Home | History | Annotate | Download | only in Linker
      1 //===- lib/Linker/IRMover.cpp ---------------------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 
     10 #include "llvm/Linker/IRMover.h"
     11 #include "LinkDiagnosticInfo.h"
     12 #include "llvm/ADT/SetVector.h"
     13 #include "llvm/ADT/SmallString.h"
     14 #include "llvm/ADT/Triple.h"
     15 #include "llvm/IR/Constants.h"
     16 #include "llvm/IR/DebugInfo.h"
     17 #include "llvm/IR/DiagnosticPrinter.h"
     18 #include "llvm/IR/GVMaterializer.h"
     19 #include "llvm/IR/TypeFinder.h"
     20 #include "llvm/Transforms/Utils/Cloning.h"
     21 using namespace llvm;
     22 
     23 //===----------------------------------------------------------------------===//
     24 // TypeMap implementation.
     25 //===----------------------------------------------------------------------===//
     26 
     27 namespace {
     28 class TypeMapTy : public ValueMapTypeRemapper {
     29   /// This is a mapping from a source type to a destination type to use.
     30   DenseMap<Type *, Type *> MappedTypes;
     31 
     32   /// When checking to see if two subgraphs are isomorphic, we speculatively
     33   /// add types to MappedTypes, but keep track of them here in case we need to
     34   /// roll back.
     35   SmallVector<Type *, 16> SpeculativeTypes;
     36 
     37   SmallVector<StructType *, 16> SpeculativeDstOpaqueTypes;
     38 
     39   /// This is a list of non-opaque structs in the source module that are mapped
     40   /// to an opaque struct in the destination module.
     41   SmallVector<StructType *, 16> SrcDefinitionsToResolve;
     42 
     43   /// This is the set of opaque types in the destination modules who are
     44   /// getting a body from the source module.
     45   SmallPtrSet<StructType *, 16> DstResolvedOpaqueTypes;
     46 
     47 public:
     48   TypeMapTy(IRMover::IdentifiedStructTypeSet &DstStructTypesSet)
     49       : DstStructTypesSet(DstStructTypesSet) {}
     50 
     51   IRMover::IdentifiedStructTypeSet &DstStructTypesSet;
     52   /// Indicate that the specified type in the destination module is conceptually
     53   /// equivalent to the specified type in the source module.
     54   void addTypeMapping(Type *DstTy, Type *SrcTy);
     55 
     56   /// Produce a body for an opaque type in the dest module from a type
     57   /// definition in the source module.
     58   void linkDefinedTypeBodies();
     59 
     60   /// Return the mapped type to use for the specified input type from the
     61   /// source module.
     62   Type *get(Type *SrcTy);
     63   Type *get(Type *SrcTy, SmallPtrSet<StructType *, 8> &Visited);
     64 
     65   void finishType(StructType *DTy, StructType *STy, ArrayRef<Type *> ETypes);
     66 
     67   FunctionType *get(FunctionType *T) {
     68     return cast<FunctionType>(get((Type *)T));
     69   }
     70 
     71 private:
     72   Type *remapType(Type *SrcTy) override { return get(SrcTy); }
     73 
     74   bool areTypesIsomorphic(Type *DstTy, Type *SrcTy);
     75 };
     76 }
     77 
     78 void TypeMapTy::addTypeMapping(Type *DstTy, Type *SrcTy) {
     79   assert(SpeculativeTypes.empty());
     80   assert(SpeculativeDstOpaqueTypes.empty());
     81 
     82   // Check to see if these types are recursively isomorphic and establish a
     83   // mapping between them if so.
     84   if (!areTypesIsomorphic(DstTy, SrcTy)) {
     85     // Oops, they aren't isomorphic.  Just discard this request by rolling out
     86     // any speculative mappings we've established.
     87     for (Type *Ty : SpeculativeTypes)
     88       MappedTypes.erase(Ty);
     89 
     90     SrcDefinitionsToResolve.resize(SrcDefinitionsToResolve.size() -
     91                                    SpeculativeDstOpaqueTypes.size());
     92     for (StructType *Ty : SpeculativeDstOpaqueTypes)
     93       DstResolvedOpaqueTypes.erase(Ty);
     94   } else {
     95     for (Type *Ty : SpeculativeTypes)
     96       if (auto *STy = dyn_cast<StructType>(Ty))
     97         if (STy->hasName())
     98           STy->setName("");
     99   }
    100   SpeculativeTypes.clear();
    101   SpeculativeDstOpaqueTypes.clear();
    102 }
    103 
    104 /// Recursively walk this pair of types, returning true if they are isomorphic,
    105 /// false if they are not.
    106 bool TypeMapTy::areTypesIsomorphic(Type *DstTy, Type *SrcTy) {
    107   // Two types with differing kinds are clearly not isomorphic.
    108   if (DstTy->getTypeID() != SrcTy->getTypeID())
    109     return false;
    110 
    111   // If we have an entry in the MappedTypes table, then we have our answer.
    112   Type *&Entry = MappedTypes[SrcTy];
    113   if (Entry)
    114     return Entry == DstTy;
    115 
    116   // Two identical types are clearly isomorphic.  Remember this
    117   // non-speculatively.
    118   if (DstTy == SrcTy) {
    119     Entry = DstTy;
    120     return true;
    121   }
    122 
    123   // Okay, we have two types with identical kinds that we haven't seen before.
    124 
    125   // If this is an opaque struct type, special case it.
    126   if (StructType *SSTy = dyn_cast<StructType>(SrcTy)) {
    127     // Mapping an opaque type to any struct, just keep the dest struct.
    128     if (SSTy->isOpaque()) {
    129       Entry = DstTy;
    130       SpeculativeTypes.push_back(SrcTy);
    131       return true;
    132     }
    133 
    134     // Mapping a non-opaque source type to an opaque dest.  If this is the first
    135     // type that we're mapping onto this destination type then we succeed.  Keep
    136     // the dest, but fill it in later. If this is the second (different) type
    137     // that we're trying to map onto the same opaque type then we fail.
    138     if (cast<StructType>(DstTy)->isOpaque()) {
    139       // We can only map one source type onto the opaque destination type.
    140       if (!DstResolvedOpaqueTypes.insert(cast<StructType>(DstTy)).second)
    141         return false;
    142       SrcDefinitionsToResolve.push_back(SSTy);
    143       SpeculativeTypes.push_back(SrcTy);
    144       SpeculativeDstOpaqueTypes.push_back(cast<StructType>(DstTy));
    145       Entry = DstTy;
    146       return true;
    147     }
    148   }
    149 
    150   // If the number of subtypes disagree between the two types, then we fail.
    151   if (SrcTy->getNumContainedTypes() != DstTy->getNumContainedTypes())
    152     return false;
    153 
    154   // Fail if any of the extra properties (e.g. array size) of the type disagree.
    155   if (isa<IntegerType>(DstTy))
    156     return false; // bitwidth disagrees.
    157   if (PointerType *PT = dyn_cast<PointerType>(DstTy)) {
    158     if (PT->getAddressSpace() != cast<PointerType>(SrcTy)->getAddressSpace())
    159       return false;
    160 
    161   } else if (FunctionType *FT = dyn_cast<FunctionType>(DstTy)) {
    162     if (FT->isVarArg() != cast<FunctionType>(SrcTy)->isVarArg())
    163       return false;
    164   } else if (StructType *DSTy = dyn_cast<StructType>(DstTy)) {
    165     StructType *SSTy = cast<StructType>(SrcTy);
    166     if (DSTy->isLiteral() != SSTy->isLiteral() ||
    167         DSTy->isPacked() != SSTy->isPacked())
    168       return false;
    169   } else if (ArrayType *DATy = dyn_cast<ArrayType>(DstTy)) {
    170     if (DATy->getNumElements() != cast<ArrayType>(SrcTy)->getNumElements())
    171       return false;
    172   } else if (VectorType *DVTy = dyn_cast<VectorType>(DstTy)) {
    173     if (DVTy->getNumElements() != cast<VectorType>(SrcTy)->getNumElements())
    174       return false;
    175   }
    176 
    177   // Otherwise, we speculate that these two types will line up and recursively
    178   // check the subelements.
    179   Entry = DstTy;
    180   SpeculativeTypes.push_back(SrcTy);
    181 
    182   for (unsigned I = 0, E = SrcTy->getNumContainedTypes(); I != E; ++I)
    183     if (!areTypesIsomorphic(DstTy->getContainedType(I),
    184                             SrcTy->getContainedType(I)))
    185       return false;
    186 
    187   // If everything seems to have lined up, then everything is great.
    188   return true;
    189 }
    190 
    191 void TypeMapTy::linkDefinedTypeBodies() {
    192   SmallVector<Type *, 16> Elements;
    193   for (StructType *SrcSTy : SrcDefinitionsToResolve) {
    194     StructType *DstSTy = cast<StructType>(MappedTypes[SrcSTy]);
    195     assert(DstSTy->isOpaque());
    196 
    197     // Map the body of the source type over to a new body for the dest type.
    198     Elements.resize(SrcSTy->getNumElements());
    199     for (unsigned I = 0, E = Elements.size(); I != E; ++I)
    200       Elements[I] = get(SrcSTy->getElementType(I));
    201 
    202     DstSTy->setBody(Elements, SrcSTy->isPacked());
    203     DstStructTypesSet.switchToNonOpaque(DstSTy);
    204   }
    205   SrcDefinitionsToResolve.clear();
    206   DstResolvedOpaqueTypes.clear();
    207 }
    208 
    209 void TypeMapTy::finishType(StructType *DTy, StructType *STy,
    210                            ArrayRef<Type *> ETypes) {
    211   DTy->setBody(ETypes, STy->isPacked());
    212 
    213   // Steal STy's name.
