1 //===-- TargetLoweringBase.cpp - Implement the TargetLoweringBase class ---===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements the TargetLoweringBase class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Target/TargetLowering.h" 15 #include "llvm/ADT/BitVector.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/Triple.h" 18 #include "llvm/CodeGen/Analysis.h" 19 #include "llvm/CodeGen/MachineFrameInfo.h" 20 #include "llvm/CodeGen/MachineFunction.h" 21 #include "llvm/CodeGen/MachineInstrBuilder.h" 22 #include "llvm/CodeGen/MachineJumpTableInfo.h" 23 #include "llvm/CodeGen/StackMaps.h" 24 #include "llvm/IR/DataLayout.h" 25 #include "llvm/IR/DerivedTypes.h" 26 #include "llvm/IR/GlobalVariable.h" 27 #include "llvm/IR/Mangler.h" 28 #include "llvm/MC/MCAsmInfo.h" 29 #include "llvm/MC/MCContext.h" 30 #include "llvm/MC/MCExpr.h" 31 #include "llvm/Support/CommandLine.h" 32 #include "llvm/Support/ErrorHandling.h" 33 #include "llvm/Support/MathExtras.h" 34 #include "llvm/Target/TargetLoweringObjectFile.h" 35 #include "llvm/Target/TargetMachine.h" 36 #include "llvm/Target/TargetRegisterInfo.h" 37 #include "llvm/Target/TargetSubtargetInfo.h" 38 #include <cctype> 39 using namespace llvm; 40 41 static cl::opt<bool> JumpIsExpensiveOverride( 42 "jump-is-expensive", cl::init(false), 43 cl::desc("Do not create extra branches to split comparison logic."), 44 cl::Hidden); 45 46 /// InitLibcallNames - Set default libcall names. 47 /// 48 static void InitLibcallNames(const char **Names, const Triple &TT) { 49 Names[RTLIB::SHL_I16] = "__ashlhi3"; 50 Names[RTLIB::SHL_I32] = "__ashlsi3"; 51 Names[RTLIB::SHL_I64] = "__ashldi3"; 52 Names[RTLIB::SHL_I128] = "__ashlti3"; 53 Names[RTLIB::SRL_I16] = "__lshrhi3"; 54 Names[RTLIB::SRL_I32] = "__lshrsi3"; 55 Names[RTLIB::SRL_I64] = "__lshrdi3"; 56 Names[RTLIB::SRL_I128] = "__lshrti3"; 57 Names[RTLIB::SRA_I16] = "__ashrhi3"; 58 Names[RTLIB::SRA_I32] = "__ashrsi3"; 59 Names[RTLIB::SRA_I64] = "__ashrdi3"; 60 Names[RTLIB::SRA_I128] = "__ashrti3"; 61 Names[RTLIB::MUL_I8] = "__mulqi3"; 62 Names[RTLIB::MUL_I16] = "__mulhi3"; 63 Names[RTLIB::MUL_I32] = "__mulsi3"; 64 Names[RTLIB::MUL_I64] = "__muldi3"; 65 Names[RTLIB::MUL_I128] = "__multi3"; 66 Names[RTLIB::MULO_I32] = "__mulosi4"; 67 Names[RTLIB::MULO_I64] = "__mulodi4"; 68 Names[RTLIB::MULO_I128] = "__muloti4"; 69 Names[RTLIB::SDIV_I8] = "__divqi3"; 70 Names[RTLIB::SDIV_I16] = "__divhi3"; 71 Names[RTLIB::SDIV_I32] = "__divsi3"; 72 Names[RTLIB::SDIV_I64] = "__divdi3"; 73 Names[RTLIB::SDIV_I128] = "__divti3"; 74 Names[RTLIB::UDIV_I8] = "__udivqi3"; 75 Names[RTLIB::UDIV_I16] = "__udivhi3"; 76 Names[RTLIB::UDIV_I32] = "__udivsi3"; 77 Names[RTLIB::UDIV_I64] = "__udivdi3"; 78 Names[RTLIB::UDIV_I128] = "__udivti3"; 79 Names[RTLIB::SREM_I8] = "__modqi3"; 80 Names[RTLIB::SREM_I16] = "__modhi3"; 81 Names[RTLIB::SREM_I32] = "__modsi3"; 82 Names[RTLIB::SREM_I64] = "__moddi3"; 83 Names[RTLIB::SREM_I128] = "__modti3"; 84 Names[RTLIB::UREM_I8] = "__umodqi3"; 85 Names[RTLIB::UREM_I16] = "__umodhi3"; 86 Names[RTLIB::UREM_I32] = "__umodsi3"; 87 Names[RTLIB::UREM_I64] = "__umoddi3"; 88 Names[RTLIB::UREM_I128] = "__umodti3"; 89 90 // These are generally not available. 91 Names[RTLIB::SDIVREM_I8] = nullptr; 92 Names[RTLIB::SDIVREM_I16] = nullptr; 93 Names[RTLIB::SDIVREM_I32] = nullptr; 94 Names[RTLIB::SDIVREM_I64] = nullptr; 95 Names[RTLIB::SDIVREM_I128] = nullptr; 96 Names[RTLIB::UDIVREM_I8] = nullptr; 97 Names[RTLIB::UDIVREM_I16] = nullptr; 98 Names[RTLIB::UDIVREM_I32] = nullptr; 99 Names[RTLIB::UDIVREM_I64] = nullptr; 100 Names[RTLIB::UDIVREM_I128] = nullptr; 101 102 Names[RTLIB::NEG_I32] = "__negsi2"; 103 Names[RTLIB::NEG_I64] = "__negdi2"; 104 Names[RTLIB::ADD_F32] = "__addsf3"; 105 Names[RTLIB::ADD_F64] = "__adddf3"; 106 Names[RTLIB::ADD_F80] = "__addxf3"; 107 Names[RTLIB::ADD_F128] = "__addtf3"; 108 Names[RTLIB::ADD_PPCF128] = "__gcc_qadd"; 109 Names[RTLIB::SUB_F32] = "__subsf3"; 110 Names[RTLIB::SUB_F64] = "__subdf3"; 111 Names[RTLIB::SUB_F80] = "__subxf3"; 112 Names[RTLIB::SUB_F128] = "__subtf3"; 113 Names[RTLIB::SUB_PPCF128] = "__gcc_qsub"; 114 Names[RTLIB::MUL_F32] = "__mulsf3"; 115 Names[RTLIB::MUL_F64] = "__muldf3"; 116 Names[RTLIB::MUL_F80] = "__mulxf3"; 117 Names[RTLIB::MUL_F128] = "__multf3"; 118 Names[RTLIB::MUL_PPCF128] = "__gcc_qmul"; 119 Names[RTLIB::DIV_F32] = "__divsf3"; 120 Names[RTLIB::DIV_F64] = "__divdf3"; 121 Names[RTLIB::DIV_F80] = "__divxf3"; 122 Names[RTLIB::DIV_F128] = "__divtf3"; 123 Names[RTLIB::DIV_PPCF128] = "__gcc_qdiv"; 124 Names[RTLIB::REM_F32] = "fmodf"; 125 Names[RTLIB::REM_F64] = "fmod"; 126 Names[RTLIB::REM_F80] = "fmodl"; 127 Names[RTLIB::REM_F128] = "fmodl"; 128 Names[RTLIB::REM_PPCF128] = "fmodl"; 129 Names[RTLIB::FMA_F32] = "fmaf"; 130 Names[RTLIB::FMA_F64] = "fma"; 131 Names[RTLIB::FMA_F80] = "fmal"; 132 Names[RTLIB::FMA_F128] = "fmal"; 133 Names[RTLIB::FMA_PPCF128] = "fmal"; 134 Names[RTLIB::POWI_F32] = "__powisf2"; 135 Names[RTLIB::POWI_F64] = "__powidf2"; 136 Names[RTLIB::POWI_F80] = "__powixf2"; 137 Names[RTLIB::POWI_F128] = "__powitf2"; 138 Names[RTLIB::POWI_PPCF128] = "__powitf2"; 139 Names[RTLIB::SQRT_F32] = "sqrtf"; 140 Names[RTLIB::SQRT_F64] = "sqrt"; 141 Names[RTLIB::SQRT_F80] = "sqrtl"; 142 Names[RTLIB::SQRT_F128] = "sqrtl"; 143 Names[RTLIB::SQRT_PPCF128] = "sqrtl"; 144 Names[RTLIB::LOG_F32] = "logf"; 145 Names[RTLIB::LOG_F64] = "log"; 146 Names[RTLIB::LOG_F80] = "logl"; 147 Names[RTLIB::LOG_F128] = "logl"; 148 Names[RTLIB::LOG_PPCF128] = "logl"; 149 Names[RTLIB::LOG2_F32] = "log2f"; 150 Names[RTLIB::LOG2_F64] = "log2"; 151 Names[RTLIB::LOG2_F80] = "log2l"; 152 Names[RTLIB::LOG2_F128] = "log2l"; 153 Names[RTLIB::LOG2_PPCF128] = "log2l"; 154 Names[RTLIB::LOG10_F32] = "log10f"; 155 Names[RTLIB::LOG10_F64] = "log10"; 156 Names[RTLIB::LOG10_F80] = "log10l"; 157 Names[RTLIB::LOG10_F128] = "log10l"; 158 Names[RTLIB::LOG10_PPCF128] = "log10l"; 159 Names[RTLIB::EXP_F32] = "expf"; 160 Names[RTLIB::EXP_F64] = "exp"; 161 Names[RTLIB::EXP_F80] = "expl"; 162 Names[RTLIB::EXP_F128] = "expl"; 163 Names[RTLIB::EXP_PPCF128] = "expl"; 164 Names[RTLIB::EXP2_F32] = "exp2f"; 165 Names[RTLIB::EXP2_F64] = "exp2"; 166 Names[RTLIB::EXP2_F80] = "exp2l"; 167 Names[RTLIB::EXP2_F128] = "exp2l"; 168 Names[RTLIB::EXP2_PPCF128] = "exp2l"; 169 Names[RTLIB::SIN_F32] = "sinf"; 170 Names[RTLIB::SIN_F64] = "sin"; 171 Names[RTLIB::SIN_F80] = "sinl"; 172 Names[RTLIB::SIN_F128] = "sinl"; 173 Names[RTLIB::SIN_PPCF128] = "sinl"; 174 Names[RTLIB::COS_F32] = "cosf"; 175 Names[RTLIB::COS_F64] = "cos"; 176 Names[RTLIB::COS_F80] = "cosl"; 177 Names[RTLIB::COS_F128] = "cosl"; 178 Names[RTLIB::COS_PPCF128] = "cosl"; 179 Names[RTLIB::POW_F32] = "powf"; 180 Names[RTLIB::POW_F64] = "pow"; 181 Names[RTLIB::POW_F80] = "powl"; 182 Names[RTLIB::POW_F128] = "powl"; 183 Names[RTLIB::POW_PPCF128] = "powl"; 184 Names[RTLIB::CEIL_F32] = "ceilf"; 185 Names[RTLIB::CEIL_F64] = "ceil"; 186 Names[RTLIB::CEIL_F80] = "ceill"; 187 Names[RTLIB::CEIL_F128] = "ceill"; 188 Names[RTLIB::CEIL_PPCF128] = "ceill"; 189 Names[RTLIB::TRUNC_F32] = "truncf"; 190 Names[RTLIB::TRUNC_F64] = "trunc"; 191 Names[RTLIB::TRUNC_F80] = "truncl"; 192 Names[RTLIB::TRUNC_F128] = "truncl"; 193 Names[RTLIB::TRUNC_PPCF128] = "truncl"; 194 Names[RTLIB::RINT_F32] = "rintf"; 195 Names[RTLIB::RINT_F64] = "rint"; 196 Names[RTLIB::RINT_F80] = "rintl"; 197 Names[RTLIB::RINT_F128] = "rintl"; 198 Names[RTLIB::RINT_PPCF128] = "rintl"; 199 Names[RTLIB::NEARBYINT_F32] = "nearbyintf"; 200 Names[RTLIB::NEARBYINT_F64] = "nearbyint"; 201 Names[RTLIB::NEARBYINT_F80] = "nearbyintl"; 202 Names[RTLIB::NEARBYINT_F128] = "nearbyintl"; 203 Names[RTLIB::NEARBYINT_PPCF128] = "nearbyintl"; 204 Names[RTLIB::ROUND_F32] = "roundf"; 205 Names[RTLIB::ROUND_F64] = "round"; 206 Names[RTLIB::ROUND_F80] = "roundl"; 207 Names[RTLIB::ROUND_F128] = "roundl"; 208 Names[RTLIB::ROUND_PPCF128] = "roundl"; 209 Names[RTLIB::FLOOR_F32] = "floorf"; 210 Names[RTLIB::FLOOR_F64] = "floor"; 211 Names[RTLIB::FLOOR_F80] = "floorl"; 212 Names[RTLIB::FLOOR_F128] = "floorl"; 213 Names[RTLIB::FLOOR_PPCF128] = "floorl"; 214 Names[RTLIB::FMIN_F32] = "fminf"; 215 Names[RTLIB::FMIN_F64] = "fmin"; 216 Names[RTLIB::FMIN_F80] = "fminl"; 217 Names[RTLIB::FMIN_F128] = "fminl"; 218 Names[RTLIB::FMIN_PPCF128] = "fminl"; 219 Names[RTLIB::FMAX_F32] = "fmaxf"; 220 Names[RTLIB::FMAX_F64] = "fmax"; 221 Names[RTLIB::FMAX_F80] = "fmaxl"; 222 Names[RTLIB::FMAX_F128] = "fmaxl"; 223 