNumElements();
   5136   if (M.size() != NumElts && M.size() != NumElts*2)
   5137     return false;
   5138 
   5139   for (unsigned i = 0; i < M.size(); i += NumElts) {
   5140     if (M.size() == NumElts * 2)
   5141       WhichResult = i / NumElts;
   5142     else
   5143       WhichResult = M[i] == 0 ? 0 : 1;
   5144     for (unsigned j = 0; j < NumElts; j += 2) {
   5145       if ((M[i+j] >= 0 && (unsigned) M[i+j] != j + WhichResult) ||
   5146           (M[i+j+1] >= 0 && (unsigned) M[i+j+1] != j + WhichResult))
   5147         return false;
   5148     }
   5149   }
   5150 
   5151   if (M.size() == NumElts*2)
   5152     WhichResult = 0;
   5153 
   5154   return true;
   5155 }
   5156 
   5157 // Checks whether the shuffle mask represents a vector unzip (VUZP) by checking
   5158 // that the mask elements are either all even and in steps of size 2 or all odd
   5159 // and in steps of size 2.
   5160 // e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 2, 4, 6]
   5161 //  v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,c,e,g}
   5162 //  v2={e,f,g,h}
   5163 // Requires similar checks to that of isVTRNMask with
   5164 // respect the how results are returned.
   5165 static bool isVUZPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
   5166   unsigned EltSz = VT.getVectorElementType().getSizeInBits();
   5167   if (EltSz == 64)
   5168     return false;
   5169 
   5170   unsigned NumElts = VT.getVectorNumElements();
   5171   if (M.size() != NumElts && M.size() != NumElts*2)
   5172     return false;
   5173 
   5174   for (unsigned i = 0; i < M.size(); i += NumElts) {
   5175     WhichResult = M[i] == 0 ? 0 : 1;
   5176     for (unsigned j = 0; j < NumElts; ++j) {
   5177       if (M[i+j] >= 0 && (unsigned) M[i+j] != 2 * j + WhichResult)
   5178         return false;
   5179     }
   5180   }
   5181 
   5182   if (M.size() == NumElts*2)
   5183     WhichResult = 0;
   5184 
   5185   // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
   5186   if (VT.is64BitVector() && EltSz == 32)
   5187     return false;
   5188 
   5189   return true;
   5190 }
   5191 
   5192 /// isVUZP_v_undef_Mask - Special case of isVUZPMask for canonical form of
   5193 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
   5194 /// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>,
   5195 static bool isVUZP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
   5196   unsigned EltSz = VT.getVectorElementType().getSizeInBits();
   5197   if (EltSz == 64)
   5198     return false;
   5199 
   5200   unsigned NumElts = VT.getVectorNumElements();
   5201   if (M.size() != NumElts && M.size() != NumElts*2)
   5202     return false;
   5203 
   5204   unsigned Half = NumElts / 2;
   5205   for (unsigned i = 0; i < M.size(); i += NumElts) {
   5206     WhichResult = M[i] == 0 ? 0 : 1;
   5207     for (unsigned j = 0; j < NumElts; j += Half) {
   5208       unsigned Idx = WhichResult;
   5209       for (unsigned k = 0; k < Half; ++k) {
   5210         int MIdx = M[i + j + k];
   5211         if (MIdx >= 0 && (unsigned) MIdx != Idx)
   5212           return false;
   5213         Idx += 2;
   5214       }
   5215     }
   5216   }
   5217 
   5218   if (M.size() == NumElts*2)
   5219     WhichResult = 0;
   5220 
   5221   // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
   5222   if (VT.is64BitVector() && EltSz == 32)
   5223     return false;
   5224 
   5225   return true;
   5226 }
   5227 
   5228 // Checks whether the shuffle mask represents a vector zip (VZIP) by checking
   5229 // that pairs of elements of the shufflemask represent the same index in each
   5230 // vector incrementing sequentially through the vectors.
   5231 // e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 4, 1, 5]
   5232 //  v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,e,b,f}
   5233 //  v2={e,f,g,h}
   5234 // Requires similar checks to that of isVTRNMask with respect the how results
   5235 // are returned.
   5236 static bool isVZIPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) {
   5237   unsigned EltSz = VT.getVectorElementType().getSizeInBits();
   5238   if (EltSz == 64)
   5239     return false;
   5240 
   5241   unsigned NumElts = VT.getVectorNumElements();
   5242   if (M.size() != NumElts && M.size() != NumElts*2)
   5243     return false;
   5244 
   5245   for (unsigned i = 0; i < M.size(); i += NumElts) {
   5246     WhichResult = M[i] == 0 ? 0 : 1;
   5247     unsigned Idx = WhichResult * NumElts / 2;
   5248     for (unsigned j = 0; j < NumElts; j += 2) {
   5249       if ((M[i+j] >= 0 && (unsigned) M[i+j] != Idx) ||
   5250           (M[i+j+1] >= 0 && (unsigned) M[i+j+1] != Idx + NumElts))
   5251         return false;
   5252       Idx += 1;
   5253     }
   5254   }
   5255 
   5256   if (M.size() == NumElts*2)
   5257     WhichResult = 0;
   5258 
   5259   // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
   5260   if (VT.is64BitVector() && EltSz == 32)
   5261     return false;
   5262 
   5263   return true;
   5264 }
   5265 
   5266 /// isVZIP_v_undef_Mask - Special case of isVZIPMask for canonical form of
   5267 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef".
   5268 /// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>.
   5269 static bool isVZIP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){
   5270   unsigned EltSz = VT.getVectorElementType().getSizeInBits();
   5271   if (EltSz == 64)
   5272     return false;
   5273 
   5274   unsigned NumElts = VT.getVectorNumElements();
   5275   if (M.size() != NumElts && M.size() != NumElts*2)
   5276     return false;
   5277 
   5278   for (unsigned i = 0; i < M.size(); i += NumElts) {
   5279     WhichResult = M[i] == 0 ? 0 : 1;
   5280     unsigned Idx = WhichResult * NumElts / 2;
   5281     for (unsigned j = 0; j < NumElts; j += 2) {
   5282       if ((M[i+j] >= 0 && (unsigned) M[i+j] != Idx) ||
   5283           (M[i+j+1] >= 0 && (unsigned) M[i+j+1] != Idx))
   5284         return false;
   5285       Idx += 1;
   5286     }
   5287   }
   5288 
   5289   if (M.size() == NumElts*2)
   5290     WhichResult = 0;
   5291 
   5292   // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32.
   5293   if (VT.is64BitVector() && EltSz == 32)
   5294     return false;
   5295 
   5296   return true;
   5297 }
   5298 
   5299 /// Check if \p ShuffleMask is a NEON two-result shuffle (VZIP, VUZP, VTRN),
   5300 /// and return the corresponding ARMISD opcode if it is, or 0 if it isn't.
   5301 static unsigned isNEONTwoResultShuffleMask(ArrayRef<int> ShuffleMask, EVT VT,
   5302                                            unsigned &WhichResult,
   5303                                            bool &isV_UNDEF) {
   5304   isV_UNDEF = false;
   5305   if (isVTRNMask(ShuffleMask, VT, WhichResult))
   5306     return ARMISD::VTRN;
   5307   if (isVUZPMask(ShuffleMask, VT, WhichResult))
   5308     return ARMISD::VUZP;
   5309   if (isVZIPMask(ShuffleMask, VT, WhichResult))
   5310     return ARMISD::VZIP;
   5311 
   5312   isV_UNDEF = true;
   5313   if (isVTRN_v_undef_Mask(ShuffleMask, VT, WhichResult))
   5314     return ARMISD::VTRN;
   5315   if (isVUZP_v_undef_Mask(ShuffleMask, VT, WhichResult))
   5316     return ARMISD::VUZP;
   5317   if (isVZIP_v_undef_Mask(ShuffleMask, VT, WhichResult))
   5318     return ARMISD::VZIP;
   5319 
   5320   return 0;
   5321 }
   5322 
   5323 /// \return true if this is a reverse operation on an vector.
   5324 static bool isReverseMask(ArrayRef<int> M, EVT VT) {
   5325   unsigned NumElts = VT.getVectorNumElements();
   5326   // Make sure the mask has the right size.
   5327   if (NumElts != M.size())
   5328       return false;
   5329 
   5330   // Look for <15, ..., 3, -1, 1, 0>.
   5331   for (unsigned i = 0; i != NumElts; ++i)
   5332     if (M[i] >= 0 && M[i] != (int) (NumElts - 1 - i))
   5333       return false;
   5334 
   5335   return true;
   5336 }
   5337 
   5338 // If N is an integer constant that can be moved into a register in one
   5339 // instruction, return an SDValue of such a constant (will become a MOV
   5340 // instruction).  Otherwise return null.
   5341 static SDValue IsSingleInstrConstant(SDValue N, SelectionDAG &DAG,
   5342                                      const ARMSubtarget *ST, SDLoc dl) {
   5343   uint64_t Val;
   5344   if (!isa<ConstantSDNode>(N))
   5345     return SDValue();
   5346   Val = cast<ConstantSDNode>(N)->getZExtValue();
   5347 
   5348   if (ST->isThumb1Only()) {
   5349     if (Val <= 255 || ~Val <= 255)
   5350       return DAG.getConstant(Val, dl, MVT::i32);
   5351   } else {
   5352     if (ARM_AM::getSOImmVal(Val) != -1 || ARM_AM::getSOImmVal(~Val) != -1)
   5353       return DAG.getConstant(Val, dl, MVT::i32);
   5354   }
   5355   return SDValue();
   5356 }
   5357 
   5358 // If this is a case we can't handle, return null and let the default
   5359 // expansion code take care of it.
   5360 SDValue ARMTargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG,
   5361                                              const ARMSubtarget *ST) const {
   5362   BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode());
   5363   SDLoc dl(Op);
   5364   EVT VT = Op.getValueType();
   5365 
   5366   APInt SplatBits, SplatUndef;
   5367   unsigned SplatBitSize;
   5368   bool HasAnyUndefs;
   5369   if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
   5370     if (SplatBitSize <= 64) {
   5371       // Check if an immediate VMOV works.
   5372       EVT VmovVT;
   5373       SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(),
   5374                                       SplatUndef.getZExtValue(), SplatBitSize,
   5375                                       DAG, dl, VmovVT, VT.is128BitVector(),
   5376                                       VMOVModImm);
   5377       if (Val.getNode()) {
   5378         SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, Val);
   5379         return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
   5380       }
   5381 
   5382       // Try an immediate VMVN.
   5383       uint64_t NegatedImm = (~SplatBits).getZExtValue();
   5384       Val = isNEONModifiedImm(NegatedImm,
   5385                                       SplatUndef.getZExtValue(), SplatBitSize,
   5386                                       DAG, dl, VmovVT, VT.is128BitVector(),
   5387                                       VMVNModImm);
   5388       if (Val.getNode()) {
   5389         SDValue Vmov = DAG.getNode(ARMISD::VMVNIMM, dl, VmovVT, Val);
   5390         return DAG.getNode(ISD::BITCAST, dl, VT, Vmov);
   5391       }
   5392 
   5393       // Use vmov.f32 to materialize other v2f32 and v4f32 splats.
   5394       if ((VT == MVT::v2f32 || VT == MVT::v4f32) && SplatBitSize == 32) {
   5395         int ImmVal = ARM_AM::getFP32Imm(SplatBits);
   5396         if (ImmVal != -1) {
   5397           SDValue Val = DAG.getTargetConstant(ImmVal, dl, MVT::i32);
   5398           return DAG.getNode(ARMISD::VMOVFPIMM, dl, VT, Val);
   5399         }
   5400       }
   5401     }
   5402   }
   5403 
   5404   // Scan through the operands to see if only one value is used.
   5405   //
   5406   // As an optimisation, even if more than one value is used it may be more
   5407   // profitable to splat with one value then change some lanes.
   5408   //
   5409   // Heuristically we decide to do this if the vector has a "dominant" value,
   5410   // defined as splatted to more than half of the lanes.
   5411   unsigned NumElts = VT.getVectorNumElements();
   5412   bool isOnlyLowElement = true;
   5413   bool usesOnlyOneValue = true;
   5414   bool hasDominantValue = false;
   5415   bool isConstant = true;
   5416 
   5417   // Map of the number of times a particular SDValue appears in the
   5418   // element list.
   5419   DenseMap<SDValue, unsigned> ValueCounts;
   5420   SDValue Value;
   5421   for (unsigned i = 0; i < NumElts; ++i) {
   5422     SDValue V = Op.getOperand(i);
   5423     if (V.getOpcode() == ISD::UNDEF)
   5424       continue;
   5425     if (i > 0)
   5426       isOnlyLowElement = false;
   5427     if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
   5428       isConstant = false;
   5429 
   5430     ValueCounts.insert(std::make_pair(V, 0));
   5431     unsigned &Count = ValueCounts[V];
   5432 
   5433     // Is this value dominant? (takes up more than half of the lanes)
   5434     if (++Count > (NumElts / 2)) {
   5435       hasDominantValue = true;
   5436       Value = V;
   5437     }
   5438   }
   5439   if (ValueCounts.size() != 1)
   5440     usesOnlyOneValue = false;
   5441   if (!Value.getNode() && ValueCounts.size() > 0)
   5442     Value = ValueCounts.begin()->first;
   5443 
   5444   if (ValueCounts.size() == 0)
   5445     return DAG.getUNDEF(VT);
   5446 
   5447   // Loads are better lowered with insert_vector_elt/ARMISD::BUILD_VECTOR.
   5448   // Keep going if we are hitting this case.
   5449   if (isOnlyLowElement && !ISD::isNormalLoad(Value.getNode()))
   5450     return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value);
   5451 
   5452   unsigned EltSize = VT.getVectorElementType().getSizeInBits();
   5453 
   5454   // Use VDUP for non-constant splats.  For f32 constant splats, reduce to
   5455   // i32 and try again.
   5456   if (hasDominantValue && EltSize <= 32) {
   5457     if (!isConstant) {
   5458       SDValue N;
   5459 
   5460       // If we are VDUPing a value that comes directly from a vector, that will
   5461       // cause an unnecessary move to and from a GPR, where instead we could
   5462       // just use VDUPLANE. We can only do this if the lane being extracted
   5463       // is at a constant index, as the VDUP from lane instructions only have
   5464       // constant-index forms.
   5465       ConstantSDNode *constIndex;
   5466       if (Value->getOpcode() == ISD::EXTRACT_VECTOR_ELT &&
   5467           (constIndex = dyn_cast<ConstantSDNode>(Value->getOperand(1)))) {
   5468         // We need to create a new undef vector to use for the VDUPLANE if the
   5469         // size of the vector from which we get the value is different than the
   5470         // size of the vector that we need to create. We will insert the element
   5471         // such that the register coalescer will remove unnecessary copies.
   5472         if (VT != Value->getOperand(0).getValueType()) {
   5473           unsigned index = constIndex->getAPIntValue().getLimitedValue() %
   5474                              VT.getVectorNumElements();
   5475           N =  DAG.getNode(ARMISD::VDUPLANE, dl, VT,
   5476                  DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, DAG.getUNDEF(VT),
   5477                         Value, DAG.getConstant(index, dl, MVT::i32)),
   5478                            DAG.getConstant(index, dl, MVT::i32));
   5479         } else
   5480           N = DAG.getNode(ARMISD::VDUPLANE, dl, VT,
   5481                         Value->getOperand(0), Value->getOperand(1));
   5482       } else
   5483         N = DAG.getNode(ARMISD::VDUP, dl, VT, Value);
   5484 
   5485       if (!usesOnlyOneValue) {
   5486         // The dominant value was splatted as 'N', but we now have to insert
   5487         // all differing elements.
   5488         for (unsigned I = 0; I < NumElts; ++I) {
   5489           if (Op.getOperand(I) == Value)
   5490             continue;
   5491           SmallVector<SDValue, 3> Ops;
   5492           Ops.push_back(N);
   5493           Ops.push_back(Op.getOperand(I));
   5494           Ops.push_back(DAG.getConstant(I, dl, MVT::i32));
   5495           N = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Ops);
   5496         }
   5497       }
   5498       return N;
   5499     }
   5500     if (VT.getVectorElementType().isFloatingPoint()) {
   5501       SmallVector<SDValue, 8> Ops;
   5502       for (unsigned i = 0; i < NumElts; ++i)
   5503         Ops.push_back(DAG.getNode(ISD::BITCAST, dl, MVT::i32,
   5504                                   Op.getOperand(i)));
   5505       EVT VecVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElts);
   5506       SDValue Val = DAG.getNode(ISD::BUILD_VECTOR, dl, VecVT, Ops);
   5507       Val = LowerBUILD_VECTOR(Val, DAG, ST);
   5508       if (Val.getNode())
   5509         return DAG.getNode(ISD::BITCAST, dl, VT, Val);
   5510     }
   5511     if (usesOnlyOneValue) {
   5512       SDValue Val = IsSingleInstrConstant(Value, DAG, ST, dl);
   5513       if (isConstant && Val.getNode())
   5514         return DAG.getNode(ARMISD::VDUP, dl, VT, Val);
   5515     }
   5516   }
   5517 
   5518   // If all elements are constants and the case above didn't get hit, fall back
   5519   // to the default expansion, which will generate a load from the constant
   5520   // pool.
   5521   if (isConstant)
   5522     return SDValue();
   5523 
   5524   // Empirical tests suggest this is rarely worth it for vectors of length <= 2.
   5525   if (NumElts >= 4) {
   5526     SDValue shuffle = ReconstructShuffle(Op, DAG);
   5527     if (shuffle != SDValue())
   5528       return shuffle;
   5529   }
   5530 
   5531   // Vectors with 32- or 64-bit elements can be built by directly assigning
   5532   // the subregisters.  Lower it to an ARMISD::BUILD_VECTOR so the operands
   5533   // will be legalized.
   5534   if (EltSize >= 32) {
   5535     // Do the expansion with floating-point types, since that is what the VFP
   5536     // registers are defined to use, and since i64 is not legal.
   5537     EVT EltVT = EVT::getFloatingPointVT(EltSize);
   5538     EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
   5539     SmallVector<SDValue, 8> Ops;
   5540     for (unsigned i = 0; i < NumElts; ++i)
   5541       Ops.push_back(DAG.getNode(ISD::BITCAST, dl, EltVT, Op.getOperand(i)));
   5542     SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, Ops);
   5543     return DAG.getNode(ISD::BITCAST, dl, VT, Val);
   5544   }
   5545 
   5546   // If all else fails, just use a sequence of INSERT_VECTOR_ELT when we
   5547   // know the default expansion would otherwise fall back on something even
   5548   // worse. For a vector with one or two non-undef values, that's
   5549   // scalar_to_vector for the elements followed by a shuffle (provided the
   5550   // shuffle is valid for the target) and materialization element by element
   5551   // on the stack followed by a load for everything else.
   5552   if (!isConstant && !usesOnlyOneValue) {
   5553     SDValue Vec = DAG.getUNDEF(VT);
   5554     for (unsigned i = 0 ; i < NumElts; ++i) {
   5555       SDValue V = Op.getOperand(i);
   5556       if (V.getOpcode() == ISD::UNDEF)
   5557         continue;
   5558       SDValue LaneIdx = DAG.getConstant(i, dl, MVT::i32);
   5559       Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Vec, V, LaneIdx);
   5560     }
   5561     return Vec;
   5562   }
   5563 
   5564   return SDValue();
   5565 }
   5566 
   5567 // Gather data to see if the operation can be modelled as a
   5568 // shuffle in combination with VEXTs.
   5569 SDValue ARMTargetLowering::ReconstructShuffle(SDValue Op,
   5570                                               SelectionDAG &DAG) const {
   5571   assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!");
   5572   SDLoc dl(Op);
   5573   EVT VT = Op.getValueType();
   5574   unsigned NumElts = VT.getVectorNumElements();
   5575 
   5576   struct ShuffleSourceInfo {
   5577     SDValue Vec;
   5578     unsigned MinElt;
   5579     unsigned MaxElt;
   5580 
   5581     // We may insert some combination of BITCASTs and VEXT nodes to force Vec to
   5582     // be compatible with the shuffle we intend to construct. As a result
   5583     // ShuffleVec will be some sliding window into the original Vec.
   5584     SDValue ShuffleVec;
   5585 
   5586     // Code should guarantee that element i in Vec starts at element "WindowBase
   5587     // + i * WindowScale in ShuffleVec".
   5588     int WindowBase;
   5589     int WindowScale;
   5590 
   5591     bool operator ==(SDValue OtherVec) { return Vec == OtherVec; }
   5592     ShuffleSourceInfo(SDValue Vec)
   5593         : Vec(Vec), MinElt(UINT_MAX), MaxElt(0), ShuffleVec(Vec), WindowBase(0),
   5594           WindowScale(1) {}
   5595   };
   5596 
   5597   // First gather all vectors used as an immediate source for this BUILD_VECTOR
   5598   // node.
   5599   SmallVector<ShuffleSourceInfo, 2> Sources;
   5600   for (unsigned i = 0; i < NumElts; ++i) {
   5601     SDValue V = Op.getOperand(i);
   5602     if (V.getOpcode() == ISD::UNDEF)
   5603       continue;
   5604     else if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT) {
   5605       // A shuffle can only come from building a vector from various
   5606       // elements of other vectors.
   5607       return SDValue();
   5608     } else if (!isa<ConstantSDNode>(V.getOperand(1))) {
   5609       // Furthermore, shuffles require a constant mask, whereas extractelts
   5610       // accept variable indices.
   5611       return SDValue();
   5612     }
   5613 
   5614     // Add this element source to the list if it's not already there.
   5615     SDValue SourceVec = V.getOperand(0);
   5616     auto Source = std::find(Sources.begin(), Sources.end(), SourceVec);
   5617     if (Source == Sources.end())
   5618       Source = Sources.insert(Sources.end(), ShuffleSourceInfo(SourceVec));
   5619 
   5620     // Update the minimum and maximum lane number seen.
   5621     unsigned EltNo = cast<ConstantSDNode>(V.getOperand(1))->getZExtValue();
   5622     Source->MinElt = std::min(Source->MinElt, EltNo);
   5623     Source->MaxElt = std::max(Source->MaxElt, EltNo);
   5624   }
   5625 
   5626   // Currently only do something sane when at most two source vectors
   5627   // are involved.
   5628   if (Sources.size() > 2)
   5629     return SDValue();
   5630 
   5631   // Find out the smallest element size among result and two sources, and use
   5632   // it as element size to build the shuffle_vector.
   5633   EVT SmallestEltTy = VT.getVectorElementType();
   5634   for (auto &Source : Sources) {
   5635     EVT SrcEltTy = Source.Vec.getValueType().getVectorElementType();
   5636     if (SrcEltTy.bitsLT(SmallestEltTy))
   5637       SmallestEltTy = SrcEltTy;
   5638   }
   5639   unsigned ResMultiplier =
   5640       VT.getVectorElementType().getSizeInBits() / SmallestEltTy.getSizeInBits();
   5641   NumElts = VT.getSizeInBits() / SmallestEltTy.getSizeInBits();
   5642   EVT ShuffleVT = EVT::getVectorVT(*DAG.getContext(), SmallestEltTy, NumElts);
   5643 
   5644   // If the source vector is too wide or too narrow, we may nevertheless be able
   5645   // to construct a compatible shuffle either by concatenating it with UNDEF or
   5646   // extracting a suitable range of elements.
   5647   for (auto &Src : Sources) {
   5648     EVT SrcVT = Src.ShuffleVec.getValueType();
   5649 
   5650     if (SrcVT.getSizeInBits() == VT.getSizeInBits())
   5651       continue;
   5652 
   5653     // This stage of the search produces a source with the same element type as
   5654     // the original, but with a total width matching the BUILD_VECTOR output.
   5655     EVT EltVT = SrcVT.getVectorElementType();
   5656     unsigned NumSrcElts = VT.getSizeInBits() / EltVT.getSizeInBits();
   5657     EVT DestVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumSrcElts);
   5658 
   5659     if (SrcVT.getSizeInBits() < VT.getSizeInBits()) {
   5660       if (2 * SrcVT.getSizeInBits() != VT.getSizeInBits())
   5661         return SDValue();
   5662       // We can pad out the smaller vector for free, so if it's part of a
   5663       // shuffle...
   5664       Src.ShuffleVec =
   5665           DAG.getNode(ISD::CONCAT_VECTORS, dl, DestVT, Src.ShuffleVec,
   5666                       DAG.getUNDEF(Src.ShuffleVec.getValueType()));
   5667       continue;
   5668     }
   5669 
   5670     if (SrcVT.getSizeInBits() != 2 * VT.getSizeInBits())
   5671       return SDValue();
   5672 
   5673     if (Src.MaxElt - Src.MinElt >= NumSrcElts) {
   5674       // Span too large for a VEXT to cope
   5675       return SDValue();
   5676     }
   5677 
   5678     if (Src.MinElt >= NumSrcElts) {
   5679       // The extraction can just take the second half
   5680       Src.ShuffleVec =
   5681           DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
   5682                       DAG.getConstant(NumSrcElts, dl, MVT::i32));
   5683       Src.WindowBase = -NumSrcElts;
   5684     } else if (Src.MaxElt < NumSrcElts) {
   5685       // The extraction can just take the first half
   5686       Src.ShuffleVec =
   5687           DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
   5688                       DAG.getConstant(0, dl, MVT::i32));
   5689     } else {
   5690       // An actual VEXT is needed
   5691       SDValue VEXTSrc1 =
   5692           DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
   5693                       DAG.getConstant(0, dl, MVT::i32));
   5694       SDValue VEXTSrc2 =
   5695           DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec,
   5696                       DAG.getConstant(NumSrcElts, dl, MVT::i32));
   5697 
   5698       Src.ShuffleVec = DAG.getNode(ARMISD::VEXT, dl, DestVT, VEXTSrc1,
   5699                                    VEXTSrc2,
   5700                                    DAG.getConstant(Src.MinElt, dl, MVT::i32));
   5701       Src.WindowBase = -Src.MinElt;
   5702     }
   5703   }
   5704 
   5705   // Another possible incompatibility occurs from the vector element types. We
   5706   // can fix this by bitcasting the source vectors to the same type we intend
   5707   // for the shuffle.
   5708   for (auto &Src : Sources) {
   5709     EVT SrcEltTy = Src.ShuffleVec.getValueType().getVectorElementType();
   5710     if (SrcEltTy == SmallestEltTy)
   5711       continue;
   5712     assert(ShuffleVT.getVectorElementType() == SmallestEltTy);
   5713     Src.ShuffleVec = DAG.getNode(ISD::BITCAST, dl, ShuffleVT, Src.ShuffleVec);
   5714     Src.WindowScale = SrcEltTy.getSizeInBits() / SmallestEltTy.getSizeInBits();
   5715     Src.WindowBase *= Src.WindowScale;
   5716   }
   5717 
   5718   // Final sanity check before we try to actually produce a shuffle.
   5719   DEBUG(
   5720     for (auto Src : Sources)
   5721       assert(Src.ShuffleVec.getValueType() == ShuffleVT);
   5722   );
   5723 
   5724   // The stars all align, our next step is to produce the mask for the shuffle.
   5725   SmallVector<int, 8> Mask(ShuffleVT.getVectorNumElements(), -1);
   5726   int BitsPerShuffleLane = ShuffleVT.getVectorElementType().getSizeInBits();
   5727   for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) {
   5728     SDValue Entry = Op.getOperand(i);
   5729     if (Entry.getOpcode() == ISD::UNDEF)
   5730       continue;
   5731 
   5732     auto Src = std::find(Sources.begin(), Sources.end(), Entry.getOperand(0));
   5733     int EltNo = cast<ConstantSDNode>(Entry.getOperand(1))->getSExtValue();
   5734 
   5735     // EXTRACT_VECTOR_ELT performs an implicit any_ext; BUILD_VECTOR an implicit
   5736     // trunc. So only std::min(SrcBits, DestBits) actually get defined in this
   5737     // segment.
   5738     EVT OrigEltTy = Entry.getOperand(0).getValueType().getVectorElementType();
   5739     int BitsDefined = std::min(OrigEltTy.getSizeInBits(),
   5740                                VT.getVectorElementType().getSizeInBits());
   5741     int LanesDefined = BitsDefined / BitsPerShuffleLane;
   5742 
   5743     // This source is expected to fill ResMultiplier lanes of the final shuffle,
   5744     // starting at the appropriate offset.
   5745     int *LaneMask = &Mask[i * ResMultiplier];
   5746 
   5747     int ExtractBase = EltNo * Src->WindowScale + Src->WindowBase;
   5748     ExtractBase += NumElts * (Src - Sources.begin());
   5749     for (int j = 0; j < LanesDefined; ++j)
   5750       LaneMask[j] = ExtractBase + j;
   5751   }
   5752 
   5753   // Final check before we try to produce nonsense...
   5754   if (!isShuffleMaskLegal(Mask, ShuffleVT))
   5755     return SDValue();
   5756 
   5757   // We can't handle more than two sources. This should have already
   5758   // been checked before this point.
   5759   assert(Sources.size() <= 2 && "Too many sources!");
   5760 
   5761   SDValue ShuffleOps[] = { DAG.getUNDEF(ShuffleVT), DAG.getUNDEF(ShuffleVT) };
   5762   for (unsigned i = 0; i < Sources.size(); ++i)
   5763     ShuffleOps[i] = Sources[i].ShuffleVec;
   5764 
   5765   SDValue Shuffle = DAG.getVectorShuffle(ShuffleVT, dl, ShuffleOps[0],
   5766                                          ShuffleOps[1], &Mask[0]);
   5767   return DAG.getNode(ISD::BITCAST, dl, VT, Shuffle);
   5768 }
   5769 
   5770 /// isShuffleMaskLegal - Targets can use this to indicate that they only
   5771 /// support *some* VECTOR_SHUFFLE operations, those with specific masks.
   5772 /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values
   5773 /// are assumed to be legal.
   5774 bool
   5775 ARMTargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M,
   5776                                       EVT VT) const {
   5777   if (VT.getVectorNumElements() == 4 &&
   5778       (VT.is128BitVector() || VT.is64BitVector())) {
   5779     unsigned PFIndexes[4];
   5780     for (unsigned i = 0; i != 4; ++i) {
   5781       if (M[i] < 0)
   5782         PFIndexes[i] = 8;
   5783       else
   5784         PFIndexes[i] = M[i];
   5785     }
   5786 
   5787     // Compute the index in the perfect shuffle table.
   5788     unsigned PFTableIndex =
   5789       PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
   5790     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
   5791     unsigned Cost = (PFEntry >> 30);
   5792 
   5793     if (Cost <= 4)
   5794       return true;
   5795   }
   5796 
   5797   bool ReverseVEXT, isV_UNDEF;
   5798   unsigned Imm, WhichResult;
   5799 
   5800   unsigned EltSize = VT.getVectorElementType().getSizeInBits();
   5801   return (EltSize >= 32 ||
   5802           ShuffleVectorSDNode::isSplatMask(&M[0], VT) ||
   5803           isVREVMask(M, VT, 64) ||
   5804           isVREVMask(M, VT, 32) ||
   5805           isVREVMask(M, VT, 16) ||
   5806           isVEXTMask(M, VT, ReverseVEXT, Imm) ||
   5807           isVTBLMask(M, VT) ||
   5808           isNEONTwoResultShuffleMask(M, VT, WhichResult, isV_UNDEF) ||
   5809           ((VT == MVT::v8i16 || VT == MVT::v16i8) && isReverseMask(M, VT)));
   5810 }
   5811 
   5812 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
   5813 /// the specified operations to build the shuffle.
   5814 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
   5815                                       SDValue RHS, SelectionDAG &DAG,
   5816                                       SDLoc dl) {
   5817   unsigned OpNum = (PFEntry >> 26) & 0x0F;
   5818   unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
   5819   unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
   5820 
   5821   enum {
   5822     OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
   5823     OP_VREV,
   5824     OP_VDUP0,
   5825     OP_VDUP1,
   5826     OP_VDUP2,
   5827     OP_VDUP3,
   5828     OP_VEXT1,
   5829     OP_VEXT2,
   5830     OP_VEXT3,
   5831     OP_VUZPL, // VUZP, left result
   5832     OP_VUZPR, // VUZP, right result
   5833     OP_VZIPL, // VZIP, left result
   5834     OP_VZIPR, // VZIP, right result
   5835     OP_VTRNL, // VTRN, left result
   5836     OP_VTRNR  // VTRN, right result
   5837   };
   5838 
   5839   if (OpNum == OP_COPY) {
   5840     if (LHSID == (1*9+2)*9+3) return LHS;
   5841     assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
   5842     return RHS;
   5843   }
   5844 
   5845   SDValue OpLHS, OpRHS;
   5846   OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
   5847   OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
   5848   EVT VT = OpLHS.getValueType();
   5849 
   5850   switch (OpNum) {
   5851   default: llvm_unreachable("Unknown shuffle opcode!");
   5852   case OP_VREV:
   5853     // VREV divides the vector in half and swaps within the half.
   5854     if (VT.getVectorElementType() == MVT::i32 ||
   5855         VT.getVectorElementType() == MVT::f32)
   5856       return DAG.getNode(ARMISD::VREV64, dl, VT, OpLHS);
   5857     // vrev <4 x i16> -> VREV32
   5858     if (VT.getVectorElementType() == MVT::i16)
   5859       return DAG.getNode(ARMISD::VREV32, dl, VT, OpLHS);
   5860     // vrev <4 x i8> -> VREV16
   5861     assert(VT.getVectorElementType() == MVT::i8);
   5862     return DAG.getNode(ARMISD::VREV16, dl, VT, OpLHS);
   5863   case OP_VDUP0:
   5864   case OP_VDUP1:
   5865   case OP_VDUP2:
   5866   case OP_VDUP3:
   5867     return DAG.getNode(ARMISD::VDUPLANE, dl, VT,
   5868                        OpLHS, DAG.getConstant(OpNum-OP_VDUP0, dl, MVT::i32));
   5869   case OP_VEXT1:
   5870   case OP_VEXT2:
   5871   case OP_VEXT3:
   5872     return DAG.getNode(ARMISD::VEXT, dl, VT,
   5873                        OpLHS, OpRHS,
   5874                        DAG.getConstant(OpNum - OP_VEXT1 + 1, dl, MVT::i32));
   5875   case OP_VUZPL:
   5876   case OP_VUZPR:
   5877     return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT),
   5878                        OpLHS, OpRHS).getValue(OpNum-OP_VUZPL);
   5879   case OP_VZIPL:
   5880   case OP_VZIPR:
   5881     return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT),
   5882                        OpLHS, OpRHS).getValue(OpNum-OP_VZIPL);
   5883   case OP_VTRNL:
   5884   case OP_VTRNR:
   5885     return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT),
   5886                        OpLHS, OpRHS).getValue(OpNum-OP_VTRNL);
   5887   }
   5888 }
   5889 
   5890 static SDValue LowerVECTOR_SHUFFLEv8i8(SDValue Op,
   5891                                        ArrayRef<int> ShuffleMask,
   5892                                        SelectionDAG &DAG) {
   5893   // Check to see if we can use the VTBL instruction.
   5894   SDValue V1 = Op.getOperand(0);
   5895   SDValue V2 = Op.getOperand(1);
   5896   SDLoc DL(Op);
   5897 
   5898   SmallVector<SDValue, 8> VTBLMask;
   5899   for (ArrayRef<int>::iterator
   5900          I = ShuffleMask.begin(), E = ShuffleMask.end(); I != E; ++I)
   5901     VTBLMask.push_back(DAG.getConstant(*I, DL, MVT::i32));
   5902 
   5903   if (V2.getNode()->getOpcode() == ISD::UNDEF)
   5904     return DAG.getNode(ARMISD::VTBL1, DL, MVT::v8i8, V1,
   5905                        DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v8i8, VTBLMask));
   5906 
   5907   return DAG.getNode(ARMISD::VTBL2, DL, MVT::v8i8, V1, V2,
   5908                      DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v8i8, VTBLMask));
   5909 }
   5910 
   5911 static SDValue LowerReverse_VECTOR_SHUFFLEv16i8_v8i16(SDValue Op,
   5912                                                       SelectionDAG &DAG) {
   5913   SDLoc DL(Op);
   5914   SDValue OpLHS = Op.getOperand(0);
   5915   EVT VT = OpLHS.getValueType();
   5916 
   5917   assert((VT == MVT::v8i16 || VT == MVT::v16i8) &&
   5918          "Expect an v8i16/v16i8 type");
   5919   OpLHS = DAG.getNode(ARMISD::VREV64, DL, VT, OpLHS);
   5920   // For a v16i8 type: After the VREV, we have got <8, ...15, 8, ..., 0>. Now,
   5921   // extract the first 8 bytes into the top double word and the last 8 bytes
   5922   // into the bottom double word. The v8i16 case is similar.
   5923   unsigned ExtractNum = (VT == MVT::v16i8) ? 8 : 4;
   5924   return DAG.getNode(ARMISD::VEXT, DL, VT, OpLHS, OpLHS,
   5925                      DAG.getConstant(ExtractNum, DL, MVT::i32));
   5926 }
   5927 
   5928 static SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) {
   5929   SDValue V1 = Op.getOperand(0);
   5930   SDValue V2 = Op.getOperand(1);
   5931   SDLoc dl(Op);
   5932   EVT VT = Op.getValueType();
   5933   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode());
   5934 
   5935   // Convert shuffles that are directly supported on NEON to target-specific
   5936   // DAG nodes, instead of keeping them as shuffles and matching them again
   5937   // during code selection.  This is more efficient and avoids the possibility
   5938   // of inconsistencies between legalization and selection.
   5939   // FIXME: floating-point vectors should be canonicalized to integer vectors
   5940   // of the same time so that they get CSEd properly.
   5941   ArrayRef<int> ShuffleMask = SVN->getMask();
   5942 
   5943   unsigned EltSize = VT.getVectorElementType().getSizeInBits();
   5944   if (EltSize <= 32) {
   5945     if (ShuffleVectorSDNode::isSplatMask(&ShuffleMask[0], VT)) {
   5946       int Lane = SVN->getSplatIndex();
   5947       // If this is undef splat, generate it via "just" vdup, if possible.
   5948       if (Lane == -1) Lane = 0;
   5949 
   5950       // Test if V1 is a SCALAR_TO_VECTOR.
   5951       if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR) {
   5952         return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
   5953       }
   5954       // Test if V1 is a BUILD_VECTOR which is equivalent to a SCALAR_TO_VECTOR
   5955       // (and probably will turn into a SCALAR_TO_VECTOR once legalization
   5956       // reaches it).
   5957       if (Lane == 0 && V1.getOpcode() == ISD::BUILD_VECTOR &&
   5958           !isa<ConstantSDNode>(V1.getOperand(0))) {
   5959         bool IsScalarToVector = true;
   5960         for (unsigned i = 1, e = V1.getNumOperands(); i != e; ++i)
   5961           if (V1.getOperand(i).getOpcode() != ISD::UNDEF) {
   5962             IsScalarToVector = false;
   5963             break;
   5964           }
   5965         if (IsScalarToVector)
   5966           return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0));
   5967       }
   5968       return DAG.getNode(ARMISD::VDUPLANE, dl, VT, V1,
   5969                          DAG.getConstant(Lane, dl, MVT::i32));
   5970     }
   5971 
   5972     bool ReverseVEXT;
   5973     unsigned Imm;
   5974     if (isVEXTMask(ShuffleMask, VT, ReverseVEXT, Imm)) {
   5975       if (ReverseVEXT)
   5976         std::swap(V1, V2);
   5977       return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V2,
   5978                          DAG.getConstant(Imm, dl, MVT::i32));
   5979     }
   5980 
   5981     if (isVREVMask(ShuffleMask, VT, 64))
   5982       return DAG.getNode(ARMISD::VREV64, dl, VT, V1);
   5983     if (isVREVMask(ShuffleMask, VT, 32))
   5984       return DAG.getNode(ARMISD::VREV32, dl, VT, V1);
   5985     if (isVREVMask(ShuffleMask, VT, 16))
   5986       return DAG.getNode(ARMISD::VREV16, dl, VT, V1);
   5987 
   5988     if (V2->getOpcode() == ISD::UNDEF &&
   5989         isSingletonVEXTMask(ShuffleMask, VT, Imm)) {
   5990       return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V1,
   5991                          DAG.getConstant(Imm, dl, MVT::i32));
   5992     }
   5993 
   5994     // Check for Neon shuffles that modify both input vectors in place.
   5995     // If both results are used, i.e., if there are two shuffles with the same
   5996     // source operands and with masks corresponding to both results of one of
   5997     // these operations, DAG memoization will ensure that a single node is
   5998     // used for both shuffles.
   5999     unsigned WhichResult;
   6000     bool isV_UNDEF;
   6001     if (unsigned ShuffleOpc = isNEONTwoResultShuffleMask(
   6002             ShuffleMask, VT, WhichResult, isV_UNDEF)) {
   6003       if (isV_UNDEF)
   6004         V2 = V1;
   6005       return DAG.getNode(ShuffleOpc, dl, DAG.getVTList(VT, VT), V1, V2)
   6006           .getValue(WhichResult);
   6007     }
   6008 
   6009     // Also check for these shuffles through CONCAT_VECTORS: we canonicalize
   6010     // shuffles that produce a result larger than their operands with:
   6011     //   shuffle(concat(v1, undef), concat(v2, undef))
   6012     // ->
   6013     //   shuffle(concat(v1, v2), undef)
   6014     // because we can access quad vectors (see PerformVECTOR_SHUFFLECombine).
   6015     //
   6016     // This is useful in the general case, but there are special cases where
   6017     // native shuffles produce larger results: the two-result ops.
   6018     //
   6019     // Look through the concat when lowering them:
   6020     //   shuffle(concat(v1, v2), undef)
   6021     // ->
   6022     //   concat(VZIP(v1, v2):0, :1)
   6023     //
   6024     if (V1->getOpcode() == ISD::CONCAT_VECTORS &&
   6025         V2->getOpcode() == ISD::UNDEF) {
   6026       SDValue SubV1 = V1->getOperand(0);
   6027       SDValue SubV2 = V1->getOperand(1);
   6028       EVT SubVT = SubV1.getValueType();
   6029 
   6030       // We expect these to have been canonicalized to -1.
   6031       assert(std::all_of(ShuffleMask.begin(), ShuffleMask.end(), [&](int i) {
   6032         return i < (int)VT.getVectorNumElements();
   6033       }) && "Unexpected shuffle index into UNDEF operand!");
   6034 
   6035       if (unsigned ShuffleOpc = isNEONTwoResultShuffleMask(
   6036               ShuffleMask, SubVT, WhichResult, isV_UNDEF)) {
   6037         if (isV_UNDEF)
   6038           SubV2 = SubV1;
   6039         assert((WhichResult == 0) &&
   6040                "In-place shuffle of concat can only have one result!");
   6041         SDValue Res = DAG.getNode(ShuffleOpc, dl, DAG.getVTList(SubVT, SubVT),
   6042                                   SubV1, SubV2);
   6043         return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, Res.getValue(0),
   6044                            Res.getValue(1));
   6045       }
   6046     }
   6047   }
   6048 
   6049   // If the shuffle is not directly supported and it has 4 elements, use
   6050   // the PerfectShuffle-generated table to synthesize it from other shuffles.
   6051   unsigned NumElts = VT.getVectorNumElements();
   6052   if (NumElts == 4) {
   6053     unsigned PFIndexes[4];
   6054     for (unsigned i = 0; i != 4; ++i) {
   6055       if (ShuffleMask[i] < 0)
   6056         PFIndexes[i] = 8;
   6057       else
   6058         PFIndexes[i] = ShuffleMask[i];
   6059     }
   6060 
   6061     // Compute the index in the perfect shuffle table.
