1 //===-- ARMISelLowering.cpp - ARM DAG Lowering Implementation -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the interfaces that ARM uses to lower LLVM code into a 11 // selection DAG. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "ARMISelLowering.h" 16 #include "ARMCallingConv.h" 17 #include "ARMConstantPoolValue.h" 18 #include "ARMMachineFunctionInfo.h" 19 #include "ARMPerfectShuffle.h" 20 #include "ARMSubtarget.h" 21 #include "ARMTargetMachine.h" 22 #include "ARMTargetObjectFile.h" 23 #include "MCTargetDesc/ARMAddressingModes.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/ADT/StringExtras.h" 26 #include "llvm/ADT/StringSwitch.h" 27 #include "llvm/CodeGen/CallingConvLower.h" 28 #include "llvm/CodeGen/IntrinsicLowering.h" 29 #include "llvm/CodeGen/MachineBasicBlock.h" 30 #include "llvm/CodeGen/MachineFrameInfo.h" 31 #include "llvm/CodeGen/MachineFunction.h" 32 #include "llvm/CodeGen/MachineInstrBuilder.h" 33 #include "llvm/CodeGen/MachineJumpTableInfo.h" 34 #include "llvm/CodeGen/MachineModuleInfo.h" 35 #include "llvm/CodeGen/MachineRegisterInfo.h" 36 #include "llvm/CodeGen/SelectionDAG.h" 37 #include "llvm/IR/CallingConv.h" 38 #include "llvm/IR/Constants.h" 39 #include "llvm/IR/Function.h" 40 #include "llvm/IR/GlobalValue.h" 41 #include "llvm/IR/IRBuilder.h" 42 #include "llvm/IR/Instruction.h" 43 #include "llvm/IR/Instructions.h" 44 #include "llvm/IR/IntrinsicInst.h" 45 #include "llvm/IR/Intrinsics.h" 46 #include "llvm/IR/Type.h" 47 #include "llvm/MC/MCSectionMachO.h" 48 #include "llvm/Support/CommandLine.h" 49 #include "llvm/Support/Debug.h" 50 #include "llvm/Support/ErrorHandling.h" 51 #include "llvm/Support/MathExtras.h" 52 #include "llvm/Support/raw_ostream.h" 53 #include "llvm/Target/TargetOptions.h" 54 #include <utility> 55 using namespace llvm; 56 57 #define DEBUG_TYPE "arm-isel" 58 59 STATISTIC(NumTailCalls, "Number of tail calls"); 60 STATISTIC(NumMovwMovt, "Number of GAs materialized with movw + movt"); 61 STATISTIC(NumLoopByVals, "Number of loops generated for byval arguments"); 62 63 static cl::opt<bool> 64 ARMInterworking("arm-interworking", cl::Hidden, 65 cl::desc("Enable / disable ARM interworking (for debugging only)"), 66 cl::init(true)); 67 68 namespace { 69 class ARMCCState : public CCState { 70 public: 71 ARMCCState(CallingConv::ID CC, bool isVarArg, MachineFunction &MF, 72 SmallVectorImpl<CCValAssign> &locs, LLVMContext &C, 73 ParmContext PC) 74 : CCState(CC, isVarArg, MF, locs, C) { 75 assert(((PC == Call) || (PC == Prologue)) && 76 "ARMCCState users must specify whether their context is call" 77 "or prologue generation."); 78 CallOrPrologue = PC; 79 } 80 }; 81 } 82 83 // The APCS parameter registers. 84 static const MCPhysReg GPRArgRegs[] = { 85 ARM::R0, ARM::R1, ARM::R2, ARM::R3 86 }; 87 88 void ARMTargetLowering::addTypeForNEON(MVT VT, MVT PromotedLdStVT, 89 MVT PromotedBitwiseVT) { 90 if (VT != PromotedLdStVT) { 91 setOperationAction(ISD::LOAD, VT, Promote); 92 AddPromotedToType (ISD::LOAD, VT, PromotedLdStVT); 93 94 setOperationAction(ISD::STORE, VT, Promote); 95 AddPromotedToType (ISD::STORE, VT, PromotedLdStVT); 96 } 97 98 MVT ElemTy = VT.getVectorElementType(); 99 if (ElemTy != MVT::i64 && ElemTy != MVT::f64) 100 setOperationAction(ISD::SETCC, VT, Custom); 101 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Custom); 102 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Custom); 103 if (ElemTy == MVT::i32) { 104 setOperationAction(ISD::SINT_TO_FP, VT, Custom); 105 setOperationAction(ISD::UINT_TO_FP, VT, Custom); 106 setOperationAction(ISD::FP_TO_SINT, VT, Custom); 107 setOperationAction(ISD::FP_TO_UINT, VT, Custom); 108 } else { 109 setOperationAction(ISD::SINT_TO_FP, VT, Expand); 110 setOperationAction(ISD::UINT_TO_FP, VT, Expand); 111 setOperationAction(ISD::FP_TO_SINT, VT, Expand); 112 setOperationAction(ISD::FP_TO_UINT, VT, Expand); 113 } 114 setOperationAction(ISD::BUILD_VECTOR, VT, Custom); 115 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Custom); 116 setOperationAction(ISD::CONCAT_VECTORS, VT, Legal); 117 setOperationAction(ISD::EXTRACT_SUBVECTOR, VT, Legal); 118 setOperationAction(ISD::SELECT, VT, Expand); 119 setOperationAction(ISD::SELECT_CC, VT, Expand); 120 setOperationAction(ISD::VSELECT, VT, Expand); 121 setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand); 122 if (VT.isInteger()) { 123 setOperationAction(ISD::SHL, VT, Custom); 124 setOperationAction(ISD::SRA, VT, Custom); 125 setOperationAction(ISD::SRL, VT, Custom); 126 } 127 128 // Promote all bit-wise operations. 129 if (VT.isInteger() && VT != PromotedBitwiseVT) { 130 setOperationAction(ISD::AND, VT, Promote); 131 AddPromotedToType (ISD::AND, VT, PromotedBitwiseVT); 132 setOperationAction(ISD::OR, VT, Promote); 133 AddPromotedToType (ISD::OR, VT, PromotedBitwiseVT); 134 setOperationAction(ISD::XOR, VT, Promote); 135 AddPromotedToType (ISD::XOR, VT, PromotedBitwiseVT); 136 } 137 138 // Neon does not support vector divide/remainder operations. 139 setOperationAction(ISD::SDIV, VT, Expand); 140 setOperationAction(ISD::UDIV, VT, Expand); 141 setOperationAction(ISD::FDIV, VT, Expand); 142 setOperationAction(ISD::SREM, VT, Expand); 143 setOperationAction(ISD::UREM, VT, Expand); 144 setOperationAction(ISD::FREM, VT, Expand); 145 146 if (!VT.isFloatingPoint() && 147 VT != MVT::v2i64 && VT != MVT::v1i64) 148 for (unsigned Opcode : {ISD::SMIN, ISD::SMAX, ISD::UMIN, ISD::UMAX}) 149 setOperationAction(Opcode, VT, Legal); 150 } 151 152 void ARMTargetLowering::addDRTypeForNEON(MVT VT) { 153 addRegisterClass(VT, &ARM::DPRRegClass); 154 addTypeForNEON(VT, MVT::f64, MVT::v2i32); 155 } 156 157 void ARMTargetLowering::addQRTypeForNEON(MVT VT) { 158 addRegisterClass(VT, &ARM::DPairRegClass); 159 addTypeForNEON(VT, MVT::v2f64, MVT::v4i32); 160 } 161 162 ARMTargetLowering::ARMTargetLowering(const TargetMachine &TM, 163 const ARMSubtarget &STI) 164 : TargetLowering(TM), Subtarget(&STI) { 165 RegInfo = Subtarget->getRegisterInfo(); 166 Itins = Subtarget->getInstrItineraryData(); 167 168 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent); 169 170 if (Subtarget->isTargetMachO()) { 171 // Uses VFP for Thumb libfuncs if available. 172 if (Subtarget->isThumb() && Subtarget->hasVFP2() && 173 Subtarget->hasARMOps() && !Subtarget->useSoftFloat()) { 174 static const struct { 175 const RTLIB::Libcall Op; 176 const char * const Name; 177 const ISD::CondCode Cond; 178 } LibraryCalls[] = { 179 // Single-precision floating-point arithmetic. 180 { RTLIB::ADD_F32, "__addsf3vfp", ISD::SETCC_INVALID }, 181 { RTLIB::SUB_F32, "__subsf3vfp", ISD::SETCC_INVALID }, 182 { RTLIB::MUL_F32, "__mulsf3vfp", ISD::SETCC_INVALID }, 183 { RTLIB::DIV_F32, "__divsf3vfp", ISD::SETCC_INVALID }, 184 185 // Double-precision floating-point arithmetic. 186 { RTLIB::ADD_F64, "__adddf3vfp", ISD::SETCC_INVALID }, 187 { RTLIB::SUB_F64, "__subdf3vfp", ISD::SETCC_INVALID }, 188 { RTLIB::MUL_F64, "__muldf3vfp", ISD::SETCC_INVALID }, 189 { RTLIB::DIV_F64, "__divdf3vfp", ISD::SETCC_INVALID }, 190 191 // Single-precision comparisons. 192 { RTLIB::OEQ_F32, "__eqsf2vfp", ISD::SETNE }, 193 { RTLIB::UNE_F32, "__nesf2vfp", ISD::SETNE }, 194 { RTLIB::OLT_F32, "__ltsf2vfp", ISD::SETNE }, 195 { RTLIB::OLE_F32, "__lesf2vfp", ISD::SETNE }, 196 { RTLIB::OGE_F32, "__gesf2vfp", ISD::SETNE }, 197 { RTLIB::OGT_F32, "__gtsf2vfp", ISD::SETNE }, 198 { RTLIB::UO_F32, "__unordsf2vfp", ISD::SETNE }, 199 { RTLIB::O_F32, "__unordsf2vfp", ISD::SETEQ }, 200 201 // Double-precision comparisons. 202 { RTLIB::OEQ_F64, "__eqdf2vfp", ISD::SETNE }, 203 { RTLIB::UNE_F64, "__nedf2vfp", ISD::SETNE }, 204 { RTLIB::OLT_F64, "__ltdf2vfp", ISD::SETNE }, 205 { RTLIB::OLE_F64, "__ledf2vfp", ISD::SETNE }, 206 { RTLIB::OGE_F64, "__gedf2vfp", ISD::SETNE }, 207 { RTLIB::OGT_F64, "__gtdf2vfp", ISD::SETNE }, 208 { RTLIB::UO_F64, "__unorddf2vfp", ISD::SETNE }, 209 { RTLIB::O_F64, "__unorddf2vfp", ISD::SETEQ }, 210 211 // Floating-point to integer conversions. 212 // i64 conversions are done via library routines even when generating VFP 213 // instructions, so use the same ones. 214 { RTLIB::FPTOSINT_F64_I32, "__fixdfsivfp", ISD::SETCC_INVALID }, 215 { RTLIB::FPTOUINT_F64_I32, "__fixunsdfsivfp", ISD::SETCC_INVALID }, 216 { RTLIB::FPTOSINT_F32_I32, "__fixsfsivfp", ISD::SETCC_INVALID }, 217 { RTLIB::FPTOUINT_F32_I32, "__fixunssfsivfp", ISD::SETCC_INVALID }, 218 219 // Conversions between floating types. 220 { RTLIB::FPROUND_F64_F32, "__truncdfsf2vfp", ISD::SETCC_INVALID }, 221 { RTLIB::FPEXT_F32_F64, "__extendsfdf2vfp", ISD::SETCC_INVALID }, 222 223 // Integer to floating-point conversions. 224 // i64 conversions are done via library routines even when generating VFP 225 // instructions, so use the same ones. 226 // FIXME: There appears to be some naming inconsistency in ARM libgcc: 227 // e.g., __floatunsidf vs. __floatunssidfvfp. 228 { RTLIB::SINTTOFP_I32_F64, "__floatsidfvfp", ISD::SETCC_INVALID }, 229 { RTLIB::UINTTOFP_I32_F64, "__floatunssidfvfp", ISD::SETCC_INVALID }, 230 { RTLIB::SINTTOFP_I32_F32, "__floatsisfvfp", ISD::SETCC_INVALID }, 231 { RTLIB::UINTTOFP_I32_F32, "__floatunssisfvfp", ISD::SETCC_INVALID }, 232 }; 233 234 for (const auto &LC : LibraryCalls) { 235 setLibcallName(LC.Op, LC.Name); 236 if (LC.Cond != ISD::SETCC_INVALID) 237 setCmpLibcallCC(LC.Op, LC.Cond); 238 } 239 } 240 241 // Set the correct calling convention for ARMv7k WatchOS. It's just 242 // AAPCS_VFP for functions as simple as libcalls. 243 if (Subtarget->isTargetWatchOS()) { 244 for (int i = 0; i < RTLIB::UNKNOWN_LIBCALL; ++i) 245 setLibcallCallingConv((RTLIB::Libcall)i, CallingConv::ARM_AAPCS_VFP); 246 } 247 } 248 249 // These libcalls are not available in 32-bit. 250 setLibcallName(RTLIB::SHL_I128, nullptr); 251 setLibcallName(RTLIB::SRL_I128, nullptr); 252 setLibcallName(RTLIB::SRA_I128, nullptr); 253 254 // RTLIB 255 if (Subtarget->isAAPCS_ABI() && 256 (Subtarget->isTargetAEABI() || Subtarget->isTargetGNUAEABI() || 257 Subtarget->isTargetAndroid())) { 258 static const struct { 259 const RTLIB::Libcall Op; 260 const char * const Name; 261 const CallingConv::ID CC; 262 const ISD::CondCode Cond; 263 } LibraryCalls[] = { 264 // Double-precision floating-point arithmetic helper functions 265 // RTABI chapter 4.1.2, Table 2 266 { RTLIB::ADD_F64, "__aeabi_dadd", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, 267 { RTLIB::DIV_F64, "__aeabi_ddiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, 268 { RTLIB::MUL_F64, "__aeabi_dmul", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, 269 { RTLIB::SUB_F64, "__aeabi_dsub", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, 270 271 // Double-precision floating-point comparison helper functions 272 // RTABI chapter 4.1.2, Table 3 273 { RTLIB::OEQ_F64, "__aeabi_dcmpeq", CallingConv::ARM_AAPCS, ISD::SETNE }, 274 { RTLIB::UNE_F64, "__aeabi_dcmpeq", CallingConv::ARM_AAPCS, ISD::SETEQ }, 275 { RTLIB::OLT_F64, "__aeabi_dcmplt", CallingConv::ARM_AAPCS, ISD::SETNE }, 276 { RTLIB::OLE_F64, "__aeabi_dcmple", CallingConv::ARM_AAPCS, ISD::SETNE }, 277 { RTLIB::OGE_F64, "__aeabi_dcmpge", CallingConv::ARM_AAPCS, ISD::SETNE }, 278 { RTLIB::OGT_F64, "__aeabi_dcmpgt", CallingConv::ARM_AAPCS, ISD::SETNE }, 279 { RTLIB::UO_F64, "__aeabi_dcmpun", CallingConv::ARM_AAPCS, ISD::SETNE }, 280 { RTLIB::O_F64, "__aeabi_dcmpun", CallingConv::ARM_AAPCS, ISD::SETEQ }, 281 282 // Single-precision floating-point arithmetic helper functions 283 // RTABI chapter 4.1.2, Table 4 284 { RTLIB::ADD_F32, "__aeabi_fadd", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, 285 { RTLIB::DIV_F32, "__aeabi_fdiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, 286 { RTLIB::MUL_F32, "__aeabi_fmul", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, 287 { RTLIB::SUB_F32, "__aeabi_fsub", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, 288 289 // Single-precision floating-point comparison helper functions 290 // RTABI chapter 4.1.2, Table 5 291 { RTLIB::OEQ_F32, "__aeabi_fcmpeq", CallingConv::ARM_AAPCS, ISD::SETNE }, 292 { RTLIB::UNE_F32, "__aeabi_fcmpeq", CallingConv::ARM_AAPCS, ISD::SETEQ }, 293 { RTLIB::OLT_F32, "__aeabi_fcmplt", CallingConv::ARM_AAPCS, ISD::SETNE }, 294 { RTLIB::OLE_F32, "__aeabi_fcmple", CallingConv::ARM_AAPCS, ISD::SETNE }, 295 { RTLIB::OGE_F32, "__aeabi_fcmpge", CallingConv::ARM_AAPCS, ISD::SETNE }, 296 { RTLIB::OGT_F32, "__aeabi_fcmpgt", CallingConv::ARM_AAPCS, ISD::SETNE }, 297 { RTLIB::UO_F32, "__aeabi_fcmpun", CallingConv::ARM_AAPCS, ISD::SETNE }, 298 { RTLIB::O_F32, "__aeabi_fcmpun", CallingConv::ARM_AAPCS, ISD::SETEQ }, 299 300 // Floating-point to integer conversions. 301 // RTABI chapter 4.1.2, Table 6 302 { RTLIB::FPTOSINT_F64_I32, "__aeabi_d2iz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, 303 { RTLIB::FPTOUINT_F64_I32, "__aeabi_d2uiz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, 304 { RTLIB::FPTOSINT_F64_I64, "__aeabi_d2lz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, 305 { RTLIB::FPTOUINT_F64_I64, "__aeabi_d2ulz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, 306 { RTLIB::FPTOSINT_F32_I32, "__aeabi_f2iz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, 307 { RTLIB::FPTOUINT_F32_I32, "__aeabi_f2uiz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, 308 { RTLIB::FPTOSINT_F32_I64, "__aeabi_f2lz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, 309 { RTLIB::FPTOUINT_F32_I64, "__aeabi_f2ulz", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, 310 311 // Conversions between floating types. 312 // RTABI chapter 4.1.2, Table 7 313 { RTLIB::FPROUND_F64_F32, "__aeabi_d2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, 314 { RTLIB::FPROUND_F64_F16, "__aeabi_d2h", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, 315 { RTLIB::FPEXT_F32_F64, "__aeabi_f2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, 316 317 // Integer to floating-point conversions. 318 // RTABI chapter 4.1.2, Table 8 319 { RTLIB::SINTTOFP_I32_F64, "__aeabi_i2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, 320 { RTLIB::UINTTOFP_I32_F64, "__aeabi_ui2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, 321 { RTLIB::SINTTOFP_I64_F64, "__aeabi_l2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, 322 { RTLIB::UINTTOFP_I64_F64, "__aeabi_ul2d", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, 323 { RTLIB::SINTTOFP_I32_F32, "__aeabi_i2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, 324 { RTLIB::UINTTOFP_I32_F32, "__aeabi_ui2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, 325 { RTLIB::SINTTOFP_I64_F32, "__aeabi_l2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, 326 { RTLIB::UINTTOFP_I64_F32, "__aeabi_ul2f", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, 327 328 // Long long helper functions 329 // RTABI chapter 4.2, Table 9 330 { RTLIB::MUL_I64, "__aeabi_lmul", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, 331 { RTLIB::SHL_I64, "__aeabi_llsl", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, 332 { RTLIB::SRL_I64, "__aeabi_llsr", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, 333 { RTLIB::SRA_I64, "__aeabi_lasr", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, 334 335 // Integer division functions 336 // RTABI chapter 4.3.1 337 { RTLIB::SDIV_I8, "__aeabi_idiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, 338 { RTLIB::SDIV_I16, "__aeabi_idiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, 339 { RTLIB::SDIV_I32, "__aeabi_idiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, 340 { RTLIB::SDIV_I64, "__aeabi_ldivmod", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, 341 { RTLIB::UDIV_I8, "__aeabi_uidiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, 342 { RTLIB::UDIV_I16, "__aeabi_uidiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, 343 { RTLIB::UDIV_I32, "__aeabi_uidiv", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, 344 { RTLIB::UDIV_I64, "__aeabi_uldivmod", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, 345 }; 346 347 for (const auto &LC : LibraryCalls) { 348 setLibcallName(LC.Op, LC.Name); 349 setLibcallCallingConv(LC.Op, LC.CC); 350 if (LC.Cond != ISD::SETCC_INVALID) 351 setCmpLibcallCC(LC.Op, LC.Cond); 352 } 353 354 // EABI dependent RTLIB 355 if (TM.Options.EABIVersion == EABI::EABI4 || 356 TM.Options.EABIVersion == EABI::EABI5) { 357 static const struct { 358 const RTLIB::Libcall Op; 359 const char *const Name; 360 const CallingConv::ID CC; 361 const ISD::CondCode Cond; 362 } MemOpsLibraryCalls[] = { 363 // Memory operations 364 // RTABI chapter 4.3.4 365 { RTLIB::MEMCPY, "__aeabi_memcpy", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, 366 { RTLIB::MEMMOVE, "__aeabi_memmove", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, 367 { RTLIB::MEMSET, "__aeabi_memset", CallingConv::ARM_AAPCS, ISD::SETCC_INVALID }, 368 }; 369 370 for (const auto &LC : MemOpsLibraryCalls) { 371 setLibcallName(LC.Op, LC.Name); 372 setLibcallCallingConv(LC.Op, LC.CC); 373 if (LC.Cond != ISD::SETCC_INVALID) 374 setCmpLibcallCC(LC.Op, LC.Cond); 375 } 376 } 377 } 378 379 if (Subtarget->isTargetWindows()) { 380 static const struct { 381 const RTLIB::Libcall Op; 382 const char * const Name; 383 const CallingConv::ID CC; 384 } LibraryCalls[] = { 385 { RTLIB::FPTOSINT_F32_I64, "__stoi64", CallingConv::ARM_AAPCS_VFP }, 386 { RTLIB::FPTOSINT_F64_I64, "__dtoi64", CallingConv::ARM_AAPCS_VFP }, 387 { RTLIB::FPTOUINT_F32_I64, "__stou64", CallingConv::ARM_AAPCS_VFP }, 388 { RTLIB::FPTOUINT_F64_I64, "__dtou64", CallingConv::ARM_AAPCS_VFP }, 389 { RTLIB::SINTTOFP_I64_F32, "__i64tos", CallingConv::ARM_AAPCS_VFP }, 390 { RTLIB::SINTTOFP_I64_F64, "__i64tod", CallingConv::ARM_AAPCS_VFP }, 391 { RTLIB::UINTTOFP_I64_F32, "__u64tos", CallingConv::ARM_AAPCS_VFP }, 392 { RTLIB::UINTTOFP_I64_F64, "__u64tod", CallingConv::ARM_AAPCS_VFP }, 393 { RTLIB::SDIV_I32, "__rt_sdiv", CallingConv::ARM_AAPCS_VFP }, 394 { RTLIB::UDIV_I32, "__rt_udiv", CallingConv::ARM_AAPCS_VFP }, 395 { RTLIB::SDIV_I64, "__rt_sdiv64", CallingConv::ARM_AAPCS_VFP }, 396 { RTLIB::UDIV_I64, "__rt_udiv64", CallingConv::ARM_AAPCS_VFP }, 397 }; 398 399 for (const auto &LC : LibraryCalls) { 400 setLibcallName(LC.Op, LC.Name); 401 setLibcallCallingConv(LC.Op, LC.CC); 402 } 403 } 404 405 // Use divmod compiler-rt calls for iOS 5.0 and later. 406 if (Subtarget->isTargetWatchOS() || 407 (Subtarget->isTargetIOS() && 408 !Subtarget->getTargetTriple().isOSVersionLT(5, 0))) { 409 setLibcallName(RTLIB::SDIVREM_I32, "__divmodsi4"); 410 setLibcallName(RTLIB::UDIVREM_I32, "__udivmodsi4"); 411 } 412 413 // The half <-> float conversion functions are always soft-float, but are 414 // needed for some targets which use a hard-float calling convention by 415 // default. 416 if (Subtarget->isAAPCS_ABI()) { 417 setLibcallCallingConv(RTLIB::FPROUND_F32_F16, CallingConv::ARM_AAPCS); 418 setLibcallCallingConv(RTLIB::FPROUND_F64_F16, CallingConv::ARM_AAPCS); 419 setLibcallCallingConv(RTLIB::FPEXT_F16_F32, CallingConv::ARM_AAPCS); 420 } else { 421 setLibcallCallingConv(RTLIB::FPROUND_F32_F16, CallingConv::ARM_APCS); 422 setLibcallCallingConv(RTLIB::FPROUND_F64_F16, CallingConv::ARM_APCS); 423 setLibcallCallingConv(RTLIB::FPEXT_F16_F32, CallingConv::ARM_APCS); 424 } 425 426 // In EABI, these functions have an __aeabi_ prefix, but in GNUEABI they have 427 // a __gnu_ prefix (which is the default). 428 if (Subtarget->isTargetAEABI()) { 429 setLibcallName(RTLIB::FPROUND_F32_F16, "__aeabi_f2h"); 430 setLibcallName(RTLIB::FPROUND_F64_F16, "__aeabi_d2h"); 431 setLibcallName(RTLIB::FPEXT_F16_F32, "__aeabi_h2f"); 432 } 433 434 if (Subtarget->isThumb1Only()) 435 addRegisterClass(MVT::i32, &ARM::tGPRRegClass); 436 else 437 addRegisterClass(MVT::i32, &ARM::GPRRegClass); 438 if (!Subtarget->useSoftFloat() && Subtarget->hasVFP2() && 439 !Subtarget->isThumb1Only()) { 440 addRegisterClass(MVT::f32, &ARM::SPRRegClass); 441 addRegisterClass(MVT::f64, &ARM::DPRRegClass); 442 } 443 444 for (MVT VT : MVT::vector_valuetypes()) { 445 for (MVT InnerVT : MVT::vector_valuetypes()) { 446 setTruncStoreAction(VT, InnerVT, Expand); 447 setLoadExtAction(ISD::SEXTLOAD, VT, InnerVT, Expand); 448 setLoadExtAction(ISD::ZEXTLOAD, VT, InnerVT, Expand); 449 setLoadExtAction(ISD::EXTLOAD, VT, InnerVT, Expand); 450 } 451 452 setOperationAction(ISD::MULHS, VT, Expand); 453 setOperationAction(ISD::SMUL_LOHI, VT, Expand); 454 setOperationAction(ISD::MULHU, VT, Expand); 455 setOperationAction(ISD::UMUL_LOHI, VT, Expand); 456 457 setOperationAction(ISD::BSWAP, VT, Expand); 458 } 459 460 setOperationAction(ISD::ConstantFP, MVT::f32, Custom); 461 setOperationAction(ISD::ConstantFP, MVT::f64, Custom); 462 463 setOperationAction(ISD::READ_REGISTER, MVT::i64, Custom); 464 setOperationAction(ISD::WRITE_REGISTER, MVT::i64, Custom); 465 466 if (Subtarget->hasNEON()) { 467 addDRTypeForNEON(MVT::v2f32); 468 addDRTypeForNEON(MVT::v8i8); 469 addDRTypeForNEON(MVT::v4i16); 470 addDRTypeForNEON(MVT::v2i32); 471 addDRTypeForNEON(MVT::v1i64); 472 473 addQRTypeForNEON(MVT::v4f32); 474 addQRTypeForNEON(MVT::v2f64); 475 addQRTypeForNEON(MVT::v16i8); 476 addQRTypeForNEON(MVT::v8i16); 477 addQRTypeForNEON(MVT::v4i32); 478 addQRTypeForNEON(MVT::v2i64); 479 480 // v2f64 is legal so that QR subregs can be extracted as f64 elements, but 481 // neither Neon nor VFP support any arithmetic operations on it. 482 // The same with v4f32. But keep in mind that vadd, vsub, vmul are natively 483 // supported for v4f32. 484 setOperationAction(ISD::FADD, MVT::v2f64, Expand); 485 setOperationAction(ISD::FSUB, MVT::v2f64, Expand); 486 setOperationAction(ISD::FMUL, MVT::v2f64, Expand); 487 // FIXME: Code duplication: FDIV and FREM are expanded always, see 488 // ARMTargetLowering::addTypeForNEON method for details. 489 setOperationAction(ISD::FDIV, MVT::v2f64, Expand); 490 setOperationAction(ISD::FREM, MVT::v2f64, Expand); 491 // FIXME: Create unittest. 492 // In another words, find a way when "copysign" appears in DAG with vector 493 // operands. 494 setOperationAction(ISD::FCOPYSIGN, MVT::v2f64, Expand); 495 // FIXME: Code duplication: SETCC has custom operation action, see 496 // ARMTargetLowering::addTypeForNEON method for details. 497 setOperationAction(ISD::SETCC, MVT::v2f64, Expand); 498 // FIXME: Create unittest for FNEG and for FABS. 499 setOperationAction(ISD::FNEG, MVT::v2f64, Expand); 500 setOperationAction(ISD::FABS, MVT::v2f64, Expand); 501 setOperationAction(ISD::FSQRT, MVT::v2f64, Expand); 502 setOperationAction(ISD::FSIN, MVT::v2f64, Expand); 503 setOperationAction(ISD::FCOS, MVT::v2f64, Expand); 504 setOperationAction(ISD::FPOWI, MVT::v2f64, Expand); 505 setOperationAction(ISD::FPOW, MVT::v2f64, Expand); 506 setOperationAction(ISD::FLOG, MVT::v2f64, Expand); 507 setOperationAction(ISD::FLOG2, MVT::v2f64, Expand); 508 setOperationAction(ISD::FLOG10, MVT::v2f64, Expand); 509 setOperationAction(ISD::FEXP, MVT::v2f64, Expand); 510 setOperationAction(ISD::FEXP2, MVT::v2f64, Expand); 511 // FIXME: Create unittest for FCEIL, FTRUNC, FRINT, FNEARBYINT, FFLOOR. 512 setOperationAction(ISD::FCEIL, MVT::v2f64, Expand); 513 setOperationAction(ISD::FTRUNC, MVT::v2f64, Expand); 514 setOperationAction(ISD::FRINT, MVT::v2f64, Expand); 515 setOperationAction(ISD::FNEARBYINT, MVT::v2f64, Expand); 516 setOperationAction(ISD::FFLOOR, MVT::v2f64, Expand); 517 setOperationAction(ISD::FMA, MVT::v2f64, Expand); 518 519 setOperationAction(ISD::FSQRT, MVT::v4f32, Expand); 520 setOperationAction(ISD::FSIN, MVT::v4f32, Expand); 521 setOperationAction(ISD::FCOS, MVT::v4f32, Expand); 522 setOperationAction(ISD::FPOWI, MVT::v4f32, Expand); 523 setOperationAction(ISD::FPOW, MVT::v4f32, Expand); 524 setOperationAction(ISD::FLOG, MVT::v4f32, Expand); 525 setOperationAction(ISD::FLOG2, MVT::v4f32, Expand); 526 setOperationAction(ISD::FLOG10, MVT::v4f32, Expand); 527 setOperationAction(ISD::FEXP, MVT::v4f32, Expand); 528 setOperationAction(ISD::FEXP2, MVT::v4f32, Expand); 529 setOperationAction(ISD::FCEIL, MVT::v4f32, Expand); 530 setOperationAction(ISD::FTRUNC, MVT::v4f32, Expand); 531 setOperationAction(ISD::FRINT, MVT::v4f32, Expand); 532 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Expand); 533 setOperationAction(ISD::FFLOOR, MVT::v4f32, Expand); 534 535 // Mark v2f32 intrinsics. 536 setOperationAction(ISD::FSQRT, MVT::v2f32, Expand); 537 setOperationAction(ISD::FSIN, MVT::v2f32, Expand); 538 setOperationAction(ISD::FCOS, MVT::v2f32, Expand); 539 setOperationAction(ISD::FPOWI, MVT::v2f32, Expand); 540 setOperationAction(ISD::FPOW, MVT::v2f32, Expand); 541 setOperationAction(ISD::FLOG, MVT::v2f32, Expand); 542 setOperationAction(ISD::FLOG2, MVT::v2f32, Expand); 543 setOperationAction(ISD::FLOG10, MVT::v2f32, Expand); 544 setOperationAction(ISD::FEXP, MVT::v2f32, Expand); 545 setOperationAction(ISD::FEXP2, MVT::v2f32, Expand); 546 setOperationAction(ISD::FCEIL, MVT::v2f32, Expand); 547 setOperationAction(ISD::FTRUNC, MVT::v2f32, Expand); 548 setOperationAction(ISD::FRINT, MVT::v2f32, Expand); 549 setOperationAction(ISD::FNEARBYINT, MVT::v2f32, Expand); 550 setOperationAction(ISD::FFLOOR, MVT::v2f32, Expand); 551 552 // Neon does not support some operations on v1i64 and v2i64 types. 553 setOperationAction(ISD::MUL, MVT::v1i64, Expand); 554 // Custom handling for some quad-vector types to detect VMULL. 555 setOperationAction(ISD::MUL, MVT::v8i16, Custom); 556 setOperationAction(ISD::MUL, MVT::v4i32, Custom); 557 setOperationAction(ISD::MUL, MVT::v2i64, Custom); 558 // Custom handling for some vector types to avoid expensive expansions 559 setOperationAction(ISD::SDIV, MVT::v4i16, Custom); 560 setOperationAction(ISD::SDIV, MVT::v8i8, Custom); 561 setOperationAction(ISD::UDIV, MVT::v4i16, Custom); 562 setOperationAction(ISD::UDIV, MVT::v8i8, Custom); 563 setOperationAction(ISD::SETCC, MVT::v1i64, Expand); 564 setOperationAction(ISD::SETCC, MVT::v2i64, Expand); 565 // Neon does not have single instruction SINT_TO_FP and UINT_TO_FP with 566 // a destination type that is wider than the source, and nor does 567 // it have a FP_TO_[SU]INT instruction with a narrower destination than 568 // source. 569 setOperationAction(ISD::SINT_TO_FP, MVT::v4i16, Custom); 570 setOperationAction(ISD::UINT_TO_FP, MVT::v4i16, Custom); 571 setOperationAction(ISD::FP_TO_UINT, MVT::v4i16, Custom); 572 setOperationAction(ISD::FP_TO_SINT, MVT::v4i16, Custom); 573 574 setOperationAction(ISD::FP_ROUND, MVT::v2f32, Expand); 575 setOperationAction(ISD::FP_EXTEND, MVT::v2f64, Expand); 576 577 // NEON does not have single instruction CTPOP for vectors with element 578 // types wider than 8-bits. However, custom lowering can leverage the 579 // v8i8/v16i8 vcnt instruction. 580 setOperationAction(ISD::CTPOP, MVT::v2i32, Custom); 581 setOperationAction(ISD::CTPOP, MVT::v4i32, Custom); 582 setOperationAction(ISD::CTPOP, MVT::v4i16, Custom); 583 setOperationAction(ISD::CTPOP, MVT::v8i16, Custom); 584 585 // NEON does not have single instruction CTTZ for vectors. 586 setOperationAction(ISD::CTTZ, MVT::v8i8, Custom); 587 setOperationAction(ISD::CTTZ, MVT::v4i16, Custom); 588 setOperationAction(ISD::CTTZ, MVT::v2i32, Custom); 589 setOperationAction(ISD::CTTZ, MVT::v1i64, Custom); 590 591 setOperationAction(ISD::CTTZ, MVT::v16i8, Custom); 592 setOperationAction(ISD::CTTZ, MVT::v8i16, Custom); 593 setOperationAction(ISD::CTTZ, MVT::v4i32, Custom); 594 setOperationAction(ISD::CTTZ, MVT::v2i64, Custom); 595 596 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v8i8, Custom); 597 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v4i16, Custom); 598 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v2i32, Custom); 599 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v1i64, Custom); 600 601 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v16i8, Custom); 602 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v8i16, Custom); 603 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v4i32, Custom); 604 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::v2i64, Custom); 605 606 // NEON only has FMA instructions as of VFP4. 607 if (!Subtarget->hasVFP4()) { 608 setOperationAction(ISD::FMA, MVT::v2f32, Expand); 609 setOperationAction(ISD::FMA, MVT::v4f32, Expand); 610 } 611 612 setTargetDAGCombine(ISD::INTRINSIC_VOID); 613 setTargetDAGCombine(ISD::INTRINSIC_W_CHAIN); 614 setTargetDAGCombine(ISD::INTRINSIC_WO_CHAIN); 615 setTargetDAGCombine(ISD::SHL); 616 setTargetDAGCombine(ISD::SRL); 617 setTargetDAGCombine(ISD::SRA); 618 setTargetDAGCombine(ISD::SIGN_EXTEND); 619 setTargetDAGCombine(ISD::ZERO_EXTEND); 620 setTargetDAGCombine(ISD::ANY_EXTEND); 621 setTargetDAGCombine(ISD::BUILD_VECTOR); 622 setTargetDAGCombine(ISD::VECTOR_SHUFFLE); 623 setTargetDAGCombine(ISD::INSERT_VECTOR_ELT); 624 setTargetDAGCombine(ISD::STORE); 625 setTargetDAGCombine(ISD::FP_TO_SINT); 626 setTargetDAGCombine(ISD::FP_TO_UINT); 627 setTargetDAGCombine(ISD::FDIV); 628 setTargetDAGCombine(ISD::LOAD); 629 630 // It is legal to extload from v4i8 to v4i16 or v4i32. 631 for (MVT Ty : {MVT::v8i8, MVT::v4i8, MVT::v2i8, MVT::v4i16, MVT::v2i16, 632 MVT::v2i32}) { 633 for (MVT VT : MVT::integer_vector_valuetypes()) { 634 setLoadExtAction(ISD::EXTLOAD, VT, Ty, Legal); 635 setLoadExtAction(ISD::ZEXTLOAD, VT, Ty, Legal); 636 setLoadExtAction(ISD::SEXTLOAD, VT, Ty, Legal); 637 } 638 } 639 } 640 641 // ARM and Thumb2 support UMLAL/SMLAL. 642 if (!Subtarget->isThumb1Only()) 643 setTargetDAGCombine(ISD::ADDC); 644 645 if (Subtarget->isFPOnlySP()) { 646 // When targeting a floating-point unit with only single-precision 647 // operations, f64 is legal for the few double-precision instructions which 648 // are present However, no double-precision operations other than moves, 649 // loads and stores are provided by the hardware. 650 setOperationAction(ISD::FADD, MVT::f64, Expand); 651 setOperationAction(ISD::FSUB, MVT::f64, Expand); 652 setOperationAction(ISD::FMUL, MVT::f64, Expand); 653 setOperationAction(ISD::FMA, MVT::f64, Expand); 654 setOperationAction(ISD::FDIV, MVT::f64, Expand); 655 setOperationAction(ISD::FREM, MVT::f64, Expand); 656 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); 657 setOperationAction(ISD::FGETSIGN, MVT::f64, Expand); 658 setOperationAction(ISD::FNEG, MVT::f64, Expand); 659 setOperationAction(ISD::FABS, MVT::f64, Expand); 660 setOperationAction(ISD::FSQRT, MVT::f64, Expand); 661 setOperationAction(ISD::FSIN, MVT::f64, Expand); 662 setOperationAction(ISD::FCOS, MVT::f64, Expand); 663 setOperationAction(ISD::FPOWI, MVT::f64, Expand); 664 setOperationAction(ISD::FPOW, MVT::f64, Expand); 665 setOperationAction(ISD::FLOG, MVT::f64, Expand); 666 setOperationAction(ISD::FLOG2, MVT::f64, Expand); 667 setOperationAction(ISD::FLOG10, MVT::f64, Expand); 668 setOperationAction(ISD::FEXP, MVT::f64, Expand); 669 setOperationAction(ISD::FEXP2, MVT::f64, Expand); 670 setOperationAction(ISD::FCEIL, MVT::f64, Expand); 671 setOperationAction(ISD::FTRUNC, MVT::f64, Expand); 672 setOperationAction(ISD::FRINT, MVT::f64, Expand); 673 setOperationAction(ISD::FNEARBYINT, MVT::f64, Expand); 674 setOperationAction(ISD::FFLOOR, MVT::f64, Expand); 675 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); 676 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Custom); 677 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom); 678 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom); 679 setOperationAction(ISD::FP_TO_SINT, MVT::f64, Custom); 680 setOperationAction(ISD::FP_TO_UINT, MVT::f64, Custom); 681 setOperationAction(ISD::FP_ROUND, MVT::f32, Custom); 682 setOperationAction(ISD::FP_EXTEND, MVT::f64, Custom); 683 } 684 685 computeRegisterProperties(Subtarget->getRegisterInfo()); 686 687 // ARM does not have floating-point extending loads. 688 for (MVT VT : MVT::fp_valuetypes()) { 689 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand); 690 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f16, Expand); 691 } 692 693 // ... or truncating stores 694 setTruncStoreAction(MVT::f64, MVT::f32, Expand); 695 setTruncStoreAction(MVT::f32, MVT::f16, Expand); 696 setTruncStoreAction(MVT::f64, MVT::f16, Expand); 697 698 // ARM does not have i1 sign extending load. 699 for (MVT VT : MVT::integer_valuetypes()) 700 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); 701 702 // ARM supports all 4 flavors of integer indexed load / store. 703 if (!Subtarget->isThumb1Only()) { 704 for (unsigned im = (unsigned)ISD::PRE_INC; 705 im != (unsigned)ISD::LAST_INDEXED_MODE; ++im) { 706 setIndexedLoadAction(im, MVT::i1, Legal); 707 setIndexedLoadAction(im, MVT::i8, Legal); 708 setIndexedLoadAction(im, MVT::i16, Legal); 709 setIndexedLoadAction(im, MVT::i32, Legal); 710 setIndexedStoreAction(im, MVT::i1, Legal); 711 setIndexedStoreAction(im, MVT::i8, Legal); 712 setIndexedStoreAction(im, MVT::i16, Legal); 713 setIndexedStoreAction(im, MVT::i32, Legal); 714 } 715 } 716 717 setOperationAction(ISD::SADDO, MVT::i32, Custom); 718 setOperationAction(ISD::UADDO, MVT::i32, Custom); 719 setOperationAction(ISD::SSUBO, MVT::i32, Custom); 720 setOperationAction(ISD::USUBO, MVT::i32, Custom); 721 722 // i64 operation support. 723 setOperationAction(ISD::MUL, MVT::i64, Expand); 724 setOperationAction(ISD::MULHU, MVT::i32, Expand); 725 if (Subtarget->isThumb1Only()) { 726 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand); 727 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand); 728 } 729 if (Subtarget->isThumb1Only() || !Subtarget->hasV6Ops() 730 || (Subtarget->isThumb2() && !Subtarget->hasDSP())) 731 setOperationAction(ISD::MULHS, MVT::i32, Expand); 732 733 setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom); 734 setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom); 735 setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom); 736 setOperationAction(ISD::SRL, MVT::i64, Custom); 737 setOperationAction(ISD::SRA, MVT::i64, Custom); 738 739 if (!Subtarget->isThumb1Only()) { 740 // FIXME: We should do this for Thumb1 as well. 741 setOperationAction(ISD::ADDC, MVT::i32, Custom); 742 setOperationAction(ISD::ADDE, MVT::i32, Custom); 743 setOperationAction(ISD::SUBC, MVT::i32, Custom); 744 setOperationAction(ISD::SUBE, MVT::i32, Custom); 745 } 746 747 if (!Subtarget->isThumb1Only()) 748 setOperationAction(ISD::BITREVERSE, MVT::i32, Legal); 749 750 // ARM does not have ROTL. 751 setOperationAction(ISD::ROTL, MVT::i32, Expand); 752 for (MVT VT : MVT::vector_valuetypes()) { 753 setOperationAction(ISD::ROTL, VT, Expand); 754 setOperationAction(ISD::ROTR, VT, Expand); 755 } 756 setOperationAction(ISD::CTTZ, MVT::i32, Custom); 757 setOperationAction(ISD::CTPOP, MVT::i32, Expand); 758 if (!Subtarget->hasV5TOps() || Subtarget->isThumb1Only()) 759 setOperationAction(ISD::CTLZ, MVT::i32, Expand); 760 761 // These just redirect to CTTZ and CTLZ on ARM. 762 setOperationAction(ISD::CTTZ_ZERO_UNDEF , MVT::i32 , Expand); 763 setOperationAction(ISD::CTLZ_ZERO_UNDEF , MVT::i32 , Expand); 764 765 // @llvm.readcyclecounter requires the Performance Monitors extension. 766 // Default to the 0 expansion on unsupported platforms. 767 // FIXME: Technically there are older ARM CPUs that have 768 // implementation-specific ways of obtaining this information. 769 if (Subtarget->hasPerfMon()) 770 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Custom); 771 772 // Only ARMv6 has BSWAP. 773 if (!Subtarget->hasV6Ops()) 774 setOperationAction(ISD::BSWAP, MVT::i32, Expand); 775 776 if (!(Subtarget->hasDivide() && Subtarget->isThumb2()) && 777 !(Subtarget->hasDivideInARMMode() && !Subtarget->isThumb())) { 778 // These are expanded into libcalls if the cpu doesn't have HW divider. 779 setOperationAction(ISD::SDIV, MVT::i32, LibCall); 780 setOperationAction(ISD::UDIV, MVT::i32, LibCall); 781 } 782 783 setOperationAction(ISD::SREM, MVT::i32, Expand); 784 setOperationAction(ISD::UREM, MVT::i32, Expand); 785 // Register based DivRem for AEABI (RTABI 4.2) 786 if (Subtarget->isTargetAEABI() || Subtarget->isTargetAndroid()) { 787 setOperationAction(ISD::SREM, MVT::i64, Custom); 788 setOperationAction(ISD::UREM, MVT::i64, Custom); 789 790 setLibcallName(RTLIB::SDIVREM_I8, "__aeabi_idivmod"); 791 setLibcallName(RTLIB::SDIVREM_I16, "__aeabi_idivmod"); 792 setLibcallName(RTLIB::SDIVREM_I32, "__aeabi_idivmod"); 793 setLibcallName(RTLIB::SDIVREM_I64, "__aeabi_ldivmod"); 794 setLibcallName(RTLIB::UDIVREM_I8, "__aeabi_uidivmod"); 795 setLibcallName(RTLIB::UDIVREM_I16, "__aeabi_uidivmod"); 796 setLibcallName(RTLIB::UDIVREM_I32, "__aeabi_uidivmod"); 797 setLibcallName(RTLIB::UDIVREM_I64, "__aeabi_uldivmod"); 798 799 setLibcallCallingConv(RTLIB::SDIVREM_I8, CallingConv::ARM_AAPCS); 800 setLibcallCallingConv(RTLIB::SDIVREM_I16, CallingConv::ARM_AAPCS); 801 setLibcallCallingConv(RTLIB::SDIVREM_I32, CallingConv::ARM_AAPCS); 802 setLibcallCallingConv(RTLIB::SDIVREM_I64, CallingConv::ARM_AAPCS); 803 setLibcallCallingConv(RTLIB::UDIVREM_I8, CallingConv::ARM_AAPCS); 804 setLibcallCallingConv(RTLIB::UDIVREM_I16, CallingConv::ARM_AAPCS); 805 setLibcallCallingConv(RTLIB::UDIVREM_I32, CallingConv::ARM_AAPCS); 806 setLibcallCallingConv(RTLIB::UDIVREM_I64, CallingConv::ARM_AAPCS); 807 808 setOperationAction(ISD::SDIVREM, MVT::i32, Custom); 809 setOperationAction(ISD::UDIVREM, MVT::i32, Custom); 810 } else { 811 setOperationAction(ISD::SDIVREM, MVT::i32, Expand); 812 setOperationAction(ISD::UDIVREM, MVT::i32, Expand); 813 } 814 815 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); 816 setOperationAction(ISD::ConstantPool, MVT::i32, Custom); 817 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom); 818 setOperationAction(ISD::BlockAddress, MVT::i32, Custom); 819 820 setOperationAction(ISD::TRAP, MVT::Other, Legal); 821 822 // Use the default implementation. 823 setOperationAction(ISD::VASTART, MVT::Other, Custom); 824 setOperationAction(ISD::VAARG, MVT::Other, Expand); 825 setOperationAction(ISD::VACOPY, MVT::Other, Expand); 826 setOperationAction(ISD::VAEND, MVT::Other, Expand); 827 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand); 828 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand); 829 830 if (Subtarget->getTargetTriple().isWindowsItaniumEnvironment()) 831 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom); 832 else 833 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Expand); 834 835 // ARMv6 Thumb1 (except for CPUs that support dmb / dsb) and earlier use 836 // the default expansion. If we are targeting a single threaded system, 837 // then set them all for expand so we can lower them later into their 838 // non-atomic form. 839 if (TM.Options.ThreadModel == ThreadModel::Single) 840 setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Expand); 841 else if (Subtarget->hasAnyDataBarrier() && !Subtarget->isThumb1Only()) { 842 // ATOMIC_FENCE needs custom lowering; the others should have been expanded 843 // to ldrex/strex loops already. 844 setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom); 845 846 // On v8, we have particularly efficient implementations of atomic fences 847 // if they can be combined with nearby atomic loads and stores. 848 if (!Subtarget->hasV8Ops()) { 849 // Automatically insert fences (dmb ish) around ATOMIC_SWAP etc. 850 setInsertFencesForAtomic(true); 851 } 852 } else { 853 // If there's anything we can use as a barrier, go through custom lowering 854 // for ATOMIC_FENCE. 855 setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, 856 Subtarget->hasAnyDataBarrier() ? Custom : Expand); 857 858 // Set them all for expansion, which will force libcalls. 859 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Expand); 860 setOperationAction(ISD::ATOMIC_SWAP, MVT::i32, Expand); 861 setOperationAction(ISD::ATOMIC_LOAD_ADD, MVT::i32, Expand); 862 setOperationAction(ISD::ATOMIC_LOAD_SUB, MVT::i32, Expand); 863 setOperationAction(ISD::ATOMIC_LOAD_AND, MVT::i32, Expand); 864 setOperationAction(ISD::ATOMIC_LOAD_OR, MVT::i32, Expand); 865 setOperationAction(ISD::ATOMIC_LOAD_XOR, MVT::i32, Expand); 866 setOperationAction(ISD::ATOMIC_LOAD_NAND, MVT::i32, Expand); 867 setOperationAction(ISD::ATOMIC_LOAD_MIN, MVT::i32, Expand); 868 setOperationAction(ISD::ATOMIC_LOAD_MAX, MVT::i32, Expand); 869 setOperationAction(ISD::ATOMIC_LOAD_UMIN, MVT::i32, Expand); 870 setOperationAction(ISD::ATOMIC_LOAD_UMAX, MVT::i32, Expand); 871 // Mark ATOMIC_LOAD and ATOMIC_STORE custom so we can handle the 872 // Unordered/Monotonic case. 873 setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Custom); 874 setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Custom); 875 } 876 877 setOperationAction(ISD::PREFETCH, MVT::Other, Custom); 878 879 // Requires SXTB/SXTH, available on v6 and up in both ARM and Thumb modes. 880 if (!Subtarget->hasV6Ops()) { 881 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Expand); 882 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Expand); 883 } 884 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand); 885 886 if (!Subtarget->useSoftFloat() && Subtarget->hasVFP2() && 887 !Subtarget->isThumb1Only()) { 888 // Turn f64->i64 into VMOVRRD, i64 -> f64 to VMOVDRR 889 // iff target supports vfp2. 890 setOperationAction(ISD::BITCAST, MVT::i64, Custom); 891 setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom); 892 } 893 894 // We want to custom lower some of our intrinsics. 895 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); 896 setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom); 897 setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom); 898 setOperationAction(ISD::EH_SJLJ_SETUP_DISPATCH, MVT::Other, Custom); 899 if (Subtarget->useSjLjEH()) 900 setLibcallName(RTLIB::UNWIND_RESUME, "_Unwind_SjLj_Resume"); 901 902 setOperationAction(ISD::SETCC, MVT::i32, Expand); 903 setOperationAction(ISD::SETCC, MVT::f32, Expand); 904 setOperationAction(ISD::SETCC, MVT::f64, Expand); 905 setOperationAction(ISD::SELECT, MVT::i32, Custom); 906 setOperationAction(ISD::SELECT, MVT::f32, Custom); 907 setOperationAction(ISD::SELECT, MVT::f64, Custom); 908 setOperationAction(ISD::SELECT_CC, MVT::i32, Custom); 909 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); 910 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom); 911 912 setOperationAction(ISD::BRCOND, MVT::Other, Expand); 913 setOperationAction(ISD::BR_CC, MVT::i32, Custom); 914 setOperationAction(ISD::BR_CC, MVT::f32, Custom); 915 setOperationAction(ISD::BR_CC, MVT::f64, Custom); 916 setOperationAction(ISD::BR_JT, MVT::Other, Custom); 917 918 // We don't support sin/cos/fmod/copysign/pow 919 setOperationAction(ISD::FSIN, MVT::f64, Expand); 920 setOperationAction(ISD::FSIN, MVT::f32, Expand); 921 setOperationAction(ISD::FCOS, MVT::f32, Expand); 922 setOperationAction(ISD::FCOS, MVT::f64, Expand); 923 setOperationAction(ISD::FSINCOS, MVT::f64, Expand); 924 setOperationAction(ISD::FSINCOS, MVT::f32, Expand); 925 setOperationAction(ISD::FREM, MVT::f64, Expand); 926 setOperationAction(ISD::FREM, MVT::f32, Expand); 927 if (!Subtarget->useSoftFloat() && Subtarget->hasVFP2() && 928 !Subtarget->isThumb1Only()) { 929 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Custom); 930 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Custom); 931 } 932 setOperationAction(ISD::FPOW, MVT::f64, Expand); 933 setOperationAction(ISD::FPOW, MVT::f32, Expand); 934 935 if (!Subtarget->hasVFP4()) { 936 setOperationAction(ISD::FMA, MVT::f64, Expand); 937 setOperationAction(ISD::FMA, MVT::f32, Expand); 938 } 939 940 // Various VFP goodness 941 if (!Subtarget->useSoftFloat() && !Subtarget->isThumb1Only()) { 942 // FP-ARMv8 adds f64 <-> f16 conversion. Before that it should be expanded. 943 if (!Subtarget->hasFPARMv8() || Subtarget->isFPOnlySP()) { 944 setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand); 945 setOperationAction(ISD::FP_TO_FP16, MVT::f64, Expand); 946 } 947 948 // fp16 is a special v7 extension that adds f16 <-> f32 conversions. 949 if (!Subtarget->hasFP16()) { 950 setOperationAction(ISD::FP16_TO_FP, MVT::f32, Expand); 951 setOperationAction(ISD::FP_TO_FP16, MVT::f32, Expand); 952 } 953 } 954 955 // Combine sin / cos into one node or libcall if possible. 956 if (Subtarget->hasSinCos()) { 957 setLibcallName(RTLIB::SINCOS_F32, "sincosf"); 958 setLibcallName(RTLIB::SINCOS_F64, "sincos"); 959 if (Subtarget->isTargetWatchOS()) { 960 setLibcallCallingConv(RTLIB::SINCOS_F32, CallingConv::ARM_AAPCS_VFP); 961 setLibcallCallingConv(RTLIB::SINCOS_F64, CallingConv::ARM_AAPCS_VFP); 962 } 963 if (Subtarget->isTargetIOS() || Subtarget->isTargetWatchOS()) { 964 // For iOS, we don't want to the normal expansion of a libcall to 965 // sincos. We want to issue a libcall to __sincos_stret. 966 setOperationAction(ISD::FSINCOS, MVT::f64, Custom); 967 setOperationAction(ISD::FSINCOS, MVT::f32, Custom); 968 } 969 } 970 971 // FP-ARMv8 implements a lot of rounding-like FP operations. 972 if (Subtarget->hasFPARMv8()) { 973 setOperationAction(ISD::FFLOOR, MVT::f32, Legal); 974 setOperationAction(ISD::FCEIL, MVT::f32, Legal); 975 setOperationAction(ISD::FROUND, MVT::f32, Legal); 976 setOperationAction(ISD::FTRUNC, MVT::f32, Legal); 977 setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal); 978 setOperationAction(ISD::FRINT, MVT::f32, Legal); 979 setOperationAction(ISD::FMINNUM, MVT::f32, Legal); 980 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal); 981 setOperationAction(ISD::FMINNUM, MVT::v2f32, Legal); 982 setOperationAction(ISD::FMAXNUM, MVT::v2f32, Legal); 983 setOperationAction(ISD::FMINNUM, MVT::v4f32, Legal); 984 setOperationAction(ISD::FMAXNUM, MVT::v4f32, Legal); 985 986 if (!Subtarget->isFPOnlySP()) { 987 setOperationAction(ISD::FFLOOR, MVT::f64, Legal); 988 setOperationAction(ISD::FCEIL, MVT::f64, Legal); 989 setOperationAction(ISD::FROUND, MVT::f64, Legal); 990 setOperationAction(ISD::FTRUNC, MVT::f64, Legal); 991 setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal); 992 setOperationAction(ISD::FRINT, MVT::f64, Legal); 993 setOperationAction(ISD::FMINNUM, MVT::f64, Legal); 994 setOperationAction(ISD::FMAXNUM, MVT::f64, Legal); 995 } 996 } 997 998 if (Subtarget->hasNEON()) { 999 // vmin and vmax aren't available in a scalar form, so we use 1000 // a NEON instruction with an undef lane instead. 1001 setOperationAction(ISD::FMINNAN, MVT::f32, Legal); 1002 setOperationAction(ISD::FMAXNAN, MVT::f32, Legal); 1003 setOperationAction(ISD::FMINNAN, MVT::v2f32, Legal); 1004 setOperationAction(ISD::FMAXNAN, MVT::v2f32, Legal); 1005 setOperationAction(ISD::FMINNAN, MVT::v4f32, Legal); 1006 setOperationAction(ISD::FMAXNAN, MVT::v4f32, Legal); 1007 } 1008 1009 // We have target-specific dag combine patterns for the following nodes: 1010 // ARMISD::VMOVRRD - No need to call setTargetDAGCombine 1011 setTargetDAGCombine(ISD::ADD); 1012 setTargetDAGCombine(ISD::SUB); 1013 setTargetDAGCombine(ISD::MUL); 1014 setTargetDAGCombine(ISD::AND); 1015 setTargetDAGCombine(ISD::OR); 1016 setTargetDAGCombine(ISD::XOR); 1017 1018 if (Subtarget->hasV6Ops()) 1019 setTargetDAGCombine(ISD::SRL); 1020 1021 setStackPointerRegisterToSaveRestore(ARM::SP); 1022 1023 if (Subtarget->useSoftFloat() || Subtarget->isThumb1Only() || 1024 !Subtarget->hasVFP2()) 1025 setSchedulingPreference(Sched::RegPressure); 1026 else 1027 setSchedulingPreference(Sched::Hybrid); 1028 1029 //// temporary - rewrite interface to use type 1030 MaxStoresPerMemset = 8; 1031 MaxStoresPerMemsetOptSize = 4; 1032 MaxStoresPerMemcpy = 4; // For @llvm.memcpy -> sequence of stores 1033 MaxStoresPerMemcpyOptSize = 2; 1034 MaxStoresPerMemmove = 4; // For @llvm.memmove -> sequence of stores 1035 MaxStoresPerMemmoveOptSize = 2; 1036 1037 // On ARM arguments smaller than 4 bytes are extended, so all arguments 1038 // are at least 4 bytes aligned. 1039 setMinStackArgumentAlignment(4); 1040 1041 // Prefer likely predicted branches to selects on out-of-order cores. 1042 PredictableSelectIsExpensive = Subtarget->isLikeA9(); 1043 1044 setMinFunctionAlignment(Subtarget->isThumb() ? 1 : 2); 1045 } 1046 1047 bool ARMTargetLowering::useSoftFloat() const { 1048 return Subtarget->useSoftFloat(); 1049 } 1050 1051 // FIXME: It might make sense to define the representative register class as the 1052 // nearest super-register that has a non-null superset. For example, DPR_VFP2 is 1053 // a super-register of SPR, and DPR is a superset if DPR_VFP2. Consequently, 1054 // SPR's representative would be DPR_VFP2. This should work well if register 1055 // pressure tracking were modified such that a register use would increment the 1056 // pressure of the register class's representative and all of it's super 1057 // classes' representatives transitively. We have not implemented this because 1058 // of the difficulty prior to coalescing of modeling operand register classes 1059 // due to the common occurrence of cross class copies and subregister insertions 1060 // and extractions. 1061 std::pair<const TargetRegisterClass *, uint8_t> 1062 ARMTargetLowering::findRepresentativeClass(const TargetRegisterInfo *TRI, 1063 MVT VT) const { 1064 const TargetRegisterClass *RRC = nullptr; 1065 uint8_t Cost = 1; 1066 switch (VT.SimpleTy) { 1067 default: 1068 return TargetLowering::findRepresentativeClass(TRI, VT); 1069 // Use DPR as representative register class for all floating point 1070 // and vector types. Since there are 32 SPR registers and 32 DPR registers so 1071 // the cost is 1 for both f32 and f64. 1072 case MVT::f32: case MVT::f64: case MVT::v8i8: case MVT::v4i16: 1073 case MVT::v2i32: case MVT::v1i64: case MVT::v2f32: 1074 RRC = &ARM::DPRRegClass; 1075 // When NEON is used for SP, only half of the register file is available 1076 // because operations that define both SP and DP results will be constrained 1077 // to the VFP2 class (D0-D15). We currently model this constraint prior to 1078 // coalescing by double-counting the SP regs. See the FIXME above. 1079 if (Subtarget->useNEONForSinglePrecisionFP()) 1080 Cost = 2; 1081 break; 1082 case MVT::v16i8: case MVT::v8i16: case MVT::v4i32: case MVT::v2i64: 1083 case MVT::v4f32: case MVT::v2f64: 1084 RRC = &ARM::DPRRegClass; 1085 Cost = 2; 1086 break; 1087 case MVT::v4i64: 1088 RRC = &ARM::DPRRegClass; 1089 Cost = 4; 1090 break; 1091 case MVT::v8i64: 1092 RRC = &ARM::DPRRegClass; 1093 Cost = 8; 1094 break; 1095 } 1096 return std::make_pair(RRC, Cost); 1097 } 1098 1099 const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode) const { 1100 switch ((ARMISD::NodeType)Opcode) { 1101 case ARMISD::FIRST_NUMBER: break; 1102 case ARMISD::Wrapper: return "ARMISD::Wrapper"; 1103 case ARMISD::WrapperPIC: return "ARMISD::WrapperPIC"; 1104 case ARMISD::WrapperJT: return "ARMISD::WrapperJT"; 1105 case ARMISD::COPY_STRUCT_BYVAL: return "ARMISD::COPY_STRUCT_BYVAL"; 1106 case ARMISD::CALL: return "ARMISD::CALL"; 1107 case ARMISD::CALL_PRED: return "ARMISD::CALL_PRED"; 1108 case ARMISD::CALL_NOLINK: return "ARMISD::CALL_NOLINK"; 1109 case ARMISD::tCALL: return "ARMISD::tCALL"; 1110 case ARMISD::BRCOND: return "ARMISD::BRCOND"; 1111 case ARMISD::BR_JT: return "ARMISD::BR_JT"; 1112 case ARMISD::BR2_JT: return "ARMISD::BR2_JT"; 1113 case ARMISD::RET_FLAG: return "ARMISD::RET_FLAG"; 1114 case ARMISD::INTRET_FLAG: return "ARMISD::INTRET_FLAG"; 1115 case ARMISD::PIC_ADD: return "ARMISD::PIC_ADD"; 1116 case ARMISD::CMP: return "ARMISD::CMP"; 1117 case ARMISD::CMN: return "ARMISD::CMN"; 1118 case ARMISD::CMPZ: return "ARMISD::CMPZ"; 1119 case ARMISD::CMPFP: return "ARMISD::CMPFP"; 1120 case ARMISD::CMPFPw0: return "ARMISD::CMPFPw0"; 1121 case ARMISD::BCC_i64: return "ARMISD::BCC_i64"; 1122 case ARMISD::FMSTAT: return "ARMISD::FMSTAT"; 1123 1124 case ARMISD::CMOV: return "ARMISD::CMOV"; 1125 1126 case ARMISD::SRL_FLAG: return "ARMISD::SRL_FLAG"; 1127 case ARMISD::SRA_FLAG: return "ARMISD::SRA_FLAG"; 1128 case ARMISD::RRX: return "ARMISD::RRX"; 1129 1130 case ARMISD::ADDC: return "ARMISD::ADDC"; 1131 case ARMISD::ADDE: return "ARMISD::ADDE"; 1132 case ARMISD::SUBC: return "ARMISD::SUBC"; 1133 case ARMISD::SUBE: return "ARMISD::SUBE"; 1134 1135 case ARMISD::VMOVRRD: return "ARMISD::VMOVRRD"; 1136 case ARMISD::VMOVDRR: return "ARMISD::VMOVDRR"; 1137 1138 case ARMISD::EH_SJLJ_SETJMP: return "ARMISD::EH_SJLJ_SETJMP"; 1139 case ARMISD::EH_SJLJ_LONGJMP: return "ARMISD::EH_SJLJ_LONGJMP"; 1140 case ARMISD::EH_SJLJ_SETUP_DISPATCH: return "ARMISD::EH_SJLJ_SETUP_DISPATCH"; 1141 1142 case ARMISD::TC_RETURN: return "ARMISD::TC_RETURN"; 1143 1144 case ARMISD::THREAD_POINTER:return "ARMISD::THREAD_POINTER"; 1145 1146 case ARMISD::DYN_ALLOC: return "ARMISD::DYN_ALLOC"; 1147 1148 case ARMISD::MEMBARRIER_MCR: return "ARMISD::MEMBARRIER_MCR"; 1149 1150 case ARMISD::PRELOAD: return "ARMISD::PRELOAD"; 1151 1152 case ARMISD::WIN__CHKSTK: return "ARMISD:::WIN__CHKSTK"; 1153 case ARMISD::WIN__DBZCHK: return "ARMISD::WIN__DBZCHK"; 1154 1155 case ARMISD::VCEQ: return "ARMISD::VCEQ"; 1156 case ARMISD::VCEQZ: return "ARMISD::VCEQZ"; 1157 case ARMISD::VCGE: return "ARMISD::VCGE"; 1158 case ARMISD::VCGEZ: return "ARMISD::VCGEZ"; 1159 case ARMISD::VCLEZ: return "ARMISD::VCLEZ"; 1160 case ARMISD::VCGEU: return "ARMISD::VCGEU"; 1161 case ARMISD::VCGT: return "ARMISD::VCGT"; 1162 case ARMISD::VCGTZ: return "ARMISD::VCGTZ"; 1163 case ARMISD::VCLTZ: return "ARMISD::VCLTZ"; 1164 case ARMISD::VCGTU: return "ARMISD::VCGTU"; 1165 case ARMISD::VTST: return "ARMISD::VTST"; 1166 1167 case ARMISD::VSHL: return "ARMISD::VSHL"; 1168 case ARMISD::VSHRs: return "ARMISD::VSHRs"; 1169 case ARMISD::VSHRu: return "ARMISD::VSHRu"; 1170 case ARMISD::VRSHRs: return "ARMISD::VRSHRs"; 1171 case ARMISD::VRSHRu: return "ARMISD::VRSHRu"; 1172 case ARMISD::VRSHRN: return "ARMISD::VRSHRN"; 1173 case ARMISD::VQSHLs: return "ARMISD::VQSHLs"; 1174 case ARMISD::VQSHLu: return "ARMISD::VQSHLu"; 1175 case ARMISD::VQSHLsu: return "ARMISD::VQSHLsu"; 1176 case ARMISD::VQSHRNs: return "ARMISD::VQSHRNs"; 1177 case ARMISD::VQSHRNu: return "ARMISD::VQSHRNu"; 1178 case ARMISD::VQSHRNsu: return "ARMISD::VQSHRNsu"; 1179 case ARMISD::VQRSHRNs: return "ARMISD::VQRSHRNs"; 1180 case ARMISD::VQRSHRNu: return "ARMISD::VQRSHRNu"; 1181 case ARMISD::VQRSHRNsu: return "ARMISD::VQRSHRNsu"; 1182 case ARMISD::VSLI: return "ARMISD::VSLI"; 1183 case ARMISD::VSRI: return "ARMISD::VSRI"; 1184 case ARMISD::VGETLANEu: return "ARMISD::VGETLANEu"; 1185 case ARMISD::VGETLANEs: return "ARMISD::VGETLANEs"; 1186 case ARMISD::VMOVIMM: return "ARMISD::VMOVIMM"; 1187 case ARMISD::VMVNIMM: return "ARMISD::VMVNIMM"; 1188 case ARMISD::VMOVFPIMM: return "ARMISD::VMOVFPIMM"; 1189 case ARMISD::VDUP: return "ARMISD::VDUP"; 1190 case ARMISD::VDUPLANE: return "ARMISD::VDUPLANE"; 1191 case ARMISD::VEXT: return "ARMISD::VEXT"; 1192 case ARMISD::VREV64: return "ARMISD::VREV64"; 1193 case ARMISD::VREV32: return "ARMISD::VREV32"; 1194 case ARMISD::VREV16: return "ARMISD::VREV16"; 1195 case ARMISD::VZIP: return "ARMISD::VZIP"; 1196 case ARMISD::VUZP: return "ARMISD::VUZP"; 1197 case ARMISD::VTRN: return "ARMISD::VTRN"; 1198 case ARMISD::VTBL1: return "ARMISD::VTBL1"; 1199 case ARMISD::VTBL2: return "ARMISD::VTBL2"; 1200 case ARMISD::VMULLs: return "ARMISD::VMULLs"; 1201 case ARMISD::VMULLu: return "ARMISD::VMULLu"; 1202 case ARMISD::UMLAL: return "ARMISD::UMLAL"; 1203 case ARMISD::SMLAL: return "ARMISD::SMLAL"; 1204 case ARMISD::BUILD_VECTOR: return "ARMISD::BUILD_VECTOR"; 1205 case ARMISD::BFI: return "ARMISD::BFI"; 1206 case ARMISD::VORRIMM: return "ARMISD::VORRIMM"; 1207 case ARMISD::VBICIMM: return "ARMISD::VBICIMM"; 1208 case ARMISD::VBSL: return "ARMISD::VBSL"; 1209 case ARMISD::MEMCPY: return "ARMISD::MEMCPY"; 1210 case ARMISD::VLD2DUP: return "ARMISD::VLD2DUP"; 1211 case ARMISD::VLD3DUP: return "ARMISD::VLD3DUP"; 1212 case ARMISD::VLD4DUP: return "ARMISD::VLD4DUP"; 1213 case ARMISD::VLD1_UPD: return "ARMISD::VLD1_UPD"; 1214 case ARMISD::VLD2_UPD: return "ARMISD::VLD2_UPD"; 1215 case ARMISD::VLD3_UPD: return "ARMISD::VLD3_UPD"; 1216 case ARMISD::VLD4_UPD: return "ARMISD::VLD4_UPD"; 1217 case ARMISD::VLD2LN_UPD: return "ARMISD::VLD2LN_UPD"; 1218 case ARMISD::VLD3LN_UPD: return "ARMISD::VLD3LN_UPD"; 1219 case ARMISD::VLD4LN_UPD: return "ARMISD::VLD4LN_UPD"; 1220 case ARMISD::VLD2DUP_UPD: return "ARMISD::VLD2DUP_UPD"; 1221 case ARMISD::VLD3DUP_UPD: return "ARMISD::VLD3DUP_UPD"; 1222 case ARMISD::VLD4DUP_UPD: return "ARMISD::VLD4DUP_UPD"; 1223 case ARMISD::VST1_UPD: return "ARMISD::VST1_UPD"; 1224 case ARMISD::VST2_UPD: return "ARMISD::VST2_UPD"; 1225 case ARMISD::VST3_UPD: return "ARMISD::VST3_UPD"; 1226 case ARMISD::VST4_UPD: return "ARMISD::VST4_UPD"; 1227 case ARMISD::VST2LN_UPD: return "ARMISD::VST2LN_UPD"; 1228 case ARMISD::VST3LN_UPD: return "ARMISD::VST3LN_UPD"; 1229 case ARMISD::VST4LN_UPD: return "ARMISD::VST4LN_UPD"; 1230 } 1231 return nullptr; 1232 } 1233 1234 EVT ARMTargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &, 1235 EVT VT) const { 1236 if (!VT.isVector()) 1237 return getPointerTy(DL); 1238 return VT.changeVectorElementTypeToInteger(); 1239 } 1240 1241 /// getRegClassFor - Return the register class that should be used for the 1242 /// specified value type. 1243 const TargetRegisterClass *ARMTargetLowering::getRegClassFor(MVT VT) const { 1244 // Map v4i64 to QQ registers but do not make the type legal. Similarly map 1245 // v8i64 to QQQQ registers. v4i64 and v8i64 are only used for REG_SEQUENCE to 1246 // load / store 4 to 8 consecutive D registers. 1247 if (Subtarget->hasNEON()) { 1248 if (VT == MVT::v4i64) 1249 return &ARM::QQPRRegClass; 1250 if (VT == MVT::v8i64) 1251 return &ARM::QQQQPRRegClass; 1252 } 1253 return TargetLowering::getRegClassFor(VT); 1254 } 1255 1256 // memcpy, and other memory intrinsics, typically tries to use LDM/STM if the 1257 // source/dest is aligned and the copy size is large enough. We therefore want 1258 // to align such objects passed to memory intrinsics. 1259 bool ARMTargetLowering::shouldAlignPointerArgs(CallInst *CI, unsigned &MinSize, 1260 unsigned &PrefAlign) const { 1261 if (!isa<MemIntrinsic>(CI)) 1262 return false; 1263 MinSize = 8; 1264 // On ARM11 onwards (excluding M class) 8-byte aligned LDM is typically 1 1265 // cycle faster than 4-byte aligned LDM. 1266 PrefAlign = (Subtarget->hasV6Ops() && !Subtarget->isMClass() ? 8 : 4); 1267 return true; 1268 } 1269 1270 // Create a fast isel object. 1271 FastISel * 1272 ARMTargetLowering::createFastISel(FunctionLoweringInfo &funcInfo, 1273 const TargetLibraryInfo *libInfo) const { 1274 return ARM::createFastISel(funcInfo, libInfo); 1275 } 1276 1277 Sched::Preference ARMTargetLowering::getSchedulingPreference(SDNode *N) const { 1278 unsigned NumVals = N->getNumValues(); 1279 if (!NumVals) 1280 return Sched::RegPressure; 1281 1282 for (unsigned i = 0; i != NumVals; ++i) { 1283 EVT VT = N->getValueType(i); 1284 if (VT == MVT::Glue || VT == MVT::Other) 1285 continue; 1286 if (VT.isFloatingPoint() || VT.isVector()) 1287 return Sched::ILP; 1288 } 1289 1290 if (!N->isMachineOpcode()) 1291 return Sched::RegPressure; 1292 1293 // Load are scheduled for latency even if there instruction itinerary 1294 // is not available. 1295 const TargetInstrInfo *TII = Subtarget->getInstrInfo(); 1296 const MCInstrDesc &MCID = TII->get(N->getMachineOpcode()); 1297 1298 if (MCID.getNumDefs() == 0) 1299 return Sched::RegPressure; 1300 if (!Itins->isEmpty() && 1301 Itins->getOperandCycle(MCID.getSchedClass(), 0) > 2) 1302 return Sched::ILP; 1303 1304 return Sched::RegPressure; 1305 } 1306 1307 //===----------------------------------------------------------------------===// 1308 // Lowering Code 1309 //===----------------------------------------------------------------------===// 1310 1311 /// IntCCToARMCC - Convert a DAG integer condition code to an ARM CC 1312 static ARMCC::CondCodes IntCCToARMCC(ISD::CondCode CC) { 1313 switch (CC) { 1314 default: llvm_unreachable("Unknown condition code!"); 1315 case ISD::SETNE: return ARMCC::NE; 1316 case ISD::SETEQ: return ARMCC::EQ; 1317 case ISD::SETGT: return ARMCC::GT; 1318 case ISD::SETGE: return ARMCC::GE; 1319 case ISD::SETLT: return ARMCC::LT; 1320 case ISD::SETLE: return ARMCC::LE; 1321 case ISD::SETUGT: return ARMCC::HI; 1322 case ISD::SETUGE: return ARMCC::HS; 1323 case ISD::SETULT: return ARMCC::LO; 1324 case ISD::SETULE: return ARMCC::LS; 1325 } 1326 } 1327 1328 /// FPCCToARMCC - Convert a DAG fp condition code to an ARM CC. 1329 static void FPCCToARMCC(ISD::CondCode CC, ARMCC::CondCodes &CondCode, 1330 ARMCC::CondCodes &CondCode2) { 1331 CondCode2 = ARMCC::AL; 1332 switch (CC) { 1333 default: llvm_unreachable("Unknown FP condition!"); 1334 case ISD::SETEQ: 1335 case ISD::SETOEQ: CondCode = ARMCC::EQ; break; 1336 case ISD::SETGT: 1337 case ISD::SETOGT: CondCode = ARMCC::GT; break; 1338 case ISD::SETGE: 1339 case ISD::SETOGE: CondCode = ARMCC::GE; break; 1340 case ISD::SETOLT: CondCode = ARMCC::MI; break; 1341 case ISD::SETOLE: CondCode = ARMCC::LS; break; 1342 case ISD::SETONE: CondCode = ARMCC::MI; CondCode2 = ARMCC::GT; break; 1343 case ISD::SETO: CondCode = ARMCC::VC; break; 1344 case ISD::SETUO: CondCode = ARMCC::VS; break; 1345 case ISD::SETUEQ: CondCode = ARMCC::EQ; CondCode2 = ARMCC::VS; break; 1346 case ISD::SETUGT: CondCode = ARMCC::HI; break; 1347 case ISD::SETUGE: CondCode = ARMCC::PL; break; 1348 case ISD::SETLT: 1349 case ISD::SETULT: CondCode = ARMCC::LT; break; 1350 case ISD::SETLE: 1351 case ISD::SETULE: CondCode = ARMCC::LE; break; 1352 case ISD::SETNE: 1353 case ISD::SETUNE: CondCode = ARMCC::NE; break; 1354 } 1355 } 1356 1357 //===----------------------------------------------------------------------===// 1358 // Calling Convention Implementation 1359 //===----------------------------------------------------------------------===// 1360 1361 #include "ARMGenCallingConv.inc" 1362 1363 /// getEffectiveCallingConv - Get the effective calling convention, taking into 1364 /// account presence of floating point hardware and calling convention 1365 /// limitations, such as support for variadic functions. 