    214   if (STy->hasName()) {
    215     SmallString<16> TmpName = STy->getName();
    216     STy->setName("");
    217     DTy->setName(TmpName);
    218   }
    219 
    220   DstStructTypesSet.addNonOpaque(DTy);
    221 }
    222 
    223 Type *TypeMapTy::get(Type *Ty) {
    224   SmallPtrSet<StructType *, 8> Visited;
    225   return get(Ty, Visited);
    226 }
    227 
    228 Type *TypeMapTy::get(Type *Ty, SmallPtrSet<StructType *, 8> &Visited) {
    229   // If we already have an entry for this type, return it.
    230   Type **Entry = &MappedTypes[Ty];
    231   if (*Entry)
    232     return *Entry;
    233 
    234   // These are types that LLVM itself will unique.
    235   bool IsUniqued = !isa<StructType>(Ty) || cast<StructType>(Ty)->isLiteral();
    236 
    237 #ifndef NDEBUG
    238   if (!IsUniqued) {
    239     for (auto &Pair : MappedTypes) {
    240       assert(!(Pair.first != Ty && Pair.second == Ty) &&
    241              "mapping to a source type");
    242     }
    243   }
    244 #endif
    245 
    246   if (!IsUniqued && !Visited.insert(cast<StructType>(Ty)).second) {
    247     StructType *DTy = StructType::create(Ty->getContext());
    248     return *Entry = DTy;
    249   }
    250 
    251   // If this is not a recursive type, then just map all of the elements and
    252   // then rebuild the type from inside out.
    253   SmallVector<Type *, 4> ElementTypes;
    254 
    255   // If there are no element types to map, then the type is itself.  This is
    256   // true for the anonymous {} struct, things like 'float', integers, etc.
    257   if (Ty->getNumContainedTypes() == 0 && IsUniqued)
    258     return *Entry = Ty;
    259 
    260   // Remap all of the elements, keeping track of whether any of them change.
    261   bool AnyChange = false;
    262   ElementTypes.resize(Ty->getNumContainedTypes());
    263   for (unsigned I = 0, E = Ty->getNumContainedTypes(); I != E; ++I) {
    264     ElementTypes[I] = get(Ty->getContainedType(I), Visited);
    265     AnyChange |= ElementTypes[I] != Ty->getContainedType(I);
    266   }
    267 
    268   // If we found our type while recursively processing stuff, just use it.
    269   Entry = &MappedTypes[Ty];
    270   if (*Entry) {
    271     if (auto *DTy = dyn_cast<StructType>(*Entry)) {
    272       if (DTy->isOpaque()) {
    273         auto *STy = cast<StructType>(Ty);
    274         finishType(DTy, STy, ElementTypes);
    275       }
    276     }
    277     return *Entry;
    278   }
    279 
    280   // If all of the element types mapped directly over and the type is not
    281   // a nomed struct, then the type is usable as-is.
    282   if (!AnyChange && IsUniqued)
    283     return *Entry = Ty;
    284 
    285   // Otherwise, rebuild a modified type.
    286   switch (Ty->getTypeID()) {
    287   default:
    288     llvm_unreachable("unknown derived type to remap");
    289   case Type::ArrayTyID:
    290     return *Entry = ArrayType::get(ElementTypes[0],
    291                                    cast<ArrayType>(Ty)->getNumElements());
    292   case Type::VectorTyID:
    293     return *Entry = VectorType::get(ElementTypes[0],
    294                                     cast<VectorType>(Ty)->getNumElements());
    295   case Type::PointerTyID:
    296     return *Entry = PointerType::get(ElementTypes[0],
    297                                      cast<PointerType>(Ty)->getAddressSpace());
    298   case Type::FunctionTyID:
    299     return *Entry = FunctionType::get(ElementTypes[0],
    300                                       makeArrayRef(ElementTypes).slice(1),
    301                                       cast<FunctionType>(Ty)->isVarArg());
    302   case Type::StructTyID: {
    303     auto *STy = cast<StructType>(Ty);
    304     bool IsPacked = STy->isPacked();
    305     if (IsUniqued)
    306       return *Entry = StructType::get(Ty->getContext(), ElementTypes, IsPacked);
    307 
    308     // If the type is opaque, we can just use it directly.
    309     if (STy->isOpaque()) {
    310       DstStructTypesSet.addOpaque(STy);
    311       return *Entry = Ty;
    312     }
    313 
    314     if (StructType *OldT =
    315             DstStructTypesSet.findNonOpaque(ElementTypes, IsPacked)) {
    316       STy->setName("");
    317       return *Entry = OldT;
    318     }
    319 
    320     if (!AnyChange) {
    321       DstStructTypesSet.addNonOpaque(STy);
    322       return *Entry = Ty;
    323     }
    324 
    325     StructType *DTy = StructType::create(Ty->getContext());
    326     finishType(DTy, STy, ElementTypes);
    327     return *Entry = DTy;
    328   }
    329   }
    330 }
    331 
    332 LinkDiagnosticInfo::LinkDiagnosticInfo(DiagnosticSeverity Severity,
    333                                        const Twine &Msg)
    334     : DiagnosticInfo(DK_Linker, Severity), Msg(Msg) {}
    335 void LinkDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; }
    336 
    337 //===----------------------------------------------------------------------===//
    338 // IRLinker implementation.
    339 //===----------------------------------------------------------------------===//
    340 
    341 namespace {
    342 class IRLinker;
    343 
    344 /// Creates prototypes for functions that are lazily linked on the fly. This
    345 /// speeds up linking for modules with many/ lazily linked functions of which
    346 /// few get used.
    347 class GlobalValueMaterializer final : public ValueMaterializer {
    348   IRLinker *TheIRLinker;
    349 
    350 public:
    351   GlobalValueMaterializer(IRLinker *TheIRLinker) : TheIRLinker(TheIRLinker) {}
    352   Value *materializeDeclFor(Value *V) override;
    353   void materializeInitFor(GlobalValue *New, GlobalValue *Old) override;
    354   Metadata *mapTemporaryMetadata(Metadata *MD) override;
    355   void replaceTemporaryMetadata(const Metadata *OrigMD,
    356                                 Metadata *NewMD) override;
    357   bool isMetadataNeeded(Metadata *MD) override;
    358 };
    359 
    360 class LocalValueMaterializer final : public ValueMaterializer {
    361   IRLinker *TheIRLinker;
    362 
    363 public:
    364   LocalValueMaterializer(IRLinker *TheIRLinker) : TheIRLinker(TheIRLinker) {}
    365   Value *materializeDeclFor(Value *V) override;
    366   void materializeInitFor(GlobalValue *New, GlobalValue *Old) override;
    367   Metadata *mapTemporaryMetadata(Metadata *MD) override;
    368   void replaceTemporaryMetadata(const Metadata *OrigMD,
    369                                 Metadata *NewMD) override;
    370   bool isMetadataNeeded(Metadata *MD) override;
    371 };
    372 
    373 /// This is responsible for keeping track of the state used for moving data
    374 /// from SrcM to DstM.
    375 class IRLinker {
    376   Module &DstM;
    377   Module &SrcM;
    378 
    379   std::function<void(GlobalValue &, IRMover::ValueAdder)> AddLazyFor;
    380 
    381   TypeMapTy TypeMap;
    382   GlobalValueMaterializer GValMaterializer;
    383   LocalValueMaterializer LValMaterializer;
    384 
    385   /// Mapping of values from what they used to be in Src, to what they are now
    386   /// in DstM.  ValueToValueMapTy is a ValueMap, which involves some overhead
    387   /// due to the use of Value handles which the Linker doesn't actually need,
    388   /// but this allows us to reuse the ValueMapper code.
    389   ValueToValueMapTy ValueMap;
    390   ValueToValueMapTy AliasValueMap;
    391 
    392   DenseSet<GlobalValue *> ValuesToLink;
    393   std::vector<GlobalValue *> Worklist;
    394 
    395   void maybeAdd(GlobalValue *GV) {
    396     if (ValuesToLink.insert(GV).second)
    397       Worklist.push_back(GV);
    398   }
    399 
    400   /// Set to true when all global value body linking is complete (including
    401   /// lazy linking). Used to prevent metadata linking from creating new
    402   /// references.
    403   bool DoneLinkingBodies = false;
    404 
    405   bool HasError = false;
    406 
    407   /// Flag indicating that we are just linking metadata (after function
    408   /// importing).
    409   bool IsMetadataLinkingPostpass;
    410 
    411   /// Flags to pass to value mapper invocations.
    412   RemapFlags ValueMapperFlags = RF_MoveDistinctMDs;
    413 
    414   /// Association between metadata values created during bitcode parsing and
    415   /// the value id. Used to correlate temporary metadata created during
    416   /// function importing with the final metadata parsed during the subsequent
    417   /// metadata linking postpass.
    418   DenseMap<const Metadata *, unsigned> MDValueToValIDMap;
    419 
    420   /// Association between metadata value id and temporary metadata that
    421   /// remains unmapped after function importing. Saved during function
    422   /// importing and consumed during the metadata linking postpass.
    423   DenseMap<unsigned, MDNode *> *ValIDToTempMDMap;
    424 
    425   /// Set of subprogram metadata that does not need to be linked into the
    426   /// destination module, because the functions were not imported directly
    427   /// or via an inlined body in an imported function.
    428   SmallPtrSet<const Metadata *, 16> UnneededSubprograms;
    429 
    430   /// Handles cloning of a global values from the source module into
    431   /// the destination module, including setting the attributes and visibility.