   6062     unsigned PFTableIndex =
   6063       PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
   6064     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
   6065     unsigned Cost = (PFEntry >> 30);
   6066 
   6067     if (Cost <= 4)
   6068       return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
   6069   }
   6070 
   6071   // Implement shuffles with 32- or 64-bit elements as ARMISD::BUILD_VECTORs.
   6072   if (EltSize >= 32) {
   6073     // Do the expansion with floating-point types, since that is what the VFP
   6074     // registers are defined to use, and since i64 is not legal.
   6075     EVT EltVT = EVT::getFloatingPointVT(EltSize);
   6076     EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts);
   6077     V1 = DAG.getNode(ISD::BITCAST, dl, VecVT, V1);
   6078     V2 = DAG.getNode(ISD::BITCAST, dl, VecVT, V2);
   6079     SmallVector<SDValue, 8> Ops;
   6080     for (unsigned i = 0; i < NumElts; ++i) {
   6081       if (ShuffleMask[i] < 0)
   6082         Ops.push_back(DAG.getUNDEF(EltVT));
   6083       else
   6084         Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
   6085                                   ShuffleMask[i] < (int)NumElts ? V1 : V2,
   6086                                   DAG.getConstant(ShuffleMask[i] & (NumElts-1),
   6087                                                   dl, MVT::i32)));
   6088     }
   6089     SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, Ops);
   6090     return DAG.getNode(ISD::BITCAST, dl, VT, Val);
   6091   }
   6092 
   6093   if ((VT == MVT::v8i16 || VT == MVT::v16i8) && isReverseMask(ShuffleMask, VT))
   6094     return LowerReverse_VECTOR_SHUFFLEv16i8_v8i16(Op, DAG);
   6095 
   6096   if (VT == MVT::v8i8) {
   6097     SDValue NewOp = LowerVECTOR_SHUFFLEv8i8(Op, ShuffleMask, DAG);
   6098     if (NewOp.getNode())
   6099       return NewOp;
   6100   }
   6101 
   6102   return SDValue();
   6103 }
   6104 
   6105 static SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
   6106   // INSERT_VECTOR_ELT is legal only for immediate indexes.
   6107   SDValue Lane = Op.getOperand(2);
   6108   if (!isa<ConstantSDNode>(Lane))
   6109     return SDValue();
   6110 
   6111   return Op;
   6112 }
   6113 
   6114 static SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) {
   6115   // EXTRACT_VECTOR_ELT is legal only for immediate indexes.
   6116   SDValue Lane = Op.getOperand(1);
   6117   if (!isa<ConstantSDNode>(Lane))
   6118     return SDValue();
   6119 
   6120   SDValue Vec = Op.getOperand(0);
   6121   if (Op.getValueType() == MVT::i32 &&
   6122       Vec.getValueType().getVectorElementType().getSizeInBits() < 32) {
   6123     SDLoc dl(Op);
   6124     return DAG.getNode(ARMISD::VGETLANEu, dl, MVT::i32, Vec, Lane);
   6125   }
   6126 
   6127   return Op;
   6128 }
   6129 
   6130 static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) {
   6131   // The only time a CONCAT_VECTORS operation can have legal types is when
   6132   // two 64-bit vectors are concatenated to a 128-bit vector.
   6133   assert(Op.getValueType().is128BitVector() && Op.getNumOperands() == 2 &&
   6134          "unexpected CONCAT_VECTORS");
   6135   SDLoc dl(Op);
   6136   SDValue Val = DAG.getUNDEF(MVT::v2f64);
   6137   SDValue Op0 = Op.getOperand(0);
   6138   SDValue Op1 = Op.getOperand(1);
   6139   if (Op0.getOpcode() != ISD::UNDEF)
   6140     Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
   6141                       DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op0),
   6142                       DAG.getIntPtrConstant(0, dl));
   6143   if (Op1.getOpcode() != ISD::UNDEF)
   6144     Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val,
   6145                       DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op1),
   6146                       DAG.getIntPtrConstant(1, dl));
   6147   return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Val);
   6148 }
   6149 
   6150 /// isExtendedBUILD_VECTOR - Check if N is a constant BUILD_VECTOR where each
   6151 /// element has been zero/sign-extended, depending on the isSigned parameter,
   6152 /// from an integer type half its size.
   6153 static bool isExtendedBUILD_VECTOR(SDNode *N, SelectionDAG &DAG,
   6154                                    bool isSigned) {
   6155   // A v2i64 BUILD_VECTOR will have been legalized to a BITCAST from v4i32.
   6156   EVT VT = N->getValueType(0);
   6157   if (VT == MVT::v2i64 && N->getOpcode() == ISD::BITCAST) {
   6158     SDNode *BVN = N->getOperand(0).getNode();
   6159     if (BVN->getValueType(0) != MVT::v4i32 ||
   6160         BVN->getOpcode() != ISD::BUILD_VECTOR)
   6161       return false;
   6162     unsigned LoElt = DAG.getDataLayout().isBigEndian() ? 1 : 0;
   6163     unsigned HiElt = 1 - LoElt;
   6164     ConstantSDNode *Lo0 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt));
   6165     ConstantSDNode *Hi0 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt));
   6166     ConstantSDNode *Lo1 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt+2));
   6167     ConstantSDNode *Hi1 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt+2));
   6168     if (!Lo0 || !Hi0 || !Lo1 || !Hi1)
   6169       return false;
   6170     if (isSigned) {
   6171       if (Hi0->getSExtValue() == Lo0->getSExtValue() >> 32 &&
   6172           Hi1->getSExtValue() == Lo1->getSExtValue() >> 32)
   6173         return true;
   6174     } else {
   6175       if (Hi0->isNullValue() && Hi1->isNullValue())
   6176         return true;
   6177     }
   6178     return false;
   6179   }
   6180 
   6181   if (N->getOpcode() != ISD::BUILD_VECTOR)
   6182     return false;
   6183 
   6184   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
   6185     SDNode *Elt = N->getOperand(i).getNode();
   6186     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Elt)) {
   6187       unsigned EltSize = VT.getVectorElementType().getSizeInBits();
   6188       unsigned HalfSize = EltSize / 2;
   6189       if (isSigned) {
   6190         if (!isIntN(HalfSize, C->getSExtValue()))
   6191           return false;
   6192       } else {
   6193         if (!isUIntN(HalfSize, C->getZExtValue()))
   6194           return false;
   6195       }
   6196       continue;
   6197     }
   6198     return false;
   6199   }
   6200 
   6201   return true;
   6202 }
   6203 
   6204 /// isSignExtended - Check if a node is a vector value that is sign-extended
   6205 /// or a constant BUILD_VECTOR with sign-extended elements.
   6206 static bool isSignExtended(SDNode *N, SelectionDAG &DAG) {
   6207   if (N->getOpcode() == ISD::SIGN_EXTEND || ISD::isSEXTLoad(N))
   6208     return true;
   6209   if (isExtendedBUILD_VECTOR(N, DAG, true))
   6210     return true;
   6211   return false;
   6212 }
   6213 
   6214 /// isZeroExtended - Check if a node is a vector value that is zero-extended
   6215 /// or a constant BUILD_VECTOR with zero-extended elements.
   6216 static bool isZeroExtended(SDNode *N, SelectionDAG &DAG) {
   6217   if (N->getOpcode() == ISD::ZERO_EXTEND || ISD::isZEXTLoad(N))
   6218     return true;
   6219   if (isExtendedBUILD_VECTOR(N, DAG, false))
   6220     return true;
   6221   return false;
   6222 }
   6223 
   6224 static EVT getExtensionTo64Bits(const EVT &OrigVT) {
   6225   if (OrigVT.getSizeInBits() >= 64)
   6226     return OrigVT;
   6227 
   6228   assert(OrigVT.isSimple() && "Expecting a simple value type");
   6229 
   6230   MVT::SimpleValueType OrigSimpleTy = OrigVT.getSimpleVT().SimpleTy;
   6231   switch (OrigSimpleTy) {
   6232   default: llvm_unreachable("Unexpected Vector Type");
   6233   case MVT::v2i8:
   6234   case MVT::v2i16:
   6235      return MVT::v2i32;
   6236   case MVT::v4i8:
   6237     return  MVT::v4i16;
   6238   }
   6239 }
   6240 
   6241 /// AddRequiredExtensionForVMULL - Add a sign/zero extension to extend the total
   6242 /// value size to 64 bits. We need a 64-bit D register as an operand to VMULL.
   6243 /// We insert the required extension here to get the vector to fill a D register.
   6244 static SDValue AddRequiredExtensionForVMULL(SDValue N, SelectionDAG &DAG,
   6245                                             const EVT &OrigTy,
   6246                                             const EVT &ExtTy,
   6247                                             unsigned ExtOpcode) {
   6248   // The vector originally had a size of OrigTy. It was then extended to ExtTy.
   6249   // We expect the ExtTy to be 128-bits total. If the OrigTy is less than
   6250   // 64-bits we need to insert a new extension so that it will be 64-bits.
   6251   assert(ExtTy.is128BitVector() && "Unexpected extension size");
   6252   if (OrigTy.getSizeInBits() >= 64)
   6253     return N;
   6254 
   6255   // Must extend size to at least 64 bits to be used as an operand for VMULL.
   6256   EVT NewVT = getExtensionTo64Bits(OrigTy);
   6257 
   6258   return DAG.getNode(ExtOpcode, SDLoc(N), NewVT, N);
   6259 }
   6260 
   6261 /// SkipLoadExtensionForVMULL - return a load of the original vector size that
   6262 /// does not do any sign/zero extension. If the original vector is less
   6263 /// than 64 bits, an appropriate extension will be added after the load to
   6264 /// reach a total size of 64 bits. We have to add the extension separately
   6265 /// because ARM does not have a sign/zero extending load for vectors.
   6266 static SDValue SkipLoadExtensionForVMULL(LoadSDNode *LD, SelectionDAG& DAG) {
   6267   EVT ExtendedTy = getExtensionTo64Bits(LD->getMemoryVT());
   6268 
   6269   // The load already has the right type.
   6270   if (ExtendedTy == LD->getMemoryVT())
   6271     return DAG.getLoad(LD->getMemoryVT(), SDLoc(LD), LD->getChain(),
   6272                 LD->getBasePtr(), LD->getPointerInfo(), LD->isVolatile(),
   6273                 LD->isNonTemporal(), LD->isInvariant(),
   6274                 LD->getAlignment());
   6275 
   6276   // We need to create a zextload/sextload. We cannot just create a load
   6277   // followed by a zext/zext node because LowerMUL is also run during normal
   6278   // operation legalization where we can't create illegal types.
   6279   return DAG.getExtLoad(LD->getExtensionType(), SDLoc(LD), ExtendedTy,
   6280                         LD->getChain(), LD->getBasePtr(), LD->getPointerInfo(),
   6281                         LD->getMemoryVT(), LD->isVolatile(), LD->isInvariant(),
   6282                         LD->isNonTemporal(), LD->getAlignment());
   6283 }
   6284 
   6285 /// SkipExtensionForVMULL - For a node that is a SIGN_EXTEND, ZERO_EXTEND,
   6286 /// extending load, or BUILD_VECTOR with extended elements, return the
   6287 /// unextended value. The unextended vector should be 64 bits so that it can
   6288 /// be used as an operand to a VMULL instruction. If the original vector size
   6289 /// before extension is less than 64 bits we add a an extension to resize
   6290 /// the vector to 64 bits.
   6291 static SDValue SkipExtensionForVMULL(SDNode *N, SelectionDAG &DAG) {
   6292   if (N->getOpcode() == ISD::SIGN_EXTEND || N->getOpcode() == ISD::ZERO_EXTEND)
   6293     return AddRequiredExtensionForVMULL(N->getOperand(0), DAG,
   6294                                         N->getOperand(0)->getValueType(0),
   6295                                         N->getValueType(0),
   6296                                         N->getOpcode());
   6297 
   6298   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N))
   6299     return SkipLoadExtensionForVMULL(LD, DAG);
   6300 
   6301   // Otherwise, the value must be a BUILD_VECTOR.  For v2i64, it will
   6302   // have been legalized as a BITCAST from v4i32.
   6303   if (N->getOpcode() == ISD::BITCAST) {
   6304     SDNode *BVN = N->getOperand(0).getNode();
   6305     assert(BVN->getOpcode() == ISD::BUILD_VECTOR &&
   6306            BVN->getValueType(0) == MVT::v4i32 && "expected v4i32 BUILD_VECTOR");
   6307     unsigned LowElt = DAG.getDataLayout().isBigEndian() ? 1 : 0;
   6308     return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N), MVT::v2i32,
   6309                        BVN->getOperand(LowElt), BVN->getOperand(LowElt+2));
   6310   }
   6311   // Construct a new BUILD_VECTOR with elements truncated to half the size.
   6312   assert(N->getOpcode() == ISD::BUILD_VECTOR && "expected BUILD_VECTOR");
   6313   EVT VT = N->getValueType(0);
   6314   unsigned EltSize = VT.getVectorElementType().getSizeInBits() / 2;
   6315   unsigned NumElts = VT.getVectorNumElements();
   6316   MVT TruncVT = MVT::getIntegerVT(EltSize);
   6317   SmallVector<SDValue, 8> Ops;
   6318   SDLoc dl(N);
   6319   for (unsigned i = 0; i != NumElts; ++i) {
   6320     ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(i));
   6321     const APInt &CInt = C->getAPIntValue();
   6322     // Element types smaller than 32 bits are not legal, so use i32 elements.
   6323     // The values are implicitly truncated so sext vs. zext doesn't matter.
   6324     Ops.push_back(DAG.getConstant(CInt.zextOrTrunc(32), dl, MVT::i32));
   6325   }
   6326   return DAG.getNode(ISD::BUILD_VECTOR, dl,
   6327                      MVT::getVectorVT(TruncVT, NumElts), Ops);
   6328 }
   6329 
   6330 static bool isAddSubSExt(SDNode *N, SelectionDAG &DAG) {
   6331   unsigned Opcode = N->getOpcode();
   6332   if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
   6333     SDNode *N0 = N->getOperand(0).getNode();
   6334     SDNode *N1 = N->getOperand(1).getNode();
   6335     return N0->hasOneUse() && N1->hasOneUse() &&
   6336       isSignExtended(N0, DAG) && isSignExtended(N1, DAG);
   6337   }
   6338   return false;
   6339 }
   6340 
   6341 static bool isAddSubZExt(SDNode *N, SelectionDAG &DAG) {
   6342   unsigned Opcode = N->getOpcode();
   6343   if (Opcode == ISD::ADD || Opcode == ISD::SUB) {
   6344     SDNode *N0 = N->getOperand(0).getNode();
   6345     SDNode *N1 = N->getOperand(1).getNode();
   6346     return N0->hasOneUse() && N1->hasOneUse() &&
   6347       isZeroExtended(N0, DAG) && isZeroExtended(N1, DAG);
   6348   }
   6349   return false;
   6350 }
   6351 
   6352 static SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) {
   6353   // Multiplications are only custom-lowered for 128-bit vectors so that
   6354   // VMULL can be detected.  Otherwise v2i64 multiplications are not legal.
   6355   EVT VT = Op.getValueType();
   6356   assert(VT.is128BitVector() && VT.isInteger() &&
   6357          "unexpected type for custom-lowering ISD::MUL");
   6358   SDNode *N0 = Op.getOperand(0).getNode();
   6359   SDNode *N1 = Op.getOperand(1).getNode();
   6360   unsigned NewOpc = 0;
   6361   bool isMLA = false;
   6362   bool isN0SExt = isSignExtended(N0, DAG);
   6363   bool isN1SExt = isSignExtended(N1, DAG);
   6364   if (isN0SExt && isN1SExt)
   6365     NewOpc = ARMISD::VMULLs;
   6366   else {
   6367     bool isN0ZExt = isZeroExtended(N0, DAG);
   6368     bool isN1ZExt = isZeroExtended(N1, DAG);
   6369     if (isN0ZExt && isN1ZExt)
   6370       NewOpc = ARMISD::VMULLu;
   6371     else if (isN1SExt || isN1ZExt) {
   6372       // Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these
   6373       // into (s/zext A * s/zext C) + (s/zext B * s/zext C)
   6374       if (isN1SExt && isAddSubSExt(N0, DAG)) {
   6375         NewOpc = ARMISD::VMULLs;
   6376         isMLA = true;
   6377       } else if (isN1ZExt && isAddSubZExt(N0, DAG)) {
   6378         NewOpc = ARMISD::VMULLu;
   6379         isMLA = true;
   6380       } else if (isN0ZExt && isAddSubZExt(N1, DAG)) {
   6381         std::swap(N0, N1);
   6382         NewOpc = ARMISD::VMULLu;
   6383         isMLA = true;
   6384       }
   6385     }
   6386 
   6387     if (!NewOpc) {
   6388       if (VT == MVT::v2i64)
   6389         // Fall through to expand this.  It is not legal.
   6390         return SDValue();
   6391       else
   6392         // Other vector multiplications are legal.
   6393         return Op;
   6394     }
   6395   }
   6396 
   6397   // Legalize to a VMULL instruction.
   6398   SDLoc DL(Op);
   6399   SDValue Op0;
   6400   SDValue Op1 = SkipExtensionForVMULL(N1, DAG);
   6401   if (!isMLA) {
   6402     Op0 = SkipExtensionForVMULL(N0, DAG);
   6403     assert(Op0.getValueType().is64BitVector() &&
   6404            Op1.getValueType().is64BitVector() &&
   6405            "unexpected types for extended operands to VMULL");
   6406     return DAG.getNode(NewOpc, DL, VT, Op0, Op1);
   6407   }
   6408 
   6409   // Optimizing (zext A + zext B) * C, to (VMULL A, C) + (VMULL B, C) during
   6410   // isel lowering to take advantage of no-stall back to back vmul + vmla.
   6411   //   vmull q0, d4, d6
   6412   //   vmlal q0, d5, d6
   6413   // is faster than
   6414   //   vaddl q0, d4, d5
   6415   //   vmovl q1, d6
   6416   //   vmul  q0, q0, q1
   6417   SDValue N00 = SkipExtensionForVMULL(N0->getOperand(0).getNode(), DAG);
   6418   SDValue N01 = SkipExtensionForVMULL(N0->getOperand(1).getNode(), DAG);
   6419   EVT Op1VT = Op1.getValueType();
   6420   return DAG.getNode(N0->getOpcode(), DL, VT,
   6421                      DAG.getNode(NewOpc, DL, VT,
   6422                                DAG.getNode(ISD::BITCAST, DL, Op1VT, N00), Op1),
   6423                      DAG.getNode(NewOpc, DL, VT,
   6424                                DAG.getNode(ISD::BITCAST, DL, Op1VT, N01), Op1));
   6425 }
   6426 
   6427 static SDValue
   6428 LowerSDIV_v4i8(SDValue X, SDValue Y, SDLoc dl, SelectionDAG &DAG) {
   6429   // TODO: Should this propagate fast-math-flags?
   6430 
   6431   // Convert to float
   6432   // float4 xf = vcvt_f32_s32(vmovl_s16(a.lo));
   6433   // float4 yf = vcvt_f32_s32(vmovl_s16(b.lo));
   6434   X = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, X);
   6435   Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, Y);
   6436   X = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, X);
   6437   Y = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, Y);
   6438   // Get reciprocal estimate.
   6439   // float4 recip = vrecpeq_f32(yf);
   6440   Y = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
   6441                    DAG.getConstant(Intrinsic::arm_neon_vrecpe, dl, MVT::i32),
   6442                    Y);
   6443   // Because char has a smaller range than uchar, we can actually get away
   6444   // without any newton steps.  This requires that we use a weird bias
   6445   // of 0xb000, however (again, this has been exhaustively tested).
   6446   // float4 result = as_float4(as_int4(xf*recip) + 0xb000);
   6447   X = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, X, Y);
   6448   X = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, X);
   6449   Y = DAG.getConstant(0xb000, dl, MVT::i32);
   6450   Y = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Y, Y, Y, Y);
   6451   X = DAG.getNode(ISD::ADD, dl, MVT::v4i32, X, Y);
   6452   X = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, X);
   6453   // Convert back to short.
   6454   X = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, X);
   6455   X = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, X);
   6456   return X;
   6457 }
   6458 
   6459 static SDValue
   6460 LowerSDIV_v4i16(SDValue N0, SDValue N1, SDLoc dl, SelectionDAG &DAG) {
   6461   // TODO: Should this propagate fast-math-flags?
   6462 
   6463   SDValue N2;
   6464   // Convert to float.
   6465   // float4 yf = vcvt_f32_s32(vmovl_s16(y));
   6466   // float4 xf = vcvt_f32_s32(vmovl_s16(x));
   6467   N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N0);
   6468   N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N1);
   6469   N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
   6470   N1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
   6471 
   6472   // Use reciprocal estimate and one refinement step.
   6473   // float4 recip = vrecpeq_f32(yf);
   6474   // recip *= vrecpsq_f32(yf, recip);
   6475   N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
   6476                    DAG.getConstant(Intrinsic::arm_neon_vrecpe, dl, MVT::i32),
   6477                    N1);
   6478   N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
   6479                    DAG.getConstant(Intrinsic::arm_neon_vrecps, dl, MVT::i32),
   6480                    N1, N2);
   6481   N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
   6482   // Because short has a smaller range than ushort, we can actually get away
   6483   // with only a single newton step.  This requires that we use a weird bias
   6484   // of 89, however (again, this has been exhaustively tested).
   6485   // float4 result = as_float4(as_int4(xf*recip) + 0x89);
   6486   N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
   6487   N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
   6488   N1 = DAG.getConstant(0x89, dl, MVT::i32);
   6489   N1 = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, N1, N1, N1, N1);
   6490   N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
   6491   N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
   6492   // Convert back to integer and return.
   6493   // return vmovn_s32(vcvt_s32_f32(result));
   6494   N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
   6495   N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
   6496   return N0;
   6497 }
   6498 
   6499 static SDValue LowerSDIV(SDValue Op, SelectionDAG &DAG) {
   6500   EVT VT = Op.getValueType();
   6501   assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
   6502          "unexpected type for custom-lowering ISD::SDIV");
   6503 
   6504   SDLoc dl(Op);
   6505   SDValue N0 = Op.getOperand(0);
   6506   SDValue N1 = Op.getOperand(1);
   6507   SDValue N2, N3;
   6508 
   6509   if (VT == MVT::v8i8) {
   6510     N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N0);
   6511     N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N1);
   6512 
   6513     N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
   6514                      DAG.getIntPtrConstant(4, dl));
   6515     N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
   6516                      DAG.getIntPtrConstant(4, dl));
   6517     N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
   6518                      DAG.getIntPtrConstant(0, dl));
   6519     N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
   6520                      DAG.getIntPtrConstant(0, dl));
   6521 
   6522     N0 = LowerSDIV_v4i8(N0, N1, dl, DAG); // v4i16
   6523     N2 = LowerSDIV_v4i8(N2, N3, dl, DAG); // v4i16
   6524 
   6525     N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
   6526     N0 = LowerCONCAT_VECTORS(N0, DAG);
   6527 
   6528     N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v8i8, N0);
   6529     return N0;
   6530   }
   6531   return LowerSDIV_v4i16(N0, N1, dl, DAG);
   6532 }
   6533 
   6534 static SDValue LowerUDIV(SDValue Op, SelectionDAG &DAG) {
   6535   // TODO: Should this propagate fast-math-flags?
   6536   EVT VT = Op.getValueType();
   6537   assert((VT == MVT::v4i16 || VT == MVT::v8i8) &&
   6538          "unexpected type for custom-lowering ISD::UDIV");
   6539 
   6540   SDLoc dl(Op);
   6541   SDValue N0 = Op.getOperand(0);
   6542   SDValue N1 = Op.getOperand(1);
   6543   SDValue N2, N3;
   6544 
   6545   if (VT == MVT::v8i8) {
   6546     N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N0);
   6547     N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N1);
   6548 
   6549     N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
   6550                      DAG.getIntPtrConstant(4, dl));
   6551     N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
   6552                      DAG.getIntPtrConstant(4, dl));
   6553     N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0,
   6554                      DAG.getIntPtrConstant(0, dl));
   6555     N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1,
   6556                      DAG.getIntPtrConstant(0, dl));
   6557 
   6558     N0 = LowerSDIV_v4i16(N0, N1, dl, DAG); // v4i16
   6559     N2 = LowerSDIV_v4i16(N2, N3, dl, DAG); // v4i16
   6560 
   6561     N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2);
   6562     N0 = LowerCONCAT_VECTORS(N0, DAG);
   6563 
   6564     N0 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v8i8,
   6565                      DAG.getConstant(Intrinsic::arm_neon_vqmovnsu, dl,
   6566                                      MVT::i32),
   6567                      N0);
   6568     return N0;
   6569   }
   6570 
   6571   // v4i16 sdiv ... Convert to float.
   6572   // float4 yf = vcvt_f32_s32(vmovl_u16(y));
   6573   // float4 xf = vcvt_f32_s32(vmovl_u16(x));
   6574   N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N0);
   6575   N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N1);
   6576   N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0);
   6577   SDValue BN1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1);
   6578 
   6579   // Use reciprocal estimate and two refinement steps.
   6580   // float4 recip = vrecpeq_f32(yf);
   6581   // recip *= vrecpsq_f32(yf, recip);
   6582   // recip *= vrecpsq_f32(yf, recip);
   6583   N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
   6584                    DAG.getConstant(Intrinsic::arm_neon_vrecpe, dl, MVT::i32),
   6585                    BN1);
   6586   N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
   6587                    DAG.getConstant(Intrinsic::arm_neon_vrecps, dl, MVT::i32),
   6588                    BN1, N2);
   6589   N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
   6590   N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32,
   6591                    DAG.getConstant(Intrinsic::arm_neon_vrecps, dl, MVT::i32),
   6592                    BN1, N2);
   6593   N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2);
   6594   // Simply multiplying by the reciprocal estimate can leave us a few ulps
   6595   // too low, so we add 2 ulps (exhaustive testing shows that this is enough,
   6596   // and that it will never cause us to return an answer too large).
   6597   // float4 result = as_float4(as_int4(xf*recip) + 2);
   6598   N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2);
   6599   N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0);
   6600   N1 = DAG.getConstant(2, dl, MVT::i32);
   6601   N1 = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, N1, N1, N1, N1);
   6602   N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1);
   6603   N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0);
   6604   // Convert back to integer and return.
   6605   // return vmovn_u32(vcvt_s32_f32(result));
   6606   N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0);
   6607   N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0);
   6608   return N0;
   6609 }
   6610 
   6611 static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) {
   6612   EVT VT = Op.getNode()->getValueType(0);
   6613   SDVTList VTs = DAG.getVTList(VT, MVT::i32);
   6614 
   6615   unsigned Opc;
   6616   bool ExtraOp = false;
   6617   switch (Op.getOpcode()) {
   6618   default: llvm_unreachable("Invalid code");
   6619   case ISD::ADDC: Opc = ARMISD::ADDC; break;
   6620   case ISD::ADDE: Opc = ARMISD::ADDE; ExtraOp = true; break;
   6621   case ISD::SUBC: Opc = ARMISD::SUBC; break;
   6622   case ISD::SUBE: Opc = ARMISD::SUBE; ExtraOp = true; break;
   6623   }
   6624 
   6625   if (!ExtraOp)
   6626     return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0),
   6627                        Op.getOperand(1));
   6628   return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0),
   6629                      Op.getOperand(1), Op.getOperand(2));
   6630 }
   6631 
   6632 SDValue ARMTargetLowering::LowerFSINCOS(SDValue Op, SelectionDAG &DAG) const {
   6633   assert(Subtarget->isTargetDarwin());
   6634 
   6635   // For iOS, we want to call an alternative entry point: __sincos_stret,
   6636   // return values are passed via sret.
   6637   SDLoc dl(Op);
   6638   SDValue Arg = Op.getOperand(0);
   6639   EVT ArgVT = Arg.getValueType();
   6640   Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
   6641   auto PtrVT = getPointerTy(DAG.getDataLayout());
   6642 
   6643   MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
   6644   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   6645 
   6646   // Pair of floats / doubles used to pass the result.
   6647   Type *RetTy = StructType::get(ArgTy, ArgTy, nullptr);
   6648   auto &DL = DAG.getDataLayout();
   6649 
   6650   ArgListTy Args;
   6651   bool ShouldUseSRet = Subtarget->isAPCS_ABI();
   6652   SDValue SRet;
   6653   if (ShouldUseSRet) {
   6654     // Create stack object for sret.
   6655     const uint64_t ByteSize = DL.getTypeAllocSize(RetTy);
   6656     const unsigned StackAlign = DL.getPrefTypeAlignment(RetTy);
   6657     int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign, false);
   6658     SRet = DAG.getFrameIndex(FrameIdx, TLI.getPointerTy(DL));
   6659 
   6660     ArgListEntry Entry;
   6661     Entry.Node = SRet;
   6662     Entry.Ty = RetTy->getPointerTo();
   6663     Entry.isSExt = false;
   6664     Entry.isZExt = false;
   6665     Entry.isSRet = true;
   6666     Args.push_back(Entry);
   6667     RetTy = Type::getVoidTy(*DAG.getContext());
   6668   }
   6669 
   6670   ArgListEntry Entry;
   6671   Entry.Node = Arg;
   6672   Entry.Ty = ArgTy;
   6673   Entry.isSExt = false;
   6674   Entry.isZExt = false;
   6675   Args.push_back(Entry);
   6676 
   6677   const char *LibcallName =
   6678       (ArgVT == MVT::f64) ? "__sincos_stret" : "__sincosf_stret";
   6679   RTLIB::Libcall LC =
   6680       (ArgVT == MVT::f64) ? RTLIB::SINCOS_F64 : RTLIB::SINCOS_F32;
   6681   CallingConv::ID CC = getLibcallCallingConv(LC);
   6682   SDValue Callee = DAG.getExternalSymbol(LibcallName, getPointerTy(DL));
   6683 
   6684   TargetLowering::CallLoweringInfo CLI(DAG);
   6685   CLI.setDebugLoc(dl)
   6686       .setChain(DAG.getEntryNode())
   6687       .setCallee(CC, RetTy, Callee, std::move(Args), 0)
   6688       .setDiscardResult(ShouldUseSRet);
   6689   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
   6690 
   6691   if (!ShouldUseSRet)
   6692     return CallResult.first;
   6693 
   6694   SDValue LoadSin = DAG.getLoad(ArgVT, dl, CallResult.second, SRet,
   6695                                 MachinePointerInfo(), false, false, false, 0);
   6696 
   6697   // Address of cos field.
   6698   SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, SRet,
   6699                             DAG.getIntPtrConstant(ArgVT.getStoreSize(), dl));
   6700   SDValue LoadCos = DAG.getLoad(ArgVT, dl, LoadSin.getValue(1), Add,
   6701                                 MachinePointerInfo(), false, false, false, 0);
   6702 
   6703   SDVTList Tys = DAG.getVTList(ArgVT, ArgVT);
   6704   return DAG.getNode(ISD::MERGE_VALUES, dl, Tys,
   6705                      LoadSin.getValue(0), LoadCos.getValue(0));
   6706 }
   6707 
   6708 SDValue ARMTargetLowering::LowerWindowsDIVLibCall(SDValue Op, SelectionDAG &DAG,
   6709                                                   bool Signed,
   6710                                                   SDValue &Chain) const {
   6711   EVT VT = Op.getValueType();
   6712   assert((VT == MVT::i32 || VT == MVT::i64) &&
   6713          "unexpected type for custom lowering DIV");
   6714   SDLoc dl(Op);
   6715 
   6716   const auto &DL = DAG.getDataLayout();
   6717   const auto &TLI = DAG.getTargetLoweringInfo();
   6718 
   6719   const char *Name = nullptr;
   6720   if (Signed)
   6721     Name = (VT == MVT::i32) ? "__rt_sdiv" : "__rt_sdiv64";
   6722   else
   6723     Name = (VT == MVT::i32) ? "__rt_udiv" : "__rt_udiv64";
   6724 
   6725   SDValue ES = DAG.getExternalSymbol(Name, TLI.getPointerTy(DL));
   6726 
   6727   ARMTargetLowering::ArgListTy Args;
   6728 
   6729   for (auto AI : {1, 0}) {
   6730     ArgListEntry Arg;
   6731     Arg.Node = Op.getOperand(AI);
   6732     Arg.Ty = Arg.Node.getValueType().getTypeForEVT(*DAG.getContext());
   6733     Args.push_back(Arg);
   6734   }
   6735 
   6736   CallLoweringInfo CLI(DAG);
   6737   CLI.setDebugLoc(dl)
   6738     .setChain(Chain)
   6739     .setCallee(CallingConv::ARM_AAPCS_VFP, VT.getTypeForEVT(*DAG.getContext()),
   6740                ES, std::move(Args), 0);
   6741 
   6742   return LowerCallTo(CLI).first;
   6743 }
   6744 
   6745 SDValue ARMTargetLowering::LowerDIV_Windows(SDValue Op, SelectionDAG &DAG,
   6746                                             bool Signed) const {
   6747   assert(Op.getValueType() == MVT::i32 &&
   6748          "unexpected type for custom lowering DIV");
   6749   SDLoc dl(Op);
   6750 
   6751   SDValue DBZCHK = DAG.getNode(ARMISD::WIN__DBZCHK, dl, MVT::Other,
   6752                                DAG.getEntryNode(), Op.getOperand(1));
   6753 
   6754   return LowerWindowsDIVLibCall(Op, DAG, Signed, DBZCHK);
   6755 }
   6756 
   6757 void ARMTargetLowering::ExpandDIV_Windows(
   6758     SDValue Op, SelectionDAG &DAG, bool Signed,
   6759     SmallVectorImpl<SDValue> &Results) const {
   6760   const auto &DL = DAG.getDataLayout();
   6761   const auto &TLI = DAG.getTargetLoweringInfo();
   6762 
   6763   assert(Op.getValueType() == MVT::i64 &&
   6764          "unexpected type for custom lowering DIV");
   6765   SDLoc dl(Op);
   6766 
   6767   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op.getOperand(1),
   6768                            DAG.getConstant(0, dl, MVT::i32));
   6769   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op.getOperand(1),
   6770                            DAG.getConstant(1, dl, MVT::i32));
   6771   SDValue Or = DAG.getNode(ISD::OR, dl, MVT::i32, Lo, Hi);
   6772 
   6773   SDValue DBZCHK =
   6774       DAG.getNode(ARMISD::WIN__DBZCHK, dl, MVT::Other, DAG.getEntryNode(), Or);
   6775 
   6776   SDValue Result = LowerWindowsDIVLibCall(Op, DAG, Signed, DBZCHK);
   6777 
   6778   SDValue Lower = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Result);
   6779   SDValue Upper = DAG.getNode(ISD::SRL, dl, MVT::i64, Result,
   6780                               DAG.getConstant(32, dl, TLI.getPointerTy(DL)));
   6781   Upper = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Upper);
   6782 
   6783   Results.push_back(Lower);
   6784   Results.push_back(Upper);
   6785 }
   6786 
   6787 static SDValue LowerAtomicLoadStore(SDValue Op, SelectionDAG &DAG) {
   6788   // Monotonic load/store is legal for all targets
   6789   if (cast<AtomicSDNode>(Op)->getOrdering() <= Monotonic)
   6790     return Op;
   6791 
   6792   // Acquire/Release load/store is not legal for targets without a
   6793   // dmb or equivalent available.
   6794   return SDValue();
   6795 }
   6796 
   6797 static void ReplaceREADCYCLECOUNTER(SDNode *N,
   6798                                     SmallVectorImpl<SDValue> &Results,
   6799                                     SelectionDAG &DAG,
   6800                                     const ARMSubtarget *Subtarget) {
   6801   SDLoc DL(N);
   6802   // Under Power Management extensions, the cycle-count is:
   6803   //    mrc p15, #0, <Rt>, c9, c13, #0
   6804   SDValue Ops[] = { N->getOperand(0), // Chain
   6805                     DAG.getConstant(Intrinsic::arm_mrc, DL, MVT::i32),
   6806                     DAG.getConstant(15, DL, MVT::i32),
   6807                     DAG.getConstant(0, DL, MVT::i32),
   6808                     DAG.getConstant(9, DL, MVT::i32),
   6809                     DAG.getConstant(13, DL, MVT::i32),
   6810                     DAG.getConstant(0, DL, MVT::i32)
   6811   };
   6812 
   6813   SDValue Cycles32 = DAG.getNode(ISD::INTRINSIC_W_CHAIN, DL,
   6814                                  DAG.getVTList(MVT::i32, MVT::Other), Ops);
   6815   Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Cycles32,
   6816                                 DAG.getConstant(0, DL, MVT::i32)));
   6817   Results.push_back(Cycles32.getValue(1));
   6818 }
   6819 
   6820 SDValue ARMTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
   6821   switch (Op.getOpcode()) {
   6822   default: llvm_unreachable("Don't know how to custom lower this!");
   6823   case ISD::WRITE_REGISTER: return LowerWRITE_REGISTER(Op, DAG);
   6824   case ISD::ConstantPool:  return LowerConstantPool(Op, DAG);
   6825   case ISD::BlockAddress:  return LowerBlockAddress(Op, DAG);
   6826   case ISD::GlobalAddress:
   6827     switch (Subtarget->getTargetTriple().getObjectFormat()) {
   6828     default: llvm_unreachable("unknown object format");
   6829     case Triple::COFF:
   6830       return LowerGlobalAddressWindows(Op, DAG);
   6831     case Triple::ELF:
   6832       return LowerGlobalAddressELF(Op, DAG);
   6833     case Triple::MachO:
   6834       return LowerGlobalAddressDarwin(Op, DAG);
   6835     }
   6836   case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
   6837   case ISD::SELECT:        return LowerSELECT(Op, DAG);
   6838   case ISD::SELECT_CC:     return LowerSELECT_CC(Op, DAG);
   6839   case ISD::BR_CC:         return LowerBR_CC(Op, DAG);
   6840   case ISD::BR_JT:         return LowerBR_JT(Op, DAG);
   6841   case ISD::VASTART:       return LowerVASTART(Op, DAG);
   6842   case ISD::ATOMIC_FENCE:  return LowerATOMIC_FENCE(Op, DAG, Subtarget);
   6843   case ISD::PREFETCH:      return LowerPREFETCH(Op, DAG, Subtarget);
   6844   case ISD::SINT_TO_FP:
   6845   case ISD::UINT_TO_FP:    return LowerINT_TO_FP(Op, DAG);
   6846   case ISD::FP_TO_SINT:
   6847   case ISD::FP_TO_UINT:    return LowerFP_TO_INT(Op, DAG);
   6848   case ISD::FCOPYSIGN:     return LowerFCOPYSIGN(Op, DAG);
   6849   case ISD::RETURNADDR:    return LowerRETURNADDR(Op, DAG);
   6850   case ISD::FRAMEADDR:     return LowerFRAMEADDR(Op, DAG);
   6851   case ISD::EH_SJLJ_SETJMP: return LowerEH_SJLJ_SETJMP(Op, DAG);
   6852   case ISD::EH_SJLJ_LONGJMP: return LowerEH_SJLJ_LONGJMP(Op, DAG);
   6853   case ISD::EH_SJLJ_SETUP_DISPATCH: return LowerEH_SJLJ_SETUP_DISPATCH(Op, DAG);
   6854   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG,
   6855                                                                Subtarget);
   6856   case ISD::BITCAST:       return ExpandBITCAST(Op.getNode(), DAG);
   6857   case ISD::SHL:
   6858   case ISD::SRL:
   6859   case ISD::SRA:           return LowerShift(Op.getNode(), DAG, Subtarget);
   6860   case ISD::SREM:          return LowerREM(Op.getNode(), DAG);
   6861   case ISD::UREM:          return LowerREM(Op.getNode(), DAG);
   6862   case ISD::SHL_PARTS:     return LowerShiftLeftParts(Op, DAG);
   6863   case ISD::SRL_PARTS:
   6864   case ISD::SRA_PARTS:     return LowerShiftRightParts(Op, DAG);
   6865   case ISD::CTTZ:
   6866   case ISD::CTTZ_ZERO_UNDEF: return LowerCTTZ(Op.getNode(), DAG, Subtarget);
   6867   case ISD::CTPOP:         return LowerCTPOP(Op.getNode(), DAG, Subtarget);
   6868   case ISD::SETCC:         return LowerVSETCC(Op, DAG);
   6869   case ISD::ConstantFP:    return LowerConstantFP(Op, DAG, Subtarget);
   6870   case ISD::BUILD_VECTOR:  return LowerBUILD_VECTOR(Op, DAG, Subtarget);
   6871   case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
   6872   case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG);
   6873   case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG);
   6874   case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
   6875   case ISD::FLT_ROUNDS_:   return LowerFLT_ROUNDS_(Op, DAG);
   6876   case ISD::MUL:           return LowerMUL(Op, DAG);
   6877   case ISD::SDIV:          return LowerSDIV(Op, DAG);
   6878   case ISD::UDIV:          return LowerUDIV(Op, DAG);
   6879   case ISD::ADDC:
   6880   case ISD::ADDE:
   6881   case ISD::SUBC:
   6882   case ISD::SUBE:          return LowerADDC_ADDE_SUBC_SUBE(Op, DAG);
   6883   case ISD::SADDO:
   6884   case ISD::UADDO:
   6885   case ISD::SSUBO:
   6886   case ISD::USUBO:
   6887     return LowerXALUO(Op, DAG);
   6888   case ISD::ATOMIC_LOAD:
   6889   case ISD::ATOMIC_STORE:  return LowerAtomicLoadStore(Op, DAG);
   6890   case ISD::FSINCOS:       return LowerFSINCOS(Op, DAG);
   6891   case ISD::SDIVREM:
   6892   case ISD::UDIVREM:       return LowerDivRem(Op, DAG);
   6893   case ISD::DYNAMIC_STACKALLOC:
   6894     if (Subtarget->getTargetTriple().isWindowsItaniumEnvironment())
   6895       return LowerDYNAMIC_STACKALLOC(Op, DAG);
   6896     llvm_unreachable("Don't know how to custom lower this!");
   6897   case ISD::FP_ROUND: return LowerFP_ROUND(Op, DAG);
   6898   case ISD::FP_EXTEND: return LowerFP_EXTEND(Op, DAG);
   6899   case ARMISD::WIN__DBZCHK: return SDValue();
   6900   }
   6901 }
   6902 
   6903 /// ReplaceNodeResults - Replace the results of node with an illegal result
   6904 /// type with new values built out of custom code.
   6905 void ARMTargetLowering::ReplaceNodeResults(SDNode *N,
   6906                                            SmallVectorImpl<SDValue> &Results,
   6907                                            SelectionDAG &DAG) const {
   6908   SDValue Res;
   6909   switch (N->getOpcode()) {
   6910   default:
   6911     llvm_unreachable("Don't know how to custom expand this!");
   6912   case ISD::READ_REGISTER:
   6913     ExpandREAD_REGISTER(N, Results, DAG);
   6914     break;
   6915   case ISD::BITCAST:
   6916     Res = ExpandBITCAST(N, DAG);
   6917     break;
   6918   case ISD::SRL:
   6919   case ISD::SRA:
   6920     Res = Expand64BitShift(N, DAG, Subtarget);
   6921     break;
   6922   case ISD::SREM:
   6923   case ISD::UREM:
   6924     Res = LowerREM(N, DAG);
   6925     break;
   6926   case ISD::READCYCLECOUNTER:
   6927     ReplaceREADCYCLECOUNTER(N, Results, DAG, Subtarget);
   6928     return;
   6929   case ISD::UDIV:
   6930   case ISD::SDIV:
   6931     assert(Subtarget->isTargetWindows() && "can only expand DIV on Windows");
   6932     return ExpandDIV_Windows(SDValue(N, 0), DAG, N->getOpcode() == ISD::SDIV,
   6933                              Results);
   6934   }
   6935   if (Res.getNode())
   6936     Results.push_back(Res);
   6937 }
   6938 
   6939 //===----------------------------------------------------------------------===//
   6940 //                           ARM Scheduler Hooks
   6941 //===----------------------------------------------------------------------===//
   6942 
   6943 /// SetupEntryBlockForSjLj - Insert code into the entry block that creates and
   6944 /// registers the function context.