Names[RTLIB::FMAX_PPCF128] = "fmaxl"; 224 Names[RTLIB::ROUND_F32] = "roundf"; 225 Names[RTLIB::ROUND_F64] = "round"; 226 Names[RTLIB::ROUND_F80] = "roundl"; 227 Names[RTLIB::ROUND_F128] = "roundl"; 228 Names[RTLIB::ROUND_PPCF128] = "roundl"; 229 Names[RTLIB::COPYSIGN_F32] = "copysignf"; 230 Names[RTLIB::COPYSIGN_F64] = "copysign"; 231 Names[RTLIB::COPYSIGN_F80] = "copysignl"; 232 Names[RTLIB::COPYSIGN_F128] = "copysignl"; 233 Names[RTLIB::COPYSIGN_PPCF128] = "copysignl"; 234 Names[RTLIB::FPEXT_F64_F128] = "__extenddftf2"; 235 Names[RTLIB::FPEXT_F32_F128] = "__extendsftf2"; 236 Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2"; 237 Names[RTLIB::FPEXT_F16_F32] = "__gnu_h2f_ieee"; 238 Names[RTLIB::FPROUND_F32_F16] = "__gnu_f2h_ieee"; 239 Names[RTLIB::FPROUND_F64_F16] = "__truncdfhf2"; 240 Names[RTLIB::FPROUND_F80_F16] = "__truncxfhf2"; 241 Names[RTLIB::FPROUND_F128_F16] = "__trunctfhf2"; 242 Names[RTLIB::FPROUND_PPCF128_F16] = "__trunctfhf2"; 243 Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2"; 244 Names[RTLIB::FPROUND_F80_F32] = "__truncxfsf2"; 245 Names[RTLIB::FPROUND_F128_F32] = "__trunctfsf2"; 246 Names[RTLIB::FPROUND_PPCF128_F32] = "__trunctfsf2"; 247 Names[RTLIB::FPROUND_F80_F64] = "__truncxfdf2"; 248 Names[RTLIB::FPROUND_F128_F64] = "__trunctfdf2"; 249 Names[RTLIB::FPROUND_PPCF128_F64] = "__trunctfdf2"; 250 Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi"; 251 Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi"; 252 Names[RTLIB::FPTOSINT_F32_I128] = "__fixsfti"; 253 Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi"; 254 Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi"; 255 Names[RTLIB::FPTOSINT_F64_I128] = "__fixdfti"; 256 Names[RTLIB::FPTOSINT_F80_I32] = "__fixxfsi"; 257 Names[RTLIB::FPTOSINT_F80_I64] = "__fixxfdi"; 258 Names[RTLIB::FPTOSINT_F80_I128] = "__fixxfti"; 259 Names[RTLIB::FPTOSINT_F128_I32] = "__fixtfsi"; 260 Names[RTLIB::FPTOSINT_F128_I64] = "__fixtfdi"; 261 Names[RTLIB::FPTOSINT_F128_I128] = "__fixtfti"; 262 Names[RTLIB::FPTOSINT_PPCF128_I32] = "__fixtfsi"; 263 Names[RTLIB::FPTOSINT_PPCF128_I64] = "__fixtfdi"; 264 Names[RTLIB::FPTOSINT_PPCF128_I128] = "__fixtfti"; 265 Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi"; 266 Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi"; 267 Names[RTLIB::FPTOUINT_F32_I128] = "__fixunssfti"; 268 Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi"; 269 Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi"; 270 Names[RTLIB::FPTOUINT_F64_I128] = "__fixunsdfti"; 271 Names[RTLIB::FPTOUINT_F80_I32] = "__fixunsxfsi"; 272 Names[RTLIB::FPTOUINT_F80_I64] = "__fixunsxfdi"; 273 Names[RTLIB::FPTOUINT_F80_I128] = "__fixunsxfti"; 274 Names[RTLIB::FPTOUINT_F128_I32] = "__fixunstfsi"; 275 Names[RTLIB::FPTOUINT_F128_I64] = "__fixunstfdi"; 276 Names[RTLIB::FPTOUINT_F128_I128] = "__fixunstfti"; 277 Names[RTLIB::FPTOUINT_PPCF128_I32] = "__fixunstfsi"; 278 Names[RTLIB::FPTOUINT_PPCF128_I64] = "__fixunstfdi"; 279 Names[RTLIB::FPTOUINT_PPCF128_I128] = "__fixunstfti"; 280 Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf"; 281 Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf"; 282 Names[RTLIB::SINTTOFP_I32_F80] = "__floatsixf"; 283 Names[RTLIB::SINTTOFP_I32_F128] = "__floatsitf"; 284 Names[RTLIB::SINTTOFP_I32_PPCF128] = "__floatsitf"; 285 Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf"; 286 Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf"; 287 Names[RTLIB::SINTTOFP_I64_F80] = "__floatdixf"; 288 Names[RTLIB::SINTTOFP_I64_F128] = "__floatditf"; 289 Names[RTLIB::SINTTOFP_I64_PPCF128] = "__floatditf"; 290 Names[RTLIB::SINTTOFP_I128_F32] = "__floattisf"; 291 Names[RTLIB::SINTTOFP_I128_F64] = "__floattidf"; 292 Names[RTLIB::SINTTOFP_I128_F80] = "__floattixf"; 293 Names[RTLIB::SINTTOFP_I128_F128] = "__floattitf"; 294 Names[RTLIB::SINTTOFP_I128_PPCF128] = "__floattitf"; 295 Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf"; 296 Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf"; 297 Names[RTLIB::UINTTOFP_I32_F80] = "__floatunsixf"; 298 Names[RTLIB::UINTTOFP_I32_F128] = "__floatunsitf"; 299 Names[RTLIB::UINTTOFP_I32_PPCF128] = "__floatunsitf"; 300 Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf"; 301 Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf"; 302 Names[RTLIB::UINTTOFP_I64_F80] = "__floatundixf"; 303 Names[RTLIB::UINTTOFP_I64_F128] = "__floatunditf"; 304 Names[RTLIB::UINTTOFP_I64_PPCF128] = "__floatunditf"; 305 Names[RTLIB::UINTTOFP_I128_F32] = "__floatuntisf"; 306 Names[RTLIB::UINTTOFP_I128_F64] = "__floatuntidf"; 307 Names[RTLIB::UINTTOFP_I128_F80] = "__floatuntixf"; 308 Names[RTLIB::UINTTOFP_I128_F128] = "__floatuntitf"; 309 Names[RTLIB::UINTTOFP_I128_PPCF128] = "__floatuntitf"; 310 Names[RTLIB::OEQ_F32] = "__eqsf2"; 311 Names[RTLIB::OEQ_F64] = "__eqdf2"; 312 Names[RTLIB::OEQ_F128] = "__eqtf2"; 313 Names[RTLIB::UNE_F32] = "__nesf2"; 314 Names[RTLIB::UNE_F64] = "__nedf2"; 315 Names[RTLIB::UNE_F128] = "__netf2"; 316 Names[RTLIB::OGE_F32] = "__gesf2"; 317 Names[RTLIB::OGE_F64] = "__gedf2"; 318 Names[RTLIB::OGE_F128] = "__getf2"; 319 Names[RTLIB::OLT_F32] = "__ltsf2"; 320 Names[RTLIB::OLT_F64] = "__ltdf2"; 321 Names[RTLIB::OLT_F128] = "__lttf2"; 322 Names[RTLIB::OLE_F32] = "__lesf2"; 323 Names[RTLIB::OLE_F64] = "__ledf2"; 324 Names[RTLIB::OLE_F128] = "__letf2"; 325 Names[RTLIB::OGT_F32] = "__gtsf2"; 326 Names[RTLIB::OGT_F64] = "__gtdf2"; 327 Names[RTLIB::OGT_F128] = "__gttf2"; 328 Names[RTLIB::UO_F32] = "__unordsf2"; 329 Names[RTLIB::UO_F64] = "__unorddf2"; 330 Names[RTLIB::UO_F128] = "__unordtf2"; 331 Names[RTLIB::O_F32] = "__unordsf2"; 332 Names[RTLIB::O_F64] = "__unorddf2"; 333 Names[RTLIB::O_F128] = "__unordtf2"; 334 Names[RTLIB::MEMCPY] = "memcpy"; 335 Names[RTLIB::MEMMOVE] = "memmove"; 336 Names[RTLIB::MEMSET] = "memset"; 337 Names[RTLIB::UNWIND_RESUME] = "_Unwind_Resume"; 338 Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_1] = "__sync_val_compare_and_swap_1"; 339 Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2] = "__sync_val_compare_and_swap_2"; 340 Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4] = "__sync_val_compare_and_swap_4"; 341 Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8] = "__sync_val_compare_and_swap_8"; 342 Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_16] = "__sync_val_compare_and_swap_16"; 343 Names[RTLIB::SYNC_LOCK_TEST_AND_SET_1] = "__sync_lock_test_and_set_1"; 344 Names[RTLIB::SYNC_LOCK_TEST_AND_SET_2] = "__sync_lock_test_and_set_2"; 345 Names[RTLIB::SYNC_LOCK_TEST_AND_SET_4] = "__sync_lock_test_and_set_4"; 346 Names[RTLIB::SYNC_LOCK_TEST_AND_SET_8] = "__sync_lock_test_and_set_8"; 347 Names[RTLIB::SYNC_LOCK_TEST_AND_SET_16] = "__sync_lock_test_and_set_16"; 348 Names[RTLIB::SYNC_FETCH_AND_ADD_1] = "__sync_fetch_and_add_1"; 349 Names[RTLIB::SYNC_FETCH_AND_ADD_2] = "__sync_fetch_and_add_2"; 350 Names[RTLIB::SYNC_FETCH_AND_ADD_4] = "__sync_fetch_and_add_4"; 351 Names[RTLIB::SYNC_FETCH_AND_ADD_8] = "__sync_fetch_and_add_8"; 352 Names[RTLIB::SYNC_FETCH_AND_ADD_16] = "__sync_fetch_and_add_16"; 353 Names[RTLIB::SYNC_FETCH_AND_SUB_1] = "__sync_fetch_and_sub_1"; 354 Names[RTLIB::SYNC_FETCH_AND_SUB_2] = "__sync_fetch_and_sub_2"; 355 Names[RTLIB::SYNC_FETCH_AND_SUB_4] = "__sync_fetch_and_sub_4"; 356 Names[RTLIB::SYNC_FETCH_AND_SUB_8] = "__sync_fetch_and_sub_8"; 357 Names[RTLIB::SYNC_FETCH_AND_SUB_16] = "__sync_fetch_and_sub_16"; 358 Names[RTLIB::SYNC_FETCH_AND_AND_1] = "__sync_fetch_and_and_1"; 359 Names[RTLIB::SYNC_FETCH_AND_AND_2] = "__sync_fetch_and_and_2"; 360 Names[RTLIB::SYNC_FETCH_AND_AND_4] = "__sync_fetch_and_and_4"; 361 Names[RTLIB::SYNC_FETCH_AND_AND_8] = "__sync_fetch_and_and_8"; 362 Names[RTLIB::SYNC_FETCH_AND_AND_16] = "__sync_fetch_and_and_16"; 363 Names[RTLIB::SYNC_FETCH_AND_OR_1] = "__sync_fetch_and_or_1"; 364 Names[RTLIB::SYNC_FETCH_AND_OR_2] = "__sync_fetch_and_or_2"; 365 Names[RTLIB::SYNC_FETCH_AND_OR_4] = "__sync_fetch_and_or_4"; 366 Names[RTLIB::SYNC_FETCH_AND_OR_8] = "__sync_fetch_and_or_8"; 367 Names[RTLIB::SYNC_FETCH_AND_OR_16] = "__sync_fetch_and_or_16"; 368 Names[RTLIB::SYNC_FETCH_AND_XOR_1] = "__sync_fetch_and_xor_1"; 369 Names[RTLIB::SYNC_FETCH_AND_XOR_2] = "__sync_fetch_and_xor_2"; 370 Names[RTLIB::SYNC_FETCH_AND_XOR_4] = "__sync_fetch_and_xor_4"; 371 Names[RTLIB::SYNC_FETCH_AND_XOR_8] = "__sync_fetch_and_xor_8"; 372 Names[RTLIB::SYNC_FETCH_AND_XOR_16] = "__sync_fetch_and_xor_16"; 373 Names[RTLIB::SYNC_FETCH_AND_NAND_1] = "__sync_fetch_and_nand_1"; 