    432   GlobalValue *copyGlobalValueProto(const GlobalValue *SGV, bool ForDefinition);
    433 
    434   /// Helper method for setting a message and returning an error code.
    435   bool emitError(const Twine &Message) {
    436     SrcM.getContext().diagnose(LinkDiagnosticInfo(DS_Error, Message));
    437     HasError = true;
    438     return true;
    439   }
    440 
    441   void emitWarning(const Twine &Message) {
    442     SrcM.getContext().diagnose(LinkDiagnosticInfo(DS_Warning, Message));
    443   }
    444 
    445   /// Check whether we should be linking metadata from the source module.
    446   bool shouldLinkMetadata() {
    447     // ValIDToTempMDMap will be non-null when we are importing or otherwise want
    448     // to link metadata lazily, and then when linking the metadata.
    449     // We only want to return true for the former case.
    450     return ValIDToTempMDMap == nullptr || IsMetadataLinkingPostpass;
    451   }
    452 
    453   /// Given a global in the source module, return the global in the
    454   /// destination module that is being linked to, if any.
    455   GlobalValue *getLinkedToGlobal(const GlobalValue *SrcGV) {
    456     // If the source has no name it can't link.  If it has local linkage,
    457     // there is no name match-up going on.
    458     if (!SrcGV->hasName() || SrcGV->hasLocalLinkage())
    459       return nullptr;
    460 
    461     // Otherwise see if we have a match in the destination module's symtab.
    462     GlobalValue *DGV = DstM.getNamedValue(SrcGV->getName());
    463     if (!DGV)
    464       return nullptr;
    465 
    466     // If we found a global with the same name in the dest module, but it has
    467     // internal linkage, we are really not doing any linkage here.
    468     if (DGV->hasLocalLinkage())
    469       return nullptr;
    470 
    471     // Otherwise, we do in fact link to the destination global.
    472     return DGV;
    473   }
    474 
    475   void computeTypeMapping();
    476 
    477   Constant *linkAppendingVarProto(GlobalVariable *DstGV,
    478                                   const GlobalVariable *SrcGV);
    479 
    480   bool shouldLink(GlobalValue *DGV, GlobalValue &SGV);
    481   Constant *linkGlobalValueProto(GlobalValue *GV, bool ForAlias);
    482 
    483   bool linkModuleFlagsMetadata();
    484 
    485   void linkGlobalInit(GlobalVariable &Dst, GlobalVariable &Src);
    486   bool linkFunctionBody(Function &Dst, Function &Src);
    487   void linkAliasBody(GlobalAlias &Dst, GlobalAlias &Src);
    488   bool linkGlobalValueBody(GlobalValue &Dst, GlobalValue &Src);
    489 
    490   /// Functions that take care of cloning a specific global value type
    491   /// into the destination module.
    492   GlobalVariable *copyGlobalVariableProto(const GlobalVariable *SGVar);
    493   Function *copyFunctionProto(const Function *SF);
    494   GlobalValue *copyGlobalAliasProto(const GlobalAlias *SGA);
    495 
    496   void linkNamedMDNodes();
    497 
    498   /// Populate the UnneededSubprograms set with the DISubprogram metadata
    499   /// from the source module that we don't need to link into the dest module,
    500   /// because the functions were not imported directly or via an inlined body
    501   /// in an imported function.
    502   void findNeededSubprograms(ValueToValueMapTy &ValueMap);
    503 
    504   /// The value mapper leaves nulls in the list of subprograms for any
    505   /// in the UnneededSubprograms map. Strip those out after metadata linking.
    506   void stripNullSubprograms();
    507 
    508 public:
    509   IRLinker(Module &DstM, IRMover::IdentifiedStructTypeSet &Set, Module &SrcM,
    510            ArrayRef<GlobalValue *> ValuesToLink,
    511            std::function<void(GlobalValue &, IRMover::ValueAdder)> AddLazyFor,
    512            DenseMap<unsigned, MDNode *> *ValIDToTempMDMap = nullptr,
    513            bool IsMetadataLinkingPostpass = false)
    514       : DstM(DstM), SrcM(SrcM), AddLazyFor(AddLazyFor), TypeMap(Set),
    515         GValMaterializer(this), LValMaterializer(this),
    516         IsMetadataLinkingPostpass(IsMetadataLinkingPostpass),
    517         ValIDToTempMDMap(ValIDToTempMDMap) {
    518     for (GlobalValue *GV : ValuesToLink)
    519       maybeAdd(GV);
    520 
    521     // If appropriate, tell the value mapper that it can expect to see
    522     // temporary metadata.
    523     if (!shouldLinkMetadata())
    524       ValueMapperFlags = ValueMapperFlags | RF_HaveUnmaterializedMetadata;
    525   }
    526 
    527   bool run();
    528   Value *materializeDeclFor(Value *V, bool ForAlias);
    529   void materializeInitFor(GlobalValue *New, GlobalValue *Old, bool ForAlias);
    530 
    531   /// Save the mapping between the given temporary metadata and its metadata
    532   /// value id. Used to support metadata linking as a postpass for function
    533   /// importing.
    534   Metadata *mapTemporaryMetadata(Metadata *MD);
    535 
    536   /// Replace any temporary metadata saved for the source metadata's id with
    537   /// the new non-temporary metadata. Used when metadata linking as a postpass
    538   /// for function importing.
    539   void replaceTemporaryMetadata(const Metadata *OrigMD, Metadata *NewMD);
    540 
    541   /// Indicates whether we need to map the given metadata into the destination
    542   /// module. Used to prevent linking of metadata only needed by functions not
    543   /// linked into the dest module.
    544   bool isMetadataNeeded(Metadata *MD);
    545 };
    546 }
    547 
    548 /// The LLVM SymbolTable class autorenames globals that conflict in the symbol
    549 /// table. This is good for all clients except for us. Go through the trouble
    550 /// to force this back.
    551 static void forceRenaming(GlobalValue *GV, StringRef Name) {
    552   // If the global doesn't force its name or if it already has the right name,
    553   // there is nothing for us to do.
    554   if (GV->hasLocalLinkage() || GV->getName() == Name)
    555     return;
    556 
    557   Module *M = GV->getParent();
    558 
    559   // If there is a conflict, rename the conflict.
    560   if (GlobalValue *ConflictGV = M->getNamedValue(Name)) {
    561     GV->takeName(ConflictGV);
    562     ConflictGV->setName(Name); // This will cause ConflictGV to get renamed
    563     assert(ConflictGV->getName() != Name && "forceRenaming didn't work");
    564   } else {
    565     GV->setName(Name); // Force the name back
    566   }
    567 }
    568 
    569 Value *GlobalValueMaterializer::materializeDeclFor(Value *V) {
    570   return TheIRLinker->materializeDeclFor(V, false);
    571 }
    572 
    573 void GlobalValueMaterializer::materializeInitFor(GlobalValue *New,
    574                                                  GlobalValue *Old) {
    575   TheIRLinker->materializeInitFor(New, Old, false);
    576 }
    577 
    578 Metadata *GlobalValueMaterializer::mapTemporaryMetadata(Metadata *MD) {
    579   return TheIRLinker->mapTemporaryMetadata(MD);
    580 }
    581 
    582 void GlobalValueMaterializer::replaceTemporaryMetadata(const Metadata *OrigMD,
    583                                                        Metadata *NewMD) {
    584   TheIRLinker->replaceTemporaryMetadata(OrigMD, NewMD);
    585 }
    586 
    587 bool GlobalValueMaterializer::isMetadataNeeded(Metadata *MD) {
    588   return TheIRLinker->isMetadataNeeded(MD);
    589 }
    590 
    591 Value *LocalValueMaterializer::materializeDeclFor(Value *V) {
    592   return TheIRLinker->materializeDeclFor(V, true);
    593 }
    594 
    595 void LocalValueMaterializer::materializeInitFor(GlobalValue *New,
    596                                                 GlobalValue *Old) {
    597   TheIRLinker->materializeInitFor(New, Old, true);
    598 }
    599 
    600 Metadata *LocalValueMaterializer::mapTemporaryMetadata(Metadata *MD) {
    601   return TheIRLinker->mapTemporaryMetadata(MD);
    602 }
    603 
    604 void LocalValueMaterializer::replaceTemporaryMetadata(const Metadata *OrigMD,
    605                                                       Metadata *NewMD) {
    606   TheIRLinker->replaceTemporaryMetadata(OrigMD, NewMD);
    607 }
    608 
    609 bool LocalValueMaterializer::isMetadataNeeded(Metadata *MD) {
    610   return TheIRLinker->isMetadataNeeded(MD);
    611 }
    612 
    613 Value *IRLinker::materializeDeclFor(Value *V, bool ForAlias) {
    614   auto *SGV = dyn_cast<GlobalValue>(V);
    615   if (!SGV)
    616     return nullptr;
    617 
    618   return linkGlobalValueProto(SGV, ForAlias);
    619 }
    620 
    621 void IRLinker::materializeInitFor(GlobalValue *New, GlobalValue *Old,
    622                                   bool ForAlias) {
    623   // If we already created the body, just return.
    624   if (auto *F = dyn_cast<Function>(New)) {
    625     if (!F->isDeclaration())
    626       return;
    627   } else if (auto *V = dyn_cast<GlobalVariable>(New)) {
    628     if (V->hasInitializer())
    629       return;
    630   } else {
    631     auto *A = cast<GlobalAlias>(New);
    632     if (A->getAliasee())
    633       return;
    634   }
    635 
    636   if (ForAlias || shouldLink(New, *Old))
    637     linkGlobalValueBody(*New, *Old);
    638 }
    639 
    640 Metadata *IRLinker::mapTemporaryMetadata(Metadata *MD) {
    641   if (!ValIDToTempMDMap)
    642     return nullptr;
    643   // If this temporary metadata has a value id recorded during function
    644   // parsing, record that in the ValIDToTempMDMap if one was provided.