   6945 void ARMTargetLowering::
   6946 SetupEntryBlockForSjLj(MachineInstr *MI, MachineBasicBlock *MBB,
   6947                        MachineBasicBlock *DispatchBB, int FI) const {
   6948   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
   6949   DebugLoc dl = MI->getDebugLoc();
   6950   MachineFunction *MF = MBB->getParent();
   6951   MachineRegisterInfo *MRI = &MF->getRegInfo();
   6952   MachineConstantPool *MCP = MF->getConstantPool();
   6953   ARMFunctionInfo *AFI = MF->getInfo<ARMFunctionInfo>();
   6954   const Function *F = MF->getFunction();
   6955 
   6956   bool isThumb = Subtarget->isThumb();
   6957   bool isThumb2 = Subtarget->isThumb2();
   6958 
   6959   unsigned PCLabelId = AFI->createPICLabelUId();
   6960   unsigned PCAdj = (isThumb || isThumb2) ? 4 : 8;
   6961   ARMConstantPoolValue *CPV =
   6962     ARMConstantPoolMBB::Create(F->getContext(), DispatchBB, PCLabelId, PCAdj);
   6963   unsigned CPI = MCP->getConstantPoolIndex(CPV, 4);
   6964 
   6965   const TargetRegisterClass *TRC = isThumb ? &ARM::tGPRRegClass
   6966                                            : &ARM::GPRRegClass;
   6967 
   6968   // Grab constant pool and fixed stack memory operands.
   6969   MachineMemOperand *CPMMO =
   6970       MF->getMachineMemOperand(MachinePointerInfo::getConstantPool(*MF),
   6971                                MachineMemOperand::MOLoad, 4, 4);
   6972 
   6973   MachineMemOperand *FIMMOSt =
   6974       MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(*MF, FI),
   6975                                MachineMemOperand::MOStore, 4, 4);
   6976 
   6977   // Load the address of the dispatch MBB into the jump buffer.
   6978   if (isThumb2) {
   6979     // Incoming value: jbuf
   6980     //   ldr.n  r5, LCPI1_1
   6981     //   orr    r5, r5, #1
   6982     //   add    r5, pc
   6983     //   str    r5, [$jbuf, #+4] ; &jbuf[1]
   6984     unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
   6985     AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::t2LDRpci), NewVReg1)
   6986                    .addConstantPoolIndex(CPI)
   6987                    .addMemOperand(CPMMO));
   6988     // Set the low bit because of thumb mode.
   6989     unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
   6990     AddDefaultCC(
   6991       AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::t2ORRri), NewVReg2)
   6992                      .addReg(NewVReg1, RegState::Kill)
   6993                      .addImm(0x01)));
   6994     unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
   6995     BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg3)
   6996       .addReg(NewVReg2, RegState::Kill)
   6997       .addImm(PCLabelId);
   6998     AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::t2STRi12))
   6999                    .addReg(NewVReg3, RegState::Kill)
   7000                    .addFrameIndex(FI)
   7001                    .addImm(36)  // &jbuf[1] :: pc
   7002                    .addMemOperand(FIMMOSt));
   7003   } else if (isThumb) {
   7004     // Incoming value: jbuf
   7005     //   ldr.n  r1, LCPI1_4
   7006     //   add    r1, pc
   7007     //   mov    r2, #1
   7008     //   orrs   r1, r2
   7009     //   add    r2, $jbuf, #+4 ; &jbuf[1]
   7010     //   str    r1, [r2]
   7011     unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
   7012     AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tLDRpci), NewVReg1)
   7013                    .addConstantPoolIndex(CPI)
   7014                    .addMemOperand(CPMMO));
   7015     unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
   7016     BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg2)
   7017       .addReg(NewVReg1, RegState::Kill)
   7018       .addImm(PCLabelId);
   7019     // Set the low bit because of thumb mode.
   7020     unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
   7021     AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tMOVi8), NewVReg3)
   7022                    .addReg(ARM::CPSR, RegState::Define)
   7023                    .addImm(1));
   7024     unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
   7025     AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tORR), NewVReg4)
   7026                    .addReg(ARM::CPSR, RegState::Define)
   7027                    .addReg(NewVReg2, RegState::Kill)
   7028                    .addReg(NewVReg3, RegState::Kill));
   7029     unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
   7030     BuildMI(*MBB, MI, dl, TII->get(ARM::tADDframe), NewVReg5)
   7031             .addFrameIndex(FI)
   7032             .addImm(36); // &jbuf[1] :: pc
   7033     AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tSTRi))
   7034                    .addReg(NewVReg4, RegState::Kill)
   7035                    .addReg(NewVReg5, RegState::Kill)
   7036                    .addImm(0)
   7037                    .addMemOperand(FIMMOSt));
   7038   } else {
   7039     // Incoming value: jbuf
   7040     //   ldr  r1, LCPI1_1
   7041     //   add  r1, pc, r1
   7042     //   str  r1, [$jbuf, #+4] ; &jbuf[1]
   7043     unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
   7044     AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::LDRi12),  NewVReg1)
   7045                    .addConstantPoolIndex(CPI)
   7046                    .addImm(0)
   7047                    .addMemOperand(CPMMO));
   7048     unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
   7049     AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::PICADD), NewVReg2)
   7050                    .addReg(NewVReg1, RegState::Kill)
   7051                    .addImm(PCLabelId));
   7052     AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::STRi12))
   7053                    .addReg(NewVReg2, RegState::Kill)
   7054                    .addFrameIndex(FI)
   7055                    .addImm(36)  // &jbuf[1] :: pc
   7056                    .addMemOperand(FIMMOSt));
   7057   }
   7058 }
   7059 
   7060 void ARMTargetLowering::EmitSjLjDispatchBlock(MachineInstr *MI,
   7061                                               MachineBasicBlock *MBB) const {
   7062   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
   7063   DebugLoc dl = MI->getDebugLoc();
   7064   MachineFunction *MF = MBB->getParent();
   7065   MachineRegisterInfo *MRI = &MF->getRegInfo();
   7066   MachineFrameInfo *MFI = MF->getFrameInfo();
   7067   int FI = MFI->getFunctionContextIndex();
   7068 
   7069   const TargetRegisterClass *TRC = Subtarget->isThumb() ? &ARM::tGPRRegClass
   7070                                                         : &ARM::GPRnopcRegClass;
   7071 
   7072   // Get a mapping of the call site numbers to all of the landing pads they're
   7073   // associated with.
   7074   DenseMap<unsigned, SmallVector<MachineBasicBlock*, 2> > CallSiteNumToLPad;
   7075   unsigned MaxCSNum = 0;
   7076   MachineModuleInfo &MMI = MF->getMMI();
   7077   for (MachineFunction::iterator BB = MF->begin(), E = MF->end(); BB != E;
   7078        ++BB) {
   7079     if (!BB->isEHPad()) continue;
   7080 
   7081     // FIXME: We should assert that the EH_LABEL is the first MI in the landing
   7082     // pad.
   7083     for (MachineBasicBlock::iterator
   7084            II = BB->begin(), IE = BB->end(); II != IE; ++II) {
   7085       if (!II->isEHLabel()) continue;
   7086 
   7087       MCSymbol *Sym = II->getOperand(0).getMCSymbol();
   7088       if (!MMI.hasCallSiteLandingPad(Sym)) continue;
   7089 
   7090       SmallVectorImpl<unsigned> &CallSiteIdxs = MMI.getCallSiteLandingPad(Sym);
   7091       for (SmallVectorImpl<unsigned>::iterator
   7092              CSI = CallSiteIdxs.begin(), CSE = CallSiteIdxs.end();
   7093            CSI != CSE; ++CSI) {
   7094         CallSiteNumToLPad[*CSI].push_back(&*BB);
   7095         MaxCSNum = std::max(MaxCSNum, *CSI);
   7096       }
   7097       break;
   7098     }
   7099   }
   7100 
   7101   // Get an ordered list of the machine basic blocks for the jump table.
   7102   std::vector<MachineBasicBlock*> LPadList;
   7103   SmallPtrSet<MachineBasicBlock*, 64> InvokeBBs;
   7104   LPadList.reserve(CallSiteNumToLPad.size());
   7105   for (unsigned I = 1; I <= MaxCSNum; ++I) {
   7106     SmallVectorImpl<MachineBasicBlock*> &MBBList = CallSiteNumToLPad[I];
   7107     for (SmallVectorImpl<MachineBasicBlock*>::iterator
   7108            II = MBBList.begin(), IE = MBBList.end(); II != IE; ++II) {
   7109       LPadList.push_back(*II);
   7110       InvokeBBs.insert((*II)->pred_begin(), (*II)->pred_end());
   7111     }
   7112   }
   7113 
   7114   assert(!LPadList.empty() &&
   7115          "No landing pad destinations for the dispatch jump table!");
   7116 
   7117   // Create the jump table and associated information.
   7118   MachineJumpTableInfo *JTI =
   7119     MF->getOrCreateJumpTableInfo(MachineJumpTableInfo::EK_Inline);
   7120   unsigned MJTI = JTI->createJumpTableIndex(LPadList);
   7121   Reloc::Model RelocM = getTargetMachine().getRelocationModel();
   7122 
   7123   // Create the MBBs for the dispatch code.
   7124 
   7125   // Shove the dispatch's address into the return slot in the function context.
   7126   MachineBasicBlock *DispatchBB = MF->CreateMachineBasicBlock();
   7127   DispatchBB->setIsEHPad();
   7128 
   7129   MachineBasicBlock *TrapBB = MF->CreateMachineBasicBlock();
   7130   unsigned trap_opcode;
   7131   if (Subtarget->isThumb())
   7132     trap_opcode = ARM::tTRAP;
   7133   else
   7134     trap_opcode = Subtarget->useNaClTrap() ? ARM::TRAPNaCl : ARM::TRAP;
   7135 
   7136   BuildMI(TrapBB, dl, TII->get(trap_opcode));
   7137   DispatchBB->addSuccessor(TrapBB);
   7138 
   7139   MachineBasicBlock *DispContBB = MF->CreateMachineBasicBlock();
   7140   DispatchBB->addSuccessor(DispContBB);
   7141 
   7142   // Insert and MBBs.
   7143   MF->insert(MF->end(), DispatchBB);
   7144   MF->insert(MF->end(), DispContBB);
   7145   MF->insert(MF->end(), TrapBB);
   7146 
   7147   // Insert code into the entry block that creates and registers the function
   7148   // context.
   7149   SetupEntryBlockForSjLj(MI, MBB, DispatchBB, FI);
   7150 
   7151   MachineMemOperand *FIMMOLd = MF->getMachineMemOperand(
   7152       MachinePointerInfo::getFixedStack(*MF, FI),
   7153       MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile, 4, 4);
   7154 
   7155   MachineInstrBuilder MIB;
   7156   MIB = BuildMI(DispatchBB, dl, TII->get(ARM::Int_eh_sjlj_dispatchsetup));
   7157 
   7158   const ARMBaseInstrInfo *AII = static_cast<const ARMBaseInstrInfo*>(TII);
   7159   const ARMBaseRegisterInfo &RI = AII->getRegisterInfo();
   7160 
   7161   // Add a register mask with no preserved registers.  This results in all
   7162   // registers being marked as clobbered.
   7163   MIB.addRegMask(RI.getNoPreservedMask());
   7164 
   7165   unsigned NumLPads = LPadList.size();
   7166   if (Subtarget->isThumb2()) {
   7167     unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
   7168     AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2LDRi12), NewVReg1)
   7169                    .addFrameIndex(FI)
   7170                    .addImm(4)
   7171                    .addMemOperand(FIMMOLd));
   7172 
   7173     if (NumLPads < 256) {
   7174       AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPri))
   7175                      .addReg(NewVReg1)
   7176                      .addImm(LPadList.size()));
   7177     } else {
   7178       unsigned VReg1 = MRI->createVirtualRegister(TRC);
   7179       AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVi16), VReg1)
   7180                      .addImm(NumLPads & 0xFFFF));
   7181 
   7182       unsigned VReg2 = VReg1;
   7183       if ((NumLPads & 0xFFFF0000) != 0) {
   7184         VReg2 = MRI->createVirtualRegister(TRC);
   7185         AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVTi16), VReg2)
   7186                        .addReg(VReg1)
   7187                        .addImm(NumLPads >> 16));
   7188       }
   7189 
   7190       AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPrr))
   7191                      .addReg(NewVReg1)
   7192                      .addReg(VReg2));
   7193     }
   7194 
   7195     BuildMI(DispatchBB, dl, TII->get(ARM::t2Bcc))
   7196       .addMBB(TrapBB)
   7197       .addImm(ARMCC::HI)
   7198       .addReg(ARM::CPSR);
   7199 
   7200     unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
   7201     AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::t2LEApcrelJT),NewVReg3)
   7202                    .addJumpTableIndex(MJTI));
   7203 
   7204     unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
   7205     AddDefaultCC(
   7206       AddDefaultPred(
   7207         BuildMI(DispContBB, dl, TII->get(ARM::t2ADDrs), NewVReg4)
   7208         .addReg(NewVReg3, RegState::Kill)
   7209         .addReg(NewVReg1)
   7210         .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2))));
   7211 
   7212     BuildMI(DispContBB, dl, TII->get(ARM::t2BR_JT))
   7213       .addReg(NewVReg4, RegState::Kill)
   7214       .addReg(NewVReg1)
   7215       .addJumpTableIndex(MJTI);
   7216   } else if (Subtarget->isThumb()) {
   7217     unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
   7218     AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tLDRspi), NewVReg1)
   7219                    .addFrameIndex(FI)
   7220                    .addImm(1)
   7221                    .addMemOperand(FIMMOLd));
   7222 
   7223     if (NumLPads < 256) {
   7224       AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tCMPi8))
   7225                      .addReg(NewVReg1)
   7226                      .addImm(NumLPads));
   7227     } else {
   7228       MachineConstantPool *ConstantPool = MF->getConstantPool();
   7229       Type *Int32Ty = Type::getInt32Ty(MF->getFunction()->getContext());
   7230       const Constant *C = ConstantInt::get(Int32Ty, NumLPads);
   7231 
   7232       // MachineConstantPool wants an explicit alignment.
   7233       unsigned Align = MF->getDataLayout().getPrefTypeAlignment(Int32Ty);
   7234       if (Align == 0)
   7235         Align = MF->getDataLayout().getTypeAllocSize(C->getType());
   7236       unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
   7237 
   7238       unsigned VReg1 = MRI->createVirtualRegister(TRC);
   7239       AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tLDRpci))
   7240                      .addReg(VReg1, RegState::Define)
   7241                      .addConstantPoolIndex(Idx));
   7242       AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tCMPr))
   7243                      .addReg(NewVReg1)
   7244                      .addReg(VReg1));
   7245     }
   7246 
   7247     BuildMI(DispatchBB, dl, TII->get(ARM::tBcc))
   7248       .addMBB(TrapBB)
   7249       .addImm(ARMCC::HI)
   7250       .addReg(ARM::CPSR);
   7251 
   7252     unsigned NewVReg2 = MRI->createVirtualRegister(TRC);
   7253     AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tLSLri), NewVReg2)
   7254                    .addReg(ARM::CPSR, RegState::Define)
   7255                    .addReg(NewVReg1)
   7256                    .addImm(2));
   7257 
   7258     unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
   7259     AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tLEApcrelJT), NewVReg3)
   7260                    .addJumpTableIndex(MJTI));
   7261 
   7262     unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
   7263     AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg4)
   7264                    .addReg(ARM::CPSR, RegState::Define)
   7265                    .addReg(NewVReg2, RegState::Kill)
   7266                    .addReg(NewVReg3));
   7267 
   7268     MachineMemOperand *JTMMOLd = MF->getMachineMemOperand(
   7269         MachinePointerInfo::getJumpTable(*MF), MachineMemOperand::MOLoad, 4, 4);
   7270 
   7271     unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
   7272     AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tLDRi), NewVReg5)
   7273                    .addReg(NewVReg4, RegState::Kill)
   7274                    .addImm(0)
   7275                    .addMemOperand(JTMMOLd));
   7276 
   7277     unsigned NewVReg6 = NewVReg5;
   7278     if (RelocM == Reloc::PIC_) {
   7279       NewVReg6 = MRI->createVirtualRegister(TRC);
   7280       AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg6)
   7281                      .addReg(ARM::CPSR, RegState::Define)
   7282                      .addReg(NewVReg5, RegState::Kill)
   7283                      .addReg(NewVReg3));
   7284     }
   7285 
   7286     BuildMI(DispContBB, dl, TII->get(ARM::tBR_JTr))
   7287       .addReg(NewVReg6, RegState::Kill)
   7288       .addJumpTableIndex(MJTI);
   7289   } else {
   7290     unsigned NewVReg1 = MRI->createVirtualRegister(TRC);
   7291     AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::LDRi12), NewVReg1)
   7292                    .addFrameIndex(FI)
   7293                    .addImm(4)
   7294                    .addMemOperand(FIMMOLd));
   7295 
   7296     if (NumLPads < 256) {
   7297       AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::CMPri))
   7298                      .addReg(NewVReg1)
   7299                      .addImm(NumLPads));
   7300     } else if (Subtarget->hasV6T2Ops() && isUInt<16>(NumLPads)) {
   7301       unsigned VReg1 = MRI->createVirtualRegister(TRC);
   7302       AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::MOVi16), VReg1)
   7303                      .addImm(NumLPads & 0xFFFF));
   7304 
   7305       unsigned VReg2 = VReg1;
   7306       if ((NumLPads & 0xFFFF0000) != 0) {
   7307         VReg2 = MRI->createVirtualRegister(TRC);
   7308         AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::MOVTi16), VReg2)
   7309                        .addReg(VReg1)
   7310                        .addImm(NumLPads >> 16));
   7311       }
   7312 
   7313       AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr))
   7314                      .addReg(NewVReg1)
   7315                      .addReg(VReg2));
   7316     } else {
   7317       MachineConstantPool *ConstantPool = MF->getConstantPool();
   7318       Type *Int32Ty = Type::getInt32Ty(MF->getFunction()->getContext());
   7319       const Constant *C = ConstantInt::get(Int32Ty, NumLPads);
   7320 
   7321       // MachineConstantPool wants an explicit alignment.
   7322       unsigned Align = MF->getDataLayout().getPrefTypeAlignment(Int32Ty);
   7323       if (Align == 0)
   7324         Align = MF->getDataLayout().getTypeAllocSize(C->getType());
   7325       unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
   7326 
   7327       unsigned VReg1 = MRI->createVirtualRegister(TRC);
   7328       AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::LDRcp))
   7329                      .addReg(VReg1, RegState::Define)
   7330                      .addConstantPoolIndex(Idx)
   7331                      .addImm(0));
   7332       AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr))
   7333                      .addReg(NewVReg1)
   7334                      .addReg(VReg1, RegState::Kill));
   7335     }
   7336 
   7337     BuildMI(DispatchBB, dl, TII->get(ARM::Bcc))
   7338       .addMBB(TrapBB)
   7339       .addImm(ARMCC::HI)
   7340       .addReg(ARM::CPSR);
   7341 
   7342     unsigned NewVReg3 = MRI->createVirtualRegister(TRC);
   7343     AddDefaultCC(
   7344       AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::MOVsi), NewVReg3)
   7345                      .addReg(NewVReg1)
   7346                      .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2))));
   7347     unsigned NewVReg4 = MRI->createVirtualRegister(TRC);
   7348     AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::LEApcrelJT), NewVReg4)
   7349                    .addJumpTableIndex(MJTI));
   7350 
   7351     MachineMemOperand *JTMMOLd = MF->getMachineMemOperand(
   7352         MachinePointerInfo::getJumpTable(*MF), MachineMemOperand::MOLoad, 4, 4);
   7353     unsigned NewVReg5 = MRI->createVirtualRegister(TRC);
   7354     AddDefaultPred(
   7355       BuildMI(DispContBB, dl, TII->get(ARM::LDRrs), NewVReg5)
   7356       .addReg(NewVReg3, RegState::Kill)
   7357       .addReg(NewVReg4)
   7358       .addImm(0)
   7359       .addMemOperand(JTMMOLd));
   7360 
   7361     if (RelocM == Reloc::PIC_) {
   7362       BuildMI(DispContBB, dl, TII->get(ARM::BR_JTadd))
   7363         .addReg(NewVReg5, RegState::Kill)
   7364         .addReg(NewVReg4)
   7365         .addJumpTableIndex(MJTI);
   7366     } else {
   7367       BuildMI(DispContBB, dl, TII->get(ARM::BR_JTr))
   7368         .addReg(NewVReg5, RegState::Kill)
   7369         .addJumpTableIndex(MJTI);
   7370     }
   7371   }
   7372 
   7373   // Add the jump table entries as successors to the MBB.
   7374   SmallPtrSet<MachineBasicBlock*, 8> SeenMBBs;
   7375   for (std::vector<MachineBasicBlock*>::iterator
   7376          I = LPadList.begin(), E = LPadList.end(); I != E; ++I) {
   7377     MachineBasicBlock *CurMBB = *I;
   7378     if (SeenMBBs.insert(CurMBB).second)
   7379       DispContBB->addSuccessor(CurMBB);
   7380   }
   7381 
   7382   // N.B. the order the invoke BBs are processed in doesn't matter here.
   7383   const MCPhysReg *SavedRegs = RI.getCalleeSavedRegs(MF);
   7384   SmallVector<MachineBasicBlock*, 64> MBBLPads;
   7385   for (MachineBasicBlock *BB : InvokeBBs) {
   7386 
   7387     // Remove the landing pad successor from the invoke block and replace it
   7388     // with the new dispatch block.
   7389     SmallVector<MachineBasicBlock*, 4> Successors(BB->succ_begin(),
   7390                                                   BB->succ_end());
   7391     while (!Successors.empty()) {
   7392       MachineBasicBlock *SMBB = Successors.pop_back_val();
   7393       if (SMBB->isEHPad()) {
   7394         BB->removeSuccessor(SMBB);
   7395         MBBLPads.push_back(SMBB);
   7396       }
   7397     }
   7398 
   7399     BB->addSuccessor(DispatchBB, BranchProbability::getZero());
   7400     BB->normalizeSuccProbs();
   7401 
   7402     // Find the invoke call and mark all of the callee-saved registers as
   7403     // 'implicit defined' so that they're spilled. This prevents code from
   7404     // moving instructions to before the EH block, where they will never be
   7405     // executed.
   7406     for (MachineBasicBlock::reverse_iterator
   7407            II = BB->rbegin(), IE = BB->rend(); II != IE; ++II) {
   7408       if (!II->isCall()) continue;
   7409 
   7410       DenseMap<unsigned, bool> DefRegs;
   7411       for (MachineInstr::mop_iterator
   7412              OI = II->operands_begin(), OE = II->operands_end();
   7413            OI != OE; ++OI) {
   7414         if (!OI->isReg()) continue;
   7415         DefRegs[OI->getReg()] = true;
   7416       }
   7417 
   7418       MachineInstrBuilder MIB(*MF, &*II);
   7419 
   7420       for (unsigned i = 0; SavedRegs[i] != 0; ++i) {
   7421         unsigned Reg = SavedRegs[i];
   7422         if (Subtarget->isThumb2() &&
   7423             !ARM::tGPRRegClass.contains(Reg) &&
   7424             !ARM::hGPRRegClass.contains(Reg))
   7425           continue;
   7426         if (Subtarget->isThumb1Only() && !ARM::tGPRRegClass.contains(Reg))
   7427           continue;
   7428         if (!Subtarget->isThumb() && !ARM::GPRRegClass.contains(Reg))
   7429           continue;
   7430         if (!DefRegs[Reg])
   7431           MIB.addReg(Reg, RegState::ImplicitDefine | RegState::Dead);
   7432       }
   7433 
   7434       break;
   7435     }
   7436   }
   7437 
   7438   // Mark all former landing pads as non-landing pads. The dispatch is the only
   7439   // landing pad now.
   7440   for (SmallVectorImpl<MachineBasicBlock*>::iterator
   7441          I = MBBLPads.begin(), E = MBBLPads.end(); I != E; ++I)
   7442     (*I)->setIsEHPad(false);
   7443 
   7444   // The instruction is gone now.
   7445   MI->eraseFromParent();
   7446 }
   7447 
   7448 static
   7449 MachineBasicBlock *OtherSucc(MachineBasicBlock *MBB, MachineBasicBlock *Succ) {
   7450   for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(),
   7451        E = MBB->succ_end(); I != E; ++I)
   7452     if (*I != Succ)
   7453       return *I;
   7454   llvm_unreachable("Expecting a BB with two successors!");
   7455 }
   7456 
   7457 /// Return the load opcode for a given load size. If load size >= 8,
   7458 /// neon opcode will be returned.
   7459 static unsigned getLdOpcode(unsigned LdSize, bool IsThumb1, bool IsThumb2) {
   7460   if (LdSize >= 8)
   7461     return LdSize == 16 ? ARM::VLD1q32wb_fixed
   7462                         : LdSize == 8 ? ARM::VLD1d32wb_fixed : 0;
   7463   if (IsThumb1)
   7464     return LdSize == 4 ? ARM::tLDRi
   7465                        : LdSize == 2 ? ARM::tLDRHi
   7466                                      : LdSize == 1 ? ARM::tLDRBi : 0;
   7467   if (IsThumb2)
   7468     return LdSize == 4 ? ARM::t2LDR_POST
   7469                        : LdSize == 2 ? ARM::t2LDRH_POST
   7470                                      : LdSize == 1 ? ARM::t2LDRB_POST : 0;
   7471   return LdSize == 4 ? ARM::LDR_POST_IMM
   7472                      : LdSize == 2 ? ARM::LDRH_POST
   7473                                    : LdSize == 1 ? ARM::LDRB_POST_IMM : 0;
   7474 }
   7475 
   7476 /// Return the store opcode for a given store size. If store size >= 8,
   7477 /// neon opcode will be returned.
   7478 static unsigned getStOpcode(unsigned StSize, bool IsThumb1, bool IsThumb2) {
   7479   if (StSize >= 8)
   7480     return StSize == 16 ? ARM::VST1q32wb_fixed
   7481                         : StSize == 8 ? ARM::VST1d32wb_fixed : 0;
   7482   if (IsThumb1)
   7483     return StSize == 4 ? ARM::tSTRi
   7484                        : StSize == 2 ? ARM::tSTRHi
   7485                                      : StSize == 1 ? ARM::tSTRBi : 0;
   7486   if (IsThumb2)
   7487     return StSize == 4 ? ARM::t2STR_POST
   7488                        : StSize == 2 ? ARM::t2STRH_POST
   7489                                      : StSize == 1 ? ARM::t2STRB_POST : 0;
   7490   return StSize == 4 ? ARM::STR_POST_IMM
   7491                      : StSize == 2 ? ARM::STRH_POST
   7492                                    : StSize == 1 ? ARM::STRB_POST_IMM : 0;
   7493 }
   7494 
   7495 /// Emit a post-increment load operation with given size. The instructions
   7496 /// will be added to BB at Pos.
   7497 static void emitPostLd(MachineBasicBlock *BB, MachineInstr *Pos,
   7498                        const TargetInstrInfo *TII, DebugLoc dl,
   7499                        unsigned LdSize, unsigned Data, unsigned AddrIn,
   7500                        unsigned AddrOut, bool IsThumb1, bool IsThumb2) {
   7501   unsigned LdOpc = getLdOpcode(LdSize, IsThumb1, IsThumb2);
   7502   assert(LdOpc != 0 && "Should have a load opcode");
   7503   if (LdSize >= 8) {
   7504     AddDefaultPred(BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
   7505                        .addReg(AddrOut, RegState::Define).addReg(AddrIn)
   7506                        .addImm(0));
   7507   } else if (IsThumb1) {
   7508     // load + update AddrIn
   7509     AddDefaultPred(BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
   7510                        .addReg(AddrIn).addImm(0));
   7511     MachineInstrBuilder MIB =
   7512         BuildMI(*BB, Pos, dl, TII->get(ARM::tADDi8), AddrOut);
   7513     MIB = AddDefaultT1CC(MIB);
   7514     MIB.addReg(AddrIn).addImm(LdSize);
   7515     AddDefaultPred(MIB);
   7516   } else if (IsThumb2) {
   7517     AddDefaultPred(BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
   7518                        .addReg(AddrOut, RegState::Define).addReg(AddrIn)
   7519                        .addImm(LdSize));
   7520   } else { // arm
   7521     AddDefaultPred(BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data)
   7522                        .addReg(AddrOut, RegState::Define).addReg(AddrIn)
   7523                        .addReg(0).addImm(LdSize));
   7524   }
   7525 }
   7526 
   7527 /// Emit a post-increment store operation with given size. The instructions
   7528 /// will be added to BB at Pos.
   7529 static void emitPostSt(MachineBasicBlock *BB, MachineInstr *Pos,
   7530                        const TargetInstrInfo *TII, DebugLoc dl,
   7531                        unsigned StSize, unsigned Data, unsigned AddrIn,
   7532                        unsigned AddrOut, bool IsThumb1, bool IsThumb2) {
   7533   unsigned StOpc = getStOpcode(StSize, IsThumb1, IsThumb2);
   7534   assert(StOpc != 0 && "Should have a store opcode");
   7535   if (StSize >= 8) {
   7536     AddDefaultPred(BuildMI(*BB, Pos, dl, TII->get(StOpc), AddrOut)
   7537                        .addReg(AddrIn).addImm(0).addReg(Data));
   7538   } else if (IsThumb1) {
   7539     // store + update AddrIn
   7540     AddDefaultPred(BuildMI(*BB, Pos, dl, TII->get(StOpc)).addReg(Data)
   7541                        .addReg(AddrIn).addImm(0));
   7542     MachineInstrBuilder MIB =
   7543         BuildMI(*BB, Pos, dl, TII->get(ARM::tADDi8), AddrOut);
   7544     MIB = AddDefaultT1CC(MIB);
   7545     MIB.addReg(AddrIn).addImm(StSize);
   7546     AddDefaultPred(MIB);
   7547   } else if (IsThumb2) {
   7548     AddDefaultPred(BuildMI(*BB, Pos, dl, TII->get(StOpc), AddrOut)
   7549                        .addReg(Data).addReg(AddrIn).addImm(StSize));
   7550   } else { // arm
   7551     AddDefaultPred(BuildMI(*BB, Pos, dl, TII->get(StOpc), AddrOut)
   7552                        .addReg(Data).addReg(AddrIn).addReg(0)
   7553                        .addImm(StSize));
   7554   }
   7555 }
   7556 
   7557 MachineBasicBlock *
   7558 ARMTargetLowering::EmitStructByval(MachineInstr *MI,
   7559                                    MachineBasicBlock *BB) const {
   7560   // This pseudo instruction has 3 operands: dst, src, size
   7561   // We expand it to a loop if size > Subtarget->getMaxInlineSizeThreshold().
   7562   // Otherwise, we will generate unrolled scalar copies.
   7563   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
   7564   const BasicBlock *LLVM_BB = BB->getBasicBlock();
   7565   MachineFunction::iterator It = ++BB->getIterator();
   7566 
   7567   unsigned dest = MI->getOperand(0).getReg();
   7568   unsigned src = MI->getOperand(1).getReg();
   7569   unsigned SizeVal = MI->getOperand(2).getImm();
   7570   unsigned Align = MI->getOperand(3).getImm();
   7571   DebugLoc dl = MI->getDebugLoc();
   7572 
   7573   MachineFunction *MF = BB->getParent();
   7574   MachineRegisterInfo &MRI = MF->getRegInfo();
   7575   unsigned UnitSize = 0;
   7576   const TargetRegisterClass *TRC = nullptr;
   7577   const TargetRegisterClass *VecTRC = nullptr;
   7578 
   7579   bool IsThumb1 = Subtarget->isThumb1Only();
   7580   bool IsThumb2 = Subtarget->isThumb2();
   7581 
   7582   if (Align & 1) {
   7583     UnitSize = 1;
   7584   } else if (Align & 2) {
   7585     UnitSize = 2;
   7586   } else {
   7587     // Check whether we can use NEON instructions.
   7588     if (!MF->getFunction()->hasFnAttribute(Attribute::NoImplicitFloat) &&
   7589         Subtarget->hasNEON()) {
   7590       if ((Align % 16 == 0) && SizeVal >= 16)
   7591         UnitSize = 16;
   7592       else if ((Align % 8 == 0) && SizeVal >= 8)
   7593         UnitSize = 8;
   7594     }
   7595     // Can't use NEON instructions.
   7596     if (UnitSize == 0)
   7597       UnitSize = 4;
   7598   }
   7599 
   7600   // Select the correct opcode and register class for unit size load/store
   7601   bool IsNeon = UnitSize >= 8;
   7602   TRC = (IsThumb1 || IsThumb2) ? &ARM::tGPRRegClass : &ARM::GPRRegClass;
   7603   if (IsNeon)
   7604     VecTRC = UnitSize == 16 ? &ARM::DPairRegClass
   7605                             : UnitSize == 8 ? &ARM::DPRRegClass
   7606                                             : nullptr;
   7607 
   7608   unsigned BytesLeft = SizeVal % UnitSize;
   7609   unsigned LoopSize = SizeVal - BytesLeft;
   7610 
   7611   if (SizeVal <= Subtarget->getMaxInlineSizeThreshold()) {
   7612     // Use LDR and STR to copy.
   7613     // [scratch, srcOut] = LDR_POST(srcIn, UnitSize)
   7614     // [destOut] = STR_POST(scratch, destIn, UnitSize)
   7615     unsigned srcIn = src;
   7616     unsigned destIn = dest;
   7617     for (unsigned i = 0; i < LoopSize; i+=UnitSize) {
   7618       unsigned srcOut = MRI.createVirtualRegister(TRC);
   7619       unsigned destOut = MRI.createVirtualRegister(TRC);
   7620       unsigned scratch = MRI.createVirtualRegister(IsNeon ? VecTRC : TRC);
   7621       emitPostLd(BB, MI, TII, dl, UnitSize, scratch, srcIn, srcOut,
   7622                  IsThumb1, IsThumb2);
   7623       emitPostSt(BB, MI, TII, dl, UnitSize, scratch, destIn, destOut,
   7624                  IsThumb1, IsThumb2);
   7625       srcIn = srcOut;
   7626       destIn = destOut;
   7627     }
   7628 
   7629     // Handle the leftover bytes with LDRB and STRB.
   7630     // [scratch, srcOut] = LDRB_POST(srcIn, 1)
   7631     // [destOut] = STRB_POST(scratch, destIn, 1)
   7632     for (unsigned i = 0; i < BytesLeft; i++) {
   7633       unsigned srcOut = MRI.createVirtualRegister(TRC);
   7634       unsigned destOut = MRI.createVirtualRegister(TRC);
   7635       unsigned scratch = MRI.createVirtualRegister(TRC);
   7636       emitPostLd(BB, MI, TII, dl, 1, scratch, srcIn, srcOut,
   7637                  IsThumb1, IsThumb2);
   7638       emitPostSt(BB, MI, TII, dl, 1, scratch, destIn, destOut,
   7639                  IsThumb1, IsThumb2);
   7640       srcIn = srcOut;
   7641       destIn = destOut;
   7642     }
   7643     MI->eraseFromParent();   // The instruction is gone now.
   7644     return BB;
   7645   }
   7646 
   7647   // Expand the pseudo op to a loop.
   7648   // thisMBB:
   7649   //   ...
   7650   //   movw varEnd, # --> with thumb2
   7651   //   movt varEnd, #
   7652   //   ldrcp varEnd, idx --> without thumb2
   7653   //   fallthrough --> loopMBB
   7654   // loopMBB:
   7655   //   PHI varPhi, varEnd, varLoop
   7656   //   PHI srcPhi, src, srcLoop
   7657   //   PHI destPhi, dst, destLoop
   7658   //   [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize)
   7659   //   [destLoop] = STR_POST(scratch, destPhi, UnitSize)
   7660   //   subs varLoop, varPhi, #UnitSize
   7661   //   bne loopMBB
   7662   //   fallthrough --> exitMBB
   7663   // exitMBB:
   7664   //   epilogue to handle left-over bytes
   7665   //   [scratch, srcOut] = LDRB_POST(srcLoop, 1)
   7666   //   [destOut] = STRB_POST(scratch, destLoop, 1)
   7667   MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB);
   7668   MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB);
   7669   MF->insert(It, loopMBB);
   7670   MF->insert(It, exitMBB);
   7671 
   7672   // Transfer the remainder of BB and its successor edges to exitMBB.
   7673   exitMBB->splice(exitMBB->begin(), BB,
   7674                   std::next(MachineBasicBlock::iterator(MI)), BB->end());
   7675   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
   7676 
   7677   // Load an immediate to varEnd.
   7678   unsigned varEnd = MRI.createVirtualRegister(TRC);
   7679   if (Subtarget->useMovt(*MF)) {
   7680     unsigned Vtmp = varEnd;
   7681     if ((LoopSize & 0xFFFF0000) != 0)
   7682       Vtmp = MRI.createVirtualRegister(TRC);
   7683     AddDefaultPred(BuildMI(BB, dl,
   7684                            TII->get(IsThumb2 ? ARM::t2MOVi16 : ARM::MOVi16),
   7685                            Vtmp).addImm(LoopSize & 0xFFFF));
   7686 
   7687     if ((LoopSize & 0xFFFF0000) != 0)
   7688       AddDefaultPred(BuildMI(BB, dl,
   7689                              TII->get(IsThumb2 ? ARM::t2MOVTi16 : ARM::MOVTi16),
   7690                              varEnd)
   7691                          .addReg(Vtmp)
   7692                          .addImm(LoopSize >> 16));
   7693   } else {
   7694     MachineConstantPool *ConstantPool = MF->getConstantPool();
   7695     Type *Int32Ty = Type::getInt32Ty(MF->getFunction()->getContext());
   7696     const Constant *C = ConstantInt::get(Int32Ty, LoopSize);
   7697 
   7698     // MachineConstantPool wants an explicit alignment.
   7699     unsigned Align = MF->getDataLayout().getPrefTypeAlignment(Int32Ty);
   7700     if (Align == 0)
   7701       Align = MF->getDataLayout().getTypeAllocSize(C->getType());
   7702     unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align);
   7703 
   7704     if (IsThumb1)
   7705       AddDefaultPred(BuildMI(*BB, MI, dl, TII->get(ARM::tLDRpci)).addReg(
   7706           varEnd, RegState::Define).addConstantPoolIndex(Idx));
   7707     else
   7708       AddDefaultPred(BuildMI(*BB, MI, dl, TII->get(ARM::LDRcp)).addReg(
   7709           varEnd, RegState::Define).addConstantPoolIndex(Idx).addImm(0));
   7710   }
   7711   BB->addSuccessor(loopMBB);
   7712 
   7713   // Generate the loop body:
   7714   //   varPhi = PHI(varLoop, varEnd)
   7715   //   srcPhi = PHI(srcLoop, src)
   7716   //   destPhi = PHI(destLoop, dst)
   7717   MachineBasicBlock *entryBB = BB;
   7718   BB = loopMBB;
   7719   unsigned varLoop = MRI.createVirtualRegister(TRC);
   7720   unsigned varPhi = MRI.createVirtualRegister(TRC);
   7721   unsigned srcLoop = MRI.createVirtualRegister(TRC);
   7722   unsigned srcPhi = MRI.createVirtualRegister(TRC);
   7723   unsigned destLoop = MRI.createVirtualRegister(TRC);
   7724   unsigned destPhi = MRI.createVirtualRegister(TRC);
   7725 
   7726   BuildMI(*BB, BB->begin(), dl, TII->get(ARM::PHI), varPhi)
   7727     .addReg(varLoop).addMBB(loopMBB)
   7728     .addReg(varEnd).addMBB(entryBB);
   7729   BuildMI(BB, dl, TII->get(ARM::PHI), srcPhi)
   7730     .addReg(srcLoop).addMBB(loopMBB)
   7731     .addReg(src).addMBB(entryBB);
   7732   BuildMI(BB, dl, TII->get(ARM::PHI), destPhi)
   7733     .addReg(destLoop).addMBB(loopMBB)
   7734     .addReg(dest).addMBB(entryBB);
   7735 
   7736   //   [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize)
   7737   //   [destLoop] = STR_POST(scratch, destPhi, UnitSiz)
   7738   unsigned scratch = MRI.createVirtualRegister(IsNeon ? VecTRC : TRC);
   7739   emitPostLd(BB, BB->end(), TII, dl, UnitSize, scratch, srcPhi, srcLoop,
   7740              IsThumb1, IsThumb2);
   7741   emitPostSt(BB, BB->end(), TII, dl, UnitSize, scratch, destPhi, destLoop,
   7742              IsThumb1, IsThumb2);
   7743 
   7744   // Decrement loop variable by UnitSize.
   7745   if (IsThumb1) {
   7746     MachineInstrBuilder MIB =
   7747         BuildMI(*BB, BB->end(), dl, TII->get(ARM::tSUBi8), varLoop);
   7748     MIB = AddDefaultT1CC(MIB);
   7749     MIB.addReg(varPhi).addImm(UnitSize);
   7750     AddDefaultPred(MIB);
   7751   } else {
   7752     MachineInstrBuilder MIB =
   7753         BuildMI(*BB, BB->end(), dl,
   7754                 TII->get(IsThumb2 ? ARM::t2SUBri : ARM::SUBri), varLoop);
   7755     AddDefaultCC(AddDefaultPred(MIB.addReg(varPhi).addImm(UnitSize)));
   7756     MIB->getOperand(5).setReg(ARM::CPSR);
   7757     MIB->getOperand(5).setIsDef(true);
   7758   }
   7759   BuildMI(*BB, BB->end(), dl,
   7760           TII->get(IsThumb1 ? ARM::tBcc : IsThumb2 ? ARM::t2Bcc : ARM::Bcc))
   7761       .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR);
   7762 
   7763   // loopMBB can loop back to loopMBB or fall through to exitMBB.
   7764   BB->addSuccessor(loopMBB);
   7765   BB->addSuccessor(exitMBB);
   7766 
   7767   // Add epilogue to handle BytesLeft.
   7768   BB = exitMBB;
   7769   MachineInstr *StartOfExit = exitMBB->begin();
   7770 
   7771   //   [scratch, srcOut] = LDRB_POST(srcLoop, 1)
   7772   //   [destOut] = STRB_POST(scratch, destLoop, 1)
   7773   unsigned srcIn = srcLoop;
   7774   unsigned destIn = destLoop;
   7775   for (unsigned i = 0; i < BytesLeft; i++) {
   7776     unsigned srcOut = MRI.createVirtualRegister(TRC);
   7777     unsigned destOut = MRI.createVirtualRegister(TRC);
   7778     unsigned scratch = MRI.createVirtualRegister(TRC);
   7779     emitPostLd(BB, StartOfExit, TII, dl, 1, scratch, srcIn, srcOut,
   7780                IsThumb1, IsThumb2);
   7781     emitPostSt(BB, StartOfExit, TII, dl, 1, scratch, destIn, destOut,
   7782                IsThumb1, IsThumb2);
   7783     srcIn = srcOut;
   7784     destIn = destOut;
   7785   }
   7786 
   7787   MI->eraseFromParent();   // The instruction is gone now.
   7788   return BB;
   7789 }
   7790 
   7791 MachineBasicBlock *
   7792 ARMTargetLowering::EmitLowered__chkstk(MachineInstr *MI,
   7793                                        MachineBasicBlock *MBB) const {
   7794   const TargetMachine &TM = getTargetMachine();
   7795   const TargetInstrInfo &TII = *Subtarget->getInstrInfo();
   7796   DebugLoc DL = MI->getDebugLoc();
   7797 
   7798   assert(Subtarget->isTargetWindows() &&
   7799          "__chkstk is only supported on Windows");
   7800   assert(Subtarget->isThumb2() && "Windows on ARM requires Thumb-2 mode");
   7801 
   7802   // __chkstk takes the number of words to allocate on the stack in R4, and
   7803   // returns the stack adjustment in number of bytes in R4.  This will not
   7804   // clober any other registers (other than the obvious lr).