1366 CallingConv::ID 1367 ARMTargetLowering::getEffectiveCallingConv(CallingConv::ID CC, 1368 bool isVarArg) const { 1369 switch (CC) { 1370 default: 1371 llvm_unreachable("Unsupported calling convention"); 1372 case CallingConv::ARM_AAPCS: 1373 case CallingConv::ARM_APCS: 1374 case CallingConv::GHC: 1375 return CC; 1376 case CallingConv::ARM_AAPCS_VFP: 1377 return isVarArg ? CallingConv::ARM_AAPCS : CallingConv::ARM_AAPCS_VFP; 1378 case CallingConv::C: 1379 if (!Subtarget->isAAPCS_ABI()) 1380 return CallingConv::ARM_APCS; 1381 else if (Subtarget->hasVFP2() && !Subtarget->isThumb1Only() && 1382 getTargetMachine().Options.FloatABIType == FloatABI::Hard && 1383 !isVarArg) 1384 return CallingConv::ARM_AAPCS_VFP; 1385 else 1386 return CallingConv::ARM_AAPCS; 1387 case CallingConv::Fast: 1388 if (!Subtarget->isAAPCS_ABI()) { 1389 if (Subtarget->hasVFP2() && !Subtarget->isThumb1Only() && !isVarArg) 1390 return CallingConv::Fast; 1391 return CallingConv::ARM_APCS; 1392 } else if (Subtarget->hasVFP2() && !Subtarget->isThumb1Only() && !isVarArg) 1393 return CallingConv::ARM_AAPCS_VFP; 1394 else 1395 return CallingConv::ARM_AAPCS; 1396 } 1397 } 1398 1399 /// CCAssignFnForNode - Selects the correct CCAssignFn for the given 1400 /// CallingConvention. 1401 CCAssignFn *ARMTargetLowering::CCAssignFnForNode(CallingConv::ID CC, 1402 bool Return, 1403 bool isVarArg) const { 1404 switch (getEffectiveCallingConv(CC, isVarArg)) { 1405 default: 1406 llvm_unreachable("Unsupported calling convention"); 1407 case CallingConv::ARM_APCS: 1408 return (Return ? RetCC_ARM_APCS : CC_ARM_APCS); 1409 case CallingConv::ARM_AAPCS: 1410 return (Return ? RetCC_ARM_AAPCS : CC_ARM_AAPCS); 1411 case CallingConv::ARM_AAPCS_VFP: 1412 return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP); 1413 case CallingConv::Fast: 1414 return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS); 1415 case CallingConv::GHC: 1416 return (Return ? RetCC_ARM_APCS : CC_ARM_APCS_GHC); 1417 } 1418 } 1419 1420 /// LowerCallResult - Lower the result values of a call into the 1421 /// appropriate copies out of appropriate physical registers. 1422 SDValue 1423 ARMTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag, 1424 CallingConv::ID CallConv, bool isVarArg, 1425 const SmallVectorImpl<ISD::InputArg> &Ins, 1426 SDLoc dl, SelectionDAG &DAG, 1427 SmallVectorImpl<SDValue> &InVals, 1428 bool isThisReturn, SDValue ThisVal) const { 1429 1430 // Assign locations to each value returned by this call. 1431 SmallVector<CCValAssign, 16> RVLocs; 1432 ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 1433 *DAG.getContext(), Call); 1434 CCInfo.AnalyzeCallResult(Ins, 1435 CCAssignFnForNode(CallConv, /* Return*/ true, 1436 isVarArg)); 1437 1438 // Copy all of the result registers out of their specified physreg. 1439 for (unsigned i = 0; i != RVLocs.size(); ++i) { 1440 CCValAssign VA = RVLocs[i]; 1441 1442 // Pass 'this' value directly from the argument to return value, to avoid 1443 // reg unit interference 1444 if (i == 0 && isThisReturn) { 1445 assert(!VA.needsCustom() && VA.getLocVT() == MVT::i32 && 1446 "unexpected return calling convention register assignment"); 1447 InVals.push_back(ThisVal); 1448 continue; 1449 } 1450 1451 SDValue Val; 1452 if (VA.needsCustom()) { 1453 // Handle f64 or half of a v2f64. 1454 SDValue Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, 1455 InFlag); 1456 Chain = Lo.getValue(1); 1457 InFlag = Lo.getValue(2); 1458 VA = RVLocs[++i]; // skip ahead to next loc 1459 SDValue Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, 1460 InFlag); 1461 Chain = Hi.getValue(1); 1462 InFlag = Hi.getValue(2); 1463 if (!Subtarget->isLittle()) 1464 std::swap (Lo, Hi); 1465 Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi); 1466 1467 if (VA.getLocVT() == MVT::v2f64) { 1468 SDValue Vec = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64); 1469 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val, 1470 DAG.getConstant(0, dl, MVT::i32)); 1471 1472 VA = RVLocs[++i]; // skip ahead to next loc 1473 Lo = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag); 1474 Chain = Lo.getValue(1); 1475 InFlag = Lo.getValue(2); 1476 VA = RVLocs[++i]; // skip ahead to next loc 1477 Hi = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), MVT::i32, InFlag); 1478 Chain = Hi.getValue(1); 1479 InFlag = Hi.getValue(2); 1480 if (!Subtarget->isLittle()) 1481 std::swap (Lo, Hi); 1482 Val = DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi); 1483 Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Vec, Val, 1484 DAG.getConstant(1, dl, MVT::i32)); 1485 } 1486 } else { 1487 Val = DAG.getCopyFromReg(Chain, dl, VA.getLocReg(), VA.getLocVT(), 1488 InFlag); 1489 Chain = Val.getValue(1); 1490 InFlag = Val.getValue(2); 1491 } 1492 1493 switch (VA.getLocInfo()) { 1494 default: llvm_unreachable("Unknown loc info!"); 1495 case CCValAssign::Full: break; 1496 case CCValAssign::BCvt: 1497 Val = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), Val); 1498 break; 1499 } 1500 1501 InVals.push_back(Val); 1502 } 1503 1504 return Chain; 1505 } 1506 1507 /// LowerMemOpCallTo - Store the argument to the stack. 1508 SDValue 1509 ARMTargetLowering::LowerMemOpCallTo(SDValue Chain, 1510 SDValue StackPtr, SDValue Arg, 1511 SDLoc dl, SelectionDAG &DAG, 1512 const CCValAssign &VA, 1513 ISD::ArgFlagsTy Flags) const { 1514 unsigned LocMemOffset = VA.getLocMemOffset(); 1515 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 1516 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(DAG.getDataLayout()), 1517 StackPtr, PtrOff); 1518 return DAG.getStore( 1519 Chain, dl, Arg, PtrOff, 1520 MachinePointerInfo::getStack(DAG.getMachineFunction(), LocMemOffset), 1521 false, false, 0); 1522 } 1523 1524 void ARMTargetLowering::PassF64ArgInRegs(SDLoc dl, SelectionDAG &DAG, 1525 SDValue Chain, SDValue &Arg, 1526 RegsToPassVector &RegsToPass, 1527 CCValAssign &VA, CCValAssign &NextVA, 1528 SDValue &StackPtr, 1529 SmallVectorImpl<SDValue> &MemOpChains, 1530 ISD::ArgFlagsTy Flags) const { 1531 1532 SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl, 1533 DAG.getVTList(MVT::i32, MVT::i32), Arg); 1534 unsigned id = Subtarget->isLittle() ? 0 : 1; 1535 RegsToPass.push_back(std::make_pair(VA.getLocReg(), fmrrd.getValue(id))); 1536 1537 if (NextVA.isRegLoc()) 1538 RegsToPass.push_back(std::make_pair(NextVA.getLocReg(), fmrrd.getValue(1-id))); 1539 else { 1540 assert(NextVA.isMemLoc()); 1541 if (!StackPtr.getNode()) 1542 StackPtr = DAG.getCopyFromReg(Chain, dl, ARM::SP, 1543 getPointerTy(DAG.getDataLayout())); 1544 1545 MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, fmrrd.getValue(1-id), 1546 dl, DAG, NextVA, 1547 Flags)); 1548 } 1549 } 1550 1551 /// LowerCall - Lowering a call into a callseq_start <- 1552 /// ARMISD:CALL <- callseq_end chain. Also add input and output parameter 1553 /// nodes. 1554 SDValue 1555 ARMTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, 1556 SmallVectorImpl<SDValue> &InVals) const { 1557 SelectionDAG &DAG = CLI.DAG; 1558 SDLoc &dl = CLI.DL; 1559 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs; 1560 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals; 1561 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins; 1562 SDValue Chain = CLI.Chain; 1563 SDValue Callee = CLI.Callee; 1564 bool &isTailCall = CLI.IsTailCall; 1565 CallingConv::ID CallConv = CLI.CallConv; 1566 bool doesNotRet = CLI.DoesNotReturn; 1567 bool isVarArg = CLI.IsVarArg; 1568 1569 MachineFunction &MF = DAG.getMachineFunction(); 1570 bool isStructRet = (Outs.empty()) ? false : Outs[0].Flags.isSRet(); 1571 bool isThisReturn = false; 1572 bool isSibCall = false; 1573 auto Attr = MF.getFunction()->getFnAttribute("disable-tail-calls"); 1574 1575 // Disable tail calls if they're not supported. 1576 if (!Subtarget->supportsTailCall() || Attr.getValueAsString() == "true") 1577 isTailCall = false; 1578 1579 if (isTailCall) { 1580 // Check if it's really possible to do a tail call. 1581 isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, 1582 isVarArg, isStructRet, MF.getFunction()->hasStructRetAttr(), 1583 Outs, OutVals, Ins, DAG); 1584 if (!isTailCall && CLI.CS && CLI.CS->isMustTailCall()) 1585 report_fatal_error("failed to perform tail call elimination on a call " 1586 "site marked musttail"); 1587 // We don't support GuaranteedTailCallOpt for ARM, only automatically 1588 // detected sibcalls. 1589 if (isTailCall) { 1590 ++NumTailCalls; 1591 isSibCall = true; 1592 } 1593 } 1594 1595 // Analyze operands of the call, assigning locations to each operand. 1596 SmallVector<CCValAssign, 16> ArgLocs; 1597 ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 1598 *DAG.getContext(), Call); 1599 CCInfo.AnalyzeCallOperands(Outs, 1600 CCAssignFnForNode(CallConv, /* Return*/ false, 1601 isVarArg)); 1602 1603 // Get a count of how many bytes are to be pushed on the stack. 1604 unsigned NumBytes = CCInfo.getNextStackOffset(); 1605 1606 // For tail calls, memory operands are available in our caller's stack. 1607 if (isSibCall) 1608 NumBytes = 0; 1609 1610 // Adjust the stack pointer for the new arguments... 1611 // These operations are automatically eliminated by the prolog/epilog pass 1612 if (!isSibCall) 1613 Chain = DAG.getCALLSEQ_START(Chain, 1614 DAG.getIntPtrConstant(NumBytes, dl, true), dl); 1615 1616 SDValue StackPtr = 1617 DAG.getCopyFromReg(Chain, dl, ARM::SP, getPointerTy(DAG.getDataLayout())); 1618 1619 RegsToPassVector RegsToPass; 1620 SmallVector<SDValue, 8> MemOpChains; 1621 1622 // Walk the register/memloc assignments, inserting copies/loads. In the case 1623 // of tail call optimization, arguments are handled later. 1624 for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size(); 1625 i != e; 1626 ++i, ++realArgIdx) { 1627 CCValAssign &VA = ArgLocs[i]; 1628 SDValue Arg = OutVals[realArgIdx]; 1629 ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags; 1630 bool isByVal = Flags.isByVal(); 1631 1632 // Promote the value if needed. 1633 switch (VA.getLocInfo()) { 1634 default: llvm_unreachable("Unknown loc info!"); 1635 case CCValAssign::Full: break; 1636 case CCValAssign::SExt: 1637 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); 1638 break; 1639 case CCValAssign::ZExt: 1640 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); 1641 break; 1642 case CCValAssign::AExt: 1643 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg); 1644 break; 1645 case CCValAssign::BCvt: 1646 Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg); 1647 break; 1648 } 1649 1650 // f64 and v2f64 might be passed in i32 pairs and must be split into pieces 1651 if (VA.needsCustom()) { 1652 if (VA.getLocVT() == MVT::v2f64) { 1653 SDValue Op0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg, 1654 DAG.getConstant(0, dl, MVT::i32)); 1655 SDValue Op1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg, 1656 DAG.getConstant(1, dl, MVT::i32)); 1657 1658 PassF64ArgInRegs(dl, DAG, Chain, Op0, RegsToPass, 1659 VA, ArgLocs[++i], StackPtr, MemOpChains, Flags); 1660 1661 VA = ArgLocs[++i]; // skip ahead to next loc 1662 if (VA.isRegLoc()) { 1663 PassF64ArgInRegs(dl, DAG, Chain, Op1, RegsToPass, 1664 VA, ArgLocs[++i], StackPtr, MemOpChains, Flags); 1665 } else { 1666 assert(VA.isMemLoc()); 1667 1668 MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Op1, 1669 dl, DAG, VA, Flags)); 1670 } 1671 } else { 1672 PassF64ArgInRegs(dl, DAG, Chain, Arg, RegsToPass, VA, ArgLocs[++i], 1673 StackPtr, MemOpChains, Flags); 1674 } 1675 } else if (VA.isRegLoc()) { 1676 if (realArgIdx == 0 && Flags.isReturned() && Outs[0].VT == MVT::i32) { 1677 assert(VA.getLocVT() == MVT::i32 && 1678 "unexpected calling convention register assignment"); 1679 assert(!Ins.empty() && Ins[0].VT == MVT::i32 && 1680 "unexpected use of 'returned'"); 1681 isThisReturn = true; 1682 } 1683 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); 1684 } else if (isByVal) { 1685 assert(VA.isMemLoc()); 1686 unsigned offset = 0; 1687 1688 // True if this byval aggregate will be split between registers 1689 // and memory. 1690 unsigned ByValArgsCount = CCInfo.getInRegsParamsCount(); 1691 unsigned CurByValIdx = CCInfo.getInRegsParamsProcessed(); 1692 1693 if (CurByValIdx < ByValArgsCount) { 1694 1695 unsigned RegBegin, RegEnd; 1696 CCInfo.getInRegsParamInfo(CurByValIdx, RegBegin, RegEnd); 1697 1698 EVT PtrVT = 1699 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 1700 unsigned int i, j; 1701 for (i = 0, j = RegBegin; j < RegEnd; i++, j++) { 1702 SDValue Const = DAG.getConstant(4*i, dl, MVT::i32); 1703 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const); 1704 SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg, 1705 MachinePointerInfo(), 1706 false, false, false, 1707 DAG.InferPtrAlignment(AddArg)); 1708 MemOpChains.push_back(Load.getValue(1)); 1709 RegsToPass.push_back(std::make_pair(j, Load)); 1710 } 1711 1712 // If parameter size outsides register area, "offset" value 1713 // helps us to calculate stack slot for remained part properly. 1714 offset = RegEnd - RegBegin; 1715 1716 CCInfo.nextInRegsParam(); 1717 } 1718 1719 if (Flags.getByValSize() > 4*offset) { 1720 auto PtrVT = getPointerTy(DAG.getDataLayout()); 1721 unsigned LocMemOffset = VA.getLocMemOffset(); 1722 SDValue StkPtrOff = DAG.getIntPtrConstant(LocMemOffset, dl); 1723 SDValue Dst = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, StkPtrOff); 1724 SDValue SrcOffset = DAG.getIntPtrConstant(4*offset, dl); 1725 SDValue Src = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, SrcOffset); 1726 SDValue SizeNode = DAG.getConstant(Flags.getByValSize() - 4*offset, dl, 1727 MVT::i32); 1728 SDValue AlignNode = DAG.getConstant(Flags.getByValAlign(), dl, 1729 MVT::i32); 1730 1731 SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue); 1732 SDValue Ops[] = { Chain, Dst, Src, SizeNode, AlignNode}; 1733 MemOpChains.push_back(DAG.getNode(ARMISD::COPY_STRUCT_BYVAL, dl, VTs, 1734 Ops)); 1735 } 1736 } else if (!isSibCall) { 1737 assert(VA.isMemLoc()); 1738 1739 MemOpChains.push_back(LowerMemOpCallTo(Chain, StackPtr, Arg, 1740 dl, DAG, VA, Flags)); 1741 } 1742 } 1743 1744 if (!MemOpChains.empty()) 1745 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains); 1746 1747 // Build a sequence of copy-to-reg nodes chained together with token chain 1748 // and flag operands which copy the outgoing args into the appropriate regs. 1749 SDValue InFlag; 1750 // Tail call byval lowering might overwrite argument registers so in case of 1751 // tail call optimization the copies to registers are lowered later. 1752 if (!isTailCall) 1753 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 1754 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 1755 RegsToPass[i].second, InFlag); 1756 InFlag = Chain.getValue(1); 1757 } 1758 1759 // For tail calls lower the arguments to the 'real' stack slot. 1760 if (isTailCall) { 1761 // Force all the incoming stack arguments to be loaded from the stack 1762 // before any new outgoing arguments are stored to the stack, because the 1763 // outgoing stack slots may alias the incoming argument stack slots, and 1764 // the alias isn't otherwise explicit. This is slightly more conservative 1765 // than necessary, because it means that each store effectively depends 1766 // on every argument instead of just those arguments it would clobber. 1767 1768 // Do not flag preceding copytoreg stuff together with the following stuff. 1769 InFlag = SDValue(); 1770 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { 1771 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, 1772 RegsToPass[i].second, InFlag); 1773 InFlag = Chain.getValue(1); 1774 } 1775 InFlag = SDValue(); 1776 } 1777 1778 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every 1779 // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol 1780 // node so that legalize doesn't hack it. 1781 bool isDirect = false; 1782 bool isARMFunc = false; 1783 bool isLocalARMFunc = false; 1784 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 1785 auto PtrVt = getPointerTy(DAG.getDataLayout()); 1786 1787 if (Subtarget->genLongCalls()) { 1788 assert((Subtarget->isTargetWindows() || 1789 getTargetMachine().getRelocationModel() == Reloc::Static) && 1790 "long-calls with non-static relocation model!"); 1791 // Handle a global address or an external symbol. If it's not one of 1792 // those, the target's already in a register, so we don't need to do 1793 // anything extra. 1794 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 1795 const GlobalValue *GV = G->getGlobal(); 1796 // Create a constant pool entry for the callee address 1797 unsigned ARMPCLabelIndex = AFI->createPICLabelUId(); 1798 ARMConstantPoolValue *CPV = 1799 ARMConstantPoolConstant::Create(GV, ARMPCLabelIndex, ARMCP::CPValue, 0); 1800 1801 // Get the address of the callee into a register 1802 SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVt, 4); 1803 CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr); 1804 Callee = DAG.getLoad( 1805 PtrVt, dl, DAG.getEntryNode(), CPAddr, 1806 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false, 1807 false, false, 0); 1808 } else if (ExternalSymbolSDNode *S=dyn_cast<ExternalSymbolSDNode>(Callee)) { 1809 const char *Sym = S->getSymbol(); 1810 1811 // Create a constant pool entry for the callee address 1812 unsigned ARMPCLabelIndex = AFI->createPICLabelUId(); 1813 ARMConstantPoolValue *CPV = 1814 ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym, 1815 ARMPCLabelIndex, 0); 1816 // Get the address of the callee into a register 1817 SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVt, 4); 1818 CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr); 1819 Callee = DAG.getLoad( 1820 PtrVt, dl, DAG.getEntryNode(), CPAddr, 1821 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false, 1822 false, false, 0); 1823 } 1824 } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 1825 const GlobalValue *GV = G->getGlobal(); 1826 isDirect = true; 1827 bool isDef = GV->isStrongDefinitionForLinker(); 1828 bool isStub = (!isDef && Subtarget->isTargetMachO()) && 1829 getTargetMachine().getRelocationModel() != Reloc::Static; 1830 isARMFunc = !Subtarget->isThumb() || (isStub && !Subtarget->isMClass()); 1831 // ARM call to a local ARM function is predicable. 1832 isLocalARMFunc = !Subtarget->isThumb() && (isDef || !ARMInterworking); 1833 // tBX takes a register source operand. 1834 if (isStub && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) { 1835 assert(Subtarget->isTargetMachO() && "WrapperPIC use on non-MachO?"); 1836 Callee = DAG.getNode( 1837 ARMISD::WrapperPIC, dl, PtrVt, 1838 DAG.getTargetGlobalAddress(GV, dl, PtrVt, 0, ARMII::MO_NONLAZY)); 1839 Callee = DAG.getLoad(PtrVt, dl, DAG.getEntryNode(), Callee, 1840 MachinePointerInfo::getGOT(DAG.getMachineFunction()), 1841 false, false, true, 0); 1842 } else if (Subtarget->isTargetCOFF()) { 1843 assert(Subtarget->isTargetWindows() && 1844 "Windows is the only supported COFF target"); 1845 unsigned TargetFlags = GV->hasDLLImportStorageClass() 1846 ? ARMII::MO_DLLIMPORT 1847 : ARMII::MO_NO_FLAG; 1848 Callee = 1849 DAG.getTargetGlobalAddress(GV, dl, PtrVt, /*Offset=*/0, TargetFlags); 1850 if (GV->hasDLLImportStorageClass()) 1851 Callee = 1852 DAG.getLoad(PtrVt, dl, DAG.getEntryNode(), 1853 DAG.getNode(ARMISD::Wrapper, dl, PtrVt, Callee), 1854 MachinePointerInfo::getGOT(DAG.getMachineFunction()), 1855 false, false, false, 0); 1856 } else { 1857 // On ELF targets for PIC code, direct calls should go through the PLT 1858 unsigned OpFlags = 0; 1859 if (Subtarget->isTargetELF() && 1860 getTargetMachine().getRelocationModel() == Reloc::PIC_) 1861 OpFlags = ARMII::MO_PLT; 1862 Callee = DAG.getTargetGlobalAddress(GV, dl, PtrVt, 0, OpFlags); 1863 } 1864 } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { 1865 isDirect = true; 1866 bool isStub = Subtarget->isTargetMachO() && 1867 getTargetMachine().getRelocationModel() != Reloc::Static; 1868 isARMFunc = !Subtarget->isThumb() || (isStub && !Subtarget->isMClass()); 1869 // tBX takes a register source operand. 1870 const char *Sym = S->getSymbol(); 1871 if (isARMFunc && Subtarget->isThumb1Only() && !Subtarget->hasV5TOps()) { 1872 unsigned ARMPCLabelIndex = AFI->createPICLabelUId(); 1873 ARMConstantPoolValue *CPV = 1874 ARMConstantPoolSymbol::Create(*DAG.getContext(), Sym, 1875 ARMPCLabelIndex, 4); 1876 SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVt, 4); 1877 CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr); 1878 Callee = DAG.getLoad( 1879 PtrVt, dl, DAG.getEntryNode(), CPAddr, 1880 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false, 1881 false, false, 0); 1882 SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32); 1883 Callee = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVt, Callee, PICLabel); 1884 } else { 1885 unsigned OpFlags = 0; 1886 // On ELF targets for PIC code, direct calls should go through the PLT 1887 if (Subtarget->isTargetELF() && 1888 getTargetMachine().getRelocationModel() == Reloc::PIC_) 1889 OpFlags = ARMII::MO_PLT; 1890 Callee = DAG.getTargetExternalSymbol(Sym, PtrVt, OpFlags); 1891 } 1892 } 1893 1894 // FIXME: handle tail calls differently. 1895 unsigned CallOpc; 1896 if (Subtarget->isThumb()) { 1897 if ((!isDirect || isARMFunc) && !Subtarget->hasV5TOps()) 1898 CallOpc = ARMISD::CALL_NOLINK; 1899 else 1900 CallOpc = isARMFunc ? ARMISD::CALL : ARMISD::tCALL; 1901 } else { 1902 if (!isDirect && !Subtarget->hasV5TOps()) 1903 CallOpc = ARMISD::CALL_NOLINK; 1904 else if (doesNotRet && isDirect && Subtarget->hasRAS() && 1905 // Emit regular call when code size is the priority 1906 !MF.getFunction()->optForMinSize()) 1907 // "mov lr, pc; b _foo" to avoid confusing the RSP 1908 CallOpc = ARMISD::CALL_NOLINK; 1909 else 1910 CallOpc = isLocalARMFunc ? ARMISD::CALL_PRED : ARMISD::CALL; 1911 } 1912 1913 std::vector<SDValue> Ops; 1914 Ops.push_back(Chain); 1915 Ops.push_back(Callee); 1916 1917 // Add argument registers to the end of the list so that they are known live 1918 // into the call. 1919 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) 1920 Ops.push_back(DAG.getRegister(RegsToPass[i].first, 1921 RegsToPass[i].second.getValueType())); 1922 1923 // Add a register mask operand representing the call-preserved registers. 1924 if (!isTailCall) { 1925 const uint32_t *Mask; 1926 const ARMBaseRegisterInfo *ARI = Subtarget->getRegisterInfo(); 1927 if (isThisReturn) { 1928 // For 'this' returns, use the R0-preserving mask if applicable 1929 Mask = ARI->getThisReturnPreservedMask(MF, CallConv); 1930 if (!Mask) { 1931 // Set isThisReturn to false if the calling convention is not one that 1932 // allows 'returned' to be modeled in this way, so LowerCallResult does 1933 // not try to pass 'this' straight through 1934 isThisReturn = false; 1935 Mask = ARI->getCallPreservedMask(MF, CallConv); 1936 } 1937 } else 1938 Mask = ARI->getCallPreservedMask(MF, CallConv); 1939 1940 assert(Mask && "Missing call preserved mask for calling convention"); 1941 Ops.push_back(DAG.getRegisterMask(Mask)); 1942 } 1943 1944 if (InFlag.getNode()) 1945 Ops.push_back(InFlag); 1946 1947 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 1948 if (isTailCall) { 1949 MF.getFrameInfo()->setHasTailCall(); 1950 return DAG.getNode(ARMISD::TC_RETURN, dl, NodeTys, Ops); 1951 } 1952 1953 // Returns a chain and a flag for retval copy to use. 1954 Chain = DAG.getNode(CallOpc, dl, NodeTys, Ops); 1955 InFlag = Chain.getValue(1); 1956 1957 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, dl, true), 1958 DAG.getIntPtrConstant(0, dl, true), InFlag, dl); 1959 if (!Ins.empty()) 1960 InFlag = Chain.getValue(1); 1961 1962 // Handle result values, copying them out of physregs into vregs that we 1963 // return. 1964 return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins, dl, DAG, 1965 InVals, isThisReturn, 1966 isThisReturn ? OutVals[0] : SDValue()); 1967 } 1968 1969 /// HandleByVal - Every parameter *after* a byval parameter is passed 1970 /// on the stack. Remember the next parameter register to allocate, 1971 /// and then confiscate the rest of the parameter registers to insure 1972 /// this. 1973 void ARMTargetLowering::HandleByVal(CCState *State, unsigned &Size, 1974 unsigned Align) const { 1975 assert((State->getCallOrPrologue() == Prologue || 1976 State->getCallOrPrologue() == Call) && 1977 "unhandled ParmContext"); 1978 1979 // Byval (as with any stack) slots are always at least 4 byte aligned. 1980 Align = std::max(Align, 4U); 1981 1982 unsigned Reg = State->AllocateReg(GPRArgRegs); 1983 if (!Reg) 1984 return; 1985 1986 unsigned AlignInRegs = Align / 4; 1987 unsigned Waste = (ARM::R4 - Reg) % AlignInRegs; 1988 for (unsigned i = 0; i < Waste; ++i) 1989 Reg = State->AllocateReg(GPRArgRegs); 1990 1991 if (!Reg) 1992 return; 1993 1994 unsigned Excess = 4 * (ARM::R4 - Reg); 1995 1996 // Special case when NSAA != SP and parameter size greater than size of 1997 // all remained GPR regs. In that case we can't split parameter, we must 1998 // send it to stack. We also must set NCRN to R4, so waste all 1999 // remained registers. 2000 const unsigned NSAAOffset = State->getNextStackOffset(); 2001 if (NSAAOffset != 0 && Size > Excess) { 2002 while (State->AllocateReg(GPRArgRegs)) 2003 ; 2004 return; 2005 } 2006 2007 // First register for byval parameter is the first register that wasn't 2008 // allocated before this method call, so it would be "reg". 2009 // If parameter is small enough to be saved in range [reg, r4), then 2010 // the end (first after last) register would be reg + param-size-in-regs, 2011 // else parameter would be splitted between registers and stack, 2012 // end register would be r4 in this case. 2013 unsigned ByValRegBegin = Reg; 2014 unsigned ByValRegEnd = std::min<unsigned>(Reg + Size / 4, ARM::R4); 2015 State->addInRegsParamInfo(ByValRegBegin, ByValRegEnd); 2016 // Note, first register is allocated in the beginning of function already, 2017 // allocate remained amount of registers we need. 2018 for (unsigned i = Reg + 1; i != ByValRegEnd; ++i) 2019 State->AllocateReg(GPRArgRegs); 2020 // A byval parameter that is split between registers and memory needs its 2021 // size truncated here. 2022 // In the case where the entire structure fits in registers, we set the 2023 // size in memory to zero. 2024 Size = std::max<int>(Size - Excess, 0); 2025 } 2026 2027 /// MatchingStackOffset - Return true if the given stack call argument is 2028 /// already available in the same position (relatively) of the caller's 2029 /// incoming argument stack. 2030 static 2031 bool MatchingStackOffset(SDValue Arg, unsigned Offset, ISD::ArgFlagsTy Flags, 2032 MachineFrameInfo *MFI, const MachineRegisterInfo *MRI, 2033 const TargetInstrInfo *TII) { 2034 unsigned Bytes = Arg.getValueType().getSizeInBits() / 8; 2035 int FI = INT_MAX; 2036 if (Arg.getOpcode() == ISD::CopyFromReg) { 2037 unsigned VR = cast<RegisterSDNode>(Arg.getOperand(1))->getReg(); 2038 if (!TargetRegisterInfo::isVirtualRegister(VR)) 2039 return false; 2040 MachineInstr *Def = MRI->getVRegDef(VR); 2041 if (!Def) 2042 return false; 2043 if (!Flags.isByVal()) { 2044 if (!TII->isLoadFromStackSlot(Def, FI)) 2045 return false; 2046 } else { 2047 return false; 2048 } 2049 } else if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Arg)) { 2050 if (Flags.isByVal()) 2051 // ByVal argument is passed in as a pointer but it's now being 2052 // dereferenced. e.g. 2053 // define @foo(%struct.X* %A) { 2054 // tail call @bar(%struct.X* byval %A) 2055 // } 2056 return false; 2057 SDValue Ptr = Ld->getBasePtr(); 2058 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(Ptr); 2059 if (!FINode) 2060 return false; 2061 FI = FINode->getIndex(); 2062 } else 2063 return false; 2064 2065 assert(FI != INT_MAX); 2066 if (!MFI->isFixedObjectIndex(FI)) 2067 return false; 2068 return Offset == MFI->getObjectOffset(FI) && Bytes == MFI->getObjectSize(FI); 2069 } 2070 2071 /// IsEligibleForTailCallOptimization - Check whether the call is eligible 2072 /// for tail call optimization. Targets which want to do tail call 2073 /// optimization should implement this function. 2074 bool 2075 ARMTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee, 2076 CallingConv::ID CalleeCC, 2077 bool isVarArg, 2078 bool isCalleeStructRet, 2079 bool isCallerStructRet, 2080 const SmallVectorImpl<ISD::OutputArg> &Outs, 2081 const SmallVectorImpl<SDValue> &OutVals, 2082 const SmallVectorImpl<ISD::InputArg> &Ins, 2083 SelectionDAG& DAG) const { 2084 const Function *CallerF = DAG.getMachineFunction().getFunction(); 2085 CallingConv::ID CallerCC = CallerF->getCallingConv(); 2086 bool CCMatch = CallerCC == CalleeCC; 2087 2088 assert(Subtarget->supportsTailCall()); 2089 2090 // Look for obvious safe cases to perform tail call optimization that do not 2091 // require ABI changes. This is what gcc calls sibcall. 2092 2093 // Do not sibcall optimize vararg calls unless the call site is not passing 2094 // any arguments. 2095 if (isVarArg && !Outs.empty()) 2096 return false; 2097 2098 // Exception-handling functions need a special set of instructions to indicate 2099 // a return to the hardware. Tail-calling another function would probably 2100 // break this. 2101 if (CallerF->hasFnAttribute("interrupt")) 2102 return false; 2103 2104 // Also avoid sibcall optimization if either caller or callee uses struct 2105 // return semantics. 2106 if (isCalleeStructRet || isCallerStructRet) 2107 return false; 2108 2109 // Externally-defined functions with weak linkage should not be 2110 // tail-called on ARM when the OS does not support dynamic 2111 // pre-emption of symbols, as the AAELF spec requires normal calls 2112 // to undefined weak functions to be replaced with a NOP or jump to the 2113 // next instruction. The behaviour of branch instructions in this 2114 // situation (as used for tail calls) is implementation-defined, so we 2115 // cannot rely on the linker replacing the tail call with a return. 2116 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { 2117 const GlobalValue *GV = G->getGlobal(); 2118 const Triple &TT = getTargetMachine().getTargetTriple(); 2119 if (GV->hasExternalWeakLinkage() && 2120 (!TT.isOSWindows() || TT.isOSBinFormatELF() || TT.isOSBinFormatMachO())) 2121 return false; 2122 } 2123 2124 // If the calling conventions do not match, then we'd better make sure the 2125 // results are returned in the same way as what the caller expects. 2126 if (!CCMatch) { 2127 SmallVector<CCValAssign, 16> RVLocs1; 2128 ARMCCState CCInfo1(CalleeCC, false, DAG.getMachineFunction(), RVLocs1, 2129 *DAG.getContext(), Call); 2130 CCInfo1.AnalyzeCallResult(Ins, CCAssignFnForNode(CalleeCC, true, isVarArg)); 2131 2132 SmallVector<CCValAssign, 16> RVLocs2; 2133 ARMCCState CCInfo2(CallerCC, false, DAG.getMachineFunction(), RVLocs2, 2134 *DAG.getContext(), Call); 2135 CCInfo2.AnalyzeCallResult(Ins, CCAssignFnForNode(CallerCC, true, isVarArg)); 2136 2137 if (RVLocs1.size() != RVLocs2.size()) 2138 return false; 2139 for (unsigned i = 0, e = RVLocs1.size(); i != e; ++i) { 2140 if (RVLocs1[i].isRegLoc() != RVLocs2[i].isRegLoc()) 2141 return false; 2142 if (RVLocs1[i].getLocInfo() != RVLocs2[i].getLocInfo()) 2143 return false; 2144 if (RVLocs1[i].isRegLoc()) { 2145 if (RVLocs1[i].getLocReg() != RVLocs2[i].getLocReg()) 2146 return false; 2147 } else { 2148 if (RVLocs1[i].getLocMemOffset() != RVLocs2[i].getLocMemOffset()) 2149 return false; 2150 } 2151 } 2152 } 2153 2154 // If Caller's vararg or byval argument has been split between registers and 2155 // stack, do not perform tail call, since part of the argument is in caller's 2156 // local frame. 2157 const ARMFunctionInfo *AFI_Caller = DAG.getMachineFunction(). 2158 getInfo<ARMFunctionInfo>(); 2159 if (AFI_Caller->getArgRegsSaveSize()) 2160 return false; 2161 2162 // If the callee takes no arguments then go on to check the results of the 2163 // call. 2164 if (!Outs.empty()) { 2165 // Check if stack adjustment is needed. For now, do not do this if any 2166 // argument is passed on the stack. 2167 SmallVector<CCValAssign, 16> ArgLocs; 2168 ARMCCState CCInfo(CalleeCC, isVarArg, DAG.getMachineFunction(), ArgLocs, 2169 *DAG.getContext(), Call); 2170 CCInfo.AnalyzeCallOperands(Outs, 2171 CCAssignFnForNode(CalleeCC, false, isVarArg)); 2172 if (CCInfo.getNextStackOffset()) { 2173 MachineFunction &MF = DAG.getMachineFunction(); 2174 2175 // Check if the arguments are already laid out in the right way as 2176 // the caller's fixed stack objects. 2177 MachineFrameInfo *MFI = MF.getFrameInfo(); 2178 const MachineRegisterInfo *MRI = &MF.getRegInfo(); 2179 const TargetInstrInfo *TII = Subtarget->getInstrInfo(); 2180 for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size(); 2181 i != e; 2182 ++i, ++realArgIdx) { 2183 CCValAssign &VA = ArgLocs[i]; 2184 EVT RegVT = VA.getLocVT(); 2185 SDValue Arg = OutVals[realArgIdx]; 2186 ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags; 2187 if (VA.getLocInfo() == CCValAssign::Indirect) 2188 return false; 2189 if (VA.needsCustom()) { 2190 // f64 and vector types are split into multiple registers or 2191 // register/stack-slot combinations. The types will not match 2192 // the registers; give up on memory f64 refs until we figure 2193 // out what to do about this. 2194 if (!VA.isRegLoc()) 2195 return false; 2196 if (!ArgLocs[++i].isRegLoc()) 2197 return false; 2198 if (RegVT == MVT::v2f64) { 2199 if (!ArgLocs[++i].isRegLoc()) 2200 return false; 2201 if (!ArgLocs[++i].isRegLoc()) 2202 return false; 2203 } 2204 } else if (!VA.isRegLoc()) { 2205 if (!MatchingStackOffset(Arg, VA.getLocMemOffset(), Flags, 2206 MFI, MRI, TII)) 2207 return false; 2208 } 2209 } 2210 } 2211 } 2212 2213 return true; 2214 } 2215 2216 bool 2217 ARMTargetLowering::CanLowerReturn(CallingConv::ID CallConv, 2218 MachineFunction &MF, bool isVarArg, 2219 const SmallVectorImpl<ISD::OutputArg> &Outs, 2220 LLVMContext &Context) const { 2221 SmallVector<CCValAssign, 16> RVLocs; 2222 CCState CCInfo(CallConv, isVarArg, MF, RVLocs, Context); 2223 return CCInfo.CheckReturn(Outs, CCAssignFnForNode(CallConv, /*Return=*/true, 2224 isVarArg)); 2225 } 2226 2227 static SDValue LowerInterruptReturn(SmallVectorImpl<SDValue> &RetOps, 2228 SDLoc DL, SelectionDAG &DAG) { 2229 const MachineFunction &MF = DAG.getMachineFunction(); 2230 const Function *F = MF.getFunction(); 2231 2232 StringRef IntKind = F->getFnAttribute("interrupt").getValueAsString(); 2233 2234 // See ARM ARM v7 B1.8.3. On exception entry LR is set to a possibly offset 2235 // version of the "preferred return address". These offsets affect the return 2236 // instruction if this is a return from PL1 without hypervisor extensions. 2237 // IRQ/FIQ: +4 "subs pc, lr, #4" 2238 // SWI: 0 "subs pc, lr, #0" 2239 // ABORT: +4 "subs pc, lr, #4" 2240 // UNDEF: +4/+2 "subs pc, lr, #0" 2241 // UNDEF varies depending on where the exception came from ARM or Thumb 2242 // mode. Alongside GCC, we throw our hands up in disgust and pretend it's 0. 2243 2244 int64_t LROffset; 2245 if (IntKind == "" || IntKind == "IRQ" || IntKind == "FIQ" || 2246 IntKind == "ABORT") 2247 LROffset = 4; 2248 else if (IntKind == "SWI" || IntKind == "UNDEF") 2249 LROffset = 0; 2250 else 2251 report_fatal_error("Unsupported interrupt attribute. If present, value " 2252 "must be one of: IRQ, FIQ, SWI, ABORT or UNDEF"); 2253 2254 RetOps.insert(RetOps.begin() + 1, 2255 DAG.getConstant(LROffset, DL, MVT::i32, false)); 2256 2257 return DAG.getNode(ARMISD::INTRET_FLAG, DL, MVT::Other, RetOps); 2258 } 2259 2260 SDValue 2261 ARMTargetLowering::LowerReturn(SDValue Chain, 2262 CallingConv::ID CallConv, bool isVarArg, 2263 const SmallVectorImpl<ISD::OutputArg> &Outs, 2264 const SmallVectorImpl<SDValue> &OutVals, 2265 SDLoc dl, SelectionDAG &DAG) const { 2266 2267 // CCValAssign - represent the assignment of the return value to a location. 2268 SmallVector<CCValAssign, 16> RVLocs; 2269 2270 // CCState - Info about the registers and stack slots. 2271 ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs, 2272 *DAG.getContext(), Call); 2273 2274 // Analyze outgoing return values. 2275 CCInfo.AnalyzeReturn(Outs, CCAssignFnForNode(CallConv, /* Return */ true, 2276 isVarArg)); 2277 2278 SDValue Flag; 2279 SmallVector<SDValue, 4> RetOps; 2280 RetOps.push_back(Chain); // Operand #0 = Chain (updated below) 2281 bool isLittleEndian = Subtarget->isLittle(); 2282 2283 MachineFunction &MF = DAG.getMachineFunction(); 2284 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 2285 AFI->setReturnRegsCount(RVLocs.size()); 2286 2287 // Copy the result values into the output registers. 2288 for (unsigned i = 0, realRVLocIdx = 0; 2289 i != RVLocs.size(); 2290 ++i, ++realRVLocIdx) { 2291 CCValAssign &VA = RVLocs[i]; 2292 assert(VA.isRegLoc() && "Can only return in registers!"); 2293 2294 SDValue Arg = OutVals[realRVLocIdx]; 2295 2296 switch (VA.getLocInfo()) { 2297 default: llvm_unreachable("Unknown loc info!"); 2298 case CCValAssign::Full: break; 2299 case CCValAssign::BCvt: 2300 Arg = DAG.getNode(ISD::BITCAST, dl, VA.getLocVT(), Arg); 2301 break; 2302 } 2303 2304 if (VA.needsCustom()) { 2305 if (VA.getLocVT() == MVT::v2f64) { 2306 // Extract the first half and return it in two registers. 2307 SDValue Half = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg, 2308 DAG.getConstant(0, dl, MVT::i32)); 2309 SDValue HalfGPRs = DAG.getNode(ARMISD::VMOVRRD, dl, 2310 DAG.getVTList(MVT::i32, MVT::i32), Half); 2311 2312 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), 2313 HalfGPRs.getValue(isLittleEndian ? 0 : 1), 2314 Flag); 2315 Flag = Chain.getValue(1); 2316 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 2317 VA = RVLocs[++i]; // skip ahead to next loc 2318 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), 2319 HalfGPRs.getValue(isLittleEndian ? 1 : 0), 2320 Flag); 2321 Flag = Chain.getValue(1); 2322 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 2323 VA = RVLocs[++i]; // skip ahead to next loc 2324 2325 // Extract the 2nd half and fall through to handle it as an f64 value. 2326 Arg = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, Arg, 2327 DAG.getConstant(1, dl, MVT::i32)); 2328 } 2329 // Legalize ret f64 -> ret 2 x i32. We always have fmrrd if f64 is 2330 // available. 2331 SDValue fmrrd = DAG.getNode(ARMISD::VMOVRRD, dl, 2332 DAG.getVTList(MVT::i32, MVT::i32), Arg); 2333 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), 2334 fmrrd.getValue(isLittleEndian ? 0 : 1), 2335 Flag); 2336 Flag = Chain.getValue(1); 2337 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 2338 VA = RVLocs[++i]; // skip ahead to next loc 2339 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), 2340 fmrrd.getValue(isLittleEndian ? 1 : 0), 2341 Flag); 2342 } else 2343 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag); 2344 2345 // Guarantee that all emitted copies are 2346 // stuck together, avoiding something bad. 2347 Flag = Chain.getValue(1); 2348 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); 2349 } 2350 2351 // Update chain and glue. 2352 RetOps[0] = Chain; 2353 if (Flag.getNode()) 2354 RetOps.push_back(Flag); 2355 2356 // CPUs which aren't M-class use a special sequence to return from 2357 // exceptions (roughly, any instruction setting pc and cpsr simultaneously, 2358 // though we use "subs pc, lr, #N"). 2359 // 2360 // M-class CPUs actually use a normal return sequence with a special 2361 // (hardware-provided) value in LR, so the normal code path works. 2362 if (DAG.getMachineFunction().getFunction()->hasFnAttribute("interrupt") && 2363 !Subtarget->isMClass()) { 2364 if (Subtarget->isThumb1Only()) 2365 report_fatal_error("interrupt attribute is not supported in Thumb1"); 2366 return LowerInterruptReturn(RetOps, dl, DAG); 2367 } 2368 2369 return DAG.getNode(ARMISD::RET_FLAG, dl, MVT::Other, RetOps); 2370 } 2371 2372 bool ARMTargetLowering::isUsedByReturnOnly(SDNode *N, SDValue &Chain) const { 2373 if (N->getNumValues() != 1) 2374 return false; 2375 if (!N->hasNUsesOfValue(1, 0)) 2376 return false; 2377 2378 SDValue TCChain = Chain; 2379 SDNode *Copy = *N->use_begin(); 2380 if (Copy->getOpcode() == ISD::CopyToReg) { 2381 // If the copy has a glue operand, we conservatively assume it isn't safe to 2382 // perform a tail call. 2383 if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue) 2384 return false; 2385 TCChain = Copy->getOperand(0); 2386 } else if (Copy->getOpcode() == ARMISD::VMOVRRD) { 2387 SDNode *VMov = Copy; 2388 // f64 returned in a pair of GPRs. 2389 SmallPtrSet<SDNode*, 2> Copies; 2390 for (SDNode::use_iterator UI = VMov->use_begin(), UE = VMov->use_end(); 2391 UI != UE; ++UI) { 2392 if (UI->getOpcode() != ISD::CopyToReg) 2393 return false; 2394 Copies.insert(*UI); 2395 } 2396 if (Copies.size() > 2) 2397 return false; 2398 2399 for (SDNode::use_iterator UI = VMov->use_begin(), UE = VMov->use_end(); 2400 UI != UE; ++UI) { 2401 SDValue UseChain = UI->getOperand(0); 2402 if (Copies.count(UseChain.getNode())) 2403 // Second CopyToReg 2404 Copy = *UI; 2405 else { 2406 // We are at the top of this chain. 2407 // If the copy has a glue operand, we conservatively assume it 2408 // isn't safe to perform a tail call. 2409 if (UI->getOperand(UI->getNumOperands()-1).getValueType() == MVT::Glue) 2410 return false; 2411 // First CopyToReg 2412 TCChain = UseChain; 2413 } 2414 } 2415 } else if (Copy->getOpcode() == ISD::BITCAST) { 2416 // f32 returned in a single GPR. 2417 if (!Copy->hasOneUse()) 2418 return false; 2419 Copy = *Copy->use_begin(); 2420 if (Copy->getOpcode() != ISD::CopyToReg || !Copy->hasNUsesOfValue(1, 0)) 2421 return false; 2422 // If the copy has a glue operand, we conservatively assume it isn't safe to 2423 // perform a tail call. 2424 if (Copy->getOperand(Copy->getNumOperands()-1).getValueType() == MVT::Glue) 2425 return false; 2426 TCChain = Copy->getOperand(0); 2427 } else { 2428 return false; 2429 } 2430 2431 bool HasRet = false; 2432 for (SDNode::use_iterator UI = Copy->use_begin(), UE = Copy->use_end(); 2433 UI != UE; ++UI) { 2434 if (UI->getOpcode() != ARMISD::RET_FLAG && 2435 UI->getOpcode() != ARMISD::INTRET_FLAG) 2436 return false; 2437 HasRet = true; 2438 } 2439 2440 if (!HasRet) 2441 return false; 2442 2443 Chain = TCChain; 2444 return true; 2445 } 2446 2447 bool ARMTargetLowering::mayBeEmittedAsTailCall(CallInst *CI) const { 2448 if (!Subtarget->supportsTailCall()) 2449 return false; 2450 2451 auto Attr = 2452 CI->getParent()->getParent()->getFnAttribute("disable-tail-calls"); 2453 if (!CI->isTailCall() || Attr.getValueAsString() == "true") 2454 return false; 2455 2456 return true; 2457 } 2458 2459 // Trying to write a 64 bit value so need to split into two 32 bit values first, 2460 // and pass the lower and high parts through. 2461 static SDValue LowerWRITE_REGISTER(SDValue Op, SelectionDAG &DAG) { 2462 SDLoc DL(Op); 2463 SDValue WriteValue = Op->getOperand(2); 2464 2465 // This function is only supposed to be called for i64 type argument. 2466 assert(WriteValue.getValueType() == MVT::i64 2467 && "LowerWRITE_REGISTER called for non-i64 type argument."); 2468 2469 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, WriteValue, 2470 DAG.getConstant(0, DL, MVT::i32)); 2471 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, WriteValue, 2472 DAG.getConstant(1, DL, MVT::i32)); 2473 SDValue Ops[] = { Op->getOperand(0), Op->getOperand(1), Lo, Hi }; 2474 return DAG.getNode(ISD::WRITE_REGISTER, DL, MVT::Other, Ops); 2475 } 2476 2477 // ConstantPool, JumpTable, GlobalAddress, and ExternalSymbol are lowered as 2478 // their target counterpart wrapped in the ARMISD::Wrapper node. Suppose N is 2479 // one of the above mentioned nodes. It has to be wrapped because otherwise 2480 // Select(N) returns N. So the raw TargetGlobalAddress nodes, etc. can only 2481 // be used to form addressing mode. These wrapped nodes will be selected 2482 // into MOVi. 2483 static SDValue LowerConstantPool(SDValue Op, SelectionDAG &DAG) { 2484 EVT PtrVT = Op.getValueType(); 2485 // FIXME there is no actual debug info here 2486 SDLoc dl(Op); 2487 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); 2488 SDValue Res; 2489 if (CP->isMachineConstantPoolEntry()) 2490 Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), PtrVT, 2491 CP->getAlignment()); 2492 else 2493 Res = DAG.getTargetConstantPool(CP->getConstVal(), PtrVT, 2494 CP->getAlignment()); 2495 return DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Res); 2496 } 2497 2498 unsigned ARMTargetLowering::getJumpTableEncoding() const { 2499 return MachineJumpTableInfo::EK_Inline; 2500 } 2501 2502 SDValue ARMTargetLowering::LowerBlockAddress(SDValue Op, 2503 SelectionDAG &DAG) const { 2504 MachineFunction &MF = DAG.getMachineFunction(); 2505 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 2506 unsigned ARMPCLabelIndex = 0; 2507 SDLoc DL(Op); 2508 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2509 const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress(); 2510 Reloc::Model RelocM = getTargetMachine().getRelocationModel(); 2511 SDValue CPAddr; 2512 if (RelocM == Reloc::Static) { 2513 CPAddr = DAG.getTargetConstantPool(BA, PtrVT, 4); 2514 } else { 2515 unsigned PCAdj = Subtarget->isThumb() ? 4 : 8; 2516 ARMPCLabelIndex = AFI->createPICLabelUId(); 2517 ARMConstantPoolValue *CPV = 2518 ARMConstantPoolConstant::Create(BA, ARMPCLabelIndex, 2519 ARMCP::CPBlockAddress, PCAdj); 2520 CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4); 2521 } 2522 CPAddr = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, CPAddr); 2523 SDValue Result = 2524 DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), CPAddr, 2525 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), 2526 false, false, false, 0); 2527 if (RelocM == Reloc::Static) 2528 return Result; 2529 SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, DL, MVT::i32); 2530 return DAG.getNode(ARMISD::PIC_ADD, DL, PtrVT, Result, PICLabel); 2531 } 2532 2533 // Lower ISD::GlobalTLSAddress using the "general dynamic" model 2534 SDValue 2535 ARMTargetLowering::LowerToTLSGeneralDynamicModel(GlobalAddressSDNode *GA, 2536 SelectionDAG &DAG) const { 2537 SDLoc dl(GA); 2538 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2539 unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8; 2540 MachineFunction &MF = DAG.getMachineFunction(); 2541 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 2542 unsigned ARMPCLabelIndex = AFI->createPICLabelUId(); 2543 ARMConstantPoolValue *CPV = 2544 ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex, 2545 ARMCP::CPValue, PCAdj, ARMCP::TLSGD, true); 2546 SDValue Argument = DAG.getTargetConstantPool(CPV, PtrVT, 4); 2547 Argument = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Argument); 2548 Argument = 2549 DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Argument, 2550 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), 2551 false, false, false, 0); 2552 SDValue Chain = Argument.getValue(1); 2553 2554 SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32); 2555 Argument = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Argument, PICLabel); 2556 2557 // call __tls_get_addr. 2558 ArgListTy Args; 2559 ArgListEntry Entry; 2560 Entry.Node = Argument; 2561 Entry.Ty = (Type *) Type::getInt32Ty(*DAG.getContext()); 2562 Args.push_back(Entry); 2563 2564 // FIXME: is there useful debug info available here? 2565 TargetLowering::CallLoweringInfo CLI(DAG); 2566 CLI.setDebugLoc(dl).setChain(Chain) 2567 .setCallee(CallingConv::C, Type::getInt32Ty(*DAG.getContext()), 2568 DAG.getExternalSymbol("__tls_get_addr", PtrVT), std::move(Args), 2569 0); 2570 2571 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 2572 return CallResult.first; 2573 } 2574 2575 // Lower ISD::GlobalTLSAddress using the "initial exec" or 2576 // "local exec" model. 2577 SDValue 2578 ARMTargetLowering::LowerToTLSExecModels(GlobalAddressSDNode *GA, 2579 SelectionDAG &DAG, 2580 TLSModel::Model model) const { 2581 const GlobalValue *GV = GA->getGlobal(); 2582 SDLoc dl(GA); 2583 SDValue Offset; 2584 SDValue Chain = DAG.getEntryNode(); 2585 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2586 // Get the Thread Pointer 2587 SDValue ThreadPointer = DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT); 2588 2589 if (model == TLSModel::InitialExec) { 2590 MachineFunction &MF = DAG.getMachineFunction(); 2591 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 2592 unsigned ARMPCLabelIndex = AFI->createPICLabelUId(); 2593 // Initial exec model. 2594 unsigned char PCAdj = Subtarget->isThumb() ? 4 : 8; 2595 ARMConstantPoolValue *CPV = 2596 ARMConstantPoolConstant::Create(GA->getGlobal(), ARMPCLabelIndex, 2597 ARMCP::CPValue, PCAdj, ARMCP::GOTTPOFF, 2598 true); 2599 Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4); 2600 Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset); 2601 Offset = DAG.getLoad( 2602 PtrVT, dl, Chain, Offset, 2603 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false, 2604 false, false, 0); 2605 Chain = Offset.getValue(1); 2606 2607 SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32); 2608 Offset = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Offset, PICLabel); 2609 2610 Offset = DAG.getLoad( 2611 PtrVT, dl, Chain, Offset, 2612 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false, 2613 false, false, 0); 2614 } else { 2615 // local exec model 2616 assert(model == TLSModel::LocalExec); 2617 ARMConstantPoolValue *CPV = 2618 ARMConstantPoolConstant::Create(GV, ARMCP::TPOFF); 2619 Offset = DAG.getTargetConstantPool(CPV, PtrVT, 4); 2620 Offset = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, Offset); 2621 Offset = DAG.getLoad( 2622 PtrVT, dl, Chain, Offset, 2623 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false, 2624 false, false, 0); 2625 } 2626 2627 // The address of the thread local variable is the add of the thread 2628 // pointer with the offset of the variable. 2629 return DAG.getNode(ISD::ADD, dl, PtrVT, ThreadPointer, Offset); 2630 } 2631 2632 SDValue 2633 ARMTargetLowering::LowerGlobalTLSAddress(SDValue Op, SelectionDAG &DAG) const { 2634 // TODO: implement the "local dynamic" model 2635 assert(Subtarget->isTargetELF() && 2636 "TLS not implemented for non-ELF targets"); 2637 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op); 2638 if (DAG.getTarget().Options.EmulatedTLS) 2639 return LowerToTLSEmulatedModel(GA, DAG); 2640 2641 TLSModel::Model model = getTargetMachine().getTLSModel(GA->getGlobal()); 2642 2643 switch (model) { 2644 case TLSModel::GeneralDynamic: 2645 case TLSModel::LocalDynamic: 2646 return LowerToTLSGeneralDynamicModel(GA, DAG); 2647 case TLSModel::InitialExec: 2648 case TLSModel::LocalExec: 2649 return LowerToTLSExecModels(GA, DAG, model); 2650 } 2651 llvm_unreachable("bogus TLS model"); 2652 } 2653 2654 SDValue ARMTargetLowering::LowerGlobalAddressELF(SDValue Op, 2655 SelectionDAG &DAG) const { 2656 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2657 SDLoc dl(Op); 2658 const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal(); 2659 if (getTargetMachine().getRelocationModel() == Reloc::PIC_) { 2660 bool UseGOT_PREL = 2661 !(GV->hasHiddenVisibility() || GV->hasLocalLinkage()); 2662 2663 MachineFunction &MF = DAG.getMachineFunction(); 2664 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 2665 unsigned ARMPCLabelIndex = AFI->createPICLabelUId(); 2666 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2667 SDLoc dl(Op); 2668 unsigned PCAdj = Subtarget->isThumb() ? 4 : 8; 2669 ARMConstantPoolValue *CPV = ARMConstantPoolConstant::Create( 2670 GV, ARMPCLabelIndex, ARMCP::CPValue, PCAdj, 2671 UseGOT_PREL ? ARMCP::GOT_PREL : ARMCP::no_modifier, 2672 /*AddCurrentAddress=*/UseGOT_PREL); 2673 SDValue CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4); 2674 CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr); 2675 SDValue Result = DAG.getLoad( 2676 PtrVT, dl, DAG.getEntryNode(), CPAddr, 2677 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false, 2678 false, false, 0); 2679 SDValue Chain = Result.getValue(1); 2680 SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32); 2681 Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel); 2682 if (UseGOT_PREL) 2683 Result = DAG.getLoad(PtrVT, dl, Chain, Result, 2684 MachinePointerInfo::getGOT(DAG.getMachineFunction()), 2685 false, false, false, 0); 2686 return Result; 2687 } 2688 2689 // If we have T2 ops, we can materialize the address directly via movt/movw 2690 // pair. This is always cheaper. 2691 if (Subtarget->useMovt(DAG.getMachineFunction())) { 2692 ++NumMovwMovt; 2693 // FIXME: Once remat is capable of dealing with instructions with register 2694 // operands, expand this into two nodes. 2695 return DAG.getNode(ARMISD::Wrapper, dl, PtrVT, 2696 DAG.getTargetGlobalAddress(GV, dl, PtrVT)); 2697 } else { 2698 SDValue CPAddr = DAG.getTargetConstantPool(GV, PtrVT, 4); 2699 CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr); 2700 return DAG.getLoad( 2701 PtrVT, dl, DAG.getEntryNode(), CPAddr, 2702 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false, 2703 false, false, 0); 2704 } 2705 } 2706 2707 SDValue ARMTargetLowering::LowerGlobalAddressDarwin(SDValue Op, 2708 SelectionDAG &DAG) const { 2709 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2710 SDLoc dl(Op); 2711 const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal(); 2712 Reloc::Model RelocM = getTargetMachine().getRelocationModel(); 2713 2714 if (Subtarget->useMovt(DAG.getMachineFunction())) 2715 ++NumMovwMovt; 2716 2717 // FIXME: Once remat is capable of dealing with instructions with register 2718 // operands, expand this into multiple nodes 2719 unsigned Wrapper = 2720 RelocM == Reloc::PIC_ ? ARMISD::WrapperPIC : ARMISD::Wrapper; 2721 2722 SDValue G = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, ARMII::MO_NONLAZY); 2723 SDValue Result = DAG.getNode(Wrapper, dl, PtrVT, G); 2724 2725 if (Subtarget->GVIsIndirectSymbol(GV, RelocM)) 2726 Result = DAG.getLoad(PtrVT, dl, DAG.getEntryNode(), Result, 2727 MachinePointerInfo::getGOT(DAG.getMachineFunction()), 2728 false, false, false, 0); 2729 return Result; 2730 } 2731 2732 SDValue ARMTargetLowering::LowerGlobalAddressWindows(SDValue Op, 2733 SelectionDAG &DAG) const { 2734 assert(Subtarget->isTargetWindows() && "non-Windows COFF is not supported"); 2735 assert(Subtarget->useMovt(DAG.getMachineFunction()) && 2736 "Windows on ARM expects to use movw/movt"); 2737 2738 const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal(); 2739 const ARMII::TOF TargetFlags = 2740 (GV->hasDLLImportStorageClass() ? ARMII::MO_DLLIMPORT : ARMII::MO_NO_FLAG); 2741 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2742 SDValue Result; 2743 SDLoc DL(Op); 2744 2745 ++NumMovwMovt; 2746 2747 // FIXME: Once remat is capable of dealing with instructions with register 2748 // operands, expand this into two nodes. 2749 Result = DAG.getNode(ARMISD::Wrapper, DL, PtrVT, 2750 DAG.getTargetGlobalAddress(GV, DL, PtrVT, /*Offset=*/0, 2751 TargetFlags)); 2752 if (GV->hasDLLImportStorageClass()) 2753 Result = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Result, 2754 MachinePointerInfo::getGOT(DAG.getMachineFunction()), 2755 false, false, false, 0); 2756 return Result; 2757 } 2758 2759 SDValue 2760 ARMTargetLowering::LowerEH_SJLJ_SETJMP(SDValue Op, SelectionDAG &DAG) const { 2761 SDLoc dl(Op); 2762 SDValue Val = DAG.getConstant(0, dl, MVT::i32); 2763 return DAG.getNode(ARMISD::EH_SJLJ_SETJMP, dl, 2764 DAG.getVTList(MVT::i32, MVT::Other), Op.getOperand(0), 2765 Op.getOperand(1), Val); 2766 } 2767 2768 SDValue 2769 ARMTargetLowering::LowerEH_SJLJ_LONGJMP(SDValue Op, SelectionDAG &DAG) const { 2770 SDLoc dl(Op); 2771 return DAG.getNode(ARMISD::EH_SJLJ_LONGJMP, dl, MVT::Other, Op.getOperand(0), 2772 Op.getOperand(1), DAG.getConstant(0, dl, MVT::i32)); 2773 } 2774 2775 SDValue ARMTargetLowering::LowerEH_SJLJ_SETUP_DISPATCH(SDValue Op, 2776 SelectionDAG &DAG) const { 2777 SDLoc dl(Op); 2778 return DAG.getNode(ARMISD::EH_SJLJ_SETUP_DISPATCH, dl, MVT::Other, 2779 Op.getOperand(0)); 2780 } 2781 2782 SDValue 2783 ARMTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG, 2784 const ARMSubtarget *Subtarget) const { 2785 unsigned IntNo = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 2786 SDLoc dl(Op); 2787 switch (IntNo) { 2788 default: return SDValue(); // Don't custom lower most intrinsics. 2789 case Intrinsic::arm_rbit: { 2790 assert(Op.getOperand(1).getValueType() == MVT::i32 && 2791 "RBIT intrinsic must have i32 type!"); 2792 return DAG.getNode(ISD::BITREVERSE, dl, MVT::i32, Op.getOperand(1)); 2793 } 2794 case Intrinsic::arm_thread_pointer: { 2795 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2796 return DAG.getNode(ARMISD::THREAD_POINTER, dl, PtrVT); 2797 } 2798 case Intrinsic::eh_sjlj_lsda: { 2799 MachineFunction &MF = DAG.getMachineFunction(); 2800 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 2801 unsigned ARMPCLabelIndex = AFI->createPICLabelUId(); 2802 EVT PtrVT = getPointerTy(DAG.getDataLayout()); 2803 Reloc::Model RelocM = getTargetMachine().getRelocationModel(); 2804 SDValue CPAddr; 2805 unsigned PCAdj = (RelocM != Reloc::PIC_) 2806 ? 0 : (Subtarget->isThumb() ? 4 : 8); 2807 ARMConstantPoolValue *CPV = 2808 ARMConstantPoolConstant::Create(MF.getFunction(), ARMPCLabelIndex, 2809 ARMCP::CPLSDA, PCAdj); 2810 CPAddr = DAG.getTargetConstantPool(CPV, PtrVT, 4); 2811 CPAddr = DAG.getNode(ARMISD::Wrapper, dl, MVT::i32, CPAddr); 2812 SDValue Result = DAG.getLoad( 2813 PtrVT, dl, DAG.getEntryNode(), CPAddr, 2814 MachinePointerInfo::getConstantPool(DAG.getMachineFunction()), false, 2815 false, false, 0); 2816 2817 if (RelocM == Reloc::PIC_) { 2818 SDValue PICLabel = DAG.getConstant(ARMPCLabelIndex, dl, MVT::i32); 2819 Result = DAG.getNode(ARMISD::PIC_ADD, dl, PtrVT, Result, PICLabel); 2820 } 2821 return Result; 2822 } 2823 case Intrinsic::arm_neon_vmulls: 2824 case Intrinsic::arm_neon_vmullu: { 2825 unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmulls) 2826 ? ARMISD::VMULLs : ARMISD::VMULLu; 2827 return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(), 2828 Op.getOperand(1), Op.getOperand(2)); 2829 } 2830 case Intrinsic::arm_neon_vminnm: 2831 case Intrinsic::arm_neon_vmaxnm: { 2832 unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vminnm) 2833 ? ISD::FMINNUM : ISD::FMAXNUM; 2834 return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(), 2835 Op.getOperand(1), Op.getOperand(2)); 2836 } 2837 case Intrinsic::arm_neon_vminu: 2838 case Intrinsic::arm_neon_vmaxu: { 2839 if (Op.getValueType().isFloatingPoint()) 2840 return SDValue(); 2841 unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vminu) 2842 ? ISD::UMIN : ISD::UMAX; 2843 return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(), 2844 Op.getOperand(1), Op.getOperand(2)); 2845 } 2846 case Intrinsic::arm_neon_vmins: 2847 case Intrinsic::arm_neon_vmaxs: { 2848 // v{min,max}s is overloaded between signed integers and floats. 2849 if (!Op.getValueType().isFloatingPoint()) { 2850 unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmins) 2851 ? ISD::SMIN : ISD::SMAX; 2852 return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(), 2853 Op.getOperand(1), Op.getOperand(2)); 2854 } 2855 unsigned NewOpc = (IntNo == Intrinsic::arm_neon_vmins) 2856 ? ISD::FMINNAN : ISD::FMAXNAN; 2857 return DAG.getNode(NewOpc, SDLoc(Op), Op.getValueType(), 2858 Op.getOperand(1), Op.getOperand(2)); 2859 } 2860 } 2861 } 2862 2863 static SDValue LowerATOMIC_FENCE(SDValue Op, SelectionDAG &DAG, 2864 const ARMSubtarget *Subtarget) { 2865 // FIXME: handle "fence singlethread" more efficiently. 