Home | History | Annotate | Download | only in Hexagon
      1 //===--- HexagonBitSimplify.cpp -------------------------------------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 
     10 #define DEBUG_TYPE "hexbit"
     11 
     12 #include "llvm/CodeGen/Passes.h"
     13 #include "llvm/CodeGen/MachineDominators.h"
     14 #include "llvm/CodeGen/MachineFunctionPass.h"
     15 #include "llvm/CodeGen/MachineInstrBuilder.h"
     16 #include "llvm/CodeGen/MachineRegisterInfo.h"
     17 #include "llvm/Support/CommandLine.h"
     18 #include "llvm/Support/Debug.h"
     19 #include "llvm/Support/raw_ostream.h"
     20 #include "llvm/Target/TargetMachine.h"
     21 #include "llvm/Target/TargetInstrInfo.h"
     22 #include "HexagonTargetMachine.h"
     23 #include "HexagonBitTracker.h"
     24 
     25 using namespace llvm;
     26 
     27 namespace llvm {
     28   void initializeHexagonBitSimplifyPass(PassRegistry& Registry);
     29   FunctionPass *createHexagonBitSimplify();
     30 }
     31 
     32 namespace {
     33   // Set of virtual registers, based on BitVector.
     34   struct RegisterSet : private BitVector {
     35     RegisterSet() : BitVector() {}
     36     explicit RegisterSet(unsigned s, bool t = false) : BitVector(s, t) {}
     37     RegisterSet(const RegisterSet &RS) : BitVector(RS) {}
     38 
     39     using BitVector::clear;
     40     using BitVector::count;
     41 
     42     unsigned find_first() const {
     43       int First = BitVector::find_first();
     44       if (First < 0)
     45         return 0;
     46       return x2v(First);
     47     }
     48 
     49     unsigned find_next(unsigned Prev) const {
     50       int Next = BitVector::find_next(v2x(Prev));
     51       if (Next < 0)
     52         return 0;
     53       return x2v(Next);
     54     }
     55 
     56     RegisterSet &insert(unsigned R) {
     57       unsigned Idx = v2x(R);
     58       ensure(Idx);
     59       return static_cast<RegisterSet&>(BitVector::set(Idx));
     60     }
     61     RegisterSet &remove(unsigned R) {
     62       unsigned Idx = v2x(R);
     63       if (Idx >= size())
     64         return *this;
     65       return static_cast<RegisterSet&>(BitVector::reset(Idx));
     66     }
     67 
     68     RegisterSet &insert(const RegisterSet &Rs) {
     69       return static_cast<RegisterSet&>(BitVector::operator|=(Rs));
     70     }
     71     RegisterSet &remove(const RegisterSet &Rs) {
     72       return static_cast<RegisterSet&>(BitVector::reset(Rs));
     73     }
     74 
     75     reference operator[](unsigned R) {
     76       unsigned Idx = v2x(R);
     77       ensure(Idx);
     78       return BitVector::operator[](Idx);
     79     }
     80     bool operator[](unsigned R) const {
     81       unsigned Idx = v2x(R);
     82       assert(Idx < size());
     83       return BitVector::operator[](Idx);
     84     }
     85     bool has(unsigned R) const {
     86       unsigned Idx = v2x(R);
     87       if (Idx >= size())
     88         return false;
     89       return BitVector::test(Idx);
     90     }
     91 
     92     bool empty() const {
     93       return !BitVector::any();
     94     }
     95     bool includes(const RegisterSet &Rs) const {
     96       // A.BitVector::test(B)  <=>  A-B != {}
     97       return !Rs.BitVector::test(*this);
     98     }
     99     bool intersects(const RegisterSet &Rs) const {
    100       return BitVector::anyCommon(Rs);
    101     }
    102 
    103   private:
    104     void ensure(unsigned Idx) {
    105       if (size() <= Idx)
    106         resize(std::max(Idx+1, 32U));
    107     }
    108     static inline unsigned v2x(unsigned v) {
    109       return TargetRegisterInfo::virtReg2Index(v);
    110     }
    111     static inline unsigned x2v(unsigned x) {
    112       return TargetRegisterInfo::index2VirtReg(x);
    113     }
    114   };
    115 
    116 
    117   struct PrintRegSet {
    118     PrintRegSet(const RegisterSet &S, const TargetRegisterInfo *RI)
    119       : RS(S), TRI(RI) {}
    120     friend raw_ostream &operator<< (raw_ostream &OS,
    121           const PrintRegSet &P);
    122   private:
    123     const RegisterSet &RS;
    124     const TargetRegisterInfo *TRI;
    125   };
    126 
    127   raw_ostream &operator<< (raw_ostream &OS, const PrintRegSet &P)
    128     LLVM_ATTRIBUTE_UNUSED;
    129   raw_ostream &operator<< (raw_ostream &OS, const PrintRegSet &P) {
    130     OS << '{';
    131     for (unsigned R = P.RS.find_first(); R; R = P.RS.find_next(R))
    132       OS << ' ' << PrintReg(R, P.TRI);
    133     OS << " }";
    134     return OS;
    135   }
    136 }
    137 
    138 
    139 namespace {
    140   class Transformation;
    141 
    142   class HexagonBitSimplify : public MachineFunctionPass {
    143   public:
    144     static char ID;
    145     HexagonBitSimplify() : MachineFunctionPass(ID), MDT(0) {
    146       initializeHexagonBitSimplifyPass(*PassRegistry::getPassRegistry());
    147     }
    148     virtual const char *getPassName() const {
    149       return "Hexagon bit simplification";
    150     }
    151     virtual void getAnalysisUsage(AnalysisUsage &AU) const {
    152       AU.addRequired<MachineDominatorTree>();
    153       AU.addPreserved<MachineDominatorTree>();
    154       MachineFunctionPass::getAnalysisUsage(AU);
    155     }
    156     virtual bool runOnMachineFunction(MachineFunction &MF);
    157 
    158     static void getInstrDefs(const MachineInstr &MI, RegisterSet &Defs);
    159     static void getInstrUses(const MachineInstr &MI, RegisterSet &Uses);
    160     static bool isEqual(const BitTracker::RegisterCell &RC1, uint16_t B1,
    161         const BitTracker::RegisterCell &RC2, uint16_t B2, uint16_t W);
    162     static bool isConst(const BitTracker::RegisterCell &RC, uint16_t B,
    163         uint16_t W);
    164     static bool isZero(const BitTracker::RegisterCell &RC, uint16_t B,
    165         uint16_t W);
    166     static bool getConst(const BitTracker::RegisterCell &RC, uint16_t B,
    167         uint16_t W, uint64_t &U);
    168     static bool replaceReg(unsigned OldR, unsigned NewR,
    169         MachineRegisterInfo &MRI);
    170     static bool getSubregMask(const BitTracker::RegisterRef &RR,
    171         unsigned &Begin, unsigned &Width, MachineRegisterInfo &MRI);
    172     static bool replaceRegWithSub(unsigned OldR, unsigned NewR,
    173         unsigned NewSR, MachineRegisterInfo &MRI);
    174     static bool replaceSubWithSub(unsigned OldR, unsigned OldSR,
    175         unsigned NewR, unsigned NewSR, MachineRegisterInfo &MRI);
    176     static bool parseRegSequence(const MachineInstr &I,
    177         BitTracker::RegisterRef &SL, BitTracker::RegisterRef &SH);
    178 
    179     static bool getUsedBitsInStore(unsigned Opc, BitVector &Bits,
    180         uint16_t Begin);
    181     static bool getUsedBits(unsigned Opc, unsigned OpN, BitVector &Bits,
    182         uint16_t Begin, const HexagonInstrInfo &HII);
    183 
    184     static const TargetRegisterClass *getFinalVRegClass(
    185         const BitTracker::RegisterRef &RR, MachineRegisterInfo &MRI);
    186     static bool isTransparentCopy(const BitTracker::RegisterRef &RD,
    187         const BitTracker::RegisterRef &RS, MachineRegisterInfo &MRI);
    188 
    189   private:
    190     MachineDominatorTree *MDT;
    191 
    192     bool visitBlock(MachineBasicBlock &B, Transformation &T, RegisterSet &AVs);
    193   };
    194 
    195   char HexagonBitSimplify::ID = 0;
    196   typedef HexagonBitSimplify HBS;
    197 
    198 
    199   // The purpose of this class is to provide a common facility to traverse
    200   // the function top-down or bottom-up via the dominator tree, and keep
    201   // track of the available registers.