374 Names[RTLIB::SYNC_FETCH_AND_NAND_2] = "__sync_fetch_and_nand_2"; 375 Names[RTLIB::SYNC_FETCH_AND_NAND_4] = "__sync_fetch_and_nand_4"; 376 Names[RTLIB::SYNC_FETCH_AND_NAND_8] = "__sync_fetch_and_nand_8"; 377 Names[RTLIB::SYNC_FETCH_AND_NAND_16] = "__sync_fetch_and_nand_16"; 378 Names[RTLIB::SYNC_FETCH_AND_MAX_1] = "__sync_fetch_and_max_1"; 379 Names[RTLIB::SYNC_FETCH_AND_MAX_2] = "__sync_fetch_and_max_2"; 380 Names[RTLIB::SYNC_FETCH_AND_MAX_4] = "__sync_fetch_and_max_4"; 381 Names[RTLIB::SYNC_FETCH_AND_MAX_8] = "__sync_fetch_and_max_8"; 382 Names[RTLIB::SYNC_FETCH_AND_MAX_16] = "__sync_fetch_and_max_16"; 383 Names[RTLIB::SYNC_FETCH_AND_UMAX_1] = "__sync_fetch_and_umax_1"; 384 Names[RTLIB::SYNC_FETCH_AND_UMAX_2] = "__sync_fetch_and_umax_2"; 385 Names[RTLIB::SYNC_FETCH_AND_UMAX_4] = "__sync_fetch_and_umax_4"; 386 Names[RTLIB::SYNC_FETCH_AND_UMAX_8] = "__sync_fetch_and_umax_8"; 387 Names[RTLIB::SYNC_FETCH_AND_UMAX_16] = "__sync_fetch_and_umax_16"; 388 Names[RTLIB::SYNC_FETCH_AND_MIN_1] = "__sync_fetch_and_min_1"; 389 Names[RTLIB::SYNC_FETCH_AND_MIN_2] = "__sync_fetch_and_min_2"; 390 Names[RTLIB::SYNC_FETCH_AND_MIN_4] = "__sync_fetch_and_min_4"; 391 Names[RTLIB::SYNC_FETCH_AND_MIN_8] = "__sync_fetch_and_min_8"; 392 Names[RTLIB::SYNC_FETCH_AND_MIN_16] = "__sync_fetch_and_min_16"; 393 Names[RTLIB::SYNC_FETCH_AND_UMIN_1] = "__sync_fetch_and_umin_1"; 394 Names[RTLIB::SYNC_FETCH_AND_UMIN_2] = "__sync_fetch_and_umin_2"; 395 Names[RTLIB::SYNC_FETCH_AND_UMIN_4] = "__sync_fetch_and_umin_4"; 396 Names[RTLIB::SYNC_FETCH_AND_UMIN_8] = "__sync_fetch_and_umin_8"; 397 Names[RTLIB::SYNC_FETCH_AND_UMIN_16] = "__sync_fetch_and_umin_16"; 398 399 if (TT.getEnvironment() == Triple::GNU) { 400 Names[RTLIB::SINCOS_F32] = "sincosf"; 401 Names[RTLIB::SINCOS_F64] = "sincos"; 402 Names[RTLIB::SINCOS_F80] = "sincosl"; 403 Names[RTLIB::SINCOS_F128] = "sincosl"; 404 Names[RTLIB::SINCOS_PPCF128] = "sincosl"; 405 } else { 406 // These are generally not available. 407 Names[RTLIB::SINCOS_F32] = nullptr; 408 Names[RTLIB::SINCOS_F64] = nullptr; 409 Names[RTLIB::SINCOS_F80] = nullptr; 410 Names[RTLIB::SINCOS_F128] = nullptr; 411 Names[RTLIB::SINCOS_PPCF128] = nullptr; 412 } 413 414 if (!TT.isOSOpenBSD()) { 415 Names[RTLIB::STACKPROTECTOR_CHECK_FAIL] = "__stack_chk_fail"; 416 } else { 417 // These are generally not available. 418 Names[RTLIB::STACKPROTECTOR_CHECK_FAIL] = nullptr; 419 } 420 421 // For f16/f32 conversions, Darwin uses the standard naming scheme, instead 422 // of the gnueabi-style __gnu_*_ieee. 423 // FIXME: What about other targets? 424 if (TT.isOSDarwin()) { 425 Names[RTLIB::FPEXT_F16_F32] = "__extendhfsf2"; 426 Names[RTLIB::FPROUND_F32_F16] = "__truncsfhf2"; 427 } 428 } 429 430 /// InitLibcallCallingConvs - Set default libcall CallingConvs. 431 /// 432 static void InitLibcallCallingConvs(CallingConv::ID *CCs) { 433 for (int i = 0; i < RTLIB::UNKNOWN_LIBCALL; ++i) { 434 CCs[i] = CallingConv::C; 435 } 436 } 437 438 /// getFPEXT - Return the FPEXT_*_* value for the given types, or 439 /// UNKNOWN_LIBCALL if there is none. 440 RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) { 441 if (OpVT == MVT::f16) { 442 if (RetVT == MVT::f32) 443 return FPEXT_F16_F32; 444 } else if (OpVT == MVT::f32) { 445 if (RetVT == MVT::f64) 446 return FPEXT_F32_F64; 447 if (RetVT == MVT::f128) 448 return FPEXT_F32_F128; 449 } else if (OpVT == MVT::f64) { 450 if (RetVT == MVT::f128) 451 return FPEXT_F64_F128; 452 } 453 454 return UNKNOWN_LIBCALL; 455 } 456 457 /// getFPROUND - Return the FPROUND_*_* value for the given types, or 458 /// UNKNOWN_LIBCALL if there is none. 459 RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) { 460 if (RetVT == MVT::f16) { 461 if (OpVT == MVT::f32) 462 return FPROUND_F32_F16; 463 if (OpVT == MVT::f64) 464 return FPROUND_F64_F16; 465 if (OpVT == MVT::f80) 466 return FPROUND_F80_F16; 467 if (OpVT == MVT::f128) 468 return FPROUND_F128_F16; 469 if (OpVT == MVT::ppcf128) 470 return FPROUND_PPCF128_F16; 471 } else if (RetVT == MVT::f32) { 472 if (OpVT == MVT::f64) 473 return FPROUND_F64_F32; 474 if (OpVT == MVT::f80) 475 return FPROUND_F80_F32; 476 if (OpVT == MVT::f128) 477 return FPROUND_F128_F32; 478 if (OpVT == MVT::ppcf128) 479 return FPROUND_PPCF128_F32; 480 } else if (RetVT == MVT::f64) { 481 if (OpVT == MVT::f80) 482 return FPROUND_F80_F64; 483 if (OpVT == MVT::f128) 484 return FPROUND_F128_F64; 485 if (OpVT == MVT::ppcf128) 486 return FPROUND_PPCF128_F64; 487 } 488 489 return UNKNOWN_LIBCALL; 490 } 491 492 /// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or 493 /// UNKNOWN_LIBCALL if there is none. 494 RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) { 495 if (OpVT == MVT::f32) { 496 if (RetVT == MVT::i32) 497 return FPTOSINT_F32_I32; 498 if (RetVT == MVT::i64) 499 return FPTOSINT_F32_I64; 500 if (RetVT == MVT::i128) 501 return FPTOSINT_F32_I128; 502 } else if (OpVT == MVT::f64) { 503 if (RetVT == MVT::i32) 504 return FPTOSINT_F64_I32; 505 if (RetVT == MVT::i64) 506 return FPTOSINT_F64_I64; 507 if (RetVT == MVT::i128) 508 return FPTOSINT_F64_I128; 509 } else if (OpVT == MVT::f80) { 510 if (RetVT == MVT::i32) 511 return FPTOSINT_F80_I32; 512 if (RetVT == MVT::i64) 513 return FPTOSINT_F80_I64; 514 if (RetVT == MVT::i128) 515 return FPTOSINT_F80_I128; 516 } else if (OpVT == MVT::f128) { 517 if (RetVT == MVT::i32) 518 return FPTOSINT_F128_I32; 519 if (RetVT == MVT::i64) 520 return FPTOSINT_F128_I64; 521 if (RetVT == MVT::i128) 522 return FPTOSINT_F128_I128; 523 } else if (OpVT == MVT::ppcf128) { 524 if (RetVT == MVT::i32) 525 return FPTOSINT_PPCF128_I32; 526 if (RetVT == MVT::i64) 527 return FPTOSINT_PPCF128_I64; 528 if (RetVT == MVT::i128) 529 return FPTOSINT_PPCF128_I128; 530 } 531 return UNKNOWN_LIBCALL; 532 } 533 534 /// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or 535 /// UNKNOWN_LIBCALL if there is none. 536 RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) { 537 if (OpVT == MVT::f32) { 538 if (RetVT == MVT::i32) 539 return FPTOUINT_F32_I32; 540 if (RetVT == MVT::i64) 541 return FPTOUINT_F32_I64; 542 if (RetVT == MVT::i128) 543 return FPTOUINT_F32_I128; 544 } else if (OpVT == MVT::f64) { 545 if (RetVT == MVT::i32) 546 return FPTOUINT_F64_I32; 547 if (RetVT == MVT::i64) 548 return FPTOUINT_F64_I64; 549 if (RetVT == MVT::i128) 550 return FPTOUINT_F64_I128; 551 } else if (OpVT == MVT::f80) { 552 if (RetVT == MVT::i32) 553 return FPTOUINT_F80_I32; 554 if (RetVT == MVT::i64) 555 return FPTOUINT_F80_I64; 556 if (RetVT == MVT::i128) 557 return FPTOUINT_F80_I128; 558 } else if (OpVT == MVT::f128) { 559 if (RetVT == MVT::i32) 560 return FPTOUINT_F128_I32; 561 if (RetVT == MVT::i64) 562 return FPTOUINT_F128_I64; 563 if (RetVT == MVT::i128) 564 return FPTOUINT_F128_I128; 565 } else if (OpVT == MVT::ppcf128) { 566 if (RetVT == MVT::i32) 567 return FPTOUINT_PPCF128_I32; 568 if (RetVT == MVT::i64) 569 return FPTOUINT_PPCF128_I64; 570 if (RetVT == MVT::i128) 571 return FPTOUINT_PPCF128_I128; 572 } 573 return UNKNOWN_LIBCALL; 574 } 575 576 /// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or 577 /// UNKNOWN_LIBCALL if there is none. 578 RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) { 579 if (OpVT == MVT::i32) { 580 if (RetVT == MVT::f32) 581 return SINTTOFP_I32_F32; 582 if (RetVT == MVT::f64) 583 return SINTTOFP_I32_F64; 584 if (RetVT == MVT::f80) 585 return SINTTOFP_I32_F80; 586 if (RetVT == MVT::f128) 587 return SINTTOFP_I32_F128; 588 if (RetVT == MVT::ppcf128) 589 return SINTTOFP_I32_PPCF128; 590 } else if (OpVT == MVT::i64) { 591 if (RetVT == MVT::f32) 592 return SINTTOFP_I64_F32; 593 if (RetVT == MVT::f64) 594 return SINTTOFP_I64_F64; 595 if (RetVT == MVT::f80) 596 return SINTTOFP_I64_F80; 597 if (RetVT == MVT::f128) 598 return SINTTOFP_I64_F128; 599 if (RetVT == MVT::ppcf128) 600 return SINTTOFP_I64_PPCF128; 601 } else if (OpVT == MVT::i128) { 602 if (RetVT == MVT::f32) 603 return SINTTOFP_I128_F32; 604 if (RetVT == MVT::f64) 605 return SINTTOFP_I128_F64; 606 if (RetVT == MVT::f80) 607 return SINTTOFP_I128_F80; 608 if (RetVT == MVT::f128) 609 return SINTTOFP_I128_F128; 610 if (RetVT == MVT::ppcf128) 611 return SINTTOFP_I128_PPCF128; 612 } 613 return UNKNOWN_LIBCALL; 614 } 615 616 /// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or 617 /// UNKNOWN_LIBCALL if there is none. 618 RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) { 619 if (OpVT == MVT::i32) { 