2866 SDLoc dl(Op); 2867 if (!Subtarget->hasDataBarrier()) { 2868 // Some ARMv6 cpus can support data barriers with an mcr instruction. 2869 // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get 2870 // here. 2871 assert(Subtarget->hasV6Ops() && !Subtarget->isThumb() && 2872 "Unexpected ISD::ATOMIC_FENCE encountered. Should be libcall!"); 2873 return DAG.getNode(ARMISD::MEMBARRIER_MCR, dl, MVT::Other, Op.getOperand(0), 2874 DAG.getConstant(0, dl, MVT::i32)); 2875 } 2876 2877 ConstantSDNode *OrdN = cast<ConstantSDNode>(Op.getOperand(1)); 2878 AtomicOrdering Ord = static_cast<AtomicOrdering>(OrdN->getZExtValue()); 2879 ARM_MB::MemBOpt Domain = ARM_MB::ISH; 2880 if (Subtarget->isMClass()) { 2881 // Only a full system barrier exists in the M-class architectures. 2882 Domain = ARM_MB::SY; 2883 } else if (Subtarget->isSwift() && Ord == Release) { 2884 // Swift happens to implement ISHST barriers in a way that's compatible with 2885 // Release semantics but weaker than ISH so we'd be fools not to use 2886 // it. Beware: other processors probably don't! 2887 Domain = ARM_MB::ISHST; 2888 } 2889 2890 return DAG.getNode(ISD::INTRINSIC_VOID, dl, MVT::Other, Op.getOperand(0), 2891 DAG.getConstant(Intrinsic::arm_dmb, dl, MVT::i32), 2892 DAG.getConstant(Domain, dl, MVT::i32)); 2893 } 2894 2895 static SDValue LowerPREFETCH(SDValue Op, SelectionDAG &DAG, 2896 const ARMSubtarget *Subtarget) { 2897 // ARM pre v5TE and Thumb1 does not have preload instructions. 2898 if (!(Subtarget->isThumb2() || 2899 (!Subtarget->isThumb1Only() && Subtarget->hasV5TEOps()))) 2900 // Just preserve the chain. 2901 return Op.getOperand(0); 2902 2903 SDLoc dl(Op); 2904 unsigned isRead = ~cast<ConstantSDNode>(Op.getOperand(2))->getZExtValue() & 1; 2905 if (!isRead && 2906 (!Subtarget->hasV7Ops() || !Subtarget->hasMPExtension())) 2907 // ARMv7 with MP extension has PLDW. 2908 return Op.getOperand(0); 2909 2910 unsigned isData = cast<ConstantSDNode>(Op.getOperand(4))->getZExtValue(); 2911 if (Subtarget->isThumb()) { 2912 // Invert the bits. 2913 isRead = ~isRead & 1; 2914 isData = ~isData & 1; 2915 } 2916 2917 return DAG.getNode(ARMISD::PRELOAD, dl, MVT::Other, Op.getOperand(0), 2918 Op.getOperand(1), DAG.getConstant(isRead, dl, MVT::i32), 2919 DAG.getConstant(isData, dl, MVT::i32)); 2920 } 2921 2922 static SDValue LowerVASTART(SDValue Op, SelectionDAG &DAG) { 2923 MachineFunction &MF = DAG.getMachineFunction(); 2924 ARMFunctionInfo *FuncInfo = MF.getInfo<ARMFunctionInfo>(); 2925 2926 // vastart just stores the address of the VarArgsFrameIndex slot into the 2927 // memory location argument. 2928 SDLoc dl(Op); 2929 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2930 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT); 2931 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); 2932 return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1), 2933 MachinePointerInfo(SV), false, false, 0); 2934 } 2935 2936 SDValue 2937 ARMTargetLowering::GetF64FormalArgument(CCValAssign &VA, CCValAssign &NextVA, 2938 SDValue &Root, SelectionDAG &DAG, 2939 SDLoc dl) const { 2940 MachineFunction &MF = DAG.getMachineFunction(); 2941 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 2942 2943 const TargetRegisterClass *RC; 2944 if (AFI->isThumb1OnlyFunction()) 2945 RC = &ARM::tGPRRegClass; 2946 else 2947 RC = &ARM::GPRRegClass; 2948 2949 // Transform the arguments stored in physical registers into virtual ones. 2950 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC); 2951 SDValue ArgValue = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32); 2952 2953 SDValue ArgValue2; 2954 if (NextVA.isMemLoc()) { 2955 MachineFrameInfo *MFI = MF.getFrameInfo(); 2956 int FI = MFI->CreateFixedObject(4, NextVA.getLocMemOffset(), true); 2957 2958 // Create load node to retrieve arguments from the stack. 2959 SDValue FIN = DAG.getFrameIndex(FI, getPointerTy(DAG.getDataLayout())); 2960 ArgValue2 = DAG.getLoad( 2961 MVT::i32, dl, Root, FIN, 2962 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), false, 2963 false, false, 0); 2964 } else { 2965 Reg = MF.addLiveIn(NextVA.getLocReg(), RC); 2966 ArgValue2 = DAG.getCopyFromReg(Root, dl, Reg, MVT::i32); 2967 } 2968 if (!Subtarget->isLittle()) 2969 std::swap (ArgValue, ArgValue2); 2970 return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, ArgValue, ArgValue2); 2971 } 2972 2973 // The remaining GPRs hold either the beginning of variable-argument 2974 // data, or the beginning of an aggregate passed by value (usually 2975 // byval). Either way, we allocate stack slots adjacent to the data 2976 // provided by our caller, and store the unallocated registers there. 2977 // If this is a variadic function, the va_list pointer will begin with 2978 // these values; otherwise, this reassembles a (byval) structure that 2979 // was split between registers and memory. 2980 // Return: The frame index registers were stored into. 2981 int 2982 ARMTargetLowering::StoreByValRegs(CCState &CCInfo, SelectionDAG &DAG, 2983 SDLoc dl, SDValue &Chain, 2984 const Value *OrigArg, 2985 unsigned InRegsParamRecordIdx, 2986 int ArgOffset, 2987 unsigned ArgSize) const { 2988 // Currently, two use-cases possible: 2989 // Case #1. Non-var-args function, and we meet first byval parameter. 2990 // Setup first unallocated register as first byval register; 2991 // eat all remained registers 2992 // (these two actions are performed by HandleByVal method). 2993 // Then, here, we initialize stack frame with 2994 // "store-reg" instructions. 2995 // Case #2. Var-args function, that doesn't contain byval parameters. 2996 // The same: eat all remained unallocated registers, 2997 // initialize stack frame. 2998 2999 MachineFunction &MF = DAG.getMachineFunction(); 3000 MachineFrameInfo *MFI = MF.getFrameInfo(); 3001 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 3002 unsigned RBegin, REnd; 3003 if (InRegsParamRecordIdx < CCInfo.getInRegsParamsCount()) { 3004 CCInfo.getInRegsParamInfo(InRegsParamRecordIdx, RBegin, REnd); 3005 } else { 3006 unsigned RBeginIdx = CCInfo.getFirstUnallocated(GPRArgRegs); 3007 RBegin = RBeginIdx == 4 ? (unsigned)ARM::R4 : GPRArgRegs[RBeginIdx]; 3008 REnd = ARM::R4; 3009 } 3010 3011 if (REnd != RBegin) 3012 ArgOffset = -4 * (ARM::R4 - RBegin); 3013 3014 auto PtrVT = getPointerTy(DAG.getDataLayout()); 3015 int FrameIndex = MFI->CreateFixedObject(ArgSize, ArgOffset, false); 3016 SDValue FIN = DAG.getFrameIndex(FrameIndex, PtrVT); 3017 3018 SmallVector<SDValue, 4> MemOps; 3019 const TargetRegisterClass *RC = 3020 AFI->isThumb1OnlyFunction() ? &ARM::tGPRRegClass : &ARM::GPRRegClass; 3021 3022 for (unsigned Reg = RBegin, i = 0; Reg < REnd; ++Reg, ++i) { 3023 unsigned VReg = MF.addLiveIn(Reg, RC); 3024 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32); 3025 SDValue Store = 3026 DAG.getStore(Val.getValue(1), dl, Val, FIN, 3027 MachinePointerInfo(OrigArg, 4 * i), false, false, 0); 3028 MemOps.push_back(Store); 3029 FIN = DAG.getNode(ISD::ADD, dl, PtrVT, FIN, DAG.getConstant(4, dl, PtrVT)); 3030 } 3031 3032 if (!MemOps.empty()) 3033 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps); 3034 return FrameIndex; 3035 } 3036 3037 // Setup stack frame, the va_list pointer will start from. 3038 void 3039 ARMTargetLowering::VarArgStyleRegisters(CCState &CCInfo, SelectionDAG &DAG, 3040 SDLoc dl, SDValue &Chain, 3041 unsigned ArgOffset, 3042 unsigned TotalArgRegsSaveSize, 3043 bool ForceMutable) const { 3044 MachineFunction &MF = DAG.getMachineFunction(); 3045 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 3046 3047 // Try to store any remaining integer argument regs 3048 // to their spots on the stack so that they may be loaded by deferencing 3049 // the result of va_next. 3050 // If there is no regs to be stored, just point address after last 3051 // argument passed via stack. 3052 int FrameIndex = StoreByValRegs(CCInfo, DAG, dl, Chain, nullptr, 3053 CCInfo.getInRegsParamsCount(), 3054 CCInfo.getNextStackOffset(), 4); 3055 AFI->setVarArgsFrameIndex(FrameIndex); 3056 } 3057 3058 SDValue 3059 ARMTargetLowering::LowerFormalArguments(SDValue Chain, 3060 CallingConv::ID CallConv, bool isVarArg, 3061 const SmallVectorImpl<ISD::InputArg> 3062 &Ins, 3063 SDLoc dl, SelectionDAG &DAG, 3064 SmallVectorImpl<SDValue> &InVals) 3065 const { 3066 MachineFunction &MF = DAG.getMachineFunction(); 3067 MachineFrameInfo *MFI = MF.getFrameInfo(); 3068 3069 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>(); 3070 3071 // Assign locations to all of the incoming arguments. 3072 SmallVector<CCValAssign, 16> ArgLocs; 3073 ARMCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, 3074 *DAG.getContext(), Prologue); 3075 CCInfo.AnalyzeFormalArguments(Ins, 3076 CCAssignFnForNode(CallConv, /* Return*/ false, 3077 isVarArg)); 3078 3079 SmallVector<SDValue, 16> ArgValues; 3080 SDValue ArgValue; 3081 Function::const_arg_iterator CurOrigArg = MF.getFunction()->arg_begin(); 3082 unsigned CurArgIdx = 0; 3083 3084 // Initially ArgRegsSaveSize is zero. 3085 // Then we increase this value each time we meet byval parameter. 3086 // We also increase this value in case of varargs function. 3087 AFI->setArgRegsSaveSize(0); 3088 3089 // Calculate the amount of stack space that we need to allocate to store 3090 // byval and variadic arguments that are passed in registers. 3091 // We need to know this before we allocate the first byval or variadic 3092 // argument, as they will be allocated a stack slot below the CFA (Canonical 3093 // Frame Address, the stack pointer at entry to the function). 3094 unsigned ArgRegBegin = ARM::R4; 3095 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 3096 if (CCInfo.getInRegsParamsProcessed() >= CCInfo.getInRegsParamsCount()) 3097 break; 3098 3099 CCValAssign &VA = ArgLocs[i]; 3100 unsigned Index = VA.getValNo(); 3101 ISD::ArgFlagsTy Flags = Ins[Index].Flags; 3102 if (!Flags.isByVal()) 3103 continue; 3104 3105 assert(VA.isMemLoc() && "unexpected byval pointer in reg"); 3106 unsigned RBegin, REnd; 3107 CCInfo.getInRegsParamInfo(CCInfo.getInRegsParamsProcessed(), RBegin, REnd); 3108 ArgRegBegin = std::min(ArgRegBegin, RBegin); 3109 3110 CCInfo.nextInRegsParam(); 3111 } 3112 CCInfo.rewindByValRegsInfo(); 3113 3114 int lastInsIndex = -1; 3115 if (isVarArg && MFI->hasVAStart()) { 3116 unsigned RegIdx = CCInfo.getFirstUnallocated(GPRArgRegs); 3117 if (RegIdx != array_lengthof(GPRArgRegs)) 3118 ArgRegBegin = std::min(ArgRegBegin, (unsigned)GPRArgRegs[RegIdx]); 3119 } 3120 3121 unsigned TotalArgRegsSaveSize = 4 * (ARM::R4 - ArgRegBegin); 3122 AFI->setArgRegsSaveSize(TotalArgRegsSaveSize); 3123 auto PtrVT = getPointerTy(DAG.getDataLayout()); 3124 3125 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { 3126 CCValAssign &VA = ArgLocs[i]; 3127 if (Ins[VA.getValNo()].isOrigArg()) { 3128 std::advance(CurOrigArg, 3129 Ins[VA.getValNo()].getOrigArgIndex() - CurArgIdx); 3130 CurArgIdx = Ins[VA.getValNo()].getOrigArgIndex(); 3131 } 3132 // Arguments stored in registers. 3133 if (VA.isRegLoc()) { 3134 EVT RegVT = VA.getLocVT(); 3135 3136 if (VA.needsCustom()) { 3137 // f64 and vector types are split up into multiple registers or 3138 // combinations of registers and stack slots. 3139 if (VA.getLocVT() == MVT::v2f64) { 3140 SDValue ArgValue1 = GetF64FormalArgument(VA, ArgLocs[++i], 3141 Chain, DAG, dl); 3142 VA = ArgLocs[++i]; // skip ahead to next loc 3143 SDValue ArgValue2; 3144 if (VA.isMemLoc()) { 3145 int FI = MFI->CreateFixedObject(8, VA.getLocMemOffset(), true); 3146 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3147 ArgValue2 = DAG.getLoad( 3148 MVT::f64, dl, Chain, FIN, 3149 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), 3150 false, false, false, 0); 3151 } else { 3152 ArgValue2 = GetF64FormalArgument(VA, ArgLocs[++i], 3153 Chain, DAG, dl); 3154 } 3155 ArgValue = DAG.getNode(ISD::UNDEF, dl, MVT::v2f64); 3156 ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, 3157 ArgValue, ArgValue1, 3158 DAG.getIntPtrConstant(0, dl)); 3159 ArgValue = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, 3160 ArgValue, ArgValue2, 3161 DAG.getIntPtrConstant(1, dl)); 3162 } else 3163 ArgValue = GetF64FormalArgument(VA, ArgLocs[++i], Chain, DAG, dl); 3164 3165 } else { 3166 const TargetRegisterClass *RC; 3167 3168 if (RegVT == MVT::f32) 3169 RC = &ARM::SPRRegClass; 3170 else if (RegVT == MVT::f64) 3171 RC = &ARM::DPRRegClass; 3172 else if (RegVT == MVT::v2f64) 3173 RC = &ARM::QPRRegClass; 3174 else if (RegVT == MVT::i32) 3175 RC = AFI->isThumb1OnlyFunction() ? &ARM::tGPRRegClass 3176 : &ARM::GPRRegClass; 3177 else 3178 llvm_unreachable("RegVT not supported by FORMAL_ARGUMENTS Lowering"); 3179 3180 // Transform the arguments in physical registers into virtual ones. 3181 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC); 3182 ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, RegVT); 3183 } 3184 3185 // If this is an 8 or 16-bit value, it is really passed promoted 3186 // to 32 bits. Insert an assert[sz]ext to capture this, then 3187 // truncate to the right size. 3188 switch (VA.getLocInfo()) { 3189 default: llvm_unreachable("Unknown loc info!"); 3190 case CCValAssign::Full: break; 3191 case CCValAssign::BCvt: 3192 ArgValue = DAG.getNode(ISD::BITCAST, dl, VA.getValVT(), ArgValue); 3193 break; 3194 case CCValAssign::SExt: 3195 ArgValue = DAG.getNode(ISD::AssertSext, dl, RegVT, ArgValue, 3196 DAG.getValueType(VA.getValVT())); 3197 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue); 3198 break; 3199 case CCValAssign::ZExt: 3200 ArgValue = DAG.getNode(ISD::AssertZext, dl, RegVT, ArgValue, 3201 DAG.getValueType(VA.getValVT())); 3202 ArgValue = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), ArgValue); 3203 break; 3204 } 3205 3206 InVals.push_back(ArgValue); 3207 3208 } else { // VA.isRegLoc() 3209 3210 // sanity check 3211 assert(VA.isMemLoc()); 3212 assert(VA.getValVT() != MVT::i64 && "i64 should already be lowered"); 3213 3214 int index = VA.getValNo(); 3215 3216 // Some Ins[] entries become multiple ArgLoc[] entries. 3217 // Process them only once. 3218 if (index != lastInsIndex) 3219 { 3220 ISD::ArgFlagsTy Flags = Ins[index].Flags; 3221 // FIXME: For now, all byval parameter objects are marked mutable. 3222 // This can be changed with more analysis. 3223 // In case of tail call optimization mark all arguments mutable. 3224 // Since they could be overwritten by lowering of arguments in case of 3225 // a tail call. 3226 if (Flags.isByVal()) { 3227 assert(Ins[index].isOrigArg() && 3228 "Byval arguments cannot be implicit"); 3229 unsigned CurByValIndex = CCInfo.getInRegsParamsProcessed(); 3230 3231 int FrameIndex = StoreByValRegs( 3232 CCInfo, DAG, dl, Chain, &*CurOrigArg, CurByValIndex, 3233 VA.getLocMemOffset(), Flags.getByValSize()); 3234 InVals.push_back(DAG.getFrameIndex(FrameIndex, PtrVT)); 3235 CCInfo.nextInRegsParam(); 3236 } else { 3237 unsigned FIOffset = VA.getLocMemOffset(); 3238 int FI = MFI->CreateFixedObject(VA.getLocVT().getSizeInBits()/8, 3239 FIOffset, true); 3240 3241 // Create load nodes to retrieve arguments from the stack. 3242 SDValue FIN = DAG.getFrameIndex(FI, PtrVT); 3243 InVals.push_back(DAG.getLoad( 3244 VA.getValVT(), dl, Chain, FIN, 3245 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), 3246 false, false, false, 0)); 3247 } 3248 lastInsIndex = index; 3249 } 3250 } 3251 } 3252 3253 // varargs 3254 if (isVarArg && MFI->hasVAStart()) 3255 VarArgStyleRegisters(CCInfo, DAG, dl, Chain, 3256 CCInfo.getNextStackOffset(), 3257 TotalArgRegsSaveSize); 3258 3259 AFI->setArgumentStackSize(CCInfo.getNextStackOffset()); 3260 3261 return Chain; 3262 } 3263 3264 /// isFloatingPointZero - Return true if this is +0.0. 3265 static bool isFloatingPointZero(SDValue Op) { 3266 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op)) 3267 return CFP->getValueAPF().isPosZero(); 3268 else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) { 3269 // Maybe this has already been legalized into the constant pool? 3270 if (Op.getOperand(1).getOpcode() == ARMISD::Wrapper) { 3271 SDValue WrapperOp = Op.getOperand(1).getOperand(0); 3272 if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(WrapperOp)) 3273 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal())) 3274 return CFP->getValueAPF().isPosZero(); 3275 } 3276 } else if (Op->getOpcode() == ISD::BITCAST && 3277 Op->getValueType(0) == MVT::f64) { 3278 // Handle (ISD::BITCAST (ARMISD::VMOVIMM (ISD::TargetConstant 0)) MVT::f64) 3279 // created by LowerConstantFP(). 3280 SDValue BitcastOp = Op->getOperand(0); 3281 if (BitcastOp->getOpcode() == ARMISD::VMOVIMM && 3282 isNullConstant(BitcastOp->getOperand(0))) 3283 return true; 3284 } 3285 return false; 3286 } 3287 3288 /// Returns appropriate ARM CMP (cmp) and corresponding condition code for 3289 /// the given operands. 3290 SDValue 3291 ARMTargetLowering::getARMCmp(SDValue LHS, SDValue RHS, ISD::CondCode CC, 3292 SDValue &ARMcc, SelectionDAG &DAG, 3293 SDLoc dl) const { 3294 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS.getNode())) { 3295 unsigned C = RHSC->getZExtValue(); 3296 if (!isLegalICmpImmediate(C)) { 3297 // Constant does not fit, try adjusting it by one? 3298 switch (CC) { 3299 default: break; 3300 case ISD::SETLT: 3301 case ISD::SETGE: 3302 if (C != 0x80000000 && isLegalICmpImmediate(C-1)) { 3303 CC = (CC == ISD::SETLT) ? ISD::SETLE : ISD::SETGT; 3304 RHS = DAG.getConstant(C - 1, dl, MVT::i32); 3305 } 3306 break; 3307 case ISD::SETULT: 3308 case ISD::SETUGE: 3309 if (C != 0 && isLegalICmpImmediate(C-1)) { 3310 CC = (CC == ISD::SETULT) ? ISD::SETULE : ISD::SETUGT; 3311 RHS = DAG.getConstant(C - 1, dl, MVT::i32); 3312 } 3313 break; 3314 case ISD::SETLE: 3315 case ISD::SETGT: 3316 if (C != 0x7fffffff && isLegalICmpImmediate(C+1)) { 3317 CC = (CC == ISD::SETLE) ? ISD::SETLT : ISD::SETGE; 3318 RHS = DAG.getConstant(C + 1, dl, MVT::i32); 3319 } 3320 break; 3321 case ISD::SETULE: 3322 case ISD::SETUGT: 3323 if (C != 0xffffffff && isLegalICmpImmediate(C+1)) { 3324 CC = (CC == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE; 3325 RHS = DAG.getConstant(C + 1, dl, MVT::i32); 3326 } 3327 break; 3328 } 3329 } 3330 } 3331 3332 ARMCC::CondCodes CondCode = IntCCToARMCC(CC); 3333 ARMISD::NodeType CompareType; 3334 switch (CondCode) { 3335 default: 3336 CompareType = ARMISD::CMP; 3337 break; 3338 case ARMCC::EQ: 3339 case ARMCC::NE: 3340 // Uses only Z Flag 3341 CompareType = ARMISD::CMPZ; 3342 break; 3343 } 3344 ARMcc = DAG.getConstant(CondCode, dl, MVT::i32); 3345 return DAG.getNode(CompareType, dl, MVT::Glue, LHS, RHS); 3346 } 3347 3348 /// Returns a appropriate VFP CMP (fcmp{s|d}+fmstat) for the given operands. 3349 SDValue 3350 ARMTargetLowering::getVFPCmp(SDValue LHS, SDValue RHS, SelectionDAG &DAG, 3351 SDLoc dl) const { 3352 assert(!Subtarget->isFPOnlySP() || RHS.getValueType() != MVT::f64); 3353 SDValue Cmp; 3354 if (!isFloatingPointZero(RHS)) 3355 Cmp = DAG.getNode(ARMISD::CMPFP, dl, MVT::Glue, LHS, RHS); 3356 else 3357 Cmp = DAG.getNode(ARMISD::CMPFPw0, dl, MVT::Glue, LHS); 3358 return DAG.getNode(ARMISD::FMSTAT, dl, MVT::Glue, Cmp); 3359 } 3360 3361 /// duplicateCmp - Glue values can have only one use, so this function 3362 /// duplicates a comparison node. 3363 SDValue 3364 ARMTargetLowering::duplicateCmp(SDValue Cmp, SelectionDAG &DAG) const { 3365 unsigned Opc = Cmp.getOpcode(); 3366 SDLoc DL(Cmp); 3367 if (Opc == ARMISD::CMP || Opc == ARMISD::CMPZ) 3368 return DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1)); 3369 3370 assert(Opc == ARMISD::FMSTAT && "unexpected comparison operation"); 3371 Cmp = Cmp.getOperand(0); 3372 Opc = Cmp.getOpcode(); 3373 if (Opc == ARMISD::CMPFP) 3374 Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0),Cmp.getOperand(1)); 3375 else { 3376 assert(Opc == ARMISD::CMPFPw0 && "unexpected operand of FMSTAT"); 3377 Cmp = DAG.getNode(Opc, DL, MVT::Glue, Cmp.getOperand(0)); 3378 } 3379 return DAG.getNode(ARMISD::FMSTAT, DL, MVT::Glue, Cmp); 3380 } 3381 3382 std::pair<SDValue, SDValue> 3383 ARMTargetLowering::getARMXALUOOp(SDValue Op, SelectionDAG &DAG, 3384 SDValue &ARMcc) const { 3385 assert(Op.getValueType() == MVT::i32 && "Unsupported value type"); 3386 3387 SDValue Value, OverflowCmp; 3388 SDValue LHS = Op.getOperand(0); 3389 SDValue RHS = Op.getOperand(1); 3390 SDLoc dl(Op); 3391 3392 // FIXME: We are currently always generating CMPs because we don't support 3393 // generating CMN through the backend. This is not as good as the natural 3394 // CMP case because it causes a register dependency and cannot be folded 3395 // later. 3396 3397 switch (Op.getOpcode()) { 3398 default: 3399 llvm_unreachable("Unknown overflow instruction!"); 3400 case ISD::SADDO: 3401 ARMcc = DAG.getConstant(ARMCC::VC, dl, MVT::i32); 3402 Value = DAG.getNode(ISD::ADD, dl, Op.getValueType(), LHS, RHS); 3403 OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, Value, LHS); 3404 break; 3405 case ISD::UADDO: 3406 ARMcc = DAG.getConstant(ARMCC::HS, dl, MVT::i32); 3407 Value = DAG.getNode(ISD::ADD, dl, Op.getValueType(), LHS, RHS); 3408 OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, Value, LHS); 3409 break; 3410 case ISD::SSUBO: 3411 ARMcc = DAG.getConstant(ARMCC::VC, dl, MVT::i32); 3412 Value = DAG.getNode(ISD::SUB, dl, Op.getValueType(), LHS, RHS); 3413 OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, LHS, RHS); 3414 break; 3415 case ISD::USUBO: 3416 ARMcc = DAG.getConstant(ARMCC::HS, dl, MVT::i32); 3417 Value = DAG.getNode(ISD::SUB, dl, Op.getValueType(), LHS, RHS); 3418 OverflowCmp = DAG.getNode(ARMISD::CMP, dl, MVT::Glue, LHS, RHS); 3419 break; 3420 } // switch (...) 3421 3422 return std::make_pair(Value, OverflowCmp); 3423 } 3424 3425 3426 SDValue 3427 ARMTargetLowering::LowerXALUO(SDValue Op, SelectionDAG &DAG) const { 3428 // Let legalize expand this if it isn't a legal type yet. 3429 if (!DAG.getTargetLoweringInfo().isTypeLegal(Op.getValueType())) 3430 return SDValue(); 3431 3432 SDValue Value, OverflowCmp; 3433 SDValue ARMcc; 3434 std::tie(Value, OverflowCmp) = getARMXALUOOp(Op, DAG, ARMcc); 3435 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32); 3436 SDLoc dl(Op); 3437 // We use 0 and 1 as false and true values. 3438 SDValue TVal = DAG.getConstant(1, dl, MVT::i32); 3439 SDValue FVal = DAG.getConstant(0, dl, MVT::i32); 3440 EVT VT = Op.getValueType(); 3441 3442 SDValue Overflow = DAG.getNode(ARMISD::CMOV, dl, VT, TVal, FVal, 3443 ARMcc, CCR, OverflowCmp); 3444 3445 SDVTList VTs = DAG.getVTList(Op.getValueType(), MVT::i32); 3446 return DAG.getNode(ISD::MERGE_VALUES, dl, VTs, Value, Overflow); 3447 } 3448 3449 3450 SDValue ARMTargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const { 3451 SDValue Cond = Op.getOperand(0); 3452 SDValue SelectTrue = Op.getOperand(1); 3453 SDValue SelectFalse = Op.getOperand(2); 3454 SDLoc dl(Op); 3455 unsigned Opc = Cond.getOpcode(); 3456 3457 if (Cond.getResNo() == 1 && 3458 (Opc == ISD::SADDO || Opc == ISD::UADDO || Opc == ISD::SSUBO || 3459 Opc == ISD::USUBO)) { 3460 if (!DAG.getTargetLoweringInfo().isTypeLegal(Cond->getValueType(0))) 3461 return SDValue(); 3462 3463 SDValue Value, OverflowCmp; 3464 SDValue ARMcc; 3465 std::tie(Value, OverflowCmp) = getARMXALUOOp(Cond, DAG, ARMcc); 3466 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32); 3467 EVT VT = Op.getValueType(); 3468 3469 return getCMOV(dl, VT, SelectTrue, SelectFalse, ARMcc, CCR, 3470 OverflowCmp, DAG); 3471 } 3472 3473 // Convert: 3474 // 3475 // (select (cmov 1, 0, cond), t, f) -> (cmov t, f, cond) 3476 // (select (cmov 0, 1, cond), t, f) -> (cmov f, t, cond) 3477 // 3478 if (Cond.getOpcode() == ARMISD::CMOV && Cond.hasOneUse()) { 3479 const ConstantSDNode *CMOVTrue = 3480 dyn_cast<ConstantSDNode>(Cond.getOperand(0)); 3481 const ConstantSDNode *CMOVFalse = 3482 dyn_cast<ConstantSDNode>(Cond.getOperand(1)); 3483 3484 if (CMOVTrue && CMOVFalse) { 3485 unsigned CMOVTrueVal = CMOVTrue->getZExtValue(); 3486 unsigned CMOVFalseVal = CMOVFalse->getZExtValue(); 3487 3488 SDValue True; 3489 SDValue False; 3490 if (CMOVTrueVal == 1 && CMOVFalseVal == 0) { 3491 True = SelectTrue; 3492 False = SelectFalse; 3493 } else if (CMOVTrueVal == 0 && CMOVFalseVal == 1) { 3494 True = SelectFalse; 3495 False = SelectTrue; 3496 } 3497 3498 if (True.getNode() && False.getNode()) { 3499 EVT VT = Op.getValueType(); 3500 SDValue ARMcc = Cond.getOperand(2); 3501 SDValue CCR = Cond.getOperand(3); 3502 SDValue Cmp = duplicateCmp(Cond.getOperand(4), DAG); 3503 assert(True.getValueType() == VT); 3504 return getCMOV(dl, VT, True, False, ARMcc, CCR, Cmp, DAG); 3505 } 3506 } 3507 } 3508 3509 // ARM's BooleanContents value is UndefinedBooleanContent. Mask out the 3510 // undefined bits before doing a full-word comparison with zero. 3511 Cond = DAG.getNode(ISD::AND, dl, Cond.getValueType(), Cond, 3512 DAG.getConstant(1, dl, Cond.getValueType())); 3513 3514 return DAG.getSelectCC(dl, Cond, 3515 DAG.getConstant(0, dl, Cond.getValueType()), 3516 SelectTrue, SelectFalse, ISD::SETNE); 3517 } 3518 3519 static void checkVSELConstraints(ISD::CondCode CC, ARMCC::CondCodes &CondCode, 3520 bool &swpCmpOps, bool &swpVselOps) { 3521 // Start by selecting the GE condition code for opcodes that return true for 3522 // 'equality' 3523 if (CC == ISD::SETUGE || CC == ISD::SETOGE || CC == ISD::SETOLE || 3524 CC == ISD::SETULE) 3525 CondCode = ARMCC::GE; 3526 3527 // and GT for opcodes that return false for 'equality'. 3528 else if (CC == ISD::SETUGT || CC == ISD::SETOGT || CC == ISD::SETOLT || 3529 CC == ISD::SETULT) 3530 CondCode = ARMCC::GT; 3531 3532 // Since we are constrained to GE/GT, if the opcode contains 'less', we need 3533 // to swap the compare operands. 3534 if (CC == ISD::SETOLE || CC == ISD::SETULE || CC == ISD::SETOLT || 3535 CC == ISD::SETULT) 3536 swpCmpOps = true; 3537 3538 // Both GT and GE are ordered comparisons, and return false for 'unordered'. 3539 // If we have an unordered opcode, we need to swap the operands to the VSEL 3540 // instruction (effectively negating the condition). 3541 // 3542 // This also has the effect of swapping which one of 'less' or 'greater' 3543 // returns true, so we also swap the compare operands. It also switches 3544 // whether we return true for 'equality', so we compensate by picking the 3545 // opposite condition code to our original choice. 3546 if (CC == ISD::SETULE || CC == ISD::SETULT || CC == ISD::SETUGE || 3547 CC == ISD::SETUGT) { 3548 swpCmpOps = !swpCmpOps; 3549 swpVselOps = !swpVselOps; 3550 CondCode = CondCode == ARMCC::GT ? ARMCC::GE : ARMCC::GT; 3551 } 3552 3553 // 'ordered' is 'anything but unordered', so use the VS condition code and 3554 // swap the VSEL operands. 3555 if (CC == ISD::SETO) { 3556 CondCode = ARMCC::VS; 3557 swpVselOps = true; 3558 } 3559 3560 // 'unordered or not equal' is 'anything but equal', so use the EQ condition 3561 // code and swap the VSEL operands. 3562 if (CC == ISD::SETUNE) { 3563 CondCode = ARMCC::EQ; 3564 swpVselOps = true; 3565 } 3566 } 3567 3568 SDValue ARMTargetLowering::getCMOV(SDLoc dl, EVT VT, SDValue FalseVal, 3569 SDValue TrueVal, SDValue ARMcc, SDValue CCR, 3570 SDValue Cmp, SelectionDAG &DAG) const { 3571 if (Subtarget->isFPOnlySP() && VT == MVT::f64) { 3572 FalseVal = DAG.getNode(ARMISD::VMOVRRD, dl, 3573 DAG.getVTList(MVT::i32, MVT::i32), FalseVal); 3574 TrueVal = DAG.getNode(ARMISD::VMOVRRD, dl, 3575 DAG.getVTList(MVT::i32, MVT::i32), TrueVal); 3576 3577 SDValue TrueLow = TrueVal.getValue(0); 3578 SDValue TrueHigh = TrueVal.getValue(1); 3579 SDValue FalseLow = FalseVal.getValue(0); 3580 SDValue FalseHigh = FalseVal.getValue(1); 3581 3582 SDValue Low = DAG.getNode(ARMISD::CMOV, dl, MVT::i32, FalseLow, TrueLow, 3583 ARMcc, CCR, Cmp); 3584 SDValue High = DAG.getNode(ARMISD::CMOV, dl, MVT::i32, FalseHigh, TrueHigh, 3585 ARMcc, CCR, duplicateCmp(Cmp, DAG)); 3586 3587 return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Low, High); 3588 } else { 3589 return DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc, CCR, 3590 Cmp); 3591 } 3592 } 3593 3594 SDValue ARMTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const { 3595 EVT VT = Op.getValueType(); 3596 SDValue LHS = Op.getOperand(0); 3597 SDValue RHS = Op.getOperand(1); 3598 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get(); 3599 SDValue TrueVal = Op.getOperand(2); 3600 SDValue FalseVal = Op.getOperand(3); 3601 SDLoc dl(Op); 3602 3603 if (Subtarget->isFPOnlySP() && LHS.getValueType() == MVT::f64) { 3604 DAG.getTargetLoweringInfo().softenSetCCOperands(DAG, MVT::f64, LHS, RHS, CC, 3605 dl); 3606 3607 // If softenSetCCOperands only returned one value, we should compare it to 3608 // zero. 3609 if (!RHS.getNode()) { 3610 RHS = DAG.getConstant(0, dl, LHS.getValueType()); 3611 CC = ISD::SETNE; 3612 } 3613 } 3614 3615 if (LHS.getValueType() == MVT::i32) { 3616 // Try to generate VSEL on ARMv8. 3617 // The VSEL instruction can't use all the usual ARM condition 3618 // codes: it only has two bits to select the condition code, so it's 3619 // constrained to use only GE, GT, VS and EQ. 3620 // 3621 // To implement all the various ISD::SETXXX opcodes, we sometimes need to 3622 // swap the operands of the previous compare instruction (effectively 3623 // inverting the compare condition, swapping 'less' and 'greater') and 3624 // sometimes need to swap the operands to the VSEL (which inverts the 3625 // condition in the sense of firing whenever the previous condition didn't) 3626 if (Subtarget->hasFPARMv8() && (TrueVal.getValueType() == MVT::f32 || 3627 TrueVal.getValueType() == MVT::f64)) { 3628 ARMCC::CondCodes CondCode = IntCCToARMCC(CC); 3629 if (CondCode == ARMCC::LT || CondCode == ARMCC::LE || 3630 CondCode == ARMCC::VC || CondCode == ARMCC::NE) { 3631 CC = ISD::getSetCCInverse(CC, true); 3632 std::swap(TrueVal, FalseVal); 3633 } 3634 } 3635 3636 SDValue ARMcc; 3637 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32); 3638 SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl); 3639 return getCMOV(dl, VT, FalseVal, TrueVal, ARMcc, CCR, Cmp, DAG); 3640 } 3641 3642 ARMCC::CondCodes CondCode, CondCode2; 3643 FPCCToARMCC(CC, CondCode, CondCode2); 3644 3645 // Try to generate VMAXNM/VMINNM on ARMv8. 3646 if (Subtarget->hasFPARMv8() && (TrueVal.getValueType() == MVT::f32 || 3647 TrueVal.getValueType() == MVT::f64)) { 3648 bool swpCmpOps = false; 3649 bool swpVselOps = false; 3650 checkVSELConstraints(CC, CondCode, swpCmpOps, swpVselOps); 3651 3652 if (CondCode == ARMCC::GT || CondCode == ARMCC::GE || 3653 CondCode == ARMCC::VS || CondCode == ARMCC::EQ) { 3654 if (swpCmpOps) 3655 std::swap(LHS, RHS); 3656 if (swpVselOps) 3657 std::swap(TrueVal, FalseVal); 3658 } 3659 } 3660 3661 SDValue ARMcc = DAG.getConstant(CondCode, dl, MVT::i32); 3662 SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl); 3663 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32); 3664 SDValue Result = getCMOV(dl, VT, FalseVal, TrueVal, ARMcc, CCR, Cmp, DAG); 3665 if (CondCode2 != ARMCC::AL) { 3666 SDValue ARMcc2 = DAG.getConstant(CondCode2, dl, MVT::i32); 3667 // FIXME: Needs another CMP because flag can have but one use. 3668 SDValue Cmp2 = getVFPCmp(LHS, RHS, DAG, dl); 3669 Result = getCMOV(dl, VT, Result, TrueVal, ARMcc2, CCR, Cmp2, DAG); 3670 } 3671 return Result; 3672 } 3673 3674 /// canChangeToInt - Given the fp compare operand, return true if it is suitable 3675 /// to morph to an integer compare sequence. 3676 static bool canChangeToInt(SDValue Op, bool &SeenZero, 3677 const ARMSubtarget *Subtarget) { 3678 SDNode *N = Op.getNode(); 3679 if (!N->hasOneUse()) 3680 // Otherwise it requires moving the value from fp to integer registers. 3681 return false; 3682 if (!N->getNumValues()) 3683 return false; 3684 EVT VT = Op.getValueType(); 3685 if (VT != MVT::f32 && !Subtarget->isFPBrccSlow()) 3686 // f32 case is generally profitable. f64 case only makes sense when vcmpe + 3687 // vmrs are very slow, e.g. cortex-a8. 3688 return false; 3689 3690 if (isFloatingPointZero(Op)) { 3691 SeenZero = true; 3692 return true; 3693 } 3694 return ISD::isNormalLoad(N); 3695 } 3696 3697 static SDValue bitcastf32Toi32(SDValue Op, SelectionDAG &DAG) { 3698 if (isFloatingPointZero(Op)) 3699 return DAG.getConstant(0, SDLoc(Op), MVT::i32); 3700 3701 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op)) 3702 return DAG.getLoad(MVT::i32, SDLoc(Op), 3703 Ld->getChain(), Ld->getBasePtr(), Ld->getPointerInfo(), 3704 Ld->isVolatile(), Ld->isNonTemporal(), 3705 Ld->isInvariant(), Ld->getAlignment()); 3706 3707 llvm_unreachable("Unknown VFP cmp argument!"); 3708 } 3709 3710 static void expandf64Toi32(SDValue Op, SelectionDAG &DAG, 3711 SDValue &RetVal1, SDValue &RetVal2) { 3712 SDLoc dl(Op); 3713 3714 if (isFloatingPointZero(Op)) { 3715 RetVal1 = DAG.getConstant(0, dl, MVT::i32); 3716 RetVal2 = DAG.getConstant(0, dl, MVT::i32); 3717 return; 3718 } 3719 3720 if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(Op)) { 3721 SDValue Ptr = Ld->getBasePtr(); 3722 RetVal1 = DAG.getLoad(MVT::i32, dl, 3723 Ld->getChain(), Ptr, 3724 Ld->getPointerInfo(), 3725 Ld->isVolatile(), Ld->isNonTemporal(), 3726 Ld->isInvariant(), Ld->getAlignment()); 3727 3728 EVT PtrType = Ptr.getValueType(); 3729 unsigned NewAlign = MinAlign(Ld->getAlignment(), 4); 3730 SDValue NewPtr = DAG.getNode(ISD::ADD, dl, 3731 PtrType, Ptr, DAG.getConstant(4, dl, PtrType)); 3732 RetVal2 = DAG.getLoad(MVT::i32, dl, 3733 Ld->getChain(), NewPtr, 3734 Ld->getPointerInfo().getWithOffset(4), 3735 Ld->isVolatile(), Ld->isNonTemporal(), 3736 Ld->isInvariant(), NewAlign); 3737 return; 3738 } 3739 3740 llvm_unreachable("Unknown VFP cmp argument!"); 3741 } 3742 3743 /// OptimizeVFPBrcond - With -enable-unsafe-fp-math, it's legal to optimize some 3744 /// f32 and even f64 comparisons to integer ones. 3745 SDValue 3746 ARMTargetLowering::OptimizeVFPBrcond(SDValue Op, SelectionDAG &DAG) const { 3747 SDValue Chain = Op.getOperand(0); 3748 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get(); 3749 SDValue LHS = Op.getOperand(2); 3750 SDValue RHS = Op.getOperand(3); 3751 SDValue Dest = Op.getOperand(4); 3752 SDLoc dl(Op); 3753 3754 bool LHSSeenZero = false; 3755 bool LHSOk = canChangeToInt(LHS, LHSSeenZero, Subtarget); 3756 bool RHSSeenZero = false; 3757 bool RHSOk = canChangeToInt(RHS, RHSSeenZero, Subtarget); 3758 if (LHSOk && RHSOk && (LHSSeenZero || RHSSeenZero)) { 3759 // If unsafe fp math optimization is enabled and there are no other uses of 3760 // the CMP operands, and the condition code is EQ or NE, we can optimize it 3761 // to an integer comparison. 3762 if (CC == ISD::SETOEQ) 3763 CC = ISD::SETEQ; 3764 else if (CC == ISD::SETUNE) 3765 CC = ISD::SETNE; 3766 3767 SDValue Mask = DAG.getConstant(0x7fffffff, dl, MVT::i32); 3768 SDValue ARMcc; 3769 if (LHS.getValueType() == MVT::f32) { 3770 LHS = DAG.getNode(ISD::AND, dl, MVT::i32, 3771 bitcastf32Toi32(LHS, DAG), Mask); 3772 RHS = DAG.getNode(ISD::AND, dl, MVT::i32, 3773 bitcastf32Toi32(RHS, DAG), Mask); 3774 SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl); 3775 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32); 3776 return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other, 3777 Chain, Dest, ARMcc, CCR, Cmp); 3778 } 3779 3780 SDValue LHS1, LHS2; 3781 SDValue RHS1, RHS2; 3782 expandf64Toi32(LHS, DAG, LHS1, LHS2); 3783 expandf64Toi32(RHS, DAG, RHS1, RHS2); 3784 LHS2 = DAG.getNode(ISD::AND, dl, MVT::i32, LHS2, Mask); 3785 RHS2 = DAG.getNode(ISD::AND, dl, MVT::i32, RHS2, Mask); 3786 ARMCC::CondCodes CondCode = IntCCToARMCC(CC); 3787 ARMcc = DAG.getConstant(CondCode, dl, MVT::i32); 3788 SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue); 3789 SDValue Ops[] = { Chain, ARMcc, LHS1, LHS2, RHS1, RHS2, Dest }; 3790 return DAG.getNode(ARMISD::BCC_i64, dl, VTList, Ops); 3791 } 3792 3793 return SDValue(); 3794 } 3795 3796 SDValue ARMTargetLowering::LowerBR_CC(SDValue Op, SelectionDAG &DAG) const { 3797 SDValue Chain = Op.getOperand(0); 3798 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(1))->get(); 3799 SDValue LHS = Op.getOperand(2); 3800 SDValue RHS = Op.getOperand(3); 3801 SDValue Dest = Op.getOperand(4); 3802 SDLoc dl(Op); 3803 3804 if (Subtarget->isFPOnlySP() && LHS.getValueType() == MVT::f64) { 3805 DAG.getTargetLoweringInfo().softenSetCCOperands(DAG, MVT::f64, LHS, RHS, CC, 3806 dl); 3807 3808 // If softenSetCCOperands only returned one value, we should compare it to 3809 // zero. 3810 if (!RHS.getNode()) { 3811 RHS = DAG.getConstant(0, dl, LHS.getValueType()); 3812 CC = ISD::SETNE; 3813 } 3814 } 3815 3816 if (LHS.getValueType() == MVT::i32) { 3817 SDValue ARMcc; 3818 SDValue Cmp = getARMCmp(LHS, RHS, CC, ARMcc, DAG, dl); 3819 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32); 3820 return DAG.getNode(ARMISD::BRCOND, dl, MVT::Other, 3821 Chain, Dest, ARMcc, CCR, Cmp); 3822 } 3823 3824 assert(LHS.getValueType() == MVT::f32 || LHS.getValueType() == MVT::f64); 3825 3826 if (getTargetMachine().Options.UnsafeFPMath && 3827 (CC == ISD::SETEQ || CC == ISD::SETOEQ || 3828 CC == ISD::SETNE || CC == ISD::SETUNE)) { 3829 SDValue Result = OptimizeVFPBrcond(Op, DAG); 3830 if (Result.getNode()) 3831 return Result; 3832 } 3833 3834 ARMCC::CondCodes CondCode, CondCode2; 3835 FPCCToARMCC(CC, CondCode, CondCode2); 3836 3837 SDValue ARMcc = DAG.getConstant(CondCode, dl, MVT::i32); 3838 SDValue Cmp = getVFPCmp(LHS, RHS, DAG, dl); 3839 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32); 3840 SDVTList VTList = DAG.getVTList(MVT::Other, MVT::Glue); 3841 SDValue Ops[] = { Chain, Dest, ARMcc, CCR, Cmp }; 3842 SDValue Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops); 3843 if (CondCode2 != ARMCC::AL) { 3844 ARMcc = DAG.getConstant(CondCode2, dl, MVT::i32); 3845 SDValue Ops[] = { Res, Dest, ARMcc, CCR, Res.getValue(1) }; 3846 Res = DAG.getNode(ARMISD::BRCOND, dl, VTList, Ops); 3847 } 3848 return Res; 3849 } 3850 3851 SDValue ARMTargetLowering::LowerBR_JT(SDValue Op, SelectionDAG &DAG) const { 3852 SDValue Chain = Op.getOperand(0); 3853 SDValue Table = Op.getOperand(1); 3854 SDValue Index = Op.getOperand(2); 3855 SDLoc dl(Op); 3856 3857 EVT PTy = getPointerTy(DAG.getDataLayout()); 3858 JumpTableSDNode *JT = cast<JumpTableSDNode>(Table); 3859 SDValue JTI = DAG.getTargetJumpTable(JT->getIndex(), PTy); 3860 Table = DAG.getNode(ARMISD::WrapperJT, dl, MVT::i32, JTI); 3861 Index = DAG.getNode(ISD::MUL, dl, PTy, Index, DAG.getConstant(4, dl, PTy)); 3862 SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table); 3863 if (Subtarget->isThumb2()) { 3864 // Thumb2 uses a two-level jump. That is, it jumps into the jump table 3865 // which does another jump to the destination. This also makes it easier 3866 // to translate it to TBB / TBH later. 3867 // FIXME: This might not work if the function is extremely large. 3868 return DAG.getNode(ARMISD::BR2_JT, dl, MVT::Other, Chain, 3869 Addr, Op.getOperand(2), JTI); 3870 } 3871 if (getTargetMachine().getRelocationModel() == Reloc::PIC_) { 3872 Addr = 3873 DAG.getLoad((EVT)MVT::i32, dl, Chain, Addr, 3874 MachinePointerInfo::getJumpTable(DAG.getMachineFunction()), 3875 false, false, false, 0); 3876 Chain = Addr.getValue(1); 3877 Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr, Table); 3878 return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI); 3879 } else { 3880 Addr = 3881 DAG.getLoad(PTy, dl, Chain, Addr, 3882 MachinePointerInfo::getJumpTable(DAG.getMachineFunction()), 3883 false, false, false, 0); 3884 Chain = Addr.getValue(1); 3885 return DAG.getNode(ARMISD::BR_JT, dl, MVT::Other, Chain, Addr, JTI); 3886 } 3887 } 3888 3889 static SDValue LowerVectorFP_TO_INT(SDValue Op, SelectionDAG &DAG) { 3890 EVT VT = Op.getValueType(); 3891 SDLoc dl(Op); 3892 3893 if (Op.getValueType().getVectorElementType() == MVT::i32) { 3894 if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::f32) 3895 return Op; 3896 return DAG.UnrollVectorOp(Op.getNode()); 3897 } 3898 3899 assert(Op.getOperand(0).getValueType() == MVT::v4f32 && 3900 "Invalid type for custom lowering!"); 3901 if (VT != MVT::v4i16) 3902 return DAG.UnrollVectorOp(Op.getNode()); 3903 3904 Op = DAG.getNode(Op.getOpcode(), dl, MVT::v4i32, Op.getOperand(0)); 3905 return DAG.getNode(ISD::TRUNCATE, dl, VT, Op); 3906 } 3907 3908 SDValue ARMTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG) const { 3909 EVT VT = Op.getValueType(); 3910 if (VT.isVector()) 3911 return LowerVectorFP_TO_INT(Op, DAG); 3912 if (Subtarget->isFPOnlySP() && Op.getOperand(0).getValueType() == MVT::f64) { 3913 RTLIB::Libcall LC; 3914 if (Op.getOpcode() == ISD::FP_TO_SINT) 3915 LC = RTLIB::getFPTOSINT(Op.getOperand(0).getValueType(), 3916 Op.getValueType()); 3917 else 3918 LC = RTLIB::getFPTOUINT(Op.getOperand(0).getValueType(), 3919 Op.getValueType()); 3920 return makeLibCall(DAG, LC, Op.getValueType(), Op.getOperand(0), 3921 /*isSigned*/ false, SDLoc(Op)).first; 3922 } 3923 3924 return Op; 3925 } 3926 3927 static SDValue LowerVectorINT_TO_FP(SDValue Op, SelectionDAG &DAG) { 3928 EVT VT = Op.getValueType(); 3929 SDLoc dl(Op); 3930 3931 if (Op.getOperand(0).getValueType().getVectorElementType() == MVT::i32) { 3932 if (VT.getVectorElementType() == MVT::f32) 3933 return Op; 3934 return DAG.UnrollVectorOp(Op.getNode()); 3935 } 3936 3937 assert(Op.getOperand(0).getValueType() == MVT::v4i16 && 3938 "Invalid type for custom lowering!"); 3939 if (VT != MVT::v4f32) 3940 return DAG.UnrollVectorOp(Op.getNode()); 3941 3942 unsigned CastOpc; 3943 unsigned Opc; 3944 switch (Op.getOpcode()) { 3945 default: llvm_unreachable("Invalid opcode!"); 3946 case ISD::SINT_TO_FP: 3947 CastOpc = ISD::SIGN_EXTEND; 3948 Opc = ISD::SINT_TO_FP; 3949 break; 3950 case ISD::UINT_TO_FP: 3951 CastOpc = ISD::ZERO_EXTEND; 3952 Opc = ISD::UINT_TO_FP; 3953 break; 3954 } 3955 3956 Op = DAG.getNode(CastOpc, dl, MVT::v4i32, Op.getOperand(0)); 3957 return DAG.getNode(Opc, dl, VT, Op); 3958 } 3959 3960 SDValue ARMTargetLowering::LowerINT_TO_FP(SDValue Op, SelectionDAG &DAG) const { 3961 EVT VT = Op.getValueType(); 3962 if (VT.isVector()) 3963 return LowerVectorINT_TO_FP(Op, DAG); 3964 if (Subtarget->isFPOnlySP() && Op.getValueType() == MVT::f64) { 3965 RTLIB::Libcall LC; 3966 if (Op.getOpcode() == ISD::SINT_TO_FP) 3967 LC = RTLIB::getSINTTOFP(Op.getOperand(0).getValueType(), 3968 Op.getValueType()); 3969 else 3970 LC = RTLIB::getUINTTOFP(Op.getOperand(0).getValueType(), 3971 Op.getValueType()); 3972 return makeLibCall(DAG, LC, Op.getValueType(), Op.getOperand(0), 3973 /*isSigned*/ false, SDLoc(Op)).first; 3974 } 3975 3976 return Op; 3977 } 3978 3979 SDValue ARMTargetLowering::LowerFCOPYSIGN(SDValue Op, SelectionDAG &DAG) const { 3980 // Implement fcopysign with a fabs and a conditional fneg. 3981 SDValue Tmp0 = Op.getOperand(0); 3982 SDValue Tmp1 = Op.getOperand(1); 3983 SDLoc dl(Op); 3984 EVT VT = Op.getValueType(); 3985 EVT SrcVT = Tmp1.getValueType(); 3986 bool InGPR = Tmp0.getOpcode() == ISD::BITCAST || 3987 Tmp0.getOpcode() == ARMISD::VMOVDRR; 3988 bool UseNEON = !InGPR && Subtarget->hasNEON(); 3989 3990 if (UseNEON) { 3991 // Use VBSL to copy the sign bit. 3992 unsigned EncodedVal = ARM_AM::createNEONModImm(0x6, 0x80); 3993 SDValue Mask = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v2i32, 3994 DAG.getTargetConstant(EncodedVal, dl, MVT::i32)); 3995 EVT OpVT = (VT == MVT::f32) ? MVT::v2i32 : MVT::v1i64; 3996 if (VT == MVT::f64) 3997 Mask = DAG.getNode(ARMISD::VSHL, dl, OpVT, 3998 DAG.getNode(ISD::BITCAST, dl, OpVT, Mask), 3999 DAG.getConstant(32, dl, MVT::i32)); 4000 else /*if (VT == MVT::f32)*/ 4001 Tmp0 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp0); 4002 if (SrcVT == MVT::f32) { 4003 Tmp1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, MVT::v2f32, Tmp1); 4004 if (VT == MVT::f64) 4005 Tmp1 = DAG.getNode(ARMISD::VSHL, dl, OpVT, 4006 DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1), 4007 DAG.getConstant(32, dl, MVT::i32)); 4008 } else if (VT == MVT::f32) 4009 Tmp1 = DAG.getNode(ARMISD::VSHRu, dl, MVT::v1i64, 4010 DAG.getNode(ISD::BITCAST, dl, MVT::v1i64, Tmp1), 4011 DAG.getConstant(32, dl, MVT::i32)); 4012 Tmp0 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp0); 4013 Tmp1 = DAG.getNode(ISD::BITCAST, dl, OpVT, Tmp1); 4014 4015 SDValue AllOnes = DAG.getTargetConstant(ARM_AM::createNEONModImm(0xe, 0xff), 4016 dl, MVT::i32); 4017 AllOnes = DAG.getNode(ARMISD::VMOVIMM, dl, MVT::v8i8, AllOnes); 4018 SDValue MaskNot = DAG.getNode(ISD::XOR, dl, OpVT, Mask, 4019 DAG.getNode(ISD::BITCAST, dl, OpVT, AllOnes)); 4020 4021 SDValue Res = DAG.getNode(ISD::OR, dl, OpVT, 4022 DAG.getNode(ISD::AND, dl, OpVT, Tmp1, Mask), 4023 DAG.getNode(ISD::AND, dl, OpVT, Tmp0, MaskNot)); 4024 if (VT == MVT::f32) { 4025 Res = DAG.getNode(ISD::BITCAST, dl, MVT::v2f32, Res); 4026 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f32, Res, 4027 DAG.getConstant(0, dl, MVT::i32)); 4028 } else { 4029 Res = DAG.getNode(ISD::BITCAST, dl, MVT::f64, Res); 4030 } 4031 4032 return Res; 4033 } 4034 4035 // Bitcast operand 1 to i32. 4036 if (SrcVT == MVT::f64) 4037 Tmp1 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32), 4038 Tmp1).getValue(1); 4039 Tmp1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp1); 4040 4041 // Or in the signbit with integer operations. 4042 SDValue Mask1 = DAG.getConstant(0x80000000, dl, MVT::i32); 4043 SDValue Mask2 = DAG.getConstant(0x7fffffff, dl, MVT::i32); 4044 Tmp1 = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp1, Mask1); 4045 if (VT == MVT::f32) { 4046 Tmp0 = DAG.getNode(ISD::AND, dl, MVT::i32, 4047 DAG.getNode(ISD::BITCAST, dl, MVT::i32, Tmp0), Mask2); 4048 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4049 DAG.getNode(ISD::OR, dl, MVT::i32, Tmp0, Tmp1)); 4050 } 4051 4052 // f64: Or the high part with signbit and then combine two parts. 4053 Tmp0 = DAG.getNode(ARMISD::VMOVRRD, dl, DAG.getVTList(MVT::i32, MVT::i32), 4054 Tmp0); 4055 SDValue Lo = Tmp0.getValue(0); 4056 SDValue Hi = DAG.getNode(ISD::AND, dl, MVT::i32, Tmp0.getValue(1), Mask2); 4057 Hi = DAG.getNode(ISD::OR, dl, MVT::i32, Hi, Tmp1); 4058 return DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi); 4059 } 4060 4061 SDValue ARMTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const{ 4062 MachineFunction &MF = DAG.getMachineFunction(); 4063 MachineFrameInfo *MFI = MF.getFrameInfo(); 4064 MFI->setReturnAddressIsTaken(true); 4065 4066 if (verifyReturnAddressArgumentIsConstant(Op, DAG)) 4067 return SDValue(); 4068 4069 EVT VT = Op.getValueType(); 4070 SDLoc dl(Op); 4071 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 4072 if (Depth) { 4073 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); 4074 SDValue Offset = DAG.getConstant(4, dl, MVT::i32); 4075 return DAG.getLoad(VT, dl, DAG.getEntryNode(), 4076 DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset), 4077 MachinePointerInfo(), false, false, false, 0); 4078 } 4079 4080 // Return LR, which contains the return address. Mark it an implicit live-in. 4081 unsigned Reg = MF.addLiveIn(ARM::LR, getRegClassFor(MVT::i32)); 4082 return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT); 4083 } 4084 4085 SDValue ARMTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const { 4086 const ARMBaseRegisterInfo &ARI = 4087 *static_cast<const ARMBaseRegisterInfo*>(RegInfo); 4088 MachineFunction &MF = DAG.getMachineFunction(); 4089 MachineFrameInfo *MFI = MF.getFrameInfo(); 4090 MFI->setFrameAddressIsTaken(true); 4091 4092 EVT VT = Op.getValueType(); 4093 SDLoc dl(Op); // FIXME probably not meaningful 4094 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 4095 unsigned FrameReg = ARI.getFrameRegister(MF); 4096 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg, VT); 4097 while (Depth--) 4098 FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr, 4099 MachinePointerInfo(), 4100 false, false, false, 0); 4101 return FrameAddr; 4102 } 4103 4104 // FIXME? Maybe this could be a TableGen attribute on some registers and 4105 // this table could be generated automatically from RegInfo. 4106 unsigned ARMTargetLowering::getRegisterByName(const char* RegName, EVT VT, 4107 SelectionDAG &DAG) const { 4108 unsigned Reg = StringSwitch<unsigned>(RegName) 4109 .Case("sp", ARM::SP) 4110 .Default(0); 4111 if (Reg) 4112 return Reg; 4113 report_fatal_error(Twine("Invalid register name \"" 4114 + StringRef(RegName) + "\".")); 4115 } 4116 4117 // Result is 64 bit value so split into two 32 bit values and return as a 4118 // pair of values. 4119 static void ExpandREAD_REGISTER(SDNode *N, SmallVectorImpl<SDValue> &Results, 4120 SelectionDAG &DAG) { 4121 SDLoc DL(N); 4122 4123 // This function is only supposed to be called for i64 type destination. 4124 assert(N->getValueType(0) == MVT::i64 4125 && "ExpandREAD_REGISTER called for non-i64 type result."); 4126 4127 SDValue Read = DAG.getNode(ISD::READ_REGISTER, DL, 4128 DAG.getVTList(MVT::i32, MVT::i32, MVT::Other), 4129 N->getOperand(0), 4130 N->getOperand(1)); 4131 4132 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Read.getValue(0), 4133 Read.getValue(1))); 4134 Results.push_back(Read.getOperand(0)); 4135 } 4136 4137 /// \p BC is a bitcast that is about to be turned into a VMOVDRR. 4138 /// When \p DstVT, the destination type of \p BC, is on the vector 4139 /// register bank and the source of bitcast, \p Op, operates on the same bank, 4140 /// it might be possible to combine them, such that everything stays on the 4141 /// vector register bank. 4142 /// \p return The node that would replace \p BT, if the combine 4143 /// is possible. 4144 static SDValue CombineVMOVDRRCandidateWithVecOp(const SDNode *BC, 4145 SelectionDAG &DAG) { 4146 SDValue Op = BC->getOperand(0); 4147 EVT DstVT = BC->getValueType(0); 4148 4149 // The only vector instruction that can produce a scalar (remember, 4150 // since the bitcast was about to be turned into VMOVDRR, the source 4151 // type is i64) from a vector is EXTRACT_VECTOR_ELT. 4152 // Moreover, we can do this combine only if there is one use. 4153 // Finally, if the destination type is not a vector, there is not 4154 // much point on forcing everything on the vector bank. 4155 if (!DstVT.isVector() || Op.getOpcode() != ISD::EXTRACT_VECTOR_ELT || 4156 !Op.hasOneUse()) 4157 return SDValue(); 4158 4159 // If the index is not constant, we will introduce an additional 4160 // multiply that will stick. 4161 // Give up in that case. 4162 ConstantSDNode *Index = dyn_cast<ConstantSDNode>(Op.getOperand(1)); 4163 if (!Index) 4164 return SDValue(); 4165 unsigned DstNumElt = DstVT.getVectorNumElements(); 4166 4167 // Compute the new index. 4168 const APInt &APIntIndex = Index->getAPIntValue(); 4169 APInt NewIndex(APIntIndex.getBitWidth(), DstNumElt); 4170 NewIndex *= APIntIndex; 4171 // Check if the new constant index fits into i32. 4172 if (NewIndex.getBitWidth() > 32) 4173 return SDValue(); 4174 4175 // vMTy bitcast(i64 extractelt vNi64 src, i32 index) -> 4176 // vMTy extractsubvector vNxMTy (bitcast vNi64 src), i32 index*M) 4177 SDLoc dl(Op); 4178 SDValue ExtractSrc = Op.getOperand(0); 4179 EVT VecVT = EVT::getVectorVT( 4180 *DAG.getContext(), DstVT.getScalarType(), 4181 ExtractSrc.getValueType().getVectorNumElements() * DstNumElt); 4182 SDValue BitCast = DAG.getNode(ISD::BITCAST, dl, VecVT, ExtractSrc); 4183 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DstVT, BitCast, 4184 DAG.getConstant(NewIndex.getZExtValue(), dl, MVT::i32)); 4185 } 4186 4187 /// ExpandBITCAST - If the target supports VFP, this function is called to 4188 /// expand a bit convert where either the source or destination type is i64 to 4189 /// use a VMOVDRR or VMOVRRD node. This should not be done when the non-i64 4190 /// operand type is illegal (e.g., v2f32 for a target that doesn't support 4191 /// vectors), since the legalizer won't know what to do with that. 4192 static SDValue ExpandBITCAST(SDNode *N, SelectionDAG &DAG) { 4193 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4194 SDLoc dl(N); 4195 SDValue Op = N->getOperand(0); 4196 4197 // This function is only supposed to be called for i64 types, either as the 4198 // source or destination of the bit convert. 4199 EVT SrcVT = Op.getValueType(); 4200 EVT DstVT = N->getValueType(0); 4201 assert((SrcVT == MVT::i64 || DstVT == MVT::i64) && 4202 "ExpandBITCAST called for non-i64 type"); 4203 4204 // Turn i64->f64 into VMOVDRR. 4205 if (SrcVT == MVT::i64 && TLI.isTypeLegal(DstVT)) { 4206 // Do not force values to GPRs (this is what VMOVDRR does for the inputs) 4207 // if we can combine the bitcast with its source. 4208 if (SDValue Val = CombineVMOVDRRCandidateWithVecOp(N, DAG)) 4209 return Val; 4210 4211 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op, 4212 DAG.getConstant(0, dl, MVT::i32)); 4213 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op, 4214 DAG.getConstant(1, dl, MVT::i32)); 4215 return DAG.getNode(ISD::BITCAST, dl, DstVT, 4216 DAG.getNode(ARMISD::VMOVDRR, dl, MVT::f64, Lo, Hi)); 4217 } 4218 4219 // Turn f64->i64 into VMOVRRD. 4220 if (DstVT == MVT::i64 && TLI.isTypeLegal(SrcVT)) { 4221 SDValue Cvt; 4222 if (DAG.getDataLayout().isBigEndian() && SrcVT.isVector() && 4223 SrcVT.getVectorNumElements() > 1) 4224 Cvt = DAG.getNode(ARMISD::VMOVRRD, dl, 4225 DAG.getVTList(MVT::i32, MVT::i32), 4226 DAG.getNode(ARMISD::VREV64, dl, SrcVT, Op)); 4227 else 4228 Cvt = DAG.getNode(ARMISD::VMOVRRD, dl, 4229 DAG.getVTList(MVT::i32, MVT::i32), Op); 4230 // Merge the pieces into a single i64 value. 4231 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Cvt, Cvt.getValue(1)); 4232 } 4233 4234 return SDValue(); 4235 } 4236 4237 /// getZeroVector - Returns a vector of specified type with all zero elements. 4238 /// Zero vectors are used to represent vector negation and in those cases 4239 /// will be implemented with the NEON VNEG instruction. However, VNEG does 4240 /// not support i64 elements, so sometimes the zero vectors will need to be 4241 /// explicitly constructed. Regardless, use a canonical VMOV to create the 4242 /// zero vector. 4243 static SDValue getZeroVector(EVT VT, SelectionDAG &DAG, SDLoc dl) { 4244 assert(VT.isVector() && "Expected a vector type"); 4245 // The canonical modified immediate encoding of a zero vector is....0! 4246 SDValue EncodedVal = DAG.getTargetConstant(0, dl, MVT::i32); 4247 EVT VmovVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32; 4248 SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, EncodedVal); 4249 return DAG.getNode(ISD::BITCAST, dl, VT, Vmov); 4250 } 4251 4252 /// LowerShiftRightParts - Lower SRA_PARTS, which returns two 4253 /// i32 values and take a 2 x i32 value to shift plus a shift amount. 4254 SDValue ARMTargetLowering::LowerShiftRightParts(SDValue Op, 4255 SelectionDAG &DAG) const { 4256 assert(Op.getNumOperands() == 3 && "Not a double-shift!"); 4257 EVT VT = Op.getValueType(); 4258 unsigned VTBits = VT.getSizeInBits(); 4259 SDLoc dl(Op); 4260 SDValue ShOpLo = Op.getOperand(0); 4261 SDValue ShOpHi = Op.getOperand(1); 4262 SDValue ShAmt = Op.getOperand(2); 4263 SDValue ARMcc; 4264 unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL; 4265 4266 assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS); 4267 4268 SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, 4269 DAG.getConstant(VTBits, dl, MVT::i32), ShAmt); 4270 SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt); 4271 SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt, 4272 DAG.getConstant(VTBits, dl, MVT::i32)); 4273 SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt); 4274 SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2); 4275 SDValue TrueVal = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt); 4276 4277 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32); 4278 SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, dl, MVT::i32), 4279 ISD::SETGE, ARMcc, DAG, dl); 4280 SDValue Hi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt); 4281 SDValue Lo = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, TrueVal, ARMcc, 4282 CCR, Cmp); 4283 4284 SDValue Ops[2] = { Lo, Hi }; 4285 return DAG.getMergeValues(Ops, dl); 4286 } 4287 4288 /// LowerShiftLeftParts - Lower SHL_PARTS, which returns two 4289 /// i32 values and take a 2 x i32 value to shift plus a shift amount. 4290 SDValue ARMTargetLowering::LowerShiftLeftParts(SDValue Op, 4291 SelectionDAG &DAG) const { 4292 assert(Op.getNumOperands() == 3 && "Not a double-shift!"); 4293 EVT VT = Op.getValueType(); 4294 unsigned VTBits = VT.getSizeInBits(); 4295 SDLoc dl(Op); 4296 SDValue ShOpLo = Op.getOperand(0); 4297 SDValue ShOpHi = Op.getOperand(1); 4298 SDValue ShAmt = Op.getOperand(2); 4299 SDValue ARMcc; 4300 4301 assert(Op.getOpcode() == ISD::SHL_PARTS); 4302 SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, 4303 DAG.getConstant(VTBits, dl, MVT::i32), ShAmt); 4304 SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt); 4305 SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt, 4306 DAG.getConstant(VTBits, dl, MVT::i32)); 4307 SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt); 4308 SDValue Tmp3 = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt); 4309 4310 SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2); 4311 SDValue CCR = DAG.getRegister(ARM::CPSR, MVT::i32); 4312 SDValue Cmp = getARMCmp(ExtraShAmt, DAG.getConstant(0, dl, MVT::i32), 4313 ISD::SETGE, ARMcc, DAG, dl); 4314 SDValue Lo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt); 4315 SDValue Hi = DAG.getNode(ARMISD::CMOV, dl, VT, FalseVal, Tmp3, ARMcc, 4316 CCR, Cmp); 4317 4318 SDValue Ops[2] = { Lo, Hi }; 4319 return DAG.getMergeValues(Ops, dl); 4320 } 4321 4322 SDValue ARMTargetLowering::LowerFLT_ROUNDS_(SDValue Op, 4323 SelectionDAG &DAG) const { 4324 // The rounding mode is in bits 23:22 of the FPSCR. 4325 // The ARM rounding mode value to FLT_ROUNDS mapping is 0->1, 1->2, 2->3, 3->0 4326 // The formula we use to implement this is (((FPSCR + 1 << 22) >> 22) & 3) 4327 // so that the shift + and get folded into a bitfield extract. 4328 SDLoc dl(Op); 4329 SDValue FPSCR = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::i32, 4330 DAG.getConstant(Intrinsic::arm_get_fpscr, dl, 4331 MVT::i32)); 4332 SDValue FltRounds = DAG.getNode(ISD::ADD, dl, MVT::i32, FPSCR, 4333 DAG.getConstant(1U << 22, dl, MVT::i32)); 4334 SDValue RMODE = DAG.getNode(ISD::SRL, dl, MVT::i32, FltRounds, 4335 DAG.getConstant(22, dl, MVT::i32)); 4336 return DAG.getNode(ISD::AND, dl, MVT::i32, RMODE, 4337 DAG.getConstant(3, dl, MVT::i32)); 4338 } 4339 4340 static SDValue LowerCTTZ(SDNode *N, SelectionDAG &DAG, 4341 const ARMSubtarget *ST) { 4342 SDLoc dl(N); 4343 EVT VT = N->getValueType(0); 4344 if (VT.isVector()) { 4345 assert(ST->hasNEON()); 4346 4347 // Compute the least significant set bit: LSB = X & -X 4348 SDValue X = N->getOperand(0); 4349 SDValue NX = DAG.getNode(ISD::SUB, dl, VT, getZeroVector(VT, DAG, dl), X); 4350 SDValue LSB = DAG.getNode(ISD::AND, dl, VT, X, NX); 4351 4352 EVT ElemTy = VT.getVectorElementType(); 4353 4354 if (ElemTy == MVT::i8) { 4355 // Compute with: cttz(x) = ctpop(lsb - 1) 4356 SDValue One = DAG.getNode(ARMISD::VMOVIMM, dl, VT, 4357 DAG.getTargetConstant(1, dl, ElemTy)); 4358 SDValue Bits = DAG.getNode(ISD::SUB, dl, VT, LSB, One); 4359 return DAG.getNode(ISD::CTPOP, dl, VT, Bits); 4360 } 4361 4362 if ((ElemTy == MVT::i16 || ElemTy == MVT::i32) && 4363 (N->getOpcode() == ISD::CTTZ_ZERO_UNDEF)) { 4364 // Compute with: cttz(x) = (width - 1) - ctlz(lsb), if x != 0 4365 unsigned NumBits = ElemTy.getSizeInBits(); 4366 SDValue WidthMinus1 = 4367 DAG.getNode(ARMISD::VMOVIMM, dl, VT, 4368 DAG.getTargetConstant(NumBits - 1, dl, ElemTy)); 4369 SDValue CTLZ = DAG.getNode(ISD::CTLZ, dl, VT, LSB); 4370 return DAG.getNode(ISD::SUB, dl, VT, WidthMinus1, CTLZ); 4371 } 4372 4373 // Compute with: cttz(x) = ctpop(lsb - 1) 4374 4375 // Since we can only compute the number of bits in a byte with vcnt.8, we 4376 // have to gather the result with pairwise addition (vpaddl) for i16, i32, 4377 // and i64. 4378 4379 // Compute LSB - 1. 4380 SDValue Bits; 4381 if (ElemTy == MVT::i64) { 4382 // Load constant 0xffff'ffff'ffff'ffff to register. 4383 SDValue FF = DAG.getNode(ARMISD::VMOVIMM, dl, VT, 4384 DAG.getTargetConstant(0x1eff, dl, MVT::i32)); 4385 Bits = DAG.getNode(ISD::ADD, dl, VT, LSB, FF); 4386 } else { 4387 SDValue One = DAG.getNode(ARMISD::VMOVIMM, dl, VT, 4388 DAG.getTargetConstant(1, dl, ElemTy)); 4389 Bits = DAG.getNode(ISD::SUB, dl, VT, LSB, One); 4390 } 4391 4392 // Count #bits with vcnt.8. 