    202   class Transformation {
    203   public:
    204     bool TopDown;
    205     Transformation(bool TD) : TopDown(TD) {}
    206     virtual bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) = 0;
    207     virtual ~Transformation() {}
    208   };
    209 }
    210 
    211 INITIALIZE_PASS_BEGIN(HexagonBitSimplify, "hexbit",
    212       "Hexagon bit simplification", false, false)
    213 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
    214 INITIALIZE_PASS_END(HexagonBitSimplify, "hexbit",
    215       "Hexagon bit simplification", false, false)
    216 
    217 
    218 bool HexagonBitSimplify::visitBlock(MachineBasicBlock &B, Transformation &T,
    219       RegisterSet &AVs) {
    220   MachineDomTreeNode *N = MDT->getNode(&B);
    221   typedef GraphTraits<MachineDomTreeNode*> GTN;
    222   bool Changed = false;
    223 
    224   if (T.TopDown)
    225     Changed = T.processBlock(B, AVs);
    226 
    227   RegisterSet Defs;
    228   for (auto &I : B)
    229     getInstrDefs(I, Defs);
    230   RegisterSet NewAVs = AVs;
    231   NewAVs.insert(Defs);
    232 
    233   for (auto I = GTN::child_begin(N), E = GTN::child_end(N); I != E; ++I) {
    234     MachineBasicBlock *SB = (*I)->getBlock();
    235     Changed |= visitBlock(*SB, T, NewAVs);
    236   }
    237   if (!T.TopDown)
    238     Changed |= T.processBlock(B, AVs);
    239 
    240   return Changed;
    241 }
    242 
    243 //
    244 // Utility functions:
    245 //
    246 void HexagonBitSimplify::getInstrDefs(const MachineInstr &MI,
    247       RegisterSet &Defs) {
    248   for (auto &Op : MI.operands()) {
    249     if (!Op.isReg() || !Op.isDef())
    250       continue;
    251     unsigned R = Op.getReg();
    252     if (!TargetRegisterInfo::isVirtualRegister(R))
    253       continue;
    254     Defs.insert(R);
    255   }
    256 }
    257 
    258 void HexagonBitSimplify::getInstrUses(const MachineInstr &MI,
    259       RegisterSet &Uses) {
    260   for (auto &Op : MI.operands()) {
    261     if (!Op.isReg() || !Op.isUse())
    262       continue;
    263     unsigned R = Op.getReg();
    264     if (!TargetRegisterInfo::isVirtualRegister(R))
    265       continue;
    266     Uses.insert(R);
    267   }
    268 }
    269 
    270 // Check if all the bits in range [B, E) in both cells are equal.
    271 bool HexagonBitSimplify::isEqual(const BitTracker::RegisterCell &RC1,
    272       uint16_t B1, const BitTracker::RegisterCell &RC2, uint16_t B2,
    273       uint16_t W) {
    274   for (uint16_t i = 0; i < W; ++i) {
    275     // If RC1[i] is "bottom", it cannot be proven equal to RC2[i].
    276     if (RC1[B1+i].Type == BitTracker::BitValue::Ref && RC1[B1+i].RefI.Reg == 0)
    277       return false;
    278     // Same for RC2[i].
    279     if (RC2[B2+i].Type == BitTracker::BitValue::Ref && RC2[B2+i].RefI.Reg == 0)
    280       return false;
    281     if (RC1[B1+i] != RC2[B2+i])
    282       return false;
    283   }
    284   return true;
    285 }
    286 
    287 
    288 bool HexagonBitSimplify::isConst(const BitTracker::RegisterCell &RC,
    289       uint16_t B, uint16_t W) {
    290   assert(B < RC.width() && B+W <= RC.width());
    291   for (uint16_t i = B; i < B+W; ++i)
    292     if (!RC[i].num())
    293       return false;
    294   return true;
    295 }
    296 
    297 
    298 bool HexagonBitSimplify::isZero(const BitTracker::RegisterCell &RC,
    299       uint16_t B, uint16_t W) {
    300   assert(B < RC.width() && B+W <= RC.width());
    301   for (uint16_t i = B; i < B+W; ++i)
    302     if (!RC[i].is(0))
    303       return false;
    304   return true;
    305 }
    306 
    307 
    308 bool HexagonBitSimplify::getConst(const BitTracker::RegisterCell &RC,
    309         uint16_t B, uint16_t W, uint64_t &U) {
    310   assert(B < RC.width() && B+W <= RC.width());
    311   int64_t T = 0;
    312   for (uint16_t i = B+W; i > B; --i) {
    313     const BitTracker::BitValue &BV = RC[i-1];
    314     T <<= 1;
    315     if (BV.is(1))
    316       T |= 1;
    317     else if (!BV.is(0))
    318       return false;
    319   }
    320   U = T;
    321   return true;
    322 }
    323 
    324 
    325 bool HexagonBitSimplify::replaceReg(unsigned OldR, unsigned NewR,
    326       MachineRegisterInfo &MRI) {
    327   if (!TargetRegisterInfo::isVirtualRegister(OldR) ||
    328       !TargetRegisterInfo::isVirtualRegister(NewR))
    329     return false;
    330   auto Begin = MRI.use_begin(OldR), End = MRI.use_end();
    331   decltype(End) NextI;
    332   for (auto I = Begin; I != End; I = NextI) {
    333     NextI = std::next(I);
    334     I->setReg(NewR);
    335   }
    336   return Begin != End;
    337 }
    338 
    339 
    340 bool HexagonBitSimplify::replaceRegWithSub(unsigned OldR, unsigned NewR,
    341       unsigned NewSR, MachineRegisterInfo &MRI) {
    342   if (!TargetRegisterInfo::isVirtualRegister(OldR) ||
    343       !TargetRegisterInfo::isVirtualRegister(NewR))
    344     return false;
    345   auto Begin = MRI.use_begin(OldR), End = MRI.use_end();
    346   decltype(End) NextI;
    347   for (auto I = Begin; I != End; I = NextI) {
    348     NextI = std::next(I);
    349     I->setReg(NewR);
    350     I->setSubReg(NewSR);
    351   }
    352   return Begin != End;
    353 }
    354 
    355 
    356 bool HexagonBitSimplify::replaceSubWithSub(unsigned OldR, unsigned OldSR,
    357       unsigned NewR, unsigned NewSR, MachineRegisterInfo &MRI) {
    358   if (!TargetRegisterInfo::isVirtualRegister(OldR) ||
    359       !TargetRegisterInfo::isVirtualRegister(NewR))
    360     return false;
    361   auto Begin = MRI.use_begin(OldR), End = MRI.use_end();
    362   decltype(End) NextI;
    363   for (auto I = Begin; I != End; I = NextI) {
    364     NextI = std::next(I);
    365     if (I->getSubReg() != OldSR)
    366       continue;
    367     I->setReg(NewR);
    368     I->setSubReg(NewSR);
    369   }
    370   return Begin != End;
    371 }
    372 
    373 
    374 // For a register ref (pair Reg:Sub), set Begin to the position of the LSB
    375 // of Sub in Reg, and set Width to the size of Sub in bits. Return true,
    376 // if this succeeded, otherwise return false.
    377 bool HexagonBitSimplify::getSubregMask(const BitTracker::RegisterRef &RR,
    378       unsigned &Begin, unsigned &Width, MachineRegisterInfo &MRI) {
    379   const TargetRegisterClass *RC = MRI.getRegClass(RR.Reg);
    380   if (RC == &Hexagon::IntRegsRegClass) {
    381     assert(RR.Sub == 0);
    382     Begin = 0;
    383     Width = 32;
    384     return true;
    385   }
    386   if (RC == &Hexagon::DoubleRegsRegClass) {
    387     if (RR.Sub == 0) {
    388       Begin = 0;
    389       Width = 64;
    390       return true;
    391     }
    392     assert(RR.Sub == Hexagon::subreg_loreg || RR.Sub == Hexagon::subreg_hireg);
    393     Width = 32;
    394     Begin = (RR.Sub == Hexagon::subreg_loreg ? 0 : 32);
    395     return true;
    396   }
    397   return false;
    398 }
    399 
    400 
    401 // For a REG_SEQUENCE, set SL to the low subregister and SH to the high
    402 // subregister.
    403 bool HexagonBitSimplify::parseRegSequence(const MachineInstr &I,
    404       BitTracker::RegisterRef &SL, BitTracker::RegisterRef &SH) {
    405   assert(I.getOpcode() == TargetOpcode::REG_SEQUENCE);
    406   unsigned Sub1 = I.getOperand(2).getImm(), Sub2 = I.getOperand(4).getImm();
    407   assert(Sub1 != Sub2);
    408   if (Sub1 == Hexagon::subreg_loreg && Sub2 == Hexagon::subreg_hireg) {
    409     SL = I.getOperand(1);
    410     SH = I.getOperand(3);
    411     return true;
    412   }
    413   if (Sub1 == Hexagon::subreg_hireg && Sub2 == Hexagon::subreg_loreg) {
    414     SH = I.getOperand(1);
    415     SL = I.getOperand(3);
    416     return true;
    417   }
    418   return false;
    419 }
    420 
    421 
    422 // All stores (except 64-bit stores) take a 32-bit register as the source
    423 // of the value to be stored. If the instruction stores into a location
    424 // that is shorter than 32 bits, some bits of the source register are not
    425 // used. For each store instruction, calculate the set of used bits in
    426 // the source register, and set appropriate bits in Bits. Return true if
    427 // the bits are calculated, false otherwise.