   7805   //
   7806   // Although, technically, IP should be considered a register which may be
   7807   // clobbered, the call itself will not touch it.  Windows on ARM is a pure
   7808   // thumb-2 environment, so there is no interworking required.  As a result, we
   7809   // do not expect a veneer to be emitted by the linker, clobbering IP.
   7810   //
   7811   // Each module receives its own copy of __chkstk, so no import thunk is
   7812   // required, again, ensuring that IP is not clobbered.
   7813   //
   7814   // Finally, although some linkers may theoretically provide a trampoline for
   7815   // out of range calls (which is quite common due to a 32M range limitation of
   7816   // branches for Thumb), we can generate the long-call version via
   7817   // -mcmodel=large, alleviating the need for the trampoline which may clobber
   7818   // IP.
   7819 
   7820   switch (TM.getCodeModel()) {
   7821   case CodeModel::Small:
   7822   case CodeModel::Medium:
   7823   case CodeModel::Default:
   7824   case CodeModel::Kernel:
   7825     BuildMI(*MBB, MI, DL, TII.get(ARM::tBL))
   7826       .addImm((unsigned)ARMCC::AL).addReg(0)
   7827       .addExternalSymbol("__chkstk")
   7828       .addReg(ARM::R4, RegState::Implicit | RegState::Kill)
   7829       .addReg(ARM::R4, RegState::Implicit | RegState::Define)
   7830       .addReg(ARM::R12, RegState::Implicit | RegState::Define | RegState::Dead);
   7831     break;
   7832   case CodeModel::Large:
   7833   case CodeModel::JITDefault: {
   7834     MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
   7835     unsigned Reg = MRI.createVirtualRegister(&ARM::rGPRRegClass);
   7836 
   7837     BuildMI(*MBB, MI, DL, TII.get(ARM::t2MOVi32imm), Reg)
   7838       .addExternalSymbol("__chkstk");
   7839     BuildMI(*MBB, MI, DL, TII.get(ARM::tBLXr))
   7840       .addImm((unsigned)ARMCC::AL).addReg(0)
   7841       .addReg(Reg, RegState::Kill)
   7842       .addReg(ARM::R4, RegState::Implicit | RegState::Kill)
   7843       .addReg(ARM::R4, RegState::Implicit | RegState::Define)
   7844       .addReg(ARM::R12, RegState::Implicit | RegState::Define | RegState::Dead);
   7845     break;
   7846   }
   7847   }
   7848 
   7849   AddDefaultCC(AddDefaultPred(BuildMI(*MBB, MI, DL, TII.get(ARM::t2SUBrr),
   7850                                       ARM::SP)
   7851                               .addReg(ARM::SP).addReg(ARM::R4)));
   7852 
   7853   MI->eraseFromParent();
   7854   return MBB;
   7855 }
   7856 
   7857 MachineBasicBlock *
   7858 ARMTargetLowering::EmitLowered__dbzchk(MachineInstr *MI,
   7859                                        MachineBasicBlock *MBB) const {
   7860   DebugLoc DL = MI->getDebugLoc();
   7861   MachineFunction *MF = MBB->getParent();
   7862   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
   7863 
   7864   MachineBasicBlock *ContBB = MF->CreateMachineBasicBlock();
   7865   MF->push_back(ContBB);
   7866   ContBB->splice(ContBB->begin(), MBB,
   7867                  std::next(MachineBasicBlock::iterator(MI)), MBB->end());
   7868   MBB->addSuccessor(ContBB);
   7869 
   7870   MachineBasicBlock *TrapBB = MF->CreateMachineBasicBlock();
   7871   MF->push_back(TrapBB);
   7872   BuildMI(TrapBB, DL, TII->get(ARM::t2UDF)).addImm(249);
   7873   MBB->addSuccessor(TrapBB);
   7874 
   7875   BuildMI(*MBB, MI, DL, TII->get(ARM::tCBZ))
   7876       .addReg(MI->getOperand(0).getReg())
   7877       .addMBB(TrapBB);
   7878 
   7879   MI->eraseFromParent();
   7880   return ContBB;
   7881 }
   7882 
   7883 MachineBasicBlock *
   7884 ARMTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
   7885                                                MachineBasicBlock *BB) const {
   7886   const TargetInstrInfo *TII = Subtarget->getInstrInfo();
   7887   DebugLoc dl = MI->getDebugLoc();
   7888   bool isThumb2 = Subtarget->isThumb2();
   7889   switch (MI->getOpcode()) {
   7890   default: {
   7891     MI->dump();
   7892     llvm_unreachable("Unexpected instr type to insert");
   7893   }
   7894   // The Thumb2 pre-indexed stores have the same MI operands, they just
   7895   // define them differently in the .td files from the isel patterns, so
   7896   // they need pseudos.
   7897   case ARM::t2STR_preidx:
   7898     MI->setDesc(TII->get(ARM::t2STR_PRE));
   7899     return BB;
   7900   case ARM::t2STRB_preidx:
   7901     MI->setDesc(TII->get(ARM::t2STRB_PRE));
   7902     return BB;
   7903   case ARM::t2STRH_preidx:
   7904     MI->setDesc(TII->get(ARM::t2STRH_PRE));
   7905     return BB;
   7906 
   7907   case ARM::STRi_preidx:
   7908   case ARM::STRBi_preidx: {
   7909     unsigned NewOpc = MI->getOpcode() == ARM::STRi_preidx ?
   7910       ARM::STR_PRE_IMM : ARM::STRB_PRE_IMM;
   7911     // Decode the offset.
   7912     unsigned Offset = MI->getOperand(4).getImm();
   7913     bool isSub = ARM_AM::getAM2Op(Offset) == ARM_AM::sub;
   7914     Offset = ARM_AM::getAM2Offset(Offset);
   7915     if (isSub)
   7916       Offset = -Offset;
   7917 
   7918     MachineMemOperand *MMO = *MI->memoperands_begin();
   7919     BuildMI(*BB, MI, dl, TII->get(NewOpc))
   7920       .addOperand(MI->getOperand(0))  // Rn_wb
   7921       .addOperand(MI->getOperand(1))  // Rt
   7922       .addOperand(MI->getOperand(2))  // Rn
   7923       .addImm(Offset)                 // offset (skip GPR==zero_reg)
   7924       .addOperand(MI->getOperand(5))  // pred
   7925       .addOperand(MI->getOperand(6))
   7926       .addMemOperand(MMO);
   7927     MI->eraseFromParent();
   7928     return BB;
   7929   }
   7930   case ARM::STRr_preidx:
   7931   case ARM::STRBr_preidx:
   7932   case ARM::STRH_preidx: {
   7933     unsigned NewOpc;
   7934     switch (MI->getOpcode()) {
   7935     default: llvm_unreachable("unexpected opcode!");
   7936     case ARM::STRr_preidx: NewOpc = ARM::STR_PRE_REG; break;
   7937     case ARM::STRBr_preidx: NewOpc = ARM::STRB_PRE_REG; break;
   7938     case ARM::STRH_preidx: NewOpc = ARM::STRH_PRE; break;
   7939     }
   7940     MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(NewOpc));
   7941     for (unsigned i = 0; i < MI->getNumOperands(); ++i)
   7942       MIB.addOperand(MI->getOperand(i));
   7943     MI->eraseFromParent();
   7944     return BB;
   7945   }
   7946 
   7947   case ARM::tMOVCCr_pseudo: {
   7948     // To "insert" a SELECT_CC instruction, we actually have to insert the
   7949     // diamond control-flow pattern.  The incoming instruction knows the
   7950     // destination vreg to set, the condition code register to branch on, the
   7951     // true/false values to select between, and a branch opcode to use.
   7952     const BasicBlock *LLVM_BB = BB->getBasicBlock();
   7953     MachineFunction::iterator It = ++BB->getIterator();
   7954 
   7955     //  thisMBB:
   7956     //  ...
   7957     //   TrueVal = ...
   7958     //   cmpTY ccX, r1, r2
   7959     //   bCC copy1MBB
   7960     //   fallthrough --> copy0MBB
   7961     MachineBasicBlock *thisMBB  = BB;
   7962     MachineFunction *F = BB->getParent();
   7963     MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
   7964     MachineBasicBlock *sinkMBB  = F->CreateMachineBasicBlock(LLVM_BB);
   7965     F->insert(It, copy0MBB);
   7966     F->insert(It, sinkMBB);
   7967 
   7968     // Transfer the remainder of BB and its successor edges to sinkMBB.
   7969     sinkMBB->splice(sinkMBB->begin(), BB,
   7970                     std::next(MachineBasicBlock::iterator(MI)), BB->end());
   7971     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
   7972 
   7973     BB->addSuccessor(copy0MBB);
   7974     BB->addSuccessor(sinkMBB);
   7975 
   7976     BuildMI(BB, dl, TII->get(ARM::tBcc)).addMBB(sinkMBB)
   7977       .addImm(MI->getOperand(3).getImm()).addReg(MI->getOperand(4).getReg());
   7978 
   7979     //  copy0MBB:
   7980     //   %FalseValue = ...
   7981     //   # fallthrough to sinkMBB
   7982     BB = copy0MBB;
   7983 
   7984     // Update machine-CFG edges
   7985     BB->addSuccessor(sinkMBB);
   7986 
   7987     //  sinkMBB:
   7988     //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
   7989     //  ...
   7990     BB = sinkMBB;
   7991     BuildMI(*BB, BB->begin(), dl,
   7992             TII->get(ARM::PHI), MI->getOperand(0).getReg())
   7993       .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB)
   7994       .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
   7995 
   7996     MI->eraseFromParent();   // The pseudo instruction is gone now.
   7997     return BB;
   7998   }
   7999 
   8000   case ARM::BCCi64:
   8001   case ARM::BCCZi64: {
   8002     // If there is an unconditional branch to the other successor, remove it.
   8003     BB->erase(std::next(MachineBasicBlock::iterator(MI)), BB->end());
   8004 
   8005     // Compare both parts that make up the double comparison separately for
   8006     // equality.
   8007     bool RHSisZero = MI->getOpcode() == ARM::BCCZi64;
   8008 
   8009     unsigned LHS1 = MI->getOperand(1).getReg();
   8010     unsigned LHS2 = MI->getOperand(2).getReg();
   8011     if (RHSisZero) {
   8012       AddDefaultPred(BuildMI(BB, dl,
   8013                              TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
   8014                      .addReg(LHS1).addImm(0));
   8015       BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
   8016         .addReg(LHS2).addImm(0)
   8017         .addImm(ARMCC::EQ).addReg(ARM::CPSR);
   8018     } else {
   8019       unsigned RHS1 = MI->getOperand(3).getReg();
   8020       unsigned RHS2 = MI->getOperand(4).getReg();
   8021       AddDefaultPred(BuildMI(BB, dl,
   8022                              TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
   8023                      .addReg(LHS1).addReg(RHS1));
   8024       BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr))
   8025         .addReg(LHS2).addReg(RHS2)
   8026         .addImm(ARMCC::EQ).addReg(ARM::CPSR);
   8027     }
   8028 
   8029     MachineBasicBlock *destMBB = MI->getOperand(RHSisZero ? 3 : 5).getMBB();
   8030     MachineBasicBlock *exitMBB = OtherSucc(BB, destMBB);
   8031     if (MI->getOperand(0).getImm() == ARMCC::NE)
   8032       std::swap(destMBB, exitMBB);
   8033 
   8034     BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc))
   8035       .addMBB(destMBB).addImm(ARMCC::EQ).addReg(ARM::CPSR);
   8036     if (isThumb2)
   8037       AddDefaultPred(BuildMI(BB, dl, TII->get(ARM::t2B)).addMBB(exitMBB));
   8038     else
   8039       BuildMI(BB, dl, TII->get(ARM::B)) .addMBB(exitMBB);
   8040 
   8041     MI->eraseFromParent();   // The pseudo instruction is gone now.
   8042     return BB;
   8043   }
   8044 
   8045   case ARM::Int_eh_sjlj_setjmp:
   8046   case ARM::Int_eh_sjlj_setjmp_nofp:
   8047   case ARM::tInt_eh_sjlj_setjmp:
   8048   case ARM::t2Int_eh_sjlj_setjmp:
   8049   case ARM::t2Int_eh_sjlj_setjmp_nofp:
   8050     return BB;
   8051 
   8052   case ARM::Int_eh_sjlj_setup_dispatch:
   8053     EmitSjLjDispatchBlock(MI, BB);
   8054     return BB;
   8055 
   8056   case ARM::ABS:
   8057   case ARM::t2ABS: {
   8058     // To insert an ABS instruction, we have to insert the
   8059     // diamond control-flow pattern.  The incoming instruction knows the
   8060     // source vreg to test against 0, the destination vreg to set,
   8061     // the condition code register to branch on, the
   8062     // true/false values to select between, and a branch opcode to use.
   8063     // It transforms
   8064     //     V1 = ABS V0
   8065     // into
   8066     //     V2 = MOVS V0
   8067     //     BCC                      (branch to SinkBB if V0 >= 0)
   8068     //     RSBBB: V3 = RSBri V2, 0  (compute ABS if V2 < 0)
   8069     //     SinkBB: V1 = PHI(V2, V3)
   8070     const BasicBlock *LLVM_BB = BB->getBasicBlock();
   8071     MachineFunction::iterator BBI = ++BB->getIterator();
   8072     MachineFunction *Fn = BB->getParent();
   8073     MachineBasicBlock *RSBBB = Fn->CreateMachineBasicBlock(LLVM_BB);
   8074     MachineBasicBlock *SinkBB  = Fn->CreateMachineBasicBlock(LLVM_BB);
   8075     Fn->insert(BBI, RSBBB);
   8076     Fn->insert(BBI, SinkBB);
   8077 
   8078     unsigned int ABSSrcReg = MI->getOperand(1).getReg();
   8079     unsigned int ABSDstReg = MI->getOperand(0).getReg();
   8080     bool ABSSrcKIll = MI->getOperand(1).isKill();
   8081     bool isThumb2 = Subtarget->isThumb2();
   8082     MachineRegisterInfo &MRI = Fn->getRegInfo();
   8083     // In Thumb mode S must not be specified if source register is the SP or
   8084     // PC and if destination register is the SP, so restrict register class
   8085     unsigned NewRsbDstReg =
   8086       MRI.createVirtualRegister(isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRRegClass);
   8087 
   8088     // Transfer the remainder of BB and its successor edges to sinkMBB.
   8089     SinkBB->splice(SinkBB->begin(), BB,
   8090                    std::next(MachineBasicBlock::iterator(MI)), BB->end());
   8091     SinkBB->transferSuccessorsAndUpdatePHIs(BB);
   8092 
   8093     BB->addSuccessor(RSBBB);
   8094     BB->addSuccessor(SinkBB);
   8095 
   8096     // fall through to SinkMBB
   8097     RSBBB->addSuccessor(SinkBB);
   8098 
   8099     // insert a cmp at the end of BB
   8100     AddDefaultPred(BuildMI(BB, dl,
   8101                            TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri))
   8102                    .addReg(ABSSrcReg).addImm(0));
   8103 
   8104     // insert a bcc with opposite CC to ARMCC::MI at the end of BB
   8105     BuildMI(BB, dl,
   8106       TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc)).addMBB(SinkBB)
   8107       .addImm(ARMCC::getOppositeCondition(ARMCC::MI)).addReg(ARM::CPSR);
   8108 
   8109     // insert rsbri in RSBBB
   8110     // Note: BCC and rsbri will be converted into predicated rsbmi
   8111     // by if-conversion pass
   8112     BuildMI(*RSBBB, RSBBB->begin(), dl,
   8113       TII->get(isThumb2 ? ARM::t2RSBri : ARM::RSBri), NewRsbDstReg)
   8114       .addReg(ABSSrcReg, ABSSrcKIll ? RegState::Kill : 0)
   8115       .addImm(0).addImm((unsigned)ARMCC::AL).addReg(0).addReg(0);
   8116 
   8117     // insert PHI in SinkBB,
   8118     // reuse ABSDstReg to not change uses of ABS instruction
   8119     BuildMI(*SinkBB, SinkBB->begin(), dl,
   8120       TII->get(ARM::PHI), ABSDstReg)
   8121       .addReg(NewRsbDstReg).addMBB(RSBBB)
   8122       .addReg(ABSSrcReg).addMBB(BB);
   8123 
   8124     // remove ABS instruction
   8125     MI->eraseFromParent();
   8126 
   8127     // return last added BB
   8128     return SinkBB;
   8129   }
   8130   case ARM::COPY_STRUCT_BYVAL_I32:
   8131     ++NumLoopByVals;
   8132     return EmitStructByval(MI, BB);
   8133   case ARM::WIN__CHKSTK:
   8134     return EmitLowered__chkstk(MI, BB);
   8135   case ARM::WIN__DBZCHK:
   8136     return EmitLowered__dbzchk(MI, BB);
   8137   }
   8138 }
   8139 
   8140 /// \brief Attaches vregs to MEMCPY that it will use as scratch registers
   8141 /// when it is expanded into LDM/STM. This is done as a post-isel lowering
   8142 /// instead of as a custom inserter because we need the use list from the SDNode.
   8143 static void attachMEMCPYScratchRegs(const ARMSubtarget *Subtarget,
   8144                                    MachineInstr *MI, const SDNode *Node) {
   8145   bool isThumb1 = Subtarget->isThumb1Only();
   8146 
   8147   DebugLoc DL = MI->getDebugLoc();
   8148   MachineFunction *MF = MI->getParent()->getParent();
   8149   MachineRegisterInfo &MRI = MF->getRegInfo();
   8150   MachineInstrBuilder MIB(*MF, MI);
   8151 
   8152   // If the new dst/src is unused mark it as dead.
   8153   if (!Node->hasAnyUseOfValue(0)) {
   8154     MI->getOperand(0).setIsDead(true);
   8155   }
   8156   if (!Node->hasAnyUseOfValue(1)) {
   8157     MI->getOperand(1).setIsDead(true);
   8158   }
   8159 
   8160   // The MEMCPY both defines and kills the scratch registers.
   8161   for (unsigned I = 0; I != MI->getOperand(4).getImm(); ++I) {
   8162     unsigned TmpReg = MRI.createVirtualRegister(isThumb1 ? &ARM::tGPRRegClass
   8163                                                          : &ARM::GPRRegClass);
   8164     MIB.addReg(TmpReg, RegState::Define|RegState::Dead);
   8165   }
   8166 }
   8167 
   8168 void ARMTargetLowering::AdjustInstrPostInstrSelection(MachineInstr *MI,
   8169                                                       SDNode *Node) const {
   8170   if (MI->getOpcode() == ARM::MEMCPY) {
   8171     attachMEMCPYScratchRegs(Subtarget, MI, Node);
   8172     return;
   8173   }
   8174 
   8175   const MCInstrDesc *MCID = &MI->getDesc();
   8176   // Adjust potentially 's' setting instructions after isel, i.e. ADC, SBC, RSB,
   8177   // RSC. Coming out of isel, they have an implicit CPSR def, but the optional
   8178   // operand is still set to noreg. If needed, set the optional operand's
   8179   // register to CPSR, and remove the redundant implicit def.
   8180   //
   8181   // e.g. ADCS (..., CPSR<imp-def>) -> ADC (... opt:CPSR<def>).
   8182 
   8183   // Rename pseudo opcodes.
   8184   unsigned NewOpc = convertAddSubFlagsOpcode(MI->getOpcode());
   8185   if (NewOpc) {
   8186     const ARMBaseInstrInfo *TII = Subtarget->getInstrInfo();
   8187     MCID = &TII->get(NewOpc);
   8188 
   8189     assert(MCID->getNumOperands() == MI->getDesc().getNumOperands() + 1 &&
   8190            "converted opcode should be the same except for cc_out");
   8191 
   8192     MI->setDesc(*MCID);
   8193 
   8194     // Add the optional cc_out operand
   8195     MI->addOperand(MachineOperand::CreateReg(0, /*isDef=*/true));
   8196   }
   8197   unsigned ccOutIdx = MCID->getNumOperands() - 1;
   8198 
   8199   // Any ARM instruction that sets the 's' bit should specify an optional
   8200   // "cc_out" operand in the last operand position.
   8201   if (!MI->hasOptionalDef() || !MCID->OpInfo[ccOutIdx].isOptionalDef()) {
   8202     assert(!NewOpc && "Optional cc_out operand required");
   8203     return;
   8204   }
   8205   // Look for an implicit def of CPSR added by MachineInstr ctor. Remove it
   8206   // since we already have an optional CPSR def.
   8207   bool definesCPSR = false;
   8208   bool deadCPSR = false;
   8209   for (unsigned i = MCID->getNumOperands(), e = MI->getNumOperands();
   8210        i != e; ++i) {
   8211     const MachineOperand &MO = MI->getOperand(i);
   8212     if (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR) {
   8213       definesCPSR = true;
   8214       if (MO.isDead())
   8215         deadCPSR = true;
   8216       MI->RemoveOperand(i);
   8217       break;
   8218     }
   8219   }
   8220   if (!definesCPSR) {
   8221     assert(!NewOpc && "Optional cc_out operand required");
   8222     return;
   8223   }
   8224   assert(deadCPSR == !Node->hasAnyUseOfValue(1) && "inconsistent dead flag");
   8225   if (deadCPSR) {
   8226     assert(!MI->getOperand(ccOutIdx).getReg() &&
   8227            "expect uninitialized optional cc_out operand");
   8228     return;
   8229   }
   8230 
   8231   // If this instruction was defined with an optional CPSR def and its dag node
   8232   // had a live implicit CPSR def, then activate the optional CPSR def.
   8233   MachineOperand &MO = MI->getOperand(ccOutIdx);
   8234   MO.setReg(ARM::CPSR);
   8235   MO.setIsDef(true);
   8236 }
   8237 
   8238 //===----------------------------------------------------------------------===//
   8239 //                           ARM Optimization Hooks
   8240 //===----------------------------------------------------------------------===//
   8241 
   8242 // Helper function that checks if N is a null or all ones constant.
   8243 static inline bool isZeroOrAllOnes(SDValue N, bool AllOnes) {
   8244   return AllOnes ? isAllOnesConstant(N) : isNullConstant(N);
   8245 }
   8246 
   8247 // Return true if N is conditionally 0 or all ones.
   8248 // Detects these expressions where cc is an i1 value:
   8249 //
   8250 //   (select cc 0, y)   [AllOnes=0]
   8251 //   (select cc y, 0)   [AllOnes=0]
   8252 //   (zext cc)          [AllOnes=0]
   8253 //   (sext cc)          [AllOnes=0/1]
   8254 //   (select cc -1, y)  [AllOnes=1]
   8255 //   (select cc y, -1)  [AllOnes=1]
   8256 //
   8257 // Invert is set when N is the null/all ones constant when CC is false.
   8258 // OtherOp is set to the alternative value of N.
   8259 static bool isConditionalZeroOrAllOnes(SDNode *N, bool AllOnes,
   8260                                        SDValue &CC, bool &Invert,
   8261                                        SDValue &OtherOp,
   8262                                        SelectionDAG &DAG) {
   8263   switch (N->getOpcode()) {
   8264   default: return false;
   8265   case ISD::SELECT: {
   8266     CC = N->getOperand(0);
   8267     SDValue N1 = N->getOperand(1);
   8268     SDValue N2 = N->getOperand(2);
   8269     if (isZeroOrAllOnes(N1, AllOnes)) {
   8270       Invert = false;
   8271       OtherOp = N2;
   8272       return true;
   8273     }
   8274     if (isZeroOrAllOnes(N2, AllOnes)) {
   8275       Invert = true;
   8276       OtherOp = N1;
   8277       return true;
   8278     }
   8279     return false;
   8280   }
   8281   case ISD::ZERO_EXTEND:
   8282     // (zext cc) can never be the all ones value.
   8283     if (AllOnes)
   8284       return false;
   8285     // Fall through.
   8286   case ISD::SIGN_EXTEND: {
   8287     SDLoc dl(N);
   8288     EVT VT = N->getValueType(0);
   8289     CC = N->getOperand(0);
   8290     if (CC.getValueType() != MVT::i1)
   8291       return false;
   8292     Invert = !AllOnes;
   8293     if (AllOnes)
   8294       // When looking for an AllOnes constant, N is an sext, and the 'other'
   8295       // value is 0.
   8296       OtherOp = DAG.getConstant(0, dl, VT);
   8297     else if (N->getOpcode() == ISD::ZERO_EXTEND)
   8298       // When looking for a 0 constant, N can be zext or sext.
   8299       OtherOp = DAG.getConstant(1, dl, VT);
   8300     else
   8301       OtherOp = DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), dl,
   8302                                 VT);
   8303     return true;
   8304   }
   8305   }
   8306 }
   8307 
   8308 // Combine a constant select operand into its use:
   8309 //
   8310 //   (add (select cc, 0, c), x)  -> (select cc, x, (add, x, c))
   8311 //   (sub x, (select cc, 0, c))  -> (select cc, x, (sub, x, c))
   8312 //   (and (select cc, -1, c), x) -> (select cc, x, (and, x, c))  [AllOnes=1]
   8313 //   (or  (select cc, 0, c), x)  -> (select cc, x, (or, x, c))
   8314 //   (xor (select cc, 0, c), x)  -> (select cc, x, (xor, x, c))
   8315 //
   8316 // The transform is rejected if the select doesn't have a constant operand that
   8317 // is null, or all ones when AllOnes is set.
   8318 //
   8319 // Also recognize sext/zext from i1:
   8320 //
   8321 //   (add (zext cc), x) -> (select cc (add x, 1), x)
   8322 //   (add (sext cc), x) -> (select cc (add x, -1), x)
   8323 //
   8324 // These transformations eventually create predicated instructions.
   8325 //
   8326 // @param N       The node to transform.
   8327 // @param Slct    The N operand that is a select.
   8328 // @param OtherOp The other N operand (x above).
   8329 // @param DCI     Context.
   8330 // @param AllOnes Require the select constant to be all ones instead of null.
   8331 // @returns The new node, or SDValue() on failure.
   8332 static
   8333 SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp,
   8334                             TargetLowering::DAGCombinerInfo &DCI,
   8335                             bool AllOnes = false) {
   8336   SelectionDAG &DAG = DCI.DAG;
   8337   EVT VT = N->getValueType(0);
   8338   SDValue NonConstantVal;
   8339   SDValue CCOp;
   8340   bool SwapSelectOps;
   8341   if (!isConditionalZeroOrAllOnes(Slct.getNode(), AllOnes, CCOp, SwapSelectOps,
   8342                                   NonConstantVal, DAG))
   8343     return SDValue();
   8344 
   8345   // Slct is now know to be the desired identity constant when CC is true.
   8346   SDValue TrueVal = OtherOp;
   8347   SDValue FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT,
   8348                                  OtherOp, NonConstantVal);
   8349   // Unless SwapSelectOps says CC should be false.
   8350   if (SwapSelectOps)
   8351     std::swap(TrueVal, FalseVal);
   8352 
   8353   return DAG.getNode(ISD::SELECT, SDLoc(N), VT,
   8354                      CCOp, TrueVal, FalseVal);
   8355 }
   8356 
   8357 // Attempt combineSelectAndUse on each operand of a commutative operator N.
   8358 static
   8359 SDValue combineSelectAndUseCommutative(SDNode *N, bool AllOnes,
   8360                                        TargetLowering::DAGCombinerInfo &DCI) {
   8361   SDValue N0 = N->getOperand(0);
   8362   SDValue N1 = N->getOperand(1);
   8363   if (N0.getNode()->hasOneUse()) {
   8364     SDValue Result = combineSelectAndUse(N, N0, N1, DCI, AllOnes);
   8365     if (Result.getNode())
   8366       return Result;
   8367   }
   8368   if (N1.getNode()->hasOneUse()) {
   8369     SDValue Result = combineSelectAndUse(N, N1, N0, DCI, AllOnes);
   8370     if (Result.getNode())
   8371       return Result;
   8372   }
   8373   return SDValue();
   8374 }
   8375 
   8376 // AddCombineToVPADDL- For pair-wise add on neon, use the vpaddl instruction
   8377 // (only after legalization).
   8378 static SDValue AddCombineToVPADDL(SDNode *N, SDValue N0, SDValue N1,
   8379                                  TargetLowering::DAGCombinerInfo &DCI,
   8380                                  const ARMSubtarget *Subtarget) {
   8381 
   8382   // Only perform optimization if after legalize, and if NEON is available. We
   8383   // also expected both operands to be BUILD_VECTORs.
   8384   if (DCI.isBeforeLegalize() || !Subtarget->hasNEON()
   8385       || N0.getOpcode() != ISD::BUILD_VECTOR
   8386       || N1.getOpcode() != ISD::BUILD_VECTOR)
   8387     return SDValue();
   8388 
   8389   // Check output type since VPADDL operand elements can only be 8, 16, or 32.
   8390   EVT VT = N->getValueType(0);
   8391   if (!VT.isInteger() || VT.getVectorElementType() == MVT::i64)
   8392     return SDValue();
   8393 
   8394   // Check that the vector operands are of the right form.
   8395   // N0 and N1 are BUILD_VECTOR nodes with N number of EXTRACT_VECTOR
   8396   // operands, where N is the size of the formed vector.
   8397   // Each EXTRACT_VECTOR should have the same input vector and odd or even
   8398   // index such that we have a pair wise add pattern.
   8399 
   8400   // Grab the vector that all EXTRACT_VECTOR nodes should be referencing.
   8401   if (N0->getOperand(0)->getOpcode() != ISD::EXTRACT_VECTOR_ELT)
   8402     return SDValue();
   8403   SDValue Vec = N0->getOperand(0)->getOperand(0);
   8404   SDNode *V = Vec.getNode();
   8405   unsigned nextIndex = 0;
   8406 
   8407   // For each operands to the ADD which are BUILD_VECTORs,
   8408   // check to see if each of their operands are an EXTRACT_VECTOR with
   8409   // the same vector and appropriate index.
   8410   for (unsigned i = 0, e = N0->getNumOperands(); i != e; ++i) {
   8411     if (N0->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT
   8412         && N1->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
   8413 
   8414       SDValue ExtVec0 = N0->getOperand(i);
   8415       SDValue ExtVec1 = N1->getOperand(i);
   8416 
   8417       // First operand is the vector, verify its the same.
   8418       if (V != ExtVec0->getOperand(0).getNode() ||
   8419           V != ExtVec1->getOperand(0).getNode())
   8420         return SDValue();
   8421 
   8422       // Second is the constant, verify its correct.
   8423       ConstantSDNode *C0 = dyn_cast<ConstantSDNode>(ExtVec0->getOperand(1));
   8424       ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(ExtVec1->getOperand(1));
   8425 
   8426       // For the constant, we want to see all the even or all the odd.
   8427       if (!C0 || !C1 || C0->getZExtValue() != nextIndex
   8428           || C1->getZExtValue() != nextIndex+1)
   8429         return SDValue();
   8430 
   8431       // Increment index.
   8432       nextIndex+=2;
   8433     } else
   8434       return SDValue();
   8435   }
   8436 
   8437   // Create VPADDL node.
   8438   SelectionDAG &DAG = DCI.DAG;
   8439   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   8440 
   8441   SDLoc dl(N);
   8442 
   8443   // Build operand list.
   8444   SmallVector<SDValue, 8> Ops;
   8445   Ops.push_back(DAG.getConstant(Intrinsic::arm_neon_vpaddls, dl,
   8446                                 TLI.getPointerTy(DAG.getDataLayout())));
   8447 
   8448   // Input is the vector.
   8449   Ops.push_back(Vec);
   8450 
   8451   // Get widened type and narrowed type.
   8452   MVT widenType;
   8453   unsigned numElem = VT.getVectorNumElements();
   8454 
   8455   EVT inputLaneType = Vec.getValueType().getVectorElementType();
   8456   switch (inputLaneType.getSimpleVT().SimpleTy) {
   8457     case MVT::i8: widenType = MVT::getVectorVT(MVT::i16, numElem); break;
   8458     case MVT::i16: widenType = MVT::getVectorVT(MVT::i32, numElem); break;
   8459     case MVT::i32: widenType = MVT::getVectorVT(MVT::i64, numElem); break;
   8460     default:
   8461       llvm_unreachable("Invalid vector element type for padd optimization.");
   8462   }
   8463 
   8464   SDValue tmp = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, widenType, Ops);
   8465   unsigned ExtOp = VT.bitsGT(tmp.getValueType()) ? ISD::ANY_EXTEND : ISD::TRUNCATE;
   8466   return DAG.getNode(ExtOp, dl, VT, tmp);
   8467 }
   8468 
   8469 static SDValue findMUL_LOHI(SDValue V) {
   8470   if (V->getOpcode() == ISD::UMUL_LOHI ||
   8471       V->getOpcode() == ISD::SMUL_LOHI)
   8472     return V;
   8473   return SDValue();
   8474 }
   8475 
   8476 static SDValue AddCombineTo64bitMLAL(SDNode *AddcNode,
   8477                                      TargetLowering::DAGCombinerInfo &DCI,
   8478                                      const ARMSubtarget *Subtarget) {
   8479 
   8480   if (Subtarget->isThumb1Only()) return SDValue();
   8481 
   8482   // Only perform the checks after legalize when the pattern is available.
   8483   if (DCI.isBeforeLegalize()) return SDValue();
   8484 
   8485   // Look for multiply add opportunities.
   8486   // The pattern is a ISD::UMUL_LOHI followed by two add nodes, where
   8487   // each add nodes consumes a value from ISD::UMUL_LOHI and there is
   8488   // a glue link from the first add to the second add.
   8489   // If we find this pattern, we can replace the U/SMUL_LOHI, ADDC, and ADDE by
   8490   // a S/UMLAL instruction.
   8491   //                  UMUL_LOHI
   8492   //                 / :lo    \ :hi
   8493   //                /          \          [no multiline comment]
   8494   //    loAdd ->  ADDE         |
   8495   //                 \ :glue  /
   8496   //                  \      /
   8497   //                    ADDC   <- hiAdd
   8498   //
   8499   assert(AddcNode->getOpcode() == ISD::ADDC && "Expect an ADDC");
   8500   SDValue AddcOp0 = AddcNode->getOperand(0);
   8501   SDValue AddcOp1 = AddcNode->getOperand(1);
   8502 
   8503   // Check if the two operands are from the same mul_lohi node.
   8504   if (AddcOp0.getNode() == AddcOp1.getNode())
   8505     return SDValue();
   8506 
   8507   assert(AddcNode->getNumValues() == 2 &&
   8508          AddcNode->getValueType(0) == MVT::i32 &&
   8509          "Expect ADDC with two result values. First: i32");
   8510 
   8511   // Check that we have a glued ADDC node.
   8512   if (AddcNode->getValueType(1) != MVT::Glue)
   8513     return SDValue();
   8514 
   8515   // Check that the ADDC adds the low result of the S/UMUL_LOHI.
   8516   if (AddcOp0->getOpcode() != ISD::UMUL_LOHI &&
   8517       AddcOp0->getOpcode() != ISD::SMUL_LOHI &&
   8518       AddcOp1->getOpcode() != ISD::UMUL_LOHI &&
   8519       AddcOp1->getOpcode() != ISD::SMUL_LOHI)
   8520     return SDValue();
   8521 
   8522   // Look for the glued ADDE.
   8523   SDNode* AddeNode = AddcNode->getGluedUser();
   8524   if (!AddeNode)
   8525     return SDValue();
   8526 
   8527   // Make sure it is really an ADDE.
   8528   if (AddeNode->getOpcode() != ISD::ADDE)
   8529     return SDValue();
   8530 
   8531   assert(AddeNode->getNumOperands() == 3 &&
   8532          AddeNode->getOperand(2).getValueType() == MVT::Glue &&
   8533          "ADDE node has the wrong inputs");
   8534 
   8535   // Check for the triangle shape.
   8536   SDValue AddeOp0 = AddeNode->getOperand(0);
   8537   SDValue AddeOp1 = AddeNode->getOperand(1);
   8538 
   8539   // Make sure that the ADDE operands are not coming from the same node.
   8540   if (AddeOp0.getNode() == AddeOp1.getNode())
   8541     return SDValue();
   8542 
   8543   // Find the MUL_LOHI node walking up ADDE's operands.
   8544   bool IsLeftOperandMUL = false;
   8545   SDValue MULOp = findMUL_LOHI(AddeOp0);
   8546   if (MULOp == SDValue())
   8547    MULOp = findMUL_LOHI(AddeOp1);
   8548   else
   8549     IsLeftOperandMUL = true;
   8550   if (MULOp == SDValue())
   8551     return SDValue();
   8552 
   8553   // Figure out the right opcode.
   8554   unsigned Opc = MULOp->getOpcode();
   8555   unsigned FinalOpc = (Opc == ISD::SMUL_LOHI) ? ARMISD::SMLAL : ARMISD::UMLAL;
   8556 
   8557   // Figure out the high and low input values to the MLAL node.
   8558   SDValue* HiAdd = nullptr;
   8559   SDValue* LoMul = nullptr;
   8560   SDValue* LowAdd = nullptr;
   8561 
   8562   // Ensure that ADDE is from high result of ISD::SMUL_LOHI.
   8563   if ((AddeOp0 != MULOp.getValue(1)) && (AddeOp1 != MULOp.getValue(1)))
   8564     return SDValue();
   8565 
   8566   if (IsLeftOperandMUL)
   8567     HiAdd = &AddeOp1;
   8568   else
   8569     HiAdd = &AddeOp0;
   8570 
   8571 
   8572   // Ensure that LoMul and LowAdd are taken from correct ISD::SMUL_LOHI node
   8573   // whose low result is fed to the ADDC we are checking.
   8574 
   8575   if (AddcOp0 == MULOp.getValue(0)) {
   8576     LoMul = &AddcOp0;
   8577     LowAdd = &AddcOp1;
   8578   }
   8579   if (AddcOp1 == MULOp.getValue(0)) {
   8580     LoMul = &AddcOp1;
   8581     LowAdd = &AddcOp0;
   8582   }
   8583 
   8584   if (!LoMul)
   8585     return SDValue();
   8586 
   8587   // Create the merged node.
   8588   SelectionDAG &DAG = DCI.DAG;
   8589 
   8590   // Build operand list.
   8591   SmallVector<SDValue, 8> Ops;
   8592   Ops.push_back(LoMul->getOperand(0));
   8593   Ops.push_back(LoMul->getOperand(1));
   8594   Ops.push_back(*LowAdd);
   8595   Ops.push_back(*HiAdd);
   8596 
   8597   SDValue MLALNode =  DAG.getNode(FinalOpc, SDLoc(AddcNode),
   8598                                  DAG.getVTList(MVT::i32, MVT::i32), Ops);
   8599 
   8600   // Replace the ADDs' nodes uses by the MLA node's values.
   8601   SDValue HiMLALResult(MLALNode.getNode(), 1);
   8602   DAG.ReplaceAllUsesOfValueWith(SDValue(AddeNode, 0), HiMLALResult);
   8603 
   8604   SDValue LoMLALResult(MLALNode.getNode(), 0);
   8605   DAG.ReplaceAllUsesOfValueWith(SDValue(AddcNode, 0), LoMLALResult);
   8606 
   8607   // Return original node to notify the driver to stop replacing.
   8608   SDValue resNode(AddcNode, 0);
   8609   return resNode;
   8610 }
   8611 
   8612 /// PerformADDCCombine - Target-specific dag combine transform from
   8613 /// ISD::ADDC, ISD::ADDE, and ISD::MUL_LOHI to MLAL.
   8614 static SDValue PerformADDCCombine(SDNode *N,
   8615                                  TargetLowering::DAGCombinerInfo &DCI,
   8616                                  const ARMSubtarget *Subtarget) {
   8617 
   8618   return AddCombineTo64bitMLAL(N, DCI, Subtarget);
   8619 
   8620 }
   8621 
   8622 /// PerformADDCombineWithOperands - Try DAG combinations for an ADD with
   8623 /// operands N0 and N1.  This is a helper for PerformADDCombine that is
   8624 /// called with the default operands, and if that fails, with commuted
   8625 /// operands.
   8626 static SDValue PerformADDCombineWithOperands(SDNode *N, SDValue N0, SDValue N1,
   8627                                           TargetLowering::DAGCombinerInfo &DCI,
   8628                                           const ARMSubtarget *Subtarget){
   8629 
   8630   // Attempt to create vpaddl for this add.
   8631   SDValue Result = AddCombineToVPADDL(N, N0, N1, DCI, Subtarget);
   8632   if (Result.getNode())
   8633     return Result;
   8634 
   8635   // fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c))
   8636   if (N0.getNode()->hasOneUse()) {
   8637     SDValue Result = combineSelectAndUse(N, N0, N1, DCI);
   8638     if (Result.getNode()) return Result;
   8639   }
   8640   return SDValue();
   8641 }
   8642 
   8643 /// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
   8644 ///
   8645 static SDValue PerformADDCombine(SDNode *N,
   8646                                  TargetLowering::DAGCombinerInfo &DCI,
   8647                                  const ARMSubtarget *Subtarget) {
   8648   SDValue N0 = N->getOperand(0);
   8649   SDValue N1 = N->getOperand(1);
   8650 
   8651   // First try with the default operand order.
   8652   SDValue Result = PerformADDCombineWithOperands(N, N0, N1, DCI, Subtarget);
   8653   if (Result.getNode())
   8654     return Result;
   8655 
   8656   // If that didn't work, try again with the operands commuted.
   8657   return PerformADDCombineWithOperands(N, N1, N0, DCI, Subtarget);
   8658 }
   8659 
   8660 /// PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB.
   8661 ///
   8662 static SDValue PerformSUBCombine(SDNode *N,
   8663                                  TargetLowering::DAGCombinerInfo &DCI) {
   8664   SDValue N0 = N->getOperand(0);
   8665   SDValue N1 = N->getOperand(1);
   8666 
   8667   // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c))
   8668   if (N1.getNode()->hasOneUse()) {
   8669     SDValue Result = combineSelectAndUse(N, N1, N0, DCI);
   8670     if (Result.getNode()) return Result;
   8671   }
   8672 
   8673   return SDValue();
   8674 }
   8675 
   8676 /// PerformVMULCombine
   8677 /// Distribute (A + B) * C to (A * C) + (B * C) to take advantage of the
   8678 /// special multiplier accumulator forwarding.