    645   if (MDValueToValIDMap.count(MD)) {
    646     unsigned Idx = MDValueToValIDMap[MD];
    647     // Check if we created a temp MD when importing a different function from
    648     // this module. If so, reuse it the same temporary metadata, otherwise
    649     // add this temporary metadata to the map.
    650     if (!ValIDToTempMDMap->count(Idx)) {
    651       MDNode *Node = cast<MDNode>(MD);
    652       assert(Node->isTemporary());
    653       (*ValIDToTempMDMap)[Idx] = Node;
    654     }
    655     return (*ValIDToTempMDMap)[Idx];
    656   }
    657   return nullptr;
    658 }
    659 
    660 void IRLinker::replaceTemporaryMetadata(const Metadata *OrigMD,
    661                                         Metadata *NewMD) {
    662   if (!ValIDToTempMDMap)
    663     return;
    664 #ifndef NDEBUG
    665   auto *N = dyn_cast_or_null<MDNode>(NewMD);
    666   assert(!N || !N->isTemporary());
    667 #endif
    668   // If a mapping between metadata value ids and temporary metadata
    669   // created during function importing was provided, and the source
    670   // metadata has a value id recorded during metadata parsing, replace
    671   // the temporary metadata with the final mapped metadata now.
    672   if (MDValueToValIDMap.count(OrigMD)) {
    673     unsigned Idx = MDValueToValIDMap[OrigMD];
    674     // Nothing to do if we didn't need to create a temporary metadata during
    675     // function importing.
    676     if (!ValIDToTempMDMap->count(Idx))
    677       return;
    678     MDNode *TempMD = (*ValIDToTempMDMap)[Idx];
    679     TempMD->replaceAllUsesWith(NewMD);
    680     MDNode::deleteTemporary(TempMD);
    681     ValIDToTempMDMap->erase(Idx);
    682   }
    683 }
    684 
    685 bool IRLinker::isMetadataNeeded(Metadata *MD) {
    686   // Currently only DISubprogram metadata is marked as being unneeded.
    687   if (UnneededSubprograms.empty())
    688     return true;
    689   MDNode *Node = dyn_cast<MDNode>(MD);
    690   if (!Node)
    691     return true;
    692   DISubprogram *SP = getDISubprogram(Node);
    693   if (!SP)
    694     return true;
    695   return !UnneededSubprograms.count(SP);
    696 }
    697 
    698 /// Loop through the global variables in the src module and merge them into the
    699 /// dest module.
    700 GlobalVariable *IRLinker::copyGlobalVariableProto(const GlobalVariable *SGVar) {
    701   // No linking to be performed or linking from the source: simply create an
    702   // identical version of the symbol over in the dest module... the
    703   // initializer will be filled in later by LinkGlobalInits.
    704   GlobalVariable *NewDGV =
    705       new GlobalVariable(DstM, TypeMap.get(SGVar->getType()->getElementType()),
    706                          SGVar->isConstant(), GlobalValue::ExternalLinkage,
    707                          /*init*/ nullptr, SGVar->getName(),
    708                          /*insertbefore*/ nullptr, SGVar->getThreadLocalMode(),
    709                          SGVar->getType()->getAddressSpace());
    710   NewDGV->setAlignment(SGVar->getAlignment());
    711   return NewDGV;
    712 }
    713 
    714 /// Link the function in the source module into the destination module if
    715 /// needed, setting up mapping information.
    716 Function *IRLinker::copyFunctionProto(const Function *SF) {
    717   // If there is no linkage to be performed or we are linking from the source,
    718   // bring SF over.
    719   return Function::Create(TypeMap.get(SF->getFunctionType()),
    720                           GlobalValue::ExternalLinkage, SF->getName(), &DstM);
    721 }
    722 
    723 /// Set up prototypes for any aliases that come over from the source module.
    724 GlobalValue *IRLinker::copyGlobalAliasProto(const GlobalAlias *SGA) {
    725   // If there is no linkage to be performed or we're linking from the source,
    726   // bring over SGA.
    727   auto *Ty = TypeMap.get(SGA->getValueType());
    728   return GlobalAlias::create(Ty, SGA->getType()->getPointerAddressSpace(),
    729                              GlobalValue::ExternalLinkage, SGA->getName(),
    730                              &DstM);
    731 }
    732 
    733 GlobalValue *IRLinker::copyGlobalValueProto(const GlobalValue *SGV,
    734                                             bool ForDefinition) {
    735   GlobalValue *NewGV;
    736   if (auto *SGVar = dyn_cast<GlobalVariable>(SGV)) {
    737     NewGV = copyGlobalVariableProto(SGVar);
    738   } else if (auto *SF = dyn_cast<Function>(SGV)) {
    739     NewGV = copyFunctionProto(SF);
    740   } else {
    741     if (ForDefinition)
    742       NewGV = copyGlobalAliasProto(cast<GlobalAlias>(SGV));
    743     else
    744       NewGV = new GlobalVariable(
    745           DstM, TypeMap.get(SGV->getType()->getElementType()),
    746           /*isConstant*/ false, GlobalValue::ExternalLinkage,
    747           /*init*/ nullptr, SGV->getName(),
    748           /*insertbefore*/ nullptr, SGV->getThreadLocalMode(),
    749           SGV->getType()->getAddressSpace());
    750   }
    751 
    752   if (ForDefinition)
    753     NewGV->setLinkage(SGV->getLinkage());
    754   else if (SGV->hasExternalWeakLinkage() || SGV->hasWeakLinkage() ||
    755            SGV->hasLinkOnceLinkage())
    756     NewGV->setLinkage(GlobalValue::ExternalWeakLinkage);
    757 
    758   NewGV->copyAttributesFrom(SGV);
    759   return NewGV;
    760 }
    761 
    762 /// Loop over all of the linked values to compute type mappings.  For example,
    763 /// if we link "extern Foo *x" and "Foo *x = NULL", then we have two struct
    764 /// types 'Foo' but one got renamed when the module was loaded into the same
    765 /// LLVMContext.
    766 void IRLinker::computeTypeMapping() {
    767   for (GlobalValue &SGV : SrcM.globals()) {
    768     GlobalValue *DGV = getLinkedToGlobal(&SGV);
    769     if (!DGV)
    770       continue;
    771 
    772     if (!DGV->hasAppendingLinkage() || !SGV.hasAppendingLinkage()) {
    773       TypeMap.addTypeMapping(DGV->getType(), SGV.getType());
    774       continue;
    775     }
    776 
    777     // Unify the element type of appending arrays.
    778     ArrayType *DAT = cast<ArrayType>(DGV->getType()->getElementType());
    779     ArrayType *SAT = cast<ArrayType>(SGV.getType()->getElementType());
    780     TypeMap.addTypeMapping(DAT->getElementType(), SAT->getElementType());
    781   }
    782 
    783   for (GlobalValue &SGV : SrcM)
    784     if (GlobalValue *DGV = getLinkedToGlobal(&SGV))
    785       TypeMap.addTypeMapping(DGV->getType(), SGV.getType());
    786 
    787   for (GlobalValue &SGV : SrcM.aliases())
    788     if (GlobalValue *DGV = getLinkedToGlobal(&SGV))
    789       TypeMap.addTypeMapping(DGV->getType(), SGV.getType());
    790 
    791   // Incorporate types by name, scanning all the types in the source module.
    792   // At this point, the destination module may have a type "%foo = { i32 }" for
    793   // example.  When the source module got loaded into the same LLVMContext, if
    794   // it had the same type, it would have been renamed to "%foo.42 = { i32 }".
    795   std::vector<StructType *> Types = SrcM.getIdentifiedStructTypes();
    796   for (StructType *ST : Types) {
    797     if (!ST->hasName())
    798       continue;
    799 
    800     // Check to see if there is a dot in the name followed by a digit.
    801     size_t DotPos = ST->getName().rfind('.');
    802     if (DotPos == 0 || DotPos == StringRef::npos ||
    803         ST->getName().back() == '.' ||
    804         !isdigit(static_cast<unsigned char>(ST->getName()[DotPos + 1])))
    805       continue;
    806 
    807     // Check to see if the destination module has a struct with the prefix name.
    808     StructType *DST = DstM.getTypeByName(ST->getName().substr(0, DotPos));
    809     if (!DST)
    810       continue;
    811 
    812     // Don't use it if this actually came from the source module. They're in
    813     // the same LLVMContext after all. Also don't use it unless the type is
    814     // actually used in the destination module. This can happen in situations
    815     // like this:
    816     //
    817     //      Module A                         Module B
    818     //      --------                         --------
    819     //   %Z = type { %A }                %B = type { %C.1 }
    820     //   %A = type { %B.1, [7 x i8] }    %C.1 = type { i8* }
    821     //   %B.1 = type { %C }              %A.2 = type { %B.3, [5 x i8] }
    822     //   %C = type { i8* }               %B.3 = type { %C.1 }
    823     //
    824     // When we link Module B with Module A, the '%B' in Module B is
    825     // used. However, that would then use '%C.1'. But when we process '%C.1',
    826     // we prefer to take the '%C' version. So we are then left with both
    827     // '%C.1' and '%C' being used for the same types. This leads to some
    828     // variables using one type and some using the other.
    829     if (TypeMap.DstStructTypesSet.hasType(DST))
    830       TypeMap.addTypeMapping(DST, ST);
    831   }
    832 
    833   // Now that we have discovered all of the type equivalences, get a body for
    834   // any 'opaque' types in the dest module that are now resolved.