620 if (RetVT == MVT::f32) 621 return UINTTOFP_I32_F32; 622 if (RetVT == MVT::f64) 623 return UINTTOFP_I32_F64; 624 if (RetVT == MVT::f80) 625 return UINTTOFP_I32_F80; 626 if (RetVT == MVT::f128) 627 return UINTTOFP_I32_F128; 628 if (RetVT == MVT::ppcf128) 629 return UINTTOFP_I32_PPCF128; 630 } else if (OpVT == MVT::i64) { 631 if (RetVT == MVT::f32) 632 return UINTTOFP_I64_F32; 633 if (RetVT == MVT::f64) 634 return UINTTOFP_I64_F64; 635 if (RetVT == MVT::f80) 636 return UINTTOFP_I64_F80; 637 if (RetVT == MVT::f128) 638 return UINTTOFP_I64_F128; 639 if (RetVT == MVT::ppcf128) 640 return UINTTOFP_I64_PPCF128; 641 } else if (OpVT == MVT::i128) { 642 if (RetVT == MVT::f32) 643 return UINTTOFP_I128_F32; 644 if (RetVT == MVT::f64) 645 return UINTTOFP_I128_F64; 646 if (RetVT == MVT::f80) 647 return UINTTOFP_I128_F80; 648 if (RetVT == MVT::f128) 649 return UINTTOFP_I128_F128; 650 if (RetVT == MVT::ppcf128) 651 return UINTTOFP_I128_PPCF128; 652 } 653 return UNKNOWN_LIBCALL; 654 } 655 656 RTLIB::Libcall RTLIB::getATOMIC(unsigned Opc, MVT VT) { 657 #define OP_TO_LIBCALL(Name, Enum) \ 658 case Name: \ 659 switch (VT.SimpleTy) { \ 660 default: \ 661 return UNKNOWN_LIBCALL; \ 662 case MVT::i8: \ 663 return Enum##_1; \ 664 case MVT::i16: \ 665 return Enum##_2; \ 666 case MVT::i32: \ 667 return Enum##_4; \ 668 case MVT::i64: \ 669 return Enum##_8; \ 670 case MVT::i128: \ 671 return Enum##_16; \ 672 } 673 674 switch (Opc) { 675 OP_TO_LIBCALL(ISD::ATOMIC_SWAP, SYNC_LOCK_TEST_AND_SET) 676 OP_TO_LIBCALL(ISD::ATOMIC_CMP_SWAP, SYNC_VAL_COMPARE_AND_SWAP) 677 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_ADD, SYNC_FETCH_AND_ADD) 678 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_SUB, SYNC_FETCH_AND_SUB) 679 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_AND, SYNC_FETCH_AND_AND) 680 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_OR, SYNC_FETCH_AND_OR) 681 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_XOR, SYNC_FETCH_AND_XOR) 682 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_NAND, SYNC_FETCH_AND_NAND) 683 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MAX, SYNC_FETCH_AND_MAX) 684 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMAX, SYNC_FETCH_AND_UMAX) 685 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MIN, SYNC_FETCH_AND_MIN) 686 OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMIN, SYNC_FETCH_AND_UMIN) 687 } 688 689 #undef OP_TO_LIBCALL 690 691 return UNKNOWN_LIBCALL; 692 } 693 694 /// InitCmpLibcallCCs - Set default comparison libcall CC. 695 /// 696 static void InitCmpLibcallCCs(ISD::CondCode *CCs) { 697 memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL); 698 CCs[RTLIB::OEQ_F32] = ISD::SETEQ; 699 CCs[RTLIB::OEQ_F64] = ISD::SETEQ; 700 CCs[RTLIB::OEQ_F128] = ISD::SETEQ; 701 CCs[RTLIB::UNE_F32] = ISD::SETNE; 702 CCs[RTLIB::UNE_F64] = ISD::SETNE; 703 CCs[RTLIB::UNE_F128] = ISD::SETNE; 704 CCs[RTLIB::OGE_F32] = ISD::SETGE; 705 CCs[RTLIB::OGE_F64] = ISD::SETGE; 706 CCs[RTLIB::OGE_F128] = ISD::SETGE; 707 CCs[RTLIB::OLT_F32] = ISD::SETLT; 708 CCs[RTLIB::OLT_F64] = ISD::SETLT; 709 CCs[RTLIB::OLT_F128] = ISD::SETLT; 710 CCs[RTLIB::OLE_F32] = ISD::SETLE; 711 CCs[RTLIB::OLE_F64] = ISD::SETLE; 712 CCs[RTLIB::OLE_F128] = ISD::SETLE; 713 CCs[RTLIB::OGT_F32] = ISD::SETGT; 714 CCs[RTLIB::OGT_F64] = ISD::SETGT; 715 CCs[RTLIB::OGT_F128] = ISD::SETGT; 716 CCs[RTLIB::UO_F32] = ISD::SETNE; 717 CCs[RTLIB::UO_F64] = ISD::SETNE; 718 CCs[RTLIB::UO_F128] = ISD::SETNE; 719 CCs[RTLIB::O_F32] = ISD::SETEQ; 720 CCs[RTLIB::O_F64] = ISD::SETEQ; 721 CCs[RTLIB::O_F128] = ISD::SETEQ; 722 } 723 724 /// NOTE: The TargetMachine owns TLOF. 725 TargetLoweringBase::TargetLoweringBase(const TargetMachine &tm) : TM(tm) { 726 initActions(); 727 728 // Perform these initializations only once. 729 MaxStoresPerMemset = MaxStoresPerMemcpy = MaxStoresPerMemmove = 8; 730 MaxStoresPerMemsetOptSize = MaxStoresPerMemcpyOptSize 731 = MaxStoresPerMemmoveOptSize = 4; 732 UseUnderscoreSetJmp = false; 733 UseUnderscoreLongJmp = false; 734 SelectIsExpensive = false; 735 HasMultipleConditionRegisters = false; 736 HasExtractBitsInsn = false; 737 FsqrtIsCheap = false; 738 JumpIsExpensive = JumpIsExpensiveOverride; 739 PredictableSelectIsExpensive = false; 740 MaskAndBranchFoldingIsLegal = false; 741 EnableExtLdPromotion = false; 742 HasFloatingPointExceptions = true; 743 StackPointerRegisterToSaveRestore = 0; 744 BooleanContents = UndefinedBooleanContent; 745 BooleanFloatContents = UndefinedBooleanContent; 746 BooleanVectorContents = UndefinedBooleanContent; 747 SchedPreferenceInfo = Sched::ILP; 748 JumpBufSize = 0; 749 JumpBufAlignment = 0; 750 MinFunctionAlignment = 0; 751 PrefFunctionAlignment = 0; 752 PrefLoopAlignment = 0; 753 GatherAllAliasesMaxDepth = 6; 754 MinStackArgumentAlignment = 1; 755 InsertFencesForAtomic = false; 756 MinimumJumpTableEntries = 4; 757 758 InitLibcallNames(LibcallRoutineNames, TM.getTargetTriple()); 759 InitCmpLibcallCCs(CmpLibcallCCs); 760 InitLibcallCallingConvs(LibcallCallingConvs); 761 } 762 763 void TargetLoweringBase::initActions() { 764 // All operations default to being supported. 765 memset(OpActions, 0, sizeof(OpActions)); 766 memset(LoadExtActions, 0, sizeof(LoadExtActions)); 767 memset(TruncStoreActions, 0, sizeof(TruncStoreActions)); 768 memset(IndexedModeActions, 0, sizeof(IndexedModeActions)); 769 memset(CondCodeActions, 0, sizeof(CondCodeActions)); 770 memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*)); 771 memset(TargetDAGCombineArray, 0, array_lengthof(TargetDAGCombineArray)); 772 773 // Set default actions for various operations. 774 for (MVT VT : MVT::all_valuetypes()) { 775 // Default all indexed load / store to expand. 776 for (unsigned IM = (unsigned)ISD::PRE_INC; 777 IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) { 778 setIndexedLoadAction(IM, VT, Expand); 779 setIndexedStoreAction(IM, VT, Expand); 780 } 781 782 // Most backends expect to see the node which just returns the value loaded. 783 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, VT, Expand); 784 785 // These operations default to expand. 786 setOperationAction(ISD::FGETSIGN, VT, Expand); 787 setOperationAction(ISD::CONCAT_VECTORS, VT, Expand); 788 setOperationAction(ISD::FMINNUM, VT, Expand); 789 setOperationAction(ISD::FMAXNUM, VT, Expand); 790 setOperationAction(ISD::FMINNAN, VT, Expand); 791 setOperationAction(ISD::FMAXNAN, VT, Expand); 792 setOperationAction(ISD::FMAD, VT, Expand); 793 setOperationAction(ISD::SMIN, VT, Expand); 794 setOperationAction(ISD::SMAX, VT, Expand); 795 setOperationAction(ISD::UMIN, VT, Expand); 796 setOperationAction(ISD::UMAX, VT, Expand); 797 798 // Overflow operations default to expand 799 setOperationAction(ISD::SADDO, VT, Expand); 800 setOperationAction(ISD::SSUBO, VT, Expand); 801 setOperationAction(ISD::UADDO, VT, Expand); 802 setOperationAction(ISD::USUBO, VT, Expand); 803 setOperationAction(ISD::SMULO, VT, Expand); 804 setOperationAction(ISD::UMULO, VT, Expand); 805 806 setOperationAction(ISD::BITREVERSE, VT, Expand); 807 808 // These library functions default to expand. 809 setOperationAction(ISD::FROUND, VT, Expand); 810 811 // These operations default to expand for vector types. 812 if (VT.isVector()) { 813 setOperationAction(ISD::FCOPYSIGN, VT, Expand); 814 setOperationAction(ISD::ANY_EXTEND_VECTOR_INREG, VT, Expand); 815 setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Expand); 816 setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Expand); 817 } 818 819 // For most targets @llvm.get.dynamic.area.offest just returns 0. 820 setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, VT, Expand); 821 } 822 823 // Most targets ignore the @llvm.prefetch intrinsic. 824 setOperationAction(ISD::PREFETCH, MVT::Other, Expand); 825 826 // Most targets also ignore the @llvm.readcyclecounter intrinsic. 827 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Expand); 828 829 // ConstantFP nodes default to expand. Targets can either change this to 830 // Legal, in which case all fp constants are legal, or use isFPImmLegal() 831 // to optimize expansions for certain constants. 832 setOperationAction(ISD::ConstantFP, MVT::f16, Expand); 833 setOperationAction(ISD::ConstantFP, MVT::f32, Expand); 834 setOperationAction(ISD::ConstantFP, MVT::f64, Expand); 835 setOperationAction(ISD::ConstantFP, MVT::f80, Expand); 836 setOperationAction(ISD::ConstantFP, MVT::f128, Expand); 837 838 // These library functions default to expand. 