   8679 ///   vmul d3, d0, d2
   8680 ///   vmla d3, d1, d2
   8681 /// is faster than
   8682 ///   vadd d3, d0, d1
   8683 ///   vmul d3, d3, d2
   8684 //  However, for (A + B) * (A + B),
   8685 //    vadd d2, d0, d1
   8686 //    vmul d3, d0, d2
   8687 //    vmla d3, d1, d2
   8688 //  is slower than
   8689 //    vadd d2, d0, d1
   8690 //    vmul d3, d2, d2
   8691 static SDValue PerformVMULCombine(SDNode *N,
   8692                                   TargetLowering::DAGCombinerInfo &DCI,
   8693                                   const ARMSubtarget *Subtarget) {
   8694   if (!Subtarget->hasVMLxForwarding())
   8695     return SDValue();
   8696 
   8697   SelectionDAG &DAG = DCI.DAG;
   8698   SDValue N0 = N->getOperand(0);
   8699   SDValue N1 = N->getOperand(1);
   8700   unsigned Opcode = N0.getOpcode();
   8701   if (Opcode != ISD::ADD && Opcode != ISD::SUB &&
   8702       Opcode != ISD::FADD && Opcode != ISD::FSUB) {
   8703     Opcode = N1.getOpcode();
   8704     if (Opcode != ISD::ADD && Opcode != ISD::SUB &&
   8705         Opcode != ISD::FADD && Opcode != ISD::FSUB)
   8706       return SDValue();
   8707     std::swap(N0, N1);
   8708   }
   8709 
   8710   if (N0 == N1)
   8711     return SDValue();
   8712 
   8713   EVT VT = N->getValueType(0);
   8714   SDLoc DL(N);
   8715   SDValue N00 = N0->getOperand(0);
   8716   SDValue N01 = N0->getOperand(1);
   8717   return DAG.getNode(Opcode, DL, VT,
   8718                      DAG.getNode(ISD::MUL, DL, VT, N00, N1),
   8719                      DAG.getNode(ISD::MUL, DL, VT, N01, N1));
   8720 }
   8721 
   8722 static SDValue PerformMULCombine(SDNode *N,
   8723                                  TargetLowering::DAGCombinerInfo &DCI,
   8724                                  const ARMSubtarget *Subtarget) {
   8725   SelectionDAG &DAG = DCI.DAG;
   8726 
   8727   if (Subtarget->isThumb1Only())
   8728     return SDValue();
   8729 
   8730   if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
   8731     return SDValue();
   8732 
   8733   EVT VT = N->getValueType(0);
   8734   if (VT.is64BitVector() || VT.is128BitVector())
   8735     return PerformVMULCombine(N, DCI, Subtarget);
   8736   if (VT != MVT::i32)
   8737     return SDValue();
   8738 
   8739   ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1));
   8740   if (!C)
   8741     return SDValue();
   8742 
   8743   int64_t MulAmt = C->getSExtValue();
   8744   unsigned ShiftAmt = countTrailingZeros<uint64_t>(MulAmt);
   8745 
   8746   ShiftAmt = ShiftAmt & (32 - 1);
   8747   SDValue V = N->getOperand(0);
   8748   SDLoc DL(N);
   8749 
   8750   SDValue Res;
   8751   MulAmt >>= ShiftAmt;
   8752 
   8753   if (MulAmt >= 0) {
   8754     if (isPowerOf2_32(MulAmt - 1)) {
   8755       // (mul x, 2^N + 1) => (add (shl x, N), x)
   8756       Res = DAG.getNode(ISD::ADD, DL, VT,
   8757                         V,
   8758                         DAG.getNode(ISD::SHL, DL, VT,
   8759                                     V,
   8760                                     DAG.getConstant(Log2_32(MulAmt - 1), DL,
   8761                                                     MVT::i32)));
   8762     } else if (isPowerOf2_32(MulAmt + 1)) {
   8763       // (mul x, 2^N - 1) => (sub (shl x, N), x)
   8764       Res = DAG.getNode(ISD::SUB, DL, VT,
   8765                         DAG.getNode(ISD::SHL, DL, VT,
   8766                                     V,
   8767                                     DAG.getConstant(Log2_32(MulAmt + 1), DL,
   8768                                                     MVT::i32)),
   8769                         V);
   8770     } else
   8771       return SDValue();
   8772   } else {
   8773     uint64_t MulAmtAbs = -MulAmt;
   8774     if (isPowerOf2_32(MulAmtAbs + 1)) {
   8775       // (mul x, -(2^N - 1)) => (sub x, (shl x, N))
   8776       Res = DAG.getNode(ISD::SUB, DL, VT,
   8777                         V,
   8778                         DAG.getNode(ISD::SHL, DL, VT,
   8779                                     V,
   8780                                     DAG.getConstant(Log2_32(MulAmtAbs + 1), DL,
   8781                                                     MVT::i32)));
   8782     } else if (isPowerOf2_32(MulAmtAbs - 1)) {
   8783       // (mul x, -(2^N + 1)) => - (add (shl x, N), x)
   8784       Res = DAG.getNode(ISD::ADD, DL, VT,
   8785                         V,
   8786                         DAG.getNode(ISD::SHL, DL, VT,
   8787                                     V,
   8788                                     DAG.getConstant(Log2_32(MulAmtAbs - 1), DL,
   8789                                                     MVT::i32)));
   8790       Res = DAG.getNode(ISD::SUB, DL, VT,
   8791                         DAG.getConstant(0, DL, MVT::i32), Res);
   8792 
   8793     } else
   8794       return SDValue();
   8795   }
   8796 
   8797   if (ShiftAmt != 0)
   8798     Res = DAG.getNode(ISD::SHL, DL, VT,
   8799                       Res, DAG.getConstant(ShiftAmt, DL, MVT::i32));
   8800 
   8801   // Do not add new nodes to DAG combiner worklist.
   8802   DCI.CombineTo(N, Res, false);
   8803   return SDValue();
   8804 }
   8805 
   8806 static SDValue PerformANDCombine(SDNode *N,
   8807                                  TargetLowering::DAGCombinerInfo &DCI,
   8808                                  const ARMSubtarget *Subtarget) {
   8809 
   8810   // Attempt to use immediate-form VBIC
   8811   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
   8812   SDLoc dl(N);
   8813   EVT VT = N->getValueType(0);
   8814   SelectionDAG &DAG = DCI.DAG;
   8815 
   8816   if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
   8817     return SDValue();
   8818 
   8819   APInt SplatBits, SplatUndef;
   8820   unsigned SplatBitSize;
   8821   bool HasAnyUndefs;
   8822   if (BVN &&
   8823       BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
   8824     if (SplatBitSize <= 64) {
   8825       EVT VbicVT;
   8826       SDValue Val = isNEONModifiedImm((~SplatBits).getZExtValue(),
   8827                                       SplatUndef.getZExtValue(), SplatBitSize,
   8828                                       DAG, dl, VbicVT, VT.is128BitVector(),
   8829                                       OtherModImm);
   8830       if (Val.getNode()) {
   8831         SDValue Input =
   8832           DAG.getNode(ISD::BITCAST, dl, VbicVT, N->getOperand(0));
   8833         SDValue Vbic = DAG.getNode(ARMISD::VBICIMM, dl, VbicVT, Input, Val);
   8834         return DAG.getNode(ISD::BITCAST, dl, VT, Vbic);
   8835       }
   8836     }
   8837   }
   8838 
   8839   if (!Subtarget->isThumb1Only()) {
   8840     // fold (and (select cc, -1, c), x) -> (select cc, x, (and, x, c))
   8841     SDValue Result = combineSelectAndUseCommutative(N, true, DCI);
   8842     if (Result.getNode())
   8843       return Result;
   8844   }
   8845 
   8846   return SDValue();
   8847 }
   8848 
   8849 /// PerformORCombine - Target-specific dag combine xforms for ISD::OR
   8850 static SDValue PerformORCombine(SDNode *N,
   8851                                 TargetLowering::DAGCombinerInfo &DCI,
   8852                                 const ARMSubtarget *Subtarget) {
   8853   // Attempt to use immediate-form VORR
   8854   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1));
   8855   SDLoc dl(N);
   8856   EVT VT = N->getValueType(0);
   8857   SelectionDAG &DAG = DCI.DAG;
   8858 
   8859   if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
   8860     return SDValue();
   8861 
   8862   APInt SplatBits, SplatUndef;
   8863   unsigned SplatBitSize;
   8864   bool HasAnyUndefs;
   8865   if (BVN && Subtarget->hasNEON() &&
   8866       BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) {
   8867     if (SplatBitSize <= 64) {
   8868       EVT VorrVT;
   8869       SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(),
   8870                                       SplatUndef.getZExtValue(), SplatBitSize,
   8871                                       DAG, dl, VorrVT, VT.is128BitVector(),
   8872                                       OtherModImm);
   8873       if (Val.getNode()) {
   8874         SDValue Input =
   8875           DAG.getNode(ISD::BITCAST, dl, VorrVT, N->getOperand(0));
   8876         SDValue Vorr = DAG.getNode(ARMISD::VORRIMM, dl, VorrVT, Input, Val);
   8877         return DAG.getNode(ISD::BITCAST, dl, VT, Vorr);
   8878       }
   8879     }
   8880   }
   8881 
   8882   if (!Subtarget->isThumb1Only()) {
   8883     // fold (or (select cc, 0, c), x) -> (select cc, x, (or, x, c))
   8884     SDValue Result = combineSelectAndUseCommutative(N, false, DCI);
   8885     if (Result.getNode())
   8886       return Result;
   8887   }
   8888 
   8889   // The code below optimizes (or (and X, Y), Z).
   8890   // The AND operand needs to have a single user to make these optimizations
   8891   // profitable.
   8892   SDValue N0 = N->getOperand(0);
   8893   if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
   8894     return SDValue();
   8895   SDValue N1 = N->getOperand(1);
   8896 
   8897   // (or (and B, A), (and C, ~A)) => (VBSL A, B, C) when A is a constant.
   8898   if (Subtarget->hasNEON() && N1.getOpcode() == ISD::AND && VT.isVector() &&
   8899       DAG.getTargetLoweringInfo().isTypeLegal(VT)) {
   8900     APInt SplatUndef;
   8901     unsigned SplatBitSize;
   8902     bool HasAnyUndefs;
   8903 
   8904     APInt SplatBits0, SplatBits1;
   8905     BuildVectorSDNode *BVN0 = dyn_cast<BuildVectorSDNode>(N0->getOperand(1));
   8906     BuildVectorSDNode *BVN1 = dyn_cast<BuildVectorSDNode>(N1->getOperand(1));
   8907     // Ensure that the second operand of both ands are constants
   8908     if (BVN0 && BVN0->isConstantSplat(SplatBits0, SplatUndef, SplatBitSize,
   8909                                       HasAnyUndefs) && !HasAnyUndefs) {
   8910         if (BVN1 && BVN1->isConstantSplat(SplatBits1, SplatUndef, SplatBitSize,
   8911                                           HasAnyUndefs) && !HasAnyUndefs) {
   8912             // Ensure that the bit width of the constants are the same and that
   8913             // the splat arguments are logical inverses as per the pattern we
   8914             // are trying to simplify.
   8915             if (SplatBits0.getBitWidth() == SplatBits1.getBitWidth() &&
   8916                 SplatBits0 == ~SplatBits1) {
   8917                 // Canonicalize the vector type to make instruction selection
   8918                 // simpler.
   8919                 EVT CanonicalVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32;
   8920                 SDValue Result = DAG.getNode(ARMISD::VBSL, dl, CanonicalVT,
   8921                                              N0->getOperand(1),
   8922                                              N0->getOperand(0),
   8923                                              N1->getOperand(0));
   8924                 return DAG.getNode(ISD::BITCAST, dl, VT, Result);
   8925             }
   8926         }
   8927     }
   8928   }
   8929 
   8930   // Try to use the ARM/Thumb2 BFI (bitfield insert) instruction when
   8931   // reasonable.
   8932 
   8933   // BFI is only available on V6T2+
   8934   if (Subtarget->isThumb1Only() || !Subtarget->hasV6T2Ops())
   8935     return SDValue();
   8936 
   8937   SDLoc DL(N);
   8938   // 1) or (and A, mask), val => ARMbfi A, val, mask
   8939   //      iff (val & mask) == val
   8940   //
   8941   // 2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
   8942   //  2a) iff isBitFieldInvertedMask(mask) && isBitFieldInvertedMask(~mask2)
   8943   //          && mask == ~mask2
   8944   //  2b) iff isBitFieldInvertedMask(~mask) && isBitFieldInvertedMask(mask2)
   8945   //          && ~mask == mask2
   8946   //  (i.e., copy a bitfield value into another bitfield of the same width)
   8947 
   8948   if (VT != MVT::i32)
   8949     return SDValue();
   8950 
   8951   SDValue N00 = N0.getOperand(0);
   8952 
   8953   // The value and the mask need to be constants so we can verify this is
   8954   // actually a bitfield set. If the mask is 0xffff, we can do better
   8955   // via a movt instruction, so don't use BFI in that case.
   8956   SDValue MaskOp = N0.getOperand(1);
   8957   ConstantSDNode *MaskC = dyn_cast<ConstantSDNode>(MaskOp);
   8958   if (!MaskC)
   8959     return SDValue();
   8960   unsigned Mask = MaskC->getZExtValue();
   8961   if (Mask == 0xffff)
   8962     return SDValue();
   8963   SDValue Res;
   8964   // Case (1): or (and A, mask), val => ARMbfi A, val, mask
   8965   ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
   8966   if (N1C) {
   8967     unsigned Val = N1C->getZExtValue();
   8968     if ((Val & ~Mask) != Val)
   8969       return SDValue();
   8970 
   8971     if (ARM::isBitFieldInvertedMask(Mask)) {
   8972       Val >>= countTrailingZeros(~Mask);
   8973 
   8974       Res = DAG.getNode(ARMISD::BFI, DL, VT, N00,
   8975                         DAG.getConstant(Val, DL, MVT::i32),
   8976                         DAG.getConstant(Mask, DL, MVT::i32));
   8977 
   8978       // Do not add new nodes to DAG combiner worklist.
   8979       DCI.CombineTo(N, Res, false);
   8980       return SDValue();
   8981     }
   8982   } else if (N1.getOpcode() == ISD::AND) {
   8983     // case (2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask
   8984     ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
   8985     if (!N11C)
   8986       return SDValue();
   8987     unsigned Mask2 = N11C->getZExtValue();
   8988 
   8989     // Mask and ~Mask2 (or reverse) must be equivalent for the BFI pattern
   8990     // as is to match.
   8991     if (ARM::isBitFieldInvertedMask(Mask) &&
   8992         (Mask == ~Mask2)) {
   8993       // The pack halfword instruction works better for masks that fit it,
   8994       // so use that when it's available.
   8995       if (Subtarget->hasT2ExtractPack() &&
   8996           (Mask == 0xffff || Mask == 0xffff0000))
   8997         return SDValue();
   8998       // 2a
   8999       unsigned amt = countTrailingZeros(Mask2);
   9000       Res = DAG.getNode(ISD::SRL, DL, VT, N1.getOperand(0),
   9001                         DAG.getConstant(amt, DL, MVT::i32));
   9002       Res = DAG.getNode(ARMISD::BFI, DL, VT, N00, Res,
   9003                         DAG.getConstant(Mask, DL, MVT::i32));
   9004       // Do not add new nodes to DAG combiner worklist.
   9005       DCI.CombineTo(N, Res, false);
   9006       return SDValue();
   9007     } else if (ARM::isBitFieldInvertedMask(~Mask) &&
   9008                (~Mask == Mask2)) {
   9009       // The pack halfword instruction works better for masks that fit it,
   9010       // so use that when it's available.
   9011       if (Subtarget->hasT2ExtractPack() &&
   9012           (Mask2 == 0xffff || Mask2 == 0xffff0000))
   9013         return SDValue();
   9014       // 2b
   9015       unsigned lsb = countTrailingZeros(Mask);
   9016       Res = DAG.getNode(ISD::SRL, DL, VT, N00,
   9017                         DAG.getConstant(lsb, DL, MVT::i32));
   9018       Res = DAG.getNode(ARMISD::BFI, DL, VT, N1.getOperand(0), Res,
   9019                         DAG.getConstant(Mask2, DL, MVT::i32));
   9020       // Do not add new nodes to DAG combiner worklist.
   9021       DCI.CombineTo(N, Res, false);
   9022       return SDValue();
   9023     }
   9024   }
   9025 
   9026   if (DAG.MaskedValueIsZero(N1, MaskC->getAPIntValue()) &&
   9027       N00.getOpcode() == ISD::SHL && isa<ConstantSDNode>(N00.getOperand(1)) &&
   9028       ARM::isBitFieldInvertedMask(~Mask)) {
   9029     // Case (3): or (and (shl A, #shamt), mask), B => ARMbfi B, A, ~mask
   9030     // where lsb(mask) == #shamt and masked bits of B are known zero.
   9031     SDValue ShAmt = N00.getOperand(1);
   9032     unsigned ShAmtC = cast<ConstantSDNode>(ShAmt)->getZExtValue();
   9033     unsigned LSB = countTrailingZeros(Mask);
   9034     if (ShAmtC != LSB)
   9035       return SDValue();
   9036 
   9037     Res = DAG.getNode(ARMISD::BFI, DL, VT, N1, N00.getOperand(0),
   9038                       DAG.getConstant(~Mask, DL, MVT::i32));
   9039 
   9040     // Do not add new nodes to DAG combiner worklist.
   9041     DCI.CombineTo(N, Res, false);
   9042   }
   9043 
   9044   return SDValue();
   9045 }
   9046 
   9047 static SDValue PerformXORCombine(SDNode *N,
   9048                                  TargetLowering::DAGCombinerInfo &DCI,
   9049                                  const ARMSubtarget *Subtarget) {
   9050   EVT VT = N->getValueType(0);
   9051   SelectionDAG &DAG = DCI.DAG;
   9052 
   9053   if(!DAG.getTargetLoweringInfo().isTypeLegal(VT))
   9054     return SDValue();
   9055 
   9056   if (!Subtarget->isThumb1Only()) {
   9057     // fold (xor (select cc, 0, c), x) -> (select cc, x, (xor, x, c))
   9058     SDValue Result = combineSelectAndUseCommutative(N, false, DCI);
   9059     if (Result.getNode())
   9060       return Result;
   9061   }
   9062 
   9063   return SDValue();
   9064 }
   9065 
   9066 // ParseBFI - given a BFI instruction in N, extract the "from" value (Rn) and return it,
   9067 // and fill in FromMask and ToMask with (consecutive) bits in "from" to be extracted and
   9068 // their position in "to" (Rd).
   9069 static SDValue ParseBFI(SDNode *N, APInt &ToMask, APInt &FromMask) {
   9070   assert(N->getOpcode() == ARMISD::BFI);
   9071 
   9072   SDValue From = N->getOperand(1);
   9073   ToMask = ~cast<ConstantSDNode>(N->getOperand(2))->getAPIntValue();
   9074   FromMask = APInt::getLowBitsSet(ToMask.getBitWidth(), ToMask.countPopulation());
   9075 
   9076   // If the Base came from a SHR #C, we can deduce that it is really testing bit
   9077   // #C in the base of the SHR.
   9078   if (From->getOpcode() == ISD::SRL &&
   9079       isa<ConstantSDNode>(From->getOperand(1))) {
   9080     APInt Shift = cast<ConstantSDNode>(From->getOperand(1))->getAPIntValue();
   9081     assert(Shift.getLimitedValue() < 32 && "Shift too large!");
   9082     FromMask <<= Shift.getLimitedValue(31);
   9083     From = From->getOperand(0);
   9084   }
   9085 
   9086   return From;
   9087 }
   9088 
   9089 // If A and B contain one contiguous set of bits, does A | B == A . B?
   9090 //
   9091 // Neither A nor B must be zero.
   9092 static bool BitsProperlyConcatenate(const APInt &A, const APInt &B) {
   9093   unsigned LastActiveBitInA =  A.countTrailingZeros();
   9094   unsigned FirstActiveBitInB = B.getBitWidth() - B.countLeadingZeros() - 1;
   9095   return LastActiveBitInA - 1 == FirstActiveBitInB;
   9096 }
   9097 
   9098 static SDValue FindBFIToCombineWith(SDNode *N) {
   9099   // We have a BFI in N. Follow a possible chain of BFIs and find a BFI it can combine with,
   9100   // if one exists.
   9101   APInt ToMask, FromMask;
   9102   SDValue From = ParseBFI(N, ToMask, FromMask);
   9103   SDValue To = N->getOperand(0);
   9104 
   9105   // Now check for a compatible BFI to merge with. We can pass through BFIs that
   9106   // aren't compatible, but not if they set the same bit in their destination as
   9107   // we do (or that of any BFI we're going to combine with).
   9108   SDValue V = To;
   9109   APInt CombinedToMask = ToMask;
   9110   while (V.getOpcode() == ARMISD::BFI) {
   9111     APInt NewToMask, NewFromMask;
   9112     SDValue NewFrom = ParseBFI(V.getNode(), NewToMask, NewFromMask);
   9113     if (NewFrom != From) {
   9114       // This BFI has a different base. Keep going.
   9115       CombinedToMask |= NewToMask;
   9116       V = V.getOperand(0);
   9117       continue;
   9118     }
   9119 
   9120     // Do the written bits conflict with any we've seen so far?
   9121     if ((NewToMask & CombinedToMask).getBoolValue())
   9122       // Conflicting bits - bail out because going further is unsafe.
   9123       return SDValue();
   9124 
   9125     // Are the new bits contiguous when combined with the old bits?
   9126     if (BitsProperlyConcatenate(ToMask, NewToMask) &&
   9127         BitsProperlyConcatenate(FromMask, NewFromMask))
   9128       return V;
   9129     if (BitsProperlyConcatenate(NewToMask, ToMask) &&
   9130         BitsProperlyConcatenate(NewFromMask, FromMask))
   9131       return V;
   9132 
   9133     // We've seen a write to some bits, so track it.
   9134     CombinedToMask |= NewToMask;
   9135     // Keep going...
   9136     V = V.getOperand(0);
   9137   }
   9138 
   9139   return SDValue();
   9140 }
   9141 
   9142 static SDValue PerformBFICombine(SDNode *N,
   9143                                  TargetLowering::DAGCombinerInfo &DCI) {
   9144   SDValue N1 = N->getOperand(1);
   9145   if (N1.getOpcode() == ISD::AND) {
   9146     // (bfi A, (and B, Mask1), Mask2) -> (bfi A, B, Mask2) iff
   9147     // the bits being cleared by the AND are not demanded by the BFI.
   9148     ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1));
   9149     if (!N11C)
   9150       return SDValue();
   9151     unsigned InvMask = cast<ConstantSDNode>(N->getOperand(2))->getZExtValue();
   9152     unsigned LSB = countTrailingZeros(~InvMask);
   9153     unsigned Width = (32 - countLeadingZeros(~InvMask)) - LSB;
   9154     assert(Width <
   9155                static_cast<unsigned>(std::numeric_limits<unsigned>::digits) &&
   9156            "undefined behavior");
   9157     unsigned Mask = (1u << Width) - 1;
   9158     unsigned Mask2 = N11C->getZExtValue();
   9159     if ((Mask & (~Mask2)) == 0)
   9160       return DCI.DAG.getNode(ARMISD::BFI, SDLoc(N), N->getValueType(0),
   9161                              N->getOperand(0), N1.getOperand(0),
   9162                              N->getOperand(2));
   9163   } else if (N->getOperand(0).getOpcode() == ARMISD::BFI) {
   9164     // We have a BFI of a BFI. Walk up the BFI chain to see how long it goes.
   9165     // Keep track of any consecutive bits set that all come from the same base
   9166     // value. We can combine these together into a single BFI.
   9167     SDValue CombineBFI = FindBFIToCombineWith(N);
   9168     if (CombineBFI == SDValue())
   9169       return SDValue();
   9170 
   9171     // We've found a BFI.
   9172     APInt ToMask1, FromMask1;
   9173     SDValue From1 = ParseBFI(N, ToMask1, FromMask1);
   9174 
   9175     APInt ToMask2, FromMask2;
   9176     SDValue From2 = ParseBFI(CombineBFI.getNode(), ToMask2, FromMask2);
   9177     assert(From1 == From2);
   9178     (void)From2;
   9179 
   9180     // First, unlink CombineBFI.
   9181     DCI.DAG.ReplaceAllUsesWith(CombineBFI, CombineBFI.getOperand(0));
   9182     // Then create a new BFI, combining the two together.
   9183     APInt NewFromMask = FromMask1 | FromMask2;
   9184     APInt NewToMask = ToMask1 | ToMask2;
   9185 
   9186     EVT VT = N->getValueType(0);
   9187     SDLoc dl(N);
   9188 
   9189     if (NewFromMask[0] == 0)
   9190       From1 = DCI.DAG.getNode(
   9191         ISD::SRL, dl, VT, From1,
   9192         DCI.DAG.getConstant(NewFromMask.countTrailingZeros(), dl, VT));
   9193     return DCI.DAG.getNode(ARMISD::BFI, dl, VT, N->getOperand(0), From1,
   9194                            DCI.DAG.getConstant(~NewToMask, dl, VT));
   9195   }
   9196   return SDValue();
   9197 }
   9198 
   9199 /// PerformVMOVRRDCombine - Target-specific dag combine xforms for
   9200 /// ARMISD::VMOVRRD.
   9201 static SDValue PerformVMOVRRDCombine(SDNode *N,
   9202                                      TargetLowering::DAGCombinerInfo &DCI,
   9203                                      const ARMSubtarget *Subtarget) {
   9204   // vmovrrd(vmovdrr x, y) -> x,y
   9205   SDValue InDouble = N->getOperand(0);
   9206   if (InDouble.getOpcode() == ARMISD::VMOVDRR && !Subtarget->isFPOnlySP())
   9207     return DCI.CombineTo(N, InDouble.getOperand(0), InDouble.getOperand(1));
   9208 
   9209   // vmovrrd(load f64) -> (load i32), (load i32)
   9210   SDNode *InNode = InDouble.getNode();
   9211   if (ISD::isNormalLoad(InNode) && InNode->hasOneUse() &&
   9212       InNode->getValueType(0) == MVT::f64 &&
   9213       InNode->getOperand(1).getOpcode() == ISD::FrameIndex &&
   9214       !cast<LoadSDNode>(InNode)->isVolatile()) {
   9215     // TODO: Should this be done for non-FrameIndex operands?
   9216     LoadSDNode *LD = cast<LoadSDNode>(InNode);
   9217 
   9218     SelectionDAG &DAG = DCI.DAG;
   9219     SDLoc DL(LD);
   9220     SDValue BasePtr = LD->getBasePtr();
   9221     SDValue NewLD1 = DAG.getLoad(MVT::i32, DL, LD->getChain(), BasePtr,
   9222                                  LD->getPointerInfo(), LD->isVolatile(),
   9223                                  LD->isNonTemporal(), LD->isInvariant(),
   9224                                  LD->getAlignment());
   9225 
   9226     SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
   9227                                     DAG.getConstant(4, DL, MVT::i32));
   9228     SDValue NewLD2 = DAG.getLoad(MVT::i32, DL, NewLD1.getValue(1), OffsetPtr,
   9229                                  LD->getPointerInfo(), LD->isVolatile(),
   9230                                  LD->isNonTemporal(), LD->isInvariant(),
   9231                                  std::min(4U, LD->getAlignment() / 2));
   9232 
   9233     DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), NewLD2.getValue(1));
   9234     if (DCI.DAG.getDataLayout().isBigEndian())
   9235       std::swap (NewLD1, NewLD2);
   9236     SDValue Result = DCI.CombineTo(N, NewLD1, NewLD2);
   9237     return Result;
   9238   }
   9239 
   9240   return SDValue();
   9241 }
   9242 
   9243 /// PerformVMOVDRRCombine - Target-specific dag combine xforms for
   9244 /// ARMISD::VMOVDRR.  This is also used for BUILD_VECTORs with 2 operands.
   9245 static SDValue PerformVMOVDRRCombine(SDNode *N, SelectionDAG &DAG) {
   9246   // N=vmovrrd(X); vmovdrr(N:0, N:1) -> bit_convert(X)
   9247   SDValue Op0 = N->getOperand(0);
   9248   SDValue Op1 = N->getOperand(1);
   9249   if (Op0.getOpcode() == ISD::BITCAST)
   9250     Op0 = Op0.getOperand(0);
   9251   if (Op1.getOpcode() == ISD::BITCAST)
   9252     Op1 = Op1.getOperand(0);
   9253   if (Op0.getOpcode() == ARMISD::VMOVRRD &&
   9254       Op0.getNode() == Op1.getNode() &&
   9255       Op0.getResNo() == 0 && Op1.getResNo() == 1)
   9256     return DAG.getNode(ISD::BITCAST, SDLoc(N),
   9257                        N->getValueType(0), Op0.getOperand(0));
   9258   return SDValue();
   9259 }
   9260 
   9261 /// hasNormalLoadOperand - Check if any of the operands of a BUILD_VECTOR node
   9262 /// are normal, non-volatile loads.  If so, it is profitable to bitcast an
   9263 /// i64 vector to have f64 elements, since the value can then be loaded
   9264 /// directly into a VFP register.
   9265 static bool hasNormalLoadOperand(SDNode *N) {
   9266   unsigned NumElts = N->getValueType(0).getVectorNumElements();
   9267   for (unsigned i = 0; i < NumElts; ++i) {
   9268     SDNode *Elt = N->getOperand(i).getNode();
   9269     if (ISD::isNormalLoad(Elt) && !cast<LoadSDNode>(Elt)->isVolatile())
   9270       return true;
   9271   }
   9272   return false;
   9273 }
   9274 
   9275 /// PerformBUILD_VECTORCombine - Target-specific dag combine xforms for
   9276 /// ISD::BUILD_VECTOR.
   9277 static SDValue PerformBUILD_VECTORCombine(SDNode *N,
   9278                                           TargetLowering::DAGCombinerInfo &DCI,
   9279                                           const ARMSubtarget *Subtarget) {
   9280   // build_vector(N=ARMISD::VMOVRRD(X), N:1) -> bit_convert(X):
   9281   // VMOVRRD is introduced when legalizing i64 types.  It forces the i64 value
   9282   // into a pair of GPRs, which is fine when the value is used as a scalar,
   9283   // but if the i64 value is converted to a vector, we need to undo the VMOVRRD.
   9284   SelectionDAG &DAG = DCI.DAG;
   9285   if (N->getNumOperands() == 2) {
   9286     SDValue RV = PerformVMOVDRRCombine(N, DAG);
   9287     if (RV.getNode())
   9288       return RV;
   9289   }
   9290 
   9291   // Load i64 elements as f64 values so that type legalization does not split
   9292   // them up into i32 values.
   9293   EVT VT = N->getValueType(0);
   9294   if (VT.getVectorElementType() != MVT::i64 || !hasNormalLoadOperand(N))
   9295     return SDValue();
   9296   SDLoc dl(N);
   9297   SmallVector<SDValue, 8> Ops;
   9298   unsigned NumElts = VT.getVectorNumElements();
   9299   for (unsigned i = 0; i < NumElts; ++i) {
   9300     SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(i));
   9301     Ops.push_back(V);
   9302     // Make the DAGCombiner fold the bitcast.
   9303     DCI.AddToWorklist(V.getNode());
   9304   }
   9305   EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64, NumElts);
   9306   SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, FloatVT, Ops);
   9307   return DAG.getNode(ISD::BITCAST, dl, VT, BV);
   9308 }
   9309 
   9310 /// \brief Target-specific dag combine xforms for ARMISD::BUILD_VECTOR.
   9311 static SDValue
   9312 PerformARMBUILD_VECTORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
   9313   // ARMISD::BUILD_VECTOR is introduced when legalizing ISD::BUILD_VECTOR.
   9314   // At that time, we may have inserted bitcasts from integer to float.
   9315   // If these bitcasts have survived DAGCombine, change the lowering of this
   9316   // BUILD_VECTOR in something more vector friendly, i.e., that does not
   9317   // force to use floating point types.
   9318 
   9319   // Make sure we can change the type of the vector.
   9320   // This is possible iff:
   9321   // 1. The vector is only used in a bitcast to a integer type. I.e.,
   9322   //    1.1. Vector is used only once.
   9323   //    1.2. Use is a bit convert to an integer type.
   9324   // 2. The size of its operands are 32-bits (64-bits are not legal).
   9325   EVT VT = N->getValueType(0);
   9326   EVT EltVT = VT.getVectorElementType();
   9327 
   9328   // Check 1.1. and 2.
   9329   if (EltVT.getSizeInBits() != 32 || !N->hasOneUse())
   9330     return SDValue();
   9331 
   9332   // By construction, the input type must be float.
   9333   assert(EltVT == MVT::f32 && "Unexpected type!");
   9334 
   9335   // Check 1.2.
   9336   SDNode *Use = *N->use_begin();
   9337   if (Use->getOpcode() != ISD::BITCAST ||
   9338       Use->getValueType(0).isFloatingPoint())
   9339     return SDValue();
   9340 
   9341   // Check profitability.
   9342   // Model is, if more than half of the relevant operands are bitcast from
   9343   // i32, turn the build_vector into a sequence of insert_vector_elt.
   9344   // Relevant operands are everything that is not statically
   9345   // (i.e., at compile time) bitcasted.
   9346   unsigned NumOfBitCastedElts = 0;
   9347   unsigned NumElts = VT.getVectorNumElements();
   9348   unsigned NumOfRelevantElts = NumElts;
   9349   for (unsigned Idx = 0; Idx < NumElts; ++Idx) {
   9350     SDValue Elt = N->getOperand(Idx);
   9351     if (Elt->getOpcode() == ISD::BITCAST) {
   9352       // Assume only bit cast to i32 will go away.
   9353       if (Elt->getOperand(0).getValueType() == MVT::i32)
   9354         ++NumOfBitCastedElts;
   9355     } else if (Elt.getOpcode() == ISD::UNDEF || isa<ConstantSDNode>(Elt))
   9356       // Constants are statically casted, thus do not count them as
   9357       // relevant operands.
   9358       --NumOfRelevantElts;
   9359   }
   9360 
   9361   // Check if more than half of the elements require a non-free bitcast.
   9362   if (NumOfBitCastedElts <= NumOfRelevantElts / 2)
   9363     return SDValue();
   9364 
   9365   SelectionDAG &DAG = DCI.DAG;
   9366   // Create the new vector type.
   9367   EVT VecVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElts);
   9368   // Check if the type is legal.
   9369   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   9370   if (!TLI.isTypeLegal(VecVT))
   9371     return SDValue();
   9372 
   9373   // Combine:
   9374   // ARMISD::BUILD_VECTOR E1, E2, ..., EN.
   9375   // => BITCAST INSERT_VECTOR_ELT
   9376   //                      (INSERT_VECTOR_ELT (...), (BITCAST EN-1), N-1),
   9377   //                      (BITCAST EN), N.
   9378   SDValue Vec = DAG.getUNDEF(VecVT);
   9379   SDLoc dl(N);
   9380   for (unsigned Idx = 0 ; Idx < NumElts; ++Idx) {
   9381     SDValue V = N->getOperand(Idx);
   9382     if (V.getOpcode() == ISD::UNDEF)
   9383       continue;
   9384     if (V.getOpcode() == ISD::BITCAST &&
   9385         V->getOperand(0).getValueType() == MVT::i32)
   9386       // Fold obvious case.
   9387       V = V.getOperand(0);
   9388     else {
   9389       V = DAG.getNode(ISD::BITCAST, SDLoc(V), MVT::i32, V);
   9390       // Make the DAGCombiner fold the bitcasts.
   9391       DCI.AddToWorklist(V.getNode());
   9392     }
   9393     SDValue LaneIdx = DAG.getConstant(Idx, dl, MVT::i32);
   9394     Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VecVT, Vec, V, LaneIdx);
   9395   }
   9396   Vec = DAG.getNode(ISD::BITCAST, dl, VT, Vec);
   9397   // Make the DAGCombiner fold the bitcasts.
   9398   DCI.AddToWorklist(Vec.getNode());
   9399   return Vec;
   9400 }
   9401 
   9402 /// PerformInsertEltCombine - Target-specific dag combine xforms for
   9403 /// ISD::INSERT_VECTOR_ELT.
   9404 static SDValue PerformInsertEltCombine(SDNode *N,
   9405                                        TargetLowering::DAGCombinerInfo &DCI) {
   9406   // Bitcast an i64 load inserted into a vector to f64.
   9407   // Otherwise, the i64 value will be legalized to a pair of i32 values.
   9408   EVT VT = N->getValueType(0);
   9409   SDNode *Elt = N->getOperand(1).getNode();
   9410   if (VT.getVectorElementType() != MVT::i64 ||
   9411       !ISD::isNormalLoad(Elt) || cast<LoadSDNode>(Elt)->isVolatile())
   9412     return SDValue();
   9413 
   9414   SelectionDAG &DAG = DCI.DAG;
   9415   SDLoc dl(N);
   9416   EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
   9417                                  VT.getVectorNumElements());
   9418   SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, N->getOperand(0));
   9419   SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(1));
   9420   // Make the DAGCombiner fold the bitcasts.
   9421   DCI.AddToWorklist(Vec.getNode());
   9422   DCI.AddToWorklist(V.getNode());
   9423   SDValue InsElt = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, FloatVT,
   9424                                Vec, V, N->getOperand(2));
   9425   return DAG.getNode(ISD::BITCAST, dl, VT, InsElt);
   9426 }
   9427 
   9428 /// PerformVECTOR_SHUFFLECombine - Target-specific dag combine xforms for
   9429 /// ISD::VECTOR_SHUFFLE.
   9430 static SDValue PerformVECTOR_SHUFFLECombine(SDNode *N, SelectionDAG &DAG) {
   9431   // The LLVM shufflevector instruction does not require the shuffle mask
   9432   // length to match the operand vector length, but ISD::VECTOR_SHUFFLE does
   9433   // have that requirement.  When translating to ISD::VECTOR_SHUFFLE, if the
   9434   // operands do not match the mask length, they are extended by concatenating
   9435   // them with undef vectors.  That is probably the right thing for other
   9436   // targets, but for NEON it is better to concatenate two double-register
   9437   // size vector operands into a single quad-register size vector.  Do that
   9438   // transformation here:
   9439   //   shuffle(concat(v1, undef), concat(v2, undef)) ->
   9440   //   shuffle(concat(v1, v2), undef)
   9441   SDValue Op0 = N->getOperand(0);
   9442   SDValue Op1 = N->getOperand(1);
   9443   if (Op0.getOpcode() != ISD::CONCAT_VECTORS ||
   9444       Op1.getOpcode() != ISD::CONCAT_VECTORS ||
   9445       Op0.getNumOperands() != 2 ||
   9446       Op1.getNumOperands() != 2)
   9447     return SDValue();
   9448   SDValue Concat0Op1 = Op0.getOperand(1);
   9449   SDValue Concat1Op1 = Op1.getOperand(1);
   9450   if (Concat0Op1.getOpcode() != ISD::UNDEF ||
   9451       Concat1Op1.getOpcode() != ISD::UNDEF)
   9452     return SDValue();
   9453   // Skip the transformation if any of the types are illegal.
   9454   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   9455   EVT VT = N->getValueType(0);
   9456   if (!TLI.isTypeLegal(VT) ||
   9457       !TLI.isTypeLegal(Concat0Op1.getValueType()) ||
   9458       !TLI.isTypeLegal(Concat1Op1.getValueType()))
   9459     return SDValue();
   9460 
   9461   SDValue NewConcat = DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT,
   9462                                   Op0.getOperand(0), Op1.getOperand(0));
   9463   // Translate the shuffle mask.
   9464   SmallVector<int, 16> NewMask;
   9465   unsigned NumElts = VT.getVectorNumElements();
   9466   unsigned HalfElts = NumElts/2;
   9467   ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
   9468   for (unsigned n = 0; n < NumElts; ++n) {
   9469     int MaskElt = SVN->getMaskElt(n);
   9470     int NewElt = -1;
   9471     if (MaskElt < (int)HalfElts)
   9472       NewElt = MaskElt;
   9473     else if (MaskElt >= (int)NumElts && MaskElt < (int)(NumElts + HalfElts))
   9474       NewElt = HalfElts + MaskElt - NumElts;
   9475     NewMask.push_back(NewElt);
   9476   }
   9477   return DAG.getVectorShuffle(VT, SDLoc(N), NewConcat,
   9478                               DAG.getUNDEF(VT), NewMask.data());
   9479 }
   9480 
   9481 /// CombineBaseUpdate - Target-specific DAG combine function for VLDDUP,
   9482 /// NEON load/store intrinsics, and generic vector load/stores, to merge
   9483 /// base address updates.
   9484 /// For generic load/stores, the memory type is assumed to be a vector.
   9485 /// The caller is assumed to have checked legality.
   9486 static SDValue CombineBaseUpdate(SDNode *N,
   9487                                  TargetLowering::DAGCombinerInfo &DCI) {
   9488   SelectionDAG &DAG = DCI.DAG;
   9489   const bool isIntrinsic = (N->getOpcode() == ISD::INTRINSIC_VOID ||
   9490                             N->getOpcode() == ISD::INTRINSIC_W_CHAIN);
   9491   const bool isStore = N->getOpcode() == ISD::STORE;
   9492   const unsigned AddrOpIdx = ((isIntrinsic || isStore) ? 2 : 1);
   9493   SDValue Addr = N->getOperand(AddrOpIdx);
   9494   MemSDNode *MemN = cast<MemSDNode>(N);
   9495   SDLoc dl(N);
   9496 
   9497   // Search for a use of the address operand that is an increment.
   9498   for (SDNode::use_iterator UI = Addr.getNode()->use_begin(),
   9499          UE = Addr.getNode()->use_end(); UI != UE; ++UI) {
   9500     SDNode *User = *UI;
   9501     if (User->getOpcode() != ISD::ADD ||
   9502         UI.getUse().getResNo() != Addr.getResNo())
   9503       continue;
   9504 
   9505     // Check that the add is independent of the load/store.  Otherwise, folding
   9506     // it would create a cycle.
   9507     if (User->isPredecessorOf(N) || N->isPredecessorOf(User))
   9508       continue;
   9509 
   9510     // Find the new opcode for the updating load/store.
   9511     bool isLoadOp = true;
   9512     bool isLaneOp = false;
   9513     unsigned NewOpc = 0;
   9514     unsigned NumVecs = 0;
   9515     if (isIntrinsic) {
   9516       unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue();
   9517       switch (IntNo) {
   9518       default: llvm_unreachable("unexpected intrinsic for Neon base update");
   9519       case Intrinsic::arm_neon_vld1:     NewOpc = ARMISD::VLD1_UPD;
   9520         NumVecs = 1; break;
   9521       case Intrinsic::arm_neon_vld2:     NewOpc = ARMISD::VLD2_UPD;
   9522         NumVecs = 2; break;
   9523       case Intrinsic::arm_neon_vld3:     NewOpc = ARMISD::VLD3_UPD;
   9524         NumVecs = 3; break;
   9525       case Intrinsic::arm_neon_vld4:     NewOpc = ARMISD::VLD4_UPD;
   9526         NumVecs = 4; break;
   9527       case Intrinsic::arm_neon_vld2lane: NewOpc = ARMISD::VLD2LN_UPD;
   9528         NumVecs = 2; isLaneOp = true; break;
   9529       case Intrinsic::arm_neon_vld3lane: NewOpc = ARMISD::VLD3LN_UPD;
   9530         NumVecs = 3; isLaneOp = true; break;
   9531       case Intrinsic::arm_neon_vld4lane: NewOpc = ARMISD::VLD4LN_UPD;
   9532         NumVecs = 4; isLaneOp = true; break;
   9533       case Intrinsic::arm_neon_vst1:     NewOpc = ARMISD::VST1_UPD;
   9534         NumVecs = 1; isLoadOp = false; break;
   9535       case Intrinsic::arm_neon_vst2:     NewOpc = ARMISD::VST2_UPD;
   9536         NumVecs = 2; isLoadOp = false; break;
   9537       case Intrinsic::arm_neon_vst3:     NewOpc = ARMISD::VST3_UPD;
   9538         NumVecs = 3; isLoadOp = false; break;
   9539       case Intrinsic::arm_neon_vst4:     NewOpc = ARMISD::VST4_UPD;
   9540         NumVecs = 4; isLoadOp = false; break;
   9541       case Intrinsic::arm_neon_vst2lane: NewOpc = ARMISD::VST2LN_UPD;
   9542         NumVecs = 2; isLoadOp = false; isLaneOp = true; break;
   9543       case Intrinsic::arm_neon_vst3lane: NewOpc = ARMISD::VST3LN_UPD;
   9544         NumVecs = 3; isLoadOp = false; isLaneOp = true; break;
   9545       case Intrinsic::arm_neon_vst4lane: NewOpc = ARMISD::VST4LN_UPD;
   9546         NumVecs = 4; isLoadOp = false; isLaneOp = true; break;
   9547       }
   9548     } else {
   9549       isLaneOp = true;
   9550       switch (N->getOpcode()) {
   9551       default: llvm_unreachable("unexpected opcode for Neon base update");
   9552       case ARMISD::VLD2DUP: NewOpc = ARMISD::VLD2DUP_UPD; NumVecs = 2; break;
   9553       case ARMISD::VLD3DUP: NewOpc = ARMISD::VLD3DUP_UPD; NumVecs = 3; break;
   9554       case ARMISD::VLD4DUP: NewOpc = ARMISD::VLD4DUP_UPD; NumVecs = 4; break;
   9555       case ISD::LOAD:       NewOpc = ARMISD::VLD1_UPD;
   9556         NumVecs = 1; isLaneOp = false; break;
   9557       case ISD::STORE:      NewOpc = ARMISD::VST1_UPD;
   9558         NumVecs = 1; isLaneOp = false; isLoadOp = false; break;
   9559       }
   9560     }
   9561 
   9562     // Find the size of memory referenced by the load/store.