    835   TypeMap.linkDefinedTypeBodies();
    836 }
    837 
    838 static void getArrayElements(const Constant *C,
    839                              SmallVectorImpl<Constant *> &Dest) {
    840   unsigned NumElements = cast<ArrayType>(C->getType())->getNumElements();
    841 
    842   for (unsigned i = 0; i != NumElements; ++i)
    843     Dest.push_back(C->getAggregateElement(i));
    844 }
    845 
    846 /// If there were any appending global variables, link them together now.
    847 /// Return true on error.
    848 Constant *IRLinker::linkAppendingVarProto(GlobalVariable *DstGV,
    849                                           const GlobalVariable *SrcGV) {
    850   Type *EltTy = cast<ArrayType>(TypeMap.get(SrcGV->getType()->getElementType()))
    851                     ->getElementType();
    852 
    853   StringRef Name = SrcGV->getName();
    854   bool IsNewStructor = false;
    855   bool IsOldStructor = false;
    856   if (Name == "llvm.global_ctors" || Name == "llvm.global_dtors") {
    857     if (cast<StructType>(EltTy)->getNumElements() == 3)
    858       IsNewStructor = true;
    859     else
    860       IsOldStructor = true;
    861   }
    862 
    863   PointerType *VoidPtrTy = Type::getInt8Ty(SrcGV->getContext())->getPointerTo();
    864   if (IsOldStructor) {
    865     auto &ST = *cast<StructType>(EltTy);
    866     Type *Tys[3] = {ST.getElementType(0), ST.getElementType(1), VoidPtrTy};
    867     EltTy = StructType::get(SrcGV->getContext(), Tys, false);
    868   }
    869 
    870   if (DstGV) {
    871     ArrayType *DstTy = cast<ArrayType>(DstGV->getType()->getElementType());
    872 
    873     if (!SrcGV->hasAppendingLinkage() || !DstGV->hasAppendingLinkage()) {
    874       emitError(
    875           "Linking globals named '" + SrcGV->getName() +
    876           "': can only link appending global with another appending global!");
    877       return nullptr;
    878     }
    879 
    880     // Check to see that they two arrays agree on type.
    881     if (EltTy != DstTy->getElementType()) {
    882       emitError("Appending variables with different element types!");
    883       return nullptr;
    884     }
    885     if (DstGV->isConstant() != SrcGV->isConstant()) {
    886       emitError("Appending variables linked with different const'ness!");
    887       return nullptr;
    888     }
    889 
    890     if (DstGV->getAlignment() != SrcGV->getAlignment()) {
    891       emitError(
    892           "Appending variables with different alignment need to be linked!");
    893       return nullptr;
    894     }
    895 
    896     if (DstGV->getVisibility() != SrcGV->getVisibility()) {
    897       emitError(
    898           "Appending variables with different visibility need to be linked!");
    899       return nullptr;
    900     }
    901 
    902     if (DstGV->hasUnnamedAddr() != SrcGV->hasUnnamedAddr()) {
    903       emitError(
    904           "Appending variables with different unnamed_addr need to be linked!");
    905       return nullptr;
    906     }
    907 
    908     if (StringRef(DstGV->getSection()) != SrcGV->getSection()) {
    909       emitError(
    910           "Appending variables with different section name need to be linked!");
    911       return nullptr;
    912     }
    913   }
    914 
    915   SmallVector<Constant *, 16> DstElements;
    916   if (DstGV)
    917     getArrayElements(DstGV->getInitializer(), DstElements);
    918 
    919   SmallVector<Constant *, 16> SrcElements;
    920   getArrayElements(SrcGV->getInitializer(), SrcElements);
    921 
    922   if (IsNewStructor)
    923     SrcElements.erase(
    924         std::remove_if(SrcElements.begin(), SrcElements.end(),
    925                        [this](Constant *E) {
    926                          auto *Key = dyn_cast<GlobalValue>(
    927                              E->getAggregateElement(2)->stripPointerCasts());
    928                          if (!Key)
    929                            return false;
    930                          GlobalValue *DGV = getLinkedToGlobal(Key);
    931                          return !shouldLink(DGV, *Key);
    932                        }),
    933         SrcElements.end());
    934   uint64_t NewSize = DstElements.size() + SrcElements.size();
    935   ArrayType *NewType = ArrayType::get(EltTy, NewSize);
    936 
    937   // Create the new global variable.
    938   GlobalVariable *NG = new GlobalVariable(
    939       DstM, NewType, SrcGV->isConstant(), SrcGV->getLinkage(),
    940       /*init*/ nullptr, /*name*/ "", DstGV, SrcGV->getThreadLocalMode(),
    941       SrcGV->getType()->getAddressSpace());
    942 
    943   NG->copyAttributesFrom(SrcGV);
    944   forceRenaming(NG, SrcGV->getName());
    945 
    946   Constant *Ret = ConstantExpr::getBitCast(NG, TypeMap.get(SrcGV->getType()));
    947 
    948   // Stop recursion.
    949   ValueMap[SrcGV] = Ret;
    950 
    951   for (auto *V : SrcElements) {
    952     Constant *NewV;
    953     if (IsOldStructor) {
    954       auto *S = cast<ConstantStruct>(V);
    955       auto *E1 = MapValue(S->getOperand(0), ValueMap, ValueMapperFlags,
    956                           &TypeMap, &GValMaterializer);
    957       auto *E2 = MapValue(S->getOperand(1), ValueMap, ValueMapperFlags,
    958                           &TypeMap, &GValMaterializer);
    959       Value *Null = Constant::getNullValue(VoidPtrTy);
    960       NewV =
    961           ConstantStruct::get(cast<StructType>(EltTy), E1, E2, Null, nullptr);
    962     } else {
    963       NewV =
    964           MapValue(V, ValueMap, ValueMapperFlags, &TypeMap, &GValMaterializer);
    965     }
    966     DstElements.push_back(NewV);
    967   }
    968 
    969   NG->setInitializer(ConstantArray::get(NewType, DstElements));
    970 
    971   // Replace any uses of the two global variables with uses of the new
    972   // global.
    973   if (DstGV) {
    974     DstGV->replaceAllUsesWith(ConstantExpr::getBitCast(NG, DstGV->getType()));
    975     DstGV->eraseFromParent();
    976   }
    977 
    978   return Ret;
    979 }
    980 
    981 static bool useExistingDest(GlobalValue &SGV, GlobalValue *DGV,
    982                             bool ShouldLink) {
    983   if (!DGV)
    984     return false;
    985 
    986   if (SGV.isDeclaration())
    987     return true;
    988 
    989   if (DGV->isDeclarationForLinker() && !SGV.isDeclarationForLinker())
    990     return false;
    991 
    992   if (ShouldLink)
    993     return false;
    994 
    995   return true;
    996 }
    997 
    998 bool IRLinker::shouldLink(GlobalValue *DGV, GlobalValue &SGV) {
    999   // Already imported all the values. Just map to the Dest value
   1000   // in case it is referenced in the metadata.
   1001   if (IsMetadataLinkingPostpass) {
   1002     assert(!ValuesToLink.count(&SGV) &&
   1003            "Source value unexpectedly requested for link during metadata link");
   1004     return false;
   1005   }
   1006 
   1007   if (ValuesToLink.count(&SGV))
   1008     return true;
   1009 
   1010   if (SGV.hasLocalLinkage())
   1011     return true;
   1012 
   1013   if (DGV && !DGV->isDeclaration())
   1014     return false;
   1015 
   1016   if (SGV.hasAvailableExternallyLinkage())
   1017     return true;
   1018 
   1019   if (DoneLinkingBodies)
   1020     return false;
   1021 
   1022   AddLazyFor(SGV, [this](GlobalValue &GV) { maybeAdd(&GV); });
   1023   return ValuesToLink.count(&SGV);
   1024 }
   1025 
   1026 Constant *IRLinker::linkGlobalValueProto(GlobalValue *SGV, bool ForAlias) {
   1027   GlobalValue *DGV = getLinkedToGlobal(SGV);
   1028 
   1029   bool ShouldLink = shouldLink(DGV, *SGV);
   1030 
   1031   // just missing from map
   1032   if (ShouldLink) {
   1033     auto I = ValueMap.find(SGV);
   1034     if (I != ValueMap.end())
   1035       return cast<Constant>(I->second);
   1036 
   1037     I = AliasValueMap.find(SGV);
   1038     if (I != AliasValueMap.end())
   1039       return cast<Constant>(I->second);
   1040   }
   1041 
   1042   DGV = nullptr;
   1043   if (ShouldLink || !ForAlias)
   1044     DGV = getLinkedToGlobal(SGV);
   1045 
   1046   // Handle the ultra special appending linkage case first.
   1047   assert(!DGV || SGV->hasAppendingLinkage() == DGV->hasAppendingLinkage());
   1048   if (SGV->hasAppendingLinkage())
   1049     return linkAppendingVarProto(cast_or_null<GlobalVariable>(DGV),
   1050                                  cast<GlobalVariable>(SGV));
   1051 
   1052   GlobalValue *NewGV;
   1053   if (useExistingDest(*SGV, DGV, ShouldLink)) {
   1054     NewGV = DGV;
   1055   } else {
   1056     // If we are done linking global value bodies (i.e. we are performing
   1057     // metadata linking), don't link in the global value due to this
   1058     // reference, simply map it to null.