    428 bool HexagonBitSimplify::getUsedBitsInStore(unsigned Opc, BitVector &Bits,
    429       uint16_t Begin) {
    430   using namespace Hexagon;
    431 
    432   switch (Opc) {
    433     // Store byte
    434     case S2_storerb_io:           // memb(Rs32+#s11:0)=Rt32
    435     case S2_storerbnew_io:        // memb(Rs32+#s11:0)=Nt8.new
    436     case S2_pstorerbt_io:         // if (Pv4) memb(Rs32+#u6:0)=Rt32
    437     case S2_pstorerbf_io:         // if (!Pv4) memb(Rs32+#u6:0)=Rt32
    438     case S4_pstorerbtnew_io:      // if (Pv4.new) memb(Rs32+#u6:0)=Rt32
    439     case S4_pstorerbfnew_io:      // if (!Pv4.new) memb(Rs32+#u6:0)=Rt32
    440     case S2_pstorerbnewt_io:      // if (Pv4) memb(Rs32+#u6:0)=Nt8.new
    441     case S2_pstorerbnewf_io:      // if (!Pv4) memb(Rs32+#u6:0)=Nt8.new
    442     case S4_pstorerbnewtnew_io:   // if (Pv4.new) memb(Rs32+#u6:0)=Nt8.new
    443     case S4_pstorerbnewfnew_io:   // if (!Pv4.new) memb(Rs32+#u6:0)=Nt8.new
    444     case S2_storerb_pi:           // memb(Rx32++#s4:0)=Rt32
    445     case S2_storerbnew_pi:        // memb(Rx32++#s4:0)=Nt8.new
    446     case S2_pstorerbt_pi:         // if (Pv4) memb(Rx32++#s4:0)=Rt32
    447     case S2_pstorerbf_pi:         // if (!Pv4) memb(Rx32++#s4:0)=Rt32
    448     case S2_pstorerbtnew_pi:      // if (Pv4.new) memb(Rx32++#s4:0)=Rt32
    449     case S2_pstorerbfnew_pi:      // if (!Pv4.new) memb(Rx32++#s4:0)=Rt32
    450     case S2_pstorerbnewt_pi:      // if (Pv4) memb(Rx32++#s4:0)=Nt8.new
    451     case S2_pstorerbnewf_pi:      // if (!Pv4) memb(Rx32++#s4:0)=Nt8.new
    452     case S2_pstorerbnewtnew_pi:   // if (Pv4.new) memb(Rx32++#s4:0)=Nt8.new
    453     case S2_pstorerbnewfnew_pi:   // if (!Pv4.new) memb(Rx32++#s4:0)=Nt8.new
    454     case S4_storerb_ap:           // memb(Re32=#U6)=Rt32
    455     case S4_storerbnew_ap:        // memb(Re32=#U6)=Nt8.new
    456     case S2_storerb_pr:           // memb(Rx32++Mu2)=Rt32
    457     case S2_storerbnew_pr:        // memb(Rx32++Mu2)=Nt8.new
    458     case S4_storerb_ur:           // memb(Ru32<<#u2+#U6)=Rt32
    459     case S4_storerbnew_ur:        // memb(Ru32<<#u2+#U6)=Nt8.new
    460     case S2_storerb_pbr:          // memb(Rx32++Mu2:brev)=Rt32
    461     case S2_storerbnew_pbr:       // memb(Rx32++Mu2:brev)=Nt8.new
    462     case S2_storerb_pci:          // memb(Rx32++#s4:0:circ(Mu2))=Rt32
    463     case S2_storerbnew_pci:       // memb(Rx32++#s4:0:circ(Mu2))=Nt8.new
    464     case S2_storerb_pcr:          // memb(Rx32++I:circ(Mu2))=Rt32
    465     case S2_storerbnew_pcr:       // memb(Rx32++I:circ(Mu2))=Nt8.new
    466     case S4_storerb_rr:           // memb(Rs32+Ru32<<#u2)=Rt32
    467     case S4_storerbnew_rr:        // memb(Rs32+Ru32<<#u2)=Nt8.new
    468     case S4_pstorerbt_rr:         // if (Pv4) memb(Rs32+Ru32<<#u2)=Rt32
    469     case S4_pstorerbf_rr:         // if (!Pv4) memb(Rs32+Ru32<<#u2)=Rt32
    470     case S4_pstorerbtnew_rr:      // if (Pv4.new) memb(Rs32+Ru32<<#u2)=Rt32
    471     case S4_pstorerbfnew_rr:      // if (!Pv4.new) memb(Rs32+Ru32<<#u2)=Rt32
    472     case S4_pstorerbnewt_rr:      // if (Pv4) memb(Rs32+Ru32<<#u2)=Nt8.new
    473     case S4_pstorerbnewf_rr:      // if (!Pv4) memb(Rs32+Ru32<<#u2)=Nt8.new
    474     case S4_pstorerbnewtnew_rr:   // if (Pv4.new) memb(Rs32+Ru32<<#u2)=Nt8.new
    475     case S4_pstorerbnewfnew_rr:   // if (!Pv4.new) memb(Rs32+Ru32<<#u2)=Nt8.new
    476     case S2_storerbgp:            // memb(gp+#u16:0)=Rt32
    477     case S2_storerbnewgp:         // memb(gp+#u16:0)=Nt8.new
    478     case S4_pstorerbt_abs:        // if (Pv4) memb(#u6)=Rt32
    479     case S4_pstorerbf_abs:        // if (!Pv4) memb(#u6)=Rt32
    480     case S4_pstorerbtnew_abs:     // if (Pv4.new) memb(#u6)=Rt32
    481     case S4_pstorerbfnew_abs:     // if (!Pv4.new) memb(#u6)=Rt32
    482     case S4_pstorerbnewt_abs:     // if (Pv4) memb(#u6)=Nt8.new
    483     case S4_pstorerbnewf_abs:     // if (!Pv4) memb(#u6)=Nt8.new
    484     case S4_pstorerbnewtnew_abs:  // if (Pv4.new) memb(#u6)=Nt8.new
    485     case S4_pstorerbnewfnew_abs:  // if (!Pv4.new) memb(#u6)=Nt8.new
    486       Bits.set(Begin, Begin+8);
    487       return true;
    488 
    489     // Store low half
    490     case S2_storerh_io:           // memh(Rs32+#s11:1)=Rt32
    491     case S2_storerhnew_io:        // memh(Rs32+#s11:1)=Nt8.new
    492     case S2_pstorerht_io:         // if (Pv4) memh(Rs32+#u6:1)=Rt32
    493     case S2_pstorerhf_io:         // if (!Pv4) memh(Rs32+#u6:1)=Rt32
    494     case S4_pstorerhtnew_io:      // if (Pv4.new) memh(Rs32+#u6:1)=Rt32
    495     case S4_pstorerhfnew_io:      // if (!Pv4.new) memh(Rs32+#u6:1)=Rt32
    496     case S2_pstorerhnewt_io:      // if (Pv4) memh(Rs32+#u6:1)=Nt8.new
    497     case S2_pstorerhnewf_io:      // if (!Pv4) memh(Rs32+#u6:1)=Nt8.new
    498     case S4_pstorerhnewtnew_io:   // if (Pv4.new) memh(Rs32+#u6:1)=Nt8.new
    499     case S4_pstorerhnewfnew_io:   // if (!Pv4.new) memh(Rs32+#u6:1)=Nt8.new
    500     case S2_storerh_pi:           // memh(Rx32++#s4:1)=Rt32
    501     case S2_storerhnew_pi:        // memh(Rx32++#s4:1)=Nt8.new
    502     case S2_pstorerht_pi:         // if (Pv4) memh(Rx32++#s4:1)=Rt32
    503     case S2_pstorerhf_pi:         // if (!Pv4) memh(Rx32++#s4:1)=Rt32
    504     case S2_pstorerhtnew_pi:      // if (Pv4.new) memh(Rx32++#s4:1)=Rt32
    505     case S2_pstorerhfnew_pi:      // if (!Pv4.new) memh(Rx32++#s4:1)=Rt32
    506     case S2_pstorerhnewt_pi:      // if (Pv4) memh(Rx32++#s4:1)=Nt8.new
    507     case S2_pstorerhnewf_pi:      // if (!Pv4) memh(Rx32++#s4:1)=Nt8.new
    508     case S2_pstorerhnewtnew_pi:   // if (Pv4.new) memh(Rx32++#s4:1)=Nt8.new
    509     case S2_pstorerhnewfnew_pi:   // if (!Pv4.new) memh(Rx32++#s4:1)=Nt8.new
    510     case S4_storerh_ap:           // memh(Re32=#U6)=Rt32
    511     case S4_storerhnew_ap:        // memh(Re32=#U6)=Nt8.new
    512     case S2_storerh_pr:           // memh(Rx32++Mu2)=Rt32
    513     case S2_storerhnew_pr:        // memh(Rx32++Mu2)=Nt8.new
    514     case S4_storerh_ur:           // memh(Ru32<<#u2+#U6)=Rt32
    515     case S4_storerhnew_ur:        // memh(Ru32<<#u2+#U6)=Nt8.new
    516     case S2_storerh_pbr:          // memh(Rx32++Mu2:brev)=Rt32
    517     case S2_storerhnew_pbr:       // memh(Rx32++Mu2:brev)=Nt8.new
    518     case S2_storerh_pci:          // memh(Rx32++#s4:1:circ(Mu2))=Rt32
    519     case S2_storerhnew_pci:       // memh(Rx32++#s4:1:circ(Mu2))=Nt8.new
    520     case S2_storerh_pcr:          // memh(Rx32++I:circ(Mu2))=Rt32
    521     case S2_storerhnew_pcr:       // memh(Rx32++I:circ(Mu2))=Nt8.new
    522     case S4_storerh_rr:           // memh(Rs32+Ru32<<#u2)=Rt32
    523     case S4_pstorerht_rr:         // if (Pv4) memh(Rs32+Ru32<<#u2)=Rt32
    524     case S4_pstorerhf_rr:         // if (!Pv4) memh(Rs32+Ru32<<#u2)=Rt32
    525     case S4_pstorerhtnew_rr:      // if (Pv4.new) memh(Rs32+Ru32<<#u2)=Rt32
    526     case S4_pstorerhfnew_rr:      // if (!Pv4.new) memh(Rs32+Ru32<<#u2)=Rt32
    527     case S4_storerhnew_rr:        // memh(Rs32+Ru32<<#u2)=Nt8.new
    528     case S4_pstorerhnewt_rr:      // if (Pv4) memh(Rs32+Ru32<<#u2)=Nt8.new
    529     case S4_pstorerhnewf_rr:      // if (!Pv4) memh(Rs32+Ru32<<#u2)=Nt8.new