   9563     EVT VecTy;
   9564     if (isLoadOp) {
   9565       VecTy = N->getValueType(0);
   9566     } else if (isIntrinsic) {
   9567       VecTy = N->getOperand(AddrOpIdx+1).getValueType();
   9568     } else {
   9569       assert(isStore && "Node has to be a load, a store, or an intrinsic!");
   9570       VecTy = N->getOperand(1).getValueType();
   9571     }
   9572 
   9573     unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8;
   9574     if (isLaneOp)
   9575       NumBytes /= VecTy.getVectorNumElements();
   9576 
   9577     // If the increment is a constant, it must match the memory ref size.
   9578     SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0);
   9579     if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) {
   9580       uint64_t IncVal = CInc->getZExtValue();
   9581       if (IncVal != NumBytes)
   9582         continue;
   9583     } else if (NumBytes >= 3 * 16) {
   9584       // VLD3/4 and VST3/4 for 128-bit vectors are implemented with two
   9585       // separate instructions that make it harder to use a non-constant update.
   9586       continue;
   9587     }
   9588 
   9589     // OK, we found an ADD we can fold into the base update.
   9590     // Now, create a _UPD node, taking care of not breaking alignment.
   9591 
   9592     EVT AlignedVecTy = VecTy;
   9593     unsigned Alignment = MemN->getAlignment();
   9594 
   9595     // If this is a less-than-standard-aligned load/store, change the type to
   9596     // match the standard alignment.
   9597     // The alignment is overlooked when selecting _UPD variants; and it's
   9598     // easier to introduce bitcasts here than fix that.
   9599     // There are 3 ways to get to this base-update combine:
   9600     // - intrinsics: they are assumed to be properly aligned (to the standard
   9601     //   alignment of the memory type), so we don't need to do anything.
   9602     // - ARMISD::VLDx nodes: they are only generated from the aforementioned
   9603     //   intrinsics, so, likewise, there's nothing to do.
   9604     // - generic load/store instructions: the alignment is specified as an
   9605     //   explicit operand, rather than implicitly as the standard alignment
   9606     //   of the memory type (like the intrisics).  We need to change the
   9607     //   memory type to match the explicit alignment.  That way, we don't
   9608     //   generate non-standard-aligned ARMISD::VLDx nodes.
   9609     if (isa<LSBaseSDNode>(N)) {
   9610       if (Alignment == 0)
   9611         Alignment = 1;
   9612       if (Alignment < VecTy.getScalarSizeInBits() / 8) {
   9613         MVT EltTy = MVT::getIntegerVT(Alignment * 8);
   9614         assert(NumVecs == 1 && "Unexpected multi-element generic load/store.");
   9615         assert(!isLaneOp && "Unexpected generic load/store lane.");
   9616         unsigned NumElts = NumBytes / (EltTy.getSizeInBits() / 8);
   9617         AlignedVecTy = MVT::getVectorVT(EltTy, NumElts);
   9618       }
   9619       // Don't set an explicit alignment on regular load/stores that we want
   9620       // to transform to VLD/VST 1_UPD nodes.
   9621       // This matches the behavior of regular load/stores, which only get an
   9622       // explicit alignment if the MMO alignment is larger than the standard
   9623       // alignment of the memory type.
   9624       // Intrinsics, however, always get an explicit alignment, set to the
   9625       // alignment of the MMO.
   9626       Alignment = 1;
   9627     }
   9628 
   9629     // Create the new updating load/store node.
   9630     // First, create an SDVTList for the new updating node's results.
   9631     EVT Tys[6];
   9632     unsigned NumResultVecs = (isLoadOp ? NumVecs : 0);
   9633     unsigned n;
   9634     for (n = 0; n < NumResultVecs; ++n)
   9635       Tys[n] = AlignedVecTy;
   9636     Tys[n++] = MVT::i32;
   9637     Tys[n] = MVT::Other;
   9638     SDVTList SDTys = DAG.getVTList(makeArrayRef(Tys, NumResultVecs+2));
   9639 
   9640     // Then, gather the new node's operands.
   9641     SmallVector<SDValue, 8> Ops;
   9642     Ops.push_back(N->getOperand(0)); // incoming chain
   9643     Ops.push_back(N->getOperand(AddrOpIdx));
   9644     Ops.push_back(Inc);
   9645 
   9646     if (StoreSDNode *StN = dyn_cast<StoreSDNode>(N)) {
   9647       // Try to match the intrinsic's signature
   9648       Ops.push_back(StN->getValue());
   9649     } else {
   9650       // Loads (and of course intrinsics) match the intrinsics' signature,
   9651       // so just add all but the alignment operand.
   9652       for (unsigned i = AddrOpIdx + 1; i < N->getNumOperands() - 1; ++i)
   9653         Ops.push_back(N->getOperand(i));
   9654     }
   9655 
   9656     // For all node types, the alignment operand is always the last one.
   9657     Ops.push_back(DAG.getConstant(Alignment, dl, MVT::i32));
   9658 
   9659     // If this is a non-standard-aligned STORE, the penultimate operand is the
   9660     // stored value.  Bitcast it to the aligned type.
   9661     if (AlignedVecTy != VecTy && N->getOpcode() == ISD::STORE) {
   9662       SDValue &StVal = Ops[Ops.size()-2];
   9663       StVal = DAG.getNode(ISD::BITCAST, dl, AlignedVecTy, StVal);
   9664     }
   9665 
   9666     SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, dl, SDTys,
   9667                                            Ops, AlignedVecTy,
   9668                                            MemN->getMemOperand());
   9669 
   9670     // Update the uses.
   9671     SmallVector<SDValue, 5> NewResults;
   9672     for (unsigned i = 0; i < NumResultVecs; ++i)
   9673       NewResults.push_back(SDValue(UpdN.getNode(), i));
   9674 
   9675     // If this is an non-standard-aligned LOAD, the first result is the loaded
   9676     // value.  Bitcast it to the expected result type.
   9677     if (AlignedVecTy != VecTy && N->getOpcode() == ISD::LOAD) {
   9678       SDValue &LdVal = NewResults[0];
   9679       LdVal = DAG.getNode(ISD::BITCAST, dl, VecTy, LdVal);
   9680     }
   9681 
   9682     NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs+1)); // chain
   9683     DCI.CombineTo(N, NewResults);
   9684     DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs));
   9685 
   9686     break;
   9687   }
   9688   return SDValue();
   9689 }
   9690 
   9691 static SDValue PerformVLDCombine(SDNode *N,
   9692                                  TargetLowering::DAGCombinerInfo &DCI) {
   9693   if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer())
   9694     return SDValue();
   9695 
   9696   return CombineBaseUpdate(N, DCI);
   9697 }
   9698 
   9699 /// CombineVLDDUP - For a VDUPLANE node N, check if its source operand is a
   9700 /// vldN-lane (N > 1) intrinsic, and if all the other uses of that intrinsic
   9701 /// are also VDUPLANEs.  If so, combine them to a vldN-dup operation and
   9702 /// return true.
   9703 static bool CombineVLDDUP(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) {
   9704   SelectionDAG &DAG = DCI.DAG;
   9705   EVT VT = N->getValueType(0);
   9706   // vldN-dup instructions only support 64-bit vectors for N > 1.
   9707   if (!VT.is64BitVector())
   9708     return false;
   9709 
   9710   // Check if the VDUPLANE operand is a vldN-dup intrinsic.
   9711   SDNode *VLD = N->getOperand(0).getNode();
   9712   if (VLD->getOpcode() != ISD::INTRINSIC_W_CHAIN)
   9713     return false;
   9714   unsigned NumVecs = 0;
   9715   unsigned NewOpc = 0;
   9716   unsigned IntNo = cast<ConstantSDNode>(VLD->getOperand(1))->getZExtValue();
   9717   if (IntNo == Intrinsic::arm_neon_vld2lane) {
   9718     NumVecs = 2;
   9719     NewOpc = ARMISD::VLD2DUP;
   9720   } else if (IntNo == Intrinsic::arm_neon_vld3lane) {
   9721     NumVecs = 3;
   9722     NewOpc = ARMISD::VLD3DUP;
   9723   } else if (IntNo == Intrinsic::arm_neon_vld4lane) {
   9724     NumVecs = 4;
   9725     NewOpc = ARMISD::VLD4DUP;
   9726   } else {
   9727     return false;
   9728   }
   9729 
   9730   // First check that all the vldN-lane uses are VDUPLANEs and that the lane
   9731   // numbers match the load.
   9732   unsigned VLDLaneNo =
   9733     cast<ConstantSDNode>(VLD->getOperand(NumVecs+3))->getZExtValue();
   9734   for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
   9735        UI != UE; ++UI) {
   9736     // Ignore uses of the chain result.
   9737     if (UI.getUse().getResNo() == NumVecs)
   9738       continue;
   9739     SDNode *User = *UI;
   9740     if (User->getOpcode() != ARMISD::VDUPLANE ||
   9741         VLDLaneNo != cast<ConstantSDNode>(User->getOperand(1))->getZExtValue())
   9742       return false;
   9743   }
   9744 
   9745   // Create the vldN-dup node.
   9746   EVT Tys[5];
   9747   unsigned n;
   9748   for (n = 0; n < NumVecs; ++n)
   9749     Tys[n] = VT;
   9750   Tys[n] = MVT::Other;
   9751   SDVTList SDTys = DAG.getVTList(makeArrayRef(Tys, NumVecs+1));
   9752   SDValue Ops[] = { VLD->getOperand(0), VLD->getOperand(2) };
   9753   MemIntrinsicSDNode *VLDMemInt = cast<MemIntrinsicSDNode>(VLD);
   9754   SDValue VLDDup = DAG.getMemIntrinsicNode(NewOpc, SDLoc(VLD), SDTys,
   9755                                            Ops, VLDMemInt->getMemoryVT(),
   9756                                            VLDMemInt->getMemOperand());
   9757 
   9758   // Update the uses.
   9759   for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end();
   9760        UI != UE; ++UI) {
   9761     unsigned ResNo = UI.getUse().getResNo();
   9762     // Ignore uses of the chain result.
   9763     if (ResNo == NumVecs)
   9764       continue;
   9765     SDNode *User = *UI;
   9766     DCI.CombineTo(User, SDValue(VLDDup.getNode(), ResNo));
   9767   }
   9768 
   9769   // Now the vldN-lane intrinsic is dead except for its chain result.
   9770   // Update uses of the chain.
   9771   std::vector<SDValue> VLDDupResults;
   9772   for (unsigned n = 0; n < NumVecs; ++n)
   9773     VLDDupResults.push_back(SDValue(VLDDup.getNode(), n));
   9774   VLDDupResults.push_back(SDValue(VLDDup.getNode(), NumVecs));
   9775   DCI.CombineTo(VLD, VLDDupResults);
   9776 
   9777   return true;
   9778 }
   9779 
   9780 /// PerformVDUPLANECombine - Target-specific dag combine xforms for
   9781 /// ARMISD::VDUPLANE.
   9782 static SDValue PerformVDUPLANECombine(SDNode *N,
   9783                                       TargetLowering::DAGCombinerInfo &DCI) {
   9784   SDValue Op = N->getOperand(0);
   9785 
   9786   // If the source is a vldN-lane (N > 1) intrinsic, and all the other uses
   9787   // of that intrinsic are also VDUPLANEs, combine them to a vldN-dup operation.
   9788   if (CombineVLDDUP(N, DCI))
   9789     return SDValue(N, 0);
   9790 
   9791   // If the source is already a VMOVIMM or VMVNIMM splat, the VDUPLANE is
   9792   // redundant.  Ignore bit_converts for now; element sizes are checked below.
   9793   while (Op.getOpcode() == ISD::BITCAST)
   9794     Op = Op.getOperand(0);
   9795   if (Op.getOpcode() != ARMISD::VMOVIMM && Op.getOpcode() != ARMISD::VMVNIMM)
   9796     return SDValue();
   9797 
   9798   // Make sure the VMOV element size is not bigger than the VDUPLANE elements.
   9799   unsigned EltSize = Op.getValueType().getVectorElementType().getSizeInBits();
   9800   // The canonical VMOV for a zero vector uses a 32-bit element size.
   9801   unsigned Imm = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
   9802   unsigned EltBits;
   9803   if (ARM_AM::decodeNEONModImm(Imm, EltBits) == 0)
   9804     EltSize = 8;
   9805   EVT VT = N->getValueType(0);
   9806   if (EltSize > VT.getVectorElementType().getSizeInBits())
   9807     return SDValue();
   9808 
   9809   return DCI.DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op);
   9810 }
   9811 
   9812 static SDValue PerformLOADCombine(SDNode *N,
   9813                                   TargetLowering::DAGCombinerInfo &DCI) {
   9814   EVT VT = N->getValueType(0);
   9815 
   9816   // If this is a legal vector load, try to combine it into a VLD1_UPD.
   9817   if (ISD::isNormalLoad(N) && VT.isVector() &&
   9818       DCI.DAG.getTargetLoweringInfo().isTypeLegal(VT))
   9819     return CombineBaseUpdate(N, DCI);
   9820 
   9821   return SDValue();
   9822 }
   9823 
   9824 /// PerformSTORECombine - Target-specific dag combine xforms for
   9825 /// ISD::STORE.
   9826 static SDValue PerformSTORECombine(SDNode *N,
   9827                                    TargetLowering::DAGCombinerInfo &DCI) {
   9828   StoreSDNode *St = cast<StoreSDNode>(N);
   9829   if (St->isVolatile())
   9830     return SDValue();
   9831 
   9832   // Optimize trunc store (of multiple scalars) to shuffle and store.  First,
   9833   // pack all of the elements in one place.  Next, store to memory in fewer
   9834   // chunks.
   9835   SDValue StVal = St->getValue();
   9836   EVT VT = StVal.getValueType();
   9837   if (St->isTruncatingStore() && VT.isVector()) {
   9838     SelectionDAG &DAG = DCI.DAG;
   9839     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   9840     EVT StVT = St->getMemoryVT();
   9841     unsigned NumElems = VT.getVectorNumElements();
   9842     assert(StVT != VT && "Cannot truncate to the same type");
   9843     unsigned FromEltSz = VT.getVectorElementType().getSizeInBits();
   9844     unsigned ToEltSz = StVT.getVectorElementType().getSizeInBits();
   9845 
   9846     // From, To sizes and ElemCount must be pow of two
   9847     if (!isPowerOf2_32(NumElems * FromEltSz * ToEltSz)) return SDValue();
   9848 
   9849     // We are going to use the original vector elt for storing.
   9850     // Accumulated smaller vector elements must be a multiple of the store size.
   9851     if (0 != (NumElems * FromEltSz) % ToEltSz) return SDValue();
   9852 
   9853     unsigned SizeRatio  = FromEltSz / ToEltSz;
   9854     assert(SizeRatio * NumElems * ToEltSz == VT.getSizeInBits());
   9855 
   9856     // Create a type on which we perform the shuffle.
   9857     EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), StVT.getScalarType(),
   9858                                      NumElems*SizeRatio);
   9859     assert(WideVecVT.getSizeInBits() == VT.getSizeInBits());
   9860 
   9861     SDLoc DL(St);
   9862     SDValue WideVec = DAG.getNode(ISD::BITCAST, DL, WideVecVT, StVal);
   9863     SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
   9864     for (unsigned i = 0; i < NumElems; ++i)
   9865       ShuffleVec[i] = DAG.getDataLayout().isBigEndian()
   9866                           ? (i + 1) * SizeRatio - 1
   9867                           : i * SizeRatio;
   9868 
   9869     // Can't shuffle using an illegal type.
   9870     if (!TLI.isTypeLegal(WideVecVT)) return SDValue();
   9871 
   9872     SDValue Shuff = DAG.getVectorShuffle(WideVecVT, DL, WideVec,
   9873                                 DAG.getUNDEF(WideVec.getValueType()),
   9874                                 ShuffleVec.data());
   9875     // At this point all of the data is stored at the bottom of the
   9876     // register. We now need to save it to mem.
   9877 
   9878     // Find the largest store unit
   9879     MVT StoreType = MVT::i8;
   9880     for (MVT Tp : MVT::integer_valuetypes()) {
   9881       if (TLI.isTypeLegal(Tp) && Tp.getSizeInBits() <= NumElems * ToEltSz)
   9882         StoreType = Tp;
   9883     }
   9884     // Didn't find a legal store type.
   9885     if (!TLI.isTypeLegal(StoreType))
   9886       return SDValue();
   9887 
   9888     // Bitcast the original vector into a vector of store-size units
   9889     EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(),
   9890             StoreType, VT.getSizeInBits()/EVT(StoreType).getSizeInBits());
   9891     assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits());
   9892     SDValue ShuffWide = DAG.getNode(ISD::BITCAST, DL, StoreVecVT, Shuff);
   9893     SmallVector<SDValue, 8> Chains;
   9894     SDValue Increment = DAG.getConstant(StoreType.getSizeInBits() / 8, DL,
   9895                                         TLI.getPointerTy(DAG.getDataLayout()));
   9896     SDValue BasePtr = St->getBasePtr();
   9897 
   9898     // Perform one or more big stores into memory.
   9899     unsigned E = (ToEltSz*NumElems)/StoreType.getSizeInBits();
   9900     for (unsigned I = 0; I < E; I++) {
   9901       SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
   9902                                    StoreType, ShuffWide,
   9903                                    DAG.getIntPtrConstant(I, DL));
   9904       SDValue Ch = DAG.getStore(St->getChain(), DL, SubVec, BasePtr,
   9905                                 St->getPointerInfo(), St->isVolatile(),
   9906                                 St->isNonTemporal(), St->getAlignment());
   9907       BasePtr = DAG.getNode(ISD::ADD, DL, BasePtr.getValueType(), BasePtr,
   9908                             Increment);
   9909       Chains.push_back(Ch);
   9910     }
   9911     return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
   9912   }
   9913 
   9914   if (!ISD::isNormalStore(St))
   9915     return SDValue();
   9916 
   9917   // Split a store of a VMOVDRR into two integer stores to avoid mixing NEON and
   9918   // ARM stores of arguments in the same cache line.
   9919   if (StVal.getNode()->getOpcode() == ARMISD::VMOVDRR &&
   9920       StVal.getNode()->hasOneUse()) {
   9921     SelectionDAG  &DAG = DCI.DAG;
   9922     bool isBigEndian = DAG.getDataLayout().isBigEndian();
   9923     SDLoc DL(St);
   9924     SDValue BasePtr = St->getBasePtr();
   9925     SDValue NewST1 = DAG.getStore(St->getChain(), DL,
   9926                                   StVal.getNode()->getOperand(isBigEndian ? 1 : 0 ),
   9927                                   BasePtr, St->getPointerInfo(), St->isVolatile(),
   9928                                   St->isNonTemporal(), St->getAlignment());
   9929 
   9930     SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr,
   9931                                     DAG.getConstant(4, DL, MVT::i32));
   9932     return DAG.getStore(NewST1.getValue(0), DL,
   9933                         StVal.getNode()->getOperand(isBigEndian ? 0 : 1),
   9934                         OffsetPtr, St->getPointerInfo(), St->isVolatile(),
   9935                         St->isNonTemporal(),
   9936                         std::min(4U, St->getAlignment() / 2));
   9937   }
   9938 
   9939   if (StVal.getValueType() == MVT::i64 &&
   9940       StVal.getNode()->getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
   9941 
   9942     // Bitcast an i64 store extracted from a vector to f64.
   9943     // Otherwise, the i64 value will be legalized to a pair of i32 values.
   9944     SelectionDAG &DAG = DCI.DAG;
   9945     SDLoc dl(StVal);
   9946     SDValue IntVec = StVal.getOperand(0);
   9947     EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64,
   9948                                    IntVec.getValueType().getVectorNumElements());
   9949     SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, IntVec);
   9950     SDValue ExtElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64,
   9951                                  Vec, StVal.getOperand(1));
   9952     dl = SDLoc(N);
   9953     SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ExtElt);
   9954     // Make the DAGCombiner fold the bitcasts.
   9955     DCI.AddToWorklist(Vec.getNode());
   9956     DCI.AddToWorklist(ExtElt.getNode());
   9957     DCI.AddToWorklist(V.getNode());
   9958     return DAG.getStore(St->getChain(), dl, V, St->getBasePtr(),
   9959                         St->getPointerInfo(), St->isVolatile(),
   9960                         St->isNonTemporal(), St->getAlignment(),
   9961                         St->getAAInfo());
   9962   }
   9963 
   9964   // If this is a legal vector store, try to combine it into a VST1_UPD.
   9965   if (ISD::isNormalStore(N) && VT.isVector() &&
   9966       DCI.DAG.getTargetLoweringInfo().isTypeLegal(VT))
   9967     return CombineBaseUpdate(N, DCI);
   9968 
   9969   return SDValue();
   9970 }
   9971 
   9972 /// PerformVCVTCombine - VCVT (floating-point to fixed-point, Advanced SIMD)
   9973 /// can replace combinations of VMUL and VCVT (floating-point to integer)
   9974 /// when the VMUL has a constant operand that is a power of 2.
   9975 ///
   9976 /// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
   9977 ///  vmul.f32        d16, d17, d16
   9978 ///  vcvt.s32.f32    d16, d16
   9979 /// becomes:
   9980 ///  vcvt.s32.f32    d16, d16, #3
   9981 static SDValue PerformVCVTCombine(SDNode *N, SelectionDAG &DAG,
   9982                                   const ARMSubtarget *Subtarget) {
   9983   if (!Subtarget->hasNEON())
   9984     return SDValue();
   9985 
   9986   SDValue Op = N->getOperand(0);
   9987   if (!Op.getValueType().isVector() || Op.getOpcode() != ISD::FMUL)
   9988     return SDValue();
   9989 
   9990   SDValue ConstVec = Op->getOperand(1);
   9991   if (!isa<BuildVectorSDNode>(ConstVec))
   9992     return SDValue();
   9993 
   9994   MVT FloatTy = Op.getSimpleValueType().getVectorElementType();
   9995   uint32_t FloatBits = FloatTy.getSizeInBits();
   9996   MVT IntTy = N->getSimpleValueType(0).getVectorElementType();
   9997   uint32_t IntBits = IntTy.getSizeInBits();
   9998   unsigned NumLanes = Op.getValueType().getVectorNumElements();
   9999   if (FloatBits != 32 || IntBits > 32 || NumLanes > 4) {
   10000     // These instructions only exist converting from f32 to i32. We can handle
   10001     // smaller integers by generating an extra truncate, but larger ones would
   10002     // be lossy. We also can't handle more then 4 lanes, since these intructions
   10003     // only support v2i32/v4i32 types.
   10004     return SDValue();
   10005   }
   10006 
   10007   BitVector UndefElements;
   10008   BuildVectorSDNode *BV = cast<BuildVectorSDNode>(ConstVec);
   10009   int32_t C = BV->getConstantFPSplatPow2ToLog2Int(&UndefElements, 33);
   10010   if (C == -1 || C == 0 || C > 32)
   10011     return SDValue();
   10012 
   10013   SDLoc dl(N);
   10014   bool isSigned = N->getOpcode() == ISD::FP_TO_SINT;
   10015   unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfp2fxs :
   10016     Intrinsic::arm_neon_vcvtfp2fxu;
   10017   SDValue FixConv = DAG.getNode(
   10018       ISD::INTRINSIC_WO_CHAIN, dl, NumLanes == 2 ? MVT::v2i32 : MVT::v4i32,
   10019       DAG.getConstant(IntrinsicOpcode, dl, MVT::i32), Op->getOperand(0),
   10020       DAG.getConstant(C, dl, MVT::i32));
   10021 
   10022   if (IntBits < FloatBits)
   10023     FixConv = DAG.getNode(ISD::TRUNCATE, dl, N->getValueType(0), FixConv);
   10024 
   10025   return FixConv;
   10026 }
   10027 
   10028 /// PerformVDIVCombine - VCVT (fixed-point to floating-point, Advanced SIMD)
   10029 /// can replace combinations of VCVT (integer to floating-point) and VDIV
   10030 /// when the VDIV has a constant operand that is a power of 2.
   10031 ///
   10032 /// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>):
   10033 ///  vcvt.f32.s32    d16, d16
   10034 ///  vdiv.f32        d16, d17, d16
   10035 /// becomes:
   10036 ///  vcvt.f32.s32    d16, d16, #3
   10037 static SDValue PerformVDIVCombine(SDNode *N, SelectionDAG &DAG,
   10038                                   const ARMSubtarget *Subtarget) {
   10039   if (!Subtarget->hasNEON())
   10040     return SDValue();
   10041 
   10042   SDValue Op = N->getOperand(0);
   10043   unsigned OpOpcode = Op.getNode()->getOpcode();
   10044   if (!N->getValueType(0).isVector() ||
   10045       (OpOpcode != ISD::SINT_TO_FP && OpOpcode != ISD::UINT_TO_FP))
   10046     return SDValue();
   10047 
   10048   SDValue ConstVec = N->getOperand(1);
   10049   if (!isa<BuildVectorSDNode>(ConstVec))
   10050     return SDValue();
   10051 
   10052   MVT FloatTy = N->getSimpleValueType(0).getVectorElementType();
   10053   uint32_t FloatBits = FloatTy.getSizeInBits();
   10054   MVT IntTy = Op.getOperand(0).getSimpleValueType().getVectorElementType();
   10055   uint32_t IntBits = IntTy.getSizeInBits();
   10056   unsigned NumLanes = Op.getValueType().getVectorNumElements();
   10057   if (FloatBits != 32 || IntBits > 32 || NumLanes > 4) {
   10058     // These instructions only exist converting from i32 to f32. We can handle
   10059     // smaller integers by generating an extra extend, but larger ones would
   10060     // be lossy. We also can't handle more then 4 lanes, since these intructions
   10061     // only support v2i32/v4i32 types.
   10062     return SDValue();
   10063   }
   10064 
   10065   BitVector UndefElements;
   10066   BuildVectorSDNode *BV = cast<BuildVectorSDNode>(ConstVec);
   10067   int32_t C = BV->getConstantFPSplatPow2ToLog2Int(&UndefElements, 33);
   10068   if (C == -1 || C == 0 || C > 32)
   10069     return SDValue();
   10070 
   10071   SDLoc dl(N);
   10072   bool isSigned = OpOpcode == ISD::SINT_TO_FP;
   10073   SDValue ConvInput = Op.getOperand(0);
   10074   if (IntBits < FloatBits)
   10075     ConvInput = DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
   10076                             dl, NumLanes == 2 ? MVT::v2i32 : MVT::v4i32,
   10077                             ConvInput);
   10078 
   10079   unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfxs2fp :
   10080     Intrinsic::arm_neon_vcvtfxu2fp;
   10081   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl,
   10082                      Op.getValueType(),
   10083                      DAG.getConstant(IntrinsicOpcode, dl, MVT::i32),
   10084                      ConvInput, DAG.getConstant(C, dl, MVT::i32));
   10085 }
   10086 
   10087 /// Getvshiftimm - Check if this is a valid build_vector for the immediate
   10088 /// operand of a vector shift operation, where all the elements of the
   10089 /// build_vector must have the same constant integer value.
   10090 static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) {
   10091   // Ignore bit_converts.
   10092   while (Op.getOpcode() == ISD::BITCAST)
   10093     Op = Op.getOperand(0);
   10094   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
   10095   APInt SplatBits, SplatUndef;
   10096   unsigned SplatBitSize;
   10097   bool HasAnyUndefs;
   10098   if (! BVN || ! BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize,
   10099                                       HasAnyUndefs, ElementBits) ||
   10100       SplatBitSize > ElementBits)
   10101     return false;
   10102   Cnt = SplatBits.getSExtValue();
   10103   return true;
   10104 }
   10105 
   10106 /// isVShiftLImm - Check if this is a valid build_vector for the immediate
   10107 /// operand of a vector shift left operation.  That value must be in the range:
   10108 ///   0 <= Value < ElementBits for a left shift; or
   10109 ///   0 <= Value <= ElementBits for a long left shift.
   10110 static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) {
   10111   assert(VT.isVector() && "vector shift count is not a vector type");
   10112   int64_t ElementBits = VT.getVectorElementType().getSizeInBits();
   10113   if (! getVShiftImm(Op, ElementBits, Cnt))
   10114     return false;
   10115   return (Cnt >= 0 && (isLong ? Cnt-1 : Cnt) < ElementBits);
   10116 }
   10117 
   10118 /// isVShiftRImm - Check if this is a valid build_vector for the immediate
   10119 /// operand of a vector shift right operation.  For a shift opcode, the value
   10120 /// is positive, but for an intrinsic the value count must be negative. The
   10121 /// absolute value must be in the range:
   10122 ///   1 <= |Value| <= ElementBits for a right shift; or
   10123 ///   1 <= |Value| <= ElementBits/2 for a narrow right shift.
   10124 static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, bool isIntrinsic,
   10125                          int64_t &Cnt) {
   10126   assert(VT.isVector() && "vector shift count is not a vector type");
   10127   int64_t ElementBits = VT.getVectorElementType().getSizeInBits();
   10128   if (! getVShiftImm(Op, ElementBits, Cnt))
   10129     return false;
   10130   if (!isIntrinsic)
   10131     return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits/2 : ElementBits));
   10132   if (Cnt >= -(isNarrow ? ElementBits/2 : ElementBits) && Cnt <= -1) {
   10133     Cnt = -Cnt;
   10134     return true;
   10135   }
   10136   return false;
   10137 }
   10138 
   10139 /// PerformIntrinsicCombine - ARM-specific DAG combining for intrinsics.
   10140 static SDValue PerformIntrinsicCombine(SDNode *N, SelectionDAG &DAG) {
   10141   unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
   10142   switch (IntNo) {
   10143   default:
   10144     // Don't do anything for most intrinsics.
   10145     break;
   10146 
   10147   // Vector shifts: check for immediate versions and lower them.
   10148   // Note: This is done during DAG combining instead of DAG legalizing because
   10149   // the build_vectors for 64-bit vector element shift counts are generally
   10150   // not legal, and it is hard to see their values after they get legalized to
   10151   // loads from a constant pool.
   10152   case Intrinsic::arm_neon_vshifts:
   10153   case Intrinsic::arm_neon_vshiftu:
   10154   case Intrinsic::arm_neon_vrshifts:
   10155   case Intrinsic::arm_neon_vrshiftu:
   10156   case Intrinsic::arm_neon_vrshiftn:
   10157   case Intrinsic::arm_neon_vqshifts:
   10158   case Intrinsic::arm_neon_vqshiftu:
   10159   case Intrinsic::arm_neon_vqshiftsu:
   10160   case Intrinsic::arm_neon_vqshiftns:
   10161   case Intrinsic::arm_neon_vqshiftnu:
   10162   case Intrinsic::arm_neon_vqshiftnsu:
   10163   case Intrinsic::arm_neon_vqrshiftns:
   10164   case Intrinsic::arm_neon_vqrshiftnu:
   10165   case Intrinsic::arm_neon_vqrshiftnsu: {
   10166     EVT VT = N->getOperand(1).getValueType();
   10167     int64_t Cnt;
   10168     unsigned VShiftOpc = 0;
   10169 
   10170     switch (IntNo) {
   10171     case Intrinsic::arm_neon_vshifts:
   10172     case Intrinsic::arm_neon_vshiftu:
   10173       if (isVShiftLImm(N->getOperand(2), VT, false, Cnt)) {
   10174         VShiftOpc = ARMISD::VSHL;
   10175         break;
   10176       }
   10177       if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt)) {
   10178         VShiftOpc = (IntNo == Intrinsic::arm_neon_vshifts ?
   10179                      ARMISD::VSHRs : ARMISD::VSHRu);
   10180         break;
   10181       }
   10182       return SDValue();
   10183 
   10184     case Intrinsic::arm_neon_vrshifts:
   10185     case Intrinsic::arm_neon_vrshiftu:
   10186       if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt))
   10187         break;
   10188       return SDValue();
   10189 
   10190     case Intrinsic::arm_neon_vqshifts:
   10191     case Intrinsic::arm_neon_vqshiftu:
   10192       if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
   10193         break;
   10194       return SDValue();
   10195 
   10196     case Intrinsic::arm_neon_vqshiftsu:
   10197       if (isVShiftLImm(N->getOperand(2), VT, false, Cnt))
   10198         break;
   10199       llvm_unreachable("invalid shift count for vqshlu intrinsic");
   10200 
   10201     case Intrinsic::arm_neon_vrshiftn:
   10202     case Intrinsic::arm_neon_vqshiftns:
   10203     case Intrinsic::arm_neon_vqshiftnu:
   10204     case Intrinsic::arm_neon_vqshiftnsu:
   10205     case Intrinsic::arm_neon_vqrshiftns:
   10206     case Intrinsic::arm_neon_vqrshiftnu:
   10207     case Intrinsic::arm_neon_vqrshiftnsu:
   10208       // Narrowing shifts require an immediate right shift.
   10209       if (isVShiftRImm(N->getOperand(2), VT, true, true, Cnt))
   10210         break;
   10211       llvm_unreachable("invalid shift count for narrowing vector shift "
   10212                        "intrinsic");
   10213 
   10214     default:
   10215       llvm_unreachable("unhandled vector shift");
   10216     }
   10217 
   10218     switch (IntNo) {
   10219     case Intrinsic::arm_neon_vshifts:
   10220     case Intrinsic::arm_neon_vshiftu:
   10221       // Opcode already set above.
   10222       break;
   10223     case Intrinsic::arm_neon_vrshifts:
   10224       VShiftOpc = ARMISD::VRSHRs; break;
   10225     case Intrinsic::arm_neon_vrshiftu:
   10226       VShiftOpc = ARMISD::VRSHRu; break;
   10227     case Intrinsic::arm_neon_vrshiftn:
   10228       VShiftOpc = ARMISD::VRSHRN; break;
   10229     case Intrinsic::arm_neon_vqshifts:
   10230       VShiftOpc = ARMISD::VQSHLs; break;
   10231     case Intrinsic::arm_neon_vqshiftu:
   10232       VShiftOpc = ARMISD::VQSHLu; break;
   10233     case Intrinsic::arm_neon_vqshiftsu:
   10234       VShiftOpc = ARMISD::VQSHLsu; break;
   10235     case Intrinsic::arm_neon_vqshiftns:
   10236       VShiftOpc = ARMISD::VQSHRNs; break;
   10237     case Intrinsic::arm_neon_vqshiftnu:
   10238       VShiftOpc = ARMISD::VQSHRNu; break;
   10239     case Intrinsic::arm_neon_vqshiftnsu:
   10240       VShiftOpc = ARMISD::VQSHRNsu; break;
   10241     case Intrinsic::arm_neon_vqrshiftns:
   10242       VShiftOpc = ARMISD::VQRSHRNs; break;
   10243     case Intrinsic::arm_neon_vqrshiftnu:
   10244       VShiftOpc = ARMISD::VQRSHRNu; break;
   10245     case Intrinsic::arm_neon_vqrshiftnsu:
   10246       VShiftOpc = ARMISD::VQRSHRNsu; break;
   10247     }
   10248 
   10249     SDLoc dl(N);
   10250     return DAG.getNode(VShiftOpc, dl, N->getValueType(0),
   10251                        N->getOperand(1), DAG.getConstant(Cnt, dl, MVT::i32));
   10252   }
   10253 
   10254   case Intrinsic::arm_neon_vshiftins: {
   10255     EVT VT = N->getOperand(1).getValueType();
   10256     int64_t Cnt;
   10257     unsigned VShiftOpc = 0;
   10258 
   10259     if (isVShiftLImm(N->getOperand(3), VT, false, Cnt))
   10260       VShiftOpc = ARMISD::VSLI;
   10261     else if (isVShiftRImm(N->getOperand(3), VT, false, true, Cnt))
   10262       VShiftOpc = ARMISD::VSRI;
   10263     else {
   10264       llvm_unreachable("invalid shift count for vsli/vsri intrinsic");
   10265     }
   10266 
   10267     SDLoc dl(N);
   10268     return DAG.getNode(VShiftOpc, dl, N->getValueType(0),
   10269                        N->getOperand(1), N->getOperand(2),
   10270                        DAG.getConstant(Cnt, dl, MVT::i32));
   10271   }
   10272 
   10273   case Intrinsic::arm_neon_vqrshifts:
   10274   case Intrinsic::arm_neon_vqrshiftu:
   10275     // No immediate versions of these to check for.
   10276     break;
   10277   }
   10278 
   10279   return SDValue();
   10280 }
   10281 
   10282 /// PerformShiftCombine - Checks for immediate versions of vector shifts and
   10283 /// lowers them.  As with the vector shift intrinsics, this is done during DAG
   10284 /// combining instead of DAG legalizing because the build_vectors for 64-bit
   10285 /// vector element shift counts are generally not legal, and it is hard to see
   10286 /// their values after they get legalized to loads from a constant pool.
   10287 static SDValue PerformShiftCombine(SDNode *N, SelectionDAG &DAG,
   10288                                    const ARMSubtarget *ST) {
   10289   EVT VT = N->getValueType(0);
   10290   if (N->getOpcode() == ISD::SRL && VT == MVT::i32 && ST->hasV6Ops()) {
   10291     // Canonicalize (srl (bswap x), 16) to (rotr (bswap x), 16) if the high
   10292     // 16-bits of x is zero. This optimizes rev + lsr 16 to rev16.
   10293     SDValue N1 = N->getOperand(1);
   10294     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
   10295       SDValue N0 = N->getOperand(0);
   10296       if (C->getZExtValue() == 16 && N0.getOpcode() == ISD::BSWAP &&
   10297           DAG.MaskedValueIsZero(N0.getOperand(0),
   10298                                 APInt::getHighBitsSet(32, 16)))
   10299         return DAG.getNode(ISD::ROTR, SDLoc(N), VT, N0, N1);
   10300     }
   10301   }
   10302 
   10303   // Nothing to be done for scalar shifts.
   10304   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   10305   if (!VT.isVector() || !TLI.isTypeLegal(VT))
   10306     return SDValue();
   10307 
   10308   assert(ST->hasNEON() && "unexpected vector shift");
   10309   int64_t Cnt;
   10310 
   10311   switch (N->getOpcode()) {
   10312   default: llvm_unreachable("unexpected shift opcode");
   10313 
   10314   case ISD::SHL:
   10315     if (isVShiftLImm(N->getOperand(1), VT, false, Cnt)) {
   10316       SDLoc dl(N);
   10317       return DAG.getNode(ARMISD::VSHL, dl, VT, N->getOperand(0),
   10318                          DAG.getConstant(Cnt, dl, MVT::i32));
   10319     }
   10320     break;
   10321 
   10322   case ISD::SRA:
   10323   case ISD::SRL:
   10324     if (isVShiftRImm(N->getOperand(1), VT, false, false, Cnt)) {
   10325       unsigned VShiftOpc = (N->getOpcode() == ISD::SRA ?
   10326                             ARMISD::VSHRs : ARMISD::VSHRu);
   10327       SDLoc dl(N);
   10328       return DAG.getNode(VShiftOpc, dl, VT, N->getOperand(0),
   10329                          DAG.getConstant(Cnt, dl, MVT::i32));
   10330     }
   10331   }
   10332   return SDValue();
   10333 }
   10334 
   10335 /// PerformExtendCombine - Target-specific DAG combining for ISD::SIGN_EXTEND,
   10336 /// ISD::ZERO_EXTEND, and ISD::ANY_EXTEND.
   10337 static SDValue PerformExtendCombine(SDNode *N, SelectionDAG &DAG,
   10338                                     const ARMSubtarget *ST) {
   10339   SDValue N0 = N->getOperand(0);
   10340 
   10341   // Check for sign- and zero-extensions of vector extract operations of 8-
   10342   // and 16-bit vector elements.  NEON supports these directly.  They are
   10343   // handled during DAG combining because type legalization will promote them
   10344   // to 32-bit types and it is messy to recognize the operations after that.
   10345   if (ST->hasNEON() && N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT) {
   10346     SDValue Vec = N0.getOperand(0);
   10347     SDValue Lane = N0.getOperand(1);
   10348     EVT VT = N->getValueType(0);
   10349     EVT EltVT = N0.getValueType();
   10350     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
   10351 
   10352     if (VT == MVT::i32 &&
   10353         (EltVT == MVT::i8 || EltVT == MVT::i16) &&
   10354         TLI.isTypeLegal(Vec.getValueType()) &&
   10355         isa<ConstantSDNode>(Lane)) {
   10356 
   10357       unsigned Opc = 0;
   10358       switch (N->getOpcode()) {
   10359       default: llvm_unreachable("unexpected opcode");
   10360       case ISD::SIGN_EXTEND:
   10361         Opc = ARMISD::VGETLANEs;
   10362         break;
   10363       case ISD::ZERO_EXTEND:
   10364       case ISD::ANY_EXTEND:
   10365         Opc = ARMISD::VGETLANEu;
   10366         break;
   10367       }
   10368       return DAG.getNode(Opc, SDLoc(N), VT, Vec, Lane);
   10369     }
   10370   }
   10371 
   10372   return SDValue();
   10373 }
   10374 
   10375 static void computeKnownBits(SelectionDAG &DAG, SDValue Op, APInt &KnownZero,
   10376                              APInt &KnownOne) {
   10377   if (Op.getOpcode() == ARMISD::BFI) {
   10378     // Conservatively, we can recurse down the first operand
   10379     // and just mask out all affected bits.
   10380     computeKnownBits(DAG, Op.getOperand(0), KnownZero, KnownOne);
   10381 
   10382     // The operand to BFI is already a mask suitable for removing the bits it
   10383     // sets.