839 for (MVT VT : {MVT::f32, MVT::f64, MVT::f128}) { 840 setOperationAction(ISD::FLOG , VT, Expand); 841 setOperationAction(ISD::FLOG2, VT, Expand); 842 setOperationAction(ISD::FLOG10, VT, Expand); 843 setOperationAction(ISD::FEXP , VT, Expand); 844 setOperationAction(ISD::FEXP2, VT, Expand); 845 setOperationAction(ISD::FFLOOR, VT, Expand); 846 setOperationAction(ISD::FMINNUM, VT, Expand); 847 setOperationAction(ISD::FMAXNUM, VT, Expand); 848 setOperationAction(ISD::FNEARBYINT, VT, Expand); 849 setOperationAction(ISD::FCEIL, VT, Expand); 850 setOperationAction(ISD::FRINT, VT, Expand); 851 setOperationAction(ISD::FTRUNC, VT, Expand); 852 setOperationAction(ISD::FROUND, VT, Expand); 853 } 854 855 // Default ISD::TRAP to expand (which turns it into abort). 856 setOperationAction(ISD::TRAP, MVT::Other, Expand); 857 858 // On most systems, DEBUGTRAP and TRAP have no difference. The "Expand" 859 // here is to inform DAG Legalizer to replace DEBUGTRAP with TRAP. 860 // 861 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Expand); 862 } 863 864 MVT TargetLoweringBase::getScalarShiftAmountTy(const DataLayout &DL, 865 EVT) const { 866 return MVT::getIntegerVT(8 * DL.getPointerSize(0)); 867 } 868 869 EVT TargetLoweringBase::getShiftAmountTy(EVT LHSTy, 870 const DataLayout &DL) const { 871 assert(LHSTy.isInteger() && "Shift amount is not an integer type!"); 872 if (LHSTy.isVector()) 873 return LHSTy; 874 return getScalarShiftAmountTy(DL, LHSTy); 875 } 876 877 /// canOpTrap - Returns true if the operation can trap for the value type. 878 /// VT must be a legal type. 879 bool TargetLoweringBase::canOpTrap(unsigned Op, EVT VT) const { 880 assert(isTypeLegal(VT)); 881 switch (Op) { 882 default: 883 return false; 884 case ISD::FDIV: 885 case ISD::FREM: 886 case ISD::SDIV: 887 case ISD::UDIV: 888 case ISD::SREM: 889 case ISD::UREM: 890 return true; 891 } 892 } 893 894 void TargetLoweringBase::setJumpIsExpensive(bool isExpensive) { 895 // If the command-line option was specified, ignore this request. 896 if (!JumpIsExpensiveOverride.getNumOccurrences()) 897 JumpIsExpensive = isExpensive; 898 } 899 900 TargetLoweringBase::LegalizeKind 901 TargetLoweringBase::getTypeConversion(LLVMContext &Context, EVT VT) const { 902 // If this is a simple type, use the ComputeRegisterProp mechanism. 903 if (VT.isSimple()) { 904 MVT SVT = VT.getSimpleVT(); 905 assert((unsigned)SVT.SimpleTy < array_lengthof(TransformToType)); 906 MVT NVT = TransformToType[SVT.SimpleTy]; 907 LegalizeTypeAction LA = ValueTypeActions.getTypeAction(SVT); 908 909 assert((LA == TypeLegal || LA == TypeSoftenFloat || 910 ValueTypeActions.getTypeAction(NVT) != TypePromoteInteger) && 911 "Promote may not follow Expand or Promote"); 912 913 if (LA == TypeSplitVector) 914 return LegalizeKind(LA, 915 EVT::getVectorVT(Context, SVT.getVectorElementType(), 916 SVT.getVectorNumElements() / 2)); 917 if (LA == TypeScalarizeVector) 918 return LegalizeKind(LA, SVT.getVectorElementType()); 919 return LegalizeKind(LA, NVT); 920 } 921 922 // Handle Extended Scalar Types. 923 if (!VT.isVector()) { 924 assert(VT.isInteger() && "Float types must be simple"); 925 unsigned BitSize = VT.getSizeInBits(); 926 // First promote to a power-of-two size, then expand if necessary. 927 if (BitSize < 8 || !isPowerOf2_32(BitSize)) { 928 EVT NVT = VT.getRoundIntegerType(Context); 929 assert(NVT != VT && "Unable to round integer VT"); 930 LegalizeKind NextStep = getTypeConversion(Context, NVT); 931 // Avoid multi-step promotion. 932 if (NextStep.first == TypePromoteInteger) 933 return NextStep; 934 // Return rounded integer type. 935 return LegalizeKind(TypePromoteInteger, NVT); 936 } 937 938 return LegalizeKind(TypeExpandInteger, 939 EVT::getIntegerVT(Context, VT.getSizeInBits() / 2)); 940 } 941 942 // Handle vector types. 943 unsigned NumElts = VT.getVectorNumElements(); 944 EVT EltVT = VT.getVectorElementType(); 945 946 // Vectors with only one element are always scalarized. 947 if (NumElts == 1) 948 return LegalizeKind(TypeScalarizeVector, EltVT); 949 950 // Try to widen vector elements until the element type is a power of two and 951 // promote it to a legal type later on, for example: 952 // <3 x i8> -> <4 x i8> -> <4 x i32> 953 if (EltVT.isInteger()) { 954 // Vectors with a number of elements that is not a power of two are always 955 // widened, for example <3 x i8> -> <4 x i8>. 956 if (!VT.isPow2VectorType()) { 957 NumElts = (unsigned)NextPowerOf2(NumElts); 958 EVT NVT = EVT::getVectorVT(Context, EltVT, NumElts); 959 return LegalizeKind(TypeWidenVector, NVT); 960 } 961 962 // Examine the element type. 963 LegalizeKind LK = getTypeConversion(Context, EltVT); 964 965 // If type is to be expanded, split the vector. 966 // <4 x i140> -> <2 x i140> 967 if (LK.first == TypeExpandInteger) 968 return LegalizeKind(TypeSplitVector, 969 EVT::getVectorVT(Context, EltVT, NumElts / 2)); 970 971 // Promote the integer element types until a legal vector type is found 972 // or until the element integer type is too big. If a legal type was not 973 // found, fallback to the usual mechanism of widening/splitting the 974 // vector. 975 EVT OldEltVT = EltVT; 976 while (1) { 977 // Increase the bitwidth of the element to the next pow-of-two 978 // (which is greater than 8 bits). 979 EltVT = EVT::getIntegerVT(Context, 1 + EltVT.getSizeInBits()) 980 .getRoundIntegerType(Context); 981 982 // Stop trying when getting a non-simple element type. 983 // Note that vector elements may be greater than legal vector element 984 // types. Example: X86 XMM registers hold 64bit element on 32bit 985 // systems. 986 if (!EltVT.isSimple()) 987 break; 988 989 // Build a new vector type and check if it is legal. 990 MVT NVT = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts); 991 // Found a legal promoted vector type. 992 if (NVT != MVT() && ValueTypeActions.getTypeAction(NVT) == TypeLegal) 993 return LegalizeKind(TypePromoteInteger, 994 EVT::getVectorVT(Context, EltVT, NumElts)); 995 } 996 997 // Reset the type to the unexpanded type if we did not find a legal vector 998 // type with a promoted vector element type. 999 EltVT = OldEltVT; 1000 } 1001 1002 // Try to widen the vector until a legal type is found. 1003 // If there is no wider legal type, split the vector. 1004 while (1) { 1005 // Round up to the next power of 2. 1006 NumElts = (unsigned)NextPowerOf2(NumElts); 1007 1008 // If there is no simple vector type with this many elements then there 1009 // cannot be a larger legal vector type. Note that this assumes that 1010 // there are no skipped intermediate vector types in the simple types. 1011 if (!EltVT.isSimple()) 1012 break; 1013 MVT LargerVector = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts); 1014 if (LargerVector == MVT()) 1015 break; 1016 1017 // If this type is legal then widen the vector. 1018 if (ValueTypeActions.getTypeAction(LargerVector) == TypeLegal) 1019 return LegalizeKind(TypeWidenVector, LargerVector); 1020 } 1021 1022 // Widen odd vectors to next power of two. 1023 if (!VT.isPow2VectorType()) { 1024 EVT NVT = VT.getPow2VectorType(Context); 1025 return LegalizeKind(TypeWidenVector, NVT); 1026 } 1027 1028 // Vectors with illegal element types are expanded. 1029 EVT NVT = EVT::getVectorVT(Context, EltVT, VT.getVectorNumElements() / 2); 1030 return LegalizeKind(TypeSplitVector, NVT); 1031 } 1032 1033 static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT, 1034 unsigned &NumIntermediates, 1035 MVT &RegisterVT, 1036 TargetLoweringBase *TLI) { 1037 // Figure out the right, legal destination reg to copy into. 1038 unsigned NumElts = VT.getVectorNumElements(); 1039 MVT EltTy = VT.getVectorElementType(); 1040 1041 unsigned NumVectorRegs = 1; 1042 1043 // FIXME: We don't support non-power-of-2-sized vectors for now. Ideally we 1044 // could break down into LHS/RHS like LegalizeDAG does. 1045 if (!isPowerOf2_32(NumElts)) { 1046 NumVectorRegs = NumElts; 1047 NumElts = 1; 1048 } 1049 1050 // Divide the input until we get to a supported size. This will always 1051 // end with a scalar if the target doesn't support vectors. 1052 while (NumElts > 1 && !TLI->isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) { 1053 NumElts >>= 1; 1054 NumVectorRegs <<= 1; 1055 } 1056 1057 NumIntermediates = NumVectorRegs; 1058 1059 MVT NewVT = MVT::getVectorVT(EltTy, NumElts); 1060 if (!TLI->isTypeLegal(NewVT)) 1061 NewVT = EltTy; 1062 IntermediateVT = NewVT; 1063 1064 unsigned NewVTSize = NewVT.getSizeInBits(); 1065 1066 // Convert sizes such as i33 to i64. 