4393 EVT VT8Bit = VT.is64BitVector() ? MVT::v8i8 : MVT::v16i8; 4394 SDValue BitsVT8 = DAG.getNode(ISD::BITCAST, dl, VT8Bit, Bits); 4395 SDValue Cnt8 = DAG.getNode(ISD::CTPOP, dl, VT8Bit, BitsVT8); 4396 4397 // Gather the #bits with vpaddl (pairwise add.) 4398 EVT VT16Bit = VT.is64BitVector() ? MVT::v4i16 : MVT::v8i16; 4399 SDValue Cnt16 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT16Bit, 4400 DAG.getTargetConstant(Intrinsic::arm_neon_vpaddlu, dl, MVT::i32), 4401 Cnt8); 4402 if (ElemTy == MVT::i16) 4403 return Cnt16; 4404 4405 EVT VT32Bit = VT.is64BitVector() ? MVT::v2i32 : MVT::v4i32; 4406 SDValue Cnt32 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT32Bit, 4407 DAG.getTargetConstant(Intrinsic::arm_neon_vpaddlu, dl, MVT::i32), 4408 Cnt16); 4409 if (ElemTy == MVT::i32) 4410 return Cnt32; 4411 4412 assert(ElemTy == MVT::i64); 4413 SDValue Cnt64 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, 4414 DAG.getTargetConstant(Intrinsic::arm_neon_vpaddlu, dl, MVT::i32), 4415 Cnt32); 4416 return Cnt64; 4417 } 4418 4419 if (!ST->hasV6T2Ops()) 4420 return SDValue(); 4421 4422 SDValue rbit = DAG.getNode(ISD::BITREVERSE, dl, VT, N->getOperand(0)); 4423 return DAG.getNode(ISD::CTLZ, dl, VT, rbit); 4424 } 4425 4426 /// getCTPOP16BitCounts - Returns a v8i8/v16i8 vector containing the bit-count 4427 /// for each 16-bit element from operand, repeated. The basic idea is to 4428 /// leverage vcnt to get the 8-bit counts, gather and add the results. 4429 /// 4430 /// Trace for v4i16: 4431 /// input = [v0 v1 v2 v3 ] (vi 16-bit element) 4432 /// cast: N0 = [w0 w1 w2 w3 w4 w5 w6 w7] (v0 = [w0 w1], wi 8-bit element) 4433 /// vcnt: N1 = [b0 b1 b2 b3 b4 b5 b6 b7] (bi = bit-count of 8-bit element wi) 4434 /// vrev: N2 = [b1 b0 b3 b2 b5 b4 b7 b6] 4435 /// [b0 b1 b2 b3 b4 b5 b6 b7] 4436 /// +[b1 b0 b3 b2 b5 b4 b7 b6] 4437 /// N3=N1+N2 = [k0 k0 k1 k1 k2 k2 k3 k3] (k0 = b0+b1 = bit-count of 16-bit v0, 4438 /// vuzp: = [k0 k1 k2 k3 k0 k1 k2 k3] each ki is 8-bits) 4439 static SDValue getCTPOP16BitCounts(SDNode *N, SelectionDAG &DAG) { 4440 EVT VT = N->getValueType(0); 4441 SDLoc DL(N); 4442 4443 EVT VT8Bit = VT.is64BitVector() ? MVT::v8i8 : MVT::v16i8; 4444 SDValue N0 = DAG.getNode(ISD::BITCAST, DL, VT8Bit, N->getOperand(0)); 4445 SDValue N1 = DAG.getNode(ISD::CTPOP, DL, VT8Bit, N0); 4446 SDValue N2 = DAG.getNode(ARMISD::VREV16, DL, VT8Bit, N1); 4447 SDValue N3 = DAG.getNode(ISD::ADD, DL, VT8Bit, N1, N2); 4448 return DAG.getNode(ARMISD::VUZP, DL, VT8Bit, N3, N3); 4449 } 4450 4451 /// lowerCTPOP16BitElements - Returns a v4i16/v8i16 vector containing the 4452 /// bit-count for each 16-bit element from the operand. We need slightly 4453 /// different sequencing for v4i16 and v8i16 to stay within NEON's available 4454 /// 64/128-bit registers. 4455 /// 4456 /// Trace for v4i16: 4457 /// input = [v0 v1 v2 v3 ] (vi 16-bit element) 4458 /// v8i8: BitCounts = [k0 k1 k2 k3 k0 k1 k2 k3 ] (ki is the bit-count of vi) 4459 /// v8i16:Extended = [k0 k1 k2 k3 k0 k1 k2 k3 ] 4460 /// v4i16:Extracted = [k0 k1 k2 k3 ] 4461 static SDValue lowerCTPOP16BitElements(SDNode *N, SelectionDAG &DAG) { 4462 EVT VT = N->getValueType(0); 4463 SDLoc DL(N); 4464 4465 SDValue BitCounts = getCTPOP16BitCounts(N, DAG); 4466 if (VT.is64BitVector()) { 4467 SDValue Extended = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v8i16, BitCounts); 4468 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i16, Extended, 4469 DAG.getIntPtrConstant(0, DL)); 4470 } else { 4471 SDValue Extracted = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v8i8, 4472 BitCounts, DAG.getIntPtrConstant(0, DL)); 4473 return DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v8i16, Extracted); 4474 } 4475 } 4476 4477 /// lowerCTPOP32BitElements - Returns a v2i32/v4i32 vector containing the 4478 /// bit-count for each 32-bit element from the operand. The idea here is 4479 /// to split the vector into 16-bit elements, leverage the 16-bit count 4480 /// routine, and then combine the results. 4481 /// 4482 /// Trace for v2i32 (v4i32 similar with Extracted/Extended exchanged): 4483 /// input = [v0 v1 ] (vi: 32-bit elements) 4484 /// Bitcast = [w0 w1 w2 w3 ] (wi: 16-bit elements, v0 = [w0 w1]) 4485 /// Counts16 = [k0 k1 k2 k3 ] (ki: 16-bit elements, bit-count of wi) 4486 /// vrev: N0 = [k1 k0 k3 k2 ] 4487 /// [k0 k1 k2 k3 ] 4488 /// N1 =+[k1 k0 k3 k2 ] 4489 /// [k0 k2 k1 k3 ] 4490 /// N2 =+[k1 k3 k0 k2 ] 4491 /// [k0 k2 k1 k3 ] 4492 /// Extended =+[k1 k3 k0 k2 ] 4493 /// [k0 k2 ] 4494 /// Extracted=+[k1 k3 ] 4495 /// 4496 static SDValue lowerCTPOP32BitElements(SDNode *N, SelectionDAG &DAG) { 4497 EVT VT = N->getValueType(0); 4498 SDLoc DL(N); 4499 4500 EVT VT16Bit = VT.is64BitVector() ? MVT::v4i16 : MVT::v8i16; 4501 4502 SDValue Bitcast = DAG.getNode(ISD::BITCAST, DL, VT16Bit, N->getOperand(0)); 4503 SDValue Counts16 = lowerCTPOP16BitElements(Bitcast.getNode(), DAG); 4504 SDValue N0 = DAG.getNode(ARMISD::VREV32, DL, VT16Bit, Counts16); 4505 SDValue N1 = DAG.getNode(ISD::ADD, DL, VT16Bit, Counts16, N0); 4506 SDValue N2 = DAG.getNode(ARMISD::VUZP, DL, VT16Bit, N1, N1); 4507 4508 if (VT.is64BitVector()) { 4509 SDValue Extended = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v4i32, N2); 4510 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v2i32, Extended, 4511 DAG.getIntPtrConstant(0, DL)); 4512 } else { 4513 SDValue Extracted = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, MVT::v4i16, N2, 4514 DAG.getIntPtrConstant(0, DL)); 4515 return DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::v4i32, Extracted); 4516 } 4517 } 4518 4519 static SDValue LowerCTPOP(SDNode *N, SelectionDAG &DAG, 4520 const ARMSubtarget *ST) { 4521 EVT VT = N->getValueType(0); 4522 4523 assert(ST->hasNEON() && "Custom ctpop lowering requires NEON."); 4524 assert((VT == MVT::v2i32 || VT == MVT::v4i32 || 4525 VT == MVT::v4i16 || VT == MVT::v8i16) && 4526 "Unexpected type for custom ctpop lowering"); 4527 4528 if (VT.getVectorElementType() == MVT::i32) 4529 return lowerCTPOP32BitElements(N, DAG); 4530 else 4531 return lowerCTPOP16BitElements(N, DAG); 4532 } 4533 4534 static SDValue LowerShift(SDNode *N, SelectionDAG &DAG, 4535 const ARMSubtarget *ST) { 4536 EVT VT = N->getValueType(0); 4537 SDLoc dl(N); 4538 4539 if (!VT.isVector()) 4540 return SDValue(); 4541 4542 // Lower vector shifts on NEON to use VSHL. 4543 assert(ST->hasNEON() && "unexpected vector shift"); 4544 4545 // Left shifts translate directly to the vshiftu intrinsic. 4546 if (N->getOpcode() == ISD::SHL) 4547 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, 4548 DAG.getConstant(Intrinsic::arm_neon_vshiftu, dl, 4549 MVT::i32), 4550 N->getOperand(0), N->getOperand(1)); 4551 4552 assert((N->getOpcode() == ISD::SRA || 4553 N->getOpcode() == ISD::SRL) && "unexpected vector shift opcode"); 4554 4555 // NEON uses the same intrinsics for both left and right shifts. For 4556 // right shifts, the shift amounts are negative, so negate the vector of 4557 // shift amounts. 4558 EVT ShiftVT = N->getOperand(1).getValueType(); 4559 SDValue NegatedCount = DAG.getNode(ISD::SUB, dl, ShiftVT, 4560 getZeroVector(ShiftVT, DAG, dl), 4561 N->getOperand(1)); 4562 Intrinsic::ID vshiftInt = (N->getOpcode() == ISD::SRA ? 4563 Intrinsic::arm_neon_vshifts : 4564 Intrinsic::arm_neon_vshiftu); 4565 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, VT, 4566 DAG.getConstant(vshiftInt, dl, MVT::i32), 4567 N->getOperand(0), NegatedCount); 4568 } 4569 4570 static SDValue Expand64BitShift(SDNode *N, SelectionDAG &DAG, 4571 const ARMSubtarget *ST) { 4572 EVT VT = N->getValueType(0); 4573 SDLoc dl(N); 4574 4575 // We can get here for a node like i32 = ISD::SHL i32, i64 4576 if (VT != MVT::i64) 4577 return SDValue(); 4578 4579 assert((N->getOpcode() == ISD::SRL || N->getOpcode() == ISD::SRA) && 4580 "Unknown shift to lower!"); 4581 4582 // We only lower SRA, SRL of 1 here, all others use generic lowering. 4583 if (!isOneConstant(N->getOperand(1))) 4584 return SDValue(); 4585 4586 // If we are in thumb mode, we don't have RRX. 4587 if (ST->isThumb1Only()) return SDValue(); 4588 4589 // Okay, we have a 64-bit SRA or SRL of 1. Lower this to an RRX expr. 4590 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0), 4591 DAG.getConstant(0, dl, MVT::i32)); 4592 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, N->getOperand(0), 4593 DAG.getConstant(1, dl, MVT::i32)); 4594 4595 // First, build a SRA_FLAG/SRL_FLAG op, which shifts the top part by one and 4596 // captures the result into a carry flag. 4597 unsigned Opc = N->getOpcode() == ISD::SRL ? ARMISD::SRL_FLAG:ARMISD::SRA_FLAG; 4598 Hi = DAG.getNode(Opc, dl, DAG.getVTList(MVT::i32, MVT::Glue), Hi); 4599 4600 // The low part is an ARMISD::RRX operand, which shifts the carry in. 4601 Lo = DAG.getNode(ARMISD::RRX, dl, MVT::i32, Lo, Hi.getValue(1)); 4602 4603 // Merge the pieces into a single i64 value. 4604 return DAG.getNode(ISD::BUILD_PAIR, dl, MVT::i64, Lo, Hi); 4605 } 4606 4607 static SDValue LowerVSETCC(SDValue Op, SelectionDAG &DAG) { 4608 SDValue TmpOp0, TmpOp1; 4609 bool Invert = false; 4610 bool Swap = false; 4611 unsigned Opc = 0; 4612 4613 SDValue Op0 = Op.getOperand(0); 4614 SDValue Op1 = Op.getOperand(1); 4615 SDValue CC = Op.getOperand(2); 4616 EVT CmpVT = Op0.getValueType().changeVectorElementTypeToInteger(); 4617 EVT VT = Op.getValueType(); 4618 ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get(); 4619 SDLoc dl(Op); 4620 4621 if (CmpVT.getVectorElementType() == MVT::i64) 4622 // 64-bit comparisons are not legal. We've marked SETCC as non-Custom, 4623 // but it's possible that our operands are 64-bit but our result is 32-bit. 4624 // Bail in this case. 4625 return SDValue(); 4626 4627 if (Op1.getValueType().isFloatingPoint()) { 4628 switch (SetCCOpcode) { 4629 default: llvm_unreachable("Illegal FP comparison"); 4630 case ISD::SETUNE: 4631 case ISD::SETNE: Invert = true; // Fallthrough 4632 case ISD::SETOEQ: 4633 case ISD::SETEQ: Opc = ARMISD::VCEQ; break; 4634 case ISD::SETOLT: 4635 case ISD::SETLT: Swap = true; // Fallthrough 4636 case ISD::SETOGT: 4637 case ISD::SETGT: Opc = ARMISD::VCGT; break; 4638 case ISD::SETOLE: 4639 case ISD::SETLE: Swap = true; // Fallthrough 4640 case ISD::SETOGE: 4641 case ISD::SETGE: Opc = ARMISD::VCGE; break; 4642 case ISD::SETUGE: Swap = true; // Fallthrough 4643 case ISD::SETULE: Invert = true; Opc = ARMISD::VCGT; break; 4644 case ISD::SETUGT: Swap = true; // Fallthrough 4645 case ISD::SETULT: Invert = true; Opc = ARMISD::VCGE; break; 4646 case ISD::SETUEQ: Invert = true; // Fallthrough 4647 case ISD::SETONE: 4648 // Expand this to (OLT | OGT). 4649 TmpOp0 = Op0; 4650 TmpOp1 = Op1; 4651 Opc = ISD::OR; 4652 Op0 = DAG.getNode(ARMISD::VCGT, dl, CmpVT, TmpOp1, TmpOp0); 4653 Op1 = DAG.getNode(ARMISD::VCGT, dl, CmpVT, TmpOp0, TmpOp1); 4654 break; 4655 case ISD::SETUO: Invert = true; // Fallthrough 4656 case ISD::SETO: 4657 // Expand this to (OLT | OGE). 4658 TmpOp0 = Op0; 4659 TmpOp1 = Op1; 4660 Opc = ISD::OR; 4661 Op0 = DAG.getNode(ARMISD::VCGT, dl, CmpVT, TmpOp1, TmpOp0); 4662 Op1 = DAG.getNode(ARMISD::VCGE, dl, CmpVT, TmpOp0, TmpOp1); 4663 break; 4664 } 4665 } else { 4666 // Integer comparisons. 4667 switch (SetCCOpcode) { 4668 default: llvm_unreachable("Illegal integer comparison"); 4669 case ISD::SETNE: Invert = true; 4670 case ISD::SETEQ: Opc = ARMISD::VCEQ; break; 4671 case ISD::SETLT: Swap = true; 4672 case ISD::SETGT: Opc = ARMISD::VCGT; break; 4673 case ISD::SETLE: Swap = true; 4674 case ISD::SETGE: Opc = ARMISD::VCGE; break; 4675 case ISD::SETULT: Swap = true; 4676 case ISD::SETUGT: Opc = ARMISD::VCGTU; break; 4677 case ISD::SETULE: Swap = true; 4678 case ISD::SETUGE: Opc = ARMISD::VCGEU; break; 4679 } 4680 4681 // Detect VTST (Vector Test Bits) = icmp ne (and (op0, op1), zero). 4682 if (Opc == ARMISD::VCEQ) { 4683 4684 SDValue AndOp; 4685 if (ISD::isBuildVectorAllZeros(Op1.getNode())) 4686 AndOp = Op0; 4687 else if (ISD::isBuildVectorAllZeros(Op0.getNode())) 4688 AndOp = Op1; 4689 4690 // Ignore bitconvert. 4691 if (AndOp.getNode() && AndOp.getOpcode() == ISD::BITCAST) 4692 AndOp = AndOp.getOperand(0); 4693 4694 if (AndOp.getNode() && AndOp.getOpcode() == ISD::AND) { 4695 Opc = ARMISD::VTST; 4696 Op0 = DAG.getNode(ISD::BITCAST, dl, CmpVT, AndOp.getOperand(0)); 4697 Op1 = DAG.getNode(ISD::BITCAST, dl, CmpVT, AndOp.getOperand(1)); 4698 Invert = !Invert; 4699 } 4700 } 4701 } 4702 4703 if (Swap) 4704 std::swap(Op0, Op1); 4705 4706 // If one of the operands is a constant vector zero, attempt to fold the 4707 // comparison to a specialized compare-against-zero form. 4708 SDValue SingleOp; 4709 if (ISD::isBuildVectorAllZeros(Op1.getNode())) 4710 SingleOp = Op0; 4711 else if (ISD::isBuildVectorAllZeros(Op0.getNode())) { 4712 if (Opc == ARMISD::VCGE) 4713 Opc = ARMISD::VCLEZ; 4714 else if (Opc == ARMISD::VCGT) 4715 Opc = ARMISD::VCLTZ; 4716 SingleOp = Op1; 4717 } 4718 4719 SDValue Result; 4720 if (SingleOp.getNode()) { 4721 switch (Opc) { 4722 case ARMISD::VCEQ: 4723 Result = DAG.getNode(ARMISD::VCEQZ, dl, CmpVT, SingleOp); break; 4724 case ARMISD::VCGE: 4725 Result = DAG.getNode(ARMISD::VCGEZ, dl, CmpVT, SingleOp); break; 4726 case ARMISD::VCLEZ: 4727 Result = DAG.getNode(ARMISD::VCLEZ, dl, CmpVT, SingleOp); break; 4728 case ARMISD::VCGT: 4729 Result = DAG.getNode(ARMISD::VCGTZ, dl, CmpVT, SingleOp); break; 4730 case ARMISD::VCLTZ: 4731 Result = DAG.getNode(ARMISD::VCLTZ, dl, CmpVT, SingleOp); break; 4732 default: 4733 Result = DAG.getNode(Opc, dl, CmpVT, Op0, Op1); 4734 } 4735 } else { 4736 Result = DAG.getNode(Opc, dl, CmpVT, Op0, Op1); 4737 } 4738 4739 Result = DAG.getSExtOrTrunc(Result, dl, VT); 4740 4741 if (Invert) 4742 Result = DAG.getNOT(dl, Result, VT); 4743 4744 return Result; 4745 } 4746 4747 /// isNEONModifiedImm - Check if the specified splat value corresponds to a 4748 /// valid vector constant for a NEON instruction with a "modified immediate" 4749 /// operand (e.g., VMOV). If so, return the encoded value. 4750 static SDValue isNEONModifiedImm(uint64_t SplatBits, uint64_t SplatUndef, 4751 unsigned SplatBitSize, SelectionDAG &DAG, 4752 SDLoc dl, EVT &VT, bool is128Bits, 4753 NEONModImmType type) { 4754 unsigned OpCmode, Imm; 4755 4756 // SplatBitSize is set to the smallest size that splats the vector, so a 4757 // zero vector will always have SplatBitSize == 8. However, NEON modified 4758 // immediate instructions others than VMOV do not support the 8-bit encoding 4759 // of a zero vector, and the default encoding of zero is supposed to be the 4760 // 32-bit version. 4761 if (SplatBits == 0) 4762 SplatBitSize = 32; 4763 4764 switch (SplatBitSize) { 4765 case 8: 4766 if (type != VMOVModImm) 4767 return SDValue(); 4768 // Any 1-byte value is OK. Op=0, Cmode=1110. 4769 assert((SplatBits & ~0xff) == 0 && "one byte splat value is too big"); 4770 OpCmode = 0xe; 4771 Imm = SplatBits; 4772 VT = is128Bits ? MVT::v16i8 : MVT::v8i8; 4773 break; 4774 4775 case 16: 4776 // NEON's 16-bit VMOV supports splat values where only one byte is nonzero. 4777 VT = is128Bits ? MVT::v8i16 : MVT::v4i16; 4778 if ((SplatBits & ~0xff) == 0) { 4779 // Value = 0x00nn: Op=x, Cmode=100x. 4780 OpCmode = 0x8; 4781 Imm = SplatBits; 4782 break; 4783 } 4784 if ((SplatBits & ~0xff00) == 0) { 4785 // Value = 0xnn00: Op=x, Cmode=101x. 4786 OpCmode = 0xa; 4787 Imm = SplatBits >> 8; 4788 break; 4789 } 4790 return SDValue(); 4791 4792 case 32: 4793 // NEON's 32-bit VMOV supports splat values where: 4794 // * only one byte is nonzero, or 4795 // * the least significant byte is 0xff and the second byte is nonzero, or 4796 // * the least significant 2 bytes are 0xff and the third is nonzero. 4797 VT = is128Bits ? MVT::v4i32 : MVT::v2i32; 4798 if ((SplatBits & ~0xff) == 0) { 4799 // Value = 0x000000nn: Op=x, Cmode=000x. 4800 OpCmode = 0; 4801 Imm = SplatBits; 4802 break; 4803 } 4804 if ((SplatBits & ~0xff00) == 0) { 4805 // Value = 0x0000nn00: Op=x, Cmode=001x. 4806 OpCmode = 0x2; 4807 Imm = SplatBits >> 8; 4808 break; 4809 } 4810 if ((SplatBits & ~0xff0000) == 0) { 4811 // Value = 0x00nn0000: Op=x, Cmode=010x. 4812 OpCmode = 0x4; 4813 Imm = SplatBits >> 16; 4814 break; 4815 } 4816 if ((SplatBits & ~0xff000000) == 0) { 4817 // Value = 0xnn000000: Op=x, Cmode=011x. 4818 OpCmode = 0x6; 4819 Imm = SplatBits >> 24; 4820 break; 4821 } 4822 4823 // cmode == 0b1100 and cmode == 0b1101 are not supported for VORR or VBIC 4824 if (type == OtherModImm) return SDValue(); 4825 4826 if ((SplatBits & ~0xffff) == 0 && 4827 ((SplatBits | SplatUndef) & 0xff) == 0xff) { 4828 // Value = 0x0000nnff: Op=x, Cmode=1100. 4829 OpCmode = 0xc; 4830 Imm = SplatBits >> 8; 4831 break; 4832 } 4833 4834 if ((SplatBits & ~0xffffff) == 0 && 4835 ((SplatBits | SplatUndef) & 0xffff) == 0xffff) { 4836 // Value = 0x00nnffff: Op=x, Cmode=1101. 4837 OpCmode = 0xd; 4838 Imm = SplatBits >> 16; 4839 break; 4840 } 4841 4842 // Note: there are a few 32-bit splat values (specifically: 00ffff00, 4843 // ff000000, ff0000ff, and ffff00ff) that are valid for VMOV.I64 but not 4844 // VMOV.I32. A (very) minor optimization would be to replicate the value 4845 // and fall through here to test for a valid 64-bit splat. But, then the 4846 // caller would also need to check and handle the change in size. 4847 return SDValue(); 4848 4849 case 64: { 4850 if (type != VMOVModImm) 4851 return SDValue(); 4852 // NEON has a 64-bit VMOV splat where each byte is either 0 or 0xff. 4853 uint64_t BitMask = 0xff; 4854 uint64_t Val = 0; 4855 unsigned ImmMask = 1; 4856 Imm = 0; 4857 for (int ByteNum = 0; ByteNum < 8; ++ByteNum) { 4858 if (((SplatBits | SplatUndef) & BitMask) == BitMask) { 4859 Val |= BitMask; 4860 Imm |= ImmMask; 4861 } else if ((SplatBits & BitMask) != 0) { 4862 return SDValue(); 4863 } 4864 BitMask <<= 8; 4865 ImmMask <<= 1; 4866 } 4867 4868 if (DAG.getDataLayout().isBigEndian()) 4869 // swap higher and lower 32 bit word 4870 Imm = ((Imm & 0xf) << 4) | ((Imm & 0xf0) >> 4); 4871 4872 // Op=1, Cmode=1110. 4873 OpCmode = 0x1e; 4874 VT = is128Bits ? MVT::v2i64 : MVT::v1i64; 4875 break; 4876 } 4877 4878 default: 4879 llvm_unreachable("unexpected size for isNEONModifiedImm"); 4880 } 4881 4882 unsigned EncodedVal = ARM_AM::createNEONModImm(OpCmode, Imm); 4883 return DAG.getTargetConstant(EncodedVal, dl, MVT::i32); 4884 } 4885 4886 SDValue ARMTargetLowering::LowerConstantFP(SDValue Op, SelectionDAG &DAG, 4887 const ARMSubtarget *ST) const { 4888 if (!ST->hasVFP3()) 4889 return SDValue(); 4890 4891 bool IsDouble = Op.getValueType() == MVT::f64; 4892 ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Op); 4893 4894 // Use the default (constant pool) lowering for double constants when we have 4895 // an SP-only FPU 4896 if (IsDouble && Subtarget->isFPOnlySP()) 4897 return SDValue(); 4898 4899 // Try splatting with a VMOV.f32... 4900 APFloat FPVal = CFP->getValueAPF(); 4901 int ImmVal = IsDouble ? ARM_AM::getFP64Imm(FPVal) : ARM_AM::getFP32Imm(FPVal); 4902 4903 if (ImmVal != -1) { 4904 if (IsDouble || !ST->useNEONForSinglePrecisionFP()) { 4905 // We have code in place to select a valid ConstantFP already, no need to 4906 // do any mangling. 4907 return Op; 4908 } 4909 4910 // It's a float and we are trying to use NEON operations where 4911 // possible. Lower it to a splat followed by an extract. 4912 SDLoc DL(Op); 4913 SDValue NewVal = DAG.getTargetConstant(ImmVal, DL, MVT::i32); 4914 SDValue VecConstant = DAG.getNode(ARMISD::VMOVFPIMM, DL, MVT::v2f32, 4915 NewVal); 4916 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecConstant, 4917 DAG.getConstant(0, DL, MVT::i32)); 4918 } 4919 4920 // The rest of our options are NEON only, make sure that's allowed before 4921 // proceeding.. 4922 if (!ST->hasNEON() || (!IsDouble && !ST->useNEONForSinglePrecisionFP())) 4923 return SDValue(); 4924 4925 EVT VMovVT; 4926 uint64_t iVal = FPVal.bitcastToAPInt().getZExtValue(); 4927 4928 // It wouldn't really be worth bothering for doubles except for one very 4929 // important value, which does happen to match: 0.0. So make sure we don't do 4930 // anything stupid. 4931 if (IsDouble && (iVal & 0xffffffff) != (iVal >> 32)) 4932 return SDValue(); 4933 4934 // Try a VMOV.i32 (FIXME: i8, i16, or i64 could work too). 4935 SDValue NewVal = isNEONModifiedImm(iVal & 0xffffffffU, 0, 32, DAG, SDLoc(Op), 4936 VMovVT, false, VMOVModImm); 4937 if (NewVal != SDValue()) { 4938 SDLoc DL(Op); 4939 SDValue VecConstant = DAG.getNode(ARMISD::VMOVIMM, DL, VMovVT, 4940 NewVal); 4941 if (IsDouble) 4942 return DAG.getNode(ISD::BITCAST, DL, MVT::f64, VecConstant); 4943 4944 // It's a float: cast and extract a vector element. 4945 SDValue VecFConstant = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32, 4946 VecConstant); 4947 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecFConstant, 4948 DAG.getConstant(0, DL, MVT::i32)); 4949 } 4950 4951 // Finally, try a VMVN.i32 4952 NewVal = isNEONModifiedImm(~iVal & 0xffffffffU, 0, 32, DAG, SDLoc(Op), VMovVT, 4953 false, VMVNModImm); 4954 if (NewVal != SDValue()) { 4955 SDLoc DL(Op); 4956 SDValue VecConstant = DAG.getNode(ARMISD::VMVNIMM, DL, VMovVT, NewVal); 4957 4958 if (IsDouble) 4959 return DAG.getNode(ISD::BITCAST, DL, MVT::f64, VecConstant); 4960 4961 // It's a float: cast and extract a vector element. 4962 SDValue VecFConstant = DAG.getNode(ISD::BITCAST, DL, MVT::v2f32, 4963 VecConstant); 4964 return DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::f32, VecFConstant, 4965 DAG.getConstant(0, DL, MVT::i32)); 4966 } 4967 4968 return SDValue(); 4969 } 4970 4971 // check if an VEXT instruction can handle the shuffle mask when the 4972 // vector sources of the shuffle are the same. 4973 static bool isSingletonVEXTMask(ArrayRef<int> M, EVT VT, unsigned &Imm) { 4974 unsigned NumElts = VT.getVectorNumElements(); 4975 4976 // Assume that the first shuffle index is not UNDEF. Fail if it is. 4977 if (M[0] < 0) 4978 return false; 4979 4980 Imm = M[0]; 4981 4982 // If this is a VEXT shuffle, the immediate value is the index of the first 4983 // element. The other shuffle indices must be the successive elements after 4984 // the first one. 4985 unsigned ExpectedElt = Imm; 4986 for (unsigned i = 1; i < NumElts; ++i) { 4987 // Increment the expected index. If it wraps around, just follow it 4988 // back to index zero and keep going. 4989 ++ExpectedElt; 4990 if (ExpectedElt == NumElts) 4991 ExpectedElt = 0; 4992 4993 if (M[i] < 0) continue; // ignore UNDEF indices 4994 if (ExpectedElt != static_cast<unsigned>(M[i])) 4995 return false; 4996 } 4997 4998 return true; 4999 } 5000 5001 5002 static bool isVEXTMask(ArrayRef<int> M, EVT VT, 5003 bool &ReverseVEXT, unsigned &Imm) { 5004 unsigned NumElts = VT.getVectorNumElements(); 5005 ReverseVEXT = false; 5006 5007 // Assume that the first shuffle index is not UNDEF. Fail if it is. 5008 if (M[0] < 0) 5009 return false; 5010 5011 Imm = M[0]; 5012 5013 // If this is a VEXT shuffle, the immediate value is the index of the first 5014 // element. The other shuffle indices must be the successive elements after 5015 // the first one. 5016 unsigned ExpectedElt = Imm; 5017 for (unsigned i = 1; i < NumElts; ++i) { 5018 // Increment the expected index. If it wraps around, it may still be 5019 // a VEXT but the source vectors must be swapped. 5020 ExpectedElt += 1; 5021 if (ExpectedElt == NumElts * 2) { 5022 ExpectedElt = 0; 5023 ReverseVEXT = true; 5024 } 5025 5026 if (M[i] < 0) continue; // ignore UNDEF indices 5027 if (ExpectedElt != static_cast<unsigned>(M[i])) 5028 return false; 5029 } 5030 5031 // Adjust the index value if the source operands will be swapped. 5032 if (ReverseVEXT) 5033 Imm -= NumElts; 5034 5035 return true; 5036 } 5037 5038 /// isVREVMask - Check if a vector shuffle corresponds to a VREV 5039 /// instruction with the specified blocksize. (The order of the elements 5040 /// within each block of the vector is reversed.) 5041 static bool isVREVMask(ArrayRef<int> M, EVT VT, unsigned BlockSize) { 5042 assert((BlockSize==16 || BlockSize==32 || BlockSize==64) && 5043 "Only possible block sizes for VREV are: 16, 32, 64"); 5044 5045 unsigned EltSz = VT.getVectorElementType().getSizeInBits(); 5046 if (EltSz == 64) 5047 return false; 5048 5049 unsigned NumElts = VT.getVectorNumElements(); 5050 unsigned BlockElts = M[0] + 1; 5051 // If the first shuffle index is UNDEF, be optimistic. 5052 if (M[0] < 0) 5053 BlockElts = BlockSize / EltSz; 5054 5055 if (BlockSize <= EltSz || BlockSize != BlockElts * EltSz) 5056 return false; 5057 5058 for (unsigned i = 0; i < NumElts; ++i) { 5059 if (M[i] < 0) continue; // ignore UNDEF indices 5060 if ((unsigned) M[i] != (i - i%BlockElts) + (BlockElts - 1 - i%BlockElts)) 5061 return false; 5062 } 5063 5064 return true; 5065 } 5066 5067 static bool isVTBLMask(ArrayRef<int> M, EVT VT) { 5068 // We can handle <8 x i8> vector shuffles. If the index in the mask is out of 5069 // range, then 0 is placed into the resulting vector. So pretty much any mask 5070 // of 8 elements can work here. 5071 return VT == MVT::v8i8 && M.size() == 8; 5072 } 5073 5074 // Checks whether the shuffle mask represents a vector transpose (VTRN) by 5075 // checking that pairs of elements in the shuffle mask represent the same index 5076 // in each vector, incrementing the expected index by 2 at each step. 5077 // e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 4, 2, 6] 5078 // v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,e,c,g} 5079 // v2={e,f,g,h} 5080 // WhichResult gives the offset for each element in the mask based on which 5081 // of the two results it belongs to. 5082 // 5083 // The transpose can be represented either as: 5084 // result1 = shufflevector v1, v2, result1_shuffle_mask 5085 // result2 = shufflevector v1, v2, result2_shuffle_mask 5086 // where v1/v2 and the shuffle masks have the same number of elements 5087 // (here WhichResult (see below) indicates which result is being checked) 5088 // 5089 // or as: 5090 // results = shufflevector v1, v2, shuffle_mask 5091 // where both results are returned in one vector and the shuffle mask has twice 5092 // as many elements as v1/v2 (here WhichResult will always be 0 if true) here we 5093 // want to check the low half and high half of the shuffle mask as if it were 5094 // the other case 5095 static bool isVTRNMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) { 5096 unsigned EltSz = VT.getVectorElementType().getSizeInBits(); 5097 if (EltSz == 64) 5098 return false; 5099 5100 unsigned NumElts = VT.getVectorNumElements(); 5101 if (M.size() != NumElts && M.size() != NumElts*2) 5102 return false; 5103 5104 // If the mask is twice as long as the input vector then we need to check the 5105 // upper and lower parts of the mask with a matching value for WhichResult 5106 // FIXME: A mask with only even values will be rejected in case the first 5107 // element is undefined, e.g. [-1, 4, 2, 6] will be rejected, because only 5108 // M[0] is used to determine WhichResult 5109 for (unsigned i = 0; i < M.size(); i += NumElts) { 5110 if (M.size() == NumElts * 2) 5111 WhichResult = i / NumElts; 5112 else 5113 WhichResult = M[i] == 0 ? 0 : 1; 5114 for (unsigned j = 0; j < NumElts; j += 2) { 5115 if ((M[i+j] >= 0 && (unsigned) M[i+j] != j + WhichResult) || 5116 (M[i+j+1] >= 0 && (unsigned) M[i+j+1] != j + NumElts + WhichResult)) 5117 return false; 5118 } 5119 } 5120 5121 if (M.size() == NumElts*2) 5122 WhichResult = 0; 5123 5124 return true; 5125 } 5126 5127 /// isVTRN_v_undef_Mask - Special case of isVTRNMask for canonical form of 5128 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef". 5129 /// Mask is e.g., <0, 0, 2, 2> instead of <0, 4, 2, 6>. 5130 static bool isVTRN_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){ 5131 unsigned EltSz = VT.getVectorElementType().getSizeInBits(); 5132 if (EltSz == 64) 5133 return false; 5134 5135 unsigned NumElts = VT.getVectorNumElements(); 5136 if (M.size() != NumElts && M.size() != NumElts*2) 5137 return false; 5138 5139 for (unsigned i = 0; i < M.size(); i += NumElts) { 5140 if (M.size() == NumElts * 2) 5141 WhichResult = i / NumElts; 5142 else 5143 WhichResult = M[i] == 0 ? 0 : 1; 5144 for (unsigned j = 0; j < NumElts; j += 2) { 5145 if ((M[i+j] >= 0 && (unsigned) M[i+j] != j + WhichResult) || 5146 (M[i+j+1] >= 0 && (unsigned) M[i+j+1] != j + WhichResult)) 5147 return false; 5148 } 5149 } 5150 5151 if (M.size() == NumElts*2) 5152 WhichResult = 0; 5153 5154 return true; 5155 } 5156 5157 // Checks whether the shuffle mask represents a vector unzip (VUZP) by checking 5158 // that the mask elements are either all even and in steps of size 2 or all odd 5159 // and in steps of size 2. 5160 // e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 2, 4, 6] 5161 // v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,c,e,g} 5162 // v2={e,f,g,h} 5163 // Requires similar checks to that of isVTRNMask with 5164 // respect the how results are returned. 5165 static bool isVUZPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) { 5166 unsigned EltSz = VT.getVectorElementType().getSizeInBits(); 5167 if (EltSz == 64) 5168 return false; 5169 5170 unsigned NumElts = VT.getVectorNumElements(); 5171 if (M.size() != NumElts && M.size() != NumElts*2) 5172 return false; 5173 5174 for (unsigned i = 0; i < M.size(); i += NumElts) { 5175 WhichResult = M[i] == 0 ? 0 : 1; 5176 for (unsigned j = 0; j < NumElts; ++j) { 5177 if (M[i+j] >= 0 && (unsigned) M[i+j] != 2 * j + WhichResult) 5178 return false; 5179 } 5180 } 5181 5182 if (M.size() == NumElts*2) 5183 WhichResult = 0; 5184 5185 // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32. 5186 if (VT.is64BitVector() && EltSz == 32) 5187 return false; 5188 5189 return true; 5190 } 5191 5192 /// isVUZP_v_undef_Mask - Special case of isVUZPMask for canonical form of 5193 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef". 5194 /// Mask is e.g., <0, 2, 0, 2> instead of <0, 2, 4, 6>, 5195 static bool isVUZP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){ 5196 unsigned EltSz = VT.getVectorElementType().getSizeInBits(); 5197 if (EltSz == 64) 5198 return false; 5199 5200 unsigned NumElts = VT.getVectorNumElements(); 5201 if (M.size() != NumElts && M.size() != NumElts*2) 5202 return false; 5203 5204 unsigned Half = NumElts / 2; 5205 for (unsigned i = 0; i < M.size(); i += NumElts) { 5206 WhichResult = M[i] == 0 ? 0 : 1; 5207 for (unsigned j = 0; j < NumElts; j += Half) { 5208 unsigned Idx = WhichResult; 5209 for (unsigned k = 0; k < Half; ++k) { 5210 int MIdx = M[i + j + k]; 5211 if (MIdx >= 0 && (unsigned) MIdx != Idx) 5212 return false; 5213 Idx += 2; 5214 } 5215 } 5216 } 5217 5218 if (M.size() == NumElts*2) 5219 WhichResult = 0; 5220 5221 // VUZP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32. 5222 if (VT.is64BitVector() && EltSz == 32) 5223 return false; 5224 5225 return true; 5226 } 5227 5228 // Checks whether the shuffle mask represents a vector zip (VZIP) by checking 5229 // that pairs of elements of the shufflemask represent the same index in each 5230 // vector incrementing sequentially through the vectors. 5231 // e.g. For v1,v2 of type v4i32 a valid shuffle mask is: [0, 4, 1, 5] 5232 // v1={a,b,c,d} => x=shufflevector v1, v2 shufflemask => x={a,e,b,f} 5233 // v2={e,f,g,h} 5234 // Requires similar checks to that of isVTRNMask with respect the how results 5235 // are returned. 5236 static bool isVZIPMask(ArrayRef<int> M, EVT VT, unsigned &WhichResult) { 5237 unsigned EltSz = VT.getVectorElementType().getSizeInBits(); 5238 if (EltSz == 64) 5239 return false; 5240 5241 unsigned NumElts = VT.getVectorNumElements(); 5242 if (M.size() != NumElts && M.size() != NumElts*2) 5243 return false; 5244 5245 for (unsigned i = 0; i < M.size(); i += NumElts) { 5246 WhichResult = M[i] == 0 ? 0 : 1; 5247 unsigned Idx = WhichResult * NumElts / 2; 5248 for (unsigned j = 0; j < NumElts; j += 2) { 5249 if ((M[i+j] >= 0 && (unsigned) M[i+j] != Idx) || 5250 (M[i+j+1] >= 0 && (unsigned) M[i+j+1] != Idx + NumElts)) 5251 return false; 5252 Idx += 1; 5253 } 5254 } 5255 5256 if (M.size() == NumElts*2) 5257 WhichResult = 0; 5258 5259 // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32. 5260 if (VT.is64BitVector() && EltSz == 32) 5261 return false; 5262 5263 return true; 5264 } 5265 5266 /// isVZIP_v_undef_Mask - Special case of isVZIPMask for canonical form of 5267 /// "vector_shuffle v, v", i.e., "vector_shuffle v, undef". 5268 /// Mask is e.g., <0, 0, 1, 1> instead of <0, 4, 1, 5>. 5269 static bool isVZIP_v_undef_Mask(ArrayRef<int> M, EVT VT, unsigned &WhichResult){ 5270 unsigned EltSz = VT.getVectorElementType().getSizeInBits(); 5271 if (EltSz == 64) 5272 return false; 5273 5274 unsigned NumElts = VT.getVectorNumElements(); 5275 if (M.size() != NumElts && M.size() != NumElts*2) 5276 return false; 5277 5278 for (unsigned i = 0; i < M.size(); i += NumElts) { 5279 WhichResult = M[i] == 0 ? 0 : 1; 5280 unsigned Idx = WhichResult * NumElts / 2; 5281 for (unsigned j = 0; j < NumElts; j += 2) { 5282 if ((M[i+j] >= 0 && (unsigned) M[i+j] != Idx) || 5283 (M[i+j+1] >= 0 && (unsigned) M[i+j+1] != Idx)) 5284 return false; 5285 Idx += 1; 5286 } 5287 } 5288 5289 if (M.size() == NumElts*2) 5290 WhichResult = 0; 5291 5292 // VZIP.32 for 64-bit vectors is a pseudo-instruction alias for VTRN.32. 5293 if (VT.is64BitVector() && EltSz == 32) 5294 return false; 5295 5296 return true; 5297 } 5298 5299 /// Check if \p ShuffleMask is a NEON two-result shuffle (VZIP, VUZP, VTRN), 5300 /// and return the corresponding ARMISD opcode if it is, or 0 if it isn't. 5301 static unsigned isNEONTwoResultShuffleMask(ArrayRef<int> ShuffleMask, EVT VT, 5302 unsigned &WhichResult, 5303 bool &isV_UNDEF) { 5304 isV_UNDEF = false; 5305 if (isVTRNMask(ShuffleMask, VT, WhichResult)) 5306 return ARMISD::VTRN; 5307 if (isVUZPMask(ShuffleMask, VT, WhichResult)) 5308 return ARMISD::VUZP; 5309 if (isVZIPMask(ShuffleMask, VT, WhichResult)) 5310 return ARMISD::VZIP; 5311 5312 isV_UNDEF = true; 5313 if (isVTRN_v_undef_Mask(ShuffleMask, VT, WhichResult)) 5314 return ARMISD::VTRN; 5315 if (isVUZP_v_undef_Mask(ShuffleMask, VT, WhichResult)) 5316 return ARMISD::VUZP; 5317 if (isVZIP_v_undef_Mask(ShuffleMask, VT, WhichResult)) 5318 return ARMISD::VZIP; 5319 5320 return 0; 5321 } 5322 5323 /// \return true if this is a reverse operation on an vector. 5324 static bool isReverseMask(ArrayRef<int> M, EVT VT) { 5325 unsigned NumElts = VT.getVectorNumElements(); 5326 // Make sure the mask has the right size. 5327 if (NumElts != M.size()) 5328 return false; 5329 5330 // Look for <15, ..., 3, -1, 1, 0>. 5331 for (unsigned i = 0; i != NumElts; ++i) 5332 if (M[i] >= 0 && M[i] != (int) (NumElts - 1 - i)) 5333 return false; 5334 5335 return true; 5336 } 5337 5338 // If N is an integer constant that can be moved into a register in one 5339 // instruction, return an SDValue of such a constant (will become a MOV 5340 // instruction). Otherwise return null. 5341 static SDValue IsSingleInstrConstant(SDValue N, SelectionDAG &DAG, 5342 const ARMSubtarget *ST, SDLoc dl) { 5343 uint64_t Val; 5344 if (!isa<ConstantSDNode>(N)) 5345 return SDValue(); 5346 Val = cast<ConstantSDNode>(N)->getZExtValue(); 5347 5348 if (ST->isThumb1Only()) { 5349 if (Val <= 255 || ~Val <= 255) 5350 return DAG.getConstant(Val, dl, MVT::i32); 5351 } else { 5352 if (ARM_AM::getSOImmVal(Val) != -1 || ARM_AM::getSOImmVal(~Val) != -1) 5353 return DAG.getConstant(Val, dl, MVT::i32); 5354 } 5355 return SDValue(); 5356 } 5357 5358 // If this is a case we can't handle, return null and let the default 5359 // expansion code take care of it. 5360 SDValue ARMTargetLowering::LowerBUILD_VECTOR(SDValue Op, SelectionDAG &DAG, 5361 const ARMSubtarget *ST) const { 5362 BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Op.getNode()); 5363 SDLoc dl(Op); 5364 EVT VT = Op.getValueType(); 5365 5366 APInt SplatBits, SplatUndef; 5367 unsigned SplatBitSize; 5368 bool HasAnyUndefs; 5369 if (BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) { 5370 if (SplatBitSize <= 64) { 5371 // Check if an immediate VMOV works. 5372 EVT VmovVT; 5373 SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(), 5374 SplatUndef.getZExtValue(), SplatBitSize, 5375 DAG, dl, VmovVT, VT.is128BitVector(), 5376 VMOVModImm); 5377 if (Val.getNode()) { 5378 SDValue Vmov = DAG.getNode(ARMISD::VMOVIMM, dl, VmovVT, Val); 5379 return DAG.getNode(ISD::BITCAST, dl, VT, Vmov); 5380 } 5381 5382 // Try an immediate VMVN. 5383 uint64_t NegatedImm = (~SplatBits).getZExtValue(); 5384 Val = isNEONModifiedImm(NegatedImm, 5385 SplatUndef.getZExtValue(), SplatBitSize, 5386 DAG, dl, VmovVT, VT.is128BitVector(), 5387 VMVNModImm); 5388 if (Val.getNode()) { 5389 SDValue Vmov = DAG.getNode(ARMISD::VMVNIMM, dl, VmovVT, Val); 5390 return DAG.getNode(ISD::BITCAST, dl, VT, Vmov); 5391 } 5392 5393 // Use vmov.f32 to materialize other v2f32 and v4f32 splats. 5394 if ((VT == MVT::v2f32 || VT == MVT::v4f32) && SplatBitSize == 32) { 5395 int ImmVal = ARM_AM::getFP32Imm(SplatBits); 5396 if (ImmVal != -1) { 5397 SDValue Val = DAG.getTargetConstant(ImmVal, dl, MVT::i32); 5398 return DAG.getNode(ARMISD::VMOVFPIMM, dl, VT, Val); 5399 } 5400 } 5401 } 5402 } 5403 5404 // Scan through the operands to see if only one value is used. 5405 // 5406 // As an optimisation, even if more than one value is used it may be more 5407 // profitable to splat with one value then change some lanes. 5408 // 5409 // Heuristically we decide to do this if the vector has a "dominant" value, 5410 // defined as splatted to more than half of the lanes. 5411 unsigned NumElts = VT.getVectorNumElements(); 5412 bool isOnlyLowElement = true; 5413 bool usesOnlyOneValue = true; 5414 bool hasDominantValue = false; 5415 bool isConstant = true; 5416 5417 // Map of the number of times a particular SDValue appears in the 5418 // element list. 5419 DenseMap<SDValue, unsigned> ValueCounts; 5420 SDValue Value; 5421 for (unsigned i = 0; i < NumElts; ++i) { 5422 SDValue V = Op.getOperand(i); 5423 if (V.getOpcode() == ISD::UNDEF) 5424 continue; 5425 if (i > 0) 5426 isOnlyLowElement = false; 5427 if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V)) 5428 isConstant = false; 5429 5430 ValueCounts.insert(std::make_pair(V, 0)); 5431 unsigned &Count = ValueCounts[V]; 5432 5433 // Is this value dominant? (takes up more than half of the lanes) 5434 if (++Count > (NumElts / 2)) { 5435 hasDominantValue = true; 5436 Value = V; 5437 } 5438 } 5439 if (ValueCounts.size() != 1) 5440 usesOnlyOneValue = false; 5441 if (!Value.getNode() && ValueCounts.size() > 0) 5442 Value = ValueCounts.begin()->first; 5443 5444 if (ValueCounts.size() == 0) 5445 return DAG.getUNDEF(VT); 5446 5447 // Loads are better lowered with insert_vector_elt/ARMISD::BUILD_VECTOR. 5448 // Keep going if we are hitting this case. 5449 if (isOnlyLowElement && !ISD::isNormalLoad(Value.getNode())) 5450 return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value); 5451 5452 unsigned EltSize = VT.getVectorElementType().getSizeInBits(); 5453 5454 // Use VDUP for non-constant splats. For f32 constant splats, reduce to 5455 // i32 and try again. 5456 if (hasDominantValue && EltSize <= 32) { 5457 if (!isConstant) { 5458 SDValue N; 5459 5460 // If we are VDUPing a value that comes directly from a vector, that will 5461 // cause an unnecessary move to and from a GPR, where instead we could 5462 // just use VDUPLANE. We can only do this if the lane being extracted 5463 // is at a constant index, as the VDUP from lane instructions only have 5464 // constant-index forms. 5465 ConstantSDNode *constIndex; 5466 if (Value->getOpcode() == ISD::EXTRACT_VECTOR_ELT && 5467 (constIndex = dyn_cast<ConstantSDNode>(Value->getOperand(1)))) { 5468 // We need to create a new undef vector to use for the VDUPLANE if the 5469 // size of the vector from which we get the value is different than the 5470 // size of the vector that we need to create. We will insert the element 5471 // such that the register coalescer will remove unnecessary copies. 5472 if (VT != Value->getOperand(0).getValueType()) { 5473 unsigned index = constIndex->getAPIntValue().getLimitedValue() % 5474 VT.getVectorNumElements(); 5475 N = DAG.getNode(ARMISD::VDUPLANE, dl, VT, 5476 DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, DAG.getUNDEF(VT), 5477 Value, DAG.getConstant(index, dl, MVT::i32)), 5478 DAG.getConstant(index, dl, MVT::i32)); 5479 } else 5480 N = DAG.getNode(ARMISD::VDUPLANE, dl, VT, 5481 Value->getOperand(0), Value->getOperand(1)); 5482 } else 5483 N = DAG.getNode(ARMISD::VDUP, dl, VT, Value); 5484 5485 if (!usesOnlyOneValue) { 5486 // The dominant value was splatted as 'N', but we now have to insert 5487 // all differing elements. 5488 for (unsigned I = 0; I < NumElts; ++I) { 5489 if (Op.getOperand(I) == Value) 5490 continue; 5491 SmallVector<SDValue, 3> Ops; 5492 Ops.push_back(N); 5493 Ops.push_back(Op.getOperand(I)); 5494 Ops.push_back(DAG.getConstant(I, dl, MVT::i32)); 5495 N = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Ops); 5496 } 5497 } 5498 return N; 5499 } 5500 if (VT.getVectorElementType().isFloatingPoint()) { 5501 SmallVector<SDValue, 8> Ops; 5502 for (unsigned i = 0; i < NumElts; ++i) 5503 Ops.push_back(DAG.getNode(ISD::BITCAST, dl, MVT::i32, 5504 Op.getOperand(i))); 5505 EVT VecVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElts); 5506 SDValue Val = DAG.getNode(ISD::BUILD_VECTOR, dl, VecVT, Ops); 5507 Val = LowerBUILD_VECTOR(Val, DAG, ST); 5508 if (Val.getNode()) 5509 return DAG.getNode(ISD::BITCAST, dl, VT, Val); 5510 } 5511 if (usesOnlyOneValue) { 5512 SDValue Val = IsSingleInstrConstant(Value, DAG, ST, dl); 5513 if (isConstant && Val.getNode()) 5514 return DAG.getNode(ARMISD::VDUP, dl, VT, Val); 5515 } 5516 } 5517 5518 // If all elements are constants and the case above didn't get hit, fall back 5519 // to the default expansion, which will generate a load from the constant 5520 // pool. 5521 if (isConstant) 5522 return SDValue(); 5523 5524 // Empirical tests suggest this is rarely worth it for vectors of length <= 2. 5525 if (NumElts >= 4) { 5526 SDValue shuffle = ReconstructShuffle(Op, DAG); 5527 if (shuffle != SDValue()) 5528 return shuffle; 5529 } 5530 5531 // Vectors with 32- or 64-bit elements can be built by directly assigning 5532 // the subregisters. Lower it to an ARMISD::BUILD_VECTOR so the operands 5533 // will be legalized. 5534 if (EltSize >= 32) { 5535 // Do the expansion with floating-point types, since that is what the VFP 5536 // registers are defined to use, and since i64 is not legal. 5537 EVT EltVT = EVT::getFloatingPointVT(EltSize); 5538 EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts); 5539 SmallVector<SDValue, 8> Ops; 5540 for (unsigned i = 0; i < NumElts; ++i) 5541 Ops.push_back(DAG.getNode(ISD::BITCAST, dl, EltVT, Op.getOperand(i))); 5542 SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, Ops); 5543 return DAG.getNode(ISD::BITCAST, dl, VT, Val); 5544 } 5545 5546 // If all else fails, just use a sequence of INSERT_VECTOR_ELT when we 5547 // know the default expansion would otherwise fall back on something even 5548 // worse. For a vector with one or two non-undef values, that's 5549 // scalar_to_vector for the elements followed by a shuffle (provided the 5550 // shuffle is valid for the target) and materialization element by element 5551 // on the stack followed by a load for everything else. 5552 if (!isConstant && !usesOnlyOneValue) { 5553 SDValue Vec = DAG.getUNDEF(VT); 5554 for (unsigned i = 0 ; i < NumElts; ++i) { 5555 SDValue V = Op.getOperand(i); 5556 if (V.getOpcode() == ISD::UNDEF) 5557 continue; 5558 SDValue LaneIdx = DAG.getConstant(i, dl, MVT::i32); 5559 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VT, Vec, V, LaneIdx); 5560 } 5561 return Vec; 5562 } 5563 5564 return SDValue(); 5565 } 5566 5567 // Gather data to see if the operation can be modelled as a 5568 // shuffle in combination with VEXTs. 5569 SDValue ARMTargetLowering::ReconstructShuffle(SDValue Op, 5570 SelectionDAG &DAG) const { 5571 assert(Op.getOpcode() == ISD::BUILD_VECTOR && "Unknown opcode!"); 5572 SDLoc dl(Op); 5573 EVT VT = Op.getValueType(); 5574 unsigned NumElts = VT.getVectorNumElements(); 5575 5576 struct ShuffleSourceInfo { 5577 SDValue Vec; 5578 unsigned MinElt; 5579 unsigned MaxElt; 5580 5581 // We may insert some combination of BITCASTs and VEXT nodes to force Vec to 5582 // be compatible with the shuffle we intend to construct. As a result 5583 // ShuffleVec will be some sliding window into the original Vec. 5584 SDValue ShuffleVec; 5585 5586 // Code should guarantee that element i in Vec starts at element "WindowBase 5587 // + i * WindowScale in ShuffleVec". 5588 int WindowBase; 5589 int WindowScale; 5590 5591 bool operator ==(SDValue OtherVec) { return Vec == OtherVec; } 5592 ShuffleSourceInfo(SDValue Vec) 5593 : Vec(Vec), MinElt(UINT_MAX), MaxElt(0), ShuffleVec(Vec), WindowBase(0), 5594 WindowScale(1) {} 5595 }; 5596 5597 // First gather all vectors used as an immediate source for this BUILD_VECTOR 5598 // node. 5599 SmallVector<ShuffleSourceInfo, 2> Sources; 5600 for (unsigned i = 0; i < NumElts; ++i) { 5601 SDValue V = Op.getOperand(i); 5602 if (V.getOpcode() == ISD::UNDEF) 5603 continue; 5604 else if (V.getOpcode() != ISD::EXTRACT_VECTOR_ELT) { 5605 // A shuffle can only come from building a vector from various 5606 // elements of other vectors. 5607 return SDValue(); 5608 } else if (!isa<ConstantSDNode>(V.getOperand(1))) { 5609 // Furthermore, shuffles require a constant mask, whereas extractelts 5610 // accept variable indices. 5611 return SDValue(); 5612 } 5613 5614 // Add this element source to the list if it's not already there. 5615 SDValue SourceVec = V.getOperand(0); 5616 auto Source = std::find(Sources.begin(), Sources.end(), SourceVec); 5617 if (Source == Sources.end()) 5618 Source = Sources.insert(Sources.end(), ShuffleSourceInfo(SourceVec)); 5619 5620 // Update the minimum and maximum lane number seen. 5621 unsigned EltNo = cast<ConstantSDNode>(V.getOperand(1))->getZExtValue(); 5622 Source->MinElt = std::min(Source->MinElt, EltNo); 5623 Source->MaxElt = std::max(Source->MaxElt, EltNo); 5624 } 5625 5626 // Currently only do something sane when at most two source vectors 5627 // are involved. 5628 if (Sources.size() > 2) 5629 return SDValue(); 5630 5631 // Find out the smallest element size among result and two sources, and use 5632 // it as element size to build the shuffle_vector. 5633 EVT SmallestEltTy = VT.getVectorElementType(); 5634 for (auto &Source : Sources) { 5635 EVT SrcEltTy = Source.Vec.getValueType().getVectorElementType(); 5636 if (SrcEltTy.bitsLT(SmallestEltTy)) 5637 SmallestEltTy = SrcEltTy; 5638 } 5639 unsigned ResMultiplier = 5640 VT.getVectorElementType().getSizeInBits() / SmallestEltTy.getSizeInBits(); 5641 NumElts = VT.getSizeInBits() / SmallestEltTy.getSizeInBits(); 5642 EVT ShuffleVT = EVT::getVectorVT(*DAG.getContext(), SmallestEltTy, NumElts); 5643 5644 // If the source vector is too wide or too narrow, we may nevertheless be able 5645 // to construct a compatible shuffle either by concatenating it with UNDEF or 5646 // extracting a suitable range of elements. 5647 for (auto &Src : Sources) { 5648 EVT SrcVT = Src.ShuffleVec.getValueType(); 5649 5650 if (SrcVT.getSizeInBits() == VT.getSizeInBits()) 5651 continue; 5652 5653 // This stage of the search produces a source with the same element type as 5654 // the original, but with a total width matching the BUILD_VECTOR output. 5655 EVT EltVT = SrcVT.getVectorElementType(); 5656 unsigned NumSrcElts = VT.getSizeInBits() / EltVT.getSizeInBits(); 5657 EVT DestVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumSrcElts); 5658 5659 if (SrcVT.getSizeInBits() < VT.getSizeInBits()) { 5660 if (2 * SrcVT.getSizeInBits() != VT.getSizeInBits()) 5661 return SDValue(); 5662 // We can pad out the smaller vector for free, so if it's part of a 5663 // shuffle... 5664 Src.ShuffleVec = 5665 DAG.getNode(ISD::CONCAT_VECTORS, dl, DestVT, Src.ShuffleVec, 5666 DAG.getUNDEF(Src.ShuffleVec.getValueType())); 5667 continue; 5668 } 5669 5670 if (SrcVT.getSizeInBits() != 2 * VT.getSizeInBits()) 5671 return SDValue(); 5672 5673 if (Src.MaxElt - Src.MinElt >= NumSrcElts) { 5674 // Span too large for a VEXT to cope 5675 return SDValue(); 5676 } 5677 5678 if (Src.MinElt >= NumSrcElts) { 5679 // The extraction can just take the second half 5680 Src.ShuffleVec = 5681 DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec, 5682 DAG.getConstant(NumSrcElts, dl, MVT::i32)); 5683 Src.WindowBase = -NumSrcElts; 5684 } else if (Src.MaxElt < NumSrcElts) { 5685 // The extraction can just take the first half 5686 Src.ShuffleVec = 5687 DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec, 5688 DAG.getConstant(0, dl, MVT::i32)); 5689 } else { 5690 // An actual VEXT is needed 5691 SDValue VEXTSrc1 = 5692 DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec, 5693 DAG.getConstant(0, dl, MVT::i32)); 5694 SDValue VEXTSrc2 = 5695 DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, Src.ShuffleVec, 5696 DAG.getConstant(NumSrcElts, dl, MVT::i32)); 5697 5698 Src.ShuffleVec = DAG.getNode(ARMISD::VEXT, dl, DestVT, VEXTSrc1, 5699 VEXTSrc2, 5700 DAG.getConstant(Src.MinElt, dl, MVT::i32)); 5701 Src.WindowBase = -Src.MinElt; 5702 } 5703 } 5704 5705 // Another possible incompatibility occurs from the vector element types. We 5706 // can fix this by bitcasting the source vectors to the same type we intend 5707 // for the shuffle. 5708 for (auto &Src : Sources) { 5709 EVT SrcEltTy = Src.ShuffleVec.getValueType().getVectorElementType(); 5710 if (SrcEltTy == SmallestEltTy) 5711 continue; 5712 assert(ShuffleVT.getVectorElementType() == SmallestEltTy); 5713 Src.ShuffleVec = DAG.getNode(ISD::BITCAST, dl, ShuffleVT, Src.ShuffleVec); 5714 Src.WindowScale = SrcEltTy.getSizeInBits() / SmallestEltTy.getSizeInBits(); 5715 Src.WindowBase *= Src.WindowScale; 5716 } 5717 5718 // Final sanity check before we try to actually produce a shuffle. 5719 DEBUG( 5720 for (auto Src : Sources) 5721 assert(Src.ShuffleVec.getValueType() == ShuffleVT); 5722 ); 5723 5724 // The stars all align, our next step is to produce the mask for the shuffle. 5725 SmallVector<int, 8> Mask(ShuffleVT.getVectorNumElements(), -1); 5726 int BitsPerShuffleLane = ShuffleVT.getVectorElementType().getSizeInBits(); 5727 for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) { 5728 SDValue Entry = Op.getOperand(i); 5729 if (Entry.getOpcode() == ISD::UNDEF) 5730 continue; 5731 5732 auto Src = std::find(Sources.begin(), Sources.end(), Entry.getOperand(0)); 5733 int EltNo = cast<ConstantSDNode>(Entry.getOperand(1))->getSExtValue(); 5734 5735 // EXTRACT_VECTOR_ELT performs an implicit any_ext; BUILD_VECTOR an implicit 5736 // trunc. So only std::min(SrcBits, DestBits) actually get defined in this 5737 // segment. 5738 EVT OrigEltTy = Entry.getOperand(0).getValueType().getVectorElementType(); 5739 int BitsDefined = std::min(OrigEltTy.getSizeInBits(), 5740 VT.getVectorElementType().getSizeInBits()); 5741 int LanesDefined = BitsDefined / BitsPerShuffleLane; 5742 5743 // This source is expected to fill ResMultiplier lanes of the final shuffle, 5744 // starting at the appropriate offset. 5745 int *LaneMask = &Mask[i * ResMultiplier]; 5746 5747 int ExtractBase = EltNo * Src->WindowScale + Src->WindowBase; 5748 ExtractBase += NumElts * (Src - Sources.begin()); 5749 for (int j = 0; j < LanesDefined; ++j) 5750 LaneMask[j] = ExtractBase + j; 5751 } 5752 5753 // Final check before we try to produce nonsense... 5754 if (!isShuffleMaskLegal(Mask, ShuffleVT)) 5755 return SDValue(); 5756 5757 // We can't handle more than two sources. This should have already 5758 // been checked before this point. 5759 assert(Sources.size() <= 2 && "Too many sources!"); 5760 5761 SDValue ShuffleOps[] = { DAG.getUNDEF(ShuffleVT), DAG.getUNDEF(ShuffleVT) }; 5762 for (unsigned i = 0; i < Sources.size(); ++i) 5763 ShuffleOps[i] = Sources[i].ShuffleVec; 5764 5765 SDValue Shuffle = DAG.getVectorShuffle(ShuffleVT, dl, ShuffleOps[0], 5766 ShuffleOps[1], &Mask[0]); 5767 return DAG.getNode(ISD::BITCAST, dl, VT, Shuffle); 5768 } 5769 5770 /// isShuffleMaskLegal - Targets can use this to indicate that they only 5771 /// support *some* VECTOR_SHUFFLE operations, those with specific masks. 5772 /// By default, if a target supports the VECTOR_SHUFFLE node, all mask values 5773 /// are assumed to be legal. 5774 bool 5775 ARMTargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &M, 5776 EVT VT) const { 5777 if (VT.getVectorNumElements() == 4 && 5778 (VT.is128BitVector() || VT.is64BitVector())) { 5779 unsigned PFIndexes[4]; 5780 for (unsigned i = 0; i != 4; ++i) { 5781 if (M[i] < 0) 5782 PFIndexes[i] = 8; 5783 else 5784 PFIndexes[i] = M[i]; 5785 } 5786 5787 // Compute the index in the perfect shuffle table. 5788 unsigned PFTableIndex = 5789 PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3]; 5790 unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; 5791 unsigned Cost = (PFEntry >> 30); 5792 5793 if (Cost <= 4) 5794 return true; 5795 } 5796 5797 bool ReverseVEXT, isV_UNDEF; 5798 unsigned Imm, WhichResult; 5799 5800 unsigned EltSize = VT.getVectorElementType().getSizeInBits(); 5801 return (EltSize >= 32 || 5802 ShuffleVectorSDNode::isSplatMask(&M[0], VT) || 5803 isVREVMask(M, VT, 64) || 5804 isVREVMask(M, VT, 32) || 5805 isVREVMask(M, VT, 16) || 5806 isVEXTMask(M, VT, ReverseVEXT, Imm) || 5807 isVTBLMask(M, VT) || 5808 isNEONTwoResultShuffleMask(M, VT, WhichResult, isV_UNDEF) || 5809 ((VT == MVT::v8i16 || VT == MVT::v16i8) && isReverseMask(M, VT))); 5810 } 5811 5812 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit 5813 /// the specified operations to build the shuffle. 5814 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS, 5815 SDValue RHS, SelectionDAG &DAG, 5816 SDLoc dl) { 5817 unsigned OpNum = (PFEntry >> 26) & 0x0F; 5818 unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1); 5819 unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1); 5820 5821 enum { 5822 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3> 5823 OP_VREV, 5824 OP_VDUP0, 5825 OP_VDUP1, 5826 OP_VDUP2, 5827 OP_VDUP3, 5828 OP_VEXT1, 5829 OP_VEXT2, 5830 OP_VEXT3, 5831 OP_VUZPL, // VUZP, left result 5832 OP_VUZPR, // VUZP, right result 5833 OP_VZIPL, // VZIP, left result 5834 OP_VZIPR, // VZIP, right result 5835 OP_VTRNL, // VTRN, left result 5836 OP_VTRNR // VTRN, right result 5837 }; 5838 5839 if (OpNum == OP_COPY) { 5840 if (LHSID == (1*9+2)*9+3) return LHS; 5841 assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!"); 5842 return RHS; 5843 } 5844 5845 SDValue OpLHS, OpRHS; 5846 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl); 5847 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl); 5848 EVT VT = OpLHS.getValueType(); 5849 5850 switch (OpNum) { 5851 default: llvm_unreachable("Unknown shuffle opcode!"); 5852 case OP_VREV: 5853 // VREV divides the vector in half and swaps within the half. 5854 if (VT.getVectorElementType() == MVT::i32 || 5855 VT.getVectorElementType() == MVT::f32) 5856 return DAG.getNode(ARMISD::VREV64, dl, VT, OpLHS); 5857 // vrev <4 x i16> -> VREV32 5858 if (VT.getVectorElementType() == MVT::i16) 5859 return DAG.getNode(ARMISD::VREV32, dl, VT, OpLHS); 5860 // vrev <4 x i8> -> VREV16 5861 assert(VT.getVectorElementType() == MVT::i8); 5862 return DAG.getNode(ARMISD::VREV16, dl, VT, OpLHS); 5863 case OP_VDUP0: 5864 case OP_VDUP1: 5865 case OP_VDUP2: 5866 case OP_VDUP3: 5867 return DAG.getNode(ARMISD::VDUPLANE, dl, VT, 5868 OpLHS, DAG.getConstant(OpNum-OP_VDUP0, dl, MVT::i32)); 5869 case OP_VEXT1: 5870 case OP_VEXT2: 5871 case OP_VEXT3: 5872 return DAG.getNode(ARMISD::VEXT, dl, VT, 5873 OpLHS, OpRHS, 5874 DAG.getConstant(OpNum - OP_VEXT1 + 1, dl, MVT::i32)); 5875 case OP_VUZPL: 5876 case OP_VUZPR: 5877 return DAG.getNode(ARMISD::VUZP, dl, DAG.getVTList(VT, VT), 5878 OpLHS, OpRHS).getValue(OpNum-OP_VUZPL); 5879 case OP_VZIPL: 5880 case OP_VZIPR: 5881 return DAG.getNode(ARMISD::VZIP, dl, DAG.getVTList(VT, VT), 5882 OpLHS, OpRHS).getValue(OpNum-OP_VZIPL); 5883 case OP_VTRNL: 5884 case OP_VTRNR: 5885 return DAG.getNode(ARMISD::VTRN, dl, DAG.getVTList(VT, VT), 5886 OpLHS, OpRHS).getValue(OpNum-OP_VTRNL); 5887 } 5888 } 5889 5890 static SDValue LowerVECTOR_SHUFFLEv8i8(SDValue Op, 5891 ArrayRef<int> ShuffleMask, 5892 SelectionDAG &DAG) { 5893 // Check to see if we can use the VTBL instruction. 5894 SDValue V1 = Op.getOperand(0); 5895 SDValue V2 = Op.getOperand(1); 5896 SDLoc DL(Op); 5897 5898 SmallVector<SDValue, 8> VTBLMask; 5899 for (ArrayRef<int>::iterator 5900 I = ShuffleMask.begin(), E = ShuffleMask.end(); I != E; ++I) 5901 VTBLMask.push_back(DAG.getConstant(*I, DL, MVT::i32)); 5902 5903 if (V2.getNode()->getOpcode() == ISD::UNDEF) 5904 return DAG.getNode(ARMISD::VTBL1, DL, MVT::v8i8, V1, 5905 DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v8i8, VTBLMask)); 5906 5907 return DAG.getNode(ARMISD::VTBL2, DL, MVT::v8i8, V1, V2, 5908 DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v8i8, VTBLMask)); 5909 } 5910 5911 static SDValue LowerReverse_VECTOR_SHUFFLEv16i8_v8i16(SDValue Op, 5912 SelectionDAG &DAG) { 5913 SDLoc DL(Op); 5914 SDValue OpLHS = Op.getOperand(0); 5915 EVT VT = OpLHS.getValueType(); 5916 5917 assert((VT == MVT::v8i16 || VT == MVT::v16i8) && 5918 "Expect an v8i16/v16i8 type"); 5919 OpLHS = DAG.getNode(ARMISD::VREV64, DL, VT, OpLHS); 5920 // For a v16i8 type: After the VREV, we have got <8, ...15, 8, ..., 0>. Now, 5921 // extract the first 8 bytes into the top double word and the last 8 bytes 5922 // into the bottom double word. The v8i16 case is similar. 5923 unsigned ExtractNum = (VT == MVT::v16i8) ? 8 : 4; 5924 return DAG.getNode(ARMISD::VEXT, DL, VT, OpLHS, OpLHS, 5925 DAG.getConstant(ExtractNum, DL, MVT::i32)); 5926 } 5927 5928 static SDValue LowerVECTOR_SHUFFLE(SDValue Op, SelectionDAG &DAG) { 5929 SDValue V1 = Op.getOperand(0); 5930 SDValue V2 = Op.getOperand(1); 5931 SDLoc dl(Op); 5932 EVT VT = Op.getValueType(); 5933 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op.getNode()); 5934 5935 // Convert shuffles that are directly supported on NEON to target-specific 5936 // DAG nodes, instead of keeping them as shuffles and matching them again 5937 // during code selection. This is more efficient and avoids the possibility 5938 // of inconsistencies between legalization and selection. 5939 // FIXME: floating-point vectors should be canonicalized to integer vectors 5940 // of the same time so that they get CSEd properly. 5941 ArrayRef<int> ShuffleMask = SVN->getMask(); 5942 5943 unsigned EltSize = VT.getVectorElementType().getSizeInBits(); 5944 if (EltSize <= 32) { 5945 if (ShuffleVectorSDNode::isSplatMask(&ShuffleMask[0], VT)) { 5946 int Lane = SVN->getSplatIndex(); 5947 // If this is undef splat, generate it via "just" vdup, if possible. 5948 if (Lane == -1) Lane = 0; 5949 5950 // Test if V1 is a SCALAR_TO_VECTOR. 5951 if (Lane == 0 && V1.getOpcode() == ISD::SCALAR_TO_VECTOR) { 5952 return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0)); 5953 } 5954 // Test if V1 is a BUILD_VECTOR which is equivalent to a SCALAR_TO_VECTOR 5955 // (and probably will turn into a SCALAR_TO_VECTOR once legalization 5956 // reaches it). 5957 if (Lane == 0 && V1.getOpcode() == ISD::BUILD_VECTOR && 5958 !isa<ConstantSDNode>(V1.getOperand(0))) { 5959 bool IsScalarToVector = true; 5960 for (unsigned i = 1, e = V1.getNumOperands(); i != e; ++i) 5961 if (V1.getOperand(i).getOpcode() != ISD::UNDEF) { 5962 IsScalarToVector = false; 5963 break; 5964 } 5965 if (IsScalarToVector) 5966 return DAG.getNode(ARMISD::VDUP, dl, VT, V1.getOperand(0)); 5967 } 5968 return DAG.getNode(ARMISD::VDUPLANE, dl, VT, V1, 5969 DAG.getConstant(Lane, dl, MVT::i32)); 5970 } 5971 5972 bool ReverseVEXT; 5973 unsigned Imm; 5974 if (isVEXTMask(ShuffleMask, VT, ReverseVEXT, Imm)) { 5975 if (ReverseVEXT) 5976 std::swap(V1, V2); 5977 return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V2, 5978 DAG.getConstant(Imm, dl, MVT::i32)); 5979 } 5980 5981 if (isVREVMask(ShuffleMask, VT, 64)) 5982 return DAG.getNode(ARMISD::VREV64, dl, VT, V1); 5983 if (isVREVMask(ShuffleMask, VT, 32)) 5984 return DAG.getNode(ARMISD::VREV32, dl, VT, V1); 5985 if (isVREVMask(ShuffleMask, VT, 16)) 5986 return DAG.getNode(ARMISD::VREV16, dl, VT, V1); 5987 5988 if (V2->getOpcode() == ISD::UNDEF && 5989 isSingletonVEXTMask(ShuffleMask, VT, Imm)) { 5990 return DAG.getNode(ARMISD::VEXT, dl, VT, V1, V1, 5991 DAG.getConstant(Imm, dl, MVT::i32)); 5992 } 5993 5994 // Check for Neon shuffles that modify both input vectors in place. 