   10384     ConstantSDNode *CI = cast<ConstantSDNode>(Op.getOperand(2));
   10385     APInt Mask = CI->getAPIntValue();
   10386     KnownZero &= Mask;
   10387     KnownOne &= Mask;
   10388     return;
   10389   }
   10390   if (Op.getOpcode() == ARMISD::CMOV) {
   10391     APInt KZ2(KnownZero.getBitWidth(), 0);
   10392     APInt KO2(KnownOne.getBitWidth(), 0);
   10393     computeKnownBits(DAG, Op.getOperand(1), KnownZero, KnownOne);
   10394     computeKnownBits(DAG, Op.getOperand(2), KZ2, KO2);
   10395 
   10396     KnownZero &= KZ2;
   10397     KnownOne &= KO2;
   10398     return;
   10399   }
   10400   return DAG.computeKnownBits(Op, KnownZero, KnownOne);
   10401 }
   10402 
   10403 SDValue ARMTargetLowering::PerformCMOVToBFICombine(SDNode *CMOV, SelectionDAG &DAG) const {
   10404   // If we have a CMOV, OR and AND combination such as:
   10405   //   if (x & CN)
   10406   //     y |= CM;
   10407   //
   10408   // And:
   10409   //   * CN is a single bit;
   10410   //   * All bits covered by CM are known zero in y
   10411   //
   10412   // Then we can convert this into a sequence of BFI instructions. This will
   10413   // always be a win if CM is a single bit, will always be no worse than the
   10414   // TST&OR sequence if CM is two bits, and for thumb will be no worse if CM is
   10415   // three bits (due to the extra IT instruction).
   10416 
   10417   SDValue Op0 = CMOV->getOperand(0);
   10418   SDValue Op1 = CMOV->getOperand(1);
   10419   auto CCNode = cast<ConstantSDNode>(CMOV->getOperand(2));
   10420   auto CC = CCNode->getAPIntValue().getLimitedValue();
   10421   SDValue CmpZ = CMOV->getOperand(4);
   10422 
   10423   // The compare must be against zero.
   10424   if (!isNullConstant(CmpZ->getOperand(1)))
   10425     return SDValue();
   10426 
   10427   assert(CmpZ->getOpcode() == ARMISD::CMPZ);
   10428   SDValue And = CmpZ->getOperand(0);
   10429   if (And->getOpcode() != ISD::AND)
   10430     return SDValue();
   10431   ConstantSDNode *AndC = dyn_cast<ConstantSDNode>(And->getOperand(1));
   10432   if (!AndC || !AndC->getAPIntValue().isPowerOf2())
   10433     return SDValue();
   10434   SDValue X = And->getOperand(0);
   10435 
   10436   if (CC == ARMCC::EQ) {
   10437     // We're performing an "equal to zero" compare. Swap the operands so we
   10438     // canonicalize on a "not equal to zero" compare.
   10439     std::swap(Op0, Op1);
   10440   } else {
   10441     assert(CC == ARMCC::NE && "How can a CMPZ node not be EQ or NE?");
   10442   }
   10443 
   10444   if (Op1->getOpcode() != ISD::OR)
   10445     return SDValue();
   10446 
   10447   ConstantSDNode *OrC = dyn_cast<ConstantSDNode>(Op1->getOperand(1));
   10448   if (!OrC)
   10449     return SDValue();
   10450   SDValue Y = Op1->getOperand(0);
   10451 
   10452   if (Op0 != Y)
   10453     return SDValue();
   10454 
   10455   // Now, is it profitable to continue?
   10456   APInt OrCI = OrC->getAPIntValue();
   10457   unsigned Heuristic = Subtarget->isThumb() ? 3 : 2;
   10458   if (OrCI.countPopulation() > Heuristic)
   10459     return SDValue();
   10460 
   10461   // Lastly, can we determine that the bits defined by OrCI
   10462   // are zero in Y?
   10463   APInt KnownZero, KnownOne;
   10464   computeKnownBits(DAG, Y, KnownZero, KnownOne);
   10465   if ((OrCI & KnownZero) != OrCI)
   10466     return SDValue();
   10467 
   10468   // OK, we can do the combine.
   10469   SDValue V = Y;
   10470   SDLoc dl(X);
   10471   EVT VT = X.getValueType();
   10472   unsigned BitInX = AndC->getAPIntValue().logBase2();
   10473 
   10474   if (BitInX != 0) {
   10475     // We must shift X first.
   10476     X = DAG.getNode(ISD::SRL, dl, VT, X,
   10477                     DAG.getConstant(BitInX, dl, VT));
   10478   }
   10479 
   10480   for (unsigned BitInY = 0, NumActiveBits = OrCI.getActiveBits();
   10481        BitInY < NumActiveBits; ++BitInY) {
   10482     if (OrCI[BitInY] == 0)
   10483       continue;
   10484     APInt Mask(VT.getSizeInBits(), 0);
   10485     Mask.setBit(BitInY);
   10486     V = DAG.getNode(ARMISD::BFI, dl, VT, V, X,
   10487                     // Confusingly, the operand is an *inverted* mask.
   10488                     DAG.getConstant(~Mask, dl, VT));
   10489   }
   10490 
   10491   return V;
   10492 }
   10493 
   10494 /// PerformCMOVCombine - Target-specific DAG combining for ARMISD::CMOV.
   10495 SDValue
   10496 ARMTargetLowering::PerformCMOVCombine(SDNode *N, SelectionDAG &DAG) const {
   10497   SDValue Cmp = N->getOperand(4);
   10498   if (Cmp.getOpcode() != ARMISD::CMPZ)
   10499     // Only looking at EQ and NE cases.
   10500     return SDValue();
   10501 
   10502   EVT VT = N->getValueType(0);
   10503   SDLoc dl(N);
   10504   SDValue LHS = Cmp.getOperand(0);
   10505   SDValue RHS = Cmp.getOperand(1);
   10506   SDValue FalseVal = N->getOperand(0);
   10507   SDValue TrueVal = N->getOperand(1);
   10508   SDValue ARMcc = N->getOperand(2);
   10509   ARMCC::CondCodes CC =
   10510     (ARMCC::CondCodes)cast<ConstantSDNode>(ARMcc)->getZExtValue();
   10511 
   10512   // BFI is only available on V6T2+.
   10513   if (!Subtarget->isThumb1Only() && Subtarget->hasV6T2Ops()) {
   10514     SDValue R = PerformCMOVToBFICombine(N, DAG);
   10515     if (R)
   10516       return R;
   10517   }
   10518 
   10519   // Simplify
   10520   //   mov     r1, r0
   10521   //   cmp     r1, x
   10522   //   mov     r0, y
   10523   //   moveq   r0, x
   10524   // to
   10525   //   cmp     r0, x
   10526   //   movne   r0, y
   10527   //
   10528   //   mov     r1, r0
   10529   //   cmp     r1, x
   10530   //   mov     r0, x
   10531   //   movne   r0, y
   10532   // to
   10533   //   cmp     r0, x
   10534   //   movne   r0, y
   10535   /// FIXME: Turn this into a target neutral optimization?
   10536   SDValue Res;
   10537   if (CC == ARMCC::NE && FalseVal == RHS && FalseVal != LHS) {
   10538     Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, TrueVal, ARMcc,
   10539                       N->getOperand(3), Cmp);
   10540   } else if (CC == ARMCC::EQ && TrueVal == RHS) {
   10541     SDValue ARMcc;
   10542     SDValue NewCmp = getARMCmp(LHS, RHS, ISD::SETNE, ARMcc, DAG, dl);
   10543     Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, FalseVal, ARMcc,
   10544                       N->getOperand(3), NewCmp);
   10545   }
   10546 
   10547   if (Res.getNode()) {
   10548     APInt KnownZero, KnownOne;
   10549     DAG.computeKnownBits(SDValue(N,0), KnownZero, KnownOne);
   10550     // Capture demanded bits information that would be otherwise lost.
   10551     if (KnownZero == 0xfffffffe)
   10552       Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
   10553                         DAG.getValueType(MVT::i1));
   10554     else if (KnownZero == 0xffffff00)
   10555       Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
   10556                         DAG.getValueType(MVT::i8));
   10557     else if (KnownZero == 0xffff0000)
   10558       Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res,
   10559                         DAG.getValueType(MVT::i16));
   10560   }
   10561 
   10562   return Res;
   10563 }
   10564 
   10565 SDValue ARMTargetLowering::PerformDAGCombine(SDNode *N,
   10566                                              DAGCombinerInfo &DCI) const {
   10567   switch (N->getOpcode()) {
   10568   default: break;
   10569   case ISD::ADDC:       return PerformADDCCombine(N, DCI, Subtarget);
   10570   case ISD::ADD:        return PerformADDCombine(N, DCI, Subtarget);
   10571   case ISD::SUB:        return PerformSUBCombine(N, DCI);
   10572   case ISD::MUL:        return PerformMULCombine(N, DCI, Subtarget);
   10573   case ISD::OR:         return PerformORCombine(N, DCI, Subtarget);
   10574   case ISD::XOR:        return PerformXORCombine(N, DCI, Subtarget);
   10575   case ISD::AND:        return PerformANDCombine(N, DCI, Subtarget);
   10576   case ARMISD::BFI:     return PerformBFICombine(N, DCI);
   10577   case ARMISD::VMOVRRD: return PerformVMOVRRDCombine(N, DCI, Subtarget);
   10578   case ARMISD::VMOVDRR: return PerformVMOVDRRCombine(N, DCI.DAG);
   10579   case ISD::STORE:      return PerformSTORECombine(N, DCI);
   10580   case ISD::BUILD_VECTOR: return PerformBUILD_VECTORCombine(N, DCI, Subtarget);
   10581   case ISD::INSERT_VECTOR_ELT: return PerformInsertEltCombine(N, DCI);
   10582   case ISD::VECTOR_SHUFFLE: return PerformVECTOR_SHUFFLECombine(N, DCI.DAG);
   10583   case ARMISD::VDUPLANE: return PerformVDUPLANECombine(N, DCI);
   10584   case ISD::FP_TO_SINT:
   10585   case ISD::FP_TO_UINT:
   10586     return PerformVCVTCombine(N, DCI.DAG, Subtarget);
   10587   case ISD::FDIV:
   10588     return PerformVDIVCombine(N, DCI.DAG, Subtarget);
   10589   case ISD::INTRINSIC_WO_CHAIN: return PerformIntrinsicCombine(N, DCI.DAG);
   10590   case ISD::SHL:
   10591   case ISD::SRA:
   10592   case ISD::SRL:        return PerformShiftCombine(N, DCI.DAG, Subtarget);
   10593   case ISD::SIGN_EXTEND:
   10594   case ISD::ZERO_EXTEND:
   10595   case ISD::ANY_EXTEND: return PerformExtendCombine(N, DCI.DAG, Subtarget);
   10596   case ARMISD::CMOV: return PerformCMOVCombine(N, DCI.DAG);
   10597   case ISD::LOAD:       return PerformLOADCombine(N, DCI);
   10598   case ARMISD::VLD2DUP:
   10599   case ARMISD::VLD3DUP:
   10600   case ARMISD::VLD4DUP:
   10601     return PerformVLDCombine(N, DCI);
   10602   case ARMISD::BUILD_VECTOR:
   10603     return PerformARMBUILD_VECTORCombine(N, DCI);
   10604   case ISD::INTRINSIC_VOID:
   10605   case ISD::INTRINSIC_W_CHAIN:
   10606     switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) {
   10607     case Intrinsic::arm_neon_vld1:
   10608     case Intrinsic::arm_neon_vld2:
   10609     case Intrinsic::arm_neon_vld3:
   10610     case Intrinsic::arm_neon_vld4:
   10611     case Intrinsic::arm_neon_vld2lane:
   10612     case Intrinsic::arm_neon_vld3lane:
   10613     case Intrinsic::arm_neon_vld4lane:
   10614     case Intrinsic::arm_neon_vst1:
   10615     case Intrinsic::arm_neon_vst2:
   10616     case Intrinsic::arm_neon_vst3:
   10617     case Intrinsic::arm_neon_vst4:
   10618     case Intrinsic::arm_neon_vst2lane:
   10619     case Intrinsic::arm_neon_vst3lane:
   10620     case Intrinsic::arm_neon_vst4lane:
   10621       return PerformVLDCombine(N, DCI);
   10622     default: break;
   10623     }
   10624     break;
   10625   }
   10626   return SDValue();
   10627 }
   10628 
   10629 bool ARMTargetLowering::isDesirableToTransformToIntegerOp(unsigned Opc,
   10630                                                           EVT VT) const {
   10631   return (VT == MVT::f32) && (Opc == ISD::LOAD || Opc == ISD::STORE);
   10632 }
   10633 
   10634 bool ARMTargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
   10635                                                        unsigned,
   10636                                                        unsigned,
   10637                                                        bool *Fast) const {
   10638   // The AllowsUnaliged flag models the SCTLR.A setting in ARM cpus
   10639   bool AllowsUnaligned = Subtarget->allowsUnalignedMem();
   10640 
   10641   switch (VT.getSimpleVT().SimpleTy) {
   10642   default:
   10643     return false;
   10644   case MVT::i8:
   10645   case MVT::i16:
   10646   case MVT::i32: {
   10647     // Unaligned access can use (for example) LRDB, LRDH, LDR
   10648     if (AllowsUnaligned) {
   10649       if (Fast)
   10650         *Fast = Subtarget->hasV7Ops();
   10651       return true;
   10652     }
   10653     return false;
   10654   }
   10655   case MVT::f64:
   10656   case MVT::v2f64: {
   10657     // For any little-endian targets with neon, we can support unaligned ld/st
   10658     // of D and Q (e.g. {D0,D1}) registers by using vld1.i8/vst1.i8.
   10659     // A big-endian target may also explicitly support unaligned accesses
   10660     if (Subtarget->hasNEON() && (AllowsUnaligned || Subtarget->isLittle())) {
   10661       if (Fast)
   10662         *Fast = true;
   10663       return true;
   10664     }
   10665     return false;
   10666   }
   10667   }
   10668 }
   10669 
   10670 static bool memOpAlign(unsigned DstAlign, unsigned SrcAlign,
   10671                        unsigned AlignCheck) {
   10672   return ((SrcAlign == 0 || SrcAlign % AlignCheck == 0) &&
   10673           (DstAlign == 0 || DstAlign % AlignCheck == 0));
   10674 }
   10675 
   10676 EVT ARMTargetLowering::getOptimalMemOpType(uint64_t Size,
   10677                                            unsigned DstAlign, unsigned SrcAlign,
   10678                                            bool IsMemset, bool ZeroMemset,
   10679                                            bool MemcpyStrSrc,
   10680                                            MachineFunction &MF) const {
   10681   const Function *F = MF.getFunction();
   10682 
   10683   // See if we can use NEON instructions for this...
   10684   if ((!IsMemset || ZeroMemset) && Subtarget->hasNEON() &&
   10685       !F->hasFnAttribute(Attribute::NoImplicitFloat)) {
   10686     bool Fast;
   10687     if (Size >= 16 &&
   10688         (memOpAlign(SrcAlign, DstAlign, 16) ||
   10689          (allowsMisalignedMemoryAccesses(MVT::v2f64, 0, 1, &Fast) && Fast))) {
   10690       return MVT::v2f64;
   10691     } else if (Size >= 8 &&
   10692                (memOpAlign(SrcAlign, DstAlign, 8) ||
   10693                 (allowsMisalignedMemoryAccesses(MVT::f64, 0, 1, &Fast) &&
   10694                  Fast))) {
   10695       return MVT::f64;
   10696     }
   10697   }
   10698 
   10699   // Lowering to i32/i16 if the size permits.
   10700   if (Size >= 4)
   10701     return MVT::i32;
   10702   else if (Size >= 2)
   10703     return MVT::i16;
   10704 
   10705   // Let the target-independent logic figure it out.
   10706   return MVT::Other;
   10707 }
   10708 
   10709 bool ARMTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
   10710   if (Val.getOpcode() != ISD::LOAD)
   10711     return false;
   10712 
   10713   EVT VT1 = Val.getValueType();
   10714   if (!VT1.isSimple() || !VT1.isInteger() ||
   10715       !VT2.isSimple() || !VT2.isInteger())
   10716     return false;
   10717 
   10718   switch (VT1.getSimpleVT().SimpleTy) {
   10719   default: break;
   10720   case MVT::i1:
   10721   case MVT::i8:
   10722   case MVT::i16:
   10723     // 8-bit and 16-bit loads implicitly zero-extend to 32-bits.
   10724     return true;
   10725   }
   10726 
   10727   return false;
   10728 }
   10729 
   10730 bool ARMTargetLowering::isVectorLoadExtDesirable(SDValue ExtVal) const {
   10731   EVT VT = ExtVal.getValueType();
   10732 
   10733   if (!isTypeLegal(VT))
   10734     return false;
   10735 
   10736   // Don't create a loadext if we can fold the extension into a wide/long
   10737   // instruction.
   10738   // If there's more than one user instruction, the loadext is desirable no
   10739   // matter what.  There can be two uses by the same instruction.
   10740   if (ExtVal->use_empty() ||
   10741       !ExtVal->use_begin()->isOnlyUserOf(ExtVal.getNode()))
   10742     return true;
   10743 
   10744   SDNode *U = *ExtVal->use_begin();
   10745   if ((U->getOpcode() == ISD::ADD || U->getOpcode() == ISD::SUB ||
   10746        U->getOpcode() == ISD::SHL || U->getOpcode() == ARMISD::VSHL))
   10747     return false;
   10748 
   10749   return true;
   10750 }
   10751 
   10752 bool ARMTargetLowering::allowTruncateForTailCall(Type *Ty1, Type *Ty2) const {
   10753   if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
   10754     return false;
   10755 
   10756   if (!isTypeLegal(EVT::getEVT(Ty1)))
   10757     return false;
   10758 
   10759   assert(Ty1->getPrimitiveSizeInBits() <= 64 && "i128 is probably not a noop");
   10760 
   10761   // Assuming the caller doesn't have a zeroext or signext return parameter,
   10762   // truncation all the way down to i1 is valid.
   10763   return true;
   10764 }
   10765 
   10766 
   10767 static bool isLegalT1AddressImmediate(int64_t V, EVT VT) {
   10768   if (V < 0)
   10769     return false;
   10770 
   10771   unsigned Scale = 1;
   10772   switch (VT.getSimpleVT().SimpleTy) {
   10773   default: return false;
   10774   case MVT::i1:
   10775   case MVT::i8:
   10776     // Scale == 1;
   10777     break;
   10778   case MVT::i16:
   10779     // Scale == 2;
   10780     Scale = 2;
   10781     break;
   10782   case MVT::i32:
   10783     // Scale == 4;
   10784     Scale = 4;
   10785     break;
   10786   }
   10787 
   10788   if ((V & (Scale - 1)) != 0)
   10789     return false;
   10790   V /= Scale;
   10791   return V == (V & ((1LL << 5) - 1));
   10792 }
   10793 
   10794 static bool isLegalT2AddressImmediate(int64_t V, EVT VT,
   10795                                       const ARMSubtarget *Subtarget) {
   10796   bool isNeg = false;
   10797   if (V < 0) {
   10798     isNeg = true;
   10799     V = - V;
   10800   }
   10801 
   10802   switch (VT.getSimpleVT().SimpleTy) {
   10803   default: return false;
   10804   case MVT::i1:
   10805   case MVT::i8:
   10806   case MVT::i16:
   10807   case MVT::i32:
   10808     // + imm12 or - imm8
   10809     if (isNeg)
   10810       return V == (V & ((1LL << 8) - 1));
   10811     return V == (V & ((1LL << 12) - 1));
   10812   case MVT::f32:
   10813   case MVT::f64:
   10814     // Same as ARM mode. FIXME: NEON?
   10815     if (!Subtarget->hasVFP2())
   10816       return false;
   10817     if ((V & 3) != 0)
   10818       return false;
   10819     V >>= 2;
   10820     return V == (V & ((1LL << 8) - 1));
   10821   }
   10822 }
   10823 
   10824 /// isLegalAddressImmediate - Return true if the integer value can be used
   10825 /// as the offset of the target addressing mode for load / store of the
   10826 /// given type.
   10827 static bool isLegalAddressImmediate(int64_t V, EVT VT,
   10828                                     const ARMSubtarget *Subtarget) {
   10829   if (V == 0)
   10830     return true;
   10831 
   10832   if (!VT.isSimple())
   10833     return false;
   10834 
   10835   if (Subtarget->isThumb1Only())
   10836     return isLegalT1AddressImmediate(V, VT);
   10837   else if (Subtarget->isThumb2())
   10838     return isLegalT2AddressImmediate(V, VT, Subtarget);
   10839 
   10840   // ARM mode.
   10841   if (V < 0)
   10842     V = - V;
   10843   switch (VT.getSimpleVT().SimpleTy) {
   10844   default: return false;
   10845   case MVT::i1:
   10846   case MVT::i8:
   10847   case MVT::i32:
   10848     // +- imm12
   10849     return V == (V & ((1LL << 12) - 1));
   10850   case MVT::i16:
   10851     // +- imm8
   10852     return V == (V & ((1LL << 8) - 1));
   10853   case MVT::f32:
   10854   case MVT::f64:
   10855     if (!Subtarget->hasVFP2()) // FIXME: NEON?
   10856       return false;
   10857     if ((V & 3) != 0)
   10858       return false;
   10859     V >>= 2;
   10860     return V == (V & ((1LL << 8) - 1));
   10861   }
   10862 }
   10863 
   10864 bool ARMTargetLowering::isLegalT2ScaledAddressingMode(const AddrMode &AM,
   10865                                                       EVT VT) const {
   10866   int Scale = AM.Scale;
   10867   if (Scale < 0)
   10868     return false;
   10869 
   10870   switch (VT.getSimpleVT().SimpleTy) {
   10871   default: return false;
   10872   case MVT::i1:
   10873   case MVT::i8:
   10874   case MVT::i16:
   10875   case MVT::i32:
   10876     if (Scale == 1)
   10877       return true;
   10878     // r + r << imm
   10879     Scale = Scale & ~1;
   10880     return Scale == 2 || Scale == 4 || Scale == 8;
   10881   case MVT::i64:
   10882     // r + r
   10883     if (((unsigned)AM.HasBaseReg + Scale) <= 2)
   10884       return true;
   10885     return false;
   10886   case MVT::isVoid:
   10887     // Note, we allow "void" uses (basically, uses that aren't loads or
   10888     // stores), because arm allows folding a scale into many arithmetic
   10889     // operations.  This should be made more precise and revisited later.
   10890 
   10891     // Allow r << imm, but the imm has to be a multiple of two.
   10892     if (Scale & 1) return false;
   10893     return isPowerOf2_32(Scale);
   10894   }
   10895 }
   10896 
   10897 /// isLegalAddressingMode - Return true if the addressing mode represented
   10898 /// by AM is legal for this target, for a load/store of the specified type.
   10899 bool ARMTargetLowering::isLegalAddressingMode(const DataLayout &DL,
   10900                                               const AddrMode &AM, Type *Ty,
   10901                                               unsigned AS) const {
   10902   EVT VT = getValueType(DL, Ty, true);
   10903   if (!isLegalAddressImmediate(AM.BaseOffs, VT, Subtarget))
   10904     return false;
   10905 
   10906   // Can never fold addr of global into load/store.
   10907   if (AM.BaseGV)
   10908     return false;
   10909 
   10910   switch (AM.Scale) {
   10911   case 0:  // no scale reg, must be "r+i" or "r", or "i".
   10912     break;
   10913   case 1:
   10914     if (Subtarget->isThumb1Only())
   10915       return false;
   10916     // FALL THROUGH.
   10917   default:
   10918     // ARM doesn't support any R+R*scale+imm addr modes.
   10919     if (AM.BaseOffs)
   10920       return false;
   10921 
   10922     if (!VT.isSimple())
   10923       return false;
   10924 
   10925     if (Subtarget->isThumb2())
   10926       return isLegalT2ScaledAddressingMode(AM, VT);
   10927 
   10928     int Scale = AM.Scale;
   10929     switch (VT.getSimpleVT().SimpleTy) {
   10930     default: return false;
   10931     case MVT::i1:
   10932     case MVT::i8:
   10933     case MVT::i32:
   10934       if (Scale < 0) Scale = -Scale;
   10935       if (Scale == 1)
   10936         return true;
   10937       // r + r << imm
   10938       return isPowerOf2_32(Scale & ~1);
   10939     case MVT::i16:
   10940     case MVT::i64:
   10941       // r + r
   10942       if (((unsigned)AM.HasBaseReg + Scale) <= 2)
   10943         return true;
   10944       return false;
   10945 
   10946     case MVT::isVoid:
   10947       // Note, we allow "void" uses (basically, uses that aren't loads or
   10948       // stores), because arm allows folding a scale into many arithmetic
   10949       // operations.  This should be made more precise and revisited later.
   10950 
   10951       // Allow r << imm, but the imm has to be a multiple of two.
   10952       if (Scale & 1) return false;
   10953       return isPowerOf2_32(Scale);
   10954     }
   10955   }
   10956   return true;
   10957 }
   10958 
   10959 /// isLegalICmpImmediate - Return true if the specified immediate is legal
   10960 /// icmp immediate, that is the target has icmp instructions which can compare
   10961 /// a register against the immediate without having to materialize the
   10962 /// immediate into a register.
   10963 bool ARMTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
   10964   // Thumb2 and ARM modes can use cmn for negative immediates.
   10965   if (!Subtarget->isThumb())
   10966     return ARM_AM::getSOImmVal(std::abs(Imm)) != -1;
   10967   if (Subtarget->isThumb2())
   10968     return ARM_AM::getT2SOImmVal(std::abs(Imm)) != -1;
   10969   // Thumb1 doesn't have cmn, and only 8-bit immediates.
   10970   return Imm >= 0 && Imm <= 255;
   10971 }
   10972 
   10973 /// isLegalAddImmediate - Return true if the specified immediate is a legal add
   10974 /// *or sub* immediate, that is the target has add or sub instructions which can
   10975 /// add a register with the immediate without having to materialize the
   10976 /// immediate into a register.
   10977 bool ARMTargetLowering::isLegalAddImmediate(int64_t Imm) const {
   10978   // Same encoding for add/sub, just flip the sign.
   10979   int64_t AbsImm = std::abs(Imm);
   10980   if (!Subtarget->isThumb())
   10981     return ARM_AM::getSOImmVal(AbsImm) != -1;
   10982   if (Subtarget->isThumb2())
   10983     return ARM_AM::getT2SOImmVal(AbsImm) != -1;
   10984   // Thumb1 only has 8-bit unsigned immediate.
   10985   return AbsImm >= 0 && AbsImm <= 255;
   10986 }
   10987 
   10988 static bool getARMIndexedAddressParts(SDNode *Ptr, EVT VT,
   10989                                       bool isSEXTLoad, SDValue &Base,
   10990                                       SDValue &Offset, bool &isInc,
   10991                                       SelectionDAG &DAG) {
   10992   if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
   10993     return false;
   10994 
   10995   if (VT == MVT::i16 || ((VT == MVT::i8 || VT == MVT::i1) && isSEXTLoad)) {
   10996     // AddressingMode 3
   10997     Base = Ptr->getOperand(0);
   10998     if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
   10999       int RHSC = (int)RHS->getZExtValue();
   11000       if (RHSC < 0 && RHSC > -256) {
   11001         assert(Ptr->getOpcode() == ISD::ADD);
   11002         isInc = false;
   11003         Offset = DAG.getConstant(-RHSC, SDLoc(Ptr), RHS->getValueType(0));
   11004         return true;
   11005       }
   11006     }
   11007     isInc = (Ptr->getOpcode() == ISD::ADD);
   11008     Offset = Ptr->getOperand(1);
   11009     return true;
   11010   } else if (VT == MVT::i32 || VT == MVT::i8 || VT == MVT::i1) {
   11011     // AddressingMode 2
   11012     if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
   11013       int RHSC = (int)RHS->getZExtValue();
   11014       if (RHSC < 0 && RHSC > -0x1000) {
   11015         assert(Ptr->getOpcode() == ISD::ADD);
   11016         isInc = false;
   11017         Offset = DAG.getConstant(-RHSC, SDLoc(Ptr), RHS->getValueType(0));
   11018         Base = Ptr->getOperand(0);
   11019         return true;
   11020       }
   11021     }
   11022 
   11023     if (Ptr->getOpcode() == ISD::ADD) {
   11024       isInc = true;
   11025       ARM_AM::ShiftOpc ShOpcVal=
   11026         ARM_AM::getShiftOpcForNode(Ptr->getOperand(0).getOpcode());
   11027       if (ShOpcVal != ARM_AM::no_shift) {
   11028         Base = Ptr->getOperand(1);
   11029         Offset = Ptr->getOperand(0);
   11030       } else {
   11031         Base = Ptr->getOperand(0);
   11032         Offset = Ptr->getOperand(1);
   11033       }
   11034       return true;
   11035     }
   11036 
   11037     isInc = (Ptr->getOpcode() == ISD::ADD);
   11038     Base = Ptr->getOperand(0);
   11039     Offset = Ptr->getOperand(1);
   11040     return true;
   11041   }
   11042 
   11043   // FIXME: Use VLDM / VSTM to emulate indexed FP load / store.
   11044   return false;
   11045 }
   11046 
   11047 static bool getT2IndexedAddressParts(SDNode *Ptr, EVT VT,
   11048                                      bool isSEXTLoad, SDValue &Base,
   11049                                      SDValue &Offset, bool &isInc,
   11050                                      SelectionDAG &DAG) {
   11051   if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB)
   11052     return false;
   11053 
   11054   Base = Ptr->getOperand(0);
   11055   if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) {
   11056     int RHSC = (int)RHS->getZExtValue();
   11057     if (RHSC < 0 && RHSC > -0x100) { // 8 bits.
   11058       assert(Ptr->getOpcode() == ISD::ADD);
   11059       isInc = false;
   11060       Offset = DAG.getConstant(-RHSC, SDLoc(Ptr), RHS->getValueType(0));
   11061       return true;
   11062     } else if (RHSC > 0 && RHSC < 0x100) { // 8 bit, no zero.
   11063       isInc = Ptr->getOpcode() == ISD::ADD;
   11064       Offset = DAG.getConstant(RHSC, SDLoc(Ptr), RHS->getValueType(0));
   11065       return true;
   11066     }
   11067   }
   11068 
   11069   return false;
   11070 }
   11071 
   11072 /// getPreIndexedAddressParts - returns true by value, base pointer and
   11073 /// offset pointer and addressing mode by reference if the node's address
   11074 /// can be legally represented as pre-indexed load / store address.
   11075 bool
   11076 ARMTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
   11077                                              SDValue &Offset,
   11078                                              ISD::MemIndexedMode &AM,
   11079                                              SelectionDAG &DAG) const {
   11080   if (Subtarget->isThumb1Only())
   11081     return false;
   11082 
   11083   EVT VT;
   11084   SDValue Ptr;
   11085   bool isSEXTLoad = false;
   11086   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
   11087     Ptr = LD->getBasePtr();
   11088     VT  = LD->getMemoryVT();
   11089     isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
   11090   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
   11091     Ptr = ST->getBasePtr();
   11092     VT  = ST->getMemoryVT();
   11093   } else
   11094     return false;
   11095 
   11096   bool isInc;
   11097   bool isLegal = false;
   11098   if (Subtarget->isThumb2())
   11099     isLegal = getT2IndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
   11100                                        Offset, isInc, DAG);
   11101   else
   11102     isLegal = getARMIndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base,
   11103                                         Offset, isInc, DAG);
   11104   if (!isLegal)
   11105     return false;
   11106 
   11107   AM = isInc ? ISD::PRE_INC : ISD::PRE_DEC;
   11108   return true;
   11109 }
   11110 
   11111 /// getPostIndexedAddressParts - returns true by value, base pointer and
   11112 /// offset pointer and addressing mode by reference if this node can be
   11113 /// combined with a load / store to form a post-indexed load / store.
   11114 bool ARMTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
   11115                                                    SDValue &Base,
   11116                                                    SDValue &Offset,
   11117                                                    ISD::MemIndexedMode &AM,
   11118                                                    SelectionDAG &DAG) const {
   11119   if (Subtarget->isThumb1Only())
   11120     return false;
   11121 
   11122   EVT VT;
   11123   SDValue Ptr;
   11124   bool isSEXTLoad = false;
   11125   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
   11126     VT  = LD->getMemoryVT();
   11127     Ptr = LD->getBasePtr();
   11128     isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
   11129   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
   11130     VT  = ST->getMemoryVT();
   11131     Ptr = ST->getBasePtr();
   11132   } else
   11133     return false;
   11134 
   11135   bool isInc;
   11136   bool isLegal = false;
   11137   if (Subtarget->isThumb2())
   11138     isLegal = getT2IndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
   11139                                        isInc, DAG);
   11140   else
   11141     isLegal = getARMIndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
   11142                                         isInc, DAG);
   11143   if (!isLegal)
   11144     return false;
   11145 
   11146   if (Ptr != Base) {
   11147     // Swap base ptr and offset to catch more post-index load / store when
   11148     // it's legal. In Thumb2 mode, offset must be an immediate.
   11149     if (Ptr == Offset && Op->getOpcode() == ISD::ADD &&
   11150         !Subtarget->isThumb2())
   11151       std::swap(Base, Offset);
   11152 
   11153     // Post-indexed load / store update the base pointer.
   11154     if (Ptr != Base)
   11155       return false;
   11156   }
   11157 
   11158   AM = isInc ? ISD::POST_INC : ISD::POST_DEC;
   11159   return true;
   11160 }
   11161 
   11162 void ARMTargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
   11163                                                       APInt &KnownZero,
   11164                                                       APInt &KnownOne,
   11165                                                       const SelectionDAG &DAG,
   11166                                                       unsigned Depth) const {
   11167   unsigned BitWidth = KnownOne.getBitWidth();
   11168   KnownZero = KnownOne = APInt(BitWidth, 0);
   11169   switch (Op.getOpcode()) {
   11170   default: break;
   11171   case ARMISD::ADDC:
   11172   case ARMISD::ADDE:
   11173   case ARMISD::SUBC:
   11174   case ARMISD::SUBE:
   11175     // These nodes' second result is a boolean
   11176     if (Op.getResNo() == 0)
   11177       break;
   11178     KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
   11179     break;
   11180   case ARMISD::CMOV: {
   11181     // Bits are known zero/one if known on the LHS and RHS.
   11182     DAG.computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
   11183     if (KnownZero == 0 && KnownOne == 0) return;
   11184 
   11185     APInt KnownZeroRHS, KnownOneRHS;
   11186     DAG.computeKnownBits(Op.getOperand(1), KnownZeroRHS, KnownOneRHS, Depth+1);
   11187     KnownZero &= KnownZeroRHS;
   11188     KnownOne  &= KnownOneRHS;
   11189     return;
   11190   }
   11191   case ISD::INTRINSIC_W_CHAIN: {
   11192     ConstantSDNode *CN = cast<ConstantSDNode>(Op->getOperand(1));
   11193     Intrinsic::ID IntID = static_cast<Intrinsic::ID>(CN->getZExtValue());
   11194     switch (IntID) {
   11195     default: return;
   11196     case Intrinsic::arm_ldaex:
   11197     case Intrinsic::arm_ldrex: {
   11198       EVT VT = cast<MemIntrinsicSDNode>(Op)->getMemoryVT();
   11199       unsigned MemBits = VT.getScalarType().getSizeInBits();
   11200       KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits);
   11201       return;
   11202     }
   11203     }
   11204   }
   11205   }
   11206 }
   11207 
   11208 //===----------------------------------------------------------------------===//
   11209 //                           ARM Inline Assembly Support
   11210 //===----------------------------------------------------------------------===//
   11211 
   11212 bool ARMTargetLowering::ExpandInlineAsm(CallInst *CI) const {
   11213   // Looking for "rev" which is V6+.
   11214   if (!Subtarget->hasV6Ops())
   11215     return false;
   11216 
   11217   InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue());
   11218   std::string AsmStr = IA->getAsmString();
   11219   SmallVector<StringRef, 4> AsmPieces;
   11220   SplitString(AsmStr, AsmPieces, ";\n");
   11221 
   11222   switch (AsmPieces.size()) {
   11223   default: return false;
   11224   case 1:
   11225     AsmStr = AsmPieces[0];
   11226     AsmPieces.clear();
   11227     SplitString(AsmStr, AsmPieces, " \t,");
   11228 
   11229     // rev $0, $1
   11230     if (AsmPieces.size() == 3 &&
   11231         AsmPieces[0] == "rev" && AsmPieces[1] == "$0" && AsmPieces[2] == "$1" &&
   11232         IA->getConstraintString().compare(0, 4, "=l,l") == 0) {
   11233       IntegerType *Ty = dyn_cast<IntegerType>(CI->getType());
   11234       if (Ty && Ty->getBitWidth() == 32)
   11235         return IntrinsicLowering::LowerToByteSwap(CI);
   11236     }
   11237     break;
   11238   }
   11239 
   11240   return false;
   11241 }
   11242 
   11243 /// getConstraintType - Given a constraint letter, return the type of
   11244 /// constraint it is for this target.
   11245 ARMTargetLowering::ConstraintType
   11246 ARMTargetLowering::getConstraintType(StringRef Constraint) const {
   11247   if (Constraint.size() == 1) {
   11248     switch (Constraint[0]) {
   11249     default:  break;
   11250     case 'l': return C_RegisterClass;
   11251     case 'w': return C_RegisterClass;
   11252     case 'h': return C_RegisterClass;
   11253     case 'x': return C_RegisterClass;
   11254     case 't': return C_RegisterClass;
   11255     case 'j': return C_Other; // Constant for movw.
   11256       // An address with a single base register. Due to the way we
   11257       // currently handle addresses it is the same as an 'r' memory constraint.
   11258     case 'Q': return C_Memory;
   11259     }
   11260   } else if (Constraint.size() == 2) {
   11261     switch (Constraint[0]) {
   11262     default: break;
   11263     // All 'U+' constraints are addresses.
   11264     case 'U': return C_Memory;
   11265     }
   11266   }
   11267   return TargetLowering::getConstraintType(Constraint);
   11268 }
   11269 
   11270 /// Examine constraint type and operand type and determine a weight value.
   11271 /// This object must already have been set up with the operand type
   11272 /// and the current alternative constraint selected.
   11273 TargetLowering::ConstraintWeight
   11274 ARMTargetLowering::getSingleConstraintMatchWeight(
   11275     AsmOperandInfo &info, const char *constraint) const {
   11276   ConstraintWeight weight = CW_Invalid;
   11277   Value *CallOperandVal = info.CallOperandVal;
   11278     // If we don't have a value, we can't do a match,
   11279     // but allow it at the lowest weight.
   11280   if (!CallOperandVal)
   11281     return CW_Default;
   11282   Type *type = CallOperandVal->getType();
   11283   // Look at the constraint type.
   11284   switch (*constraint) {
   11285   default:
   11286     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
   11287     break;
   11288   case 'l':
   11289     if (type->isIntegerTy()) {
   11290       if (Subtarget->isThumb())
   11291         weight = CW_SpecificReg;
   11292       else
   11293         weight = CW_Register;
   11294     }
   11295     break;
   11296   case 'w':
   11297     if (type->isFloatingPointTy())
   11298       weight = CW_Register;
   11299     break;
   11300   }
   11301   return weight;
   11302 }
   11303 
   11304 typedef std::pair<unsigned, const TargetRegisterClass*> RCPair;
   11305 RCPair ARMTargetLowering::getRegForInlineAsmConstraint(
   11306     const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const {
   11307   if (Constraint.size() == 1) {
   11308     // GCC ARM Constraint Letters
   11309     switch (Constraint[0]) {
   11310     case 'l': // Low regs or general regs.
   11311       if (Subtarget->isThumb())
   11312         return RCPair(0U, &ARM::tGPRRegClass);
   11313       return RCPair(0U, &ARM::GPRRegClass);
   11314     case 'h': // High regs or no regs.
   11315       if (Subtarget->isThumb())
   11316         return RCPair(0U, &ARM::hGPRRegClass);
   11317       break;
   11318     case 'r':
   11319       if (Subtarget->isThumb1Only())
   11320         return RCPair(0U, &ARM::tGPRRegClass);
   11321       return RCPair(0U, &ARM::GPRRegClass);
   11322     case 'w':
   11323       if (VT == MVT::Other)
   11324         break;
   11325       if (VT == MVT::f32)
   11326         return RCPair(0U, &ARM::SPRRegClass);
   11327       if (VT.getSizeInBits() == 64)
   11328         return RCPair(0U, &ARM::DPRRegClass);
   11329       if (VT.getSizeInBits() == 128)
   11330         return RCPair(0U, &ARM::QPRRegClass);
   11331       break;
   11332     case 'x':
   11333       if (VT == MVT::Other)
   11334         break;
   11335       if (VT == MVT::f32)
   11336         return RCPair(0U, &ARM::SPR_8RegClass);
   11337       if (VT.getSizeInBits() == 64)
   11338         return RCPair(0U, &ARM::DPR_8RegClass);
   11339       if (VT.getSizeInBits() == 128)
   11340         return RCPair(0U, &ARM::QPR_8RegClass);
   11341       break;
   11342     case 't':
   11343       if (VT == MVT::f32)
   11344         return RCPair(0U, &ARM::SPRRegClass);
   11345       break;
   11346     }
   11347   }
   11348   if (StringRef("{cc}").equals_lower(Constraint))
   11349     return std::make_pair(unsigned(ARM::CPSR), &ARM::CCRRegClass);
   11350 
   11351   return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
   11352 }
   11353 
   11354 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
   11355 /// vector.  If it is invalid, don't add anything to Ops.
   11356 void ARMTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
   11357                                                      std::string &Constraint,
   11358                                                      std::vector<SDValue>&Ops,
   11359                                                      SelectionDAG &DAG) const {
   11360   SDValue Result;
   11361 
   11362   // Currently only support length 1 constraints.
   11363   if (Constraint.length() != 1) return;
   11364 
   11365   char ConstraintLetter = Constraint[0];
   11366   switch (ConstraintLetter) {
   11367   default: break;
   11368   case 'j':
   11369   case 'I': case 'J': case 'K': case 'L':
   11370   case 'M': case 'N': case 'O':
   11371     ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
   11372     if (!C)
   11373       return;
   11374 
   11375     int64_t CVal64 = C->getSExtValue();
   11376     int CVal = (int) CVal64;
   11377     // None of these constraints allow values larger than 32 bits.  Check
   11378     // that the value fits in an int.
   11379     if (CVal != CVal64)
   11380       return;
   11381 
   11382     switch (ConstraintLetter) {
   11383       case 'j':
   11384         // Constant suitable for movw, must be between 0 and
   11385         // 65535.
   11386         if (Subtarget->hasV6T2Ops())
   11387           if (CVal >= 0 && CVal <= 65535)
   11388             break;
   11389         return;
   11390       case 'I':
   11391         if (Subtarget->isThumb1Only()) {
   11392           // This must be a constant between 0 and 255, for ADD
   11393           // immediates.
   11394           if (CVal >= 0 && CVal <= 255)
   11395             break;
   11396         } else if (Subtarget->isThumb2()) {
   11397           // A constant that can be used as an immediate value in a
   11398           // data-processing instruction.
   11399           if (ARM_AM::getT2SOImmVal(CVal) != -1)
   11400             break;
   11401         } else {
   11402           // A constant that can be used as an immediate value in a
   11403           // data-processing instruction.
   11404           if (ARM_AM::getSOImmVal(CVal) != -1)
   11405             break;
   11406         }
   11407         return;
   11408 
   11409       case 'J':
   11410         if (Subtarget->isThumb()) {  // FIXME thumb2
   11411           // This must be a constant between -255 and -1, for negated ADD
   11412           // immediates. This can be used in GCC with an "n" modifier that
   11413           // prints the negated value, for use with SUB instructions. It is
   11414           // not useful otherwise but is implemented for compatibility.
   11415           if (CVal >= -255 && CVal <= -1)
   11416             break;
   11417         } else {
   11418           // This must be a constant between -4095 and 4095. It is not clear
   11419           // what this constraint is intended for. Implemented for
   11420           // compatibility with GCC.