1067 if (!isPowerOf2_32(NewVTSize)) 1068 NewVTSize = NextPowerOf2(NewVTSize); 1069 1070 MVT DestVT = TLI->getRegisterType(NewVT); 1071 RegisterVT = DestVT; 1072 if (EVT(DestVT).bitsLT(NewVT)) // Value is expanded, e.g. i64 -> i16. 1073 return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits()); 1074 1075 // Otherwise, promotion or legal types use the same number of registers as 1076 // the vector decimated to the appropriate level. 1077 return NumVectorRegs; 1078 } 1079 1080 /// isLegalRC - Return true if the value types that can be represented by the 1081 /// specified register class are all legal. 1082 bool TargetLoweringBase::isLegalRC(const TargetRegisterClass *RC) const { 1083 for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end(); 1084 I != E; ++I) { 1085 if (isTypeLegal(*I)) 1086 return true; 1087 } 1088 return false; 1089 } 1090 1091 /// Replace/modify any TargetFrameIndex operands with a targte-dependent 1092 /// sequence of memory operands that is recognized by PrologEpilogInserter. 1093 MachineBasicBlock* 1094 TargetLoweringBase::emitPatchPoint(MachineInstr *MI, 1095 MachineBasicBlock *MBB) const { 1096 MachineFunction &MF = *MI->getParent()->getParent(); 1097 1098 // MI changes inside this loop as we grow operands. 1099 for(unsigned OperIdx = 0; OperIdx != MI->getNumOperands(); ++OperIdx) { 1100 MachineOperand &MO = MI->getOperand(OperIdx); 1101 if (!MO.isFI()) 1102 continue; 1103 1104 // foldMemoryOperand builds a new MI after replacing a single FI operand 1105 // with the canonical set of five x86 addressing-mode operands. 1106 int FI = MO.getIndex(); 1107 MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), MI->getDesc()); 1108 1109 // Copy operands before the frame-index. 1110 for (unsigned i = 0; i < OperIdx; ++i) 1111 MIB.addOperand(MI->getOperand(i)); 1112 // Add frame index operands: direct-mem-ref tag, #FI, offset. 1113 MIB.addImm(StackMaps::DirectMemRefOp); 1114 MIB.addOperand(MI->getOperand(OperIdx)); 1115 MIB.addImm(0); 1116 // Copy the operands after the frame index. 1117 for (unsigned i = OperIdx + 1; i != MI->getNumOperands(); ++i) 1118 MIB.addOperand(MI->getOperand(i)); 1119 1120 // Inherit previous memory operands. 1121 MIB->setMemRefs(MI->memoperands_begin(), MI->memoperands_end()); 1122 assert(MIB->mayLoad() && "Folded a stackmap use to a non-load!"); 1123 1124 // Add a new memory operand for this FI. 1125 const MachineFrameInfo &MFI = *MF.getFrameInfo(); 1126 assert(MFI.getObjectOffset(FI) != -1); 1127 1128 unsigned Flags = MachineMemOperand::MOLoad; 1129 if (MI->getOpcode() == TargetOpcode::STATEPOINT) { 1130 Flags |= MachineMemOperand::MOStore; 1131 Flags |= MachineMemOperand::MOVolatile; 1132 } 1133 MachineMemOperand *MMO = MF.getMachineMemOperand( 1134 MachinePointerInfo::getFixedStack(MF, FI), Flags, 1135 MF.getDataLayout().getPointerSize(), MFI.getObjectAlignment(FI)); 1136 MIB->addMemOperand(MF, MMO); 1137 1138 // Replace the instruction and update the operand index. 1139 MBB->insert(MachineBasicBlock::iterator(MI), MIB); 1140 OperIdx += (MIB->getNumOperands() - MI->getNumOperands()) - 1; 1141 MI->eraseFromParent(); 1142 MI = MIB; 1143 } 1144 return MBB; 1145 } 1146 1147 /// findRepresentativeClass - Return the largest legal super-reg register class 1148 /// of the register class for the specified type and its associated "cost". 1149 // This function is in TargetLowering because it uses RegClassForVT which would 1150 // need to be moved to TargetRegisterInfo and would necessitate moving 1151 // isTypeLegal over as well - a massive change that would just require 1152 // TargetLowering having a TargetRegisterInfo class member that it would use. 1153 std::pair<const TargetRegisterClass *, uint8_t> 1154 TargetLoweringBase::findRepresentativeClass(const TargetRegisterInfo *TRI, 1155 MVT VT) const { 1156 const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy]; 1157 if (!RC) 1158 return std::make_pair(RC, 0); 1159 1160 // Compute the set of all super-register classes. 1161 BitVector SuperRegRC(TRI->getNumRegClasses()); 1162 for (SuperRegClassIterator RCI(RC, TRI); RCI.isValid(); ++RCI) 1163 SuperRegRC.setBitsInMask(RCI.getMask()); 1164 1165 // Find the first legal register class with the largest spill size. 1166 const TargetRegisterClass *BestRC = RC; 1167 for (int i = SuperRegRC.find_first(); i >= 0; i = SuperRegRC.find_next(i)) { 1168 const TargetRegisterClass *SuperRC = TRI->getRegClass(i); 1169 // We want the largest possible spill size. 1170 if (SuperRC->getSize() <= BestRC->getSize()) 1171 continue; 1172 if (!isLegalRC(SuperRC)) 1173 continue; 1174 BestRC = SuperRC; 1175 } 1176 return std::make_pair(BestRC, 1); 1177 } 1178 1179 /// computeRegisterProperties - Once all of the register classes are added, 1180 /// this allows us to compute derived properties we expose. 1181 void TargetLoweringBase::computeRegisterProperties( 1182 const TargetRegisterInfo *TRI) { 1183 static_assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE, 1184 "Too many value types for ValueTypeActions to hold!"); 1185 1186 // Everything defaults to needing one register. 1187 for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) { 1188 NumRegistersForVT[i] = 1; 1189 RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i; 1190 } 1191 // ...except isVoid, which doesn't need any registers. 1192 NumRegistersForVT[MVT::isVoid] = 0; 1193 1194 // Find the largest integer register class. 1195 unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE; 1196 for (; RegClassForVT[LargestIntReg] == nullptr; --LargestIntReg) 1197 assert(LargestIntReg != MVT::i1 && "No integer registers defined!"); 1198 1199 // Every integer value type larger than this largest register takes twice as 1200 // many registers to represent as the previous ValueType. 1201 for (unsigned ExpandedReg = LargestIntReg + 1; 1202 ExpandedReg <= MVT::LAST_INTEGER_VALUETYPE; ++ExpandedReg) { 1203 NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1]; 1204 RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg; 1205 TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1); 1206 ValueTypeActions.setTypeAction((MVT::SimpleValueType)ExpandedReg, 1207 TypeExpandInteger); 1208 } 1209 1210 // Inspect all of the ValueType's smaller than the largest integer 1211 // register to see which ones need promotion. 1212 unsigned LegalIntReg = LargestIntReg; 1213 for (unsigned IntReg = LargestIntReg - 1; 1214 IntReg >= (unsigned)MVT::i1; --IntReg) { 1215 MVT IVT = (MVT::SimpleValueType)IntReg; 1216 if (isTypeLegal(IVT)) { 1217 LegalIntReg = IntReg; 1218 } else { 1219 RegisterTypeForVT[IntReg] = TransformToType[IntReg] = 1220 (const MVT::SimpleValueType)LegalIntReg; 1221 ValueTypeActions.setTypeAction(IVT, TypePromoteInteger); 1222 } 1223 } 1224 1225 // ppcf128 type is really two f64's. 1226 if (!isTypeLegal(MVT::ppcf128)) { 1227 NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64]; 1228 RegisterTypeForVT[MVT::ppcf128] = MVT::f64; 1229 TransformToType[MVT::ppcf128] = MVT::f64; 1230 ValueTypeActions.setTypeAction(MVT::ppcf128, TypeExpandFloat); 1231 } 1232 1233 // Decide how to handle f128. If the target does not have native f128 support, 1234 // expand it to i128 and we will be generating soft float library calls. 1235 if (!isTypeLegal(MVT::f128)) { 1236 NumRegistersForVT[MVT::f128] = NumRegistersForVT[MVT::i128]; 1237 RegisterTypeForVT[MVT::f128] = RegisterTypeForVT[MVT::i128]; 1238 TransformToType[MVT::f128] = MVT::i128; 1239 ValueTypeActions.setTypeAction(MVT::f128, TypeSoftenFloat); 1240 } 1241 1242 // Decide how to handle f64. If the target does not have native f64 support, 1243 // expand it to i64 and we will be generating soft float library calls. 1244 if (!isTypeLegal(MVT::f64)) { 1245 NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64]; 1246 RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64]; 1247 TransformToType[MVT::f64] = MVT::i64; 1248 ValueTypeActions.setTypeAction(MVT::f64, TypeSoftenFloat); 1249 } 1250 1251 // Decide how to handle f32. If the target does not have native f32 support, 1252 // expand it to i32 and we will be generating soft float library calls. 