5995 // If both results are used, i.e., if there are two shuffles with the same 5996 // source operands and with masks corresponding to both results of one of 5997 // these operations, DAG memoization will ensure that a single node is 5998 // used for both shuffles. 5999 unsigned WhichResult; 6000 bool isV_UNDEF; 6001 if (unsigned ShuffleOpc = isNEONTwoResultShuffleMask( 6002 ShuffleMask, VT, WhichResult, isV_UNDEF)) { 6003 if (isV_UNDEF) 6004 V2 = V1; 6005 return DAG.getNode(ShuffleOpc, dl, DAG.getVTList(VT, VT), V1, V2) 6006 .getValue(WhichResult); 6007 } 6008 6009 // Also check for these shuffles through CONCAT_VECTORS: we canonicalize 6010 // shuffles that produce a result larger than their operands with: 6011 // shuffle(concat(v1, undef), concat(v2, undef)) 6012 // -> 6013 // shuffle(concat(v1, v2), undef) 6014 // because we can access quad vectors (see PerformVECTOR_SHUFFLECombine). 6015 // 6016 // This is useful in the general case, but there are special cases where 6017 // native shuffles produce larger results: the two-result ops. 6018 // 6019 // Look through the concat when lowering them: 6020 // shuffle(concat(v1, v2), undef) 6021 // -> 6022 // concat(VZIP(v1, v2):0, :1) 6023 // 6024 if (V1->getOpcode() == ISD::CONCAT_VECTORS && 6025 V2->getOpcode() == ISD::UNDEF) { 6026 SDValue SubV1 = V1->getOperand(0); 6027 SDValue SubV2 = V1->getOperand(1); 6028 EVT SubVT = SubV1.getValueType(); 6029 6030 // We expect these to have been canonicalized to -1. 6031 assert(std::all_of(ShuffleMask.begin(), ShuffleMask.end(), [&](int i) { 6032 return i < (int)VT.getVectorNumElements(); 6033 }) && "Unexpected shuffle index into UNDEF operand!"); 6034 6035 if (unsigned ShuffleOpc = isNEONTwoResultShuffleMask( 6036 ShuffleMask, SubVT, WhichResult, isV_UNDEF)) { 6037 if (isV_UNDEF) 6038 SubV2 = SubV1; 6039 assert((WhichResult == 0) && 6040 "In-place shuffle of concat can only have one result!"); 6041 SDValue Res = DAG.getNode(ShuffleOpc, dl, DAG.getVTList(SubVT, SubVT), 6042 SubV1, SubV2); 6043 return DAG.getNode(ISD::CONCAT_VECTORS, dl, VT, Res.getValue(0), 6044 Res.getValue(1)); 6045 } 6046 } 6047 } 6048 6049 // If the shuffle is not directly supported and it has 4 elements, use 6050 // the PerfectShuffle-generated table to synthesize it from other shuffles. 6051 unsigned NumElts = VT.getVectorNumElements(); 6052 if (NumElts == 4) { 6053 unsigned PFIndexes[4]; 6054 for (unsigned i = 0; i != 4; ++i) { 6055 if (ShuffleMask[i] < 0) 6056 PFIndexes[i] = 8; 6057 else 6058 PFIndexes[i] = ShuffleMask[i]; 6059 } 6060 6061 // Compute the index in the perfect shuffle table. 6062 unsigned PFTableIndex = 6063 PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3]; 6064 unsigned PFEntry = PerfectShuffleTable[PFTableIndex]; 6065 unsigned Cost = (PFEntry >> 30); 6066 6067 if (Cost <= 4) 6068 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl); 6069 } 6070 6071 // Implement shuffles with 32- or 64-bit elements as ARMISD::BUILD_VECTORs. 6072 if (EltSize >= 32) { 6073 // Do the expansion with floating-point types, since that is what the VFP 6074 // registers are defined to use, and since i64 is not legal. 6075 EVT EltVT = EVT::getFloatingPointVT(EltSize); 6076 EVT VecVT = EVT::getVectorVT(*DAG.getContext(), EltVT, NumElts); 6077 V1 = DAG.getNode(ISD::BITCAST, dl, VecVT, V1); 6078 V2 = DAG.getNode(ISD::BITCAST, dl, VecVT, V2); 6079 SmallVector<SDValue, 8> Ops; 6080 for (unsigned i = 0; i < NumElts; ++i) { 6081 if (ShuffleMask[i] < 0) 6082 Ops.push_back(DAG.getUNDEF(EltVT)); 6083 else 6084 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, 6085 ShuffleMask[i] < (int)NumElts ? V1 : V2, 6086 DAG.getConstant(ShuffleMask[i] & (NumElts-1), 6087 dl, MVT::i32))); 6088 } 6089 SDValue Val = DAG.getNode(ARMISD::BUILD_VECTOR, dl, VecVT, Ops); 6090 return DAG.getNode(ISD::BITCAST, dl, VT, Val); 6091 } 6092 6093 if ((VT == MVT::v8i16 || VT == MVT::v16i8) && isReverseMask(ShuffleMask, VT)) 6094 return LowerReverse_VECTOR_SHUFFLEv16i8_v8i16(Op, DAG); 6095 6096 if (VT == MVT::v8i8) { 6097 SDValue NewOp = LowerVECTOR_SHUFFLEv8i8(Op, ShuffleMask, DAG); 6098 if (NewOp.getNode()) 6099 return NewOp; 6100 } 6101 6102 return SDValue(); 6103 } 6104 6105 static SDValue LowerINSERT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) { 6106 // INSERT_VECTOR_ELT is legal only for immediate indexes. 6107 SDValue Lane = Op.getOperand(2); 6108 if (!isa<ConstantSDNode>(Lane)) 6109 return SDValue(); 6110 6111 return Op; 6112 } 6113 6114 static SDValue LowerEXTRACT_VECTOR_ELT(SDValue Op, SelectionDAG &DAG) { 6115 // EXTRACT_VECTOR_ELT is legal only for immediate indexes. 6116 SDValue Lane = Op.getOperand(1); 6117 if (!isa<ConstantSDNode>(Lane)) 6118 return SDValue(); 6119 6120 SDValue Vec = Op.getOperand(0); 6121 if (Op.getValueType() == MVT::i32 && 6122 Vec.getValueType().getVectorElementType().getSizeInBits() < 32) { 6123 SDLoc dl(Op); 6124 return DAG.getNode(ARMISD::VGETLANEu, dl, MVT::i32, Vec, Lane); 6125 } 6126 6127 return Op; 6128 } 6129 6130 static SDValue LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) { 6131 // The only time a CONCAT_VECTORS operation can have legal types is when 6132 // two 64-bit vectors are concatenated to a 128-bit vector. 6133 assert(Op.getValueType().is128BitVector() && Op.getNumOperands() == 2 && 6134 "unexpected CONCAT_VECTORS"); 6135 SDLoc dl(Op); 6136 SDValue Val = DAG.getUNDEF(MVT::v2f64); 6137 SDValue Op0 = Op.getOperand(0); 6138 SDValue Op1 = Op.getOperand(1); 6139 if (Op0.getOpcode() != ISD::UNDEF) 6140 Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val, 6141 DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op0), 6142 DAG.getIntPtrConstant(0, dl)); 6143 if (Op1.getOpcode() != ISD::UNDEF) 6144 Val = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, MVT::v2f64, Val, 6145 DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op1), 6146 DAG.getIntPtrConstant(1, dl)); 6147 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Val); 6148 } 6149 6150 /// isExtendedBUILD_VECTOR - Check if N is a constant BUILD_VECTOR where each 6151 /// element has been zero/sign-extended, depending on the isSigned parameter, 6152 /// from an integer type half its size. 6153 static bool isExtendedBUILD_VECTOR(SDNode *N, SelectionDAG &DAG, 6154 bool isSigned) { 6155 // A v2i64 BUILD_VECTOR will have been legalized to a BITCAST from v4i32. 6156 EVT VT = N->getValueType(0); 6157 if (VT == MVT::v2i64 && N->getOpcode() == ISD::BITCAST) { 6158 SDNode *BVN = N->getOperand(0).getNode(); 6159 if (BVN->getValueType(0) != MVT::v4i32 || 6160 BVN->getOpcode() != ISD::BUILD_VECTOR) 6161 return false; 6162 unsigned LoElt = DAG.getDataLayout().isBigEndian() ? 1 : 0; 6163 unsigned HiElt = 1 - LoElt; 6164 ConstantSDNode *Lo0 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt)); 6165 ConstantSDNode *Hi0 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt)); 6166 ConstantSDNode *Lo1 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt+2)); 6167 ConstantSDNode *Hi1 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt+2)); 6168 if (!Lo0 || !Hi0 || !Lo1 || !Hi1) 6169 return false; 6170 if (isSigned) { 6171 if (Hi0->getSExtValue() == Lo0->getSExtValue() >> 32 && 6172 Hi1->getSExtValue() == Lo1->getSExtValue() >> 32) 6173 return true; 6174 } else { 6175 if (Hi0->isNullValue() && Hi1->isNullValue()) 6176 return true; 6177 } 6178 return false; 6179 } 6180 6181 if (N->getOpcode() != ISD::BUILD_VECTOR) 6182 return false; 6183 6184 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 6185 SDNode *Elt = N->getOperand(i).getNode(); 6186 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Elt)) { 6187 unsigned EltSize = VT.getVectorElementType().getSizeInBits(); 6188 unsigned HalfSize = EltSize / 2; 6189 if (isSigned) { 6190 if (!isIntN(HalfSize, C->getSExtValue())) 6191 return false; 6192 } else { 6193 if (!isUIntN(HalfSize, C->getZExtValue())) 6194 return false; 6195 } 6196 continue; 6197 } 6198 return false; 6199 } 6200 6201 return true; 6202 } 6203 6204 /// isSignExtended - Check if a node is a vector value that is sign-extended 6205 /// or a constant BUILD_VECTOR with sign-extended elements. 6206 static bool isSignExtended(SDNode *N, SelectionDAG &DAG) { 6207 if (N->getOpcode() == ISD::SIGN_EXTEND || ISD::isSEXTLoad(N)) 6208 return true; 6209 if (isExtendedBUILD_VECTOR(N, DAG, true)) 6210 return true; 6211 return false; 6212 } 6213 6214 /// isZeroExtended - Check if a node is a vector value that is zero-extended 6215 /// or a constant BUILD_VECTOR with zero-extended elements. 6216 static bool isZeroExtended(SDNode *N, SelectionDAG &DAG) { 6217 if (N->getOpcode() == ISD::ZERO_EXTEND || ISD::isZEXTLoad(N)) 6218 return true; 6219 if (isExtendedBUILD_VECTOR(N, DAG, false)) 6220 return true; 6221 return false; 6222 } 6223 6224 static EVT getExtensionTo64Bits(const EVT &OrigVT) { 6225 if (OrigVT.getSizeInBits() >= 64) 6226 return OrigVT; 6227 6228 assert(OrigVT.isSimple() && "Expecting a simple value type"); 6229 6230 MVT::SimpleValueType OrigSimpleTy = OrigVT.getSimpleVT().SimpleTy; 6231 switch (OrigSimpleTy) { 6232 default: llvm_unreachable("Unexpected Vector Type"); 6233 case MVT::v2i8: 6234 case MVT::v2i16: 6235 return MVT::v2i32; 6236 case MVT::v4i8: 6237 return MVT::v4i16; 6238 } 6239 } 6240 6241 /// AddRequiredExtensionForVMULL - Add a sign/zero extension to extend the total 6242 /// value size to 64 bits. We need a 64-bit D register as an operand to VMULL. 6243 /// We insert the required extension here to get the vector to fill a D register. 6244 static SDValue AddRequiredExtensionForVMULL(SDValue N, SelectionDAG &DAG, 6245 const EVT &OrigTy, 6246 const EVT &ExtTy, 6247 unsigned ExtOpcode) { 6248 // The vector originally had a size of OrigTy. It was then extended to ExtTy. 6249 // We expect the ExtTy to be 128-bits total. If the OrigTy is less than 6250 // 64-bits we need to insert a new extension so that it will be 64-bits. 6251 assert(ExtTy.is128BitVector() && "Unexpected extension size"); 6252 if (OrigTy.getSizeInBits() >= 64) 6253 return N; 6254 6255 // Must extend size to at least 64 bits to be used as an operand for VMULL. 6256 EVT NewVT = getExtensionTo64Bits(OrigTy); 6257 6258 return DAG.getNode(ExtOpcode, SDLoc(N), NewVT, N); 6259 } 6260 6261 /// SkipLoadExtensionForVMULL - return a load of the original vector size that 6262 /// does not do any sign/zero extension. If the original vector is less 6263 /// than 64 bits, an appropriate extension will be added after the load to 6264 /// reach a total size of 64 bits. We have to add the extension separately 6265 /// because ARM does not have a sign/zero extending load for vectors. 6266 static SDValue SkipLoadExtensionForVMULL(LoadSDNode *LD, SelectionDAG& DAG) { 6267 EVT ExtendedTy = getExtensionTo64Bits(LD->getMemoryVT()); 6268 6269 // The load already has the right type. 6270 if (ExtendedTy == LD->getMemoryVT()) 6271 return DAG.getLoad(LD->getMemoryVT(), SDLoc(LD), LD->getChain(), 6272 LD->getBasePtr(), LD->getPointerInfo(), LD->isVolatile(), 6273 LD->isNonTemporal(), LD->isInvariant(), 6274 LD->getAlignment()); 6275 6276 // We need to create a zextload/sextload. We cannot just create a load 6277 // followed by a zext/zext node because LowerMUL is also run during normal 6278 // operation legalization where we can't create illegal types. 6279 return DAG.getExtLoad(LD->getExtensionType(), SDLoc(LD), ExtendedTy, 6280 LD->getChain(), LD->getBasePtr(), LD->getPointerInfo(), 6281 LD->getMemoryVT(), LD->isVolatile(), LD->isInvariant(), 6282 LD->isNonTemporal(), LD->getAlignment()); 6283 } 6284 6285 /// SkipExtensionForVMULL - For a node that is a SIGN_EXTEND, ZERO_EXTEND, 6286 /// extending load, or BUILD_VECTOR with extended elements, return the 6287 /// unextended value. The unextended vector should be 64 bits so that it can 6288 /// be used as an operand to a VMULL instruction. If the original vector size 6289 /// before extension is less than 64 bits we add a an extension to resize 6290 /// the vector to 64 bits. 6291 static SDValue SkipExtensionForVMULL(SDNode *N, SelectionDAG &DAG) { 6292 if (N->getOpcode() == ISD::SIGN_EXTEND || N->getOpcode() == ISD::ZERO_EXTEND) 6293 return AddRequiredExtensionForVMULL(N->getOperand(0), DAG, 6294 N->getOperand(0)->getValueType(0), 6295 N->getValueType(0), 6296 N->getOpcode()); 6297 6298 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) 6299 return SkipLoadExtensionForVMULL(LD, DAG); 6300 6301 // Otherwise, the value must be a BUILD_VECTOR. For v2i64, it will 6302 // have been legalized as a BITCAST from v4i32. 6303 if (N->getOpcode() == ISD::BITCAST) { 6304 SDNode *BVN = N->getOperand(0).getNode(); 6305 assert(BVN->getOpcode() == ISD::BUILD_VECTOR && 6306 BVN->getValueType(0) == MVT::v4i32 && "expected v4i32 BUILD_VECTOR"); 6307 unsigned LowElt = DAG.getDataLayout().isBigEndian() ? 1 : 0; 6308 return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N), MVT::v2i32, 6309 BVN->getOperand(LowElt), BVN->getOperand(LowElt+2)); 6310 } 6311 // Construct a new BUILD_VECTOR with elements truncated to half the size. 6312 assert(N->getOpcode() == ISD::BUILD_VECTOR && "expected BUILD_VECTOR"); 6313 EVT VT = N->getValueType(0); 6314 unsigned EltSize = VT.getVectorElementType().getSizeInBits() / 2; 6315 unsigned NumElts = VT.getVectorNumElements(); 6316 MVT TruncVT = MVT::getIntegerVT(EltSize); 6317 SmallVector<SDValue, 8> Ops; 6318 SDLoc dl(N); 6319 for (unsigned i = 0; i != NumElts; ++i) { 6320 ConstantSDNode *C = cast<ConstantSDNode>(N->getOperand(i)); 6321 const APInt &CInt = C->getAPIntValue(); 6322 // Element types smaller than 32 bits are not legal, so use i32 elements. 6323 // The values are implicitly truncated so sext vs. zext doesn't matter. 6324 Ops.push_back(DAG.getConstant(CInt.zextOrTrunc(32), dl, MVT::i32)); 6325 } 6326 return DAG.getNode(ISD::BUILD_VECTOR, dl, 6327 MVT::getVectorVT(TruncVT, NumElts), Ops); 6328 } 6329 6330 static bool isAddSubSExt(SDNode *N, SelectionDAG &DAG) { 6331 unsigned Opcode = N->getOpcode(); 6332 if (Opcode == ISD::ADD || Opcode == ISD::SUB) { 6333 SDNode *N0 = N->getOperand(0).getNode(); 6334 SDNode *N1 = N->getOperand(1).getNode(); 6335 return N0->hasOneUse() && N1->hasOneUse() && 6336 isSignExtended(N0, DAG) && isSignExtended(N1, DAG); 6337 } 6338 return false; 6339 } 6340 6341 static bool isAddSubZExt(SDNode *N, SelectionDAG &DAG) { 6342 unsigned Opcode = N->getOpcode(); 6343 if (Opcode == ISD::ADD || Opcode == ISD::SUB) { 6344 SDNode *N0 = N->getOperand(0).getNode(); 6345 SDNode *N1 = N->getOperand(1).getNode(); 6346 return N0->hasOneUse() && N1->hasOneUse() && 6347 isZeroExtended(N0, DAG) && isZeroExtended(N1, DAG); 6348 } 6349 return false; 6350 } 6351 6352 static SDValue LowerMUL(SDValue Op, SelectionDAG &DAG) { 6353 // Multiplications are only custom-lowered for 128-bit vectors so that 6354 // VMULL can be detected. Otherwise v2i64 multiplications are not legal. 6355 EVT VT = Op.getValueType(); 6356 assert(VT.is128BitVector() && VT.isInteger() && 6357 "unexpected type for custom-lowering ISD::MUL"); 6358 SDNode *N0 = Op.getOperand(0).getNode(); 6359 SDNode *N1 = Op.getOperand(1).getNode(); 6360 unsigned NewOpc = 0; 6361 bool isMLA = false; 6362 bool isN0SExt = isSignExtended(N0, DAG); 6363 bool isN1SExt = isSignExtended(N1, DAG); 6364 if (isN0SExt && isN1SExt) 6365 NewOpc = ARMISD::VMULLs; 6366 else { 6367 bool isN0ZExt = isZeroExtended(N0, DAG); 6368 bool isN1ZExt = isZeroExtended(N1, DAG); 6369 if (isN0ZExt && isN1ZExt) 6370 NewOpc = ARMISD::VMULLu; 6371 else if (isN1SExt || isN1ZExt) { 6372 // Look for (s/zext A + s/zext B) * (s/zext C). We want to turn these 6373 // into (s/zext A * s/zext C) + (s/zext B * s/zext C) 6374 if (isN1SExt && isAddSubSExt(N0, DAG)) { 6375 NewOpc = ARMISD::VMULLs; 6376 isMLA = true; 6377 } else if (isN1ZExt && isAddSubZExt(N0, DAG)) { 6378 NewOpc = ARMISD::VMULLu; 6379 isMLA = true; 6380 } else if (isN0ZExt && isAddSubZExt(N1, DAG)) { 6381 std::swap(N0, N1); 6382 NewOpc = ARMISD::VMULLu; 6383 isMLA = true; 6384 } 6385 } 6386 6387 if (!NewOpc) { 6388 if (VT == MVT::v2i64) 6389 // Fall through to expand this. It is not legal. 6390 return SDValue(); 6391 else 6392 // Other vector multiplications are legal. 6393 return Op; 6394 } 6395 } 6396 6397 // Legalize to a VMULL instruction. 6398 SDLoc DL(Op); 6399 SDValue Op0; 6400 SDValue Op1 = SkipExtensionForVMULL(N1, DAG); 6401 if (!isMLA) { 6402 Op0 = SkipExtensionForVMULL(N0, DAG); 6403 assert(Op0.getValueType().is64BitVector() && 6404 Op1.getValueType().is64BitVector() && 6405 "unexpected types for extended operands to VMULL"); 6406 return DAG.getNode(NewOpc, DL, VT, Op0, Op1); 6407 } 6408 6409 // Optimizing (zext A + zext B) * C, to (VMULL A, C) + (VMULL B, C) during 6410 // isel lowering to take advantage of no-stall back to back vmul + vmla. 6411 // vmull q0, d4, d6 6412 // vmlal q0, d5, d6 6413 // is faster than 6414 // vaddl q0, d4, d5 6415 // vmovl q1, d6 6416 // vmul q0, q0, q1 6417 SDValue N00 = SkipExtensionForVMULL(N0->getOperand(0).getNode(), DAG); 6418 SDValue N01 = SkipExtensionForVMULL(N0->getOperand(1).getNode(), DAG); 6419 EVT Op1VT = Op1.getValueType(); 6420 return DAG.getNode(N0->getOpcode(), DL, VT, 6421 DAG.getNode(NewOpc, DL, VT, 6422 DAG.getNode(ISD::BITCAST, DL, Op1VT, N00), Op1), 6423 DAG.getNode(NewOpc, DL, VT, 6424 DAG.getNode(ISD::BITCAST, DL, Op1VT, N01), Op1)); 6425 } 6426 6427 static SDValue 6428 LowerSDIV_v4i8(SDValue X, SDValue Y, SDLoc dl, SelectionDAG &DAG) { 6429 // TODO: Should this propagate fast-math-flags? 6430 6431 // Convert to float 6432 // float4 xf = vcvt_f32_s32(vmovl_s16(a.lo)); 6433 // float4 yf = vcvt_f32_s32(vmovl_s16(b.lo)); 6434 X = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, X); 6435 Y = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, Y); 6436 X = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, X); 6437 Y = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, Y); 6438 // Get reciprocal estimate. 6439 // float4 recip = vrecpeq_f32(yf); 6440 Y = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32, 6441 DAG.getConstant(Intrinsic::arm_neon_vrecpe, dl, MVT::i32), 6442 Y); 6443 // Because char has a smaller range than uchar, we can actually get away 6444 // without any newton steps. This requires that we use a weird bias 6445 // of 0xb000, however (again, this has been exhaustively tested). 6446 // float4 result = as_float4(as_int4(xf*recip) + 0xb000); 6447 X = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, X, Y); 6448 X = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, X); 6449 Y = DAG.getConstant(0xb000, dl, MVT::i32); 6450 Y = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Y, Y, Y, Y); 6451 X = DAG.getNode(ISD::ADD, dl, MVT::v4i32, X, Y); 6452 X = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, X); 6453 // Convert back to short. 6454 X = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, X); 6455 X = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, X); 6456 return X; 6457 } 6458 6459 static SDValue 6460 LowerSDIV_v4i16(SDValue N0, SDValue N1, SDLoc dl, SelectionDAG &DAG) { 6461 // TODO: Should this propagate fast-math-flags? 6462 6463 SDValue N2; 6464 // Convert to float. 6465 // float4 yf = vcvt_f32_s32(vmovl_s16(y)); 6466 // float4 xf = vcvt_f32_s32(vmovl_s16(x)); 6467 N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N0); 6468 N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v4i32, N1); 6469 N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0); 6470 N1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1); 6471 6472 // Use reciprocal estimate and one refinement step. 6473 // float4 recip = vrecpeq_f32(yf); 6474 // recip *= vrecpsq_f32(yf, recip); 6475 N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32, 6476 DAG.getConstant(Intrinsic::arm_neon_vrecpe, dl, MVT::i32), 6477 N1); 6478 N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32, 6479 DAG.getConstant(Intrinsic::arm_neon_vrecps, dl, MVT::i32), 6480 N1, N2); 6481 N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2); 6482 // Because short has a smaller range than ushort, we can actually get away 6483 // with only a single newton step. This requires that we use a weird bias 6484 // of 89, however (again, this has been exhaustively tested). 6485 // float4 result = as_float4(as_int4(xf*recip) + 0x89); 6486 N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2); 6487 N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0); 6488 N1 = DAG.getConstant(0x89, dl, MVT::i32); 6489 N1 = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, N1, N1, N1, N1); 6490 N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1); 6491 N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0); 6492 // Convert back to integer and return. 6493 // return vmovn_s32(vcvt_s32_f32(result)); 6494 N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0); 6495 N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0); 6496 return N0; 6497 } 6498 6499 static SDValue LowerSDIV(SDValue Op, SelectionDAG &DAG) { 6500 EVT VT = Op.getValueType(); 6501 assert((VT == MVT::v4i16 || VT == MVT::v8i8) && 6502 "unexpected type for custom-lowering ISD::SDIV"); 6503 6504 SDLoc dl(Op); 6505 SDValue N0 = Op.getOperand(0); 6506 SDValue N1 = Op.getOperand(1); 6507 SDValue N2, N3; 6508 6509 if (VT == MVT::v8i8) { 6510 N0 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N0); 6511 N1 = DAG.getNode(ISD::SIGN_EXTEND, dl, MVT::v8i16, N1); 6512 6513 N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0, 6514 DAG.getIntPtrConstant(4, dl)); 6515 N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1, 6516 DAG.getIntPtrConstant(4, dl)); 6517 N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0, 6518 DAG.getIntPtrConstant(0, dl)); 6519 N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1, 6520 DAG.getIntPtrConstant(0, dl)); 6521 6522 N0 = LowerSDIV_v4i8(N0, N1, dl, DAG); // v4i16 6523 N2 = LowerSDIV_v4i8(N2, N3, dl, DAG); // v4i16 6524 6525 N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2); 6526 N0 = LowerCONCAT_VECTORS(N0, DAG); 6527 6528 N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v8i8, N0); 6529 return N0; 6530 } 6531 return LowerSDIV_v4i16(N0, N1, dl, DAG); 6532 } 6533 6534 static SDValue LowerUDIV(SDValue Op, SelectionDAG &DAG) { 6535 // TODO: Should this propagate fast-math-flags? 6536 EVT VT = Op.getValueType(); 6537 assert((VT == MVT::v4i16 || VT == MVT::v8i8) && 6538 "unexpected type for custom-lowering ISD::UDIV"); 6539 6540 SDLoc dl(Op); 6541 SDValue N0 = Op.getOperand(0); 6542 SDValue N1 = Op.getOperand(1); 6543 SDValue N2, N3; 6544 6545 if (VT == MVT::v8i8) { 6546 N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N0); 6547 N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v8i16, N1); 6548 6549 N2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0, 6550 DAG.getIntPtrConstant(4, dl)); 6551 N3 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1, 6552 DAG.getIntPtrConstant(4, dl)); 6553 N0 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N0, 6554 DAG.getIntPtrConstant(0, dl)); 6555 N1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, MVT::v4i16, N1, 6556 DAG.getIntPtrConstant(0, dl)); 6557 6558 N0 = LowerSDIV_v4i16(N0, N1, dl, DAG); // v4i16 6559 N2 = LowerSDIV_v4i16(N2, N3, dl, DAG); // v4i16 6560 6561 N0 = DAG.getNode(ISD::CONCAT_VECTORS, dl, MVT::v8i16, N0, N2); 6562 N0 = LowerCONCAT_VECTORS(N0, DAG); 6563 6564 N0 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v8i8, 6565 DAG.getConstant(Intrinsic::arm_neon_vqmovnsu, dl, 6566 MVT::i32), 6567 N0); 6568 return N0; 6569 } 6570 6571 // v4i16 sdiv ... Convert to float. 6572 // float4 yf = vcvt_f32_s32(vmovl_u16(y)); 6573 // float4 xf = vcvt_f32_s32(vmovl_u16(x)); 6574 N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N0); 6575 N1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::v4i32, N1); 6576 N0 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N0); 6577 SDValue BN1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::v4f32, N1); 6578 6579 // Use reciprocal estimate and two refinement steps. 6580 // float4 recip = vrecpeq_f32(yf); 6581 // recip *= vrecpsq_f32(yf, recip); 6582 // recip *= vrecpsq_f32(yf, recip); 6583 N2 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32, 6584 DAG.getConstant(Intrinsic::arm_neon_vrecpe, dl, MVT::i32), 6585 BN1); 6586 N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32, 6587 DAG.getConstant(Intrinsic::arm_neon_vrecps, dl, MVT::i32), 6588 BN1, N2); 6589 N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2); 6590 N1 = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, MVT::v4f32, 6591 DAG.getConstant(Intrinsic::arm_neon_vrecps, dl, MVT::i32), 6592 BN1, N2); 6593 N2 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N1, N2); 6594 // Simply multiplying by the reciprocal estimate can leave us a few ulps 6595 // too low, so we add 2 ulps (exhaustive testing shows that this is enough, 6596 // and that it will never cause us to return an answer too large). 6597 // float4 result = as_float4(as_int4(xf*recip) + 2); 6598 N0 = DAG.getNode(ISD::FMUL, dl, MVT::v4f32, N0, N2); 6599 N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4i32, N0); 6600 N1 = DAG.getConstant(2, dl, MVT::i32); 6601 N1 = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, N1, N1, N1, N1); 6602 N0 = DAG.getNode(ISD::ADD, dl, MVT::v4i32, N0, N1); 6603 N0 = DAG.getNode(ISD::BITCAST, dl, MVT::v4f32, N0); 6604 // Convert back to integer and return. 6605 // return vmovn_u32(vcvt_s32_f32(result)); 6606 N0 = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::v4i32, N0); 6607 N0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::v4i16, N0); 6608 return N0; 6609 } 6610 6611 static SDValue LowerADDC_ADDE_SUBC_SUBE(SDValue Op, SelectionDAG &DAG) { 6612 EVT VT = Op.getNode()->getValueType(0); 6613 SDVTList VTs = DAG.getVTList(VT, MVT::i32); 6614 6615 unsigned Opc; 6616 bool ExtraOp = false; 6617 switch (Op.getOpcode()) { 6618 default: llvm_unreachable("Invalid code"); 6619 case ISD::ADDC: Opc = ARMISD::ADDC; break; 6620 case ISD::ADDE: Opc = ARMISD::ADDE; ExtraOp = true; break; 6621 case ISD::SUBC: Opc = ARMISD::SUBC; break; 6622 case ISD::SUBE: Opc = ARMISD::SUBE; ExtraOp = true; break; 6623 } 6624 6625 if (!ExtraOp) 6626 return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0), 6627 Op.getOperand(1)); 6628 return DAG.getNode(Opc, SDLoc(Op), VTs, Op.getOperand(0), 6629 Op.getOperand(1), Op.getOperand(2)); 6630 } 6631 6632 SDValue ARMTargetLowering::LowerFSINCOS(SDValue Op, SelectionDAG &DAG) const { 6633 assert(Subtarget->isTargetDarwin()); 6634 6635 // For iOS, we want to call an alternative entry point: __sincos_stret, 6636 // return values are passed via sret. 6637 SDLoc dl(Op); 6638 SDValue Arg = Op.getOperand(0); 6639 EVT ArgVT = Arg.getValueType(); 6640 Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext()); 6641 auto PtrVT = getPointerTy(DAG.getDataLayout()); 6642 6643 MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo(); 6644 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6645 6646 // Pair of floats / doubles used to pass the result. 6647 Type *RetTy = StructType::get(ArgTy, ArgTy, nullptr); 6648 auto &DL = DAG.getDataLayout(); 6649 6650 ArgListTy Args; 6651 bool ShouldUseSRet = Subtarget->isAPCS_ABI(); 6652 SDValue SRet; 6653 if (ShouldUseSRet) { 6654 // Create stack object for sret. 6655 const uint64_t ByteSize = DL.getTypeAllocSize(RetTy); 6656 const unsigned StackAlign = DL.getPrefTypeAlignment(RetTy); 6657 int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign, false); 6658 SRet = DAG.getFrameIndex(FrameIdx, TLI.getPointerTy(DL)); 6659 6660 ArgListEntry Entry; 6661 Entry.Node = SRet; 6662 Entry.Ty = RetTy->getPointerTo(); 6663 Entry.isSExt = false; 6664 Entry.isZExt = false; 6665 Entry.isSRet = true; 6666 Args.push_back(Entry); 6667 RetTy = Type::getVoidTy(*DAG.getContext()); 6668 } 6669 6670 ArgListEntry Entry; 6671 Entry.Node = Arg; 6672 Entry.Ty = ArgTy; 6673 Entry.isSExt = false; 6674 Entry.isZExt = false; 6675 Args.push_back(Entry); 6676 6677 const char *LibcallName = 6678 (ArgVT == MVT::f64) ? "__sincos_stret" : "__sincosf_stret"; 6679 RTLIB::Libcall LC = 6680 (ArgVT == MVT::f64) ? RTLIB::SINCOS_F64 : RTLIB::SINCOS_F32; 6681 CallingConv::ID CC = getLibcallCallingConv(LC); 6682 SDValue Callee = DAG.getExternalSymbol(LibcallName, getPointerTy(DL)); 6683 6684 TargetLowering::CallLoweringInfo CLI(DAG); 6685 CLI.setDebugLoc(dl) 6686 .setChain(DAG.getEntryNode()) 6687 .setCallee(CC, RetTy, Callee, std::move(Args), 0) 6688 .setDiscardResult(ShouldUseSRet); 6689 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 6690 6691 if (!ShouldUseSRet) 6692 return CallResult.first; 6693 6694 SDValue LoadSin = DAG.getLoad(ArgVT, dl, CallResult.second, SRet, 6695 MachinePointerInfo(), false, false, false, 0); 6696 6697 // Address of cos field. 6698 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, SRet, 6699 DAG.getIntPtrConstant(ArgVT.getStoreSize(), dl)); 6700 SDValue LoadCos = DAG.getLoad(ArgVT, dl, LoadSin.getValue(1), Add, 6701 MachinePointerInfo(), false, false, false, 0); 6702 6703 SDVTList Tys = DAG.getVTList(ArgVT, ArgVT); 6704 return DAG.getNode(ISD::MERGE_VALUES, dl, Tys, 6705 LoadSin.getValue(0), LoadCos.getValue(0)); 6706 } 6707 6708 SDValue ARMTargetLowering::LowerWindowsDIVLibCall(SDValue Op, SelectionDAG &DAG, 6709 bool Signed, 6710 SDValue &Chain) const { 6711 EVT VT = Op.getValueType(); 6712 assert((VT == MVT::i32 || VT == MVT::i64) && 6713 "unexpected type for custom lowering DIV"); 6714 SDLoc dl(Op); 6715 6716 const auto &DL = DAG.getDataLayout(); 6717 const auto &TLI = DAG.getTargetLoweringInfo(); 6718 6719 const char *Name = nullptr; 6720 if (Signed) 6721 Name = (VT == MVT::i32) ? "__rt_sdiv" : "__rt_sdiv64"; 6722 else 6723 Name = (VT == MVT::i32) ? "__rt_udiv" : "__rt_udiv64"; 6724 6725 SDValue ES = DAG.getExternalSymbol(Name, TLI.getPointerTy(DL)); 6726 6727 ARMTargetLowering::ArgListTy Args; 6728 6729 for (auto AI : {1, 0}) { 6730 ArgListEntry Arg; 6731 Arg.Node = Op.getOperand(AI); 6732 Arg.Ty = Arg.Node.getValueType().getTypeForEVT(*DAG.getContext()); 6733 Args.push_back(Arg); 6734 } 6735 6736 CallLoweringInfo CLI(DAG); 6737 CLI.setDebugLoc(dl) 6738 .setChain(Chain) 6739 .setCallee(CallingConv::ARM_AAPCS_VFP, VT.getTypeForEVT(*DAG.getContext()), 6740 ES, std::move(Args), 0); 6741 6742 return LowerCallTo(CLI).first; 6743 } 6744 6745 SDValue ARMTargetLowering::LowerDIV_Windows(SDValue Op, SelectionDAG &DAG, 6746 bool Signed) const { 6747 assert(Op.getValueType() == MVT::i32 && 6748 "unexpected type for custom lowering DIV"); 6749 SDLoc dl(Op); 6750 6751 SDValue DBZCHK = DAG.getNode(ARMISD::WIN__DBZCHK, dl, MVT::Other, 6752 DAG.getEntryNode(), Op.getOperand(1)); 6753 6754 return LowerWindowsDIVLibCall(Op, DAG, Signed, DBZCHK); 6755 } 6756 6757 void ARMTargetLowering::ExpandDIV_Windows( 6758 SDValue Op, SelectionDAG &DAG, bool Signed, 6759 SmallVectorImpl<SDValue> &Results) const { 6760 const auto &DL = DAG.getDataLayout(); 6761 const auto &TLI = DAG.getTargetLoweringInfo(); 6762 6763 assert(Op.getValueType() == MVT::i64 && 6764 "unexpected type for custom lowering DIV"); 6765 SDLoc dl(Op); 6766 6767 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op.getOperand(1), 6768 DAG.getConstant(0, dl, MVT::i32)); 6769 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, MVT::i32, Op.getOperand(1), 6770 DAG.getConstant(1, dl, MVT::i32)); 6771 SDValue Or = DAG.getNode(ISD::OR, dl, MVT::i32, Lo, Hi); 6772 6773 SDValue DBZCHK = 6774 DAG.getNode(ARMISD::WIN__DBZCHK, dl, MVT::Other, DAG.getEntryNode(), Or); 6775 6776 SDValue Result = LowerWindowsDIVLibCall(Op, DAG, Signed, DBZCHK); 6777 6778 SDValue Lower = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Result); 6779 SDValue Upper = DAG.getNode(ISD::SRL, dl, MVT::i64, Result, 6780 DAG.getConstant(32, dl, TLI.getPointerTy(DL))); 6781 Upper = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Upper); 6782 6783 Results.push_back(Lower); 6784 Results.push_back(Upper); 6785 } 6786 6787 static SDValue LowerAtomicLoadStore(SDValue Op, SelectionDAG &DAG) { 6788 // Monotonic load/store is legal for all targets 6789 if (cast<AtomicSDNode>(Op)->getOrdering() <= Monotonic) 6790 return Op; 6791 6792 // Acquire/Release load/store is not legal for targets without a 6793 // dmb or equivalent available. 6794 return SDValue(); 6795 } 6796 6797 static void ReplaceREADCYCLECOUNTER(SDNode *N, 6798 SmallVectorImpl<SDValue> &Results, 6799 SelectionDAG &DAG, 6800 const ARMSubtarget *Subtarget) { 6801 SDLoc DL(N); 6802 // Under Power Management extensions, the cycle-count is: 6803 // mrc p15, #0, <Rt>, c9, c13, #0 6804 SDValue Ops[] = { N->getOperand(0), // Chain 6805 DAG.getConstant(Intrinsic::arm_mrc, DL, MVT::i32), 6806 DAG.getConstant(15, DL, MVT::i32), 6807 DAG.getConstant(0, DL, MVT::i32), 6808 DAG.getConstant(9, DL, MVT::i32), 6809 DAG.getConstant(13, DL, MVT::i32), 6810 DAG.getConstant(0, DL, MVT::i32) 6811 }; 6812 6813 SDValue Cycles32 = DAG.getNode(ISD::INTRINSIC_W_CHAIN, DL, 6814 DAG.getVTList(MVT::i32, MVT::Other), Ops); 6815 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Cycles32, 6816 DAG.getConstant(0, DL, MVT::i32))); 6817 Results.push_back(Cycles32.getValue(1)); 6818 } 6819 6820 SDValue ARMTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 6821 switch (Op.getOpcode()) { 6822 default: llvm_unreachable("Don't know how to custom lower this!"); 6823 case ISD::WRITE_REGISTER: return LowerWRITE_REGISTER(Op, DAG); 6824 case ISD::ConstantPool: return LowerConstantPool(Op, DAG); 6825 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); 6826 case ISD::GlobalAddress: 6827 switch (Subtarget->getTargetTriple().getObjectFormat()) { 6828 default: llvm_unreachable("unknown object format"); 6829 case Triple::COFF: 6830 return LowerGlobalAddressWindows(Op, DAG); 6831 case Triple::ELF: 6832 return LowerGlobalAddressELF(Op, DAG); 6833 case Triple::MachO: 6834 return LowerGlobalAddressDarwin(Op, DAG); 6835 } 6836 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG); 6837 case ISD::SELECT: return LowerSELECT(Op, DAG); 6838 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG); 6839 case ISD::BR_CC: return LowerBR_CC(Op, DAG); 6840 case ISD::BR_JT: return LowerBR_JT(Op, DAG); 6841 case ISD::VASTART: return LowerVASTART(Op, DAG); 6842 case ISD::ATOMIC_FENCE: return LowerATOMIC_FENCE(Op, DAG, Subtarget); 6843 case ISD::PREFETCH: return LowerPREFETCH(Op, DAG, Subtarget); 6844 case ISD::SINT_TO_FP: 6845 case ISD::UINT_TO_FP: return LowerINT_TO_FP(Op, DAG); 6846 case ISD::FP_TO_SINT: 6847 case ISD::FP_TO_UINT: return LowerFP_TO_INT(Op, DAG); 6848 case ISD::FCOPYSIGN: return LowerFCOPYSIGN(Op, DAG); 6849 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); 6850 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); 6851 case ISD::EH_SJLJ_SETJMP: return LowerEH_SJLJ_SETJMP(Op, DAG); 6852 case ISD::EH_SJLJ_LONGJMP: return LowerEH_SJLJ_LONGJMP(Op, DAG); 6853 case ISD::EH_SJLJ_SETUP_DISPATCH: return LowerEH_SJLJ_SETUP_DISPATCH(Op, DAG); 6854 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG, 6855 Subtarget); 6856 case ISD::BITCAST: return ExpandBITCAST(Op.getNode(), DAG); 6857 case ISD::SHL: 6858 case ISD::SRL: 6859 case ISD::SRA: return LowerShift(Op.getNode(), DAG, Subtarget); 6860 case ISD::SREM: return LowerREM(Op.getNode(), DAG); 6861 case ISD::UREM: return LowerREM(Op.getNode(), DAG); 6862 case ISD::SHL_PARTS: return LowerShiftLeftParts(Op, DAG); 6863 case ISD::SRL_PARTS: 6864 case ISD::SRA_PARTS: return LowerShiftRightParts(Op, DAG); 6865 case ISD::CTTZ: 6866 case ISD::CTTZ_ZERO_UNDEF: return LowerCTTZ(Op.getNode(), DAG, Subtarget); 6867 case ISD::CTPOP: return LowerCTPOP(Op.getNode(), DAG, Subtarget); 6868 case ISD::SETCC: return LowerVSETCC(Op, DAG); 6869 case ISD::ConstantFP: return LowerConstantFP(Op, DAG, Subtarget); 6870 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG, Subtarget); 6871 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG); 6872 case ISD::INSERT_VECTOR_ELT: return LowerINSERT_VECTOR_ELT(Op, DAG); 6873 case ISD::EXTRACT_VECTOR_ELT: return LowerEXTRACT_VECTOR_ELT(Op, DAG); 6874 case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG); 6875 case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG); 6876 case ISD::MUL: return LowerMUL(Op, DAG); 6877 case ISD::SDIV: return LowerSDIV(Op, DAG); 6878 case ISD::UDIV: return LowerUDIV(Op, DAG); 6879 case ISD::ADDC: 6880 case ISD::ADDE: 6881 case ISD::SUBC: 6882 case ISD::SUBE: return LowerADDC_ADDE_SUBC_SUBE(Op, DAG); 6883 case ISD::SADDO: 6884 case ISD::UADDO: 6885 case ISD::SSUBO: 6886 case ISD::USUBO: 6887 return LowerXALUO(Op, DAG); 6888 case ISD::ATOMIC_LOAD: 6889 case ISD::ATOMIC_STORE: return LowerAtomicLoadStore(Op, DAG); 6890 case ISD::FSINCOS: return LowerFSINCOS(Op, DAG); 6891 case ISD::SDIVREM: 6892 case ISD::UDIVREM: return LowerDivRem(Op, DAG); 6893 case ISD::DYNAMIC_STACKALLOC: 6894 if (Subtarget->getTargetTriple().isWindowsItaniumEnvironment()) 6895 return LowerDYNAMIC_STACKALLOC(Op, DAG); 6896 llvm_unreachable("Don't know how to custom lower this!"); 6897 case ISD::FP_ROUND: return LowerFP_ROUND(Op, DAG); 6898 case ISD::FP_EXTEND: return LowerFP_EXTEND(Op, DAG); 6899 case ARMISD::WIN__DBZCHK: return SDValue(); 6900 } 6901 } 6902 6903 /// ReplaceNodeResults - Replace the results of node with an illegal result 6904 /// type with new values built out of custom code. 6905 void ARMTargetLowering::ReplaceNodeResults(SDNode *N, 6906 SmallVectorImpl<SDValue> &Results, 6907 SelectionDAG &DAG) const { 6908 SDValue Res; 6909 switch (N->getOpcode()) { 6910 default: 6911 llvm_unreachable("Don't know how to custom expand this!"); 6912 case ISD::READ_REGISTER: 6913 ExpandREAD_REGISTER(N, Results, DAG); 6914 break; 6915 case ISD::BITCAST: 6916 Res = ExpandBITCAST(N, DAG); 6917 break; 6918 case ISD::SRL: 6919 case ISD::SRA: 6920 Res = Expand64BitShift(N, DAG, Subtarget); 6921 break; 6922 case ISD::SREM: 6923 case ISD::UREM: 6924 Res = LowerREM(N, DAG); 6925 break; 6926 case ISD::READCYCLECOUNTER: 6927 ReplaceREADCYCLECOUNTER(N, Results, DAG, Subtarget); 6928 return; 6929 case ISD::UDIV: 6930 case ISD::SDIV: 6931 assert(Subtarget->isTargetWindows() && "can only expand DIV on Windows"); 6932 return ExpandDIV_Windows(SDValue(N, 0), DAG, N->getOpcode() == ISD::SDIV, 6933 Results); 6934 } 6935 if (Res.getNode()) 6936 Results.push_back(Res); 6937 } 6938 6939 //===----------------------------------------------------------------------===// 6940 // ARM Scheduler Hooks 6941 //===----------------------------------------------------------------------===// 6942 6943 /// SetupEntryBlockForSjLj - Insert code into the entry block that creates and 6944 /// registers the function context. 6945 void ARMTargetLowering:: 6946 SetupEntryBlockForSjLj(MachineInstr *MI, MachineBasicBlock *MBB, 6947 MachineBasicBlock *DispatchBB, int FI) const { 6948 const TargetInstrInfo *TII = Subtarget->getInstrInfo(); 6949 DebugLoc dl = MI->getDebugLoc(); 6950 MachineFunction *MF = MBB->getParent(); 6951 MachineRegisterInfo *MRI = &MF->getRegInfo(); 6952 MachineConstantPool *MCP = MF->getConstantPool(); 6953 ARMFunctionInfo *AFI = MF->getInfo<ARMFunctionInfo>(); 6954 const Function *F = MF->getFunction(); 6955 6956 bool isThumb = Subtarget->isThumb(); 6957 bool isThumb2 = Subtarget->isThumb2(); 6958 6959 unsigned PCLabelId = AFI->createPICLabelUId(); 6960 unsigned PCAdj = (isThumb || isThumb2) ? 4 : 8; 6961 ARMConstantPoolValue *CPV = 6962 ARMConstantPoolMBB::Create(F->getContext(), DispatchBB, PCLabelId, PCAdj); 6963 unsigned CPI = MCP->getConstantPoolIndex(CPV, 4); 6964 6965 const TargetRegisterClass *TRC = isThumb ? &ARM::tGPRRegClass 6966 : &ARM::GPRRegClass; 6967 6968 // Grab constant pool and fixed stack memory operands. 6969 MachineMemOperand *CPMMO = 6970 MF->getMachineMemOperand(MachinePointerInfo::getConstantPool(*MF), 6971 MachineMemOperand::MOLoad, 4, 4); 6972 6973 MachineMemOperand *FIMMOSt = 6974 MF->getMachineMemOperand(MachinePointerInfo::getFixedStack(*MF, FI), 6975 MachineMemOperand::MOStore, 4, 4); 6976 6977 // Load the address of the dispatch MBB into the jump buffer. 6978 if (isThumb2) { 6979 // Incoming value: jbuf 6980 // ldr.n r5, LCPI1_1 6981 // orr r5, r5, #1 6982 // add r5, pc 6983 // str r5, [$jbuf, #+4] ; &jbuf[1] 6984 unsigned NewVReg1 = MRI->createVirtualRegister(TRC); 6985 AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::t2LDRpci), NewVReg1) 6986 .addConstantPoolIndex(CPI) 6987 .addMemOperand(CPMMO)); 6988 // Set the low bit because of thumb mode. 6989 unsigned NewVReg2 = MRI->createVirtualRegister(TRC); 6990 AddDefaultCC( 6991 AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::t2ORRri), NewVReg2) 6992 .addReg(NewVReg1, RegState::Kill) 6993 .addImm(0x01))); 6994 unsigned NewVReg3 = MRI->createVirtualRegister(TRC); 6995 BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg3) 6996 .addReg(NewVReg2, RegState::Kill) 6997 .addImm(PCLabelId); 6998 AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::t2STRi12)) 6999 .addReg(NewVReg3, RegState::Kill) 7000 .addFrameIndex(FI) 7001 .addImm(36) // &jbuf[1] :: pc 7002 .addMemOperand(FIMMOSt)); 7003 } else if (isThumb) { 7004 // Incoming value: jbuf 7005 // ldr.n r1, LCPI1_4 7006 // add r1, pc 7007 // mov r2, #1 7008 // orrs r1, r2 7009 // add r2, $jbuf, #+4 ; &jbuf[1] 7010 // str r1, [r2] 7011 unsigned NewVReg1 = MRI->createVirtualRegister(TRC); 7012 AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tLDRpci), NewVReg1) 7013 .addConstantPoolIndex(CPI) 7014 .addMemOperand(CPMMO)); 7015 unsigned NewVReg2 = MRI->createVirtualRegister(TRC); 7016 BuildMI(*MBB, MI, dl, TII->get(ARM::tPICADD), NewVReg2) 7017 .addReg(NewVReg1, RegState::Kill) 7018 .addImm(PCLabelId); 7019 // Set the low bit because of thumb mode. 7020 unsigned NewVReg3 = MRI->createVirtualRegister(TRC); 7021 AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tMOVi8), NewVReg3) 7022 .addReg(ARM::CPSR, RegState::Define) 7023 .addImm(1)); 7024 unsigned NewVReg4 = MRI->createVirtualRegister(TRC); 7025 AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tORR), NewVReg4) 7026 .addReg(ARM::CPSR, RegState::Define) 7027 .addReg(NewVReg2, RegState::Kill) 7028 .addReg(NewVReg3, RegState::Kill)); 7029 unsigned NewVReg5 = MRI->createVirtualRegister(TRC); 7030 BuildMI(*MBB, MI, dl, TII->get(ARM::tADDframe), NewVReg5) 7031 .addFrameIndex(FI) 7032 .addImm(36); // &jbuf[1] :: pc 7033 AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::tSTRi)) 7034 .addReg(NewVReg4, RegState::Kill) 7035 .addReg(NewVReg5, RegState::Kill) 7036 .addImm(0) 7037 .addMemOperand(FIMMOSt)); 7038 } else { 7039 // Incoming value: jbuf 7040 // ldr r1, LCPI1_1 7041 // add r1, pc, r1 7042 // str r1, [$jbuf, #+4] ; &jbuf[1] 7043 unsigned NewVReg1 = MRI->createVirtualRegister(TRC); 7044 AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::LDRi12), NewVReg1) 7045 .addConstantPoolIndex(CPI) 7046 .addImm(0) 7047 .addMemOperand(CPMMO)); 7048 unsigned NewVReg2 = MRI->createVirtualRegister(TRC); 7049 AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::PICADD), NewVReg2) 7050 .addReg(NewVReg1, RegState::Kill) 7051 .addImm(PCLabelId)); 7052 AddDefaultPred(BuildMI(*MBB, MI, dl, TII->get(ARM::STRi12)) 7053 .addReg(NewVReg2, RegState::Kill) 7054 .addFrameIndex(FI) 7055 .addImm(36) // &jbuf[1] :: pc 7056 .addMemOperand(FIMMOSt)); 7057 } 7058 } 7059 7060 void ARMTargetLowering::EmitSjLjDispatchBlock(MachineInstr *MI, 7061 MachineBasicBlock *MBB) const { 7062 const TargetInstrInfo *TII = Subtarget->getInstrInfo(); 7063 DebugLoc dl = MI->getDebugLoc(); 7064 MachineFunction *MF = MBB->getParent(); 7065 MachineRegisterInfo *MRI = &MF->getRegInfo(); 7066 MachineFrameInfo *MFI = MF->getFrameInfo(); 7067 int FI = MFI->getFunctionContextIndex(); 7068 7069 const TargetRegisterClass *TRC = Subtarget->isThumb() ? &ARM::tGPRRegClass 7070 : &ARM::GPRnopcRegClass; 7071 7072 // Get a mapping of the call site numbers to all of the landing pads they're 7073 // associated with. 7074 DenseMap<unsigned, SmallVector<MachineBasicBlock*, 2> > CallSiteNumToLPad; 7075 unsigned MaxCSNum = 0; 7076 MachineModuleInfo &MMI = MF->getMMI(); 7077 for (MachineFunction::iterator BB = MF->begin(), E = MF->end(); BB != E; 7078 ++BB) { 7079 if (!BB->isEHPad()) continue; 7080 7081 // FIXME: We should assert that the EH_LABEL is the first MI in the landing 7082 // pad. 7083 for (MachineBasicBlock::iterator 7084 II = BB->begin(), IE = BB->end(); II != IE; ++II) { 7085 if (!II->isEHLabel()) continue; 7086 7087 MCSymbol *Sym = II->getOperand(0).getMCSymbol(); 7088 if (!MMI.hasCallSiteLandingPad(Sym)) continue; 7089 7090 SmallVectorImpl<unsigned> &CallSiteIdxs = MMI.getCallSiteLandingPad(Sym); 7091 for (SmallVectorImpl<unsigned>::iterator 7092 CSI = CallSiteIdxs.begin(), CSE = CallSiteIdxs.end(); 7093 CSI != CSE; ++CSI) { 7094 CallSiteNumToLPad[*CSI].push_back(&*BB); 7095 MaxCSNum = std::max(MaxCSNum, *CSI); 7096 } 7097 break; 7098 } 7099 } 7100 7101 // Get an ordered list of the machine basic blocks for the jump table. 7102 std::vector<MachineBasicBlock*> LPadList; 7103 SmallPtrSet<MachineBasicBlock*, 64> InvokeBBs; 7104 LPadList.reserve(CallSiteNumToLPad.size()); 7105 for (unsigned I = 1; I <= MaxCSNum; ++I) { 7106 SmallVectorImpl<MachineBasicBlock*> &MBBList = CallSiteNumToLPad[I]; 7107 for (SmallVectorImpl<MachineBasicBlock*>::iterator 7108 II = MBBList.begin(), IE = MBBList.end(); II != IE; ++II) { 7109 LPadList.push_back(*II); 7110 InvokeBBs.insert((*II)->pred_begin(), (*II)->pred_end()); 7111 } 7112 } 7113 7114 assert(!LPadList.empty() && 7115 "No landing pad destinations for the dispatch jump table!"); 7116 7117 // Create the jump table and associated information. 7118 MachineJumpTableInfo *JTI = 7119 MF->getOrCreateJumpTableInfo(MachineJumpTableInfo::EK_Inline); 7120 unsigned MJTI = JTI->createJumpTableIndex(LPadList); 7121 Reloc::Model RelocM = getTargetMachine().getRelocationModel(); 7122 7123 // Create the MBBs for the dispatch code. 7124 7125 // Shove the dispatch's address into the return slot in the function context. 7126 MachineBasicBlock *DispatchBB = MF->CreateMachineBasicBlock(); 7127 DispatchBB->setIsEHPad(); 7128 7129 MachineBasicBlock *TrapBB = MF->CreateMachineBasicBlock(); 7130 unsigned trap_opcode; 7131 if (Subtarget->isThumb()) 7132 trap_opcode = ARM::tTRAP; 7133 else 7134 trap_opcode = Subtarget->useNaClTrap() ? ARM::TRAPNaCl : ARM::TRAP; 7135 7136 BuildMI(TrapBB, dl, TII->get(trap_opcode)); 7137 DispatchBB->addSuccessor(TrapBB); 7138 7139 MachineBasicBlock *DispContBB = MF->CreateMachineBasicBlock(); 7140 DispatchBB->addSuccessor(DispContBB); 7141 7142 // Insert and MBBs. 7143 MF->insert(MF->end(), DispatchBB); 7144 MF->insert(MF->end(), DispContBB); 7145 MF->insert(MF->end(), TrapBB); 7146 7147 // Insert code into the entry block that creates and registers the function 7148 // context. 7149 SetupEntryBlockForSjLj(MI, MBB, DispatchBB, FI); 7150 7151 MachineMemOperand *FIMMOLd = MF->getMachineMemOperand( 7152 MachinePointerInfo::getFixedStack(*MF, FI), 7153 MachineMemOperand::MOLoad | MachineMemOperand::MOVolatile, 4, 4); 7154 7155 MachineInstrBuilder MIB; 7156 MIB = BuildMI(DispatchBB, dl, TII->get(ARM::Int_eh_sjlj_dispatchsetup)); 7157 7158 const ARMBaseInstrInfo *AII = static_cast<const ARMBaseInstrInfo*>(TII); 7159 const ARMBaseRegisterInfo &RI = AII->getRegisterInfo(); 7160 7161 // Add a register mask with no preserved registers. This results in all 7162 // registers being marked as clobbered. 7163 MIB.addRegMask(RI.getNoPreservedMask()); 7164 7165 unsigned NumLPads = LPadList.size(); 7166 if (Subtarget->isThumb2()) { 7167 unsigned NewVReg1 = MRI->createVirtualRegister(TRC); 7168 AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2LDRi12), NewVReg1) 7169 .addFrameIndex(FI) 7170 .addImm(4) 7171 .addMemOperand(FIMMOLd)); 7172 7173 if (NumLPads < 256) { 7174 AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPri)) 7175 .addReg(NewVReg1) 7176 .addImm(LPadList.size())); 7177 } else { 7178 unsigned VReg1 = MRI->createVirtualRegister(TRC); 7179 AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVi16), VReg1) 7180 .addImm(NumLPads & 0xFFFF)); 7181 7182 unsigned VReg2 = VReg1; 7183 if ((NumLPads & 0xFFFF0000) != 0) { 7184 VReg2 = MRI->createVirtualRegister(TRC); 7185 AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2MOVTi16), VReg2) 7186 .addReg(VReg1) 7187 .addImm(NumLPads >> 16)); 7188 } 7189 7190 AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::t2CMPrr)) 7191 .addReg(NewVReg1) 7192 .addReg(VReg2)); 7193 } 7194 7195 BuildMI(DispatchBB, dl, TII->get(ARM::t2Bcc)) 7196 .addMBB(TrapBB) 7197 .addImm(ARMCC::HI) 7198 .addReg(ARM::CPSR); 7199 7200 unsigned NewVReg3 = MRI->createVirtualRegister(TRC); 7201 AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::t2LEApcrelJT),NewVReg3) 7202 .addJumpTableIndex(MJTI)); 7203 7204 unsigned NewVReg4 = MRI->createVirtualRegister(TRC); 7205 AddDefaultCC( 7206 AddDefaultPred( 7207 BuildMI(DispContBB, dl, TII->get(ARM::t2ADDrs), NewVReg4) 7208 .addReg(NewVReg3, RegState::Kill) 7209 .addReg(NewVReg1) 7210 .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2)))); 7211 7212 BuildMI(DispContBB, dl, TII->get(ARM::t2BR_JT)) 7213 .addReg(NewVReg4, RegState::Kill) 7214 .addReg(NewVReg1) 7215 .addJumpTableIndex(MJTI); 7216 } else if (Subtarget->isThumb()) { 7217 unsigned NewVReg1 = MRI->createVirtualRegister(TRC); 7218 AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tLDRspi), NewVReg1) 7219 .addFrameIndex(FI) 7220 .addImm(1) 7221 .addMemOperand(FIMMOLd)); 7222 7223 if (NumLPads < 256) { 7224 AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tCMPi8)) 7225 .addReg(NewVReg1) 7226 .addImm(NumLPads)); 7227 } else { 7228 MachineConstantPool *ConstantPool = MF->getConstantPool(); 7229 Type *Int32Ty = Type::getInt32Ty(MF->getFunction()->getContext()); 7230 const Constant *C = ConstantInt::get(Int32Ty, NumLPads); 7231 7232 // MachineConstantPool wants an explicit alignment. 7233 unsigned Align = MF->getDataLayout().getPrefTypeAlignment(Int32Ty); 7234 if (Align == 0) 7235 Align = MF->getDataLayout().getTypeAllocSize(C->getType()); 7236 unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align); 7237 7238 unsigned VReg1 = MRI->createVirtualRegister(TRC); 7239 AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tLDRpci)) 7240 .addReg(VReg1, RegState::Define) 7241 .addConstantPoolIndex(Idx)); 7242 AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::tCMPr)) 7243 .addReg(NewVReg1) 7244 .addReg(VReg1)); 7245 } 7246 7247 BuildMI(DispatchBB, dl, TII->get(ARM::tBcc)) 7248 .addMBB(TrapBB) 7249 .addImm(ARMCC::HI) 7250 .addReg(ARM::CPSR); 7251 7252 unsigned NewVReg2 = MRI->createVirtualRegister(TRC); 7253 AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tLSLri), NewVReg2) 7254 .addReg(ARM::CPSR, RegState::Define) 7255 .addReg(NewVReg1) 7256 .addImm(2)); 7257 7258 unsigned NewVReg3 = MRI->createVirtualRegister(TRC); 7259 AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tLEApcrelJT), NewVReg3) 7260 .addJumpTableIndex(MJTI)); 7261 7262 unsigned NewVReg4 = MRI->createVirtualRegister(TRC); 7263 AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg4) 7264 .addReg(ARM::CPSR, RegState::Define) 7265 .addReg(NewVReg2, RegState::Kill) 7266 .addReg(NewVReg3)); 7267 7268 MachineMemOperand *JTMMOLd = MF->getMachineMemOperand( 7269 MachinePointerInfo::getJumpTable(*MF), MachineMemOperand::MOLoad, 4, 4); 7270 7271 unsigned NewVReg5 = MRI->createVirtualRegister(TRC); 7272 AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tLDRi), NewVReg5) 7273 .addReg(NewVReg4, RegState::Kill) 7274 .addImm(0) 7275 .addMemOperand(JTMMOLd)); 7276 7277 unsigned NewVReg6 = NewVReg5; 7278 if (RelocM == Reloc::PIC_) { 7279 NewVReg6 = MRI->createVirtualRegister(TRC); 7280 AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::tADDrr), NewVReg6) 7281 .addReg(ARM::CPSR, RegState::Define) 7282 .addReg(NewVReg5, RegState::Kill) 7283 .addReg(NewVReg3)); 7284 } 7285 7286 BuildMI(DispContBB, dl, TII->get(ARM::tBR_JTr)) 7287 .addReg(NewVReg6, RegState::Kill) 7288 .addJumpTableIndex(MJTI); 7289 } else { 7290 unsigned NewVReg1 = MRI->createVirtualRegister(TRC); 7291 AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::LDRi12), NewVReg1) 7292 .addFrameIndex(FI) 7293 .addImm(4) 7294 .addMemOperand(FIMMOLd)); 7295 7296 if (NumLPads < 256) { 7297 AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::CMPri)) 7298 .addReg(NewVReg1) 7299 .addImm(NumLPads)); 7300 } else if (Subtarget->hasV6T2Ops() && isUInt<16>(NumLPads)) { 7301 unsigned VReg1 = MRI->createVirtualRegister(TRC); 7302 AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::MOVi16), VReg1) 7303 .addImm(NumLPads & 0xFFFF)); 7304 7305 unsigned VReg2 = VReg1; 7306 if ((NumLPads & 0xFFFF0000) != 0) { 7307 VReg2 = MRI->createVirtualRegister(TRC); 7308 AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::MOVTi16), VReg2) 7309 .addReg(VReg1) 7310 .addImm(NumLPads >> 16)); 7311 } 7312 7313 AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr)) 7314 .addReg(NewVReg1) 7315 .addReg(VReg2)); 7316 } else { 7317 MachineConstantPool *ConstantPool = MF->getConstantPool(); 7318 Type *Int32Ty = Type::getInt32Ty(MF->getFunction()->getContext()); 7319 const Constant *C = ConstantInt::get(Int32Ty, NumLPads); 7320 7321 // MachineConstantPool wants an explicit alignment. 7322 unsigned Align = MF->getDataLayout().getPrefTypeAlignment(Int32Ty); 7323 if (Align == 0) 7324 Align = MF->getDataLayout().getTypeAllocSize(C->getType()); 7325 unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align); 7326 7327 unsigned VReg1 = MRI->createVirtualRegister(TRC); 7328 AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::LDRcp)) 7329 .addReg(VReg1, RegState::Define) 7330 .addConstantPoolIndex(Idx) 7331 .addImm(0)); 7332 AddDefaultPred(BuildMI(DispatchBB, dl, TII->get(ARM::CMPrr)) 7333 .addReg(NewVReg1) 7334 .addReg(VReg1, RegState::Kill)); 7335 } 7336 7337 BuildMI(DispatchBB, dl, TII->get(ARM::Bcc)) 7338 .addMBB(TrapBB) 7339 .addImm(ARMCC::HI) 7340 .addReg(ARM::CPSR); 7341 7342 unsigned NewVReg3 = MRI->createVirtualRegister(TRC); 7343 AddDefaultCC( 7344 AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::MOVsi), NewVReg3) 7345 .addReg(NewVReg1) 7346 .addImm(ARM_AM::getSORegOpc(ARM_AM::lsl, 2)))); 7347 unsigned NewVReg4 = MRI->createVirtualRegister(TRC); 7348 AddDefaultPred(BuildMI(DispContBB, dl, TII->get(ARM::LEApcrelJT), NewVReg4) 7349 .addJumpTableIndex(MJTI)); 7350 7351 MachineMemOperand *JTMMOLd = MF->getMachineMemOperand( 7352 MachinePointerInfo::getJumpTable(*MF), MachineMemOperand::MOLoad, 4, 4); 7353 unsigned NewVReg5 = MRI->createVirtualRegister(TRC); 7354 AddDefaultPred( 7355 BuildMI(DispContBB, dl, TII->get(ARM::LDRrs), NewVReg5) 7356 .addReg(NewVReg3, RegState::Kill) 7357 .addReg(NewVReg4) 7358 .addImm(0) 7359 .addMemOperand(JTMMOLd)); 7360 7361 if (RelocM == Reloc::PIC_) { 7362 BuildMI(DispContBB, dl, TII->get(ARM::BR_JTadd)) 7363 .addReg(NewVReg5, RegState::Kill) 7364 .addReg(NewVReg4) 7365 .addJumpTableIndex(MJTI); 7366 } else { 7367 BuildMI(DispContBB, dl, TII->get(ARM::BR_JTr)) 7368 .addReg(NewVReg5, RegState::Kill) 7369 .addJumpTableIndex(MJTI); 7370 } 7371 } 7372 7373 // Add the jump table entries as successors to the MBB. 7374 SmallPtrSet<MachineBasicBlock*, 8> SeenMBBs; 7375 for (std::vector<MachineBasicBlock*>::iterator 7376 I = LPadList.begin(), E = LPadList.end(); I != E; ++I) { 7377 MachineBasicBlock *CurMBB = *I; 7378 if (SeenMBBs.insert(CurMBB).second) 7379 DispContBB->addSuccessor(CurMBB); 7380 } 7381 7382 // N.B. the order the invoke BBs are processed in doesn't matter here. 7383 const MCPhysReg *SavedRegs = RI.getCalleeSavedRegs(MF); 7384 SmallVector<MachineBasicBlock*, 64> MBBLPads; 7385 for (MachineBasicBlock *BB : InvokeBBs) { 7386 7387 // Remove the landing pad successor from the invoke block and replace it 7388 // with the new dispatch block. 7389 SmallVector<MachineBasicBlock*, 4> Successors(BB->succ_begin(), 7390 BB->succ_end()); 7391 while (!Successors.empty()) { 7392 MachineBasicBlock *SMBB = Successors.pop_back_val(); 7393 if (SMBB->isEHPad()) { 7394 BB->removeSuccessor(SMBB); 7395 MBBLPads.push_back(SMBB); 7396 } 7397 } 7398 7399 BB->addSuccessor(DispatchBB, BranchProbability::getZero()); 7400 BB->normalizeSuccProbs(); 7401 7402 // Find the invoke call and mark all of the callee-saved registers as 7403 // 'implicit defined' so that they're spilled. This prevents code from 7404 // moving instructions to before the EH block, where they will never be 7405 // executed. 7406 for (MachineBasicBlock::reverse_iterator 7407 II = BB->rbegin(), IE = BB->rend(); II != IE; ++II) { 7408 if (!II->isCall()) continue; 7409 7410 DenseMap<unsigned, bool> DefRegs; 7411 for (MachineInstr::mop_iterator 7412 OI = II->operands_begin(), OE = II->operands_end(); 7413 OI != OE; ++OI) { 7414 if (!OI->isReg()) continue; 7415 DefRegs[OI->getReg()] = true; 7416 } 7417 7418 MachineInstrBuilder MIB(*MF, &*II); 7419 7420 for (unsigned i = 0; SavedRegs[i] != 0; ++i) { 7421 unsigned Reg = SavedRegs[i]; 7422 if (Subtarget->isThumb2() && 7423 !ARM::tGPRRegClass.contains(Reg) && 7424 !ARM::hGPRRegClass.contains(Reg)) 7425 continue; 7426 if (Subtarget->isThumb1Only() && !ARM::tGPRRegClass.contains(Reg)) 7427 continue; 7428 if (!Subtarget->isThumb() && !ARM::GPRRegClass.contains(Reg)) 7429 continue; 7430 if (!DefRegs[Reg]) 7431 MIB.addReg(Reg, RegState::ImplicitDefine | RegState::Dead); 7432 } 7433 7434 break; 7435 } 7436 } 7437 7438 // Mark all former landing pads as non-landing pads. The dispatch is the only 7439 // landing pad now. 7440 for (SmallVectorImpl<MachineBasicBlock*>::iterator 7441 I = MBBLPads.begin(), E = MBBLPads.end(); I != E; ++I) 7442 (*I)->setIsEHPad(false); 7443 7444 // The instruction is gone now. 7445 MI->eraseFromParent(); 7446 } 7447 7448 static 7449 MachineBasicBlock *OtherSucc(MachineBasicBlock *MBB, MachineBasicBlock *Succ) { 7450 for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(), 7451 E = MBB->succ_end(); I != E; ++I) 7452 if (*I != Succ) 7453 return *I; 7454 llvm_unreachable("Expecting a BB with two successors!"); 7455 } 7456 7457 /// Return the load opcode for a given load size. If load size >= 8, 7458 /// neon opcode will be returned. 7459 static unsigned getLdOpcode(unsigned LdSize, bool IsThumb1, bool IsThumb2) { 7460 if (LdSize >= 8) 7461 return LdSize == 16 ? ARM::VLD1q32wb_fixed 7462 : LdSize == 8 ? ARM::VLD1d32wb_fixed : 0; 7463 if (IsThumb1) 7464 return LdSize == 4 ? ARM::tLDRi 7465 : LdSize == 2 ? ARM::tLDRHi 7466 : LdSize == 1 ? ARM::tLDRBi : 0; 7467 if (IsThumb2) 7468 return LdSize == 4 ? ARM::t2LDR_POST 7469 : LdSize == 2 ? ARM::t2LDRH_POST 7470 : LdSize == 1 ? ARM::t2LDRB_POST : 0; 7471 return LdSize == 4 ? ARM::LDR_POST_IMM 7472 : LdSize == 2 ? ARM::LDRH_POST 7473 : LdSize == 1 ? ARM::LDRB_POST_IMM : 0; 7474 } 7475 7476 /// Return the store opcode for a given store size. If store size >= 8, 7477 /// neon opcode will be returned. 