    530     case S4_pstorerhnewtnew_rr:   // if (Pv4.new) memh(Rs32+Ru32<<#u2)=Nt8.new
    531     case S4_pstorerhnewfnew_rr:   // if (!Pv4.new) memh(Rs32+Ru32<<#u2)=Nt8.new
    532     case S2_storerhgp:            // memh(gp+#u16:1)=Rt32
    533     case S2_storerhnewgp:         // memh(gp+#u16:1)=Nt8.new
    534     case S4_pstorerht_abs:        // if (Pv4) memh(#u6)=Rt32
    535     case S4_pstorerhf_abs:        // if (!Pv4) memh(#u6)=Rt32
    536     case S4_pstorerhtnew_abs:     // if (Pv4.new) memh(#u6)=Rt32
    537     case S4_pstorerhfnew_abs:     // if (!Pv4.new) memh(#u6)=Rt32
    538     case S4_pstorerhnewt_abs:     // if (Pv4) memh(#u6)=Nt8.new
    539     case S4_pstorerhnewf_abs:     // if (!Pv4) memh(#u6)=Nt8.new
    540     case S4_pstorerhnewtnew_abs:  // if (Pv4.new) memh(#u6)=Nt8.new
    541     case S4_pstorerhnewfnew_abs:  // if (!Pv4.new) memh(#u6)=Nt8.new
    542       Bits.set(Begin, Begin+16);
    543       return true;
    544 
    545     // Store high half
    546     case S2_storerf_io:           // memh(Rs32+#s11:1)=Rt.H32
    547     case S2_pstorerft_io:         // if (Pv4) memh(Rs32+#u6:1)=Rt.H32
    548     case S2_pstorerff_io:         // if (!Pv4) memh(Rs32+#u6:1)=Rt.H32
    549     case S4_pstorerftnew_io:      // if (Pv4.new) memh(Rs32+#u6:1)=Rt.H32
    550     case S4_pstorerffnew_io:      // if (!Pv4.new) memh(Rs32+#u6:1)=Rt.H32
    551     case S2_storerf_pi:           // memh(Rx32++#s4:1)=Rt.H32
    552     case S2_pstorerft_pi:         // if (Pv4) memh(Rx32++#s4:1)=Rt.H32
    553     case S2_pstorerff_pi:         // if (!Pv4) memh(Rx32++#s4:1)=Rt.H32
    554     case S2_pstorerftnew_pi:      // if (Pv4.new) memh(Rx32++#s4:1)=Rt.H32
    555     case S2_pstorerffnew_pi:      // if (!Pv4.new) memh(Rx32++#s4:1)=Rt.H32
    556     case S4_storerf_ap:           // memh(Re32=#U6)=Rt.H32
    557     case S2_storerf_pr:           // memh(Rx32++Mu2)=Rt.H32
    558     case S4_storerf_ur:           // memh(Ru32<<#u2+#U6)=Rt.H32
    559     case S2_storerf_pbr:          // memh(Rx32++Mu2:brev)=Rt.H32
    560     case S2_storerf_pci:          // memh(Rx32++#s4:1:circ(Mu2))=Rt.H32
    561     case S2_storerf_pcr:          // memh(Rx32++I:circ(Mu2))=Rt.H32
    562     case S4_storerf_rr:           // memh(Rs32+Ru32<<#u2)=Rt.H32
    563     case S4_pstorerft_rr:         // if (Pv4) memh(Rs32+Ru32<<#u2)=Rt.H32
    564     case S4_pstorerff_rr:         // if (!Pv4) memh(Rs32+Ru32<<#u2)=Rt.H32
    565     case S4_pstorerftnew_rr:      // if (Pv4.new) memh(Rs32+Ru32<<#u2)=Rt.H32
    566     case S4_pstorerffnew_rr:      // if (!Pv4.new) memh(Rs32+Ru32<<#u2)=Rt.H32
    567     case S2_storerfgp:            // memh(gp+#u16:1)=Rt.H32
    568     case S4_pstorerft_abs:        // if (Pv4) memh(#u6)=Rt.H32
    569     case S4_pstorerff_abs:        // if (!Pv4) memh(#u6)=Rt.H32
    570     case S4_pstorerftnew_abs:     // if (Pv4.new) memh(#u6)=Rt.H32
    571     case S4_pstorerffnew_abs:     // if (!Pv4.new) memh(#u6)=Rt.H32
    572       Bits.set(Begin+16, Begin+32);
    573       return true;
    574   }
    575 
    576   return false;
    577 }
    578 
    579 
    580 // For an instruction with opcode Opc, calculate the set of bits that it
    581 // uses in a register in operand OpN. This only calculates the set of used
    582 // bits for cases where it does not depend on any operands (as is the case
    583 // in shifts, for example). For concrete instructions from a program, the
    584 // operand may be a subregister of a larger register, while Bits would
    585 // correspond to the larger register in its entirety. Because of that,
    586 // the parameter Begin can be used to indicate which bit of Bits should be
    587 // considered the LSB of of the operand.
    588 bool HexagonBitSimplify::getUsedBits(unsigned Opc, unsigned OpN,
    589       BitVector &Bits, uint16_t Begin, const HexagonInstrInfo &HII) {
    590   using namespace Hexagon;
    591 
    592   const MCInstrDesc &D = HII.get(Opc);
    593   if (D.mayStore()) {
    594     if (OpN == D.getNumOperands()-1)
    595       return getUsedBitsInStore(Opc, Bits, Begin);
    596     return false;
    597   }
    598 
    599   switch (Opc) {
    600     // One register source. Used bits: R1[0-7].
    601     case A2_sxtb:
    602     case A2_zxtb:
    603     case A4_cmpbeqi:
    604     case A4_cmpbgti:
    605     case A4_cmpbgtui:
    606       if (OpN == 1) {
    607         Bits.set(Begin, Begin+8);
    608         return true;
    609       }
    610       break;
    611 
    612     // One register source. Used bits: R1[0-15].
    613     case A2_aslh:
    614     case A2_sxth:
    615     case A2_zxth:
    616     case A4_cmpheqi:
    617     case A4_cmphgti:
    618     case A4_cmphgtui:
    619       if (OpN == 1) {
    620         Bits.set(Begin, Begin+16);
    621         return true;
    622       }
    623       break;
    624 
    625     // One register source. Used bits: R1[16-31].
    626     case A2_asrh:
    627       if (OpN == 1) {
    628         Bits.set(Begin+16, Begin+32);
    629         return true;
    630       }
    631       break;
    632 
    633     // Two register sources. Used bits: R1[0-7], R2[0-7].
    634     case A4_cmpbeq:
    635     case A4_cmpbgt:
    636     case A4_cmpbgtu:
    637       if (OpN == 1) {
    638         Bits.set(Begin, Begin+8);
    639         return true;
    640       }
    641       break;
    642 
    643     // Two register sources. Used bits: R1[0-15], R2[0-15].
    644     case A4_cmpheq:
    645     case A4_cmphgt:
    646     case A4_cmphgtu:
    647     case A2_addh_h16_ll:
    648     case A2_addh_h16_sat_ll:
    649     case A2_addh_l16_ll:
    650     case A2_addh_l16_sat_ll:
    651     case A2_combine_ll:
    652     case A2_subh_h16_ll:
    653     case A2_subh_h16_sat_ll:
    654     case A2_subh_l16_ll:
    655     case A2_subh_l16_sat_ll:
    656     case M2_mpy_acc_ll_s0:
    657     case M2_mpy_acc_ll_s1:
    658     case M2_mpy_acc_sat_ll_s0:
    659     case M2_mpy_acc_sat_ll_s1:
    660     case M2_mpy_ll_s0:
    661     case M2_mpy_ll_s1:
    662     case M2_mpy_nac_ll_s0:
    663     case M2_mpy_nac_ll_s1:
    664     case M2_mpy_nac_sat_ll_s0:
    665     case M2_mpy_nac_sat_ll_s1:
    666     case M2_mpy_rnd_ll_s0:
    667     case M2_mpy_rnd_ll_s1:
    668     case M2_mpy_sat_ll_s0:
    669     case M2_mpy_sat_ll_s1:
    670     case M2_mpy_sat_rnd_ll_s0:
    671     case M2_mpy_sat_rnd_ll_s1:
    672     case M2_mpyd_acc_ll_s0:
    673     case M2_mpyd_acc_ll_s1:
    674     case M2_mpyd_ll_s0:
    675     case M2_mpyd_ll_s1:
    676     case M2_mpyd_nac_ll_s0:
    677     case M2_mpyd_nac_ll_s1:
    678     case M2_mpyd_rnd_ll_s0:
    679     case M2_mpyd_rnd_ll_s1:
    680     case M2_mpyu_acc_ll_s0:
    681     case M2_mpyu_acc_ll_s1:
    682     case M2_mpyu_ll_s0:
    683     case M2_mpyu_ll_s1:
    684     case M2_mpyu_nac_ll_s0:
    685     case M2_mpyu_nac_ll_s1:
    686     case M2_mpyud_acc_ll_s0:
    687     case M2_mpyud_acc_ll_s1:
    688     case M2_mpyud_ll_s0:
    689     case M2_mpyud_ll_s1:
    690     case M2_mpyud_nac_ll_s0:
    691     case M2_mpyud_nac_ll_s1:
    692       if (OpN == 1 || OpN == 2) {
    693         Bits.set(Begin, Begin+16);
    694         return true;
    695       }
    696       break;
    697 
    698     // Two register sources. Used bits: R1[0-15], R2[16-31].