   1059     if (DoneLinkingBodies)
   1060       return nullptr;
   1061 
   1062     NewGV = copyGlobalValueProto(SGV, ShouldLink);
   1063     if (!ForAlias)
   1064       forceRenaming(NewGV, SGV->getName());
   1065   }
   1066   if (ShouldLink || ForAlias) {
   1067     if (const Comdat *SC = SGV->getComdat()) {
   1068       if (auto *GO = dyn_cast<GlobalObject>(NewGV)) {
   1069         Comdat *DC = DstM.getOrInsertComdat(SC->getName());
   1070         DC->setSelectionKind(SC->getSelectionKind());
   1071         GO->setComdat(DC);
   1072       }
   1073     }
   1074   }
   1075 
   1076   if (!ShouldLink && ForAlias)
   1077     NewGV->setLinkage(GlobalValue::InternalLinkage);
   1078 
   1079   Constant *C = NewGV;
   1080   if (DGV)
   1081     C = ConstantExpr::getBitCast(NewGV, TypeMap.get(SGV->getType()));
   1082 
   1083   if (DGV && NewGV != DGV) {
   1084     DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewGV, DGV->getType()));
   1085     DGV->eraseFromParent();
   1086   }
   1087 
   1088   return C;
   1089 }
   1090 
   1091 /// Update the initializers in the Dest module now that all globals that may be
   1092 /// referenced are in Dest.
   1093 void IRLinker::linkGlobalInit(GlobalVariable &Dst, GlobalVariable &Src) {
   1094   // Figure out what the initializer looks like in the dest module.
   1095   Dst.setInitializer(MapValue(Src.getInitializer(), ValueMap, ValueMapperFlags,
   1096                               &TypeMap, &GValMaterializer));
   1097 }
   1098 
   1099 /// Copy the source function over into the dest function and fix up references
   1100 /// to values. At this point we know that Dest is an external function, and
   1101 /// that Src is not.
   1102 bool IRLinker::linkFunctionBody(Function &Dst, Function &Src) {
   1103   assert(Dst.isDeclaration() && !Src.isDeclaration());
   1104 
   1105   // Materialize if needed.
   1106   if (std::error_code EC = Src.materialize())
   1107     return emitError(EC.message());
   1108 
   1109   if (!shouldLinkMetadata())
   1110     // This is only supported for lazy links. Do after materialization of
   1111     // a function and before remapping metadata on instructions below
   1112     // in RemapInstruction, as the saved mapping is used to handle
   1113     // the temporary metadata hanging off instructions.
   1114     SrcM.getMaterializer()->saveMDValueList(MDValueToValIDMap, true);
   1115 
   1116   // Link in the prefix data.
   1117   if (Src.hasPrefixData())
   1118     Dst.setPrefixData(MapValue(Src.getPrefixData(), ValueMap, ValueMapperFlags,
   1119                                &TypeMap, &GValMaterializer));
   1120 
   1121   // Link in the prologue data.
   1122   if (Src.hasPrologueData())
   1123     Dst.setPrologueData(MapValue(Src.getPrologueData(), ValueMap,
   1124                                  ValueMapperFlags, &TypeMap,
   1125                                  &GValMaterializer));
   1126 
   1127   // Link in the personality function.
   1128   if (Src.hasPersonalityFn())
   1129     Dst.setPersonalityFn(MapValue(Src.getPersonalityFn(), ValueMap,
   1130                                   ValueMapperFlags, &TypeMap,
   1131                                   &GValMaterializer));
   1132 
   1133   // Go through and convert function arguments over, remembering the mapping.
   1134   Function::arg_iterator DI = Dst.arg_begin();
   1135   for (Argument &Arg : Src.args()) {
   1136     DI->setName(Arg.getName()); // Copy the name over.
   1137 
   1138     // Add a mapping to our mapping.
   1139     ValueMap[&Arg] = &*DI;
   1140     ++DI;
   1141   }
   1142 
   1143   // Copy over the metadata attachments.
   1144   SmallVector<std::pair<unsigned, MDNode *>, 8> MDs;
   1145   Src.getAllMetadata(MDs);
   1146   for (const auto &I : MDs)
   1147     Dst.setMetadata(I.first, MapMetadata(I.second, ValueMap, ValueMapperFlags,
   1148                                          &TypeMap, &GValMaterializer));
   1149 
   1150   // Splice the body of the source function into the dest function.
   1151   Dst.getBasicBlockList().splice(Dst.end(), Src.getBasicBlockList());
   1152 
   1153   // At this point, all of the instructions and values of the function are now
   1154   // copied over.  The only problem is that they are still referencing values in
   1155   // the Source function as operands.  Loop through all of the operands of the
   1156   // functions and patch them up to point to the local versions.
   1157   for (BasicBlock &BB : Dst)
   1158     for (Instruction &I : BB)
   1159       RemapInstruction(&I, ValueMap, RF_IgnoreMissingEntries | ValueMapperFlags,
   1160                        &TypeMap, &GValMaterializer);
   1161 
   1162   // There is no need to map the arguments anymore.
   1163   for (Argument &Arg : Src.args())
   1164     ValueMap.erase(&Arg);
   1165 
   1166   return false;
   1167 }
   1168 
   1169 void IRLinker::linkAliasBody(GlobalAlias &Dst, GlobalAlias &Src) {
   1170   Constant *Aliasee = Src.getAliasee();
   1171   Constant *Val = MapValue(Aliasee, AliasValueMap, ValueMapperFlags, &TypeMap,
   1172                            &LValMaterializer);
   1173   Dst.setAliasee(Val);
   1174 }
   1175 
   1176 bool IRLinker::linkGlobalValueBody(GlobalValue &Dst, GlobalValue &Src) {
   1177   if (auto *F = dyn_cast<Function>(&Src))
   1178     return linkFunctionBody(cast<Function>(Dst), *F);
   1179   if (auto *GVar = dyn_cast<GlobalVariable>(&Src)) {
   1180     linkGlobalInit(cast<GlobalVariable>(Dst), *GVar);
   1181     return false;
   1182   }
   1183   linkAliasBody(cast<GlobalAlias>(Dst), cast<GlobalAlias>(Src));
   1184   return false;
   1185 }
   1186 
   1187 void IRLinker::findNeededSubprograms(ValueToValueMapTy &ValueMap) {
   1188   // Track unneeded nodes to make it simpler to handle the case
   1189   // where we are checking if an already-mapped SP is needed.
   1190   NamedMDNode *CompileUnits = SrcM.getNamedMetadata("llvm.dbg.cu");
   1191   if (!CompileUnits)
   1192     return;
   1193   for (unsigned I = 0, E = CompileUnits->getNumOperands(); I != E; ++I) {
   1194     auto *CU = cast<DICompileUnit>(CompileUnits->getOperand(I));
   1195     assert(CU && "Expected valid compile unit");
   1196     for (auto *Op : CU->getSubprograms()) {
   1197       // Unless we were doing function importing and deferred metadata linking,
   1198       // any needed SPs should have been mapped as they would be reached
   1199       // from the function linked in (either on the function itself for linked
   1200       // function bodies, or from DILocation on inlined instructions).
   1201       assert(!(ValueMap.MD()[Op] && IsMetadataLinkingPostpass) &&
   1202              "DISubprogram shouldn't be mapped yet");
   1203       if (!ValueMap.MD()[Op])
   1204         UnneededSubprograms.insert(Op);
   1205     }
   1206   }
   1207   if (!IsMetadataLinkingPostpass)
   1208     return;
   1209   // In the case of metadata linking as a postpass (e.g. for function
   1210   // importing), see which DISubprogram MD from the source has an associated
   1211   // temporary metadata node, which means the SP was needed by an imported
   1212   // function.
   1213   for (auto MDI : MDValueToValIDMap) {
   1214     const MDNode *Node = dyn_cast<MDNode>(MDI.first);
   1215     if (!Node)
   1216       continue;
   1217     DISubprogram *SP = getDISubprogram(Node);
   1218     if (!SP || !ValIDToTempMDMap->count(MDI.second))
   1219       continue;
   1220     UnneededSubprograms.erase(SP);
   1221   }
   1222 }
   1223 
   1224 // Squash null subprograms from compile unit subprogram lists.
   1225 void IRLinker::stripNullSubprograms() {
   1226   NamedMDNode *CompileUnits = DstM.getNamedMetadata("llvm.dbg.cu");
   1227   if (!CompileUnits)
   1228     return;
   1229   for (unsigned I = 0, E = CompileUnits->getNumOperands(); I != E; ++I) {
   1230     auto *CU = cast<DICompileUnit>(CompileUnits->getOperand(I));
   1231     assert(CU && "Expected valid compile unit");
   1232 
   1233     SmallVector<Metadata *, 16> NewSPs;
   1234     NewSPs.reserve(CU->getSubprograms().size());
   1235     bool FoundNull = false;
   1236     for (DISubprogram *SP : CU->getSubprograms()) {
   1237       if (!SP) {
   1238         FoundNull = true;
   1239         continue;
   1240       }
   1241       NewSPs.push_back(SP);
   1242     }
   1243     if (FoundNull)
   1244       CU->replaceSubprograms(MDTuple::get(CU->getContext(), NewSPs));
   1245   }
   1246 }
   1247 
   1248 /// Insert all of the named MDNodes in Src into the Dest module.
   1249 void IRLinker::linkNamedMDNodes() {
   1250   findNeededSubprograms(ValueMap);
   1251   const NamedMDNode *SrcModFlags = SrcM.getModuleFlagsMetadata();
   1252   for (const NamedMDNode &NMD : SrcM.named_metadata()) {
   1253     // Don't link module flags here. Do them separately.
   1254     if (&NMD == SrcModFlags)
   1255       continue;
   1256     NamedMDNode *DestNMD = DstM.getOrInsertNamedMetadata(NMD.getName());
   1257     // Add Src elements into Dest node.