7478 static unsigned getStOpcode(unsigned StSize, bool IsThumb1, bool IsThumb2) { 7479 if (StSize >= 8) 7480 return StSize == 16 ? ARM::VST1q32wb_fixed 7481 : StSize == 8 ? ARM::VST1d32wb_fixed : 0; 7482 if (IsThumb1) 7483 return StSize == 4 ? ARM::tSTRi 7484 : StSize == 2 ? ARM::tSTRHi 7485 : StSize == 1 ? ARM::tSTRBi : 0; 7486 if (IsThumb2) 7487 return StSize == 4 ? ARM::t2STR_POST 7488 : StSize == 2 ? ARM::t2STRH_POST 7489 : StSize == 1 ? ARM::t2STRB_POST : 0; 7490 return StSize == 4 ? ARM::STR_POST_IMM 7491 : StSize == 2 ? ARM::STRH_POST 7492 : StSize == 1 ? ARM::STRB_POST_IMM : 0; 7493 } 7494 7495 /// Emit a post-increment load operation with given size. The instructions 7496 /// will be added to BB at Pos. 7497 static void emitPostLd(MachineBasicBlock *BB, MachineInstr *Pos, 7498 const TargetInstrInfo *TII, DebugLoc dl, 7499 unsigned LdSize, unsigned Data, unsigned AddrIn, 7500 unsigned AddrOut, bool IsThumb1, bool IsThumb2) { 7501 unsigned LdOpc = getLdOpcode(LdSize, IsThumb1, IsThumb2); 7502 assert(LdOpc != 0 && "Should have a load opcode"); 7503 if (LdSize >= 8) { 7504 AddDefaultPred(BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data) 7505 .addReg(AddrOut, RegState::Define).addReg(AddrIn) 7506 .addImm(0)); 7507 } else if (IsThumb1) { 7508 // load + update AddrIn 7509 AddDefaultPred(BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data) 7510 .addReg(AddrIn).addImm(0)); 7511 MachineInstrBuilder MIB = 7512 BuildMI(*BB, Pos, dl, TII->get(ARM::tADDi8), AddrOut); 7513 MIB = AddDefaultT1CC(MIB); 7514 MIB.addReg(AddrIn).addImm(LdSize); 7515 AddDefaultPred(MIB); 7516 } else if (IsThumb2) { 7517 AddDefaultPred(BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data) 7518 .addReg(AddrOut, RegState::Define).addReg(AddrIn) 7519 .addImm(LdSize)); 7520 } else { // arm 7521 AddDefaultPred(BuildMI(*BB, Pos, dl, TII->get(LdOpc), Data) 7522 .addReg(AddrOut, RegState::Define).addReg(AddrIn) 7523 .addReg(0).addImm(LdSize)); 7524 } 7525 } 7526 7527 /// Emit a post-increment store operation with given size. The instructions 7528 /// will be added to BB at Pos. 7529 static void emitPostSt(MachineBasicBlock *BB, MachineInstr *Pos, 7530 const TargetInstrInfo *TII, DebugLoc dl, 7531 unsigned StSize, unsigned Data, unsigned AddrIn, 7532 unsigned AddrOut, bool IsThumb1, bool IsThumb2) { 7533 unsigned StOpc = getStOpcode(StSize, IsThumb1, IsThumb2); 7534 assert(StOpc != 0 && "Should have a store opcode"); 7535 if (StSize >= 8) { 7536 AddDefaultPred(BuildMI(*BB, Pos, dl, TII->get(StOpc), AddrOut) 7537 .addReg(AddrIn).addImm(0).addReg(Data)); 7538 } else if (IsThumb1) { 7539 // store + update AddrIn 7540 AddDefaultPred(BuildMI(*BB, Pos, dl, TII->get(StOpc)).addReg(Data) 7541 .addReg(AddrIn).addImm(0)); 7542 MachineInstrBuilder MIB = 7543 BuildMI(*BB, Pos, dl, TII->get(ARM::tADDi8), AddrOut); 7544 MIB = AddDefaultT1CC(MIB); 7545 MIB.addReg(AddrIn).addImm(StSize); 7546 AddDefaultPred(MIB); 7547 } else if (IsThumb2) { 7548 AddDefaultPred(BuildMI(*BB, Pos, dl, TII->get(StOpc), AddrOut) 7549 .addReg(Data).addReg(AddrIn).addImm(StSize)); 7550 } else { // arm 7551 AddDefaultPred(BuildMI(*BB, Pos, dl, TII->get(StOpc), AddrOut) 7552 .addReg(Data).addReg(AddrIn).addReg(0) 7553 .addImm(StSize)); 7554 } 7555 } 7556 7557 MachineBasicBlock * 7558 ARMTargetLowering::EmitStructByval(MachineInstr *MI, 7559 MachineBasicBlock *BB) const { 7560 // This pseudo instruction has 3 operands: dst, src, size 7561 // We expand it to a loop if size > Subtarget->getMaxInlineSizeThreshold(). 7562 // Otherwise, we will generate unrolled scalar copies. 7563 const TargetInstrInfo *TII = Subtarget->getInstrInfo(); 7564 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 7565 MachineFunction::iterator It = ++BB->getIterator(); 7566 7567 unsigned dest = MI->getOperand(0).getReg(); 7568 unsigned src = MI->getOperand(1).getReg(); 7569 unsigned SizeVal = MI->getOperand(2).getImm(); 7570 unsigned Align = MI->getOperand(3).getImm(); 7571 DebugLoc dl = MI->getDebugLoc(); 7572 7573 MachineFunction *MF = BB->getParent(); 7574 MachineRegisterInfo &MRI = MF->getRegInfo(); 7575 unsigned UnitSize = 0; 7576 const TargetRegisterClass *TRC = nullptr; 7577 const TargetRegisterClass *VecTRC = nullptr; 7578 7579 bool IsThumb1 = Subtarget->isThumb1Only(); 7580 bool IsThumb2 = Subtarget->isThumb2(); 7581 7582 if (Align & 1) { 7583 UnitSize = 1; 7584 } else if (Align & 2) { 7585 UnitSize = 2; 7586 } else { 7587 // Check whether we can use NEON instructions. 7588 if (!MF->getFunction()->hasFnAttribute(Attribute::NoImplicitFloat) && 7589 Subtarget->hasNEON()) { 7590 if ((Align % 16 == 0) && SizeVal >= 16) 7591 UnitSize = 16; 7592 else if ((Align % 8 == 0) && SizeVal >= 8) 7593 UnitSize = 8; 7594 } 7595 // Can't use NEON instructions. 7596 if (UnitSize == 0) 7597 UnitSize = 4; 7598 } 7599 7600 // Select the correct opcode and register class for unit size load/store 7601 bool IsNeon = UnitSize >= 8; 7602 TRC = (IsThumb1 || IsThumb2) ? &ARM::tGPRRegClass : &ARM::GPRRegClass; 7603 if (IsNeon) 7604 VecTRC = UnitSize == 16 ? &ARM::DPairRegClass 7605 : UnitSize == 8 ? &ARM::DPRRegClass 7606 : nullptr; 7607 7608 unsigned BytesLeft = SizeVal % UnitSize; 7609 unsigned LoopSize = SizeVal - BytesLeft; 7610 7611 if (SizeVal <= Subtarget->getMaxInlineSizeThreshold()) { 7612 // Use LDR and STR to copy. 7613 // [scratch, srcOut] = LDR_POST(srcIn, UnitSize) 7614 // [destOut] = STR_POST(scratch, destIn, UnitSize) 7615 unsigned srcIn = src; 7616 unsigned destIn = dest; 7617 for (unsigned i = 0; i < LoopSize; i+=UnitSize) { 7618 unsigned srcOut = MRI.createVirtualRegister(TRC); 7619 unsigned destOut = MRI.createVirtualRegister(TRC); 7620 unsigned scratch = MRI.createVirtualRegister(IsNeon ? VecTRC : TRC); 7621 emitPostLd(BB, MI, TII, dl, UnitSize, scratch, srcIn, srcOut, 7622 IsThumb1, IsThumb2); 7623 emitPostSt(BB, MI, TII, dl, UnitSize, scratch, destIn, destOut, 7624 IsThumb1, IsThumb2); 7625 srcIn = srcOut; 7626 destIn = destOut; 7627 } 7628 7629 // Handle the leftover bytes with LDRB and STRB. 7630 // [scratch, srcOut] = LDRB_POST(srcIn, 1) 7631 // [destOut] = STRB_POST(scratch, destIn, 1) 7632 for (unsigned i = 0; i < BytesLeft; i++) { 7633 unsigned srcOut = MRI.createVirtualRegister(TRC); 7634 unsigned destOut = MRI.createVirtualRegister(TRC); 7635 unsigned scratch = MRI.createVirtualRegister(TRC); 7636 emitPostLd(BB, MI, TII, dl, 1, scratch, srcIn, srcOut, 7637 IsThumb1, IsThumb2); 7638 emitPostSt(BB, MI, TII, dl, 1, scratch, destIn, destOut, 7639 IsThumb1, IsThumb2); 7640 srcIn = srcOut; 7641 destIn = destOut; 7642 } 7643 MI->eraseFromParent(); // The instruction is gone now. 7644 return BB; 7645 } 7646 7647 // Expand the pseudo op to a loop. 7648 // thisMBB: 7649 // ... 7650 // movw varEnd, # --> with thumb2 7651 // movt varEnd, # 7652 // ldrcp varEnd, idx --> without thumb2 7653 // fallthrough --> loopMBB 7654 // loopMBB: 7655 // PHI varPhi, varEnd, varLoop 7656 // PHI srcPhi, src, srcLoop 7657 // PHI destPhi, dst, destLoop 7658 // [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize) 7659 // [destLoop] = STR_POST(scratch, destPhi, UnitSize) 7660 // subs varLoop, varPhi, #UnitSize 7661 // bne loopMBB 7662 // fallthrough --> exitMBB 7663 // exitMBB: 7664 // epilogue to handle left-over bytes 7665 // [scratch, srcOut] = LDRB_POST(srcLoop, 1) 7666 // [destOut] = STRB_POST(scratch, destLoop, 1) 7667 MachineBasicBlock *loopMBB = MF->CreateMachineBasicBlock(LLVM_BB); 7668 MachineBasicBlock *exitMBB = MF->CreateMachineBasicBlock(LLVM_BB); 7669 MF->insert(It, loopMBB); 7670 MF->insert(It, exitMBB); 7671 7672 // Transfer the remainder of BB and its successor edges to exitMBB. 7673 exitMBB->splice(exitMBB->begin(), BB, 7674 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 7675 exitMBB->transferSuccessorsAndUpdatePHIs(BB); 7676 7677 // Load an immediate to varEnd. 7678 unsigned varEnd = MRI.createVirtualRegister(TRC); 7679 if (Subtarget->useMovt(*MF)) { 7680 unsigned Vtmp = varEnd; 7681 if ((LoopSize & 0xFFFF0000) != 0) 7682 Vtmp = MRI.createVirtualRegister(TRC); 7683 AddDefaultPred(BuildMI(BB, dl, 7684 TII->get(IsThumb2 ? ARM::t2MOVi16 : ARM::MOVi16), 7685 Vtmp).addImm(LoopSize & 0xFFFF)); 7686 7687 if ((LoopSize & 0xFFFF0000) != 0) 7688 AddDefaultPred(BuildMI(BB, dl, 7689 TII->get(IsThumb2 ? ARM::t2MOVTi16 : ARM::MOVTi16), 7690 varEnd) 7691 .addReg(Vtmp) 7692 .addImm(LoopSize >> 16)); 7693 } else { 7694 MachineConstantPool *ConstantPool = MF->getConstantPool(); 7695 Type *Int32Ty = Type::getInt32Ty(MF->getFunction()->getContext()); 7696 const Constant *C = ConstantInt::get(Int32Ty, LoopSize); 7697 7698 // MachineConstantPool wants an explicit alignment. 7699 unsigned Align = MF->getDataLayout().getPrefTypeAlignment(Int32Ty); 7700 if (Align == 0) 7701 Align = MF->getDataLayout().getTypeAllocSize(C->getType()); 7702 unsigned Idx = ConstantPool->getConstantPoolIndex(C, Align); 7703 7704 if (IsThumb1) 7705 AddDefaultPred(BuildMI(*BB, MI, dl, TII->get(ARM::tLDRpci)).addReg( 7706 varEnd, RegState::Define).addConstantPoolIndex(Idx)); 7707 else 7708 AddDefaultPred(BuildMI(*BB, MI, dl, TII->get(ARM::LDRcp)).addReg( 7709 varEnd, RegState::Define).addConstantPoolIndex(Idx).addImm(0)); 7710 } 7711 BB->addSuccessor(loopMBB); 7712 7713 // Generate the loop body: 7714 // varPhi = PHI(varLoop, varEnd) 7715 // srcPhi = PHI(srcLoop, src) 7716 // destPhi = PHI(destLoop, dst) 7717 MachineBasicBlock *entryBB = BB; 7718 BB = loopMBB; 7719 unsigned varLoop = MRI.createVirtualRegister(TRC); 7720 unsigned varPhi = MRI.createVirtualRegister(TRC); 7721 unsigned srcLoop = MRI.createVirtualRegister(TRC); 7722 unsigned srcPhi = MRI.createVirtualRegister(TRC); 7723 unsigned destLoop = MRI.createVirtualRegister(TRC); 7724 unsigned destPhi = MRI.createVirtualRegister(TRC); 7725 7726 BuildMI(*BB, BB->begin(), dl, TII->get(ARM::PHI), varPhi) 7727 .addReg(varLoop).addMBB(loopMBB) 7728 .addReg(varEnd).addMBB(entryBB); 7729 BuildMI(BB, dl, TII->get(ARM::PHI), srcPhi) 7730 .addReg(srcLoop).addMBB(loopMBB) 7731 .addReg(src).addMBB(entryBB); 7732 BuildMI(BB, dl, TII->get(ARM::PHI), destPhi) 7733 .addReg(destLoop).addMBB(loopMBB) 7734 .addReg(dest).addMBB(entryBB); 7735 7736 // [scratch, srcLoop] = LDR_POST(srcPhi, UnitSize) 7737 // [destLoop] = STR_POST(scratch, destPhi, UnitSiz) 7738 unsigned scratch = MRI.createVirtualRegister(IsNeon ? VecTRC : TRC); 7739 emitPostLd(BB, BB->end(), TII, dl, UnitSize, scratch, srcPhi, srcLoop, 7740 IsThumb1, IsThumb2); 7741 emitPostSt(BB, BB->end(), TII, dl, UnitSize, scratch, destPhi, destLoop, 7742 IsThumb1, IsThumb2); 7743 7744 // Decrement loop variable by UnitSize. 7745 if (IsThumb1) { 7746 MachineInstrBuilder MIB = 7747 BuildMI(*BB, BB->end(), dl, TII->get(ARM::tSUBi8), varLoop); 7748 MIB = AddDefaultT1CC(MIB); 7749 MIB.addReg(varPhi).addImm(UnitSize); 7750 AddDefaultPred(MIB); 7751 } else { 7752 MachineInstrBuilder MIB = 7753 BuildMI(*BB, BB->end(), dl, 7754 TII->get(IsThumb2 ? ARM::t2SUBri : ARM::SUBri), varLoop); 7755 AddDefaultCC(AddDefaultPred(MIB.addReg(varPhi).addImm(UnitSize))); 7756 MIB->getOperand(5).setReg(ARM::CPSR); 7757 MIB->getOperand(5).setIsDef(true); 7758 } 7759 BuildMI(*BB, BB->end(), dl, 7760 TII->get(IsThumb1 ? ARM::tBcc : IsThumb2 ? ARM::t2Bcc : ARM::Bcc)) 7761 .addMBB(loopMBB).addImm(ARMCC::NE).addReg(ARM::CPSR); 7762 7763 // loopMBB can loop back to loopMBB or fall through to exitMBB. 7764 BB->addSuccessor(loopMBB); 7765 BB->addSuccessor(exitMBB); 7766 7767 // Add epilogue to handle BytesLeft. 7768 BB = exitMBB; 7769 MachineInstr *StartOfExit = exitMBB->begin(); 7770 7771 // [scratch, srcOut] = LDRB_POST(srcLoop, 1) 7772 // [destOut] = STRB_POST(scratch, destLoop, 1) 7773 unsigned srcIn = srcLoop; 7774 unsigned destIn = destLoop; 7775 for (unsigned i = 0; i < BytesLeft; i++) { 7776 unsigned srcOut = MRI.createVirtualRegister(TRC); 7777 unsigned destOut = MRI.createVirtualRegister(TRC); 7778 unsigned scratch = MRI.createVirtualRegister(TRC); 7779 emitPostLd(BB, StartOfExit, TII, dl, 1, scratch, srcIn, srcOut, 7780 IsThumb1, IsThumb2); 7781 emitPostSt(BB, StartOfExit, TII, dl, 1, scratch, destIn, destOut, 7782 IsThumb1, IsThumb2); 7783 srcIn = srcOut; 7784 destIn = destOut; 7785 } 7786 7787 MI->eraseFromParent(); // The instruction is gone now. 7788 return BB; 7789 } 7790 7791 MachineBasicBlock * 7792 ARMTargetLowering::EmitLowered__chkstk(MachineInstr *MI, 7793 MachineBasicBlock *MBB) const { 7794 const TargetMachine &TM = getTargetMachine(); 7795 const TargetInstrInfo &TII = *Subtarget->getInstrInfo(); 7796 DebugLoc DL = MI->getDebugLoc(); 7797 7798 assert(Subtarget->isTargetWindows() && 7799 "__chkstk is only supported on Windows"); 7800 assert(Subtarget->isThumb2() && "Windows on ARM requires Thumb-2 mode"); 7801 7802 // __chkstk takes the number of words to allocate on the stack in R4, and 7803 // returns the stack adjustment in number of bytes in R4. This will not 7804 // clober any other registers (other than the obvious lr). 7805 // 7806 // Although, technically, IP should be considered a register which may be 7807 // clobbered, the call itself will not touch it. Windows on ARM is a pure 7808 // thumb-2 environment, so there is no interworking required. As a result, we 7809 // do not expect a veneer to be emitted by the linker, clobbering IP. 7810 // 7811 // Each module receives its own copy of __chkstk, so no import thunk is 7812 // required, again, ensuring that IP is not clobbered. 7813 // 7814 // Finally, although some linkers may theoretically provide a trampoline for 7815 // out of range calls (which is quite common due to a 32M range limitation of 7816 // branches for Thumb), we can generate the long-call version via 7817 // -mcmodel=large, alleviating the need for the trampoline which may clobber 7818 // IP. 7819 7820 switch (TM.getCodeModel()) { 7821 case CodeModel::Small: 7822 case CodeModel::Medium: 7823 case CodeModel::Default: 7824 case CodeModel::Kernel: 7825 BuildMI(*MBB, MI, DL, TII.get(ARM::tBL)) 7826 .addImm((unsigned)ARMCC::AL).addReg(0) 7827 .addExternalSymbol("__chkstk") 7828 .addReg(ARM::R4, RegState::Implicit | RegState::Kill) 7829 .addReg(ARM::R4, RegState::Implicit | RegState::Define) 7830 .addReg(ARM::R12, RegState::Implicit | RegState::Define | RegState::Dead); 7831 break; 7832 case CodeModel::Large: 7833 case CodeModel::JITDefault: { 7834 MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo(); 7835 unsigned Reg = MRI.createVirtualRegister(&ARM::rGPRRegClass); 7836 7837 BuildMI(*MBB, MI, DL, TII.get(ARM::t2MOVi32imm), Reg) 7838 .addExternalSymbol("__chkstk"); 7839 BuildMI(*MBB, MI, DL, TII.get(ARM::tBLXr)) 7840 .addImm((unsigned)ARMCC::AL).addReg(0) 7841 .addReg(Reg, RegState::Kill) 7842 .addReg(ARM::R4, RegState::Implicit | RegState::Kill) 7843 .addReg(ARM::R4, RegState::Implicit | RegState::Define) 7844 .addReg(ARM::R12, RegState::Implicit | RegState::Define | RegState::Dead); 7845 break; 7846 } 7847 } 7848 7849 AddDefaultCC(AddDefaultPred(BuildMI(*MBB, MI, DL, TII.get(ARM::t2SUBrr), 7850 ARM::SP) 7851 .addReg(ARM::SP).addReg(ARM::R4))); 7852 7853 MI->eraseFromParent(); 7854 return MBB; 7855 } 7856 7857 MachineBasicBlock * 7858 ARMTargetLowering::EmitLowered__dbzchk(MachineInstr *MI, 7859 MachineBasicBlock *MBB) const { 7860 DebugLoc DL = MI->getDebugLoc(); 7861 MachineFunction *MF = MBB->getParent(); 7862 const TargetInstrInfo *TII = Subtarget->getInstrInfo(); 7863 7864 MachineBasicBlock *ContBB = MF->CreateMachineBasicBlock(); 7865 MF->push_back(ContBB); 7866 ContBB->splice(ContBB->begin(), MBB, 7867 std::next(MachineBasicBlock::iterator(MI)), MBB->end()); 7868 MBB->addSuccessor(ContBB); 7869 7870 MachineBasicBlock *TrapBB = MF->CreateMachineBasicBlock(); 7871 MF->push_back(TrapBB); 7872 BuildMI(TrapBB, DL, TII->get(ARM::t2UDF)).addImm(249); 7873 MBB->addSuccessor(TrapBB); 7874 7875 BuildMI(*MBB, MI, DL, TII->get(ARM::tCBZ)) 7876 .addReg(MI->getOperand(0).getReg()) 7877 .addMBB(TrapBB); 7878 7879 MI->eraseFromParent(); 7880 return ContBB; 7881 } 7882 7883 MachineBasicBlock * 7884 ARMTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI, 7885 MachineBasicBlock *BB) const { 7886 const TargetInstrInfo *TII = Subtarget->getInstrInfo(); 7887 DebugLoc dl = MI->getDebugLoc(); 7888 bool isThumb2 = Subtarget->isThumb2(); 7889 switch (MI->getOpcode()) { 7890 default: { 7891 MI->dump(); 7892 llvm_unreachable("Unexpected instr type to insert"); 7893 } 7894 // The Thumb2 pre-indexed stores have the same MI operands, they just 7895 // define them differently in the .td files from the isel patterns, so 7896 // they need pseudos. 7897 case ARM::t2STR_preidx: 7898 MI->setDesc(TII->get(ARM::t2STR_PRE)); 7899 return BB; 7900 case ARM::t2STRB_preidx: 7901 MI->setDesc(TII->get(ARM::t2STRB_PRE)); 7902 return BB; 7903 case ARM::t2STRH_preidx: 7904 MI->setDesc(TII->get(ARM::t2STRH_PRE)); 7905 return BB; 7906 7907 case ARM::STRi_preidx: 7908 case ARM::STRBi_preidx: { 7909 unsigned NewOpc = MI->getOpcode() == ARM::STRi_preidx ? 7910 ARM::STR_PRE_IMM : ARM::STRB_PRE_IMM; 7911 // Decode the offset. 7912 unsigned Offset = MI->getOperand(4).getImm(); 7913 bool isSub = ARM_AM::getAM2Op(Offset) == ARM_AM::sub; 7914 Offset = ARM_AM::getAM2Offset(Offset); 7915 if (isSub) 7916 Offset = -Offset; 7917 7918 MachineMemOperand *MMO = *MI->memoperands_begin(); 7919 BuildMI(*BB, MI, dl, TII->get(NewOpc)) 7920 .addOperand(MI->getOperand(0)) // Rn_wb 7921 .addOperand(MI->getOperand(1)) // Rt 7922 .addOperand(MI->getOperand(2)) // Rn 7923 .addImm(Offset) // offset (skip GPR==zero_reg) 7924 .addOperand(MI->getOperand(5)) // pred 7925 .addOperand(MI->getOperand(6)) 7926 .addMemOperand(MMO); 7927 MI->eraseFromParent(); 7928 return BB; 7929 } 7930 case ARM::STRr_preidx: 7931 case ARM::STRBr_preidx: 7932 case ARM::STRH_preidx: { 7933 unsigned NewOpc; 7934 switch (MI->getOpcode()) { 7935 default: llvm_unreachable("unexpected opcode!"); 7936 case ARM::STRr_preidx: NewOpc = ARM::STR_PRE_REG; break; 7937 case ARM::STRBr_preidx: NewOpc = ARM::STRB_PRE_REG; break; 7938 case ARM::STRH_preidx: NewOpc = ARM::STRH_PRE; break; 7939 } 7940 MachineInstrBuilder MIB = BuildMI(*BB, MI, dl, TII->get(NewOpc)); 7941 for (unsigned i = 0; i < MI->getNumOperands(); ++i) 7942 MIB.addOperand(MI->getOperand(i)); 7943 MI->eraseFromParent(); 7944 return BB; 7945 } 7946 7947 case ARM::tMOVCCr_pseudo: { 7948 // To "insert" a SELECT_CC instruction, we actually have to insert the 7949 // diamond control-flow pattern. The incoming instruction knows the 7950 // destination vreg to set, the condition code register to branch on, the 7951 // true/false values to select between, and a branch opcode to use. 7952 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 7953 MachineFunction::iterator It = ++BB->getIterator(); 7954 7955 // thisMBB: 7956 // ... 7957 // TrueVal = ... 7958 // cmpTY ccX, r1, r2 7959 // bCC copy1MBB 7960 // fallthrough --> copy0MBB 7961 MachineBasicBlock *thisMBB = BB; 7962 MachineFunction *F = BB->getParent(); 7963 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB); 7964 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB); 7965 F->insert(It, copy0MBB); 7966 F->insert(It, sinkMBB); 7967 7968 // Transfer the remainder of BB and its successor edges to sinkMBB. 7969 sinkMBB->splice(sinkMBB->begin(), BB, 7970 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 7971 sinkMBB->transferSuccessorsAndUpdatePHIs(BB); 7972 7973 BB->addSuccessor(copy0MBB); 7974 BB->addSuccessor(sinkMBB); 7975 7976 BuildMI(BB, dl, TII->get(ARM::tBcc)).addMBB(sinkMBB) 7977 .addImm(MI->getOperand(3).getImm()).addReg(MI->getOperand(4).getReg()); 7978 7979 // copy0MBB: 7980 // %FalseValue = ... 7981 // # fallthrough to sinkMBB 7982 BB = copy0MBB; 7983 7984 // Update machine-CFG edges 7985 BB->addSuccessor(sinkMBB); 7986 7987 // sinkMBB: 7988 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] 7989 // ... 7990 BB = sinkMBB; 7991 BuildMI(*BB, BB->begin(), dl, 7992 TII->get(ARM::PHI), MI->getOperand(0).getReg()) 7993 .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB) 7994 .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB); 7995 7996 MI->eraseFromParent(); // The pseudo instruction is gone now. 7997 return BB; 7998 } 7999 8000 case ARM::BCCi64: 8001 case ARM::BCCZi64: { 8002 // If there is an unconditional branch to the other successor, remove it. 8003 BB->erase(std::next(MachineBasicBlock::iterator(MI)), BB->end()); 8004 8005 // Compare both parts that make up the double comparison separately for 8006 // equality. 8007 bool RHSisZero = MI->getOpcode() == ARM::BCCZi64; 8008 8009 unsigned LHS1 = MI->getOperand(1).getReg(); 8010 unsigned LHS2 = MI->getOperand(2).getReg(); 8011 if (RHSisZero) { 8012 AddDefaultPred(BuildMI(BB, dl, 8013 TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri)) 8014 .addReg(LHS1).addImm(0)); 8015 BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri)) 8016 .addReg(LHS2).addImm(0) 8017 .addImm(ARMCC::EQ).addReg(ARM::CPSR); 8018 } else { 8019 unsigned RHS1 = MI->getOperand(3).getReg(); 8020 unsigned RHS2 = MI->getOperand(4).getReg(); 8021 AddDefaultPred(BuildMI(BB, dl, 8022 TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr)) 8023 .addReg(LHS1).addReg(RHS1)); 8024 BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2CMPrr : ARM::CMPrr)) 8025 .addReg(LHS2).addReg(RHS2) 8026 .addImm(ARMCC::EQ).addReg(ARM::CPSR); 8027 } 8028 8029 MachineBasicBlock *destMBB = MI->getOperand(RHSisZero ? 3 : 5).getMBB(); 8030 MachineBasicBlock *exitMBB = OtherSucc(BB, destMBB); 8031 if (MI->getOperand(0).getImm() == ARMCC::NE) 8032 std::swap(destMBB, exitMBB); 8033 8034 BuildMI(BB, dl, TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc)) 8035 .addMBB(destMBB).addImm(ARMCC::EQ).addReg(ARM::CPSR); 8036 if (isThumb2) 8037 AddDefaultPred(BuildMI(BB, dl, TII->get(ARM::t2B)).addMBB(exitMBB)); 8038 else 8039 BuildMI(BB, dl, TII->get(ARM::B)) .addMBB(exitMBB); 8040 8041 MI->eraseFromParent(); // The pseudo instruction is gone now. 8042 return BB; 8043 } 8044 8045 case ARM::Int_eh_sjlj_setjmp: 8046 case ARM::Int_eh_sjlj_setjmp_nofp: 8047 case ARM::tInt_eh_sjlj_setjmp: 8048 case ARM::t2Int_eh_sjlj_setjmp: 8049 case ARM::t2Int_eh_sjlj_setjmp_nofp: 8050 return BB; 8051 8052 case ARM::Int_eh_sjlj_setup_dispatch: 8053 EmitSjLjDispatchBlock(MI, BB); 8054 return BB; 8055 8056 case ARM::ABS: 8057 case ARM::t2ABS: { 8058 // To insert an ABS instruction, we have to insert the 8059 // diamond control-flow pattern. The incoming instruction knows the 8060 // source vreg to test against 0, the destination vreg to set, 8061 // the condition code register to branch on, the 8062 // true/false values to select between, and a branch opcode to use. 8063 // It transforms 8064 // V1 = ABS V0 8065 // into 8066 // V2 = MOVS V0 8067 // BCC (branch to SinkBB if V0 >= 0) 8068 // RSBBB: V3 = RSBri V2, 0 (compute ABS if V2 < 0) 8069 // SinkBB: V1 = PHI(V2, V3) 8070 const BasicBlock *LLVM_BB = BB->getBasicBlock(); 8071 MachineFunction::iterator BBI = ++BB->getIterator(); 8072 MachineFunction *Fn = BB->getParent(); 8073 MachineBasicBlock *RSBBB = Fn->CreateMachineBasicBlock(LLVM_BB); 8074 MachineBasicBlock *SinkBB = Fn->CreateMachineBasicBlock(LLVM_BB); 8075 Fn->insert(BBI, RSBBB); 8076 Fn->insert(BBI, SinkBB); 8077 8078 unsigned int ABSSrcReg = MI->getOperand(1).getReg(); 8079 unsigned int ABSDstReg = MI->getOperand(0).getReg(); 8080 bool ABSSrcKIll = MI->getOperand(1).isKill(); 8081 bool isThumb2 = Subtarget->isThumb2(); 8082 MachineRegisterInfo &MRI = Fn->getRegInfo(); 8083 // In Thumb mode S must not be specified if source register is the SP or 8084 // PC and if destination register is the SP, so restrict register class 8085 unsigned NewRsbDstReg = 8086 MRI.createVirtualRegister(isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRRegClass); 8087 8088 // Transfer the remainder of BB and its successor edges to sinkMBB. 8089 SinkBB->splice(SinkBB->begin(), BB, 8090 std::next(MachineBasicBlock::iterator(MI)), BB->end()); 8091 SinkBB->transferSuccessorsAndUpdatePHIs(BB); 8092 8093 BB->addSuccessor(RSBBB); 8094 BB->addSuccessor(SinkBB); 8095 8096 // fall through to SinkMBB 8097 RSBBB->addSuccessor(SinkBB); 8098 8099 // insert a cmp at the end of BB 8100 AddDefaultPred(BuildMI(BB, dl, 8101 TII->get(isThumb2 ? ARM::t2CMPri : ARM::CMPri)) 8102 .addReg(ABSSrcReg).addImm(0)); 8103 8104 // insert a bcc with opposite CC to ARMCC::MI at the end of BB 8105 BuildMI(BB, dl, 8106 TII->get(isThumb2 ? ARM::t2Bcc : ARM::Bcc)).addMBB(SinkBB) 8107 .addImm(ARMCC::getOppositeCondition(ARMCC::MI)).addReg(ARM::CPSR); 8108 8109 // insert rsbri in RSBBB 8110 // Note: BCC and rsbri will be converted into predicated rsbmi 8111 // by if-conversion pass 8112 BuildMI(*RSBBB, RSBBB->begin(), dl, 8113 TII->get(isThumb2 ? ARM::t2RSBri : ARM::RSBri), NewRsbDstReg) 8114 .addReg(ABSSrcReg, ABSSrcKIll ? RegState::Kill : 0) 8115 .addImm(0).addImm((unsigned)ARMCC::AL).addReg(0).addReg(0); 8116 8117 // insert PHI in SinkBB, 8118 // reuse ABSDstReg to not change uses of ABS instruction 8119 BuildMI(*SinkBB, SinkBB->begin(), dl, 8120 TII->get(ARM::PHI), ABSDstReg) 8121 .addReg(NewRsbDstReg).addMBB(RSBBB) 8122 .addReg(ABSSrcReg).addMBB(BB); 8123 8124 // remove ABS instruction 8125 MI->eraseFromParent(); 8126 8127 // return last added BB 8128 return SinkBB; 8129 } 8130 case ARM::COPY_STRUCT_BYVAL_I32: 8131 ++NumLoopByVals; 8132 return EmitStructByval(MI, BB); 8133 case ARM::WIN__CHKSTK: 8134 return EmitLowered__chkstk(MI, BB); 8135 case ARM::WIN__DBZCHK: 8136 return EmitLowered__dbzchk(MI, BB); 8137 } 8138 } 8139 8140 /// \brief Attaches vregs to MEMCPY that it will use as scratch registers 8141 /// when it is expanded into LDM/STM. This is done as a post-isel lowering 8142 /// instead of as a custom inserter because we need the use list from the SDNode. 8143 static void attachMEMCPYScratchRegs(const ARMSubtarget *Subtarget, 8144 MachineInstr *MI, const SDNode *Node) { 8145 bool isThumb1 = Subtarget->isThumb1Only(); 8146 8147 DebugLoc DL = MI->getDebugLoc(); 8148 MachineFunction *MF = MI->getParent()->getParent(); 8149 MachineRegisterInfo &MRI = MF->getRegInfo(); 8150 MachineInstrBuilder MIB(*MF, MI); 8151 8152 // If the new dst/src is unused mark it as dead. 8153 if (!Node->hasAnyUseOfValue(0)) { 8154 MI->getOperand(0).setIsDead(true); 8155 } 8156 if (!Node->hasAnyUseOfValue(1)) { 8157 MI->getOperand(1).setIsDead(true); 8158 } 8159 8160 // The MEMCPY both defines and kills the scratch registers. 8161 for (unsigned I = 0; I != MI->getOperand(4).getImm(); ++I) { 8162 unsigned TmpReg = MRI.createVirtualRegister(isThumb1 ? &ARM::tGPRRegClass 8163 : &ARM::GPRRegClass); 8164 MIB.addReg(TmpReg, RegState::Define|RegState::Dead); 8165 } 8166 } 8167 8168 void ARMTargetLowering::AdjustInstrPostInstrSelection(MachineInstr *MI, 8169 SDNode *Node) const { 8170 if (MI->getOpcode() == ARM::MEMCPY) { 8171 attachMEMCPYScratchRegs(Subtarget, MI, Node); 8172 return; 8173 } 8174 8175 const MCInstrDesc *MCID = &MI->getDesc(); 8176 // Adjust potentially 's' setting instructions after isel, i.e. ADC, SBC, RSB, 8177 // RSC. Coming out of isel, they have an implicit CPSR def, but the optional 8178 // operand is still set to noreg. If needed, set the optional operand's 8179 // register to CPSR, and remove the redundant implicit def. 8180 // 8181 // e.g. ADCS (..., CPSR<imp-def>) -> ADC (... opt:CPSR<def>). 8182 8183 // Rename pseudo opcodes. 8184 unsigned NewOpc = convertAddSubFlagsOpcode(MI->getOpcode()); 8185 if (NewOpc) { 8186 const ARMBaseInstrInfo *TII = Subtarget->getInstrInfo(); 8187 MCID = &TII->get(NewOpc); 8188 8189 assert(MCID->getNumOperands() == MI->getDesc().getNumOperands() + 1 && 8190 "converted opcode should be the same except for cc_out"); 8191 8192 MI->setDesc(*MCID); 8193 8194 // Add the optional cc_out operand 8195 MI->addOperand(MachineOperand::CreateReg(0, /*isDef=*/true)); 8196 } 8197 unsigned ccOutIdx = MCID->getNumOperands() - 1; 8198 8199 // Any ARM instruction that sets the 's' bit should specify an optional 8200 // "cc_out" operand in the last operand position. 8201 if (!MI->hasOptionalDef() || !MCID->OpInfo[ccOutIdx].isOptionalDef()) { 8202 assert(!NewOpc && "Optional cc_out operand required"); 8203 return; 8204 } 8205 // Look for an implicit def of CPSR added by MachineInstr ctor. Remove it 8206 // since we already have an optional CPSR def. 8207 bool definesCPSR = false; 8208 bool deadCPSR = false; 8209 for (unsigned i = MCID->getNumOperands(), e = MI->getNumOperands(); 8210 i != e; ++i) { 8211 const MachineOperand &MO = MI->getOperand(i); 8212 if (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR) { 8213 definesCPSR = true; 8214 if (MO.isDead()) 8215 deadCPSR = true; 8216 MI->RemoveOperand(i); 8217 break; 8218 } 8219 } 8220 if (!definesCPSR) { 8221 assert(!NewOpc && "Optional cc_out operand required"); 8222 return; 8223 } 8224 assert(deadCPSR == !Node->hasAnyUseOfValue(1) && "inconsistent dead flag"); 8225 if (deadCPSR) { 8226 assert(!MI->getOperand(ccOutIdx).getReg() && 8227 "expect uninitialized optional cc_out operand"); 8228 return; 8229 } 8230 8231 // If this instruction was defined with an optional CPSR def and its dag node 8232 // had a live implicit CPSR def, then activate the optional CPSR def. 8233 MachineOperand &MO = MI->getOperand(ccOutIdx); 8234 MO.setReg(ARM::CPSR); 8235 MO.setIsDef(true); 8236 } 8237 8238 //===----------------------------------------------------------------------===// 8239 // ARM Optimization Hooks 8240 //===----------------------------------------------------------------------===// 8241 8242 // Helper function that checks if N is a null or all ones constant. 8243 static inline bool isZeroOrAllOnes(SDValue N, bool AllOnes) { 8244 return AllOnes ? isAllOnesConstant(N) : isNullConstant(N); 8245 } 8246 8247 // Return true if N is conditionally 0 or all ones. 8248 // Detects these expressions where cc is an i1 value: 8249 // 8250 // (select cc 0, y) [AllOnes=0] 8251 // (select cc y, 0) [AllOnes=0] 8252 // (zext cc) [AllOnes=0] 8253 // (sext cc) [AllOnes=0/1] 8254 // (select cc -1, y) [AllOnes=1] 8255 // (select cc y, -1) [AllOnes=1] 8256 // 8257 // Invert is set when N is the null/all ones constant when CC is false. 8258 // OtherOp is set to the alternative value of N. 8259 static bool isConditionalZeroOrAllOnes(SDNode *N, bool AllOnes, 8260 SDValue &CC, bool &Invert, 8261 SDValue &OtherOp, 8262 SelectionDAG &DAG) { 8263 switch (N->getOpcode()) { 8264 default: return false; 8265 case ISD::SELECT: { 8266 CC = N->getOperand(0); 8267 SDValue N1 = N->getOperand(1); 8268 SDValue N2 = N->getOperand(2); 8269 if (isZeroOrAllOnes(N1, AllOnes)) { 8270 Invert = false; 8271 OtherOp = N2; 8272 return true; 8273 } 8274 if (isZeroOrAllOnes(N2, AllOnes)) { 8275 Invert = true; 8276 OtherOp = N1; 8277 return true; 8278 } 8279 return false; 8280 } 8281 case ISD::ZERO_EXTEND: 8282 // (zext cc) can never be the all ones value. 8283 if (AllOnes) 8284 return false; 8285 // Fall through. 8286 case ISD::SIGN_EXTEND: { 8287 SDLoc dl(N); 8288 EVT VT = N->getValueType(0); 8289 CC = N->getOperand(0); 8290 if (CC.getValueType() != MVT::i1) 8291 return false; 8292 Invert = !AllOnes; 8293 if (AllOnes) 8294 // When looking for an AllOnes constant, N is an sext, and the 'other' 8295 // value is 0. 8296 OtherOp = DAG.getConstant(0, dl, VT); 8297 else if (N->getOpcode() == ISD::ZERO_EXTEND) 8298 // When looking for a 0 constant, N can be zext or sext. 8299 OtherOp = DAG.getConstant(1, dl, VT); 8300 else 8301 OtherOp = DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), dl, 8302 VT); 8303 return true; 8304 } 8305 } 8306 } 8307 8308 // Combine a constant select operand into its use: 8309 // 8310 // (add (select cc, 0, c), x) -> (select cc, x, (add, x, c)) 8311 // (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c)) 8312 // (and (select cc, -1, c), x) -> (select cc, x, (and, x, c)) [AllOnes=1] 8313 // (or (select cc, 0, c), x) -> (select cc, x, (or, x, c)) 8314 // (xor (select cc, 0, c), x) -> (select cc, x, (xor, x, c)) 8315 // 8316 // The transform is rejected if the select doesn't have a constant operand that 8317 // is null, or all ones when AllOnes is set. 8318 // 8319 // Also recognize sext/zext from i1: 8320 // 8321 // (add (zext cc), x) -> (select cc (add x, 1), x) 8322 // (add (sext cc), x) -> (select cc (add x, -1), x) 8323 // 8324 // These transformations eventually create predicated instructions. 8325 // 8326 // @param N The node to transform. 8327 // @param Slct The N operand that is a select. 8328 // @param OtherOp The other N operand (x above). 8329 // @param DCI Context. 8330 // @param AllOnes Require the select constant to be all ones instead of null. 8331 // @returns The new node, or SDValue() on failure. 8332 static 8333 SDValue combineSelectAndUse(SDNode *N, SDValue Slct, SDValue OtherOp, 8334 TargetLowering::DAGCombinerInfo &DCI, 8335 bool AllOnes = false) { 8336 SelectionDAG &DAG = DCI.DAG; 8337 EVT VT = N->getValueType(0); 8338 SDValue NonConstantVal; 8339 SDValue CCOp; 8340 bool SwapSelectOps; 8341 if (!isConditionalZeroOrAllOnes(Slct.getNode(), AllOnes, CCOp, SwapSelectOps, 8342 NonConstantVal, DAG)) 8343 return SDValue(); 8344 8345 // Slct is now know to be the desired identity constant when CC is true. 8346 SDValue TrueVal = OtherOp; 8347 SDValue FalseVal = DAG.getNode(N->getOpcode(), SDLoc(N), VT, 8348 OtherOp, NonConstantVal); 8349 // Unless SwapSelectOps says CC should be false. 8350 if (SwapSelectOps) 8351 std::swap(TrueVal, FalseVal); 8352 8353 return DAG.getNode(ISD::SELECT, SDLoc(N), VT, 8354 CCOp, TrueVal, FalseVal); 8355 } 8356 8357 // Attempt combineSelectAndUse on each operand of a commutative operator N. 8358 static 8359 SDValue combineSelectAndUseCommutative(SDNode *N, bool AllOnes, 8360 TargetLowering::DAGCombinerInfo &DCI) { 8361 SDValue N0 = N->getOperand(0); 8362 SDValue N1 = N->getOperand(1); 8363 if (N0.getNode()->hasOneUse()) { 8364 SDValue Result = combineSelectAndUse(N, N0, N1, DCI, AllOnes); 8365 if (Result.getNode()) 8366 return Result; 8367 } 8368 if (N1.getNode()->hasOneUse()) { 8369 SDValue Result = combineSelectAndUse(N, N1, N0, DCI, AllOnes); 8370 if (Result.getNode()) 8371 return Result; 8372 } 8373 return SDValue(); 8374 } 8375 8376 // AddCombineToVPADDL- For pair-wise add on neon, use the vpaddl instruction 8377 // (only after legalization). 8378 static SDValue AddCombineToVPADDL(SDNode *N, SDValue N0, SDValue N1, 8379 TargetLowering::DAGCombinerInfo &DCI, 8380 const ARMSubtarget *Subtarget) { 8381 8382 // Only perform optimization if after legalize, and if NEON is available. We 8383 // also expected both operands to be BUILD_VECTORs. 8384 if (DCI.isBeforeLegalize() || !Subtarget->hasNEON() 8385 || N0.getOpcode() != ISD::BUILD_VECTOR 8386 || N1.getOpcode() != ISD::BUILD_VECTOR) 8387 return SDValue(); 8388 8389 // Check output type since VPADDL operand elements can only be 8, 16, or 32. 8390 EVT VT = N->getValueType(0); 8391 if (!VT.isInteger() || VT.getVectorElementType() == MVT::i64) 8392 return SDValue(); 8393 8394 // Check that the vector operands are of the right form. 8395 // N0 and N1 are BUILD_VECTOR nodes with N number of EXTRACT_VECTOR 8396 // operands, where N is the size of the formed vector. 8397 // Each EXTRACT_VECTOR should have the same input vector and odd or even 8398 // index such that we have a pair wise add pattern. 8399 8400 // Grab the vector that all EXTRACT_VECTOR nodes should be referencing. 8401 if (N0->getOperand(0)->getOpcode() != ISD::EXTRACT_VECTOR_ELT) 8402 return SDValue(); 8403 SDValue Vec = N0->getOperand(0)->getOperand(0); 8404 SDNode *V = Vec.getNode(); 8405 unsigned nextIndex = 0; 8406 8407 // For each operands to the ADD which are BUILD_VECTORs, 8408 // check to see if each of their operands are an EXTRACT_VECTOR with 8409 // the same vector and appropriate index. 8410 for (unsigned i = 0, e = N0->getNumOperands(); i != e; ++i) { 8411 if (N0->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT 8412 && N1->getOperand(i)->getOpcode() == ISD::EXTRACT_VECTOR_ELT) { 8413 8414 SDValue ExtVec0 = N0->getOperand(i); 8415 SDValue ExtVec1 = N1->getOperand(i); 8416 8417 // First operand is the vector, verify its the same. 8418 if (V != ExtVec0->getOperand(0).getNode() || 8419 V != ExtVec1->getOperand(0).getNode()) 8420 return SDValue(); 8421 8422 // Second is the constant, verify its correct. 8423 ConstantSDNode *C0 = dyn_cast<ConstantSDNode>(ExtVec0->getOperand(1)); 8424 ConstantSDNode *C1 = dyn_cast<ConstantSDNode>(ExtVec1->getOperand(1)); 8425 8426 // For the constant, we want to see all the even or all the odd. 8427 if (!C0 || !C1 || C0->getZExtValue() != nextIndex 8428 || C1->getZExtValue() != nextIndex+1) 8429 return SDValue(); 8430 8431 // Increment index. 8432 nextIndex+=2; 8433 } else 8434 return SDValue(); 8435 } 8436 8437 // Create VPADDL node. 8438 SelectionDAG &DAG = DCI.DAG; 8439 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8440 8441 SDLoc dl(N); 8442 8443 // Build operand list. 8444 SmallVector<SDValue, 8> Ops; 8445 Ops.push_back(DAG.getConstant(Intrinsic::arm_neon_vpaddls, dl, 8446 TLI.getPointerTy(DAG.getDataLayout()))); 8447 8448 // Input is the vector. 8449 Ops.push_back(Vec); 8450 8451 // Get widened type and narrowed type. 8452 MVT widenType; 8453 unsigned numElem = VT.getVectorNumElements(); 8454 8455 EVT inputLaneType = Vec.getValueType().getVectorElementType(); 8456 switch (inputLaneType.getSimpleVT().SimpleTy) { 8457 case MVT::i8: widenType = MVT::getVectorVT(MVT::i16, numElem); break; 8458 case MVT::i16: widenType = MVT::getVectorVT(MVT::i32, numElem); break; 8459 case MVT::i32: widenType = MVT::getVectorVT(MVT::i64, numElem); break; 8460 default: 8461 llvm_unreachable("Invalid vector element type for padd optimization."); 8462 } 8463 8464 SDValue tmp = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, widenType, Ops); 8465 unsigned ExtOp = VT.bitsGT(tmp.getValueType()) ? ISD::ANY_EXTEND : ISD::TRUNCATE; 8466 return DAG.getNode(ExtOp, dl, VT, tmp); 8467 } 8468 8469 static SDValue findMUL_LOHI(SDValue V) { 8470 if (V->getOpcode() == ISD::UMUL_LOHI || 8471 V->getOpcode() == ISD::SMUL_LOHI) 8472 return V; 8473 return SDValue(); 8474 } 8475 8476 static SDValue AddCombineTo64bitMLAL(SDNode *AddcNode, 8477 TargetLowering::DAGCombinerInfo &DCI, 8478 const ARMSubtarget *Subtarget) { 8479 8480 if (Subtarget->isThumb1Only()) return SDValue(); 8481 8482 // Only perform the checks after legalize when the pattern is available. 8483 if (DCI.isBeforeLegalize()) return SDValue(); 8484 8485 // Look for multiply add opportunities. 8486 // The pattern is a ISD::UMUL_LOHI followed by two add nodes, where 8487 // each add nodes consumes a value from ISD::UMUL_LOHI and there is 8488 // a glue link from the first add to the second add. 8489 // If we find this pattern, we can replace the U/SMUL_LOHI, ADDC, and ADDE by 8490 // a S/UMLAL instruction. 8491 // UMUL_LOHI 8492 // / :lo \ :hi 8493 // / \ [no multiline comment] 8494 // loAdd -> ADDE | 8495 // \ :glue / 8496 // \ / 8497 // ADDC <- hiAdd 8498 // 8499 assert(AddcNode->getOpcode() == ISD::ADDC && "Expect an ADDC"); 8500 SDValue AddcOp0 = AddcNode->getOperand(0); 8501 SDValue AddcOp1 = AddcNode->getOperand(1); 8502 8503 // Check if the two operands are from the same mul_lohi node. 8504 if (AddcOp0.getNode() == AddcOp1.getNode()) 8505 return SDValue(); 8506 8507 assert(AddcNode->getNumValues() == 2 && 8508 AddcNode->getValueType(0) == MVT::i32 && 8509 "Expect ADDC with two result values. First: i32"); 8510 8511 // Check that we have a glued ADDC node. 8512 if (AddcNode->getValueType(1) != MVT::Glue) 8513 return SDValue(); 8514 8515 // Check that the ADDC adds the low result of the S/UMUL_LOHI. 8516 if (AddcOp0->getOpcode() != ISD::UMUL_LOHI && 8517 AddcOp0->getOpcode() != ISD::SMUL_LOHI && 8518 AddcOp1->getOpcode() != ISD::UMUL_LOHI && 8519 AddcOp1->getOpcode() != ISD::SMUL_LOHI) 8520 return SDValue(); 8521 8522 // Look for the glued ADDE. 8523 SDNode* AddeNode = AddcNode->getGluedUser(); 8524 if (!AddeNode) 8525 return SDValue(); 8526 8527 // Make sure it is really an ADDE. 8528 if (AddeNode->getOpcode() != ISD::ADDE) 8529 return SDValue(); 8530 8531 assert(AddeNode->getNumOperands() == 3 && 8532 AddeNode->getOperand(2).getValueType() == MVT::Glue && 8533 "ADDE node has the wrong inputs"); 8534 8535 // Check for the triangle shape. 8536 SDValue AddeOp0 = AddeNode->getOperand(0); 8537 SDValue AddeOp1 = AddeNode->getOperand(1); 8538 8539 // Make sure that the ADDE operands are not coming from the same node. 8540 if (AddeOp0.getNode() == AddeOp1.getNode()) 8541 return SDValue(); 8542 8543 // Find the MUL_LOHI node walking up ADDE's operands. 8544 bool IsLeftOperandMUL = false; 8545 SDValue MULOp = findMUL_LOHI(AddeOp0); 8546 if (MULOp == SDValue()) 8547 MULOp = findMUL_LOHI(AddeOp1); 8548 else 8549 IsLeftOperandMUL = true; 8550 if (MULOp == SDValue()) 8551 return SDValue(); 8552 8553 // Figure out the right opcode. 8554 unsigned Opc = MULOp->getOpcode(); 8555 unsigned FinalOpc = (Opc == ISD::SMUL_LOHI) ? ARMISD::SMLAL : ARMISD::UMLAL; 8556 8557 // Figure out the high and low input values to the MLAL node. 8558 SDValue* HiAdd = nullptr; 8559 SDValue* LoMul = nullptr; 8560 SDValue* LowAdd = nullptr; 8561 8562 // Ensure that ADDE is from high result of ISD::SMUL_LOHI. 8563 if ((AddeOp0 != MULOp.getValue(1)) && (AddeOp1 != MULOp.getValue(1))) 8564 return SDValue(); 8565 8566 if (IsLeftOperandMUL) 8567 HiAdd = &AddeOp1; 8568 else 8569 HiAdd = &AddeOp0; 8570 8571 8572 // Ensure that LoMul and LowAdd are taken from correct ISD::SMUL_LOHI node 8573 // whose low result is fed to the ADDC we are checking. 8574 8575 if (AddcOp0 == MULOp.getValue(0)) { 8576 LoMul = &AddcOp0; 8577 LowAdd = &AddcOp1; 8578 } 8579 if (AddcOp1 == MULOp.getValue(0)) { 8580 LoMul = &AddcOp1; 8581 LowAdd = &AddcOp0; 8582 } 8583 8584 if (!LoMul) 8585 return SDValue(); 8586 8587 // Create the merged node. 8588 SelectionDAG &DAG = DCI.DAG; 8589 8590 // Build operand list. 8591 SmallVector<SDValue, 8> Ops; 8592 Ops.push_back(LoMul->getOperand(0)); 8593 Ops.push_back(LoMul->getOperand(1)); 8594 Ops.push_back(*LowAdd); 8595 Ops.push_back(*HiAdd); 8596 8597 SDValue MLALNode = DAG.getNode(FinalOpc, SDLoc(AddcNode), 8598 DAG.getVTList(MVT::i32, MVT::i32), Ops); 8599 8600 // Replace the ADDs' nodes uses by the MLA node's values. 8601 SDValue HiMLALResult(MLALNode.getNode(), 1); 8602 DAG.ReplaceAllUsesOfValueWith(SDValue(AddeNode, 0), HiMLALResult); 8603 8604 SDValue LoMLALResult(MLALNode.getNode(), 0); 8605 DAG.ReplaceAllUsesOfValueWith(SDValue(AddcNode, 0), LoMLALResult); 8606 8607 // Return original node to notify the driver to stop replacing. 8608 SDValue resNode(AddcNode, 0); 8609 return resNode; 8610 } 8611 8612 /// PerformADDCCombine - Target-specific dag combine transform from 8613 /// ISD::ADDC, ISD::ADDE, and ISD::MUL_LOHI to MLAL. 8614 static SDValue PerformADDCCombine(SDNode *N, 8615 TargetLowering::DAGCombinerInfo &DCI, 8616 const ARMSubtarget *Subtarget) { 8617 8618 return AddCombineTo64bitMLAL(N, DCI, Subtarget); 8619 8620 } 8621 8622 /// PerformADDCombineWithOperands - Try DAG combinations for an ADD with 8623 /// operands N0 and N1. This is a helper for PerformADDCombine that is 8624 /// called with the default operands, and if that fails, with commuted 8625 /// operands. 8626 static SDValue PerformADDCombineWithOperands(SDNode *N, SDValue N0, SDValue N1, 8627 TargetLowering::DAGCombinerInfo &DCI, 8628 const ARMSubtarget *Subtarget){ 8629 8630 // Attempt to create vpaddl for this add. 8631 SDValue Result = AddCombineToVPADDL(N, N0, N1, DCI, Subtarget); 8632 if (Result.getNode()) 8633 return Result; 8634 8635 // fold (add (select cc, 0, c), x) -> (select cc, x, (add, x, c)) 8636 if (N0.getNode()->hasOneUse()) { 8637 SDValue Result = combineSelectAndUse(N, N0, N1, DCI); 8638 if (Result.getNode()) return Result; 8639 } 8640 return SDValue(); 8641 } 8642 8643 /// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD. 8644 /// 8645 static SDValue PerformADDCombine(SDNode *N, 8646 TargetLowering::DAGCombinerInfo &DCI, 8647 const ARMSubtarget *Subtarget) { 8648 SDValue N0 = N->getOperand(0); 8649 SDValue N1 = N->getOperand(1); 8650 8651 // First try with the default operand order. 8652 SDValue Result = PerformADDCombineWithOperands(N, N0, N1, DCI, Subtarget); 8653 if (Result.getNode()) 8654 return Result; 8655 8656 // If that didn't work, try again with the operands commuted. 8657 return PerformADDCombineWithOperands(N, N1, N0, DCI, Subtarget); 8658 } 8659 8660 /// PerformSUBCombine - Target-specific dag combine xforms for ISD::SUB. 8661 /// 8662 static SDValue PerformSUBCombine(SDNode *N, 8663 TargetLowering::DAGCombinerInfo &DCI) { 8664 SDValue N0 = N->getOperand(0); 8665 SDValue N1 = N->getOperand(1); 8666 8667 // fold (sub x, (select cc, 0, c)) -> (select cc, x, (sub, x, c)) 8668 if (N1.getNode()->hasOneUse()) { 8669 SDValue Result = combineSelectAndUse(N, N1, N0, DCI); 8670 if (Result.getNode()) return Result; 8671 } 8672 8673 return SDValue(); 8674 } 8675 8676 /// PerformVMULCombine 8677 /// Distribute (A + B) * C to (A * C) + (B * C) to take advantage of the 8678 /// special multiplier accumulator forwarding. 8679 /// vmul d3, d0, d2 8680 /// vmla d3, d1, d2 8681 /// is faster than 8682 /// vadd d3, d0, d1 8683 /// vmul d3, d3, d2 8684 // However, for (A + B) * (A + B), 8685 // vadd d2, d0, d1 8686 // vmul d3, d0, d2 8687 // vmla d3, d1, d2 8688 // is slower than 8689 // vadd d2, d0, d1 8690 // vmul d3, d2, d2 8691 static SDValue PerformVMULCombine(SDNode *N, 8692 TargetLowering::DAGCombinerInfo &DCI, 8693 const ARMSubtarget *Subtarget) { 8694 if (!Subtarget->hasVMLxForwarding()) 8695 return SDValue(); 8696 8697 SelectionDAG &DAG = DCI.DAG; 8698 SDValue N0 = N->getOperand(0); 8699 SDValue N1 = N->getOperand(1); 8700 unsigned Opcode = N0.getOpcode(); 8701 if (Opcode != ISD::ADD && Opcode != ISD::SUB && 8702 Opcode != ISD::FADD && Opcode != ISD::FSUB) { 8703 Opcode = N1.getOpcode(); 8704 if (Opcode != ISD::ADD && Opcode != ISD::SUB && 8705 Opcode != ISD::FADD && Opcode != ISD::FSUB) 8706 return SDValue(); 8707 std::swap(N0, N1); 8708 } 8709 8710 if (N0 == N1) 8711 return SDValue(); 8712 8713 EVT VT = N->getValueType(0); 8714 SDLoc DL(N); 8715 SDValue N00 = N0->getOperand(0); 8716 SDValue N01 = N0->getOperand(1); 8717 return DAG.getNode(Opcode, DL, VT, 8718 DAG.getNode(ISD::MUL, DL, VT, N00, N1), 8719 DAG.getNode(ISD::MUL, DL, VT, N01, N1)); 8720 } 8721 8722 static SDValue PerformMULCombine(SDNode *N, 8723 TargetLowering::DAGCombinerInfo &DCI, 8724 const ARMSubtarget *Subtarget) { 8725 SelectionDAG &DAG = DCI.DAG; 8726 8727 if (Subtarget->isThumb1Only()) 8728 return SDValue(); 8729 8730 if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer()) 8731 return SDValue(); 8732 8733 EVT VT = N->getValueType(0); 8734 if (VT.is64BitVector() || VT.is128BitVector()) 8735 return PerformVMULCombine(N, DCI, Subtarget); 8736 if (VT != MVT::i32) 8737 return SDValue(); 8738 8739 ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1)); 8740 if (!C) 8741 return SDValue(); 8742 8743 int64_t MulAmt = C->getSExtValue(); 8744 unsigned ShiftAmt = countTrailingZeros<uint64_t>(MulAmt); 8745 8746 ShiftAmt = ShiftAmt & (32 - 1); 8747 SDValue V = N->getOperand(0); 8748 SDLoc DL(N); 8749 8750 SDValue Res; 8751 MulAmt >>= ShiftAmt; 8752 8753 if (MulAmt >= 0) { 8754 if (isPowerOf2_32(MulAmt - 1)) { 8755 // (mul x, 2^N + 1) => (add (shl x, N), x) 8756 Res = DAG.getNode(ISD::ADD, DL, VT, 8757 V, 8758 DAG.getNode(ISD::SHL, DL, VT, 8759 V, 8760 DAG.getConstant(Log2_32(MulAmt - 1), DL, 8761 MVT::i32))); 8762 } else if (isPowerOf2_32(MulAmt + 1)) { 8763 // (mul x, 2^N - 1) => (sub (shl x, N), x) 8764 Res = DAG.getNode(ISD::SUB, DL, VT, 8765 DAG.getNode(ISD::SHL, DL, VT, 8766 V, 8767 DAG.getConstant(Log2_32(MulAmt + 1), DL, 8768 MVT::i32)), 8769 V); 8770 } else 8771 return SDValue(); 8772 } else { 8773 uint64_t MulAmtAbs = -MulAmt; 8774 if (isPowerOf2_32(MulAmtAbs + 1)) { 8775 // (mul x, -(2^N - 1)) => (sub x, (shl x, N)) 8776 Res = DAG.getNode(ISD::SUB, DL, VT, 8777 V, 8778 DAG.getNode(ISD::SHL, DL, VT, 8779 V, 8780 DAG.getConstant(Log2_32(MulAmtAbs + 1), DL, 8781 MVT::i32))); 8782 } else if (isPowerOf2_32(MulAmtAbs - 1)) { 8783 // (mul x, -(2^N + 1)) => - (add (shl x, N), x) 8784 Res = DAG.getNode(ISD::ADD, DL, VT, 8785 V, 8786 DAG.getNode(ISD::SHL, DL, VT, 8787 V, 8788 DAG.getConstant(Log2_32(MulAmtAbs - 1), DL, 8789 MVT::i32))); 8790 Res = DAG.getNode(ISD::SUB, DL, VT, 8791 DAG.getConstant(0, DL, MVT::i32), Res); 8792 8793 } else 8794 return SDValue(); 8795 } 8796 8797 if (ShiftAmt != 0) 8798 Res = DAG.getNode(ISD::SHL, DL, VT, 8799 Res, DAG.getConstant(ShiftAmt, DL, MVT::i32)); 8800 8801 // Do not add new nodes to DAG combiner worklist. 8802 DCI.CombineTo(N, Res, false); 8803 return SDValue(); 8804 } 8805 8806 static SDValue PerformANDCombine(SDNode *N, 8807 TargetLowering::DAGCombinerInfo &DCI, 8808 const ARMSubtarget *Subtarget) { 8809 8810 // Attempt to use immediate-form VBIC 8811 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1)); 8812 SDLoc dl(N); 8813 EVT VT = N->getValueType(0); 8814 SelectionDAG &DAG = DCI.DAG; 8815 8816 if(!DAG.getTargetLoweringInfo().isTypeLegal(VT)) 8817 return SDValue(); 8818 8819 APInt SplatBits, SplatUndef; 8820 unsigned SplatBitSize; 8821 bool HasAnyUndefs; 8822 if (BVN && 8823 BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) { 8824 if (SplatBitSize <= 64) { 8825 EVT VbicVT; 8826 SDValue Val = isNEONModifiedImm((~SplatBits).getZExtValue(), 8827 SplatUndef.getZExtValue(), SplatBitSize, 8828 DAG, dl, VbicVT, VT.is128BitVector(), 8829 OtherModImm); 8830 if (Val.getNode()) { 8831 SDValue Input = 8832 DAG.getNode(ISD::BITCAST, dl, VbicVT, N->getOperand(0)); 8833 SDValue Vbic = DAG.getNode(ARMISD::VBICIMM, dl, VbicVT, Input, Val); 8834 return DAG.getNode(ISD::BITCAST, dl, VT, Vbic); 8835 } 8836 } 8837 } 8838 8839 if (!Subtarget->isThumb1Only()) { 8840 // fold (and (select cc, -1, c), x) -> (select cc, x, (and, x, c)) 8841 SDValue Result = combineSelectAndUseCommutative(N, true, DCI); 8842 if (Result.getNode()) 8843 return Result; 8844 } 8845 8846 return SDValue(); 8847 } 8848 8849 /// PerformORCombine - Target-specific dag combine xforms for ISD::OR 8850 static SDValue PerformORCombine(SDNode *N, 8851 TargetLowering::DAGCombinerInfo &DCI, 8852 const ARMSubtarget *Subtarget) { 8853 // Attempt to use immediate-form VORR 8854 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(N->getOperand(1)); 8855 SDLoc dl(N); 8856 EVT VT = N->getValueType(0); 8857 SelectionDAG &DAG = DCI.DAG; 8858 8859 if(!DAG.getTargetLoweringInfo().isTypeLegal(VT)) 8860 return SDValue(); 8861 8862 APInt SplatBits, SplatUndef; 8863 unsigned SplatBitSize; 8864 bool HasAnyUndefs; 8865 if (BVN && Subtarget->hasNEON() && 8866 BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, HasAnyUndefs)) { 8867 if (SplatBitSize <= 64) { 8868 EVT VorrVT; 8869 SDValue Val = isNEONModifiedImm(SplatBits.getZExtValue(), 8870 SplatUndef.getZExtValue(), SplatBitSize, 8871 DAG, dl, VorrVT, VT.is128BitVector(), 8872 OtherModImm); 8873 if (Val.getNode()) { 8874 SDValue Input = 8875 DAG.getNode(ISD::BITCAST, dl, VorrVT, N->getOperand(0)); 8876 SDValue Vorr = DAG.getNode(ARMISD::VORRIMM, dl, VorrVT, Input, Val); 8877 return DAG.getNode(ISD::BITCAST, dl, VT, Vorr); 8878 } 8879 } 8880 } 8881 8882 if (!Subtarget->isThumb1Only()) { 8883 // fold (or (select cc, 0, c), x) -> (select cc, x, (or, x, c)) 8884 SDValue Result = combineSelectAndUseCommutative(N, false, DCI); 8885 if (Result.getNode()) 8886 return Result; 8887 } 8888 8889 // The code below optimizes (or (and X, Y), Z). 8890 // The AND operand needs to have a single user to make these optimizations 8891 // profitable. 8892 SDValue N0 = N->getOperand(0); 8893 if (N0.getOpcode() != ISD::AND || !N0.hasOneUse()) 8894 return SDValue(); 8895 SDValue N1 = N->getOperand(1); 8896 8897 // (or (and B, A), (and C, ~A)) => (VBSL A, B, C) when A is a constant. 8898 if (Subtarget->hasNEON() && N1.getOpcode() == ISD::AND && VT.isVector() && 8899 DAG.getTargetLoweringInfo().isTypeLegal(VT)) { 8900 APInt SplatUndef; 8901 unsigned SplatBitSize; 8902 bool HasAnyUndefs; 8903 8904 APInt SplatBits0, SplatBits1; 8905 BuildVectorSDNode *BVN0 = dyn_cast<BuildVectorSDNode>(N0->getOperand(1)); 8906 BuildVectorSDNode *BVN1 = dyn_cast<BuildVectorSDNode>(N1->getOperand(1)); 8907 // Ensure that the second operand of both ands are constants 8908 if (BVN0 && BVN0->isConstantSplat(SplatBits0, SplatUndef, SplatBitSize, 8909 HasAnyUndefs) && !HasAnyUndefs) { 8910 if (BVN1 && BVN1->isConstantSplat(SplatBits1, SplatUndef, SplatBitSize, 8911 HasAnyUndefs) && !HasAnyUndefs) { 8912 // Ensure that the bit width of the constants are the same and that 8913 // the splat arguments are logical inverses as per the pattern we 8914 // are trying to simplify. 8915 if (SplatBits0.getBitWidth() == SplatBits1.getBitWidth() && 8916 SplatBits0 == ~SplatBits1) { 8917 // Canonicalize the vector type to make instruction selection 8918 // simpler. 8919 EVT CanonicalVT = VT.is128BitVector() ? MVT::v4i32 : MVT::v2i32; 8920 SDValue Result = DAG.getNode(ARMISD::VBSL, dl, CanonicalVT, 8921 N0->getOperand(1), 8922 N0->getOperand(0), 8923 N1->getOperand(0)); 8924 return DAG.getNode(ISD::BITCAST, dl, VT, Result); 8925 } 8926 } 8927 } 8928 } 8929 8930 // Try to use the ARM/Thumb2 BFI (bitfield insert) instruction when 8931 // reasonable. 8932 8933 // BFI is only available on V6T2+ 8934 if (Subtarget->isThumb1Only() || !Subtarget->hasV6T2Ops()) 8935 return SDValue(); 8936 8937 SDLoc DL(N); 8938 // 1) or (and A, mask), val => ARMbfi A, val, mask 8939 // iff (val & mask) == val 8940 // 8941 // 2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask 8942 // 2a) iff isBitFieldInvertedMask(mask) && isBitFieldInvertedMask(~mask2) 8943 // && mask == ~mask2 8944 // 2b) iff isBitFieldInvertedMask(~mask) && isBitFieldInvertedMask(mask2) 8945 // && ~mask == mask2 8946 // (i.e., copy a bitfield value into another bitfield of the same width) 8947 8948 if (VT != MVT::i32) 8949 return SDValue(); 8950 8951 SDValue N00 = N0.getOperand(0); 8952 8953 // The value and the mask need to be constants so we can verify this is 8954 // actually a bitfield set. If the mask is 0xffff, we can do better 8955 // via a movt instruction, so don't use BFI in that case. 8956 SDValue MaskOp = N0.getOperand(1); 8957 ConstantSDNode *MaskC = dyn_cast<ConstantSDNode>(MaskOp); 8958 if (!MaskC) 8959 return SDValue(); 8960 unsigned Mask = MaskC->getZExtValue(); 8961 if (Mask == 0xffff) 8962 return SDValue(); 8963 SDValue Res; 8964 // Case (1): or (and A, mask), val => ARMbfi A, val, mask 8965 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1); 8966 if (N1C) { 8967 unsigned Val = N1C->getZExtValue(); 8968 if ((Val & ~Mask) != Val) 8969 return SDValue(); 8970 8971 if (ARM::isBitFieldInvertedMask(Mask)) { 8972 Val >>= countTrailingZeros(~Mask); 8973 8974 Res = DAG.getNode(ARMISD::BFI, DL, VT, N00, 8975 DAG.getConstant(Val, DL, MVT::i32), 8976 DAG.getConstant(Mask, DL, MVT::i32)); 8977 8978 // Do not add new nodes to DAG combiner worklist. 8979 DCI.CombineTo(N, Res, false); 8980 return SDValue(); 8981 } 8982 } else if (N1.getOpcode() == ISD::AND) { 8983 // case (2) or (and A, mask), (and B, mask2) => ARMbfi A, (lsr B, amt), mask 8984 ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1)); 8985 if (!N11C) 8986 return SDValue(); 8987 unsigned Mask2 = N11C->getZExtValue(); 8988 8989 // Mask and ~Mask2 (or reverse) must be equivalent for the BFI pattern 8990 // as is to match. 8991 if (ARM::isBitFieldInvertedMask(Mask) && 8992 (Mask == ~Mask2)) { 8993 // The pack halfword instruction works better for masks that fit it, 8994 // so use that when it's available. 8995 if (Subtarget->hasT2ExtractPack() && 8996 (Mask == 0xffff || Mask == 0xffff0000)) 8997 return SDValue(); 8998 // 2a 8999 unsigned amt = countTrailingZeros(Mask2); 9000 Res = DAG.getNode(ISD::SRL, DL, VT, N1.getOperand(0), 9001 DAG.getConstant(amt, DL, MVT::i32)); 9002 Res = DAG.getNode(ARMISD::BFI, DL, VT, N00, Res, 9003 DAG.getConstant(Mask, DL, MVT::i32)); 9004 // Do not add new nodes to DAG combiner worklist. 9005 DCI.CombineTo(N, Res, false); 9006 return SDValue(); 9007 } else if (ARM::isBitFieldInvertedMask(~Mask) && 9008 (~Mask == Mask2)) { 9009 // The pack halfword instruction works better for masks that fit it, 9010 // so use that when it's available. 9011 if (Subtarget->hasT2ExtractPack() && 9012 (Mask2 == 0xffff || Mask2 == 0xffff0000)) 9013 return SDValue(); 9014 // 2b 9015 unsigned lsb = countTrailingZeros(Mask); 9016 Res = DAG.getNode(ISD::SRL, DL, VT, N00, 9017 DAG.getConstant(lsb, DL, MVT::i32)); 9018 Res = DAG.getNode(ARMISD::BFI, DL, VT, N1.getOperand(0), Res, 9019 DAG.getConstant(Mask2, DL, MVT::i32)); 9020 // Do not add new nodes to DAG combiner worklist. 9021 DCI.CombineTo(N, Res, false); 9022 return SDValue(); 9023 } 9024 } 9025 9026 if (DAG.MaskedValueIsZero(N1, MaskC->getAPIntValue()) && 9027 N00.getOpcode() == ISD::SHL && isa<ConstantSDNode>(N00.getOperand(1)) && 9028 ARM::isBitFieldInvertedMask(~Mask)) { 9029 // Case (3): or (and (shl A, #shamt), mask), B => ARMbfi B, A, ~mask 9030 // where lsb(mask) == #shamt and masked bits of B are known zero. 9031 SDValue ShAmt = N00.getOperand(1); 9032 unsigned ShAmtC = cast<ConstantSDNode>(ShAmt)->getZExtValue(); 9033 unsigned LSB = countTrailingZeros(Mask); 9034 if (ShAmtC != LSB) 9035 return SDValue(); 9036 9037 Res = DAG.getNode(ARMISD::BFI, DL, VT, N1, N00.getOperand(0), 9038 DAG.getConstant(~Mask, DL, MVT::i32)); 9039 9040 // Do not add new nodes to DAG combiner worklist. 9041 DCI.CombineTo(N, Res, false); 9042 } 9043 9044 return SDValue(); 9045 } 9046 9047 static SDValue PerformXORCombine(SDNode *N, 9048 TargetLowering::DAGCombinerInfo &DCI, 9049 const ARMSubtarget *Subtarget) { 9050 EVT VT = N->getValueType(0); 9051 SelectionDAG &DAG = DCI.DAG; 9052 9053 if(!DAG.getTargetLoweringInfo().isTypeLegal(VT)) 9054 return SDValue(); 9055 9056 if (!Subtarget->isThumb1Only()) { 9057 // fold (xor (select cc, 0, c), x) -> (select cc, x, (xor, x, c)) 9058 SDValue Result = combineSelectAndUseCommutative(N, false, DCI); 9059 if (Result.getNode()) 9060 return Result; 9061 } 9062 9063 return SDValue(); 9064 } 9065 9066 // ParseBFI - given a BFI instruction in N, extract the "from" value (Rn) and return it, 9067 // and fill in FromMask and ToMask with (consecutive) bits in "from" to be extracted and 9068 // their position in "to" (Rd). 9069 static SDValue ParseBFI(SDNode *N, APInt &ToMask, APInt &FromMask) { 9070 assert(N->getOpcode() == ARMISD::BFI); 9071 9072 SDValue From = N->getOperand(1); 9073 ToMask = ~cast<ConstantSDNode>(N->getOperand(2))->getAPIntValue(); 9074 FromMask = APInt::getLowBitsSet(ToMask.getBitWidth(), ToMask.countPopulation()); 9075 9076 // If the Base came from a SHR #C, we can deduce that it is really testing bit 9077 // #C in the base of the SHR. 9078 if (From->getOpcode() == ISD::SRL && 9079 isa<ConstantSDNode>(From->getOperand(1))) { 9080 APInt Shift = cast<ConstantSDNode>(From->getOperand(1))->getAPIntValue(); 9081 assert(Shift.getLimitedValue() < 32 && "Shift too large!"); 9082 FromMask <<= Shift.getLimitedValue(31); 9083 From = From->getOperand(0); 9084 } 9085 9086 return From; 9087 } 9088 9089 // If A and B contain one contiguous set of bits, does A | B == A . B? 9090 // 9091 // Neither A nor B must be zero. 9092 static bool BitsProperlyConcatenate(const APInt &A, const APInt &B) { 9093 unsigned LastActiveBitInA = A.countTrailingZeros(); 9094 unsigned FirstActiveBitInB = B.getBitWidth() - B.countLeadingZeros() - 1; 9095 return LastActiveBitInA - 1 == FirstActiveBitInB; 9096 } 9097 9098 static SDValue FindBFIToCombineWith(SDNode *N) { 9099 // We have a BFI in N. Follow a possible chain of BFIs and find a BFI it can combine with, 9100 // if one exists. 9101 APInt ToMask, FromMask; 9102 SDValue From = ParseBFI(N, ToMask, FromMask); 9103 SDValue To = N->getOperand(0); 9104 9105 // Now check for a compatible BFI to merge with. We can pass through BFIs that 9106 // aren't compatible, but not if they set the same bit in their destination as 9107 // we do (or that of any BFI we're going to combine with). 9108 SDValue V = To; 9109 APInt CombinedToMask = ToMask; 9110 while (V.getOpcode() == ARMISD::BFI) { 9111 APInt NewToMask, NewFromMask; 9112 SDValue NewFrom = ParseBFI(V.getNode(), NewToMask, NewFromMask); 9113 if (NewFrom != From) { 9114 // This BFI has a different base. Keep going. 9115 CombinedToMask |= NewToMask; 9116 V = V.getOperand(0); 9117 continue; 9118 } 9119 9120 // Do the written bits conflict with any we've seen so far? 9121 if ((NewToMask & CombinedToMask).getBoolValue()) 9122 // Conflicting bits - bail out because going further is unsafe. 9123 return SDValue(); 9124 9125 // Are the new bits contiguous when combined with the old bits? 9126 if (BitsProperlyConcatenate(ToMask, NewToMask) && 9127 BitsProperlyConcatenate(FromMask, NewFromMask)) 9128 return V; 9129 if (BitsProperlyConcatenate(NewToMask, ToMask) && 9130 BitsProperlyConcatenate(NewFromMask, FromMask)) 9131 return V; 9132 9133 // We've seen a write to some bits, so track it. 9134 CombinedToMask |= NewToMask; 9135 // Keep going... 9136 V = V.getOperand(0); 9137 } 9138 9139 return SDValue(); 9140 } 9141 9142 static SDValue PerformBFICombine(SDNode *N, 9143 TargetLowering::DAGCombinerInfo &DCI) { 9144 SDValue N1 = N->getOperand(1); 9145 if (N1.getOpcode() == ISD::AND) { 9146 // (bfi A, (and B, Mask1), Mask2) -> (bfi A, B, Mask2) iff 9147 // the bits being cleared by the AND are not demanded by the BFI. 9148 ConstantSDNode *N11C = dyn_cast<ConstantSDNode>(N1.getOperand(1)); 9149 if (!N11C) 9150 return SDValue(); 9151 unsigned InvMask = cast<ConstantSDNode>(N->getOperand(2))->getZExtValue(); 9152 unsigned LSB = countTrailingZeros(~InvMask); 9153 unsigned Width = (32 - countLeadingZeros(~InvMask)) - LSB; 9154 assert(Width < 9155 static_cast<unsigned>(std::numeric_limits<unsigned>::digits) && 9156 "undefined behavior"); 9157 unsigned Mask = (1u << Width) - 1; 9158 unsigned Mask2 = N11C->getZExtValue(); 9159 if ((Mask & (~Mask2)) == 0) 9160 return DCI.DAG.getNode(ARMISD::BFI, SDLoc(N), N->getValueType(0), 9161 N->getOperand(0), N1.getOperand(0), 9162 N->getOperand(2)); 9163 } else if (N->getOperand(0).getOpcode() == ARMISD::BFI) { 9164 // We have a BFI of a BFI. Walk up the BFI chain to see how long it goes. 9165 // Keep track of any consecutive bits set that all come from the same base 9166 // value. We can combine these together into a single BFI. 9167 SDValue CombineBFI = FindBFIToCombineWith(N); 9168 if (CombineBFI == SDValue()) 9169 return SDValue(); 9170 9171 // We've found a BFI. 9172 APInt ToMask1, FromMask1; 9173 SDValue From1 = ParseBFI(N, ToMask1, FromMask1); 9174 9175 APInt ToMask2, FromMask2; 9176 SDValue From2 = ParseBFI(CombineBFI.getNode(), ToMask2, FromMask2); 9177 assert(From1 == From2); 9178 (void)From2; 9179 9180 // First, unlink CombineBFI. 