1253 if (!isTypeLegal(MVT::f32)) { 1254 NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32]; 1255 RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32]; 1256 TransformToType[MVT::f32] = MVT::i32; 1257 ValueTypeActions.setTypeAction(MVT::f32, TypeSoftenFloat); 1258 } 1259 1260 // Decide how to handle f16. If the target does not have native f16 support, 1261 // promote it to f32, because there are no f16 library calls (except for 1262 // conversions). 1263 if (!isTypeLegal(MVT::f16)) { 1264 NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::f32]; 1265 RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::f32]; 1266 TransformToType[MVT::f16] = MVT::f32; 1267 ValueTypeActions.setTypeAction(MVT::f16, TypePromoteFloat); 1268 } 1269 1270 // Loop over all of the vector value types to see which need transformations. 1271 for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE; 1272 i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) { 1273 MVT VT = (MVT::SimpleValueType) i; 1274 if (isTypeLegal(VT)) 1275 continue; 1276 1277 MVT EltVT = VT.getVectorElementType(); 1278 unsigned NElts = VT.getVectorNumElements(); 1279 bool IsLegalWiderType = false; 1280 LegalizeTypeAction PreferredAction = getPreferredVectorAction(VT); 1281 switch (PreferredAction) { 1282 case TypePromoteInteger: { 1283 // Try to promote the elements of integer vectors. If no legal 1284 // promotion was found, fall through to the widen-vector method. 1285 for (unsigned nVT = i + 1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) { 1286 MVT SVT = (MVT::SimpleValueType) nVT; 1287 // Promote vectors of integers to vectors with the same number 1288 // of elements, with a wider element type. 1289 if (SVT.getVectorElementType().getSizeInBits() > EltVT.getSizeInBits() 1290 && SVT.getVectorNumElements() == NElts && isTypeLegal(SVT) 1291 && SVT.getScalarType().isInteger()) { 1292 TransformToType[i] = SVT; 1293 RegisterTypeForVT[i] = SVT; 1294 NumRegistersForVT[i] = 1; 1295 ValueTypeActions.setTypeAction(VT, TypePromoteInteger); 1296 IsLegalWiderType = true; 1297 break; 1298 } 1299 } 1300 if (IsLegalWiderType) 1301 break; 1302 } 1303 case TypeWidenVector: { 1304 // Try to widen the vector. 1305 for (unsigned nVT = i + 1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) { 1306 MVT SVT = (MVT::SimpleValueType) nVT; 1307 if (SVT.getVectorElementType() == EltVT 1308 && SVT.getVectorNumElements() > NElts && isTypeLegal(SVT)) { 1309 TransformToType[i] = SVT; 1310 RegisterTypeForVT[i] = SVT; 1311 NumRegistersForVT[i] = 1; 1312 ValueTypeActions.setTypeAction(VT, TypeWidenVector); 1313 IsLegalWiderType = true; 1314 break; 1315 } 1316 } 1317 if (IsLegalWiderType) 1318 break; 1319 } 1320 case TypeSplitVector: 1321 case TypeScalarizeVector: { 1322 MVT IntermediateVT; 1323 MVT RegisterVT; 1324 unsigned NumIntermediates; 1325 NumRegistersForVT[i] = getVectorTypeBreakdownMVT(VT, IntermediateVT, 1326 NumIntermediates, RegisterVT, this); 1327 RegisterTypeForVT[i] = RegisterVT; 1328 1329 MVT NVT = VT.getPow2VectorType(); 1330 if (NVT == VT) { 1331 // Type is already a power of 2. The default action is to split. 1332 TransformToType[i] = MVT::Other; 1333 if (PreferredAction == TypeScalarizeVector) 1334 ValueTypeActions.setTypeAction(VT, TypeScalarizeVector); 1335 else if (PreferredAction == TypeSplitVector) 1336 ValueTypeActions.setTypeAction(VT, TypeSplitVector); 1337 else 1338 // Set type action according to the number of elements. 1339 ValueTypeActions.setTypeAction(VT, NElts == 1 ? TypeScalarizeVector 1340 : TypeSplitVector); 1341 } else { 1342 TransformToType[i] = NVT; 1343 ValueTypeActions.setTypeAction(VT, TypeWidenVector); 1344 } 1345 break; 1346 } 1347 default: 1348 llvm_unreachable("Unknown vector legalization action!"); 1349 } 1350 } 1351 1352 // Determine the 'representative' register class for each value type. 1353 // An representative register class is the largest (meaning one which is 1354 // not a sub-register class / subreg register class) legal register class for 1355 // a group of value types. For example, on i386, i8, i16, and i32 1356 // representative would be GR32; while on x86_64 it's GR64. 1357 for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) { 1358 const TargetRegisterClass* RRC; 1359 uint8_t Cost; 1360 std::tie(RRC, Cost) = findRepresentativeClass(TRI, (MVT::SimpleValueType)i); 1361 RepRegClassForVT[i] = RRC; 1362 RepRegClassCostForVT[i] = Cost; 1363 } 1364 } 1365 1366 EVT TargetLoweringBase::getSetCCResultType(const DataLayout &DL, LLVMContext &, 1367 EVT VT) const { 1368 assert(!VT.isVector() && "No default SetCC type for vectors!"); 1369 return getPointerTy(DL).SimpleTy; 1370 } 1371 1372 MVT::SimpleValueType TargetLoweringBase::getCmpLibcallReturnType() const { 1373 return MVT::i32; // return the default value 1374 } 1375 1376 /// getVectorTypeBreakdown - Vector types are broken down into some number of 1377 /// legal first class types. For example, MVT::v8f32 maps to 2 MVT::v4f32 1378 /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack. 1379 /// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86. 1380 /// 1381 /// This method returns the number of registers needed, and the VT for each 1382 /// register. It also returns the VT and quantity of the intermediate values 1383 /// before they are promoted/expanded. 1384 /// 1385 unsigned TargetLoweringBase::getVectorTypeBreakdown(LLVMContext &Context, EVT VT, 1386 EVT &IntermediateVT, 1387 unsigned &NumIntermediates, 1388 MVT &RegisterVT) const { 1389 unsigned NumElts = VT.getVectorNumElements(); 1390 1391 // If there is a wider vector type with the same element type as this one, 1392 // or a promoted vector type that has the same number of elements which 1393 // are wider, then we should convert to that legal vector type. 1394 // This handles things like <2 x float> -> <4 x float> and 1395 // <4 x i1> -> <4 x i32>. 1396 LegalizeTypeAction TA = getTypeAction(Context, VT); 1397 if (NumElts != 1 && (TA == TypeWidenVector || TA == TypePromoteInteger)) { 1398 EVT RegisterEVT = getTypeToTransformTo(Context, VT); 1399 if (isTypeLegal(RegisterEVT)) { 1400 IntermediateVT = RegisterEVT; 1401 RegisterVT = RegisterEVT.getSimpleVT(); 1402 NumIntermediates = 1; 1403 return 1; 1404 } 1405 } 1406 1407 // Figure out the right, legal destination reg to copy into. 1408 EVT EltTy = VT.getVectorElementType(); 1409 1410 unsigned NumVectorRegs = 1; 1411 1412 // FIXME: We don't support non-power-of-2-sized vectors for now. Ideally we 1413 // could break down into LHS/RHS like LegalizeDAG does. 1414 if (!isPowerOf2_32(NumElts)) { 1415 NumVectorRegs = NumElts; 1416 NumElts = 1; 1417 } 1418 1419 // Divide the input until we get to a supported size. This will always 1420 // end with a scalar if the target doesn't support vectors. 1421 while (NumElts > 1 && !isTypeLegal( 1422 EVT::getVectorVT(Context, EltTy, NumElts))) { 1423 NumElts >>= 1; 1424 NumVectorRegs <<= 1; 1425 } 1426 1427 NumIntermediates = NumVectorRegs; 1428 1429 EVT NewVT = EVT::getVectorVT(Context, EltTy, NumElts); 1430 if (!isTypeLegal(NewVT)) 1431 NewVT = EltTy; 1432 IntermediateVT = NewVT; 1433 1434 MVT DestVT = getRegisterType(Context, NewVT); 1435 RegisterVT = DestVT; 1436 unsigned NewVTSize = NewVT.getSizeInBits(); 1437 1438 // Convert sizes such as i33 to i64. 1439 if (!isPowerOf2_32(NewVTSize)) 1440 NewVTSize = NextPowerOf2(NewVTSize); 1441 1442 if (EVT(DestVT).bitsLT(NewVT)) // Value is expanded, e.g. i64 -> i16. 1443 return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits()); 1444 1445 // Otherwise, promotion or legal types use the same number of registers as 1446 // the vector decimated to the appropriate level. 1447 return NumVectorRegs; 1448 } 1449 1450 /// Get the EVTs and ArgFlags collections that represent the legalized return 1451 /// type of the given function. This does not require a DAG or a return value, 1452 /// and is suitable for use before any DAGs for the function are constructed. 