    699     case A2_addh_h16_lh:
    700     case A2_addh_h16_sat_lh:
    701     case A2_combine_lh:
    702     case A2_subh_h16_lh:
    703     case A2_subh_h16_sat_lh:
    704     case M2_mpy_acc_lh_s0:
    705     case M2_mpy_acc_lh_s1:
    706     case M2_mpy_acc_sat_lh_s0:
    707     case M2_mpy_acc_sat_lh_s1:
    708     case M2_mpy_lh_s0:
    709     case M2_mpy_lh_s1:
    710     case M2_mpy_nac_lh_s0:
    711     case M2_mpy_nac_lh_s1:
    712     case M2_mpy_nac_sat_lh_s0:
    713     case M2_mpy_nac_sat_lh_s1:
    714     case M2_mpy_rnd_lh_s0:
    715     case M2_mpy_rnd_lh_s1:
    716     case M2_mpy_sat_lh_s0:
    717     case M2_mpy_sat_lh_s1:
    718     case M2_mpy_sat_rnd_lh_s0:
    719     case M2_mpy_sat_rnd_lh_s1:
    720     case M2_mpyd_acc_lh_s0:
    721     case M2_mpyd_acc_lh_s1:
    722     case M2_mpyd_lh_s0:
    723     case M2_mpyd_lh_s1:
    724     case M2_mpyd_nac_lh_s0:
    725     case M2_mpyd_nac_lh_s1:
    726     case M2_mpyd_rnd_lh_s0:
    727     case M2_mpyd_rnd_lh_s1:
    728     case M2_mpyu_acc_lh_s0:
    729     case M2_mpyu_acc_lh_s1:
    730     case M2_mpyu_lh_s0:
    731     case M2_mpyu_lh_s1:
    732     case M2_mpyu_nac_lh_s0:
    733     case M2_mpyu_nac_lh_s1:
    734     case M2_mpyud_acc_lh_s0:
    735     case M2_mpyud_acc_lh_s1:
    736     case M2_mpyud_lh_s0:
    737     case M2_mpyud_lh_s1:
    738     case M2_mpyud_nac_lh_s0:
    739     case M2_mpyud_nac_lh_s1:
    740     // These four are actually LH.
    741     case A2_addh_l16_hl:
    742     case A2_addh_l16_sat_hl:
    743     case A2_subh_l16_hl:
    744     case A2_subh_l16_sat_hl:
    745       if (OpN == 1) {
    746         Bits.set(Begin, Begin+16);
    747         return true;
    748       }
    749       if (OpN == 2) {
    750         Bits.set(Begin+16, Begin+32);
    751         return true;
    752       }
    753       break;
    754 
    755     // Two register sources, used bits: R1[16-31], R2[0-15].
    756     case A2_addh_h16_hl:
    757     case A2_addh_h16_sat_hl:
    758     case A2_combine_hl:
    759     case A2_subh_h16_hl:
    760     case A2_subh_h16_sat_hl:
    761     case M2_mpy_acc_hl_s0:
    762     case M2_mpy_acc_hl_s1:
    763     case M2_mpy_acc_sat_hl_s0:
    764     case M2_mpy_acc_sat_hl_s1:
    765     case M2_mpy_hl_s0:
    766     case M2_mpy_hl_s1:
    767     case M2_mpy_nac_hl_s0:
    768     case M2_mpy_nac_hl_s1:
    769     case M2_mpy_nac_sat_hl_s0:
    770     case M2_mpy_nac_sat_hl_s1:
    771     case M2_mpy_rnd_hl_s0:
    772     case M2_mpy_rnd_hl_s1:
    773     case M2_mpy_sat_hl_s0:
    774     case M2_mpy_sat_hl_s1:
    775     case M2_mpy_sat_rnd_hl_s0:
    776     case M2_mpy_sat_rnd_hl_s1:
    777     case M2_mpyd_acc_hl_s0:
    778     case M2_mpyd_acc_hl_s1:
    779     case M2_mpyd_hl_s0:
    780     case M2_mpyd_hl_s1:
    781     case M2_mpyd_nac_hl_s0:
    782     case M2_mpyd_nac_hl_s1:
    783     case M2_mpyd_rnd_hl_s0:
    784     case M2_mpyd_rnd_hl_s1:
    785     case M2_mpyu_acc_hl_s0:
    786     case M2_mpyu_acc_hl_s1:
    787     case M2_mpyu_hl_s0:
    788     case M2_mpyu_hl_s1:
    789     case M2_mpyu_nac_hl_s0:
    790     case M2_mpyu_nac_hl_s1:
    791     case M2_mpyud_acc_hl_s0:
    792     case M2_mpyud_acc_hl_s1:
    793     case M2_mpyud_hl_s0:
    794     case M2_mpyud_hl_s1:
    795     case M2_mpyud_nac_hl_s0:
    796     case M2_mpyud_nac_hl_s1:
    797       if (OpN == 1) {
    798         Bits.set(Begin+16, Begin+32);
    799         return true;
    800       }
    801       if (OpN == 2) {
    802         Bits.set(Begin, Begin+16);
    803         return true;
    804       }
    805       break;
    806 
    807     // Two register sources, used bits: R1[16-31], R2[16-31].
    808     case A2_addh_h16_hh:
    809     case A2_addh_h16_sat_hh:
    810     case A2_combine_hh:
    811     case A2_subh_h16_hh:
    812     case A2_subh_h16_sat_hh:
    813     case M2_mpy_acc_hh_s0:
    814     case M2_mpy_acc_hh_s1:
    815     case M2_mpy_acc_sat_hh_s0:
    816     case M2_mpy_acc_sat_hh_s1:
    817     case M2_mpy_hh_s0:
    818     case M2_mpy_hh_s1:
    819     case M2_mpy_nac_hh_s0:
    820     case M2_mpy_nac_hh_s1:
    821     case M2_mpy_nac_sat_hh_s0:
    822     case M2_mpy_nac_sat_hh_s1:
    823     case M2_mpy_rnd_hh_s0:
    824     case M2_mpy_rnd_hh_s1:
    825     case M2_mpy_sat_hh_s0:
    826     case M2_mpy_sat_hh_s1:
    827     case M2_mpy_sat_rnd_hh_s0:
    828     case M2_mpy_sat_rnd_hh_s1:
    829     case M2_mpyd_acc_hh_s0:
    830     case M2_mpyd_acc_hh_s1:
    831     case M2_mpyd_hh_s0:
    832     case M2_mpyd_hh_s1:
    833     case M2_mpyd_nac_hh_s0:
    834     case M2_mpyd_nac_hh_s1:
    835     case M2_mpyd_rnd_hh_s0:
    836     case M2_mpyd_rnd_hh_s1:
    837     case M2_mpyu_acc_hh_s0:
    838     case M2_mpyu_acc_hh_s1:
    839     case M2_mpyu_hh_s0:
    840     case M2_mpyu_hh_s1:
    841     case M2_mpyu_nac_hh_s0:
    842     case M2_mpyu_nac_hh_s1:
    843     case M2_mpyud_acc_hh_s0:
    844     case M2_mpyud_acc_hh_s1:
    845     case M2_mpyud_hh_s0:
    846     case M2_mpyud_hh_s1:
    847     case M2_mpyud_nac_hh_s0:
    848     case M2_mpyud_nac_hh_s1:
    849       if (OpN == 1 || OpN == 2) {
    850         Bits.set(Begin+16, Begin+32);
    851         return true;
    852       }
    853       break;
    854   }
    855 
    856   return false;
    857 }
    858 
    859 
    860 // Calculate the register class that matches Reg:Sub. For example, if
    861 // vreg1 is a double register, then vreg1:subreg_hireg would match "int"
    862 // register class.
    863 const TargetRegisterClass *HexagonBitSimplify::getFinalVRegClass(
    864       const BitTracker::RegisterRef &RR, MachineRegisterInfo &MRI) {
    865   if (!TargetRegisterInfo::isVirtualRegister(RR.Reg))
    866     return nullptr;
    867   auto *RC = MRI.getRegClass(RR.Reg);
    868   if (RR.Sub == 0)
    869     return RC;
    870 
    871   auto VerifySR = [] (unsigned Sub) -> void {
    872     assert(Sub == Hexagon::subreg_hireg || Sub == Hexagon::subreg_loreg);
    873   };
    874 
    875   switch (RC->getID()) {
    876     case Hexagon::DoubleRegsRegClassID:
    877       VerifySR(RR.Sub);
    878       return &Hexagon::IntRegsRegClass;
    879   }
    880   return nullptr;
    881 }
    882 
    883 
    884 // Check if RD could be replaced with RS at any possible use of RD.
    885 // For example a predicate register cannot be replaced with a integer
    886 // register, but a 64-bit register with a subregister can be replaced
    887 // with a 32-bit register.