   1258     for (const MDNode *op : NMD.operands())
   1259       DestNMD->addOperand(MapMetadata(
   1260           op, ValueMap, ValueMapperFlags | RF_NullMapMissingGlobalValues,
   1261           &TypeMap, &GValMaterializer));
   1262   }
   1263   stripNullSubprograms();
   1264 }
   1265 
   1266 /// Merge the linker flags in Src into the Dest module.
   1267 bool IRLinker::linkModuleFlagsMetadata() {
   1268   // If the source module has no module flags, we are done.
   1269   const NamedMDNode *SrcModFlags = SrcM.getModuleFlagsMetadata();
   1270   if (!SrcModFlags)
   1271     return false;
   1272 
   1273   // If the destination module doesn't have module flags yet, then just copy
   1274   // over the source module's flags.
   1275   NamedMDNode *DstModFlags = DstM.getOrInsertModuleFlagsMetadata();
   1276   if (DstModFlags->getNumOperands() == 0) {
   1277     for (unsigned I = 0, E = SrcModFlags->getNumOperands(); I != E; ++I)
   1278       DstModFlags->addOperand(SrcModFlags->getOperand(I));
   1279 
   1280     return false;
   1281   }
   1282 
   1283   // First build a map of the existing module flags and requirements.
   1284   DenseMap<MDString *, std::pair<MDNode *, unsigned>> Flags;
   1285   SmallSetVector<MDNode *, 16> Requirements;
   1286   for (unsigned I = 0, E = DstModFlags->getNumOperands(); I != E; ++I) {
   1287     MDNode *Op = DstModFlags->getOperand(I);
   1288     ConstantInt *Behavior = mdconst::extract<ConstantInt>(Op->getOperand(0));
   1289     MDString *ID = cast<MDString>(Op->getOperand(1));
   1290 
   1291     if (Behavior->getZExtValue() == Module::Require) {
   1292       Requirements.insert(cast<MDNode>(Op->getOperand(2)));
   1293     } else {
   1294       Flags[ID] = std::make_pair(Op, I);
   1295     }
   1296   }
   1297 
   1298   // Merge in the flags from the source module, and also collect its set of
   1299   // requirements.
   1300   for (unsigned I = 0, E = SrcModFlags->getNumOperands(); I != E; ++I) {
   1301     MDNode *SrcOp = SrcModFlags->getOperand(I);
   1302     ConstantInt *SrcBehavior =
   1303         mdconst::extract<ConstantInt>(SrcOp->getOperand(0));
   1304     MDString *ID = cast<MDString>(SrcOp->getOperand(1));
   1305     MDNode *DstOp;
   1306     unsigned DstIndex;
   1307     std::tie(DstOp, DstIndex) = Flags.lookup(ID);
   1308     unsigned SrcBehaviorValue = SrcBehavior->getZExtValue();
   1309 
   1310     // If this is a requirement, add it and continue.
   1311     if (SrcBehaviorValue == Module::Require) {
   1312       // If the destination module does not already have this requirement, add
   1313       // it.
   1314       if (Requirements.insert(cast<MDNode>(SrcOp->getOperand(2)))) {
   1315         DstModFlags->addOperand(SrcOp);
   1316       }
   1317       continue;
   1318     }
   1319 
   1320     // If there is no existing flag with this ID, just add it.
   1321     if (!DstOp) {
   1322       Flags[ID] = std::make_pair(SrcOp, DstModFlags->getNumOperands());
   1323       DstModFlags->addOperand(SrcOp);
   1324       continue;
   1325     }
   1326 
   1327     // Otherwise, perform a merge.
   1328     ConstantInt *DstBehavior =
   1329         mdconst::extract<ConstantInt>(DstOp->getOperand(0));
   1330     unsigned DstBehaviorValue = DstBehavior->getZExtValue();
   1331 
   1332     // If either flag has override behavior, handle it first.
   1333     if (DstBehaviorValue == Module::Override) {
   1334       // Diagnose inconsistent flags which both have override behavior.
   1335       if (SrcBehaviorValue == Module::Override &&
   1336           SrcOp->getOperand(2) != DstOp->getOperand(2)) {
   1337         emitError("linking module flags '" + ID->getString() +
   1338                   "': IDs have conflicting override values");
   1339       }
   1340       continue;
   1341     } else if (SrcBehaviorValue == Module::Override) {
   1342       // Update the destination flag to that of the source.
   1343       DstModFlags->setOperand(DstIndex, SrcOp);
   1344       Flags[ID].first = SrcOp;
   1345       continue;
   1346     }
   1347 
   1348     // Diagnose inconsistent merge behavior types.
   1349     if (SrcBehaviorValue != DstBehaviorValue) {
   1350       emitError("linking module flags '" + ID->getString() +
   1351                 "': IDs have conflicting behaviors");
   1352       continue;
   1353     }
   1354 
   1355     auto replaceDstValue = [&](MDNode *New) {
   1356       Metadata *FlagOps[] = {DstOp->getOperand(0), ID, New};
   1357       MDNode *Flag = MDNode::get(DstM.getContext(), FlagOps);
   1358       DstModFlags->setOperand(DstIndex, Flag);
   1359       Flags[ID].first = Flag;
   1360     };
   1361 
   1362     // Perform the merge for standard behavior types.
   1363     switch (SrcBehaviorValue) {
   1364     case Module::Require:
   1365     case Module::Override:
   1366       llvm_unreachable("not possible");
   1367     case Module::Error: {
   1368       // Emit an error if the values differ.
   1369       if (SrcOp->getOperand(2) != DstOp->getOperand(2)) {
   1370         emitError("linking module flags '" + ID->getString() +
   1371                   "': IDs have conflicting values");
   1372       }
   1373       continue;
   1374     }
   1375     case Module::Warning: {
   1376       // Emit a warning if the values differ.
   1377       if (SrcOp->getOperand(2) != DstOp->getOperand(2)) {
   1378         emitWarning("linking module flags '" + ID->getString() +
   1379                     "': IDs have conflicting values");
   1380       }
   1381       continue;
   1382     }
   1383     case Module::Append: {
   1384       MDNode *DstValue = cast<MDNode>(DstOp->getOperand(2));
   1385       MDNode *SrcValue = cast<MDNode>(SrcOp->getOperand(2));
   1386       SmallVector<Metadata *, 8> MDs;
   1387       MDs.reserve(DstValue->getNumOperands() + SrcValue->getNumOperands());
   1388       MDs.append(DstValue->op_begin(), DstValue->op_end());
   1389       MDs.append(SrcValue->op_begin(), SrcValue->op_end());
   1390 
   1391       replaceDstValue(MDNode::get(DstM.getContext(), MDs));
   1392       break;
   1393     }
   1394     case Module::AppendUnique: {
   1395       SmallSetVector<Metadata *, 16> Elts;
   1396       MDNode *DstValue = cast<MDNode>(DstOp->getOperand(2));
   1397       MDNode *SrcValue = cast<MDNode>(SrcOp->getOperand(2));
   1398       Elts.insert(DstValue->op_begin(), DstValue->op_end());
   1399       Elts.insert(SrcValue->op_begin(), SrcValue->op_end());
   1400 
   1401       replaceDstValue(MDNode::get(DstM.getContext(),
   1402                                   makeArrayRef(Elts.begin(), Elts.end())));
   1403       break;
   1404     }
   1405     }
   1406   }
   1407 
   1408   // Check all of the requirements.
   1409   for (unsigned I = 0, E = Requirements.size(); I != E; ++I) {
   1410     MDNode *Requirement = Requirements[I];
   1411     MDString *Flag = cast<MDString>(Requirement->getOperand(0));
   1412     Metadata *ReqValue = Requirement->getOperand(1);
   1413 
   1414     MDNode *Op = Flags[Flag].first;
   1415     if (!Op || Op->getOperand(2) != ReqValue) {
   1416       emitError("linking module flags '" + Flag->getString() +
   1417                 "': does not have the required value");
   1418       continue;
   1419     }
   1420   }
   1421 
   1422   return HasError;
   1423 }
   1424 
   1425 // This function returns true if the triples match.
   1426 static bool triplesMatch(const Triple &T0, const Triple &T1) {
   1427   // If vendor is apple, ignore the version number.
   1428   if (T0.getVendor() == Triple::Apple)
   1429     return T0.getArch() == T1.getArch() && T0.getSubArch() == T1.getSubArch() &&
   1430            T0.getVendor() == T1.getVendor() && T0.getOS() == T1.getOS();
   1431 
   1432   return T0 == T1;
   1433 }
   1434 
   1435 // This function returns the merged triple.
   1436 static std::string mergeTriples(const Triple &SrcTriple,
   1437                                 const Triple &DstTriple) {
   1438   // If vendor is apple, pick the triple with the larger version number.
   1439   if (SrcTriple.getVendor() == Triple::Apple)
   1440     if (DstTriple.isOSVersionLT(SrcTriple))
   1441       return SrcTriple.str();
   1442 
   1443   return DstTriple.str();
   1444 }
   1445 
   1446 bool IRLinker::run() {
   1447   // Inherit the target data from the source module if the destination module
   1448   // doesn't have one already.
   1449   if (DstM.getDataLayout().isDefault())
   1450     DstM.setDataLayout(SrcM.getDataLayout());
   1451 
   1452   if (SrcM.getDataLayout() != DstM.getDataLayout()) {
   1453     emitWarning("Linking two modules of different data layouts: '" +
   1454                 SrcM.getModuleIdentifier() + "' is '" +
   1455                 SrcM.getDataLayoutStr() + "' whereas '" +
   1456                 DstM.getModuleIdentifier() + "' is '" +
   1457                 DstM.getDataLayoutStr() + "'\n");
   1458   }
   1459 
   1460   // Copy the target triple from the source to dest if the dest's is empty.