9181 DCI.DAG.ReplaceAllUsesWith(CombineBFI, CombineBFI.getOperand(0)); 9182 // Then create a new BFI, combining the two together. 9183 APInt NewFromMask = FromMask1 | FromMask2; 9184 APInt NewToMask = ToMask1 | ToMask2; 9185 9186 EVT VT = N->getValueType(0); 9187 SDLoc dl(N); 9188 9189 if (NewFromMask[0] == 0) 9190 From1 = DCI.DAG.getNode( 9191 ISD::SRL, dl, VT, From1, 9192 DCI.DAG.getConstant(NewFromMask.countTrailingZeros(), dl, VT)); 9193 return DCI.DAG.getNode(ARMISD::BFI, dl, VT, N->getOperand(0), From1, 9194 DCI.DAG.getConstant(~NewToMask, dl, VT)); 9195 } 9196 return SDValue(); 9197 } 9198 9199 /// PerformVMOVRRDCombine - Target-specific dag combine xforms for 9200 /// ARMISD::VMOVRRD. 9201 static SDValue PerformVMOVRRDCombine(SDNode *N, 9202 TargetLowering::DAGCombinerInfo &DCI, 9203 const ARMSubtarget *Subtarget) { 9204 // vmovrrd(vmovdrr x, y) -> x,y 9205 SDValue InDouble = N->getOperand(0); 9206 if (InDouble.getOpcode() == ARMISD::VMOVDRR && !Subtarget->isFPOnlySP()) 9207 return DCI.CombineTo(N, InDouble.getOperand(0), InDouble.getOperand(1)); 9208 9209 // vmovrrd(load f64) -> (load i32), (load i32) 9210 SDNode *InNode = InDouble.getNode(); 9211 if (ISD::isNormalLoad(InNode) && InNode->hasOneUse() && 9212 InNode->getValueType(0) == MVT::f64 && 9213 InNode->getOperand(1).getOpcode() == ISD::FrameIndex && 9214 !cast<LoadSDNode>(InNode)->isVolatile()) { 9215 // TODO: Should this be done for non-FrameIndex operands? 9216 LoadSDNode *LD = cast<LoadSDNode>(InNode); 9217 9218 SelectionDAG &DAG = DCI.DAG; 9219 SDLoc DL(LD); 9220 SDValue BasePtr = LD->getBasePtr(); 9221 SDValue NewLD1 = DAG.getLoad(MVT::i32, DL, LD->getChain(), BasePtr, 9222 LD->getPointerInfo(), LD->isVolatile(), 9223 LD->isNonTemporal(), LD->isInvariant(), 9224 LD->getAlignment()); 9225 9226 SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr, 9227 DAG.getConstant(4, DL, MVT::i32)); 9228 SDValue NewLD2 = DAG.getLoad(MVT::i32, DL, NewLD1.getValue(1), OffsetPtr, 9229 LD->getPointerInfo(), LD->isVolatile(), 9230 LD->isNonTemporal(), LD->isInvariant(), 9231 std::min(4U, LD->getAlignment() / 2)); 9232 9233 DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), NewLD2.getValue(1)); 9234 if (DCI.DAG.getDataLayout().isBigEndian()) 9235 std::swap (NewLD1, NewLD2); 9236 SDValue Result = DCI.CombineTo(N, NewLD1, NewLD2); 9237 return Result; 9238 } 9239 9240 return SDValue(); 9241 } 9242 9243 /// PerformVMOVDRRCombine - Target-specific dag combine xforms for 9244 /// ARMISD::VMOVDRR. This is also used for BUILD_VECTORs with 2 operands. 9245 static SDValue PerformVMOVDRRCombine(SDNode *N, SelectionDAG &DAG) { 9246 // N=vmovrrd(X); vmovdrr(N:0, N:1) -> bit_convert(X) 9247 SDValue Op0 = N->getOperand(0); 9248 SDValue Op1 = N->getOperand(1); 9249 if (Op0.getOpcode() == ISD::BITCAST) 9250 Op0 = Op0.getOperand(0); 9251 if (Op1.getOpcode() == ISD::BITCAST) 9252 Op1 = Op1.getOperand(0); 9253 if (Op0.getOpcode() == ARMISD::VMOVRRD && 9254 Op0.getNode() == Op1.getNode() && 9255 Op0.getResNo() == 0 && Op1.getResNo() == 1) 9256 return DAG.getNode(ISD::BITCAST, SDLoc(N), 9257 N->getValueType(0), Op0.getOperand(0)); 9258 return SDValue(); 9259 } 9260 9261 /// hasNormalLoadOperand - Check if any of the operands of a BUILD_VECTOR node 9262 /// are normal, non-volatile loads. If so, it is profitable to bitcast an 9263 /// i64 vector to have f64 elements, since the value can then be loaded 9264 /// directly into a VFP register. 9265 static bool hasNormalLoadOperand(SDNode *N) { 9266 unsigned NumElts = N->getValueType(0).getVectorNumElements(); 9267 for (unsigned i = 0; i < NumElts; ++i) { 9268 SDNode *Elt = N->getOperand(i).getNode(); 9269 if (ISD::isNormalLoad(Elt) && !cast<LoadSDNode>(Elt)->isVolatile()) 9270 return true; 9271 } 9272 return false; 9273 } 9274 9275 /// PerformBUILD_VECTORCombine - Target-specific dag combine xforms for 9276 /// ISD::BUILD_VECTOR. 9277 static SDValue PerformBUILD_VECTORCombine(SDNode *N, 9278 TargetLowering::DAGCombinerInfo &DCI, 9279 const ARMSubtarget *Subtarget) { 9280 // build_vector(N=ARMISD::VMOVRRD(X), N:1) -> bit_convert(X): 9281 // VMOVRRD is introduced when legalizing i64 types. It forces the i64 value 9282 // into a pair of GPRs, which is fine when the value is used as a scalar, 9283 // but if the i64 value is converted to a vector, we need to undo the VMOVRRD. 9284 SelectionDAG &DAG = DCI.DAG; 9285 if (N->getNumOperands() == 2) { 9286 SDValue RV = PerformVMOVDRRCombine(N, DAG); 9287 if (RV.getNode()) 9288 return RV; 9289 } 9290 9291 // Load i64 elements as f64 values so that type legalization does not split 9292 // them up into i32 values. 9293 EVT VT = N->getValueType(0); 9294 if (VT.getVectorElementType() != MVT::i64 || !hasNormalLoadOperand(N)) 9295 return SDValue(); 9296 SDLoc dl(N); 9297 SmallVector<SDValue, 8> Ops; 9298 unsigned NumElts = VT.getVectorNumElements(); 9299 for (unsigned i = 0; i < NumElts; ++i) { 9300 SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(i)); 9301 Ops.push_back(V); 9302 // Make the DAGCombiner fold the bitcast. 9303 DCI.AddToWorklist(V.getNode()); 9304 } 9305 EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64, NumElts); 9306 SDValue BV = DAG.getNode(ISD::BUILD_VECTOR, dl, FloatVT, Ops); 9307 return DAG.getNode(ISD::BITCAST, dl, VT, BV); 9308 } 9309 9310 /// \brief Target-specific dag combine xforms for ARMISD::BUILD_VECTOR. 9311 static SDValue 9312 PerformARMBUILD_VECTORCombine(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { 9313 // ARMISD::BUILD_VECTOR is introduced when legalizing ISD::BUILD_VECTOR. 9314 // At that time, we may have inserted bitcasts from integer to float. 9315 // If these bitcasts have survived DAGCombine, change the lowering of this 9316 // BUILD_VECTOR in something more vector friendly, i.e., that does not 9317 // force to use floating point types. 9318 9319 // Make sure we can change the type of the vector. 9320 // This is possible iff: 9321 // 1. The vector is only used in a bitcast to a integer type. I.e., 9322 // 1.1. Vector is used only once. 9323 // 1.2. Use is a bit convert to an integer type. 9324 // 2. The size of its operands are 32-bits (64-bits are not legal). 9325 EVT VT = N->getValueType(0); 9326 EVT EltVT = VT.getVectorElementType(); 9327 9328 // Check 1.1. and 2. 9329 if (EltVT.getSizeInBits() != 32 || !N->hasOneUse()) 9330 return SDValue(); 9331 9332 // By construction, the input type must be float. 9333 assert(EltVT == MVT::f32 && "Unexpected type!"); 9334 9335 // Check 1.2. 9336 SDNode *Use = *N->use_begin(); 9337 if (Use->getOpcode() != ISD::BITCAST || 9338 Use->getValueType(0).isFloatingPoint()) 9339 return SDValue(); 9340 9341 // Check profitability. 9342 // Model is, if more than half of the relevant operands are bitcast from 9343 // i32, turn the build_vector into a sequence of insert_vector_elt. 9344 // Relevant operands are everything that is not statically 9345 // (i.e., at compile time) bitcasted. 9346 unsigned NumOfBitCastedElts = 0; 9347 unsigned NumElts = VT.getVectorNumElements(); 9348 unsigned NumOfRelevantElts = NumElts; 9349 for (unsigned Idx = 0; Idx < NumElts; ++Idx) { 9350 SDValue Elt = N->getOperand(Idx); 9351 if (Elt->getOpcode() == ISD::BITCAST) { 9352 // Assume only bit cast to i32 will go away. 9353 if (Elt->getOperand(0).getValueType() == MVT::i32) 9354 ++NumOfBitCastedElts; 9355 } else if (Elt.getOpcode() == ISD::UNDEF || isa<ConstantSDNode>(Elt)) 9356 // Constants are statically casted, thus do not count them as 9357 // relevant operands. 9358 --NumOfRelevantElts; 9359 } 9360 9361 // Check if more than half of the elements require a non-free bitcast. 9362 if (NumOfBitCastedElts <= NumOfRelevantElts / 2) 9363 return SDValue(); 9364 9365 SelectionDAG &DAG = DCI.DAG; 9366 // Create the new vector type. 9367 EVT VecVT = EVT::getVectorVT(*DAG.getContext(), MVT::i32, NumElts); 9368 // Check if the type is legal. 9369 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9370 if (!TLI.isTypeLegal(VecVT)) 9371 return SDValue(); 9372 9373 // Combine: 9374 // ARMISD::BUILD_VECTOR E1, E2, ..., EN. 9375 // => BITCAST INSERT_VECTOR_ELT 9376 // (INSERT_VECTOR_ELT (...), (BITCAST EN-1), N-1), 9377 // (BITCAST EN), N. 9378 SDValue Vec = DAG.getUNDEF(VecVT); 9379 SDLoc dl(N); 9380 for (unsigned Idx = 0 ; Idx < NumElts; ++Idx) { 9381 SDValue V = N->getOperand(Idx); 9382 if (V.getOpcode() == ISD::UNDEF) 9383 continue; 9384 if (V.getOpcode() == ISD::BITCAST && 9385 V->getOperand(0).getValueType() == MVT::i32) 9386 // Fold obvious case. 9387 V = V.getOperand(0); 9388 else { 9389 V = DAG.getNode(ISD::BITCAST, SDLoc(V), MVT::i32, V); 9390 // Make the DAGCombiner fold the bitcasts. 9391 DCI.AddToWorklist(V.getNode()); 9392 } 9393 SDValue LaneIdx = DAG.getConstant(Idx, dl, MVT::i32); 9394 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, VecVT, Vec, V, LaneIdx); 9395 } 9396 Vec = DAG.getNode(ISD::BITCAST, dl, VT, Vec); 9397 // Make the DAGCombiner fold the bitcasts. 9398 DCI.AddToWorklist(Vec.getNode()); 9399 return Vec; 9400 } 9401 9402 /// PerformInsertEltCombine - Target-specific dag combine xforms for 9403 /// ISD::INSERT_VECTOR_ELT. 9404 static SDValue PerformInsertEltCombine(SDNode *N, 9405 TargetLowering::DAGCombinerInfo &DCI) { 9406 // Bitcast an i64 load inserted into a vector to f64. 9407 // Otherwise, the i64 value will be legalized to a pair of i32 values. 9408 EVT VT = N->getValueType(0); 9409 SDNode *Elt = N->getOperand(1).getNode(); 9410 if (VT.getVectorElementType() != MVT::i64 || 9411 !ISD::isNormalLoad(Elt) || cast<LoadSDNode>(Elt)->isVolatile()) 9412 return SDValue(); 9413 9414 SelectionDAG &DAG = DCI.DAG; 9415 SDLoc dl(N); 9416 EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64, 9417 VT.getVectorNumElements()); 9418 SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, N->getOperand(0)); 9419 SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::f64, N->getOperand(1)); 9420 // Make the DAGCombiner fold the bitcasts. 9421 DCI.AddToWorklist(Vec.getNode()); 9422 DCI.AddToWorklist(V.getNode()); 9423 SDValue InsElt = DAG.getNode(ISD::INSERT_VECTOR_ELT, dl, FloatVT, 9424 Vec, V, N->getOperand(2)); 9425 return DAG.getNode(ISD::BITCAST, dl, VT, InsElt); 9426 } 9427 9428 /// PerformVECTOR_SHUFFLECombine - Target-specific dag combine xforms for 9429 /// ISD::VECTOR_SHUFFLE. 9430 static SDValue PerformVECTOR_SHUFFLECombine(SDNode *N, SelectionDAG &DAG) { 9431 // The LLVM shufflevector instruction does not require the shuffle mask 9432 // length to match the operand vector length, but ISD::VECTOR_SHUFFLE does 9433 // have that requirement. When translating to ISD::VECTOR_SHUFFLE, if the 9434 // operands do not match the mask length, they are extended by concatenating 9435 // them with undef vectors. That is probably the right thing for other 9436 // targets, but for NEON it is better to concatenate two double-register 9437 // size vector operands into a single quad-register size vector. Do that 9438 // transformation here: 9439 // shuffle(concat(v1, undef), concat(v2, undef)) -> 9440 // shuffle(concat(v1, v2), undef) 9441 SDValue Op0 = N->getOperand(0); 9442 SDValue Op1 = N->getOperand(1); 9443 if (Op0.getOpcode() != ISD::CONCAT_VECTORS || 9444 Op1.getOpcode() != ISD::CONCAT_VECTORS || 9445 Op0.getNumOperands() != 2 || 9446 Op1.getNumOperands() != 2) 9447 return SDValue(); 9448 SDValue Concat0Op1 = Op0.getOperand(1); 9449 SDValue Concat1Op1 = Op1.getOperand(1); 9450 if (Concat0Op1.getOpcode() != ISD::UNDEF || 9451 Concat1Op1.getOpcode() != ISD::UNDEF) 9452 return SDValue(); 9453 // Skip the transformation if any of the types are illegal. 9454 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9455 EVT VT = N->getValueType(0); 9456 if (!TLI.isTypeLegal(VT) || 9457 !TLI.isTypeLegal(Concat0Op1.getValueType()) || 9458 !TLI.isTypeLegal(Concat1Op1.getValueType())) 9459 return SDValue(); 9460 9461 SDValue NewConcat = DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(N), VT, 9462 Op0.getOperand(0), Op1.getOperand(0)); 9463 // Translate the shuffle mask. 9464 SmallVector<int, 16> NewMask; 9465 unsigned NumElts = VT.getVectorNumElements(); 9466 unsigned HalfElts = NumElts/2; 9467 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N); 9468 for (unsigned n = 0; n < NumElts; ++n) { 9469 int MaskElt = SVN->getMaskElt(n); 9470 int NewElt = -1; 9471 if (MaskElt < (int)HalfElts) 9472 NewElt = MaskElt; 9473 else if (MaskElt >= (int)NumElts && MaskElt < (int)(NumElts + HalfElts)) 9474 NewElt = HalfElts + MaskElt - NumElts; 9475 NewMask.push_back(NewElt); 9476 } 9477 return DAG.getVectorShuffle(VT, SDLoc(N), NewConcat, 9478 DAG.getUNDEF(VT), NewMask.data()); 9479 } 9480 9481 /// CombineBaseUpdate - Target-specific DAG combine function for VLDDUP, 9482 /// NEON load/store intrinsics, and generic vector load/stores, to merge 9483 /// base address updates. 9484 /// For generic load/stores, the memory type is assumed to be a vector. 9485 /// The caller is assumed to have checked legality. 9486 static SDValue CombineBaseUpdate(SDNode *N, 9487 TargetLowering::DAGCombinerInfo &DCI) { 9488 SelectionDAG &DAG = DCI.DAG; 9489 const bool isIntrinsic = (N->getOpcode() == ISD::INTRINSIC_VOID || 9490 N->getOpcode() == ISD::INTRINSIC_W_CHAIN); 9491 const bool isStore = N->getOpcode() == ISD::STORE; 9492 const unsigned AddrOpIdx = ((isIntrinsic || isStore) ? 2 : 1); 9493 SDValue Addr = N->getOperand(AddrOpIdx); 9494 MemSDNode *MemN = cast<MemSDNode>(N); 9495 SDLoc dl(N); 9496 9497 // Search for a use of the address operand that is an increment. 9498 for (SDNode::use_iterator UI = Addr.getNode()->use_begin(), 9499 UE = Addr.getNode()->use_end(); UI != UE; ++UI) { 9500 SDNode *User = *UI; 9501 if (User->getOpcode() != ISD::ADD || 9502 UI.getUse().getResNo() != Addr.getResNo()) 9503 continue; 9504 9505 // Check that the add is independent of the load/store. Otherwise, folding 9506 // it would create a cycle. 9507 if (User->isPredecessorOf(N) || N->isPredecessorOf(User)) 9508 continue; 9509 9510 // Find the new opcode for the updating load/store. 9511 bool isLoadOp = true; 9512 bool isLaneOp = false; 9513 unsigned NewOpc = 0; 9514 unsigned NumVecs = 0; 9515 if (isIntrinsic) { 9516 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(1))->getZExtValue(); 9517 switch (IntNo) { 9518 default: llvm_unreachable("unexpected intrinsic for Neon base update"); 9519 case Intrinsic::arm_neon_vld1: NewOpc = ARMISD::VLD1_UPD; 9520 NumVecs = 1; break; 9521 case Intrinsic::arm_neon_vld2: NewOpc = ARMISD::VLD2_UPD; 9522 NumVecs = 2; break; 9523 case Intrinsic::arm_neon_vld3: NewOpc = ARMISD::VLD3_UPD; 9524 NumVecs = 3; break; 9525 case Intrinsic::arm_neon_vld4: NewOpc = ARMISD::VLD4_UPD; 9526 NumVecs = 4; break; 9527 case Intrinsic::arm_neon_vld2lane: NewOpc = ARMISD::VLD2LN_UPD; 9528 NumVecs = 2; isLaneOp = true; break; 9529 case Intrinsic::arm_neon_vld3lane: NewOpc = ARMISD::VLD3LN_UPD; 9530 NumVecs = 3; isLaneOp = true; break; 9531 case Intrinsic::arm_neon_vld4lane: NewOpc = ARMISD::VLD4LN_UPD; 9532 NumVecs = 4; isLaneOp = true; break; 9533 case Intrinsic::arm_neon_vst1: NewOpc = ARMISD::VST1_UPD; 9534 NumVecs = 1; isLoadOp = false; break; 9535 case Intrinsic::arm_neon_vst2: NewOpc = ARMISD::VST2_UPD; 9536 NumVecs = 2; isLoadOp = false; break; 9537 case Intrinsic::arm_neon_vst3: NewOpc = ARMISD::VST3_UPD; 9538 NumVecs = 3; isLoadOp = false; break; 9539 case Intrinsic::arm_neon_vst4: NewOpc = ARMISD::VST4_UPD; 9540 NumVecs = 4; isLoadOp = false; break; 9541 case Intrinsic::arm_neon_vst2lane: NewOpc = ARMISD::VST2LN_UPD; 9542 NumVecs = 2; isLoadOp = false; isLaneOp = true; break; 9543 case Intrinsic::arm_neon_vst3lane: NewOpc = ARMISD::VST3LN_UPD; 9544 NumVecs = 3; isLoadOp = false; isLaneOp = true; break; 9545 case Intrinsic::arm_neon_vst4lane: NewOpc = ARMISD::VST4LN_UPD; 9546 NumVecs = 4; isLoadOp = false; isLaneOp = true; break; 9547 } 9548 } else { 9549 isLaneOp = true; 9550 switch (N->getOpcode()) { 9551 default: llvm_unreachable("unexpected opcode for Neon base update"); 9552 case ARMISD::VLD2DUP: NewOpc = ARMISD::VLD2DUP_UPD; NumVecs = 2; break; 9553 case ARMISD::VLD3DUP: NewOpc = ARMISD::VLD3DUP_UPD; NumVecs = 3; break; 9554 case ARMISD::VLD4DUP: NewOpc = ARMISD::VLD4DUP_UPD; NumVecs = 4; break; 9555 case ISD::LOAD: NewOpc = ARMISD::VLD1_UPD; 9556 NumVecs = 1; isLaneOp = false; break; 9557 case ISD::STORE: NewOpc = ARMISD::VST1_UPD; 9558 NumVecs = 1; isLaneOp = false; isLoadOp = false; break; 9559 } 9560 } 9561 9562 // Find the size of memory referenced by the load/store. 9563 EVT VecTy; 9564 if (isLoadOp) { 9565 VecTy = N->getValueType(0); 9566 } else if (isIntrinsic) { 9567 VecTy = N->getOperand(AddrOpIdx+1).getValueType(); 9568 } else { 9569 assert(isStore && "Node has to be a load, a store, or an intrinsic!"); 9570 VecTy = N->getOperand(1).getValueType(); 9571 } 9572 9573 unsigned NumBytes = NumVecs * VecTy.getSizeInBits() / 8; 9574 if (isLaneOp) 9575 NumBytes /= VecTy.getVectorNumElements(); 9576 9577 // If the increment is a constant, it must match the memory ref size. 9578 SDValue Inc = User->getOperand(User->getOperand(0) == Addr ? 1 : 0); 9579 if (ConstantSDNode *CInc = dyn_cast<ConstantSDNode>(Inc.getNode())) { 9580 uint64_t IncVal = CInc->getZExtValue(); 9581 if (IncVal != NumBytes) 9582 continue; 9583 } else if (NumBytes >= 3 * 16) { 9584 // VLD3/4 and VST3/4 for 128-bit vectors are implemented with two 9585 // separate instructions that make it harder to use a non-constant update. 9586 continue; 9587 } 9588 9589 // OK, we found an ADD we can fold into the base update. 9590 // Now, create a _UPD node, taking care of not breaking alignment. 9591 9592 EVT AlignedVecTy = VecTy; 9593 unsigned Alignment = MemN->getAlignment(); 9594 9595 // If this is a less-than-standard-aligned load/store, change the type to 9596 // match the standard alignment. 9597 // The alignment is overlooked when selecting _UPD variants; and it's 9598 // easier to introduce bitcasts here than fix that. 9599 // There are 3 ways to get to this base-update combine: 9600 // - intrinsics: they are assumed to be properly aligned (to the standard 9601 // alignment of the memory type), so we don't need to do anything. 9602 // - ARMISD::VLDx nodes: they are only generated from the aforementioned 9603 // intrinsics, so, likewise, there's nothing to do. 9604 // - generic load/store instructions: the alignment is specified as an 9605 // explicit operand, rather than implicitly as the standard alignment 9606 // of the memory type (like the intrisics). We need to change the 9607 // memory type to match the explicit alignment. That way, we don't 9608 // generate non-standard-aligned ARMISD::VLDx nodes. 9609 if (isa<LSBaseSDNode>(N)) { 9610 if (Alignment == 0) 9611 Alignment = 1; 9612 if (Alignment < VecTy.getScalarSizeInBits() / 8) { 9613 MVT EltTy = MVT::getIntegerVT(Alignment * 8); 9614 assert(NumVecs == 1 && "Unexpected multi-element generic load/store."); 9615 assert(!isLaneOp && "Unexpected generic load/store lane."); 9616 unsigned NumElts = NumBytes / (EltTy.getSizeInBits() / 8); 9617 AlignedVecTy = MVT::getVectorVT(EltTy, NumElts); 9618 } 9619 // Don't set an explicit alignment on regular load/stores that we want 9620 // to transform to VLD/VST 1_UPD nodes. 9621 // This matches the behavior of regular load/stores, which only get an 9622 // explicit alignment if the MMO alignment is larger than the standard 9623 // alignment of the memory type. 9624 // Intrinsics, however, always get an explicit alignment, set to the 9625 // alignment of the MMO. 9626 Alignment = 1; 9627 } 9628 9629 // Create the new updating load/store node. 9630 // First, create an SDVTList for the new updating node's results. 9631 EVT Tys[6]; 9632 unsigned NumResultVecs = (isLoadOp ? NumVecs : 0); 9633 unsigned n; 9634 for (n = 0; n < NumResultVecs; ++n) 9635 Tys[n] = AlignedVecTy; 9636 Tys[n++] = MVT::i32; 9637 Tys[n] = MVT::Other; 9638 SDVTList SDTys = DAG.getVTList(makeArrayRef(Tys, NumResultVecs+2)); 9639 9640 // Then, gather the new node's operands. 9641 SmallVector<SDValue, 8> Ops; 9642 Ops.push_back(N->getOperand(0)); // incoming chain 9643 Ops.push_back(N->getOperand(AddrOpIdx)); 9644 Ops.push_back(Inc); 9645 9646 if (StoreSDNode *StN = dyn_cast<StoreSDNode>(N)) { 9647 // Try to match the intrinsic's signature 9648 Ops.push_back(StN->getValue()); 9649 } else { 9650 // Loads (and of course intrinsics) match the intrinsics' signature, 9651 // so just add all but the alignment operand. 9652 for (unsigned i = AddrOpIdx + 1; i < N->getNumOperands() - 1; ++i) 9653 Ops.push_back(N->getOperand(i)); 9654 } 9655 9656 // For all node types, the alignment operand is always the last one. 9657 Ops.push_back(DAG.getConstant(Alignment, dl, MVT::i32)); 9658 9659 // If this is a non-standard-aligned STORE, the penultimate operand is the 9660 // stored value. Bitcast it to the aligned type. 9661 if (AlignedVecTy != VecTy && N->getOpcode() == ISD::STORE) { 9662 SDValue &StVal = Ops[Ops.size()-2]; 9663 StVal = DAG.getNode(ISD::BITCAST, dl, AlignedVecTy, StVal); 9664 } 9665 9666 SDValue UpdN = DAG.getMemIntrinsicNode(NewOpc, dl, SDTys, 9667 Ops, AlignedVecTy, 9668 MemN->getMemOperand()); 9669 9670 // Update the uses. 9671 SmallVector<SDValue, 5> NewResults; 9672 for (unsigned i = 0; i < NumResultVecs; ++i) 9673 NewResults.push_back(SDValue(UpdN.getNode(), i)); 9674 9675 // If this is an non-standard-aligned LOAD, the first result is the loaded 9676 // value. Bitcast it to the expected result type. 9677 if (AlignedVecTy != VecTy && N->getOpcode() == ISD::LOAD) { 9678 SDValue &LdVal = NewResults[0]; 9679 LdVal = DAG.getNode(ISD::BITCAST, dl, VecTy, LdVal); 9680 } 9681 9682 NewResults.push_back(SDValue(UpdN.getNode(), NumResultVecs+1)); // chain 9683 DCI.CombineTo(N, NewResults); 9684 DCI.CombineTo(User, SDValue(UpdN.getNode(), NumResultVecs)); 9685 9686 break; 9687 } 9688 return SDValue(); 9689 } 9690 9691 static SDValue PerformVLDCombine(SDNode *N, 9692 TargetLowering::DAGCombinerInfo &DCI) { 9693 if (DCI.isBeforeLegalize() || DCI.isCalledByLegalizer()) 9694 return SDValue(); 9695 9696 return CombineBaseUpdate(N, DCI); 9697 } 9698 9699 /// CombineVLDDUP - For a VDUPLANE node N, check if its source operand is a 9700 /// vldN-lane (N > 1) intrinsic, and if all the other uses of that intrinsic 9701 /// are also VDUPLANEs. If so, combine them to a vldN-dup operation and 9702 /// return true. 9703 static bool CombineVLDDUP(SDNode *N, TargetLowering::DAGCombinerInfo &DCI) { 9704 SelectionDAG &DAG = DCI.DAG; 9705 EVT VT = N->getValueType(0); 9706 // vldN-dup instructions only support 64-bit vectors for N > 1. 9707 if (!VT.is64BitVector()) 9708 return false; 9709 9710 // Check if the VDUPLANE operand is a vldN-dup intrinsic. 9711 SDNode *VLD = N->getOperand(0).getNode(); 9712 if (VLD->getOpcode() != ISD::INTRINSIC_W_CHAIN) 9713 return false; 9714 unsigned NumVecs = 0; 9715 unsigned NewOpc = 0; 9716 unsigned IntNo = cast<ConstantSDNode>(VLD->getOperand(1))->getZExtValue(); 9717 if (IntNo == Intrinsic::arm_neon_vld2lane) { 9718 NumVecs = 2; 9719 NewOpc = ARMISD::VLD2DUP; 9720 } else if (IntNo == Intrinsic::arm_neon_vld3lane) { 9721 NumVecs = 3; 9722 NewOpc = ARMISD::VLD3DUP; 9723 } else if (IntNo == Intrinsic::arm_neon_vld4lane) { 9724 NumVecs = 4; 9725 NewOpc = ARMISD::VLD4DUP; 9726 } else { 9727 return false; 9728 } 9729 9730 // First check that all the vldN-lane uses are VDUPLANEs and that the lane 9731 // numbers match the load. 9732 unsigned VLDLaneNo = 9733 cast<ConstantSDNode>(VLD->getOperand(NumVecs+3))->getZExtValue(); 9734 for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end(); 9735 UI != UE; ++UI) { 9736 // Ignore uses of the chain result. 9737 if (UI.getUse().getResNo() == NumVecs) 9738 continue; 9739 SDNode *User = *UI; 9740 if (User->getOpcode() != ARMISD::VDUPLANE || 9741 VLDLaneNo != cast<ConstantSDNode>(User->getOperand(1))->getZExtValue()) 9742 return false; 9743 } 9744 9745 // Create the vldN-dup node. 9746 EVT Tys[5]; 9747 unsigned n; 9748 for (n = 0; n < NumVecs; ++n) 9749 Tys[n] = VT; 9750 Tys[n] = MVT::Other; 9751 SDVTList SDTys = DAG.getVTList(makeArrayRef(Tys, NumVecs+1)); 9752 SDValue Ops[] = { VLD->getOperand(0), VLD->getOperand(2) }; 9753 MemIntrinsicSDNode *VLDMemInt = cast<MemIntrinsicSDNode>(VLD); 9754 SDValue VLDDup = DAG.getMemIntrinsicNode(NewOpc, SDLoc(VLD), SDTys, 9755 Ops, VLDMemInt->getMemoryVT(), 9756 VLDMemInt->getMemOperand()); 9757 9758 // Update the uses. 9759 for (SDNode::use_iterator UI = VLD->use_begin(), UE = VLD->use_end(); 9760 UI != UE; ++UI) { 9761 unsigned ResNo = UI.getUse().getResNo(); 9762 // Ignore uses of the chain result. 9763 if (ResNo == NumVecs) 9764 continue; 9765 SDNode *User = *UI; 9766 DCI.CombineTo(User, SDValue(VLDDup.getNode(), ResNo)); 9767 } 9768 9769 // Now the vldN-lane intrinsic is dead except for its chain result. 9770 // Update uses of the chain. 9771 std::vector<SDValue> VLDDupResults; 9772 for (unsigned n = 0; n < NumVecs; ++n) 9773 VLDDupResults.push_back(SDValue(VLDDup.getNode(), n)); 9774 VLDDupResults.push_back(SDValue(VLDDup.getNode(), NumVecs)); 9775 DCI.CombineTo(VLD, VLDDupResults); 9776 9777 return true; 9778 } 9779 9780 /// PerformVDUPLANECombine - Target-specific dag combine xforms for 9781 /// ARMISD::VDUPLANE. 9782 static SDValue PerformVDUPLANECombine(SDNode *N, 9783 TargetLowering::DAGCombinerInfo &DCI) { 9784 SDValue Op = N->getOperand(0); 9785 9786 // If the source is a vldN-lane (N > 1) intrinsic, and all the other uses 9787 // of that intrinsic are also VDUPLANEs, combine them to a vldN-dup operation. 9788 if (CombineVLDDUP(N, DCI)) 9789 return SDValue(N, 0); 9790 9791 // If the source is already a VMOVIMM or VMVNIMM splat, the VDUPLANE is 9792 // redundant. Ignore bit_converts for now; element sizes are checked below. 9793 while (Op.getOpcode() == ISD::BITCAST) 9794 Op = Op.getOperand(0); 9795 if (Op.getOpcode() != ARMISD::VMOVIMM && Op.getOpcode() != ARMISD::VMVNIMM) 9796 return SDValue(); 9797 9798 // Make sure the VMOV element size is not bigger than the VDUPLANE elements. 9799 unsigned EltSize = Op.getValueType().getVectorElementType().getSizeInBits(); 9800 // The canonical VMOV for a zero vector uses a 32-bit element size. 9801 unsigned Imm = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); 9802 unsigned EltBits; 9803 if (ARM_AM::decodeNEONModImm(Imm, EltBits) == 0) 9804 EltSize = 8; 9805 EVT VT = N->getValueType(0); 9806 if (EltSize > VT.getVectorElementType().getSizeInBits()) 9807 return SDValue(); 9808 9809 return DCI.DAG.getNode(ISD::BITCAST, SDLoc(N), VT, Op); 9810 } 9811 9812 static SDValue PerformLOADCombine(SDNode *N, 9813 TargetLowering::DAGCombinerInfo &DCI) { 9814 EVT VT = N->getValueType(0); 9815 9816 // If this is a legal vector load, try to combine it into a VLD1_UPD. 9817 if (ISD::isNormalLoad(N) && VT.isVector() && 9818 DCI.DAG.getTargetLoweringInfo().isTypeLegal(VT)) 9819 return CombineBaseUpdate(N, DCI); 9820 9821 return SDValue(); 9822 } 9823 9824 /// PerformSTORECombine - Target-specific dag combine xforms for 9825 /// ISD::STORE. 9826 static SDValue PerformSTORECombine(SDNode *N, 9827 TargetLowering::DAGCombinerInfo &DCI) { 9828 StoreSDNode *St = cast<StoreSDNode>(N); 9829 if (St->isVolatile()) 9830 return SDValue(); 9831 9832 // Optimize trunc store (of multiple scalars) to shuffle and store. First, 9833 // pack all of the elements in one place. Next, store to memory in fewer 9834 // chunks. 9835 SDValue StVal = St->getValue(); 9836 EVT VT = StVal.getValueType(); 9837 if (St->isTruncatingStore() && VT.isVector()) { 9838 SelectionDAG &DAG = DCI.DAG; 9839 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9840 EVT StVT = St->getMemoryVT(); 9841 unsigned NumElems = VT.getVectorNumElements(); 9842 assert(StVT != VT && "Cannot truncate to the same type"); 9843 unsigned FromEltSz = VT.getVectorElementType().getSizeInBits(); 9844 unsigned ToEltSz = StVT.getVectorElementType().getSizeInBits(); 9845 9846 // From, To sizes and ElemCount must be pow of two 9847 if (!isPowerOf2_32(NumElems * FromEltSz * ToEltSz)) return SDValue(); 9848 9849 // We are going to use the original vector elt for storing. 9850 // Accumulated smaller vector elements must be a multiple of the store size. 9851 if (0 != (NumElems * FromEltSz) % ToEltSz) return SDValue(); 9852 9853 unsigned SizeRatio = FromEltSz / ToEltSz; 9854 assert(SizeRatio * NumElems * ToEltSz == VT.getSizeInBits()); 9855 9856 // Create a type on which we perform the shuffle. 9857 EVT WideVecVT = EVT::getVectorVT(*DAG.getContext(), StVT.getScalarType(), 9858 NumElems*SizeRatio); 9859 assert(WideVecVT.getSizeInBits() == VT.getSizeInBits()); 9860 9861 SDLoc DL(St); 9862 SDValue WideVec = DAG.getNode(ISD::BITCAST, DL, WideVecVT, StVal); 9863 SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1); 9864 for (unsigned i = 0; i < NumElems; ++i) 9865 ShuffleVec[i] = DAG.getDataLayout().isBigEndian() 9866 ? (i + 1) * SizeRatio - 1 9867 : i * SizeRatio; 9868 9869 // Can't shuffle using an illegal type. 9870 if (!TLI.isTypeLegal(WideVecVT)) return SDValue(); 9871 9872 SDValue Shuff = DAG.getVectorShuffle(WideVecVT, DL, WideVec, 9873 DAG.getUNDEF(WideVec.getValueType()), 9874 ShuffleVec.data()); 9875 // At this point all of the data is stored at the bottom of the 9876 // register. We now need to save it to mem. 9877 9878 // Find the largest store unit 9879 MVT StoreType = MVT::i8; 9880 for (MVT Tp : MVT::integer_valuetypes()) { 9881 if (TLI.isTypeLegal(Tp) && Tp.getSizeInBits() <= NumElems * ToEltSz) 9882 StoreType = Tp; 9883 } 9884 // Didn't find a legal store type. 9885 if (!TLI.isTypeLegal(StoreType)) 9886 return SDValue(); 9887 9888 // Bitcast the original vector into a vector of store-size units 9889 EVT StoreVecVT = EVT::getVectorVT(*DAG.getContext(), 9890 StoreType, VT.getSizeInBits()/EVT(StoreType).getSizeInBits()); 9891 assert(StoreVecVT.getSizeInBits() == VT.getSizeInBits()); 9892 SDValue ShuffWide = DAG.getNode(ISD::BITCAST, DL, StoreVecVT, Shuff); 9893 SmallVector<SDValue, 8> Chains; 9894 SDValue Increment = DAG.getConstant(StoreType.getSizeInBits() / 8, DL, 9895 TLI.getPointerTy(DAG.getDataLayout())); 9896 SDValue BasePtr = St->getBasePtr(); 9897 9898 // Perform one or more big stores into memory. 9899 unsigned E = (ToEltSz*NumElems)/StoreType.getSizeInBits(); 9900 for (unsigned I = 0; I < E; I++) { 9901 SDValue SubVec = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 9902 StoreType, ShuffWide, 9903 DAG.getIntPtrConstant(I, DL)); 9904 SDValue Ch = DAG.getStore(St->getChain(), DL, SubVec, BasePtr, 9905 St->getPointerInfo(), St->isVolatile(), 9906 St->isNonTemporal(), St->getAlignment()); 9907 BasePtr = DAG.getNode(ISD::ADD, DL, BasePtr.getValueType(), BasePtr, 9908 Increment); 9909 Chains.push_back(Ch); 9910 } 9911 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); 9912 } 9913 9914 if (!ISD::isNormalStore(St)) 9915 return SDValue(); 9916 9917 // Split a store of a VMOVDRR into two integer stores to avoid mixing NEON and 9918 // ARM stores of arguments in the same cache line. 9919 if (StVal.getNode()->getOpcode() == ARMISD::VMOVDRR && 9920 StVal.getNode()->hasOneUse()) { 9921 SelectionDAG &DAG = DCI.DAG; 9922 bool isBigEndian = DAG.getDataLayout().isBigEndian(); 9923 SDLoc DL(St); 9924 SDValue BasePtr = St->getBasePtr(); 9925 SDValue NewST1 = DAG.getStore(St->getChain(), DL, 9926 StVal.getNode()->getOperand(isBigEndian ? 1 : 0 ), 9927 BasePtr, St->getPointerInfo(), St->isVolatile(), 9928 St->isNonTemporal(), St->getAlignment()); 9929 9930 SDValue OffsetPtr = DAG.getNode(ISD::ADD, DL, MVT::i32, BasePtr, 9931 DAG.getConstant(4, DL, MVT::i32)); 9932 return DAG.getStore(NewST1.getValue(0), DL, 9933 StVal.getNode()->getOperand(isBigEndian ? 0 : 1), 9934 OffsetPtr, St->getPointerInfo(), St->isVolatile(), 9935 St->isNonTemporal(), 9936 std::min(4U, St->getAlignment() / 2)); 9937 } 9938 9939 if (StVal.getValueType() == MVT::i64 && 9940 StVal.getNode()->getOpcode() == ISD::EXTRACT_VECTOR_ELT) { 9941 9942 // Bitcast an i64 store extracted from a vector to f64. 9943 // Otherwise, the i64 value will be legalized to a pair of i32 values. 9944 SelectionDAG &DAG = DCI.DAG; 9945 SDLoc dl(StVal); 9946 SDValue IntVec = StVal.getOperand(0); 9947 EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f64, 9948 IntVec.getValueType().getVectorNumElements()); 9949 SDValue Vec = DAG.getNode(ISD::BITCAST, dl, FloatVT, IntVec); 9950 SDValue ExtElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, MVT::f64, 9951 Vec, StVal.getOperand(1)); 9952 dl = SDLoc(N); 9953 SDValue V = DAG.getNode(ISD::BITCAST, dl, MVT::i64, ExtElt); 9954 // Make the DAGCombiner fold the bitcasts. 9955 DCI.AddToWorklist(Vec.getNode()); 9956 DCI.AddToWorklist(ExtElt.getNode()); 9957 DCI.AddToWorklist(V.getNode()); 9958 return DAG.getStore(St->getChain(), dl, V, St->getBasePtr(), 9959 St->getPointerInfo(), St->isVolatile(), 9960 St->isNonTemporal(), St->getAlignment(), 9961 St->getAAInfo()); 9962 } 9963 9964 // If this is a legal vector store, try to combine it into a VST1_UPD. 9965 if (ISD::isNormalStore(N) && VT.isVector() && 9966 DCI.DAG.getTargetLoweringInfo().isTypeLegal(VT)) 9967 return CombineBaseUpdate(N, DCI); 9968 9969 return SDValue(); 9970 } 9971 9972 /// PerformVCVTCombine - VCVT (floating-point to fixed-point, Advanced SIMD) 9973 /// can replace combinations of VMUL and VCVT (floating-point to integer) 9974 /// when the VMUL has a constant operand that is a power of 2. 9975 /// 9976 /// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>): 9977 /// vmul.f32 d16, d17, d16 9978 /// vcvt.s32.f32 d16, d16 9979 /// becomes: 9980 /// vcvt.s32.f32 d16, d16, #3 9981 static SDValue PerformVCVTCombine(SDNode *N, SelectionDAG &DAG, 9982 const ARMSubtarget *Subtarget) { 9983 if (!Subtarget->hasNEON()) 9984 return SDValue(); 9985 9986 SDValue Op = N->getOperand(0); 9987 if (!Op.getValueType().isVector() || Op.getOpcode() != ISD::FMUL) 9988 return SDValue(); 9989 9990 SDValue ConstVec = Op->getOperand(1); 9991 if (!isa<BuildVectorSDNode>(ConstVec)) 9992 return SDValue(); 9993 9994 MVT FloatTy = Op.getSimpleValueType().getVectorElementType(); 9995 uint32_t FloatBits = FloatTy.getSizeInBits(); 9996 MVT IntTy = N->getSimpleValueType(0).getVectorElementType(); 9997 uint32_t IntBits = IntTy.getSizeInBits(); 9998 unsigned NumLanes = Op.getValueType().getVectorNumElements(); 9999 if (FloatBits != 32 || IntBits > 32 || NumLanes > 4) { 10000 // These instructions only exist converting from f32 to i32. We can handle 10001 // smaller integers by generating an extra truncate, but larger ones would 10002 // be lossy. We also can't handle more then 4 lanes, since these intructions 10003 // only support v2i32/v4i32 types. 10004 return SDValue(); 10005 } 10006 10007 BitVector UndefElements; 10008 BuildVectorSDNode *BV = cast<BuildVectorSDNode>(ConstVec); 10009 int32_t C = BV->getConstantFPSplatPow2ToLog2Int(&UndefElements, 33); 10010 if (C == -1 || C == 0 || C > 32) 10011 return SDValue(); 10012 10013 SDLoc dl(N); 10014 bool isSigned = N->getOpcode() == ISD::FP_TO_SINT; 10015 unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfp2fxs : 10016 Intrinsic::arm_neon_vcvtfp2fxu; 10017 SDValue FixConv = DAG.getNode( 10018 ISD::INTRINSIC_WO_CHAIN, dl, NumLanes == 2 ? MVT::v2i32 : MVT::v4i32, 10019 DAG.getConstant(IntrinsicOpcode, dl, MVT::i32), Op->getOperand(0), 10020 DAG.getConstant(C, dl, MVT::i32)); 10021 10022 if (IntBits < FloatBits) 10023 FixConv = DAG.getNode(ISD::TRUNCATE, dl, N->getValueType(0), FixConv); 10024 10025 return FixConv; 10026 } 10027 10028 /// PerformVDIVCombine - VCVT (fixed-point to floating-point, Advanced SIMD) 10029 /// can replace combinations of VCVT (integer to floating-point) and VDIV 10030 /// when the VDIV has a constant operand that is a power of 2. 10031 /// 10032 /// Example (assume d17 = <float 8.000000e+00, float 8.000000e+00>): 10033 /// vcvt.f32.s32 d16, d16 10034 /// vdiv.f32 d16, d17, d16 10035 /// becomes: 10036 /// vcvt.f32.s32 d16, d16, #3 10037 static SDValue PerformVDIVCombine(SDNode *N, SelectionDAG &DAG, 10038 const ARMSubtarget *Subtarget) { 10039 if (!Subtarget->hasNEON()) 10040 return SDValue(); 10041 10042 SDValue Op = N->getOperand(0); 10043 unsigned OpOpcode = Op.getNode()->getOpcode(); 10044 if (!N->getValueType(0).isVector() || 10045 (OpOpcode != ISD::SINT_TO_FP && OpOpcode != ISD::UINT_TO_FP)) 10046 return SDValue(); 10047 10048 SDValue ConstVec = N->getOperand(1); 10049 if (!isa<BuildVectorSDNode>(ConstVec)) 10050 return SDValue(); 10051 10052 MVT FloatTy = N->getSimpleValueType(0).getVectorElementType(); 10053 uint32_t FloatBits = FloatTy.getSizeInBits(); 10054 MVT IntTy = Op.getOperand(0).getSimpleValueType().getVectorElementType(); 10055 uint32_t IntBits = IntTy.getSizeInBits(); 10056 unsigned NumLanes = Op.getValueType().getVectorNumElements(); 10057 if (FloatBits != 32 || IntBits > 32 || NumLanes > 4) { 10058 // These instructions only exist converting from i32 to f32. We can handle 10059 // smaller integers by generating an extra extend, but larger ones would 10060 // be lossy. We also can't handle more then 4 lanes, since these intructions 10061 // only support v2i32/v4i32 types. 10062 return SDValue(); 10063 } 10064 10065 BitVector UndefElements; 10066 BuildVectorSDNode *BV = cast<BuildVectorSDNode>(ConstVec); 10067 int32_t C = BV->getConstantFPSplatPow2ToLog2Int(&UndefElements, 33); 10068 if (C == -1 || C == 0 || C > 32) 10069 return SDValue(); 10070 10071 SDLoc dl(N); 10072 bool isSigned = OpOpcode == ISD::SINT_TO_FP; 10073 SDValue ConvInput = Op.getOperand(0); 10074 if (IntBits < FloatBits) 10075 ConvInput = DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND, 10076 dl, NumLanes == 2 ? MVT::v2i32 : MVT::v4i32, 10077 ConvInput); 10078 10079 unsigned IntrinsicOpcode = isSigned ? Intrinsic::arm_neon_vcvtfxs2fp : 10080 Intrinsic::arm_neon_vcvtfxu2fp; 10081 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, 10082 Op.getValueType(), 10083 DAG.getConstant(IntrinsicOpcode, dl, MVT::i32), 10084 ConvInput, DAG.getConstant(C, dl, MVT::i32)); 10085 } 10086 10087 /// Getvshiftimm - Check if this is a valid build_vector for the immediate 10088 /// operand of a vector shift operation, where all the elements of the 10089 /// build_vector must have the same constant integer value. 10090 static bool getVShiftImm(SDValue Op, unsigned ElementBits, int64_t &Cnt) { 10091 // Ignore bit_converts. 10092 while (Op.getOpcode() == ISD::BITCAST) 10093 Op = Op.getOperand(0); 10094 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode()); 10095 APInt SplatBits, SplatUndef; 10096 unsigned SplatBitSize; 10097 bool HasAnyUndefs; 10098 if (! BVN || ! BVN->isConstantSplat(SplatBits, SplatUndef, SplatBitSize, 10099 HasAnyUndefs, ElementBits) || 10100 SplatBitSize > ElementBits) 10101 return false; 10102 Cnt = SplatBits.getSExtValue(); 10103 return true; 10104 } 10105 10106 /// isVShiftLImm - Check if this is a valid build_vector for the immediate 10107 /// operand of a vector shift left operation. That value must be in the range: 10108 /// 0 <= Value < ElementBits for a left shift; or 10109 /// 0 <= Value <= ElementBits for a long left shift. 10110 static bool isVShiftLImm(SDValue Op, EVT VT, bool isLong, int64_t &Cnt) { 10111 assert(VT.isVector() && "vector shift count is not a vector type"); 10112 int64_t ElementBits = VT.getVectorElementType().getSizeInBits(); 10113 if (! getVShiftImm(Op, ElementBits, Cnt)) 10114 return false; 10115 return (Cnt >= 0 && (isLong ? Cnt-1 : Cnt) < ElementBits); 10116 } 10117 10118 /// isVShiftRImm - Check if this is a valid build_vector for the immediate 10119 /// operand of a vector shift right operation. For a shift opcode, the value 10120 /// is positive, but for an intrinsic the value count must be negative. The 10121 /// absolute value must be in the range: 10122 /// 1 <= |Value| <= ElementBits for a right shift; or 10123 /// 1 <= |Value| <= ElementBits/2 for a narrow right shift. 10124 static bool isVShiftRImm(SDValue Op, EVT VT, bool isNarrow, bool isIntrinsic, 10125 int64_t &Cnt) { 10126 assert(VT.isVector() && "vector shift count is not a vector type"); 10127 int64_t ElementBits = VT.getVectorElementType().getSizeInBits(); 10128 if (! getVShiftImm(Op, ElementBits, Cnt)) 10129 return false; 10130 if (!isIntrinsic) 10131 return (Cnt >= 1 && Cnt <= (isNarrow ? ElementBits/2 : ElementBits)); 10132 if (Cnt >= -(isNarrow ? ElementBits/2 : ElementBits) && Cnt <= -1) { 10133 Cnt = -Cnt; 10134 return true; 10135 } 10136 return false; 10137 } 10138 10139 /// PerformIntrinsicCombine - ARM-specific DAG combining for intrinsics. 10140 static SDValue PerformIntrinsicCombine(SDNode *N, SelectionDAG &DAG) { 10141 unsigned IntNo = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue(); 10142 switch (IntNo) { 10143 default: 10144 // Don't do anything for most intrinsics. 10145 break; 10146 10147 // Vector shifts: check for immediate versions and lower them. 10148 // Note: This is done during DAG combining instead of DAG legalizing because 10149 // the build_vectors for 64-bit vector element shift counts are generally 10150 // not legal, and it is hard to see their values after they get legalized to 10151 // loads from a constant pool. 10152 case Intrinsic::arm_neon_vshifts: 10153 case Intrinsic::arm_neon_vshiftu: 10154 case Intrinsic::arm_neon_vrshifts: 10155 case Intrinsic::arm_neon_vrshiftu: 10156 case Intrinsic::arm_neon_vrshiftn: 10157 case Intrinsic::arm_neon_vqshifts: 10158 case Intrinsic::arm_neon_vqshiftu: 10159 case Intrinsic::arm_neon_vqshiftsu: 10160 case Intrinsic::arm_neon_vqshiftns: 10161 case Intrinsic::arm_neon_vqshiftnu: 10162 case Intrinsic::arm_neon_vqshiftnsu: 10163 case Intrinsic::arm_neon_vqrshiftns: 10164 case Intrinsic::arm_neon_vqrshiftnu: 10165 case Intrinsic::arm_neon_vqrshiftnsu: { 10166 EVT VT = N->getOperand(1).getValueType(); 10167 int64_t Cnt; 10168 unsigned VShiftOpc = 0; 10169 10170 switch (IntNo) { 10171 case Intrinsic::arm_neon_vshifts: 10172 case Intrinsic::arm_neon_vshiftu: 10173 if (isVShiftLImm(N->getOperand(2), VT, false, Cnt)) { 10174 VShiftOpc = ARMISD::VSHL; 10175 break; 10176 } 10177 if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt)) { 10178 VShiftOpc = (IntNo == Intrinsic::arm_neon_vshifts ? 10179 ARMISD::VSHRs : ARMISD::VSHRu); 10180 break; 10181 } 10182 return SDValue(); 10183 10184 case Intrinsic::arm_neon_vrshifts: 10185 case Intrinsic::arm_neon_vrshiftu: 10186 if (isVShiftRImm(N->getOperand(2), VT, false, true, Cnt)) 10187 break; 10188 return SDValue(); 10189 10190 case Intrinsic::arm_neon_vqshifts: 10191 case Intrinsic::arm_neon_vqshiftu: 10192 if (isVShiftLImm(N->getOperand(2), VT, false, Cnt)) 10193 break; 10194 return SDValue(); 10195 10196 case Intrinsic::arm_neon_vqshiftsu: 10197 if (isVShiftLImm(N->getOperand(2), VT, false, Cnt)) 10198 break; 10199 llvm_unreachable("invalid shift count for vqshlu intrinsic"); 10200 10201 case Intrinsic::arm_neon_vrshiftn: 10202 case Intrinsic::arm_neon_vqshiftns: 10203 case Intrinsic::arm_neon_vqshiftnu: 10204 case Intrinsic::arm_neon_vqshiftnsu: 10205 case Intrinsic::arm_neon_vqrshiftns: 10206 case Intrinsic::arm_neon_vqrshiftnu: 10207 case Intrinsic::arm_neon_vqrshiftnsu: 10208 // Narrowing shifts require an immediate right shift. 10209 if (isVShiftRImm(N->getOperand(2), VT, true, true, Cnt)) 10210 break; 10211 llvm_unreachable("invalid shift count for narrowing vector shift " 10212 "intrinsic"); 10213 10214 default: 10215 llvm_unreachable("unhandled vector shift"); 10216 } 10217 10218 switch (IntNo) { 10219 case Intrinsic::arm_neon_vshifts: 10220 case Intrinsic::arm_neon_vshiftu: 10221 // Opcode already set above. 10222 break; 10223 case Intrinsic::arm_neon_vrshifts: 10224 VShiftOpc = ARMISD::VRSHRs; break; 10225 case Intrinsic::arm_neon_vrshiftu: 10226 VShiftOpc = ARMISD::VRSHRu; break; 10227 case Intrinsic::arm_neon_vrshiftn: 10228 VShiftOpc = ARMISD::VRSHRN; break; 10229 case Intrinsic::arm_neon_vqshifts: 10230 VShiftOpc = ARMISD::VQSHLs; break; 10231 case Intrinsic::arm_neon_vqshiftu: 10232 VShiftOpc = ARMISD::VQSHLu; break; 10233 case Intrinsic::arm_neon_vqshiftsu: 10234 VShiftOpc = ARMISD::VQSHLsu; break; 10235 case Intrinsic::arm_neon_vqshiftns: 10236 VShiftOpc = ARMISD::VQSHRNs; break; 10237 case Intrinsic::arm_neon_vqshiftnu: 10238 VShiftOpc = ARMISD::VQSHRNu; break; 10239 case Intrinsic::arm_neon_vqshiftnsu: 10240 VShiftOpc = ARMISD::VQSHRNsu; break; 10241 case Intrinsic::arm_neon_vqrshiftns: 10242 VShiftOpc = ARMISD::VQRSHRNs; break; 10243 case Intrinsic::arm_neon_vqrshiftnu: 10244 VShiftOpc = ARMISD::VQRSHRNu; break; 10245 case Intrinsic::arm_neon_vqrshiftnsu: 10246 VShiftOpc = ARMISD::VQRSHRNsu; break; 10247 } 10248 10249 SDLoc dl(N); 10250 return DAG.getNode(VShiftOpc, dl, N->getValueType(0), 10251 N->getOperand(1), DAG.getConstant(Cnt, dl, MVT::i32)); 10252 } 10253 10254 case Intrinsic::arm_neon_vshiftins: { 10255 EVT VT = N->getOperand(1).getValueType(); 10256 int64_t Cnt; 10257 unsigned VShiftOpc = 0; 10258 10259 if (isVShiftLImm(N->getOperand(3), VT, false, Cnt)) 10260 VShiftOpc = ARMISD::VSLI; 10261 else if (isVShiftRImm(N->getOperand(3), VT, false, true, Cnt)) 10262 VShiftOpc = ARMISD::VSRI; 10263 else { 10264 llvm_unreachable("invalid shift count for vsli/vsri intrinsic"); 10265 } 10266 10267 SDLoc dl(N); 10268 return DAG.getNode(VShiftOpc, dl, N->getValueType(0), 10269 N->getOperand(1), N->getOperand(2), 10270 DAG.getConstant(Cnt, dl, MVT::i32)); 10271 } 10272 10273 case Intrinsic::arm_neon_vqrshifts: 10274 case Intrinsic::arm_neon_vqrshiftu: 10275 // No immediate versions of these to check for. 10276 break; 10277 } 10278 10279 return SDValue(); 10280 } 10281 10282 /// PerformShiftCombine - Checks for immediate versions of vector shifts and 10283 /// lowers them. As with the vector shift intrinsics, this is done during DAG 10284 /// combining instead of DAG legalizing because the build_vectors for 64-bit 10285 /// vector element shift counts are generally not legal, and it is hard to see 10286 /// their values after they get legalized to loads from a constant pool. 10287 static SDValue PerformShiftCombine(SDNode *N, SelectionDAG &DAG, 10288 const ARMSubtarget *ST) { 10289 EVT VT = N->getValueType(0); 10290 if (N->getOpcode() == ISD::SRL && VT == MVT::i32 && ST->hasV6Ops()) { 10291 // Canonicalize (srl (bswap x), 16) to (rotr (bswap x), 16) if the high 10292 // 16-bits of x is zero. This optimizes rev + lsr 16 to rev16. 10293 SDValue N1 = N->getOperand(1); 10294 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) { 10295 SDValue N0 = N->getOperand(0); 10296 if (C->getZExtValue() == 16 && N0.getOpcode() == ISD::BSWAP && 10297 DAG.MaskedValueIsZero(N0.getOperand(0), 10298 APInt::getHighBitsSet(32, 16))) 10299 return DAG.getNode(ISD::ROTR, SDLoc(N), VT, N0, N1); 10300 } 10301 } 10302 10303 // Nothing to be done for scalar shifts. 10304 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10305 if (!VT.isVector() || !TLI.isTypeLegal(VT)) 10306 return SDValue(); 10307 10308 assert(ST->hasNEON() && "unexpected vector shift"); 10309 int64_t Cnt; 10310 10311 switch (N->getOpcode()) { 10312 default: llvm_unreachable("unexpected shift opcode"); 10313 10314 case ISD::SHL: 10315 if (isVShiftLImm(N->getOperand(1), VT, false, Cnt)) { 10316 SDLoc dl(N); 10317 return DAG.getNode(ARMISD::VSHL, dl, VT, N->getOperand(0), 10318 DAG.getConstant(Cnt, dl, MVT::i32)); 10319 } 10320 break; 10321 10322 case ISD::SRA: 10323 case ISD::SRL: 10324 if (isVShiftRImm(N->getOperand(1), VT, false, false, Cnt)) { 10325 unsigned VShiftOpc = (N->getOpcode() == ISD::SRA ? 10326 ARMISD::VSHRs : ARMISD::VSHRu); 10327 SDLoc dl(N); 10328 return DAG.getNode(VShiftOpc, dl, VT, N->getOperand(0), 10329 DAG.getConstant(Cnt, dl, MVT::i32)); 10330 } 10331 } 10332 return SDValue(); 10333 } 10334 10335 /// PerformExtendCombine - Target-specific DAG combining for ISD::SIGN_EXTEND, 10336 /// ISD::ZERO_EXTEND, and ISD::ANY_EXTEND. 10337 static SDValue PerformExtendCombine(SDNode *N, SelectionDAG &DAG, 10338 const ARMSubtarget *ST) { 10339 SDValue N0 = N->getOperand(0); 10340 10341 // Check for sign- and zero-extensions of vector extract operations of 8- 10342 // and 16-bit vector elements. NEON supports these directly. They are 10343 // handled during DAG combining because type legalization will promote them 10344 // to 32-bit types and it is messy to recognize the operations after that. 10345 if (ST->hasNEON() && N0.getOpcode() == ISD::EXTRACT_VECTOR_ELT) { 10346 SDValue Vec = N0.getOperand(0); 10347 SDValue Lane = N0.getOperand(1); 10348 EVT VT = N->getValueType(0); 10349 EVT EltVT = N0.getValueType(); 10350 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10351 10352 if (VT == MVT::i32 && 10353 (EltVT == MVT::i8 || EltVT == MVT::i16) && 10354 TLI.isTypeLegal(Vec.getValueType()) && 10355 isa<ConstantSDNode>(Lane)) { 10356 10357 unsigned Opc = 0; 10358 switch (N->getOpcode()) { 10359 default: llvm_unreachable("unexpected opcode"); 10360 case ISD::SIGN_EXTEND: 10361 Opc = ARMISD::VGETLANEs; 10362 break; 10363 case ISD::ZERO_EXTEND: 10364 case ISD::ANY_EXTEND: 10365 Opc = ARMISD::VGETLANEu; 10366 break; 10367 } 10368 return DAG.getNode(Opc, SDLoc(N), VT, Vec, Lane); 10369 } 10370 } 10371 10372 return SDValue(); 10373 } 10374 10375 static void computeKnownBits(SelectionDAG &DAG, SDValue Op, APInt &KnownZero, 10376 APInt &KnownOne) { 10377 if (Op.getOpcode() == ARMISD::BFI) { 10378 // Conservatively, we can recurse down the first operand 10379 // and just mask out all affected bits. 10380 computeKnownBits(DAG, Op.getOperand(0), KnownZero, KnownOne); 10381 10382 // The operand to BFI is already a mask suitable for removing the bits it 10383 // sets. 10384 ConstantSDNode *CI = cast<ConstantSDNode>(Op.getOperand(2)); 10385 APInt Mask = CI->getAPIntValue(); 10386 KnownZero &= Mask; 10387 KnownOne &= Mask; 10388 return; 10389 } 10390 if (Op.getOpcode() == ARMISD::CMOV) { 10391 APInt KZ2(KnownZero.getBitWidth(), 0); 10392 APInt KO2(KnownOne.getBitWidth(), 0); 10393 computeKnownBits(DAG, Op.getOperand(1), KnownZero, KnownOne); 10394 computeKnownBits(DAG, Op.getOperand(2), KZ2, KO2); 10395 10396 KnownZero &= KZ2; 10397 KnownOne &= KO2; 10398 return; 10399 } 10400 return DAG.computeKnownBits(Op, KnownZero, KnownOne); 10401 } 10402 10403 SDValue ARMTargetLowering::PerformCMOVToBFICombine(SDNode *CMOV, SelectionDAG &DAG) const { 10404 // If we have a CMOV, OR and AND combination such as: 10405 // if (x & CN) 10406 // y |= CM; 10407 // 10408 // And: 10409 // * CN is a single bit; 10410 // * All bits covered by CM are known zero in y 10411 // 10412 // Then we can convert this into a sequence of BFI instructions. This will 10413 // always be a win if CM is a single bit, will always be no worse than the 10414 // TST&OR sequence if CM is two bits, and for thumb will be no worse if CM is 10415 // three bits (due to the extra IT instruction). 10416 10417 SDValue Op0 = CMOV->getOperand(0); 10418 SDValue Op1 = CMOV->getOperand(1); 10419 auto CCNode = cast<ConstantSDNode>(CMOV->getOperand(2)); 10420 auto CC = CCNode->getAPIntValue().getLimitedValue(); 10421 SDValue CmpZ = CMOV->getOperand(4); 10422 10423 // The compare must be against zero. 10424 if (!isNullConstant(CmpZ->getOperand(1))) 10425 return SDValue(); 10426 10427 assert(CmpZ->getOpcode() == ARMISD::CMPZ); 10428 SDValue And = CmpZ->getOperand(0); 10429 if (And->getOpcode() != ISD::AND) 10430 return SDValue(); 10431 ConstantSDNode *AndC = dyn_cast<ConstantSDNode>(And->getOperand(1)); 10432 if (!AndC || !AndC->getAPIntValue().isPowerOf2()) 10433 return SDValue(); 10434 SDValue X = And->getOperand(0); 10435 10436 if (CC == ARMCC::EQ) { 10437 // We're performing an "equal to zero" compare. Swap the operands so we 10438 // canonicalize on a "not equal to zero" compare. 10439 std::swap(Op0, Op1); 10440 } else { 10441 assert(CC == ARMCC::NE && "How can a CMPZ node not be EQ or NE?"); 10442 } 10443 10444 if (Op1->getOpcode() != ISD::OR) 10445 return SDValue(); 10446 10447 ConstantSDNode *OrC = dyn_cast<ConstantSDNode>(Op1->getOperand(1)); 10448 if (!OrC) 10449 return SDValue(); 10450 SDValue Y = Op1->getOperand(0); 10451 10452 if (Op0 != Y) 10453 return SDValue(); 10454 10455 // Now, is it profitable to continue? 10456 APInt OrCI = OrC->getAPIntValue(); 10457 unsigned Heuristic = Subtarget->isThumb() ? 3 : 2; 10458 if (OrCI.countPopulation() > Heuristic) 10459 return SDValue(); 10460 10461 // Lastly, can we determine that the bits defined by OrCI 10462 // are zero in Y? 10463 APInt KnownZero, KnownOne; 10464 computeKnownBits(DAG, Y, KnownZero, KnownOne); 10465 if ((OrCI & KnownZero) != OrCI) 10466 return SDValue(); 10467 10468 // OK, we can do the combine. 10469 SDValue V = Y; 10470 SDLoc dl(X); 10471 EVT VT = X.getValueType(); 10472 unsigned BitInX = AndC->getAPIntValue().logBase2(); 10473 10474 if (BitInX != 0) { 10475 // We must shift X first. 10476 X = DAG.getNode(ISD::SRL, dl, VT, X, 10477 DAG.getConstant(BitInX, dl, VT)); 10478 } 10479 10480 for (unsigned BitInY = 0, NumActiveBits = OrCI.getActiveBits(); 10481 BitInY < NumActiveBits; ++BitInY) { 10482 if (OrCI[BitInY] == 0) 10483 continue; 10484 APInt Mask(VT.getSizeInBits(), 0); 10485 Mask.setBit(BitInY); 10486 V = DAG.getNode(ARMISD::BFI, dl, VT, V, X, 10487 // Confusingly, the operand is an *inverted* mask. 10488 DAG.getConstant(~Mask, dl, VT)); 10489 } 10490 10491 return V; 10492 } 10493 10494 /// PerformCMOVCombine - Target-specific DAG combining for ARMISD::CMOV. 10495 SDValue 10496 ARMTargetLowering::PerformCMOVCombine(SDNode *N, SelectionDAG &DAG) const { 10497 SDValue Cmp = N->getOperand(4); 10498 if (Cmp.getOpcode() != ARMISD::CMPZ) 10499 // Only looking at EQ and NE cases. 10500 return SDValue(); 10501 10502 EVT VT = N->getValueType(0); 10503 SDLoc dl(N); 10504 SDValue LHS = Cmp.getOperand(0); 10505 SDValue RHS = Cmp.getOperand(1); 10506 SDValue FalseVal = N->getOperand(0); 10507 SDValue TrueVal = N->getOperand(1); 10508 SDValue ARMcc = N->getOperand(2); 10509 ARMCC::CondCodes CC = 10510 (ARMCC::CondCodes)cast<ConstantSDNode>(ARMcc)->getZExtValue(); 10511 10512 // BFI is only available on V6T2+. 10513 if (!Subtarget->isThumb1Only() && Subtarget->hasV6T2Ops()) { 10514 SDValue R = PerformCMOVToBFICombine(N, DAG); 10515 if (R) 10516 return R; 10517 } 10518 10519 // Simplify 10520 // mov r1, r0 10521 // cmp r1, x 10522 // mov r0, y 10523 // moveq r0, x 10524 // to 10525 // cmp r0, x 10526 // movne r0, y 10527 // 10528 // mov r1, r0 10529 // cmp r1, x 10530 // mov r0, x 10531 // movne r0, y 10532 // to 10533 // cmp r0, x 10534 // movne r0, y 10535 /// FIXME: Turn this into a target neutral optimization? 10536 SDValue Res; 10537 if (CC == ARMCC::NE && FalseVal == RHS && FalseVal != LHS) { 10538 Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, TrueVal, ARMcc, 10539 N->getOperand(3), Cmp); 10540 } else if (CC == ARMCC::EQ && TrueVal == RHS) { 10541 SDValue ARMcc; 10542 SDValue NewCmp = getARMCmp(LHS, RHS, ISD::SETNE, ARMcc, DAG, dl); 10543 Res = DAG.getNode(ARMISD::CMOV, dl, VT, LHS, FalseVal, ARMcc, 10544 N->getOperand(3), NewCmp); 10545 } 10546 10547 if (Res.getNode()) { 10548 APInt KnownZero, KnownOne; 10549 DAG.computeKnownBits(SDValue(N,0), KnownZero, KnownOne); 10550 // Capture demanded bits information that would be otherwise lost. 10551 if (KnownZero == 0xfffffffe) 10552 Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res, 10553 DAG.getValueType(MVT::i1)); 10554 else if (KnownZero == 0xffffff00) 10555 Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res, 10556 DAG.getValueType(MVT::i8)); 10557 else if (KnownZero == 0xffff0000) 10558 Res = DAG.getNode(ISD::AssertZext, dl, MVT::i32, Res, 10559 DAG.getValueType(MVT::i16)); 10560 } 10561 10562 return Res; 10563 } 10564 10565 SDValue ARMTargetLowering::PerformDAGCombine(SDNode *N, 10566 DAGCombinerInfo &DCI) const { 10567 switch (N->getOpcode()) { 10568 default: break; 10569 case ISD::ADDC: return PerformADDCCombine(N, DCI, Subtarget); 10570 case ISD::ADD: return PerformADDCombine(N, DCI, Subtarget); 10571 case ISD::SUB: return PerformSUBCombine(N, DCI); 10572 case ISD::MUL: return PerformMULCombine(N, DCI, Subtarget); 10573 case ISD::OR: return PerformORCombine(N, DCI, Subtarget); 10574 case ISD::XOR: return PerformXORCombine(N, DCI, Subtarget); 10575 case ISD::AND: return PerformANDCombine(N, DCI, Subtarget); 10576 case ARMISD::BFI: return PerformBFICombine(N, DCI); 10577 case ARMISD::VMOVRRD: return PerformVMOVRRDCombine(N, DCI, Subtarget); 10578 case ARMISD::VMOVDRR: return PerformVMOVDRRCombine(N, DCI.DAG); 10579 case ISD::STORE: return PerformSTORECombine(N, DCI); 10580 case ISD::BUILD_VECTOR: return PerformBUILD_VECTORCombine(N, DCI, Subtarget); 10581 case ISD::INSERT_VECTOR_ELT: return PerformInsertEltCombine(N, DCI); 10582 case ISD::VECTOR_SHUFFLE: return PerformVECTOR_SHUFFLECombine(N, DCI.DAG); 10583 case ARMISD::VDUPLANE: return PerformVDUPLANECombine(N, DCI); 10584 case ISD::FP_TO_SINT: 10585 case ISD::FP_TO_UINT: 10586 return PerformVCVTCombine(N, DCI.DAG, Subtarget); 10587 case ISD::FDIV: 10588 return PerformVDIVCombine(N, DCI.DAG, Subtarget); 10589 case ISD::INTRINSIC_WO_CHAIN: return PerformIntrinsicCombine(N, DCI.DAG); 10590 case ISD::SHL: 10591 case ISD::SRA: 10592 case ISD::SRL: return PerformShiftCombine(N, DCI.DAG, Subtarget); 10593 case ISD::SIGN_EXTEND: 10594 case ISD::ZERO_EXTEND: 10595 case ISD::ANY_EXTEND: return PerformExtendCombine(N, DCI.DAG, Subtarget); 10596 case ARMISD::CMOV: return PerformCMOVCombine(N, DCI.DAG); 10597 case ISD::LOAD: return PerformLOADCombine(N, DCI); 10598 case ARMISD::VLD2DUP: 10599 case ARMISD::VLD3DUP: 10600 case ARMISD::VLD4DUP: 10601 return PerformVLDCombine(N, DCI); 10602 case ARMISD::BUILD_VECTOR: 10603 return PerformARMBUILD_VECTORCombine(N, DCI); 10604 case ISD::INTRINSIC_VOID: 10605 case ISD::INTRINSIC_W_CHAIN: 10606 switch (cast<ConstantSDNode>(N->getOperand(1))->getZExtValue()) { 10607 case Intrinsic::arm_neon_vld1: 10608 case Intrinsic::arm_neon_vld2: 10609 case Intrinsic::arm_neon_vld3: 10610 case Intrinsic::arm_neon_vld4: 10611 case Intrinsic::arm_neon_vld2lane: 10612 case Intrinsic::arm_neon_vld3lane: 10613 case Intrinsic::arm_neon_vld4lane: 10614 case Intrinsic::arm_neon_vst1: 10615 case Intrinsic::arm_neon_vst2: 10616 case Intrinsic::arm_neon_vst3: 10617 case Intrinsic::arm_neon_vst4: 10618 case Intrinsic::arm_neon_vst2lane: 10619 case Intrinsic::arm_neon_vst3lane: 10620 case Intrinsic::arm_neon_vst4lane: 10621 return PerformVLDCombine(N, DCI); 10622 default: break; 10623 } 10624 break; 10625 } 10626 return SDValue(); 10627 } 10628 10629 bool ARMTargetLowering::isDesirableToTransformToIntegerOp(unsigned Opc, 10630 EVT VT) const { 10631 return (VT == MVT::f32) && (Opc == ISD::LOAD || Opc == ISD::STORE); 10632 } 10633 10634 bool ARMTargetLowering::allowsMisalignedMemoryAccesses(EVT VT, 10635 unsigned, 10636 unsigned, 10637 bool *Fast) const { 10638 // The AllowsUnaliged flag models the SCTLR.A setting in ARM cpus 10639 bool AllowsUnaligned = Subtarget->allowsUnalignedMem(); 10640 10641 switch (VT.getSimpleVT().SimpleTy) { 10642 default: 10643 return false; 10644 case MVT::i8: 10645 case MVT::i16: 10646 case MVT::i32: { 10647 // Unaligned access can use (for example) LRDB, LRDH, LDR 10648 if (AllowsUnaligned) { 10649 if (Fast) 10650 *Fast = Subtarget->hasV7Ops(); 10651 return true; 10652 } 10653 return false; 10654 } 10655 case MVT::f64: 10656 case MVT::v2f64: { 10657 // For any little-endian targets with neon, we can support unaligned ld/st 10658 // of D and Q (e.g. {D0,D1}) registers by using vld1.i8/vst1.i8. 