    888 bool HexagonBitSimplify::isTransparentCopy(const BitTracker::RegisterRef &RD,
    889       const BitTracker::RegisterRef &RS, MachineRegisterInfo &MRI) {
    890   if (!TargetRegisterInfo::isVirtualRegister(RD.Reg) ||
    891       !TargetRegisterInfo::isVirtualRegister(RS.Reg))
    892     return false;
    893   // Return false if one (or both) classes are nullptr.
    894   auto *DRC = getFinalVRegClass(RD, MRI);
    895   if (!DRC)
    896     return false;
    897 
    898   return DRC == getFinalVRegClass(RS, MRI);
    899 }
    900 
    901 
    902 //
    903 // Dead code elimination
    904 //
    905 namespace {
    906   class DeadCodeElimination {
    907   public:
    908     DeadCodeElimination(MachineFunction &mf, MachineDominatorTree &mdt)
    909       : MF(mf), HII(*MF.getSubtarget<HexagonSubtarget>().getInstrInfo()),
    910         MDT(mdt), MRI(mf.getRegInfo()) {}
    911 
    912     bool run() {
    913       return runOnNode(MDT.getRootNode());
    914     }
    915 
    916   private:
    917     bool isDead(unsigned R) const;
    918     bool runOnNode(MachineDomTreeNode *N);
    919 
    920     MachineFunction &MF;
    921     const HexagonInstrInfo &HII;
    922     MachineDominatorTree &MDT;
    923     MachineRegisterInfo &MRI;
    924   };
    925 }
    926 
    927 
    928 bool DeadCodeElimination::isDead(unsigned R) const {
    929   for (auto I = MRI.use_begin(R), E = MRI.use_end(); I != E; ++I) {
    930     MachineInstr *UseI = I->getParent();
    931     if (UseI->isDebugValue())
    932       continue;
    933     if (UseI->isPHI()) {
    934       assert(!UseI->getOperand(0).getSubReg());
    935       unsigned DR = UseI->getOperand(0).getReg();
    936       if (DR == R)
    937         continue;
    938     }
    939     return false;
    940   }
    941   return true;
    942 }
    943 
    944 
    945 bool DeadCodeElimination::runOnNode(MachineDomTreeNode *N) {
    946   bool Changed = false;
    947   typedef GraphTraits<MachineDomTreeNode*> GTN;
    948   for (auto I = GTN::child_begin(N), E = GTN::child_end(N); I != E; ++I)
    949     Changed |= runOnNode(*I);
    950 
    951   MachineBasicBlock *B = N->getBlock();
    952   std::vector<MachineInstr*> Instrs;
    953   for (auto I = B->rbegin(), E = B->rend(); I != E; ++I)
    954     Instrs.push_back(&*I);
    955 
    956   for (auto MI : Instrs) {
    957     unsigned Opc = MI->getOpcode();
    958     // Do not touch lifetime markers. This is why the target-independent DCE
    959     // cannot be used.
    960     if (Opc == TargetOpcode::LIFETIME_START ||
    961         Opc == TargetOpcode::LIFETIME_END)
    962       continue;
    963     bool Store = false;
    964     if (MI->isInlineAsm())
    965       continue;
    966     // Delete PHIs if possible.
    967     if (!MI->isPHI() && !MI->isSafeToMove(nullptr, Store))
    968       continue;
    969 
    970     bool AllDead = true;
    971     SmallVector<unsigned,2> Regs;
    972     for (auto &Op : MI->operands()) {
    973       if (!Op.isReg() || !Op.isDef())
    974         continue;
    975       unsigned R = Op.getReg();
    976       if (!TargetRegisterInfo::isVirtualRegister(R) || !isDead(R)) {
    977         AllDead = false;
    978         break;
    979       }
    980       Regs.push_back(R);
    981     }
    982     if (!AllDead)
    983       continue;
    984 
    985     B->erase(MI);
    986     for (unsigned i = 0, n = Regs.size(); i != n; ++i)
    987       MRI.markUsesInDebugValueAsUndef(Regs[i]);
    988     Changed = true;
    989   }
    990 
    991   return Changed;
    992 }
    993 
    994 
    995 //
    996 // Eliminate redundant instructions
    997 //
    998 // This transformation will identify instructions where the output register
    999 // is the same as one of its input registers. This only works on instructions
   1000 // that define a single register (unlike post-increment loads, for example).
   1001 // The equality check is actually more detailed: the code calculates which
   1002 // bits of the output are used, and only compares these bits with the input
   1003 // registers.
   1004 // If the output matches an input, the instruction is replaced with COPY.
   1005 // The copies will be removed by another transformation.
   1006 namespace {
   1007   class RedundantInstrElimination : public Transformation {
   1008   public:
   1009     RedundantInstrElimination(BitTracker &bt, const HexagonInstrInfo &hii,
   1010           MachineRegisterInfo &mri)
   1011         : Transformation(true), HII(hii), MRI(mri), BT(bt) {}
   1012     bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override;
   1013   private:
   1014     bool isLossyShiftLeft(const MachineInstr &MI, unsigned OpN,
   1015           unsigned &LostB, unsigned &LostE);
   1016     bool isLossyShiftRight(const MachineInstr &MI, unsigned OpN,
   1017           unsigned &LostB, unsigned &LostE);
   1018     bool computeUsedBits(unsigned Reg, BitVector &Bits);
   1019     bool computeUsedBits(const MachineInstr &MI, unsigned OpN, BitVector &Bits,
   1020           uint16_t Begin);
   1021     bool usedBitsEqual(BitTracker::RegisterRef RD, BitTracker::RegisterRef RS);
   1022 
   1023     const HexagonInstrInfo &HII;
   1024     MachineRegisterInfo &MRI;
   1025     BitTracker &BT;
   1026   };
   1027 }
   1028 
   1029 
   1030 // Check if the instruction is a lossy shift left, where the input being
   1031 // shifted is the operand OpN of MI. If true, [LostB, LostE) is the range
   1032 // of bit indices that are lost.
   1033 bool RedundantInstrElimination::isLossyShiftLeft(const MachineInstr &MI,
   1034       unsigned OpN, unsigned &LostB, unsigned &LostE) {
   1035   using namespace Hexagon;
   1036   unsigned Opc = MI.getOpcode();
   1037   unsigned ImN, RegN, Width;
   1038   switch (Opc) {
   1039     case S2_asl_i_p:
   1040       ImN = 2;
   1041       RegN = 1;
   1042       Width = 64;
   1043       break;
   1044     case S2_asl_i_p_acc:
   1045     case S2_asl_i_p_and:
   1046     case S2_asl_i_p_nac:
   1047     case S2_asl_i_p_or:
   1048     case S2_asl_i_p_xacc:
   1049       ImN = 3;
   1050       RegN = 2;
   1051       Width = 64;
   1052       break;
   1053     case S2_asl_i_r:
   1054       ImN = 2;
   1055       RegN = 1;
   1056       Width = 32;
   1057       break;
   1058     case S2_addasl_rrri:
   1059     case S4_andi_asl_ri:
   1060     case S4_ori_asl_ri:
   1061     case S4_addi_asl_ri:
   1062     case S4_subi_asl_ri:
   1063     case S2_asl_i_r_acc:
   1064     case S2_asl_i_r_and:
   1065     case S2_asl_i_r_nac:
   1066     case S2_asl_i_r_or:
   1067     case S2_asl_i_r_sat:
   1068     case S2_asl_i_r_xacc:
   1069       ImN = 3;
   1070       RegN = 2;
   1071       Width = 32;
   1072       break;
   1073     default:
   1074       return false;
   1075   }
   1076 
   1077   if (RegN != OpN)
   1078     return false;
   1079 
   1080   assert(MI.getOperand(ImN).isImm());
   1081   unsigned S = MI.getOperand(ImN).getImm();
   1082   if (S == 0)
   1083     return false;
   1084   LostB = Width-S;
   1085   LostE = Width;
   1086   return true;
   1087 }
   1088 
   1089 
   1090 // Check if the instruction is a lossy shift right, where the input being
   1091 // shifted is the operand OpN of MI. If true, [LostB, LostE) is the range
   1092 // of bit indices that are lost.
   1093 bool RedundantInstrElimination::isLossyShiftRight(const MachineInstr &MI,
   1094       unsigned OpN, unsigned &LostB, unsigned &LostE) {
   1095   using namespace Hexagon;
   1096   unsigned Opc = MI.getOpcode();
   1097   unsigned ImN, RegN;
   1098   switch (Opc) {
   1099     case S2_asr_i_p:
   1100     case S2_lsr_i_p:
   1101       ImN = 2;
   1102       RegN = 1;
   1103       break;
   1104     case S2_asr_i_p_acc:
   1105     case S2_asr_i_p_and:
   1106     case S2_asr_i_p_nac:
   1107     case S2_asr_i_p_or:
   1108     case S2_lsr_i_p_acc:
   1109     case S2_lsr_i_p_and:
   1110     case S2_lsr_i_p_nac:
   1111     case S2_lsr_i_p_or:
   1112     case S2_lsr_i_p_xacc:
   1113       ImN = 3;
   1114       RegN = 2;
   1115       break;
   1116     case S2_asr_i_r:
   1117     case S2_lsr_i_r:
   1118       ImN = 2;
   1119       RegN = 1;
   1120       break;
   1121     case S4_andi_lsr_ri:
   1122     case S4_ori_lsr_ri:
   1123     case S4_addi_lsr_ri:
   1124     case S4_subi_lsr_ri:
   1125     case S2_asr_i_r_acc:
   1126     case S2_asr_i_r_and:
   1127     case S2_asr_i_r_nac:
   1128     case S2_asr_i_r_or:
   1129     case S2_lsr_i_r_acc:
   1130     case S2_lsr_i_r_and:
   1131     case S2_lsr_i_r_nac:
   1132     case S2_lsr_i_r_or:
   1133     case S2_lsr_i_r_xacc:
   1134       ImN = 3;
   1135       RegN = 2;
   1136       break;
   1137 
   1138     default:
   1139       return false;
   1140   }
   1141 
   1142   if (RegN != OpN)
   1143     return false;
   1144 
   1145   assert(MI.getOperand(ImN).isImm());
   1146   unsigned S = MI.getOperand(ImN).getImm();
   1147   LostB = 0;
   1148   LostE = S;
   1149   return true;
   1150 }
   1151 
   1152 
   1153 // Calculate the bit vector that corresponds to the used bits of register Reg.