   1461   if (DstM.getTargetTriple().empty() && !SrcM.getTargetTriple().empty())
   1462     DstM.setTargetTriple(SrcM.getTargetTriple());
   1463 
   1464   Triple SrcTriple(SrcM.getTargetTriple()), DstTriple(DstM.getTargetTriple());
   1465 
   1466   if (!SrcM.getTargetTriple().empty() && !triplesMatch(SrcTriple, DstTriple))
   1467     emitWarning("Linking two modules of different target triples: " +
   1468                 SrcM.getModuleIdentifier() + "' is '" + SrcM.getTargetTriple() +
   1469                 "' whereas '" + DstM.getModuleIdentifier() + "' is '" +
   1470                 DstM.getTargetTriple() + "'\n");
   1471 
   1472   DstM.setTargetTriple(mergeTriples(SrcTriple, DstTriple));
   1473 
   1474   // Append the module inline asm string.
   1475   if (!SrcM.getModuleInlineAsm().empty()) {
   1476     if (DstM.getModuleInlineAsm().empty())
   1477       DstM.setModuleInlineAsm(SrcM.getModuleInlineAsm());
   1478     else
   1479       DstM.setModuleInlineAsm(DstM.getModuleInlineAsm() + "\n" +
   1480                               SrcM.getModuleInlineAsm());
   1481   }
   1482 
   1483   // Loop over all of the linked values to compute type mappings.
   1484   computeTypeMapping();
   1485 
   1486   std::reverse(Worklist.begin(), Worklist.end());
   1487   while (!Worklist.empty()) {
   1488     GlobalValue *GV = Worklist.back();
   1489     Worklist.pop_back();
   1490 
   1491     // Already mapped.
   1492     if (ValueMap.find(GV) != ValueMap.end() ||
   1493         AliasValueMap.find(GV) != AliasValueMap.end())
   1494       continue;
   1495 
   1496     assert(!GV->isDeclaration());
   1497     MapValue(GV, ValueMap, ValueMapperFlags, &TypeMap, &GValMaterializer);
   1498     if (HasError)
   1499       return true;
   1500   }
   1501 
   1502   // Note that we are done linking global value bodies. This prevents
   1503   // metadata linking from creating new references.
   1504   DoneLinkingBodies = true;
   1505 
   1506   // Remap all of the named MDNodes in Src into the DstM module. We do this
   1507   // after linking GlobalValues so that MDNodes that reference GlobalValues
   1508   // are properly remapped.
   1509   if (shouldLinkMetadata()) {
   1510     // Even if just linking metadata we should link decls above in case
   1511     // any are referenced by metadata. IRLinker::shouldLink ensures that
   1512     // we don't actually link anything from source.
   1513     if (IsMetadataLinkingPostpass) {
   1514       // Ensure metadata materialized
   1515       if (SrcM.getMaterializer()->materializeMetadata())
   1516         return true;
   1517       SrcM.getMaterializer()->saveMDValueList(MDValueToValIDMap, false);
   1518     }
   1519 
   1520     linkNamedMDNodes();
   1521 
   1522     if (IsMetadataLinkingPostpass) {
   1523       // Handle anything left in the ValIDToTempMDMap, such as metadata nodes
   1524       // not reached by the dbg.cu NamedMD (i.e. only reached from
   1525       // instructions).
   1526       // Walk the MDValueToValIDMap once to find the set of new (imported) MD
   1527       // that still has corresponding temporary metadata, and invoke metadata
   1528       // mapping on each one.
   1529       for (auto MDI : MDValueToValIDMap) {
   1530         if (!ValIDToTempMDMap->count(MDI.second))
   1531           continue;
   1532         MapMetadata(MDI.first, ValueMap, ValueMapperFlags, &TypeMap,
   1533                     &GValMaterializer);
   1534       }
   1535       assert(ValIDToTempMDMap->empty());
   1536     }
   1537 
   1538     // Merge the module flags into the DstM module.
   1539     if (linkModuleFlagsMetadata())
   1540       return true;
   1541   }
   1542 
   1543   return false;
   1544 }
   1545 
   1546 IRMover::StructTypeKeyInfo::KeyTy::KeyTy(ArrayRef<Type *> E, bool P)
   1547     : ETypes(E), IsPacked(P) {}
   1548 
   1549 IRMover::StructTypeKeyInfo::KeyTy::KeyTy(const StructType *ST)
   1550     : ETypes(ST->elements()), IsPacked(ST->isPacked()) {}
   1551 
   1552 bool IRMover::StructTypeKeyInfo::KeyTy::operator==(const KeyTy &That) const {
   1553   if (IsPacked != That.IsPacked)
   1554     return false;
   1555   if (ETypes != That.ETypes)
   1556     return false;
   1557   return true;
   1558 }
   1559 
   1560 bool IRMover::StructTypeKeyInfo::KeyTy::operator!=(const KeyTy &That) const {
   1561   return !this->operator==(That);
   1562 }
   1563 
   1564 StructType *IRMover::StructTypeKeyInfo::getEmptyKey() {
   1565   return DenseMapInfo<StructType *>::getEmptyKey();
   1566 }
   1567 
   1568 StructType *IRMover::StructTypeKeyInfo::getTombstoneKey() {
   1569   return DenseMapInfo<StructType *>::getTombstoneKey();
   1570 }
   1571 
   1572 unsigned IRMover::StructTypeKeyInfo::getHashValue(const KeyTy &Key) {
   1573   return hash_combine(hash_combine_range(Key.ETypes.begin(), Key.ETypes.end()),
   1574                       Key.IsPacked);
   1575 }
   1576 
   1577 unsigned IRMover::StructTypeKeyInfo::getHashValue(const StructType *ST) {
   1578   return getHashValue(KeyTy(ST));
   1579 }
   1580 
   1581 bool IRMover::StructTypeKeyInfo::isEqual(const KeyTy &LHS,
   1582                                          const StructType *RHS) {
   1583   if (RHS == getEmptyKey() || RHS == getTombstoneKey())
   1584     return false;
   1585   return LHS == KeyTy(RHS);
   1586 }
   1587 
   1588 bool IRMover::StructTypeKeyInfo::isEqual(const StructType *LHS,
   1589                                          const StructType *RHS) {
   1590   if (RHS == getEmptyKey())
   1591     return LHS == getEmptyKey();
   1592 
   1593   if (RHS == getTombstoneKey())
   1594     return LHS == getTombstoneKey();
   1595 
   1596   return KeyTy(LHS) == KeyTy(RHS);
   1597 }
   1598 
   1599 void IRMover::IdentifiedStructTypeSet::addNonOpaque(StructType *Ty) {
   1600   assert(!Ty->isOpaque());
   1601   NonOpaqueStructTypes.insert(Ty);
   1602 }
   1603 
   1604 void IRMover::IdentifiedStructTypeSet::switchToNonOpaque(StructType *Ty) {
   1605   assert(!Ty->isOpaque());
   1606   NonOpaqueStructTypes.insert(Ty);
   1607   bool Removed = OpaqueStructTypes.erase(Ty);
   1608   (void)Removed;
   1609   assert(Removed);
   1610 }
   1611 
   1612 void IRMover::IdentifiedStructTypeSet::addOpaque(StructType *Ty) {
   1613   assert(Ty->isOpaque());
   1614   OpaqueStructTypes.insert(Ty);
   1615 }
   1616 
   1617 StructType *
   1618 IRMover::IdentifiedStructTypeSet::findNonOpaque(ArrayRef<Type *> ETypes,
   1619                                                 bool IsPacked) {
   1620   IRMover::StructTypeKeyInfo::KeyTy Key(ETypes, IsPacked);
   1621   auto I = NonOpaqueStructTypes.find_as(Key);
   1622   if (I == NonOpaqueStructTypes.end())
   1623     return nullptr;
   1624   return *I;
   1625 }
   1626 
   1627 bool IRMover::IdentifiedStructTypeSet::hasType(StructType *Ty) {
   1628   if (Ty->isOpaque())
   1629     return OpaqueStructTypes.count(Ty);
   1630   auto I = NonOpaqueStructTypes.find(Ty);
   1631   if (I == NonOpaqueStructTypes.end())
   1632     return false;
   1633   return *I == Ty;
   1634 }
   1635 
   1636 IRMover::IRMover(Module &M) : Composite(M) {
   1637   TypeFinder StructTypes;
   1638   StructTypes.run(M, true);
   1639   for (StructType *Ty : StructTypes) {
   1640     if (Ty->isOpaque())
   1641       IdentifiedStructTypes.addOpaque(Ty);
   1642     else
   1643       IdentifiedStructTypes.addNonOpaque(Ty);
   1644   }
   1645 }
   1646 
   1647 bool IRMover::move(
   1648     Module &Src, ArrayRef<GlobalValue *> ValuesToLink,
   1649     std::function<void(GlobalValue &, ValueAdder Add)> AddLazyFor,
   1650     DenseMap<unsigned, MDNode *> *ValIDToTempMDMap,
   1651     bool IsMetadataLinkingPostpass) {
   1652   IRLinker TheIRLinker(Composite, IdentifiedStructTypes, Src, ValuesToLink,
   1653                        AddLazyFor, ValIDToTempMDMap, IsMetadataLinkingPostpass);
   1654   bool RetCode = TheIRLinker.run();
   1655   Composite.dropTriviallyDeadConstantArrays();
   1656   return RetCode;
   1657 }
   1658