10659 // A big-endian target may also explicitly support unaligned accesses 10660 if (Subtarget->hasNEON() && (AllowsUnaligned || Subtarget->isLittle())) { 10661 if (Fast) 10662 *Fast = true; 10663 return true; 10664 } 10665 return false; 10666 } 10667 } 10668 } 10669 10670 static bool memOpAlign(unsigned DstAlign, unsigned SrcAlign, 10671 unsigned AlignCheck) { 10672 return ((SrcAlign == 0 || SrcAlign % AlignCheck == 0) && 10673 (DstAlign == 0 || DstAlign % AlignCheck == 0)); 10674 } 10675 10676 EVT ARMTargetLowering::getOptimalMemOpType(uint64_t Size, 10677 unsigned DstAlign, unsigned SrcAlign, 10678 bool IsMemset, bool ZeroMemset, 10679 bool MemcpyStrSrc, 10680 MachineFunction &MF) const { 10681 const Function *F = MF.getFunction(); 10682 10683 // See if we can use NEON instructions for this... 10684 if ((!IsMemset || ZeroMemset) && Subtarget->hasNEON() && 10685 !F->hasFnAttribute(Attribute::NoImplicitFloat)) { 10686 bool Fast; 10687 if (Size >= 16 && 10688 (memOpAlign(SrcAlign, DstAlign, 16) || 10689 (allowsMisalignedMemoryAccesses(MVT::v2f64, 0, 1, &Fast) && Fast))) { 10690 return MVT::v2f64; 10691 } else if (Size >= 8 && 10692 (memOpAlign(SrcAlign, DstAlign, 8) || 10693 (allowsMisalignedMemoryAccesses(MVT::f64, 0, 1, &Fast) && 10694 Fast))) { 10695 return MVT::f64; 10696 } 10697 } 10698 10699 // Lowering to i32/i16 if the size permits. 10700 if (Size >= 4) 10701 return MVT::i32; 10702 else if (Size >= 2) 10703 return MVT::i16; 10704 10705 // Let the target-independent logic figure it out. 10706 return MVT::Other; 10707 } 10708 10709 bool ARMTargetLowering::isZExtFree(SDValue Val, EVT VT2) const { 10710 if (Val.getOpcode() != ISD::LOAD) 10711 return false; 10712 10713 EVT VT1 = Val.getValueType(); 10714 if (!VT1.isSimple() || !VT1.isInteger() || 10715 !VT2.isSimple() || !VT2.isInteger()) 10716 return false; 10717 10718 switch (VT1.getSimpleVT().SimpleTy) { 10719 default: break; 10720 case MVT::i1: 10721 case MVT::i8: 10722 case MVT::i16: 10723 // 8-bit and 16-bit loads implicitly zero-extend to 32-bits. 10724 return true; 10725 } 10726 10727 return false; 10728 } 10729 10730 bool ARMTargetLowering::isVectorLoadExtDesirable(SDValue ExtVal) const { 10731 EVT VT = ExtVal.getValueType(); 10732 10733 if (!isTypeLegal(VT)) 10734 return false; 10735 10736 // Don't create a loadext if we can fold the extension into a wide/long 10737 // instruction. 10738 // If there's more than one user instruction, the loadext is desirable no 10739 // matter what. There can be two uses by the same instruction. 10740 if (ExtVal->use_empty() || 10741 !ExtVal->use_begin()->isOnlyUserOf(ExtVal.getNode())) 10742 return true; 10743 10744 SDNode *U = *ExtVal->use_begin(); 10745 if ((U->getOpcode() == ISD::ADD || U->getOpcode() == ISD::SUB || 10746 U->getOpcode() == ISD::SHL || U->getOpcode() == ARMISD::VSHL)) 10747 return false; 10748 10749 return true; 10750 } 10751 10752 bool ARMTargetLowering::allowTruncateForTailCall(Type *Ty1, Type *Ty2) const { 10753 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy()) 10754 return false; 10755 10756 if (!isTypeLegal(EVT::getEVT(Ty1))) 10757 return false; 10758 10759 assert(Ty1->getPrimitiveSizeInBits() <= 64 && "i128 is probably not a noop"); 10760 10761 // Assuming the caller doesn't have a zeroext or signext return parameter, 10762 // truncation all the way down to i1 is valid. 10763 return true; 10764 } 10765 10766 10767 static bool isLegalT1AddressImmediate(int64_t V, EVT VT) { 10768 if (V < 0) 10769 return false; 10770 10771 unsigned Scale = 1; 10772 switch (VT.getSimpleVT().SimpleTy) { 10773 default: return false; 10774 case MVT::i1: 10775 case MVT::i8: 10776 // Scale == 1; 10777 break; 10778 case MVT::i16: 10779 // Scale == 2; 10780 Scale = 2; 10781 break; 10782 case MVT::i32: 10783 // Scale == 4; 10784 Scale = 4; 10785 break; 10786 } 10787 10788 if ((V & (Scale - 1)) != 0) 10789 return false; 10790 V /= Scale; 10791 return V == (V & ((1LL << 5) - 1)); 10792 } 10793 10794 static bool isLegalT2AddressImmediate(int64_t V, EVT VT, 10795 const ARMSubtarget *Subtarget) { 10796 bool isNeg = false; 10797 if (V < 0) { 10798 isNeg = true; 10799 V = - V; 10800 } 10801 10802 switch (VT.getSimpleVT().SimpleTy) { 10803 default: return false; 10804 case MVT::i1: 10805 case MVT::i8: 10806 case MVT::i16: 10807 case MVT::i32: 10808 // + imm12 or - imm8 10809 if (isNeg) 10810 return V == (V & ((1LL << 8) - 1)); 10811 return V == (V & ((1LL << 12) - 1)); 10812 case MVT::f32: 10813 case MVT::f64: 10814 // Same as ARM mode. FIXME: NEON? 10815 if (!Subtarget->hasVFP2()) 10816 return false; 10817 if ((V & 3) != 0) 10818 return false; 10819 V >>= 2; 10820 return V == (V & ((1LL << 8) - 1)); 10821 } 10822 } 10823 10824 /// isLegalAddressImmediate - Return true if the integer value can be used 10825 /// as the offset of the target addressing mode for load / store of the 10826 /// given type. 10827 static bool isLegalAddressImmediate(int64_t V, EVT VT, 10828 const ARMSubtarget *Subtarget) { 10829 if (V == 0) 10830 return true; 10831 10832 if (!VT.isSimple()) 10833 return false; 10834 10835 if (Subtarget->isThumb1Only()) 10836 return isLegalT1AddressImmediate(V, VT); 10837 else if (Subtarget->isThumb2()) 10838 return isLegalT2AddressImmediate(V, VT, Subtarget); 10839 10840 // ARM mode. 10841 if (V < 0) 10842 V = - V; 10843 switch (VT.getSimpleVT().SimpleTy) { 10844 default: return false; 10845 case MVT::i1: 10846 case MVT::i8: 10847 case MVT::i32: 10848 // +- imm12 10849 return V == (V & ((1LL << 12) - 1)); 10850 case MVT::i16: 10851 // +- imm8 10852 return V == (V & ((1LL << 8) - 1)); 10853 case MVT::f32: 10854 case MVT::f64: 10855 if (!Subtarget->hasVFP2()) // FIXME: NEON? 10856 return false; 10857 if ((V & 3) != 0) 10858 return false; 10859 V >>= 2; 10860 return V == (V & ((1LL << 8) - 1)); 10861 } 10862 } 10863 10864 bool ARMTargetLowering::isLegalT2ScaledAddressingMode(const AddrMode &AM, 10865 EVT VT) const { 10866 int Scale = AM.Scale; 10867 if (Scale < 0) 10868 return false; 10869 10870 switch (VT.getSimpleVT().SimpleTy) { 10871 default: return false; 10872 case MVT::i1: 10873 case MVT::i8: 10874 case MVT::i16: 10875 case MVT::i32: 10876 if (Scale == 1) 10877 return true; 10878 // r + r << imm 10879 Scale = Scale & ~1; 10880 return Scale == 2 || Scale == 4 || Scale == 8; 10881 case MVT::i64: 10882 // r + r 10883 if (((unsigned)AM.HasBaseReg + Scale) <= 2) 10884 return true; 10885 return false; 10886 case MVT::isVoid: 10887 // Note, we allow "void" uses (basically, uses that aren't loads or 10888 // stores), because arm allows folding a scale into many arithmetic 10889 // operations. This should be made more precise and revisited later. 10890 10891 // Allow r << imm, but the imm has to be a multiple of two. 10892 if (Scale & 1) return false; 10893 return isPowerOf2_32(Scale); 10894 } 10895 } 10896 10897 /// isLegalAddressingMode - Return true if the addressing mode represented 10898 /// by AM is legal for this target, for a load/store of the specified type. 10899 bool ARMTargetLowering::isLegalAddressingMode(const DataLayout &DL, 10900 const AddrMode &AM, Type *Ty, 10901 unsigned AS) const { 10902 EVT VT = getValueType(DL, Ty, true); 10903 if (!isLegalAddressImmediate(AM.BaseOffs, VT, Subtarget)) 10904 return false; 10905 10906 // Can never fold addr of global into load/store. 10907 if (AM.BaseGV) 10908 return false; 10909 10910 switch (AM.Scale) { 10911 case 0: // no scale reg, must be "r+i" or "r", or "i". 10912 break; 10913 case 1: 10914 if (Subtarget->isThumb1Only()) 10915 return false; 10916 // FALL THROUGH. 10917 default: 10918 // ARM doesn't support any R+R*scale+imm addr modes. 10919 if (AM.BaseOffs) 10920 return false; 10921 10922 if (!VT.isSimple()) 10923 return false; 10924 10925 if (Subtarget->isThumb2()) 10926 return isLegalT2ScaledAddressingMode(AM, VT); 10927 10928 int Scale = AM.Scale; 10929 switch (VT.getSimpleVT().SimpleTy) { 10930 default: return false; 10931 case MVT::i1: 10932 case MVT::i8: 10933 case MVT::i32: 10934 if (Scale < 0) Scale = -Scale; 10935 if (Scale == 1) 10936 return true; 10937 // r + r << imm 10938 return isPowerOf2_32(Scale & ~1); 10939 case MVT::i16: 10940 case MVT::i64: 10941 // r + r 10942 if (((unsigned)AM.HasBaseReg + Scale) <= 2) 10943 return true; 10944 return false; 10945 10946 case MVT::isVoid: 10947 // Note, we allow "void" uses (basically, uses that aren't loads or 10948 // stores), because arm allows folding a scale into many arithmetic 10949 // operations. This should be made more precise and revisited later. 10950 10951 // Allow r << imm, but the imm has to be a multiple of two. 10952 if (Scale & 1) return false; 10953 return isPowerOf2_32(Scale); 10954 } 10955 } 10956 return true; 10957 } 10958 10959 /// isLegalICmpImmediate - Return true if the specified immediate is legal 10960 /// icmp immediate, that is the target has icmp instructions which can compare 10961 /// a register against the immediate without having to materialize the 10962 /// immediate into a register. 10963 bool ARMTargetLowering::isLegalICmpImmediate(int64_t Imm) const { 10964 // Thumb2 and ARM modes can use cmn for negative immediates. 10965 if (!Subtarget->isThumb()) 10966 return ARM_AM::getSOImmVal(std::abs(Imm)) != -1; 10967 if (Subtarget->isThumb2()) 10968 return ARM_AM::getT2SOImmVal(std::abs(Imm)) != -1; 10969 // Thumb1 doesn't have cmn, and only 8-bit immediates. 10970 return Imm >= 0 && Imm <= 255; 10971 } 10972 10973 /// isLegalAddImmediate - Return true if the specified immediate is a legal add 10974 /// *or sub* immediate, that is the target has add or sub instructions which can 10975 /// add a register with the immediate without having to materialize the 10976 /// immediate into a register. 10977 bool ARMTargetLowering::isLegalAddImmediate(int64_t Imm) const { 10978 // Same encoding for add/sub, just flip the sign. 10979 int64_t AbsImm = std::abs(Imm); 10980 if (!Subtarget->isThumb()) 10981 return ARM_AM::getSOImmVal(AbsImm) != -1; 10982 if (Subtarget->isThumb2()) 10983 return ARM_AM::getT2SOImmVal(AbsImm) != -1; 10984 // Thumb1 only has 8-bit unsigned immediate. 10985 return AbsImm >= 0 && AbsImm <= 255; 10986 } 10987 10988 static bool getARMIndexedAddressParts(SDNode *Ptr, EVT VT, 10989 bool isSEXTLoad, SDValue &Base, 10990 SDValue &Offset, bool &isInc, 10991 SelectionDAG &DAG) { 10992 if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB) 10993 return false; 10994 10995 if (VT == MVT::i16 || ((VT == MVT::i8 || VT == MVT::i1) && isSEXTLoad)) { 10996 // AddressingMode 3 10997 Base = Ptr->getOperand(0); 10998 if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) { 10999 int RHSC = (int)RHS->getZExtValue(); 11000 if (RHSC < 0 && RHSC > -256) { 11001 assert(Ptr->getOpcode() == ISD::ADD); 11002 isInc = false; 11003 Offset = DAG.getConstant(-RHSC, SDLoc(Ptr), RHS->getValueType(0)); 11004 return true; 11005 } 11006 } 11007 isInc = (Ptr->getOpcode() == ISD::ADD); 11008 Offset = Ptr->getOperand(1); 11009 return true; 11010 } else if (VT == MVT::i32 || VT == MVT::i8 || VT == MVT::i1) { 11011 // AddressingMode 2 11012 if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) { 11013 int RHSC = (int)RHS->getZExtValue(); 11014 if (RHSC < 0 && RHSC > -0x1000) { 11015 assert(Ptr->getOpcode() == ISD::ADD); 11016 isInc = false; 11017 Offset = DAG.getConstant(-RHSC, SDLoc(Ptr), RHS->getValueType(0)); 11018 Base = Ptr->getOperand(0); 11019 return true; 11020 } 11021 } 11022 11023 if (Ptr->getOpcode() == ISD::ADD) { 11024 isInc = true; 11025 ARM_AM::ShiftOpc ShOpcVal= 11026 ARM_AM::getShiftOpcForNode(Ptr->getOperand(0).getOpcode()); 11027 if (ShOpcVal != ARM_AM::no_shift) { 11028 Base = Ptr->getOperand(1); 11029 Offset = Ptr->getOperand(0); 11030 } else { 11031 Base = Ptr->getOperand(0); 11032 Offset = Ptr->getOperand(1); 11033 } 11034 return true; 11035 } 11036 11037 isInc = (Ptr->getOpcode() == ISD::ADD); 11038 Base = Ptr->getOperand(0); 11039 Offset = Ptr->getOperand(1); 11040 return true; 11041 } 11042 11043 // FIXME: Use VLDM / VSTM to emulate indexed FP load / store. 11044 return false; 11045 } 11046 11047 static bool getT2IndexedAddressParts(SDNode *Ptr, EVT VT, 11048 bool isSEXTLoad, SDValue &Base, 11049 SDValue &Offset, bool &isInc, 11050 SelectionDAG &DAG) { 11051 if (Ptr->getOpcode() != ISD::ADD && Ptr->getOpcode() != ISD::SUB) 11052 return false; 11053 11054 Base = Ptr->getOperand(0); 11055 if (ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(Ptr->getOperand(1))) { 11056 int RHSC = (int)RHS->getZExtValue(); 11057 if (RHSC < 0 && RHSC > -0x100) { // 8 bits. 11058 assert(Ptr->getOpcode() == ISD::ADD); 11059 isInc = false; 11060 Offset = DAG.getConstant(-RHSC, SDLoc(Ptr), RHS->getValueType(0)); 11061 return true; 11062 } else if (RHSC > 0 && RHSC < 0x100) { // 8 bit, no zero. 11063 isInc = Ptr->getOpcode() == ISD::ADD; 11064 Offset = DAG.getConstant(RHSC, SDLoc(Ptr), RHS->getValueType(0)); 11065 return true; 11066 } 11067 } 11068 11069 return false; 11070 } 11071 11072 /// getPreIndexedAddressParts - returns true by value, base pointer and 11073 /// offset pointer and addressing mode by reference if the node's address 11074 /// can be legally represented as pre-indexed load / store address. 11075 bool 11076 ARMTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base, 11077 SDValue &Offset, 11078 ISD::MemIndexedMode &AM, 11079 SelectionDAG &DAG) const { 11080 if (Subtarget->isThumb1Only()) 11081 return false; 11082 11083 EVT VT; 11084 SDValue Ptr; 11085 bool isSEXTLoad = false; 11086 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 11087 Ptr = LD->getBasePtr(); 11088 VT = LD->getMemoryVT(); 11089 isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD; 11090 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { 11091 Ptr = ST->getBasePtr(); 11092 VT = ST->getMemoryVT(); 11093 } else 11094 return false; 11095 11096 bool isInc; 11097 bool isLegal = false; 11098 if (Subtarget->isThumb2()) 11099 isLegal = getT2IndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base, 11100 Offset, isInc, DAG); 11101 else 11102 isLegal = getARMIndexedAddressParts(Ptr.getNode(), VT, isSEXTLoad, Base, 11103 Offset, isInc, DAG); 11104 if (!isLegal) 11105 return false; 11106 11107 AM = isInc ? ISD::PRE_INC : ISD::PRE_DEC; 11108 return true; 11109 } 11110 11111 /// getPostIndexedAddressParts - returns true by value, base pointer and 11112 /// offset pointer and addressing mode by reference if this node can be 11113 /// combined with a load / store to form a post-indexed load / store. 11114 bool ARMTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op, 11115 SDValue &Base, 11116 SDValue &Offset, 11117 ISD::MemIndexedMode &AM, 11118 SelectionDAG &DAG) const { 11119 if (Subtarget->isThumb1Only()) 11120 return false; 11121 11122 EVT VT; 11123 SDValue Ptr; 11124 bool isSEXTLoad = false; 11125 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { 11126 VT = LD->getMemoryVT(); 11127 Ptr = LD->getBasePtr(); 11128 isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD; 11129 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { 11130 VT = ST->getMemoryVT(); 11131 Ptr = ST->getBasePtr(); 11132 } else 11133 return false; 11134 11135 bool isInc; 11136 bool isLegal = false; 11137 if (Subtarget->isThumb2()) 11138 isLegal = getT2IndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset, 11139 isInc, DAG); 11140 else 11141 isLegal = getARMIndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset, 11142 isInc, DAG); 11143 if (!isLegal) 11144 return false; 11145 11146 if (Ptr != Base) { 11147 // Swap base ptr and offset to catch more post-index load / store when 11148 // it's legal. In Thumb2 mode, offset must be an immediate. 11149 if (Ptr == Offset && Op->getOpcode() == ISD::ADD && 11150 !Subtarget->isThumb2()) 11151 std::swap(Base, Offset); 11152 11153 // Post-indexed load / store update the base pointer. 11154 if (Ptr != Base) 11155 return false; 11156 } 11157 11158 AM = isInc ? ISD::POST_INC : ISD::POST_DEC; 11159 return true; 11160 } 11161 11162 void ARMTargetLowering::computeKnownBitsForTargetNode(const SDValue Op, 11163 APInt &KnownZero, 11164 APInt &KnownOne, 11165 const SelectionDAG &DAG, 11166 unsigned Depth) const { 11167 unsigned BitWidth = KnownOne.getBitWidth(); 11168 KnownZero = KnownOne = APInt(BitWidth, 0); 11169 switch (Op.getOpcode()) { 11170 default: break; 11171 case ARMISD::ADDC: 11172 case ARMISD::ADDE: 11173 case ARMISD::SUBC: 11174 case ARMISD::SUBE: 11175 // These nodes' second result is a boolean 11176 if (Op.getResNo() == 0) 11177 break; 11178 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1); 11179 break; 11180 case ARMISD::CMOV: { 11181 // Bits are known zero/one if known on the LHS and RHS. 11182 DAG.computeKnownBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1); 11183 if (KnownZero == 0 && KnownOne == 0) return; 11184 11185 APInt KnownZeroRHS, KnownOneRHS; 11186 DAG.computeKnownBits(Op.getOperand(1), KnownZeroRHS, KnownOneRHS, Depth+1); 11187 KnownZero &= KnownZeroRHS; 11188 KnownOne &= KnownOneRHS; 11189 return; 11190 } 11191 case ISD::INTRINSIC_W_CHAIN: { 11192 ConstantSDNode *CN = cast<ConstantSDNode>(Op->getOperand(1)); 11193 Intrinsic::ID IntID = static_cast<Intrinsic::ID>(CN->getZExtValue()); 11194 switch (IntID) { 11195 default: return; 11196 case Intrinsic::arm_ldaex: 11197 case Intrinsic::arm_ldrex: { 11198 EVT VT = cast<MemIntrinsicSDNode>(Op)->getMemoryVT(); 11199 unsigned MemBits = VT.getScalarType().getSizeInBits(); 11200 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits); 11201 return; 11202 } 11203 } 11204 } 11205 } 11206 } 11207 11208 //===----------------------------------------------------------------------===// 11209 // ARM Inline Assembly Support 11210 //===----------------------------------------------------------------------===// 11211 11212 bool ARMTargetLowering::ExpandInlineAsm(CallInst *CI) const { 11213 // Looking for "rev" which is V6+. 11214 if (!Subtarget->hasV6Ops()) 11215 return false; 11216 11217 InlineAsm *IA = cast<InlineAsm>(CI->getCalledValue()); 11218 std::string AsmStr = IA->getAsmString(); 11219 SmallVector<StringRef, 4> AsmPieces; 11220 SplitString(AsmStr, AsmPieces, ";\n"); 11221 11222 switch (AsmPieces.size()) { 11223 default: return false; 11224 case 1: 11225 AsmStr = AsmPieces[0]; 11226 AsmPieces.clear(); 11227 SplitString(AsmStr, AsmPieces, " \t,"); 11228 11229 // rev $0, $1 11230 if (AsmPieces.size() == 3 && 11231 AsmPieces[0] == "rev" && AsmPieces[1] == "$0" && AsmPieces[2] == "$1" && 11232 IA->getConstraintString().compare(0, 4, "=l,l") == 0) { 11233 IntegerType *Ty = dyn_cast<IntegerType>(CI->getType()); 11234 if (Ty && Ty->getBitWidth() == 32) 11235 return IntrinsicLowering::LowerToByteSwap(CI); 11236 } 11237 break; 11238 } 11239 11240 return false; 11241 } 11242 11243 /// getConstraintType - Given a constraint letter, return the type of 11244 /// constraint it is for this target. 11245 ARMTargetLowering::ConstraintType 11246 ARMTargetLowering::getConstraintType(StringRef Constraint) const { 11247 if (Constraint.size() == 1) { 11248 switch (Constraint[0]) { 11249 default: break; 11250 case 'l': return C_RegisterClass; 11251 case 'w': return C_RegisterClass; 11252 case 'h': return C_RegisterClass; 11253 case 'x': return C_RegisterClass; 11254 case 't': return C_RegisterClass; 11255 case 'j': return C_Other; // Constant for movw. 11256 // An address with a single base register. Due to the way we 11257 // currently handle addresses it is the same as an 'r' memory constraint. 11258 case 'Q': return C_Memory; 11259 } 11260 } else if (Constraint.size() == 2) { 11261 switch (Constraint[0]) { 11262 default: break; 11263 // All 'U+' constraints are addresses. 11264 case 'U': return C_Memory; 11265 } 11266 } 11267 return TargetLowering::getConstraintType(Constraint); 11268 } 11269 11270 /// Examine constraint type and operand type and determine a weight value. 11271 /// This object must already have been set up with the operand type 11272 /// and the current alternative constraint selected. 11273 TargetLowering::ConstraintWeight 11274 ARMTargetLowering::getSingleConstraintMatchWeight( 11275 AsmOperandInfo &info, const char *constraint) const { 11276 ConstraintWeight weight = CW_Invalid; 11277 Value *CallOperandVal = info.CallOperandVal; 11278 // If we don't have a value, we can't do a match, 11279 // but allow it at the lowest weight. 11280 if (!CallOperandVal) 11281 return CW_Default; 11282 Type *type = CallOperandVal->getType(); 11283 // Look at the constraint type. 11284 switch (*constraint) { 11285 default: 11286 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint); 11287 break; 11288 case 'l': 11289 if (type->isIntegerTy()) { 11290 if (Subtarget->isThumb()) 11291 weight = CW_SpecificReg; 11292 else 11293 weight = CW_Register; 11294 } 11295 break; 11296 case 'w': 11297 if (type->isFloatingPointTy()) 11298 weight = CW_Register; 11299 break; 11300 } 11301 return weight; 11302 } 11303 11304 typedef std::pair<unsigned, const TargetRegisterClass*> RCPair; 11305 RCPair ARMTargetLowering::getRegForInlineAsmConstraint( 11306 const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const { 11307 if (Constraint.size() == 1) { 11308 // GCC ARM Constraint Letters 11309 switch (Constraint[0]) { 11310 case 'l': // Low regs or general regs. 11311 if (Subtarget->isThumb()) 11312 return RCPair(0U, &ARM::tGPRRegClass); 11313 return RCPair(0U, &ARM::GPRRegClass); 11314 case 'h': // High regs or no regs. 11315 if (Subtarget->isThumb()) 11316 return RCPair(0U, &ARM::hGPRRegClass); 11317 break; 11318 case 'r': 11319 if (Subtarget->isThumb1Only()) 11320 return RCPair(0U, &ARM::tGPRRegClass); 11321 return RCPair(0U, &ARM::GPRRegClass); 11322 case 'w': 11323 if (VT == MVT::Other) 11324 break; 11325 if (VT == MVT::f32) 11326 return RCPair(0U, &ARM::SPRRegClass); 11327 if (VT.getSizeInBits() == 64) 11328 return RCPair(0U, &ARM::DPRRegClass); 11329 if (VT.getSizeInBits() == 128) 11330 return RCPair(0U, &ARM::QPRRegClass); 11331 break; 11332 case 'x': 11333 if (VT == MVT::Other) 11334 break; 11335 if (VT == MVT::f32) 11336 return RCPair(0U, &ARM::SPR_8RegClass); 11337 if (VT.getSizeInBits() == 64) 11338 return RCPair(0U, &ARM::DPR_8RegClass); 11339 if (VT.getSizeInBits() == 128) 11340 return RCPair(0U, &ARM::QPR_8RegClass); 11341 break; 11342 case 't': 11343 if (VT == MVT::f32) 11344 return RCPair(0U, &ARM::SPRRegClass); 11345 break; 11346 } 11347 } 11348 if (StringRef("{cc}").equals_lower(Constraint)) 11349 return std::make_pair(unsigned(ARM::CPSR), &ARM::CCRRegClass); 11350 11351 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); 11352 } 11353 11354 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops 11355 /// vector. If it is invalid, don't add anything to Ops. 11356 void ARMTargetLowering::LowerAsmOperandForConstraint(SDValue Op, 11357 std::string &Constraint, 11358 std::vector<SDValue>&Ops, 11359 SelectionDAG &DAG) const { 11360 SDValue Result; 11361 11362 // Currently only support length 1 constraints. 11363 if (Constraint.length() != 1) return; 11364 11365 char ConstraintLetter = Constraint[0]; 11366 switch (ConstraintLetter) { 11367 default: break; 11368 case 'j': 11369 case 'I': case 'J': case 'K': case 'L': 11370 case 'M': case 'N': case 'O': 11371 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op); 11372 if (!C) 11373 return; 11374 11375 int64_t CVal64 = C->getSExtValue(); 11376 int CVal = (int) CVal64; 11377 // None of these constraints allow values larger than 32 bits. Check 11378 // that the value fits in an int. 11379 if (CVal != CVal64) 11380 return; 11381 11382 switch (ConstraintLetter) { 11383 case 'j': 11384 // Constant suitable for movw, must be between 0 and 11385 // 65535. 11386 if (Subtarget->hasV6T2Ops()) 11387 if (CVal >= 0 && CVal <= 65535) 11388 break; 11389 return; 11390 case 'I': 11391 if (Subtarget->isThumb1Only()) { 11392 // This must be a constant between 0 and 255, for ADD 11393 // immediates. 11394 if (CVal >= 0 && CVal <= 255) 11395 break; 11396 } else if (Subtarget->isThumb2()) { 11397 // A constant that can be used as an immediate value in a 11398 // data-processing instruction. 11399 if (ARM_AM::getT2SOImmVal(CVal) != -1) 11400 break; 11401 } else { 11402 // A constant that can be used as an immediate value in a 11403 // data-processing instruction. 11404 if (ARM_AM::getSOImmVal(CVal) != -1) 11405 break; 11406 } 11407 return; 11408 11409 case 'J': 11410 if (Subtarget->isThumb()) { // FIXME thumb2 11411 // This must be a constant between -255 and -1, for negated ADD 11412 // immediates. This can be used in GCC with an "n" modifier that 11413 // prints the negated value, for use with SUB instructions. It is 11414 // not useful otherwise but is implemented for compatibility. 11415 if (CVal >= -255 && CVal <= -1) 11416 break; 11417 } else { 11418 // This must be a constant between -4095 and 4095. It is not clear 11419 // what this constraint is intended for. Implemented for 11420 // compatibility with GCC. 11421 if (CVal >= -4095 && CVal <= 4095) 11422 break; 11423 } 11424 return; 11425 11426 case 'K': 11427 if (Subtarget->isThumb1Only()) { 11428 // A 32-bit value where only one byte has a nonzero value. Exclude 11429 // zero to match GCC. This constraint is used by GCC internally for 11430 // constants that can be loaded with a move/shift combination. 11431 // It is not useful otherwise but is implemented for compatibility. 11432 if (CVal != 0 && ARM_AM::isThumbImmShiftedVal(CVal)) 11433 break; 11434 } else if (Subtarget->isThumb2()) { 11435 // A constant whose bitwise inverse can be used as an immediate 11436 // value in a data-processing instruction. This can be used in GCC 11437 // with a "B" modifier that prints the inverted value, for use with 11438 // BIC and MVN instructions. It is not useful otherwise but is 11439 // implemented for compatibility. 11440 if (ARM_AM::getT2SOImmVal(~CVal) != -1) 11441 break; 11442 } else { 11443 // A constant whose bitwise inverse can be used as an immediate 11444 // value in a data-processing instruction. This can be used in GCC 11445 // with a "B" modifier that prints the inverted value, for use with 11446 // BIC and MVN instructions. It is not useful otherwise but is 11447 // implemented for compatibility. 11448 if (ARM_AM::getSOImmVal(~CVal) != -1) 11449 break; 11450 } 11451 return; 11452 11453 case 'L': 11454 if (Subtarget->isThumb1Only()) { 11455 // This must be a constant between -7 and 7, 11456 // for 3-operand ADD/SUB immediate instructions. 11457 if (CVal >= -7 && CVal < 7) 11458 break; 11459 } else if (Subtarget->isThumb2()) { 11460 // A constant whose negation can be used as an immediate value in a 11461 // data-processing instruction. This can be used in GCC with an "n" 11462 // modifier that prints the negated value, for use with SUB 11463 // instructions. It is not useful otherwise but is implemented for 11464 // compatibility. 11465 if (ARM_AM::getT2SOImmVal(-CVal) != -1) 11466 break; 11467 } else { 11468 // A constant whose negation can be used as an immediate value in a 11469 // data-processing instruction. This can be used in GCC with an "n" 11470 // modifier that prints the negated value, for use with SUB 11471 // instructions. It is not useful otherwise but is implemented for 11472 // compatibility. 11473 if (ARM_AM::getSOImmVal(-CVal) != -1) 11474 break; 11475 } 11476 return; 11477 11478 case 'M': 11479 if (Subtarget->isThumb()) { // FIXME thumb2 11480 // This must be a multiple of 4 between 0 and 1020, for 11481 // ADD sp + immediate. 11482 if ((CVal >= 0 && CVal <= 1020) && ((CVal & 3) == 0)) 11483 break; 11484 } else { 11485 // A power of two or a constant between 0 and 32. This is used in 11486 // GCC for the shift amount on shifted register operands, but it is 11487 // useful in general for any shift amounts. 11488 if ((CVal >= 0 && CVal <= 32) || ((CVal & (CVal - 1)) == 0)) 11489 break; 11490 } 11491 return; 11492 11493 case 'N': 11494 if (Subtarget->isThumb()) { // FIXME thumb2 11495 // This must be a constant between 0 and 31, for shift amounts. 11496 if (CVal >= 0 && CVal <= 31) 11497 break; 11498 } 11499 return; 11500 11501 case 'O': 11502 if (Subtarget->isThumb()) { // FIXME thumb2 11503 // This must be a multiple of 4 between -508 and 508, for 11504 // ADD/SUB sp = sp + immediate. 11505 if ((CVal >= -508 && CVal <= 508) && ((CVal & 3) == 0)) 11506 break; 11507 } 11508 return; 11509 } 11510 Result = DAG.getTargetConstant(CVal, SDLoc(Op), Op.getValueType()); 11511 break; 11512 } 11513 11514 if (Result.getNode()) { 11515 Ops.push_back(Result); 11516 return; 11517 } 11518 return TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG); 11519 } 11520 11521 static RTLIB::Libcall getDivRemLibcall( 11522 const SDNode *N, MVT::SimpleValueType SVT) { 11523 assert((N->getOpcode() == ISD::SDIVREM || N->getOpcode() == ISD::UDIVREM || 11524 N->getOpcode() == ISD::SREM || N->getOpcode() == ISD::UREM) && 11525 "Unhandled Opcode in getDivRemLibcall"); 11526 bool isSigned = N->getOpcode() == ISD::SDIVREM || 11527 N->getOpcode() == ISD::SREM; 11528 RTLIB::Libcall LC; 11529 switch (SVT) { 11530 default: llvm_unreachable("Unexpected request for libcall!"); 11531 case MVT::i8: LC = isSigned ? RTLIB::SDIVREM_I8 : RTLIB::UDIVREM_I8; break; 11532 case MVT::i16: LC = isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break; 11533 case MVT::i32: LC = isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break; 11534 case MVT::i64: LC = isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break; 11535 } 11536 return LC; 11537 } 11538 11539 static TargetLowering::ArgListTy getDivRemArgList( 11540 const SDNode *N, LLVMContext *Context) { 11541 assert((N->getOpcode() == ISD::SDIVREM || N->getOpcode() == ISD::UDIVREM || 11542 N->getOpcode() == ISD::SREM || N->getOpcode() == ISD::UREM) && 11543 "Unhandled Opcode in getDivRemArgList"); 11544 bool isSigned = N->getOpcode() == ISD::SDIVREM || 11545 N->getOpcode() == ISD::SREM; 11546 TargetLowering::ArgListTy Args; 11547 TargetLowering::ArgListEntry Entry; 11548 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) { 11549 EVT ArgVT = N->getOperand(i).getValueType(); 11550 Type *ArgTy = ArgVT.getTypeForEVT(*Context); 11551 Entry.Node = N->getOperand(i); 11552 Entry.Ty = ArgTy; 11553 Entry.isSExt = isSigned; 11554 Entry.isZExt = !isSigned; 11555 Args.push_back(Entry); 11556 } 11557 return Args; 11558 } 11559 11560 SDValue ARMTargetLowering::LowerDivRem(SDValue Op, SelectionDAG &DAG) const { 11561 assert((Subtarget->isTargetAEABI() || Subtarget->isTargetAndroid()) && 11562 "Register-based DivRem lowering only"); 11563 unsigned Opcode = Op->getOpcode(); 11564 assert((Opcode == ISD::SDIVREM || Opcode == ISD::UDIVREM) && 11565 "Invalid opcode for Div/Rem lowering"); 11566 bool isSigned = (Opcode == ISD::SDIVREM); 11567 EVT VT = Op->getValueType(0); 11568 Type *Ty = VT.getTypeForEVT(*DAG.getContext()); 11569 11570 RTLIB::Libcall LC = getDivRemLibcall(Op.getNode(), 11571 VT.getSimpleVT().SimpleTy); 11572 SDValue InChain = DAG.getEntryNode(); 11573 11574 TargetLowering::ArgListTy Args = getDivRemArgList(Op.getNode(), 11575 DAG.getContext()); 11576 11577 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), 11578 getPointerTy(DAG.getDataLayout())); 11579 11580 Type *RetTy = (Type*)StructType::get(Ty, Ty, nullptr); 11581 11582 SDLoc dl(Op); 11583 TargetLowering::CallLoweringInfo CLI(DAG); 11584 CLI.setDebugLoc(dl).setChain(InChain) 11585 .setCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args), 0) 11586 .setInRegister().setSExtResult(isSigned).setZExtResult(!isSigned); 11587 11588 std::pair<SDValue, SDValue> CallInfo = LowerCallTo(CLI); 11589 return CallInfo.first; 11590 } 11591 11592 // Lowers REM using divmod helpers 11593 // see RTABI section 4.2/4.3 11594 SDValue ARMTargetLowering::LowerREM(SDNode *N, SelectionDAG &DAG) const { 11595 // Build return types (div and rem) 11596 std::vector<Type*> RetTyParams; 11597 Type *RetTyElement; 11598 11599 switch (N->getValueType(0).getSimpleVT().SimpleTy) { 11600 default: llvm_unreachable("Unexpected request for libcall!"); 11601 case MVT::i8: RetTyElement = Type::getInt8Ty(*DAG.getContext()); break; 11602 case MVT::i16: RetTyElement = Type::getInt16Ty(*DAG.getContext()); break; 11603 case MVT::i32: RetTyElement = Type::getInt32Ty(*DAG.getContext()); break; 11604 case MVT::i64: RetTyElement = Type::getInt64Ty(*DAG.getContext()); break; 11605 } 11606 11607 RetTyParams.push_back(RetTyElement); 11608 RetTyParams.push_back(RetTyElement); 11609 ArrayRef<Type*> ret = ArrayRef<Type*>(RetTyParams); 11610 Type *RetTy = StructType::get(*DAG.getContext(), ret); 11611 11612 RTLIB::Libcall LC = getDivRemLibcall(N, N->getValueType(0).getSimpleVT(). 11613 SimpleTy); 11614 SDValue InChain = DAG.getEntryNode(); 11615 TargetLowering::ArgListTy Args = getDivRemArgList(N, DAG.getContext()); 11616 bool isSigned = N->getOpcode() == ISD::SREM; 11617 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC), 11618 getPointerTy(DAG.getDataLayout())); 11619 11620 // Lower call 11621 CallLoweringInfo CLI(DAG); 11622 CLI.setChain(InChain) 11623 .setCallee(CallingConv::ARM_AAPCS, RetTy, Callee, std::move(Args), 0) 11624 .setSExtResult(isSigned).setZExtResult(!isSigned).setDebugLoc(SDLoc(N)); 11625 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI); 11626 11627 // Return second (rem) result operand (first contains div) 11628 SDNode *ResNode = CallResult.first.getNode(); 11629 assert(ResNode->getNumOperands() == 2 && "divmod should return two operands"); 11630 return ResNode->getOperand(1); 11631 } 11632 11633 SDValue 11634 ARMTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const { 11635 assert(Subtarget->isTargetWindows() && "unsupported target platform"); 11636 SDLoc DL(Op); 11637 11638 // Get the inputs. 11639 SDValue Chain = Op.getOperand(0); 11640 SDValue Size = Op.getOperand(1); 11641 11642 SDValue Words = DAG.getNode(ISD::SRL, DL, MVT::i32, Size, 11643 DAG.getConstant(2, DL, MVT::i32)); 11644 11645 SDValue Flag; 11646 Chain = DAG.getCopyToReg(Chain, DL, ARM::R4, Words, Flag); 11647 Flag = Chain.getValue(1); 11648 11649 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 11650 Chain = DAG.getNode(ARMISD::WIN__CHKSTK, DL, NodeTys, Chain, Flag); 11651 11652 SDValue NewSP = DAG.getCopyFromReg(Chain, DL, ARM::SP, MVT::i32); 11653 Chain = NewSP.getValue(1); 11654 11655 SDValue Ops[2] = { NewSP, Chain }; 11656 return DAG.getMergeValues(Ops, DL); 11657 } 11658 11659 SDValue ARMTargetLowering::LowerFP_EXTEND(SDValue Op, SelectionDAG &DAG) const { 11660 assert(Op.getValueType() == MVT::f64 && Subtarget->isFPOnlySP() && 11661 "Unexpected type for custom-lowering FP_EXTEND"); 11662 11663 RTLIB::Libcall LC; 11664 LC = RTLIB::getFPEXT(Op.getOperand(0).getValueType(), Op.getValueType()); 11665 11666 SDValue SrcVal = Op.getOperand(0); 11667 return makeLibCall(DAG, LC, Op.getValueType(), SrcVal, /*isSigned*/ false, 11668 SDLoc(Op)).first; 11669 } 11670 11671 SDValue ARMTargetLowering::LowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const { 11672 assert(Op.getOperand(0).getValueType() == MVT::f64 && 11673 Subtarget->isFPOnlySP() && 11674 "Unexpected type for custom-lowering FP_ROUND"); 11675 11676 RTLIB::Libcall LC; 11677 LC = RTLIB::getFPROUND(Op.getOperand(0).getValueType(), Op.getValueType()); 11678 11679 SDValue SrcVal = Op.getOperand(0); 11680 return makeLibCall(DAG, LC, Op.getValueType(), SrcVal, /*isSigned*/ false, 11681 SDLoc(Op)).first; 11682 } 11683 11684 bool 11685 ARMTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const { 11686 // The ARM target isn't yet aware of offsets. 11687 return false; 11688 } 11689 11690 bool ARM::isBitFieldInvertedMask(unsigned v) { 11691 if (v == 0xffffffff) 11692 return false; 11693 11694 // there can be 1's on either or both "outsides", all the "inside" 11695 // bits must be 0's 11696 return isShiftedMask_32(~v); 11697 } 11698 11699 /// isFPImmLegal - Returns true if the target can instruction select the 11700 /// specified FP immediate natively. If false, the legalizer will 11701 /// materialize the FP immediate as a load from a constant pool. 11702 bool ARMTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const { 11703 if (!Subtarget->hasVFP3()) 11704 return false; 11705 if (VT == MVT::f32) 11706 return ARM_AM::getFP32Imm(Imm) != -1; 11707 if (VT == MVT::f64 && !Subtarget->isFPOnlySP()) 11708 return ARM_AM::getFP64Imm(Imm) != -1; 11709 return false; 11710 } 11711 11712 /// getTgtMemIntrinsic - Represent NEON load and store intrinsics as 11713 /// MemIntrinsicNodes. The associated MachineMemOperands record the alignment 11714 /// specified in the intrinsic calls. 11715 bool ARMTargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info, 11716 const CallInst &I, 11717 unsigned Intrinsic) const { 11718 switch (Intrinsic) { 11719 case Intrinsic::arm_neon_vld1: 11720 case Intrinsic::arm_neon_vld2: 11721 case Intrinsic::arm_neon_vld3: 11722 case Intrinsic::arm_neon_vld4: 11723 case Intrinsic::arm_neon_vld2lane: 11724 case Intrinsic::arm_neon_vld3lane: 11725 case Intrinsic::arm_neon_vld4lane: { 11726 Info.opc = ISD::INTRINSIC_W_CHAIN; 11727 // Conservatively set memVT to the entire set of vectors loaded. 11728 auto &DL = I.getCalledFunction()->getParent()->getDataLayout(); 11729 uint64_t NumElts = DL.getTypeSizeInBits(I.getType()) / 64; 11730 Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts); 11731 Info.ptrVal = I.getArgOperand(0); 11732 Info.offset = 0; 11733 Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1); 11734 Info.align = cast<ConstantInt>(AlignArg)->getZExtValue(); 11735 Info.vol = false; // volatile loads with NEON intrinsics not supported 11736 Info.readMem = true; 11737 Info.writeMem = false; 11738 return true; 11739 } 11740 case Intrinsic::arm_neon_vst1: 11741 case Intrinsic::arm_neon_vst2: 11742 case Intrinsic::arm_neon_vst3: 11743 case Intrinsic::arm_neon_vst4: 11744 case Intrinsic::arm_neon_vst2lane: 11745 case Intrinsic::arm_neon_vst3lane: 11746 case Intrinsic::arm_neon_vst4lane: { 11747 Info.opc = ISD::INTRINSIC_VOID; 11748 // Conservatively set memVT to the entire set of vectors stored. 11749 auto &DL = I.getCalledFunction()->getParent()->getDataLayout(); 11750 unsigned NumElts = 0; 11751 for (unsigned ArgI = 1, ArgE = I.getNumArgOperands(); ArgI < ArgE; ++ArgI) { 11752 Type *ArgTy = I.getArgOperand(ArgI)->getType(); 11753 if (!ArgTy->isVectorTy()) 11754 break; 11755 NumElts += DL.getTypeSizeInBits(ArgTy) / 64; 11756 } 11757 Info.memVT = EVT::getVectorVT(I.getType()->getContext(), MVT::i64, NumElts); 11758 Info.ptrVal = I.getArgOperand(0); 11759 Info.offset = 0; 11760 Value *AlignArg = I.getArgOperand(I.getNumArgOperands() - 1); 11761 Info.align = cast<ConstantInt>(AlignArg)->getZExtValue(); 11762 Info.vol = false; // volatile stores with NEON intrinsics not supported 11763 Info.readMem = false; 11764 Info.writeMem = true; 11765 return true; 11766 } 11767 case Intrinsic::arm_ldaex: 11768 case Intrinsic::arm_ldrex: { 11769 auto &DL = I.getCalledFunction()->getParent()->getDataLayout(); 11770 PointerType *PtrTy = cast<PointerType>(I.getArgOperand(0)->getType()); 11771 Info.opc = ISD::INTRINSIC_W_CHAIN; 11772 Info.memVT = MVT::getVT(PtrTy->getElementType()); 11773 Info.ptrVal = I.getArgOperand(0); 11774 Info.offset = 0; 11775 Info.align = DL.getABITypeAlignment(PtrTy->getElementType()); 11776 Info.vol = true; 11777 Info.readMem = true; 11778 Info.writeMem = false; 11779 return true; 11780 } 11781 case Intrinsic::arm_stlex: 11782 case Intrinsic::arm_strex: { 11783 auto &DL = I.getCalledFunction()->getParent()->getDataLayout(); 11784 PointerType *PtrTy = cast<PointerType>(I.getArgOperand(1)->getType()); 11785 Info.opc = ISD::INTRINSIC_W_CHAIN; 11786 Info.memVT = MVT::getVT(PtrTy->getElementType()); 11787 Info.ptrVal = I.getArgOperand(1); 11788 Info.offset = 0; 11789 Info.align = DL.getABITypeAlignment(PtrTy->getElementType()); 11790 Info.vol = true; 11791 Info.readMem = false; 11792 Info.writeMem = true; 11793 return true; 11794 } 11795 case Intrinsic::arm_stlexd: 11796 case Intrinsic::arm_strexd: { 11797 Info.opc = ISD::INTRINSIC_W_CHAIN; 11798 Info.memVT = MVT::i64; 11799 Info.ptrVal = I.getArgOperand(2); 11800 Info.offset = 0; 11801 Info.align = 8; 11802 Info.vol = true; 11803 Info.readMem = false; 11804 Info.writeMem = true; 11805 return true; 11806 } 11807 case Intrinsic::arm_ldaexd: 11808 case Intrinsic::arm_ldrexd: { 11809 Info.opc = ISD::INTRINSIC_W_CHAIN; 11810 Info.memVT = MVT::i64; 11811 Info.ptrVal = I.getArgOperand(0); 11812 Info.offset = 0; 11813 Info.align = 8; 11814 Info.vol = true; 11815 Info.readMem = true; 11816 Info.writeMem = false; 11817 return true; 11818 } 11819 default: 11820 break; 11821 } 11822 11823 return false; 11824 } 11825 11826 /// \brief Returns true if it is beneficial to convert a load of a constant 11827 /// to just the constant itself. 11828 bool ARMTargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm, 11829 Type *Ty) const { 11830 assert(Ty->isIntegerTy()); 11831 11832 unsigned Bits = Ty->getPrimitiveSizeInBits(); 11833 if (Bits == 0 || Bits > 32) 11834 return false; 11835 return true; 11836 } 11837 11838 Instruction* ARMTargetLowering::makeDMB(IRBuilder<> &Builder, 11839 ARM_MB::MemBOpt Domain) const { 11840 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 11841 11842 // First, if the target has no DMB, see what fallback we can use. 11843 if (!Subtarget->hasDataBarrier()) { 11844 // Some ARMv6 cpus can support data barriers with an mcr instruction. 11845 // Thumb1 and pre-v6 ARM mode use a libcall instead and should never get 11846 // here. 11847 if (Subtarget->hasV6Ops() && !Subtarget->isThumb()) { 11848 Function *MCR = llvm::Intrinsic::getDeclaration(M, Intrinsic::arm_mcr); 11849 Value* args[6] = {Builder.getInt32(15), Builder.getInt32(0), 11850 Builder.getInt32(0), Builder.getInt32(7), 11851 Builder.getInt32(10), Builder.getInt32(5)}; 11852 return Builder.CreateCall(MCR, args); 11853 } else { 11854 // Instead of using barriers, atomic accesses on these subtargets use 11855 // libcalls. 11856 llvm_unreachable("makeDMB on a target so old that it has no barriers"); 11857 } 11858 } else { 11859 Function *DMB = llvm::Intrinsic::getDeclaration(M, Intrinsic::arm_dmb); 11860 // Only a full system barrier exists in the M-class architectures. 11861 Domain = Subtarget->isMClass() ? ARM_MB::SY : Domain; 11862 Constant *CDomain = Builder.getInt32(Domain); 11863 return Builder.CreateCall(DMB, CDomain); 11864 } 11865 } 11866 11867 // Based on http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html 11868 Instruction* ARMTargetLowering::emitLeadingFence(IRBuilder<> &Builder, 11869 AtomicOrdering Ord, bool IsStore, 11870 bool IsLoad) const { 11871 if (!getInsertFencesForAtomic()) 11872 return nullptr; 11873 11874 switch (Ord) { 11875 case NotAtomic: 11876 case Unordered: 11877 llvm_unreachable("Invalid fence: unordered/non-atomic"); 11878 case Monotonic: 11879 case Acquire: 11880 return nullptr; // Nothing to do 11881 case SequentiallyConsistent: 11882 if (!IsStore) 11883 return nullptr; // Nothing to do 11884 /*FALLTHROUGH*/ 11885 case Release: 11886 case AcquireRelease: 11887 if (Subtarget->isSwift()) 11888 return makeDMB(Builder, ARM_MB::ISHST); 11889 // FIXME: add a comment with a link to documentation justifying this. 11890 else 11891 return makeDMB(Builder, ARM_MB::ISH); 11892 } 11893 llvm_unreachable("Unknown fence ordering in emitLeadingFence"); 11894 } 11895 11896 Instruction* ARMTargetLowering::emitTrailingFence(IRBuilder<> &Builder, 11897 AtomicOrdering Ord, bool IsStore, 11898 bool IsLoad) const { 11899 if (!getInsertFencesForAtomic()) 11900 return nullptr; 11901 11902 switch (Ord) { 11903 case NotAtomic: 11904 case Unordered: 11905 llvm_unreachable("Invalid fence: unordered/not-atomic"); 11906 case Monotonic: 11907 case Release: 11908 return nullptr; // Nothing to do 11909 case Acquire: 11910 case AcquireRelease: 11911 case SequentiallyConsistent: 11912 return makeDMB(Builder, ARM_MB::ISH); 11913 } 11914 llvm_unreachable("Unknown fence ordering in emitTrailingFence"); 11915 } 11916 11917 // Loads and stores less than 64-bits are already atomic; ones above that 11918 // are doomed anyway, so defer to the default libcall and blame the OS when 11919 // things go wrong. Cortex M doesn't have ldrexd/strexd though, so don't emit 11920 // anything for those. 11921 bool ARMTargetLowering::shouldExpandAtomicStoreInIR(StoreInst *SI) const { 11922 unsigned Size = SI->getValueOperand()->getType()->getPrimitiveSizeInBits(); 11923 return (Size == 64) && !Subtarget->isMClass(); 11924 } 11925 11926 // Loads and stores less than 64-bits are already atomic; ones above that 11927 // are doomed anyway, so defer to the default libcall and blame the OS when 11928 // things go wrong. Cortex M doesn't have ldrexd/strexd though, so don't emit 11929 // anything for those. 11930 // FIXME: ldrd and strd are atomic if the CPU has LPAE (e.g. A15 has that 11931 // guarantee, see DDI0406C ARM architecture reference manual, 11932 // sections A8.8.72-74 LDRD) 11933 TargetLowering::AtomicExpansionKind 11934 ARMTargetLowering::shouldExpandAtomicLoadInIR(LoadInst *LI) const { 11935 unsigned Size = LI->getType()->getPrimitiveSizeInBits(); 11936 return ((Size == 64) && !Subtarget->isMClass()) ? AtomicExpansionKind::LLOnly 11937 : AtomicExpansionKind::None; 11938 } 11939 11940 // For the real atomic operations, we have ldrex/strex up to 32 bits, 11941 // and up to 64 bits on the non-M profiles 11942 TargetLowering::AtomicExpansionKind 11943 ARMTargetLowering::shouldExpandAtomicRMWInIR(AtomicRMWInst *AI) const { 11944 unsigned Size = AI->getType()->getPrimitiveSizeInBits(); 11945 return (Size <= (Subtarget->isMClass() ? 32U : 64U)) 11946 ? AtomicExpansionKind::LLSC 11947 : AtomicExpansionKind::None; 11948 } 11949 11950 bool ARMTargetLowering::shouldExpandAtomicCmpXchgInIR( 11951 AtomicCmpXchgInst *AI) const { 11952 return true; 11953 } 11954 11955 // This has so far only been implemented for MachO. 11956 bool ARMTargetLowering::useLoadStackGuardNode() const { 11957 return Subtarget->isTargetMachO(); 11958 } 11959 11960 bool ARMTargetLowering::canCombineStoreAndExtract(Type *VectorTy, Value *Idx, 11961 unsigned &Cost) const { 11962 // If we do not have NEON, vector types are not natively supported. 11963 if (!Subtarget->hasNEON()) 11964 return false; 11965 11966 // Floating point values and vector values map to the same register file. 11967 // Therefore, although we could do a store extract of a vector type, this is 11968 // better to leave at float as we have more freedom in the addressing mode for 11969 // those. 11970 if (VectorTy->isFPOrFPVectorTy()) 11971 return false; 11972 11973 // If the index is unknown at compile time, this is very expensive to lower 11974 // and it is not possible to combine the store with the extract. 11975 if (!isa<ConstantInt>(Idx)) 11976 return false; 11977 11978 assert(VectorTy->isVectorTy() && "VectorTy is not a vector type"); 11979 unsigned BitWidth = cast<VectorType>(VectorTy)->getBitWidth(); 11980 // We can do a store + vector extract on any vector that fits perfectly in a D 11981 // or Q register. 11982 if (BitWidth == 64 || BitWidth == 128) { 11983 Cost = 0; 11984 return true; 11985 } 11986 return false; 11987 } 11988 11989 bool ARMTargetLowering::isCheapToSpeculateCttz() const { 11990 return Subtarget->hasV6T2Ops(); 11991 } 11992 11993 bool ARMTargetLowering::isCheapToSpeculateCtlz() const { 11994 return Subtarget->hasV6T2Ops(); 11995 } 11996 11997 Value *ARMTargetLowering::emitLoadLinked(IRBuilder<> &Builder, Value *Addr, 11998 AtomicOrdering Ord) const { 11999 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 12000 Type *ValTy = cast<PointerType>(Addr->getType())->getElementType(); 12001 bool IsAcquire = isAtLeastAcquire(Ord); 12002 12003 // Since i64 isn't legal and intrinsics don't get type-lowered, the ldrexd 12004 // intrinsic must return {i32, i32} and we have to recombine them into a 12005 // single i64 here. 12006 if (ValTy->getPrimitiveSizeInBits() == 64) { 12007 Intrinsic::ID Int = 12008 IsAcquire ? Intrinsic::arm_ldaexd : Intrinsic::arm_ldrexd; 12009 Function *Ldrex = llvm::Intrinsic::getDeclaration(M, Int); 12010 12011 Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext())); 12012 Value *LoHi = Builder.CreateCall(Ldrex, Addr, "lohi"); 12013 12014 Value *Lo = Builder.CreateExtractValue(LoHi, 0, "lo"); 12015 Value *Hi = Builder.CreateExtractValue(LoHi, 1, "hi"); 12016 if (!Subtarget->isLittle()) 12017 std::swap (Lo, Hi); 12018 Lo = Builder.CreateZExt(Lo, ValTy, "lo64"); 12019 Hi = Builder.CreateZExt(Hi, ValTy, "hi64"); 12020 return Builder.CreateOr( 12021 Lo, Builder.CreateShl(Hi, ConstantInt::get(ValTy, 32)), "val64"); 12022 } 12023 12024 Type *Tys[] = { Addr->getType() }; 12025 Intrinsic::ID Int = IsAcquire ? Intrinsic::arm_ldaex : Intrinsic::arm_ldrex; 12026 Function *Ldrex = llvm::Intrinsic::getDeclaration(M, Int, Tys); 12027 12028 return Builder.CreateTruncOrBitCast( 12029 Builder.CreateCall(Ldrex, Addr), 12030 cast<PointerType>(Addr->getType())->getElementType()); 12031 } 12032 12033 void ARMTargetLowering::emitAtomicCmpXchgNoStoreLLBalance( 12034 IRBuilder<> &Builder) const { 12035 if (!Subtarget->hasV7Ops()) 12036 return; 12037 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 12038 Builder.CreateCall(llvm::Intrinsic::getDeclaration(M, Intrinsic::arm_clrex)); 12039 } 12040 12041 Value *ARMTargetLowering::emitStoreConditional(IRBuilder<> &Builder, Value *Val, 12042 Value *Addr, 12043 AtomicOrdering Ord) const { 12044 Module *M = Builder.GetInsertBlock()->getParent()->getParent(); 12045 bool IsRelease = isAtLeastRelease(Ord); 12046 12047 // Since the intrinsics must have legal type, the i64 intrinsics take two 12048 // parameters: "i32, i32". We must marshal Val into the appropriate form 12049 // before the call. 12050 if (Val->getType()->getPrimitiveSizeInBits() == 64) { 12051 Intrinsic::ID Int = 12052 IsRelease ? Intrinsic::arm_stlexd : Intrinsic::arm_strexd; 12053 Function *Strex = Intrinsic::getDeclaration(M, Int); 12054 Type *Int32Ty = Type::getInt32Ty(M->getContext()); 12055 12056 Value *Lo = Builder.CreateTrunc(Val, Int32Ty, "lo"); 12057 Value *Hi = Builder.CreateTrunc(Builder.CreateLShr(Val, 32), Int32Ty, "hi"); 12058 if (!Subtarget->isLittle()) 12059 std::swap (Lo, Hi); 12060 Addr = Builder.CreateBitCast(Addr, Type::getInt8PtrTy(M->getContext())); 12061 return Builder.CreateCall(Strex, {Lo, Hi, Addr}); 12062 } 12063 12064 Intrinsic::ID Int = IsRelease ? Intrinsic::arm_stlex : Intrinsic::arm_strex; 12065 Type *Tys[] = { Addr->getType() }; 12066 Function *Strex = Intrinsic::getDeclaration(M, Int, Tys); 12067 12068 return Builder.CreateCall( 12069 Strex, {Builder.CreateZExtOrBitCast( 12070 Val, Strex->getFunctionType()->getParamType(0)), 12071 Addr}); 12072 } 12073 12074 /// \brief Lower an interleaved load into a vldN intrinsic. 12075 /// 12076 /// E.g. Lower an interleaved load (Factor = 2): 12077 /// %wide.vec = load <8 x i32>, <8 x i32>* %ptr, align 4 12078 /// %v0 = shuffle %wide.vec, undef, <0, 2, 4, 6> ; Extract even elements 12079 /// %v1 = shuffle %wide.vec, undef, <1, 3, 5, 7> ; Extract odd elements 12080 /// 12081 /// Into: 12082 /// %vld2 = { <4 x i32>, <4 x i32> } call llvm.arm.neon.vld2(%ptr, 4) 12083 /// %vec0 = extractelement { <4 x i32>, <4 x i32> } %vld2, i32 0 12084 /// %vec1 = extractelement { <4 x i32>, <4 x i32> } %vld2, i32 1 12085 bool ARMTargetLowering::lowerInterleavedLoad( 12086 LoadInst *LI, ArrayRef<ShuffleVectorInst *> Shuffles, 12087 ArrayRef<unsigned> Indices, unsigned Factor) const { 12088 assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() && 12089 "Invalid interleave factor"); 12090 assert(!Shuffles.empty() && "Empty shufflevector input"); 12091 assert(Shuffles.size() == Indices.size() && 12092 "Unmatched number of shufflevectors and indices"); 12093 12094 VectorType *VecTy = Shuffles[0]->getType(); 12095 Type *EltTy = VecTy->getVectorElementType(); 12096 12097 const DataLayout &DL = LI->getModule()->getDataLayout(); 12098 unsigned VecSize = DL.getTypeSizeInBits(VecTy); 12099 bool EltIs64Bits = DL.getTypeSizeInBits(EltTy) == 64; 12100 12101 // Skip if we do not have NEON and skip illegal vector types and vector types 12102 // with i64/f64 elements (vldN doesn't support i64/f64 elements). 12103 if (!Subtarget->hasNEON() || (VecSize != 64 && VecSize != 128) || EltIs64Bits) 12104 return false; 12105 12106 // A pointer vector can not be the return type of the ldN intrinsics. Need to 12107 // load integer vectors first and then convert to pointer vectors. 12108 if (EltTy->isPointerTy()) 12109 VecTy = 12110 VectorType::get(DL.getIntPtrType(EltTy), VecTy->getVectorNumElements()); 12111 12112 static const Intrinsic::ID LoadInts[3] = {Intrinsic::arm_neon_vld2, 12113 Intrinsic::arm_neon_vld3, 12114 Intrinsic::arm_neon_vld4}; 12115 12116 IRBuilder<> Builder(LI); 12117 SmallVector<Value *, 2> Ops; 12118 12119 Type *Int8Ptr = Builder.getInt8PtrTy(LI->getPointerAddressSpace()); 12120 Ops.push_back(Builder.CreateBitCast(LI->getPointerOperand(), Int8Ptr)); 12121 Ops.push_back(Builder.getInt32(LI->getAlignment())); 12122 12123 Type *Tys[] = { VecTy, Int8Ptr }; 12124 Function *VldnFunc = 12125 Intrinsic::getDeclaration(LI->getModule(), LoadInts[Factor - 2], Tys); 12126 CallInst *VldN = Builder.CreateCall(VldnFunc, Ops, "vldN"); 12127 12128 // Replace uses of each shufflevector with the corresponding vector loaded 12129 // by ldN. 12130 for (unsigned i = 0; i < Shuffles.size(); i++) { 12131 ShuffleVectorInst *SV = Shuffles[i]; 12132 unsigned Index = Indices[i]; 12133 12134 Value *SubVec = Builder.CreateExtractValue(VldN, Index); 12135 12136 // Convert the integer vector to pointer vector if the element is pointer. 12137 if (EltTy->isPointerTy()) 12138 SubVec = Builder.CreateIntToPtr(SubVec, SV->getType()); 12139 12140 SV->replaceAllUsesWith(SubVec); 12141 } 12142 12143 return true; 12144 } 12145 12146 /// \brief Get a mask consisting of sequential integers starting from \p Start. 12147 /// 12148 /// I.e. <Start, Start + 1, ..., Start + NumElts - 1> 12149 static Constant *getSequentialMask(IRBuilder<> &Builder, unsigned Start, 12150 unsigned NumElts) { 12151 SmallVector<Constant *, 16> Mask; 12152 for (unsigned i = 0; i < NumElts; i++) 12153 Mask.push_back(Builder.getInt32(Start + i)); 12154 12155 return ConstantVector::get(Mask); 12156 } 12157 12158 /// \brief Lower an interleaved store into a vstN intrinsic. 12159 /// 12160 /// E.g. Lower an interleaved store (Factor = 3): 12161 /// %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1, 12162 /// <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> 12163 /// store <12 x i32> %i.vec, <12 x i32>* %ptr, align 4 12164 /// 12165 /// Into: 12166 /// %sub.v0 = shuffle <8 x i32> %v0, <8 x i32> v1, <0, 1, 2, 3> 12167 /// %sub.v1 = shuffle <8 x i32> %v0, <8 x i32> v1, <4, 5, 6, 7> 12168 /// %sub.v2 = shuffle <8 x i32> %v0, <8 x i32> v1, <8, 9, 10, 11> 12169 /// call void llvm.arm.neon.vst3(%ptr, %sub.v0, %sub.v1, %sub.v2, 4) 12170 /// 12171 /// Note that the new shufflevectors will be removed and we'll only generate one 12172 /// vst3 instruction in CodeGen. 12173 bool ARMTargetLowering::lowerInterleavedStore(StoreInst *SI, 12174 ShuffleVectorInst *SVI, 12175 unsigned Factor) const { 12176 assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() && 12177 "Invalid interleave factor"); 12178 12179 VectorType *VecTy = SVI->getType(); 12180 assert(VecTy->getVectorNumElements() % Factor == 0 && 12181 "Invalid interleaved store"); 12182 12183 unsigned NumSubElts = VecTy->getVectorNumElements() / Factor; 12184 Type *EltTy = VecTy->getVectorElementType(); 12185 VectorType *SubVecTy = VectorType::get(EltTy, NumSubElts); 12186 12187 const DataLayout &DL = SI->getModule()->getDataLayout(); 12188 unsigned SubVecSize = DL.getTypeSizeInBits(SubVecTy); 12189 bool EltIs64Bits = DL.getTypeSizeInBits(EltTy) == 64; 12190 12191 // Skip if we do not have NEON and skip illegal vector types and vector types 12192 // with i64/f64 elements (vstN doesn't support i64/f64 elements). 12193 if (!Subtarget->hasNEON() || (SubVecSize != 64 && SubVecSize != 128) || 12194 EltIs64Bits) 12195 return false; 12196 12197 Value *Op0 = SVI->getOperand(0); 12198 Value *Op1 = SVI->getOperand(1); 12199 IRBuilder<> Builder(SI); 12200 12201 // StN intrinsics don't support pointer vectors as arguments. Convert pointer 12202 // vectors to integer vectors. 12203 if (EltTy->isPointerTy()) { 12204 Type *IntTy = DL.getIntPtrType(EltTy); 12205 12206 // Convert to the corresponding integer vector. 12207 Type *IntVecTy = 12208 VectorType::get(IntTy, Op0->getType()->getVectorNumElements()); 12209 Op0 = Builder.CreatePtrToInt(Op0, IntVecTy); 12210 Op1 = Builder.CreatePtrToInt(Op1, IntVecTy); 12211 12212 SubVecTy = VectorType::get(IntTy, NumSubElts); 12213 } 12214 12215 static const Intrinsic::ID StoreInts[3] = {Intrinsic::arm_neon_vst2, 12216 Intrinsic::arm_neon_vst3, 12217 Intrinsic::arm_neon_vst4}; 12218 SmallVector<Value *, 6> Ops; 12219 12220 Type *Int8Ptr = Builder.getInt8PtrTy(SI->getPointerAddressSpace()); 12221 Ops.push_back(Builder.CreateBitCast(SI->getPointerOperand(), Int8Ptr)); 12222 12223 Type *Tys[] = { Int8Ptr, SubVecTy }; 12224 Function *VstNFunc = Intrinsic::getDeclaration( 12225 SI->getModule(), StoreInts[Factor - 2], Tys); 12226 12227 // Split the shufflevector operands into sub vectors for the new vstN call. 12228 for (unsigned i = 0; i < Factor; i++) 12229 Ops.push_back(Builder.CreateShuffleVector( 12230 Op0, Op1, getSequentialMask(Builder, NumSubElts * i, NumSubElts))); 12231 12232 Ops.push_back(Builder.getInt32(SI->getAlignment())); 12233 Builder.CreateCall(VstNFunc, Ops); 12234 return true; 12235 } 12236 12237 enum HABaseType { 12238 HA_UNKNOWN = 0, 12239 HA_FLOAT, 12240 HA_DOUBLE, 12241 HA_VECT64, 12242 HA_VECT128 12243 }; 12244 12245 static bool isHomogeneousAggregate(Type *Ty, HABaseType &Base, 12246 uint64_t &Members) { 12247 if (auto *ST = dyn_cast<StructType>(Ty)) { 12248 for (unsigned i = 0; i < ST->getNumElements(); ++i) { 12249 uint64_t SubMembers = 0; 12250 if (!isHomogeneousAggregate(ST->getElementType(i), Base, SubMembers)) 12251 return false; 12252 Members += SubMembers; 12253 } 12254 } else if (auto *AT = dyn_cast<ArrayType>(Ty)) { 12255 uint64_t SubMembers = 0; 12256 if (!isHomogeneousAggregate(AT->getElementType(), Base, SubMembers)) 12257 return false; 12258 Members += SubMembers * AT->getNumElements(); 12259 } else if (Ty->isFloatTy()) { 12260 if (Base != HA_UNKNOWN && Base != HA_FLOAT) 12261 return false; 12262 Members = 1; 12263 Base = HA_FLOAT; 12264 } else if (Ty->isDoubleTy()) { 12265 if (Base != HA_UNKNOWN && Base != HA_DOUBLE) 12266 return false; 12267 Members = 1; 12268 Base = HA_DOUBLE; 12269 } else if (auto *VT = dyn_cast<VectorType>(Ty)) { 12270 Members = 1; 12271 switch (Base) { 12272 case HA_FLOAT: 12273 case HA_DOUBLE: 12274 return false; 12275 case HA_VECT64: 12276 return VT->getBitWidth() == 64; 12277 case HA_VECT128: 12278 return VT->getBitWidth() == 128; 12279 case HA_UNKNOWN: 12280 switch (VT->getBitWidth()) { 12281 case 64: 12282 Base = HA_VECT64; 12283 return true; 12284 case 128: 12285 Base = HA_VECT128; 12286 return true; 12287 default: 12288 return false; 12289 } 12290 } 12291 } 12292 12293 return (Members > 0 && Members <= 4); 12294 } 12295 12296 /// \brief Return true if a type is an AAPCS-VFP homogeneous aggregate or one of 12297 /// [N x i32] or [N x i64]. This allows front-ends to skip emitting padding when 12298 /// passing according to AAPCS rules. 12299 bool ARMTargetLowering::functionArgumentNeedsConsecutiveRegisters( 12300 Type *Ty, CallingConv::ID CallConv, bool isVarArg) const { 12301 if (getEffectiveCallingConv(CallConv, isVarArg) != 12302 CallingConv::ARM_AAPCS_VFP) 12303 return false; 12304 12305 HABaseType Base = HA_UNKNOWN; 12306 uint64_t Members = 0; 12307 bool IsHA = isHomogeneousAggregate(Ty, Base, Members); 12308 DEBUG(dbgs() << "isHA: " << IsHA << " "; Ty->dump()); 12309 12310 bool IsIntArray = Ty->isArrayTy() && Ty->getArrayElementType()->isIntegerTy(); 12311 return IsHA || IsIntArray; 12312 } 12313 12314 unsigned ARMTargetLowering::getExceptionPointerRegister( 12315 const Constant *PersonalityFn) const { 12316 // Platforms which do not use SjLj EH may return values in these registers 12317 // via the personality function. 12318 return Subtarget->useSjLjEH() ? ARM::NoRegister : ARM::R0; 12319 } 12320 12321 unsigned ARMTargetLowering::getExceptionSelectorRegister( 12322 const Constant *PersonalityFn) const { 12323 // Platforms which do not use SjLj EH may return values in these registers 12324 // via the personality function. 12325 return Subtarget->useSjLjEH() ? ARM::NoRegister : ARM::R1; 12326 } 12327