   1154 // The vector Bits has the same size, as the size of Reg in bits. If the cal-
   1155 // culation fails (i.e. the used bits are unknown), it returns false. Other-
   1156 // wise, it returns true and sets the corresponding bits in Bits.
   1157 bool RedundantInstrElimination::computeUsedBits(unsigned Reg, BitVector &Bits) {
   1158   BitVector Used(Bits.size());
   1159   RegisterSet Visited;
   1160   std::vector<unsigned> Pending;
   1161   Pending.push_back(Reg);
   1162 
   1163   for (unsigned i = 0; i < Pending.size(); ++i) {
   1164     unsigned R = Pending[i];
   1165     if (Visited.has(R))
   1166       continue;
   1167     Visited.insert(R);
   1168     for (auto I = MRI.use_begin(R), E = MRI.use_end(); I != E; ++I) {
   1169       BitTracker::RegisterRef UR = *I;
   1170       unsigned B, W;
   1171       if (!HBS::getSubregMask(UR, B, W, MRI))
   1172         return false;
   1173       MachineInstr &UseI = *I->getParent();
   1174       if (UseI.isPHI() || UseI.isCopy()) {
   1175         unsigned DefR = UseI.getOperand(0).getReg();
   1176         if (!TargetRegisterInfo::isVirtualRegister(DefR))
   1177           return false;
   1178         Pending.push_back(DefR);
   1179       } else {
   1180         if (!computeUsedBits(UseI, I.getOperandNo(), Used, B))
   1181           return false;
   1182       }
   1183     }
   1184   }
   1185   Bits |= Used;
   1186   return true;
   1187 }
   1188 
   1189 
   1190 // Calculate the bits used by instruction MI in a register in operand OpN.
   1191 // Return true/false if the calculation succeeds/fails. If is succeeds, set
   1192 // used bits in Bits. This function does not reset any bits in Bits, so
   1193 // subsequent calls over different instructions will result in the union
   1194 // of the used bits in all these instructions.
   1195 // The register in question may be used with a sub-register, whereas Bits
   1196 // holds the bits for the entire register. To keep track of that, the
   1197 // argument Begin indicates where in Bits is the lowest-significant bit
   1198 // of the register used in operand OpN. For example, in instruction:
   1199 //   vreg1 = S2_lsr_i_r vreg2:subreg_hireg, 10
   1200 // the operand 1 is a 32-bit register, which happens to be a subregister
   1201 // of the 64-bit register vreg2, and that subregister starts at position 32.
   1202 // In this case Begin=32, since Bits[32] would be the lowest-significant bit
   1203 // of vreg2:subreg_hireg.
   1204 bool RedundantInstrElimination::computeUsedBits(const MachineInstr &MI,
   1205       unsigned OpN, BitVector &Bits, uint16_t Begin) {
   1206   unsigned Opc = MI.getOpcode();
   1207   BitVector T(Bits.size());
   1208   bool GotBits = HBS::getUsedBits(Opc, OpN, T, Begin, HII);
   1209   // Even if we don't have bits yet, we could still provide some information
   1210   // if the instruction is a lossy shift: the lost bits will be marked as
   1211   // not used.
   1212   unsigned LB, LE;
   1213   if (isLossyShiftLeft(MI, OpN, LB, LE) || isLossyShiftRight(MI, OpN, LB, LE)) {
   1214     assert(MI.getOperand(OpN).isReg());
   1215     BitTracker::RegisterRef RR = MI.getOperand(OpN);
   1216     const TargetRegisterClass *RC = HBS::getFinalVRegClass(RR, MRI);
   1217     uint16_t Width = RC->getSize()*8;
   1218 
   1219     if (!GotBits)
   1220       T.set(Begin, Begin+Width);
   1221     assert(LB <= LE && LB < Width && LE <= Width);
   1222     T.reset(Begin+LB, Begin+LE);
   1223     GotBits = true;
   1224   }
   1225   if (GotBits)
   1226     Bits |= T;
   1227   return GotBits;
   1228 }
   1229 
   1230 
   1231 // Calculates the used bits in RD ("defined register"), and checks if these
   1232 // bits in RS ("used register") and RD are identical.
   1233 bool RedundantInstrElimination::usedBitsEqual(BitTracker::RegisterRef RD,
   1234       BitTracker::RegisterRef RS) {
   1235   const BitTracker::RegisterCell &DC = BT.lookup(RD.Reg);
   1236   const BitTracker::RegisterCell &SC = BT.lookup(RS.Reg);
   1237 
   1238   unsigned DB, DW;
   1239   if (!HBS::getSubregMask(RD, DB, DW, MRI))
   1240     return false;
   1241   unsigned SB, SW;
   1242   if (!HBS::getSubregMask(RS, SB, SW, MRI))
   1243     return false;
   1244   if (SW != DW)
   1245     return false;
   1246 
   1247   BitVector Used(DC.width());
   1248   if (!computeUsedBits(RD.Reg, Used))
   1249     return false;
   1250 
   1251   for (unsigned i = 0; i != DW; ++i)
   1252     if (Used[i+DB] && DC[DB+i] != SC[SB+i])
   1253       return false;
   1254   return true;
   1255 }
   1256 
   1257 
   1258 bool RedundantInstrElimination::processBlock(MachineBasicBlock &B,
   1259       const RegisterSet&) {
   1260   bool Changed = false;
   1261 
   1262   for (auto I = B.begin(), E = B.end(), NextI = I; I != E; ++I) {
   1263     NextI = std::next(I);
   1264     MachineInstr *MI = &*I;
   1265 
   1266     if (MI->getOpcode() == TargetOpcode::COPY)
   1267       continue;
   1268     if (MI->hasUnmodeledSideEffects() || MI->isInlineAsm())
   1269       continue;
   1270     unsigned NumD = MI->getDesc().getNumDefs();
   1271     if (NumD != 1)
   1272       continue;
   1273 
   1274     BitTracker::RegisterRef RD = MI->getOperand(0);
   1275     if (!BT.has(RD.Reg))
   1276       continue;
   1277     const BitTracker::RegisterCell &DC = BT.lookup(RD.Reg);
   1278 
   1279     // Find a source operand that is equal to the result.
   1280     for (auto &Op : MI->uses()) {
   1281       if (!Op.isReg())
   1282         continue;
   1283       BitTracker::RegisterRef RS = Op;
   1284       if (!BT.has(RS.Reg))
   1285         continue;
   1286       if (!HBS::isTransparentCopy(RD, RS, MRI))
   1287         continue;
   1288 
   1289       unsigned BN, BW;
   1290       if (!HBS::getSubregMask(RS, BN, BW, MRI))
   1291         continue;
   1292 
   1293       const BitTracker::RegisterCell &SC = BT.lookup(RS.Reg);
   1294       if (!usedBitsEqual(RD, RS) && !HBS::isEqual(DC, 0, SC, BN, BW))
   1295         continue;
   1296 
   1297       // If found, replace the instruction with a COPY.
   1298       DebugLoc DL = MI->getDebugLoc();
   1299       const TargetRegisterClass *FRC = HBS::getFinalVRegClass(RD, MRI);
   1300       unsigned NewR = MRI.createVirtualRegister(FRC);
   1301       BuildMI(B, I, DL, HII.get(TargetOpcode::COPY), NewR)
   1302           .addReg(RS.Reg, 0, RS.Sub);
   1303       HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI);
   1304       BT.put(BitTracker::RegisterRef(NewR), SC);
   1305       Changed = true;
   1306       break;
   1307     }
   1308   }
   1309 
   1310   return Changed;
   1311 }
   1312 
   1313 
   1314 //
   1315 // Const generation
   1316 //
   1317 // Recognize instructions that produce constant values known at compile-time.
   1318 // Replace them with register definitions that load these constants directly.