1453 /// TODO: Move this out of TargetLowering.cpp. 1454 void llvm::GetReturnInfo(Type *ReturnType, AttributeSet attr, 1455 SmallVectorImpl<ISD::OutputArg> &Outs, 1456 const TargetLowering &TLI, const DataLayout &DL) { 1457 SmallVector<EVT, 4> ValueVTs; 1458 ComputeValueVTs(TLI, DL, ReturnType, ValueVTs); 1459 unsigned NumValues = ValueVTs.size(); 1460 if (NumValues == 0) return; 1461 1462 for (unsigned j = 0, f = NumValues; j != f; ++j) { 1463 EVT VT = ValueVTs[j]; 1464 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1465 1466 if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt)) 1467 ExtendKind = ISD::SIGN_EXTEND; 1468 else if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt)) 1469 ExtendKind = ISD::ZERO_EXTEND; 1470 1471 // FIXME: C calling convention requires the return type to be promoted to 1472 // at least 32-bit. But this is not necessary for non-C calling 1473 // conventions. The frontend should mark functions whose return values 1474 // require promoting with signext or zeroext attributes. 1475 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) { 1476 MVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32); 1477 if (VT.bitsLT(MinVT)) 1478 VT = MinVT; 1479 } 1480 1481 unsigned NumParts = TLI.getNumRegisters(ReturnType->getContext(), VT); 1482 MVT PartVT = TLI.getRegisterType(ReturnType->getContext(), VT); 1483 1484 // 'inreg' on function refers to return value 1485 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1486 if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::InReg)) 1487 Flags.setInReg(); 1488 1489 // Propagate extension type if any 1490 if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt)) 1491 Flags.setSExt(); 1492 else if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt)) 1493 Flags.setZExt(); 1494 1495 for (unsigned i = 0; i < NumParts; ++i) 1496 Outs.push_back(ISD::OutputArg(Flags, PartVT, VT, /*isFixed=*/true, 0, 0)); 1497 } 1498 } 1499 1500 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate 1501 /// function arguments in the caller parameter area. This is the actual 1502 /// alignment, not its logarithm. 1503 unsigned TargetLoweringBase::getByValTypeAlignment(Type *Ty, 1504 const DataLayout &DL) const { 1505 return DL.getABITypeAlignment(Ty); 1506 } 1507 1508 bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context, 1509 const DataLayout &DL, EVT VT, 1510 unsigned AddrSpace, 1511 unsigned Alignment, 1512 bool *Fast) const { 1513 // Check if the specified alignment is sufficient based on the data layout. 1514 // TODO: While using the data layout works in practice, a better solution 1515 // would be to implement this check directly (make this a virtual function). 1516 // For example, the ABI alignment may change based on software platform while 1517 // this function should only be affected by hardware implementation. 1518 Type *Ty = VT.getTypeForEVT(Context); 1519 if (Alignment >= DL.getABITypeAlignment(Ty)) { 1520 // Assume that an access that meets the ABI-specified alignment is fast. 1521 if (Fast != nullptr) 1522 *Fast = true; 1523 return true; 1524 } 1525 1526 // This is a misaligned access. 1527 return allowsMisalignedMemoryAccesses(VT, AddrSpace, Alignment, Fast); 1528 } 1529 1530 1531 //===----------------------------------------------------------------------===// 1532 // TargetTransformInfo Helpers 1533 //===----------------------------------------------------------------------===// 1534 1535 int TargetLoweringBase::InstructionOpcodeToISD(unsigned Opcode) const { 1536 enum InstructionOpcodes { 1537 #define HANDLE_INST(NUM, OPCODE, CLASS) OPCODE = NUM, 1538 #define LAST_OTHER_INST(NUM) InstructionOpcodesCount = NUM 1539 #include "llvm/IR/Instruction.def" 1540 }; 1541 switch (static_cast<InstructionOpcodes>(Opcode)) { 1542 case Ret: return 0; 1543 case Br: return 0; 1544 case Switch: return 0; 1545 case IndirectBr: return 0; 1546 case Invoke: return 0; 1547 case Resume: return 0; 1548 case Unreachable: return 0; 1549 case CleanupRet: return 0; 1550 case CatchRet: return 0; 1551 case CatchPad: return 0; 1552 case CatchSwitch: return 0; 1553 case CleanupPad: return 0; 1554 case Add: return ISD::ADD; 1555 case FAdd: return ISD::FADD; 1556 case Sub: return ISD::SUB; 1557 case FSub: return ISD::FSUB; 1558 case Mul: return ISD::MUL; 1559 case FMul: return ISD::FMUL; 1560 case UDiv: return ISD::UDIV; 1561 case SDiv: return ISD::SDIV; 1562 case FDiv: return ISD::FDIV; 1563 case URem: return ISD::UREM; 1564 case SRem: return ISD::SREM; 1565 case FRem: return ISD::FREM; 1566 case Shl: return ISD::SHL; 1567 case LShr: return ISD::SRL; 1568 case AShr: return ISD::SRA; 1569 case And: return ISD::AND; 1570 case Or: return ISD::OR; 1571 case Xor: return ISD::XOR; 1572 case Alloca: return 0; 1573 case Load: return ISD::LOAD; 1574 case Store: return ISD::STORE; 1575 case GetElementPtr: return 0; 1576 case Fence: return 0; 1577 case AtomicCmpXchg: return 0; 1578 case AtomicRMW: return 0; 1579 case Trunc: return ISD::TRUNCATE; 1580 case ZExt: return ISD::ZERO_EXTEND; 1581 case SExt: return ISD::SIGN_EXTEND; 1582 case FPToUI: return ISD::FP_TO_UINT; 1583 case FPToSI: return ISD::FP_TO_SINT; 1584 case UIToFP: return ISD::UINT_TO_FP; 1585 case SIToFP: return ISD::SINT_TO_FP; 1586 case FPTrunc: return ISD::FP_ROUND; 1587 case FPExt: return ISD::FP_EXTEND; 1588 case PtrToInt: return ISD::BITCAST; 1589 case IntToPtr: return ISD::BITCAST; 1590 case BitCast: return ISD::BITCAST; 1591 case AddrSpaceCast: return ISD::ADDRSPACECAST; 1592 case ICmp: return ISD::SETCC; 1593 case FCmp: return ISD::SETCC; 1594 case PHI: return 0; 1595 case Call: return 0; 1596 case Select: return ISD::SELECT; 1597 case UserOp1: return 0; 1598 case UserOp2: return 0; 1599 case VAArg: return 0; 1600 case ExtractElement: return ISD::EXTRACT_VECTOR_ELT; 1601 case InsertElement: return ISD::INSERT_VECTOR_ELT; 1602 case ShuffleVector: return ISD::VECTOR_SHUFFLE; 1603 case ExtractValue: return ISD::MERGE_VALUES; 1604 case InsertValue: return ISD::MERGE_VALUES; 1605 case LandingPad: return 0; 1606 } 1607 1608 llvm_unreachable("Unknown instruction type encountered!"); 1609 } 1610 1611 std::pair<int, MVT> 1612 TargetLoweringBase::getTypeLegalizationCost(const DataLayout &DL, 1613 Type *Ty) const { 1614 LLVMContext &C = Ty->getContext(); 1615 EVT MTy = getValueType(DL, Ty); 1616 1617 int Cost = 1; 1618 // We keep legalizing the type until we find a legal kind. We assume that 1619 // the only operation that costs anything is the split. After splitting 1620 // we need to handle two types. 1621 while (true) { 1622 LegalizeKind LK = getTypeConversion(C, MTy); 1623 1624 if (LK.first == TypeLegal) 1625 return std::make_pair(Cost, MTy.getSimpleVT()); 1626 1627 if (LK.first == TypeSplitVector || LK.first == TypeExpandInteger) 1628 Cost *= 2; 1629 1630 // Do not loop with f128 type. 1631 if (MTy == LK.second) 1632 return std::make_pair(Cost, MTy.getSimpleVT()); 1633 1634 // Keep legalizing the type. 1635 MTy = LK.second; 1636 } 1637 } 1638 1639 Value *TargetLoweringBase::getSafeStackPointerLocation(IRBuilder<> &IRB) const { 1640 if (!TM.getTargetTriple().isAndroid()) 1641 return nullptr; 1642 1643 // Android provides a libc function to retrieve the address of the current 1644 // thread's unsafe stack pointer. 1645 Module *M = IRB.GetInsertBlock()->getParent()->getParent(); 1646 Type *StackPtrTy = Type::getInt8PtrTy(M->getContext()); 1647 Value *Fn = M->getOrInsertFunction("__safestack_pointer_address", 1648 StackPtrTy->getPointerTo(0), nullptr); 1649 return IRB.CreateCall(Fn); 1650 } 1651 1652 //===----------------------------------------------------------------------===// 1653 // Loop Strength Reduction hooks 1654 //===----------------------------------------------------------------------===// 1655 1656 /// isLegalAddressingMode - Return true if the addressing mode represented 1657 /// by AM is legal for this target, for a load/store of the specified type. 1658 bool TargetLoweringBase::isLegalAddressingMode(const DataLayout &DL, 1659 const AddrMode &AM, Type *Ty, 1660 unsigned AS) const { 1661 // The default implementation of this implements a conservative RISCy, r+r and 1662 // r+i addr mode. 1663 1664 // Allows a sign-extended 16-bit immediate field. 1665 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1) 1666 return false; 1667 1668 // No global is ever allowed as a base. 1669 if (AM.BaseGV) 1670 return false; 1671 1672 // Only support r+r, 1673 switch (AM.Scale) { 1674 case 0: // "r+i" or just "i", depending on HasBaseReg. 1675 break; 1676 case 1: 1677 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed. 1678 return false; 1679 // Otherwise we have r+r or r+i. 1680 break; 1681 case 2: 1682 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed. 1683 return false; 1684 // Allow 2*r as r+r. 1685 break; 1686 default: // Don't allow n * r 1687 return false; 1688 } 1689 1690 return true; 1691 } 1692