   11421           if (CVal >= -4095 && CVal <= 4095)
   11422             break;
   11423         }
   11424         return;
   11425 
   11426       case 'K':
   11427         if (Subtarget->isThumb1Only()) {
   11428           // A 32-bit value where only one byte has a nonzero value. Exclude
   11429           // zero to match GCC. This constraint is used by GCC internally for
   11430           // constants that can be loaded with a move/shift combination.
   11431           // It is not useful otherwise but is implemented for compatibility.
   11432           if (CVal != 0 && ARM_AM::isThumbImmShiftedVal(CVal))
   11433             break;
   11434         } else if (Subtarget->isThumb2()) {
   11435           // A constant whose bitwise inverse can be used as an immediate
   11436           // value in a data-processing instruction. This can be used in GCC
   11437           // with a "B" modifier that prints the inverted value, for use with
   11438           // BIC and MVN instructions. It is not useful otherwise but is
   11439           // implemented for compatibility.
   11440           if (ARM_AM::getT2SOImmVal(~CVal) != -1)
   11441             break;
   11442         } else {
   11443           // A constant whose bitwise inverse can be used as an immediate
   11444           // value in a data-processing instruction. This can be used in GCC
   11445           // with a "B" modifier that prints the inverted value, for use with
   11446           // BIC and MVN instructions. It is not useful otherwise but is
   11447           // implemented for compatibility.
   11448           if (ARM_AM::getSOImmVal(~CVal) != -1)
   11449             break;
   11450         }
   11451         return;
   11452 
   11453       case 'L':
   11454         if (Subtarget->isThumb1Only()) {
   11455           // This must be a constant between -7 and 7,
   11456           // for 3-operand ADD/SUB immediate instructions.
   11457           if (CVal >= -7 && CVal < 7)
   11458             break;
   11459         } else if (Subtarget->isThumb2()) {
   11460           // A constant whose negation can be used as an immediate value in a
   11461           // data-processing instruction. This can be used in GCC with an "n"
   11462           // modifier that prints the negated value, for use with SUB
   11463           // instructions. It is not useful otherwise but is implemented for
   11464           // compatibility.
   11465           if (ARM_AM::getT2SOImmVal(-CVal) != -1)
   11466             break;
   11467         } else {
   11468           // A constant whose negation can be used as an immediate value in a
   11469           // data-processing instruction. This can be used in GCC with an "n"
   11470           // modifier that prints the negated value, for use with SUB
   11471           // instructions. It is not useful otherwise but is implemented for
   11472           // compatibility.
   11473           if (ARM_AM::getSOImmVal(-CVal) != -1)
   11474             break;
   11475         }
   11476         return;
   11477 
   11478       case 'M':
   11479         if (Subtarget->isThumb()) { // FIXME thumb2
   11480           // This must be a multiple of 4 between 0 and 1020, for
   11481           // ADD sp + immediate.
   11482           if ((CVal >= 0 && CVal <= 1020) && ((CVal & 3) == 0))
   11483             break;
   11484         } else {
   11485           // A power of two or a constant between 0 and 32.  This is used in
   11486           // GCC for the shift amount on shifted register operands, but it is
   11487           // useful in general for any shift amounts.
   11488           if ((CVal >= 0 && CVal <= 32) || ((CVal & (CVal - 1)) == 0))
   11489             break;
   11490         }
   11491         return;
   11492 
   11493       case 'N':
   11494         if (Subtarget->isThumb()) {  // FIXME thumb2
   11495           // This must be a constant between 0 and 31, for shift amounts.
   11496           if (CVal >= 0 && CVal <= 31)
   11497             break;
   11498         }
   11499         return;
   11500 
   11501       case 'O':
   11502         if (Subtarget->isThumb()) {  // FIXME thumb2
   11503           // This must be a multiple of 4 between -508 and 508, for
   11504           // ADD/SUB sp = sp + immediate.
   11505           if ((CVal >= -508 && CVal <= 508) && ((CVal & 3) == 0))
   11506             break;
   11507         }
   11508         return;
   11509     }
   11510     Result = DAG.getTargetConstant(CVal, SDLoc(Op), Op.getValueType());
   11511     break;
   11512   }
   11513 
   11514   if (Result.getNode()) {
   11515     Ops.push_back(Result);
   11516     return;
   11517   }
   11518   return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
   11519 }
   11520 
   11521 static RTLIB::Libcall getDivRemLibcall(
   11522     const SDNode *N, MVT::SimpleValueType SVT) {
   11523   assert((N->getOpcode() == ISD::SDIVREM || N->getOpcode() == ISD::UDIVREM ||
   11524           N->getOpcode() == ISD::SREM    || N->getOpcode() == ISD::UREM) &&
   11525          "Unhandled Opcode in getDivRemLibcall");
   11526   bool isSigned = N->getOpcode() == ISD::SDIVREM ||
   11527                   N->getOpcode() == ISD::SREM;
   11528   RTLIB::Libcall LC;
   11529   switch (SVT) {
   11530   default: llvm_unreachable("Unexpected request for libcall!");
   11531   case MVT::i8:  LC = isSigned ? RTLIB::SDIVREM_I8  : RTLIB::UDIVREM_I8;  break;
   11532   case MVT::i16: LC = isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break;
   11533   case MVT::i32: LC = isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break;
   11534   case MVT::i64: LC = isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break;
   11535   }
   11536   return LC;
   11537 }
   11538 
   11539 static TargetLowering::ArgListTy getDivRemArgList(
   11540     const SDNode *N, LLVMContext *Context) {
   11541   assert((N->getOpcode() == ISD::SDIVREM || N->getOpcode() == ISD::UDIVREM ||
   11542           N->getOpcode() == ISD::SREM    || N->getOpcode() == ISD::UREM) &&
   11543          "Unhandled Opcode in getDivRemArgList");
   11544   bool isSigned = N->getOpcode() == ISD::SDIVREM ||
   11545                   N->getOpcode() == ISD::SREM;
   11546   TargetLowering::ArgListTy Args;
   11547   TargetLowering::ArgListEntry Entry;
   11548   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
   11549     EVT ArgVT = N->getOperand(i).getValueType();
   11550     Type *ArgTy = ArgVT.getTypeForEVT(*Context);
   11551     Entry.Node = N->getOperand(i);
   11552     Entry.Ty = ArgTy;
   11553     Entry.isSExt = isSigned;
   11554     Entry.isZExt = !isSigned;
   11555     Args.push_back(Entry);
   11556   }
   11557   return Args;
   11558 }
   11559 
   11560 SDValue ARMTargetLowering::LowerDivRem(SDValue Op, SelectionDAG &DAG) const {
   11561   assert((Subtarget->isTargetAEABI() || Subtarget->isTargetAndroid()) &&
   11562          "Register-based DivRem lowering only");
   11563   unsigned Opcode = Op->getOpcode();
   11564   assert((Opcode == ISD::SDIVREM || Opcode == ISD::UDIVREM) &&
   11565          "Invalid opcode for Div/Rem lowering");
   11566   bool isSigned = (Opcode == ISD::SDIVREM);
   11567   EVT VT = Op->getValueType(0);
   11568   Type *Ty = VT.getTypeForEVT(*DAG.getContext());
   11569 
   11570   RTLIB::Libcall LC = getDivRemLibcall(Op.getNode(),
   11571                                        VT.getSimpleVT().SimpleTy);
   11572   SDValue InChain = DAG.getEntryNode();
   11573 
   11574   TargetLowering::ArgListTy Args = getDivRemArgList(Op.getNode(),
   11575                                                     DAG.getContext());
   11576 
   11577   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
   11578                                          getPointerTy(DAG.getDataLayout()));
   11579 
   11580   Type *RetTy = (Type*)StructType::get(Ty, Ty, nullptr);
   11581 
   11582   SDLoc dl(Op);
   11583   TargetLowering::CallLoweringInfo CLI(DAG);
   11584   CLI.setDebugLoc(dl).setChain(InChain)
   11585     .setCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args), 0)
   11586     .setInRegister().setSExtResult(isSigned).setZExtResult(!isSigned);
   11587 
   11588   std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI);
   11589   return CallInfo.first;
   11590 }
   11591 
   11592 // Lowers REM using divmod helpers
   11593 // see RTABI section 4.2/4.3
   11594 SDValue ARMTargetLowering::LowerREM(SDNode *N, SelectionDAG &DAG) const {
   11595   // Build return types (div and rem)
   11596   std::vector<Type*> RetTyParams;
   11597   Type *RetTyElement;
   11598 
   11599   switch (N->getValueType(0).getSimpleVT().SimpleTy) {
   11600   default: llvm_unreachable("Unexpected request for libcall!");
   11601   case MVT::i8:   RetTyElement = Type::getInt8Ty(*DAG.getContext());  break;
   11602   case MVT::i16:  RetTyElement = Type::getInt16Ty(*DAG.getContext()); break;
   11603   case MVT::i32:  RetTyElement = Type::getInt32Ty(*DAG.getContext()); break;
   11604   case MVT::i64:  RetTyElement = Type::getInt64Ty(*DAG.getContext()); break;
   11605   }
   11606 
   11607   RetTyParams.push_back(RetTyElement);
   11608   RetTyParams.push_back(RetTyElement);
   11609   ArrayRef<Type*> ret = ArrayRef<Type*>(RetTyParams);
   11610   Type *RetTy = StructType::get(*DAG.getContext(), ret);
   11611 
   11612   RTLIB::Libcall LC = getDivRemLibcall(N, N->getValueType(0).getSimpleVT().
   11613                                                              SimpleTy);
   11614   SDValue InChain = DAG.getEntryNode();
   11615   TargetLowering::ArgListTy Args = getDivRemArgList(N, DAG.getContext());
   11616   bool isSigned = N->getOpcode() == ISD::SREM;
   11617   SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
   11618                                          getPointerTy(DAG.getDataLayout()));
   11619 
   11620   // Lower call
   11621   CallLoweringInfo CLI(DAG);
   11622   CLI.setChain(InChain)
   11623      .setCallee(CallingConv::ARM_AAPCS, RetTy, Callee, std::move(Args), 0)
   11624      .setSExtResult(isSigned).setZExtResult(!isSigned).setDebugLoc(SDLoc(N));
   11625   std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
   11626 
   11627   // Return second (rem) result operand (first contains div)
   11628   SDNode *ResNode = CallResult.first.getNode();
   11629   assert(ResNode->getNumOperands() == 2 && "divmod should return two operands");
   11630   return ResNode->getOperand(1);
   11631 }
   11632 
   11633 SDValue
   11634 ARMTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const {
   11635   assert(Subtarget->isTargetWindows() && "unsupported target platform");
   11636   SDLoc DL(Op);
   11637 
   11638   // Get the inputs.
   11639   SDValue Chain = Op.getOperand(0);
   11640   SDValue Size  = Op.getOperand(1);
   11641 
   11642   SDValue Words = DAG.getNode(ISD::SRL, DL, MVT::i32, Size,
   11643                               DAG.getConstant(2, DL, MVT::i32));
   11644 
   11645   SDValue Flag;
   11646   Chain = DAG.getCopyToReg(Chain, DL, ARM::R4, Words, Flag);
   11647   Flag = Chain.getValue(1);
   11648 
   11649   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
   11650   Chain = DAG.getNode(ARMISD::WIN__CHKSTK, DL, NodeTys, Chain, Flag);
   11651 
   11652   SDValue NewSP = DAG.getCopyFromReg(Chain, DL, ARM::SP, MVT::i32);
   11653   Chain = NewSP.getValue(1);
   11654 
   11655   SDValue Ops[2] = { NewSP, Chain };
   11656   return DAG.getMergeValues(Ops, DL);
   11657 }
   11658 
   11659 SDValue ARMTargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const {
   11660   assert(Op.getValueType() == MVT::f64 && Subtarget->isFPOnlySP() &&
   11661          "Unexpected type for custom-lowering FP_EXTEND");
   11662 
   11663   RTLIB::Libcall LC;
   11664   LC = RTLIB::getFPEXT(Op.getOperand(0).getValueType(), Op.getValueType());
   11665 
   11666   SDValue SrcVal = Op.getOperand(0);
   11667   return makeLibCall(DAG, LC, Op.getValueType(), SrcVal, /*isSigned*/ false,
   11668                      SDLoc(Op)).first;
   11669 }
   11670 
   11671 SDValue ARMTargetLowering::LowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const {
   11672   assert(Op.getOperand(0).getValueType() == MVT::f64 &&
   11673          Subtarget->isFPOnlySP() &&
   11674          "Unexpected type for custom-lowering FP_ROUND");
   11675 
   11676   RTLIB::Libcall LC;
   11677   LC = RTLIB::getFPROUND(Op.getOperand(0).getValueType(), Op.getValueType());
   11678 
   11679   SDValue SrcVal = Op.getOperand(0);
   11680   return makeLibCall(DAG, LC, Op.getValueType(), SrcVal, /*isSigned*/ false,
   11681                      SDLoc(Op)).first;
   11682 }
   11683 
   11684 bool
   11685 ARMTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
   11686   // The ARM target isn't yet aware of offsets.
   11687   return false;
   11688 }
   11689 
   11690 bool ARM::isBitFieldInvertedMask(unsigned v) {
   11691   if (v == 0xffffffff)
   11692     return false;
   11693 
   11694   // there can be 1's on either or both "outsides", all the "inside"
   11695   // bits must be 0's
   11696   return isShiftedMask_32(~v);
   11697 }
   11698 
   11699 /// isFPImmLegal - Returns true if the target can instruction select the
   11700 /// specified FP immediate natively. If false, the legalizer will
   11701 /// materialize the FP immediate as a load from a constant pool.
   11702 bool ARMTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
   11703   if (!Subtarget->hasVFP3())
   11704     return false;
   11705   if (VT == MVT::f32)
   11706     return ARM_AM::getFP32Imm(Imm) != -1;
   11707   if (VT == MVT::f64 && !Subtarget->isFPOnlySP())
   11708     return ARM_AM::getFP64Imm(Imm) != -1;
   11709   return false;
   11710 }
   11711 
   11712 /// getTgtMemIntrinsic - Represent NEON load and store intrinsics as
   11713 /// MemIntrinsicNodes.  The associated MachineMemOperands record the alignment
   11714 /// specified in the intrinsic calls.
   11715 bool ARMTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
   11716                                            const CallInst &I,
   11717                                            unsigned Intrinsic) const {
   11718   switch (Intrinsic) {
   11719   case Intrinsic::arm_neon_vld1:
   11720   case Intrinsic::arm_neon_vld2:
   11721   case Intrinsic::arm_neon_vld3:
   11722   case Intrinsic::arm_neon_vld4:
   11723   case Intrinsic::arm_neon_vld2lane:
   11724   case Intrinsic::arm_neon_vld3lane:
   11725   case Intrinsic::arm_neon_vld4lane: {
   11726     Info.opc = ISD::INTRINSIC_W_CHAIN;
   11727     // Conservatively set memVT to the entire set of vectors loaded.
   11728     auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
   11729     uint64_t NumElts = DL.getTypeSizeInBits(I.getType()) / 64;
   11730     Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
   11731     Info.ptrVal = I.getArgOperand(0);
   11732     Info.offset = 0;
   11733     Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
   11734     Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
   11735     Info.vol = false; // volatile loads with NEON intrinsics not supported
   11736     Info.readMem = true;
   11737     Info.writeMem = false;
   11738     return true;
   11739   }
   11740   case Intrinsic::arm_neon_vst1:
   11741   case Intrinsic::arm_neon_vst2:
   11742   case Intrinsic::arm_neon_vst3:
   11743   case Intrinsic::arm_neon_vst4:
   11744   case Intrinsic::arm_neon_vst2lane:
   11745   case Intrinsic::arm_neon_vst3lane:
   11746   case Intrinsic::arm_neon_vst4lane: {
   11747     Info.opc = ISD::INTRINSIC_VOID;
   11748     // Conservatively set memVT to the entire set of vectors stored.
   11749     auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
   11750     unsigned NumElts = 0;
   11751     for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) {
   11752       Type *ArgTy = I.getArgOperand(ArgI)->getType();
   11753       if (!ArgTy->isVectorTy())
   11754         break;
   11755       NumElts += DL.getTypeSizeInBits(ArgTy) / 64;
   11756     }
   11757     Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts);
   11758     Info.ptrVal = I.getArgOperand(0);
   11759     Info.offset = 0;
   11760     Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1);
   11761     Info.align = cast<ConstantInt>(AlignArg)->getZExtValue();
   11762     Info.vol = false; // volatile stores with NEON intrinsics not supported
   11763     Info.readMem = false;
   11764     Info.writeMem = true;
   11765     return true;
   11766   }
   11767   case Intrinsic::arm_ldaex:
   11768   case Intrinsic::arm_ldrex: {
   11769     auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
   11770     PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType());
   11771     Info.opc = ISD::INTRINSIC_W_CHAIN;
   11772     Info.memVT = MVT::getVT(PtrTy->getElementType());
   11773     Info.ptrVal = I.getArgOperand(0);
   11774     Info.offset = 0;
   11775     Info.align = DL.getABITypeAlignment(PtrTy->getElementType());
   11776     Info.vol = true;
   11777     Info.readMem = true;
   11778     Info.writeMem = false;
   11779     return true;
   11780   }
   11781   case Intrinsic::arm_stlex:
   11782   case Intrinsic::arm_strex: {
   11783     auto &DL = I.getCalledFunction()->getParent()->getDataLayout();
   11784     PointerType *PtrTy = cast<PointerType>(I.getArgOperand(1)->getType());
   11785     Info.opc = ISD::INTRINSIC_W_CHAIN;
   11786     Info.memVT = MVT::getVT(PtrTy->getElementType());
   11787     Info.ptrVal = I.getArgOperand(1);
   11788     Info.offset = 0;
   11789     Info.align = DL.getABITypeAlignment(PtrTy->getElementType());
   11790     Info.vol = true;
   11791     Info.readMem = false;
   11792     Info.writeMem = true;
   11793     return true;
   11794   }
   11795   case Intrinsic::arm_stlexd:
   11796   case Intrinsic::arm_strexd: {
   11797     Info.opc = ISD::INTRINSIC_W_CHAIN;
   11798     Info.memVT = MVT::i64;
   11799     Info.ptrVal = I.getArgOperand(2);
   11800     Info.offset = 0;
   11801     Info.align = 8;
   11802     Info.vol = true;
   11803     Info.readMem = false;
   11804     Info.writeMem = true;
   11805     return true;
   11806   }
   11807   case Intrinsic::arm_ldaexd:
   11808   case Intrinsic::arm_ldrexd: {
   11809     Info.opc = ISD::INTRINSIC_W_CHAIN;
   11810     Info.memVT = MVT::i64;
   11811     Info.ptrVal = I.getArgOperand(0);
   11812     Info.offset = 0;
   11813     Info.align = 8;
   11814     Info.vol = true;
   11815     Info.readMem = true;
   11816     Info.writeMem = false;
   11817     return true;
   11818   }
   11819   default:
   11820     break;
   11821   }
   11822 
   11823   return false;
   11824 }
   11825 
   11826 /// \brief Returns true if it is beneficial to convert a load of a constant
   11827 /// to just the constant itself.
   11828 bool ARMTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
   11829                                                           Type *Ty) const {
   11830   assert(Ty->isIntegerTy());
   11831 
   11832   unsigned Bits = Ty->getPrimitiveSizeInBits();
   11833   if (Bits == 0 || Bits > 32)
   11834     return false;
   11835   return true;
   11836 }
   11837 
   11838 Instruction* ARMTargetLowering::makeDMB(IRBuilder<> &Builder,
   11839                                         ARM_MB::MemBOpt Domain) const {
   11840   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
   11841 
   11842   // First, if the target has no DMB, see what fallback we can use.
   11843   if (!Subtarget->hasDataBarrier()) {
   11844     // Some ARMv6 cpus can support data barriers with an mcr instruction.
   11845     // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get
   11846     // here.
   11847     if (Subtarget->hasV6Ops() && !Subtarget->isThumb()) {
   11848       Function *MCR = llvm::Intrinsic::getDeclaration(M, Intrinsic::arm_mcr);
   11849       Value* args[6] = {Builder.getInt32(15), Builder.getInt32(0),
   11850                         Builder.getInt32(0), Builder.getInt32(7),
   11851                         Builder.getInt32(10), Builder.getInt32(5)};
   11852       return Builder.CreateCall(MCR, args);
   11853     } else {
   11854       // Instead of using barriers, atomic accesses on these subtargets use
   11855       // libcalls.
   11856       llvm_unreachable("makeDMB on a target so old that it has no barriers");
   11857     }
   11858   } else {
   11859     Function *DMB = llvm::Intrinsic::getDeclaration(M, Intrinsic::arm_dmb);
   11860     // Only a full system barrier exists in the M-class architectures.
   11861     Domain = Subtarget->isMClass() ? ARM_MB::SY : Domain;
   11862     Constant *CDomain = Builder.getInt32(Domain);
   11863     return Builder.CreateCall(DMB, CDomain);
   11864   }
   11865 }
   11866 
   11867 // Based on http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
   11868 Instruction* ARMTargetLowering::emitLeadingFence(IRBuilder<> &Builder,
   11869                                          AtomicOrdering Ord, bool IsStore,
   11870                                          bool IsLoad) const {
   11871   if (!getInsertFencesForAtomic())
   11872     return nullptr;
   11873 
   11874   switch (Ord) {
   11875   case NotAtomic:
   11876   case Unordered:
   11877     llvm_unreachable("Invalid fence: unordered/non-atomic");
   11878   case Monotonic:
   11879   case Acquire:
   11880     return nullptr; // Nothing to do
   11881   case SequentiallyConsistent:
   11882     if (!IsStore)
   11883       return nullptr; // Nothing to do
   11884     /*FALLTHROUGH*/
   11885   case Release:
   11886   case AcquireRelease:
   11887     if (Subtarget->isSwift())
   11888       return makeDMB(Builder, ARM_MB::ISHST);
   11889     // FIXME: add a comment with a link to documentation justifying this.
   11890     else
   11891       return makeDMB(Builder, ARM_MB::ISH);
   11892   }
   11893   llvm_unreachable("Unknown fence ordering in emitLeadingFence");
   11894 }
   11895 
   11896 Instruction* ARMTargetLowering::emitTrailingFence(IRBuilder<> &Builder,
   11897                                           AtomicOrdering Ord, bool IsStore,
   11898                                           bool IsLoad) const {
   11899   if (!getInsertFencesForAtomic())
   11900     return nullptr;
   11901 
   11902   switch (Ord) {
   11903   case NotAtomic:
   11904   case Unordered:
   11905     llvm_unreachable("Invalid fence: unordered/not-atomic");
   11906   case Monotonic:
   11907   case Release:
   11908     return nullptr; // Nothing to do
   11909   case Acquire:
   11910   case AcquireRelease:
   11911   case SequentiallyConsistent:
   11912     return makeDMB(Builder, ARM_MB::ISH);
   11913   }
   11914   llvm_unreachable("Unknown fence ordering in emitTrailingFence");
   11915 }
   11916 
   11917 // Loads and stores less than 64-bits are already atomic; ones above that
   11918 // are doomed anyway, so defer to the default libcall and blame the OS when
   11919 // things go wrong. Cortex M doesn't have ldrexd/strexd though, so don't emit
   11920 // anything for those.
   11921 bool ARMTargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const {
   11922   unsigned Size = SI->getValueOperand()->getType()->getPrimitiveSizeInBits();
   11923   return (Size == 64) && !Subtarget->isMClass();
   11924 }
   11925 
   11926 // Loads and stores less than 64-bits are already atomic; ones above that
   11927 // are doomed anyway, so defer to the default libcall and blame the OS when
   11928 // things go wrong. Cortex M doesn't have ldrexd/strexd though, so don't emit
   11929 // anything for those.
   11930 // FIXME: ldrd and strd are atomic if the CPU has LPAE (e.g. A15 has that
   11931 // guarantee, see DDI0406C ARM architecture reference manual,
   11932 // sections A8.8.72-74 LDRD)
   11933 TargetLowering::AtomicExpansionKind
   11934 ARMTargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const {
   11935   unsigned Size = LI->getType()->getPrimitiveSizeInBits();
   11936   return ((Size == 64) && !Subtarget->isMClass()) ? AtomicExpansionKind::LLOnly
   11937                                                   : AtomicExpansionKind::None;
   11938 }
   11939 
   11940 // For the real atomic operations, we have ldrex/strex up to 32 bits,
   11941 // and up to 64 bits on the non-M profiles
   11942 TargetLowering::AtomicExpansionKind
   11943 ARMTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const {
   11944   unsigned Size = AI->getType()->getPrimitiveSizeInBits();
   11945   return (Size <= (Subtarget->isMClass() ? 32U : 64U))
   11946              ? AtomicExpansionKind::LLSC
   11947              : AtomicExpansionKind::None;
   11948 }
   11949 
   11950 bool ARMTargetLowering::shouldExpandAtomicCmpXchgInIR(
   11951     AtomicCmpXchgInst *AI) const {
   11952   return true;
   11953 }
   11954 
   11955 // This has so far only been implemented for MachO.
   11956 bool ARMTargetLowering::useLoadStackGuardNode() const {
   11957   return Subtarget->isTargetMachO();
   11958 }
   11959 
   11960 bool ARMTargetLowering::canCombineStoreAndExtract(Type *VectorTy, Value *Idx,
   11961                                                   unsigned &Cost) const {
   11962   // If we do not have NEON, vector types are not natively supported.
   11963   if (!Subtarget->hasNEON())
   11964     return false;
   11965 
   11966   // Floating point values and vector values map to the same register file.
   11967   // Therefore, although we could do a store extract of a vector type, this is
   11968   // better to leave at float as we have more freedom in the addressing mode for
   11969   // those.
   11970   if (VectorTy->isFPOrFPVectorTy())
   11971     return false;
   11972 
   11973   // If the index is unknown at compile time, this is very expensive to lower
   11974   // and it is not possible to combine the store with the extract.
   11975   if (!isa<ConstantInt>(Idx))
   11976     return false;
   11977 
   11978   assert(VectorTy->isVectorTy() && "VectorTy is not a vector type");
   11979   unsigned BitWidth = cast<VectorType>(VectorTy)->getBitWidth();
   11980   // We can do a store + vector extract on any vector that fits perfectly in a D
   11981   // or Q register.
   11982   if (BitWidth == 64 || BitWidth == 128) {
   11983     Cost = 0;
   11984     return true;
   11985   }
   11986   return false;
   11987 }
   11988 
   11989 bool ARMTargetLowering::isCheapToSpeculateCttz() const {
   11990   return Subtarget->hasV6T2Ops();
   11991 }
   11992 
   11993 bool ARMTargetLowering::isCheapToSpeculateCtlz() const {
   11994   return Subtarget->hasV6T2Ops();
   11995 }
   11996 
   11997 Value *ARMTargetLowering::emitLoadLinked(IRBuilder<> &Builder, Value *Addr,
   11998                                          AtomicOrdering Ord) const {
   11999   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
   12000   Type *ValTy = cast<PointerType>(Addr->getType())->getElementType();
   12001   bool IsAcquire = isAtLeastAcquire(Ord);
   12002 
   12003   // Since i64 isn't legal and intrinsics don't get type-lowered, the ldrexd
   12004   // intrinsic must return {i32, i32} and we have to recombine them into a
   12005   // single i64 here.
   12006   if (ValTy->getPrimitiveSizeInBits() == 64) {
   12007     Intrinsic::ID Int =
   12008         IsAcquire ? Intrinsic::arm_ldaexd : Intrinsic::arm_ldrexd;
   12009     Function *Ldrex = llvm::Intrinsic::getDeclaration(M, Int);
   12010 
   12011     Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
   12012     Value *LoHi = Builder.CreateCall(Ldrex, Addr, "lohi");
   12013 
   12014     Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo");
   12015     Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi");
   12016     if (!Subtarget->isLittle())
   12017       std::swap (Lo, Hi);
   12018     Lo = Builder.CreateZExt(Lo, ValTy, "lo64");
   12019     Hi = Builder.CreateZExt(Hi, ValTy, "hi64");
   12020     return Builder.CreateOr(
   12021         Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 32)), "val64");
   12022   }
   12023 
   12024   Type *Tys[] = { Addr->getType() };
   12025   Intrinsic::ID Int = IsAcquire ? Intrinsic::arm_ldaex : Intrinsic::arm_ldrex;
   12026   Function *Ldrex = llvm::Intrinsic::getDeclaration(M, Int, Tys);
   12027 
   12028   return Builder.CreateTruncOrBitCast(
   12029       Builder.CreateCall(Ldrex, Addr),
   12030       cast<PointerType>(Addr->getType())->getElementType());
   12031 }
   12032 
   12033 void ARMTargetLowering::emitAtomicCmpXchgNoStoreLLBalance(
   12034     IRBuilder<> &Builder) const {
   12035   if (!Subtarget->hasV7Ops())
   12036     return;
   12037   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
   12038   Builder.CreateCall(llvm::Intrinsic::getDeclaration(M, Intrinsic::arm_clrex));
   12039 }
   12040 
   12041 Value *ARMTargetLowering::emitStoreConditional(IRBuilder<> &Builder, Value *Val,
   12042                                                Value *Addr,
   12043                                                AtomicOrdering Ord) const {
   12044   Module *M = Builder.GetInsertBlock()->getParent()->getParent();
   12045   bool IsRelease = isAtLeastRelease(Ord);
   12046 
   12047   // Since the intrinsics must have legal type, the i64 intrinsics take two
   12048   // parameters: "i32, i32". We must marshal Val into the appropriate form
   12049   // before the call.
   12050   if (Val->getType()->getPrimitiveSizeInBits() == 64) {
   12051     Intrinsic::ID Int =
   12052         IsRelease ? Intrinsic::arm_stlexd : Intrinsic::arm_strexd;
   12053     Function *Strex = Intrinsic::getDeclaration(M, Int);
   12054     Type *Int32Ty = Type::getInt32Ty(M->getContext());
   12055 
   12056     Value *Lo = Builder.CreateTrunc(Val, Int32Ty, "lo");
   12057     Value *Hi = Builder.CreateTrunc(Builder.CreateLShr(Val, 32), Int32Ty, "hi");
   12058     if (!Subtarget->isLittle())
   12059       std::swap (Lo, Hi);
   12060     Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext()));
   12061     return Builder.CreateCall(Strex, {Lo, Hi, Addr});
   12062   }
   12063 
   12064   Intrinsic::ID Int = IsRelease ? Intrinsic::arm_stlex : Intrinsic::arm_strex;
   12065   Type *Tys[] = { Addr->getType() };
   12066   Function *Strex = Intrinsic::getDeclaration(M, Int, Tys);
   12067 
   12068   return Builder.CreateCall(
   12069       Strex, {Builder.CreateZExtOrBitCast(
   12070                   Val, Strex->getFunctionType()->getParamType(0)),
   12071               Addr});
   12072 }
   12073 
   12074 /// \brief Lower an interleaved load into a vldN intrinsic.
   12075 ///
   12076 /// E.g. Lower an interleaved load (Factor = 2):
   12077 ///        %wide.vec = load <8 x i32>, <8 x i32>* %ptr, align 4
   12078 ///        %v0 = shuffle %wide.vec, undef, <0, 2, 4, 6>  ; Extract even elements
   12079 ///        %v1 = shuffle %wide.vec, undef, <1, 3, 5, 7>  ; Extract odd elements
   12080 ///
   12081 ///      Into:
   12082 ///        %vld2 = { <4 x i32>, <4 x i32> } call llvm.arm.neon.vld2(%ptr, 4)
   12083 ///        %vec0 = extractelement { <4 x i32>, <4 x i32> } %vld2, i32 0
   12084 ///        %vec1 = extractelement { <4 x i32>, <4 x i32> } %vld2, i32 1
   12085 bool ARMTargetLowering::lowerInterleavedLoad(
   12086     LoadInst *LI, ArrayRef<ShuffleVectorInst *> Shuffles,
   12087     ArrayRef<unsigned> Indices, unsigned Factor) const {
   12088   assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() &&
   12089          "Invalid interleave factor");
   12090   assert(!Shuffles.empty() && "Empty shufflevector input");
   12091   assert(Shuffles.size() == Indices.size() &&
   12092          "Unmatched number of shufflevectors and indices");
   12093 
   12094   VectorType *VecTy = Shuffles[0]->getType();
   12095   Type *EltTy = VecTy->getVectorElementType();
   12096 
   12097   const DataLayout &DL = LI->getModule()->getDataLayout();
   12098   unsigned VecSize = DL.getTypeSizeInBits(VecTy);
   12099   bool EltIs64Bits = DL.getTypeSizeInBits(EltTy) == 64;
   12100 
   12101   // Skip if we do not have NEON and skip illegal vector types and vector types
   12102   // with i64/f64 elements (vldN doesn't support i64/f64 elements).
   12103   if (!Subtarget->hasNEON() || (VecSize != 64 && VecSize != 128) || EltIs64Bits)
   12104     return false;
   12105 
   12106   // A pointer vector can not be the return type of the ldN intrinsics. Need to
   12107   // load integer vectors first and then convert to pointer vectors.
   12108   if (EltTy->isPointerTy())
   12109     VecTy =
   12110         VectorType::get(DL.getIntPtrType(EltTy), VecTy->getVectorNumElements());
   12111 
   12112   static const Intrinsic::ID LoadInts[3] = {Intrinsic::arm_neon_vld2,
   12113                                             Intrinsic::arm_neon_vld3,
   12114                                             Intrinsic::arm_neon_vld4};
   12115 
   12116   IRBuilder<> Builder(LI);
   12117   SmallVector<Value *, 2> Ops;
   12118 
   12119   Type *Int8Ptr = Builder.getInt8PtrTy(LI->getPointerAddressSpace());
   12120   Ops.push_back(Builder.CreateBitCast(LI->getPointerOperand(), Int8Ptr));
   12121   Ops.push_back(Builder.getInt32(LI->getAlignment()));
   12122 
   12123   Type *Tys[] = { VecTy, Int8Ptr };
   12124   Function *VldnFunc =
   12125       Intrinsic::getDeclaration(LI->getModule(), LoadInts[Factor - 2], Tys);
   12126   CallInst *VldN = Builder.CreateCall(VldnFunc, Ops, "vldN");
   12127 
   12128   // Replace uses of each shufflevector with the corresponding vector loaded
   12129   // by ldN.
   12130   for (unsigned i = 0; i < Shuffles.size(); i++) {
   12131     ShuffleVectorInst *SV = Shuffles[i];
   12132     unsigned Index = Indices[i];
   12133 
   12134     Value *SubVec = Builder.CreateExtractValue(VldN, Index);
   12135 
   12136     // Convert the integer vector to pointer vector if the element is pointer.
   12137     if (EltTy->isPointerTy())
   12138       SubVec = Builder.CreateIntToPtr(SubVec, SV->getType());
   12139 
   12140     SV->replaceAllUsesWith(SubVec);
   12141   }
   12142 
   12143   return true;
   12144 }
   12145 
   12146 /// \brief Get a mask consisting of sequential integers starting from \p Start.
   12147 ///
   12148 /// I.e. <Start, Start + 1, ..., Start + NumElts - 1>
   12149 static Constant *getSequentialMask(IRBuilder<> &Builder, unsigned Start,
   12150                                    unsigned NumElts) {
   12151   SmallVector<Constant *, 16> Mask;
   12152   for (unsigned i = 0; i < NumElts; i++)
   12153     Mask.push_back(Builder.getInt32(Start + i));
   12154 
   12155   return ConstantVector::get(Mask);
   12156 }
   12157 
   12158 /// \brief Lower an interleaved store into a vstN intrinsic.
   12159 ///
   12160 /// E.g. Lower an interleaved store (Factor = 3):
   12161 ///        %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1,
   12162 ///                                  <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11>
   12163 ///        store <12 x i32> %i.vec, <12 x i32>* %ptr, align 4
   12164 ///
   12165 ///      Into:
   12166 ///        %sub.v0 = shuffle <8 x i32> %v0, <8 x i32> v1, <0, 1, 2, 3>
   12167 ///        %sub.v1 = shuffle <8 x i32> %v0, <8 x i32> v1, <4, 5, 6, 7>
   12168 ///        %sub.v2 = shuffle <8 x i32> %v0, <8 x i32> v1, <8, 9, 10, 11>
   12169 ///        call void llvm.arm.neon.vst3(%ptr, %sub.v0, %sub.v1, %sub.v2, 4)
   12170 ///
   12171 /// Note that the new shufflevectors will be removed and we'll only generate one
   12172 /// vst3 instruction in CodeGen.
   12173 bool ARMTargetLowering::lowerInterleavedStore(StoreInst *SI,
   12174                                               ShuffleVectorInst *SVI,
   12175                                               unsigned Factor) const {
   12176   assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() &&
   12177          "Invalid interleave factor");
   12178 
   12179   VectorType *VecTy = SVI->getType();
   12180   assert(VecTy->getVectorNumElements() % Factor == 0 &&
   12181          "Invalid interleaved store");
   12182 
   12183   unsigned NumSubElts = VecTy->getVectorNumElements() / Factor;
   12184   Type *EltTy = VecTy->getVectorElementType();
   12185   VectorType *SubVecTy = VectorType::get(EltTy, NumSubElts);
   12186 
   12187   const DataLayout &DL = SI->getModule()->getDataLayout();
   12188   unsigned SubVecSize = DL.getTypeSizeInBits(SubVecTy);
   12189   bool EltIs64Bits = DL.getTypeSizeInBits(EltTy) == 64;
   12190 
   12191   // Skip if we do not have NEON and skip illegal vector types and vector types
   12192   // with i64/f64 elements (vstN doesn't support i64/f64 elements).
   12193   if (!Subtarget->hasNEON() || (SubVecSize != 64 && SubVecSize != 128) ||
   12194       EltIs64Bits)
   12195     return false;
   12196 
   12197   Value *Op0 = SVI->getOperand(0);
   12198   Value *Op1 = SVI->getOperand(1);
   12199   IRBuilder<> Builder(SI);
   12200 
   12201   // StN intrinsics don't support pointer vectors as arguments. Convert pointer
   12202   // vectors to integer vectors.
   12203   if (EltTy->isPointerTy()) {
   12204     Type *IntTy = DL.getIntPtrType(EltTy);
   12205 
   12206     // Convert to the corresponding integer vector.
   12207     Type *IntVecTy =
   12208         VectorType::get(IntTy, Op0->getType()->getVectorNumElements());
   12209     Op0 = Builder.CreatePtrToInt(Op0, IntVecTy);
   12210     Op1 = Builder.CreatePtrToInt(Op1, IntVecTy);
   12211 
   12212     SubVecTy = VectorType::get(IntTy, NumSubElts);
   12213   }
   12214 
   12215   static const Intrinsic::ID StoreInts[3] = {Intrinsic::arm_neon_vst2,
   12216                                              Intrinsic::arm_neon_vst3,
   12217                                              Intrinsic::arm_neon_vst4};
   12218   SmallVector<Value *, 6> Ops;
   12219 
   12220   Type *Int8Ptr = Builder.getInt8PtrTy(SI->getPointerAddressSpace());
   12221   Ops.push_back(Builder.CreateBitCast(SI->getPointerOperand(), Int8Ptr));
   12222 
   12223   Type *Tys[] = { Int8Ptr, SubVecTy };
   12224   Function *VstNFunc = Intrinsic::getDeclaration(
   12225       SI->getModule(), StoreInts[Factor - 2], Tys);
   12226 
   12227   // Split the shufflevector operands into sub vectors for the new vstN call.
   12228   for (unsigned i = 0; i < Factor; i++)
   12229     Ops.push_back(Builder.CreateShuffleVector(
   12230         Op0, Op1, getSequentialMask(Builder, NumSubElts * i, NumSubElts)));
   12231 
   12232   Ops.push_back(Builder.getInt32(SI->getAlignment()));
   12233   Builder.CreateCall(VstNFunc, Ops);
   12234   return true;
   12235 }
   12236 
   12237 enum HABaseType {
   12238   HA_UNKNOWN = 0,
   12239   HA_FLOAT,
   12240   HA_DOUBLE,
   12241   HA_VECT64,
   12242   HA_VECT128
   12243 };
   12244 
   12245 static bool isHomogeneousAggregate(Type *Ty, HABaseType &Base,
   12246                                    uint64_t &Members) {
   12247   if (auto *ST = dyn_cast<StructType>(Ty)) {
   12248     for (unsigned i = 0; i < ST->getNumElements(); ++i) {
   12249       uint64_t SubMembers = 0;
   12250       if (!isHomogeneousAggregate(ST->getElementType(i), Base, SubMembers))
   12251         return false;
   12252       Members += SubMembers;
   12253     }
   12254   } else if (auto *AT = dyn_cast<ArrayType>(Ty)) {
   12255     uint64_t SubMembers = 0;
   12256     if (!isHomogeneousAggregate(AT->getElementType(), Base, SubMembers))
   12257       return false;
   12258     Members += SubMembers * AT->getNumElements();
   12259   } else if (Ty->isFloatTy()) {
   12260     if (Base != HA_UNKNOWN && Base != HA_FLOAT)
   12261       return false;
   12262     Members = 1;
   12263     Base = HA_FLOAT;
   12264   } else if (Ty->isDoubleTy()) {
   12265     if (Base != HA_UNKNOWN && Base != HA_DOUBLE)
   12266       return false;
   12267     Members = 1;
   12268     Base = HA_DOUBLE;
   12269   } else if (auto *VT = dyn_cast<VectorType>(Ty)) {
   12270     Members = 1;
   12271     switch (Base) {
   12272     case HA_FLOAT:
   12273     case HA_DOUBLE:
   12274       return false;
   12275     case HA_VECT64:
   12276       return VT->getBitWidth() == 64;
   12277     case HA_VECT128:
   12278       return VT->getBitWidth() == 128;
   12279     case HA_UNKNOWN:
   12280       switch (VT->getBitWidth()) {
   12281       case 64:
   12282         Base = HA_VECT64;
   12283         return true;
   12284       case 128:
   12285         Base = HA_VECT128;
   12286         return true;
   12287       default:
   12288         return false;
   12289       }
   12290     }
   12291   }
   12292 
   12293   return (Members > 0 && Members <= 4);
   12294 }
   12295 
   12296 /// \brief Return true if a type is an AAPCS-VFP homogeneous aggregate or one of
   12297 /// [N x i32] or [N x i64]. This allows front-ends to skip emitting padding when
   12298 /// passing according to AAPCS rules.
   12299 bool ARMTargetLowering::functionArgumentNeedsConsecutiveRegisters(
   12300     Type *Ty, CallingConv::ID CallConv, bool isVarArg) const {
   12301   if (getEffectiveCallingConv(CallConv, isVarArg) !=
   12302       CallingConv::ARM_AAPCS_VFP)
   12303     return false;
   12304 
   12305   HABaseType Base = HA_UNKNOWN;
   12306   uint64_t Members = 0;
   12307   bool IsHA = isHomogeneousAggregate(Ty, Base, Members);
   12308   DEBUG(dbgs() << "isHA: " << IsHA << " "; Ty->dump());
   12309 
   12310   bool IsIntArray = Ty->isArrayTy() && Ty->getArrayElementType()->isIntegerTy();
   12311   return IsHA || IsIntArray;
   12312 }
   12313 
   12314 unsigned ARMTargetLowering::getExceptionPointerRegister(
   12315     const Constant *PersonalityFn) const {
   12316   // Platforms which do not use SjLj EH may return values in these registers
   12317   // via the personality function.
   12318   return Subtarget->useSjLjEH() ? ARM::NoRegister : ARM::R0;
   12319 }
   12320 
   12321 unsigned ARMTargetLowering::getExceptionSelectorRegister(
   12322     const Constant *PersonalityFn) const {
   12323   // Platforms which do not use SjLj EH may return values in these registers
   12324   // via the personality function.
   12325   return Subtarget->useSjLjEH() ? ARM::NoRegister : ARM::R1;
   12326 }
   12327