   1319 namespace {
   1320   class ConstGeneration : public Transformation {
   1321   public:
   1322     ConstGeneration(BitTracker &bt, const HexagonInstrInfo &hii,
   1323         MachineRegisterInfo &mri)
   1324       : Transformation(true), HII(hii), MRI(mri), BT(bt) {}
   1325     bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override;
   1326   private:
   1327     bool isTfrConst(const MachineInstr *MI) const;
   1328     bool isConst(unsigned R, int64_t &V) const;
   1329     unsigned genTfrConst(const TargetRegisterClass *RC, int64_t C,
   1330         MachineBasicBlock &B, MachineBasicBlock::iterator At, DebugLoc &DL);
   1331 
   1332     const HexagonInstrInfo &HII;
   1333     MachineRegisterInfo &MRI;
   1334     BitTracker &BT;
   1335   };
   1336 }
   1337 
   1338 bool ConstGeneration::isConst(unsigned R, int64_t &C) const {
   1339   if (!BT.has(R))
   1340     return false;
   1341   const BitTracker::RegisterCell &RC = BT.lookup(R);
   1342   int64_t T = 0;
   1343   for (unsigned i = RC.width(); i > 0; --i) {
   1344     const BitTracker::BitValue &V = RC[i-1];
   1345     T <<= 1;
   1346     if (V.is(1))
   1347       T |= 1;
   1348     else if (!V.is(0))
   1349       return false;
   1350   }
   1351   C = T;
   1352   return true;
   1353 }
   1354 
   1355 
   1356 bool ConstGeneration::isTfrConst(const MachineInstr *MI) const {
   1357   unsigned Opc = MI->getOpcode();
   1358   switch (Opc) {
   1359     case Hexagon::A2_combineii:
   1360     case Hexagon::A4_combineii:
   1361     case Hexagon::A2_tfrsi:
   1362     case Hexagon::A2_tfrpi:
   1363     case Hexagon::TFR_PdTrue:
   1364     case Hexagon::TFR_PdFalse:
   1365     case Hexagon::CONST32_Int_Real:
   1366     case Hexagon::CONST64_Int_Real:
   1367       return true;
   1368   }
   1369   return false;
   1370 }
   1371 
   1372 
   1373 // Generate a transfer-immediate instruction that is appropriate for the
   1374 // register class and the actual value being transferred.
   1375 unsigned ConstGeneration::genTfrConst(const TargetRegisterClass *RC, int64_t C,
   1376       MachineBasicBlock &B, MachineBasicBlock::iterator At, DebugLoc &DL) {
   1377   unsigned Reg = MRI.createVirtualRegister(RC);
   1378   if (RC == &Hexagon::IntRegsRegClass) {
   1379     BuildMI(B, At, DL, HII.get(Hexagon::A2_tfrsi), Reg)
   1380         .addImm(int32_t(C));
   1381     return Reg;
   1382   }
   1383 
   1384   if (RC == &Hexagon::DoubleRegsRegClass) {
   1385     if (isInt<8>(C)) {
   1386       BuildMI(B, At, DL, HII.get(Hexagon::A2_tfrpi), Reg)
   1387           .addImm(C);
   1388       return Reg;
   1389     }
   1390 
   1391     unsigned Lo = Lo_32(C), Hi = Hi_32(C);
   1392     if (isInt<8>(Lo) || isInt<8>(Hi)) {
   1393       unsigned Opc = isInt<8>(Lo) ? Hexagon::A2_combineii
   1394                                   : Hexagon::A4_combineii;
   1395       BuildMI(B, At, DL, HII.get(Opc), Reg)
   1396           .addImm(int32_t(Hi))
   1397           .addImm(int32_t(Lo));
   1398       return Reg;
   1399     }
   1400 
   1401     BuildMI(B, At, DL, HII.get(Hexagon::CONST64_Int_Real), Reg)
   1402         .addImm(C);
   1403     return Reg;
   1404   }
   1405 
   1406   if (RC == &Hexagon::PredRegsRegClass) {
   1407     unsigned Opc;
   1408     if (C == 0)
   1409       Opc = Hexagon::TFR_PdFalse;
   1410     else if ((C & 0xFF) == 0xFF)
   1411       Opc = Hexagon::TFR_PdTrue;
   1412     else
   1413       return 0;
   1414     BuildMI(B, At, DL, HII.get(Opc), Reg);
   1415     return Reg;
   1416   }
   1417 
   1418   return 0;
   1419 }
   1420 
   1421 
   1422 bool ConstGeneration::processBlock(MachineBasicBlock &B, const RegisterSet&) {
   1423   bool Changed = false;
   1424   RegisterSet Defs;
   1425 
   1426   for (auto I = B.begin(), E = B.end(); I != E; ++I) {
   1427     if (isTfrConst(I))
   1428       continue;
   1429     Defs.clear();
   1430     HBS::getInstrDefs(*I, Defs);
   1431     if (Defs.count() != 1)
   1432       continue;
   1433     unsigned DR = Defs.find_first();
   1434     if (!TargetRegisterInfo::isVirtualRegister(DR))
   1435       continue;
   1436     int64_t C;
   1437     if (isConst(DR, C)) {
   1438       DebugLoc DL = I->getDebugLoc();
   1439       auto At = I->isPHI() ? B.getFirstNonPHI() : I;
   1440       unsigned ImmReg = genTfrConst(MRI.getRegClass(DR), C, B, At, DL);
   1441       if (ImmReg) {
   1442         HBS::replaceReg(DR, ImmReg, MRI);
   1443         BT.put(ImmReg, BT.lookup(DR));
   1444         Changed = true;
   1445       }
   1446     }
   1447   }
   1448   return Changed;
   1449 }
   1450 
   1451 
   1452 //
   1453 // Copy generation
   1454 //
   1455 // Identify pairs of available registers which hold identical values.
   1456 // In such cases, only one of them needs to be calculated, the other one
   1457 // will be defined as a copy of the first.
   1458 //
   1459 // Copy propagation
   1460 //
   1461 // Eliminate register copies RD = RS, by replacing the uses of RD with
   1462 // with uses of RS.
   1463 namespace {
   1464   class CopyGeneration : public Transformation {
   1465   public:
   1466     CopyGeneration(BitTracker &bt, const HexagonInstrInfo &hii,
   1467         MachineRegisterInfo &mri)
   1468       : Transformation(true), HII(hii), MRI(mri), BT(bt) {}
   1469     bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override;
   1470   private:
   1471     bool findMatch(const BitTracker::RegisterRef &Inp,
   1472         BitTracker::RegisterRef &Out, const RegisterSet &AVs);
   1473 
   1474     const HexagonInstrInfo &HII;
   1475     MachineRegisterInfo &MRI;
   1476     BitTracker &BT;
   1477   };
   1478 
   1479   class CopyPropagation : public Transformation {
   1480   public:
   1481     CopyPropagation(const HexagonRegisterInfo &hri, MachineRegisterInfo &mri)
   1482         : Transformation(false), MRI(mri) {}
   1483     bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override;
   1484     static bool isCopyReg(unsigned Opc);
   1485   private:
   1486     bool propagateRegCopy(MachineInstr &MI);
   1487 
   1488     MachineRegisterInfo &MRI;
   1489   };
   1490 
   1491 }
   1492 
   1493 
   1494 /// Check if there is a register in AVs that is identical to Inp. If so,
   1495 /// set Out to the found register. The output may be a pair Reg:Sub.
   1496 bool CopyGeneration::findMatch(const BitTracker::RegisterRef &Inp,
   1497       BitTracker::RegisterRef &Out, const RegisterSet &AVs) {
   1498   if (!BT.has(Inp.Reg))
   1499     return false;
   1500   const BitTracker::RegisterCell &InpRC = BT.lookup(Inp.Reg);
   1501   unsigned B, W;
   1502   if (!HBS::getSubregMask(Inp, B, W, MRI))
   1503     return false;
   1504 
   1505   for (unsigned R = AVs.find_first(); R; R = AVs.find_next(R)) {
   1506     if (!BT.has(R) || !HBS::isTransparentCopy(R, Inp, MRI))
   1507       continue;
   1508     const BitTracker::RegisterCell &RC = BT.lookup(R);
   1509     unsigned RW = RC.width();
   1510     if (W == RW) {
   1511       if (MRI.getRegClass(Inp.Reg) != MRI.getRegClass(R))
   1512         continue;
   1513       if (!HBS::isEqual(InpRC, B, RC, 0, W))
   1514         continue;
   1515       Out.Reg = R;
   1516       Out.Sub = 0;
   1517       return true;
   1518     }
   1519     // Check if there is a super-register, whose part (with a subregister)
   1520     // is equal to the input.
   1521     // Only do double registers for now.
   1522     if (W*2 != RW)
   1523       continue;
   1524     if (MRI.getRegClass(R) != &Hexagon::DoubleRegsRegClass)
   1525       continue;
   1526 
   1527     if (HBS::isEqual(InpRC, B, RC, 0, W))
   1528       Out.Sub = Hexagon::subreg_loreg;
   1529     else if (HBS::isEqual(InpRC, B, RC, W, W))
   1530       Out.Sub = Hexagon::subreg_hireg;
   1531     else
   1532       continue;
   1533     Out.Reg = R;
   1534     return true;
   1535   }
   1536   return false;
   1537 }
   1538 
   1539 
   1540 bool CopyGeneration::processBlock(MachineBasicBlock &B,
   1541       const RegisterSet &AVs) {
   1542   RegisterSet AVB(AVs);
   1543   bool Changed = false;
   1544   RegisterSet Defs;
   1545 
   1546   for (auto I = B.begin(), E = B.end(), NextI = I; I != E;
   1547        ++I, AVB.insert(Defs)) {
   1548     NextI = std::next(I);
   1549     Defs.clear();
   1550     HBS::getInstrDefs(*I, Defs);
   1551 
   1552     unsigned Opc = I->getOpcode();
   1553     if (CopyPropagation::isCopyReg(Opc))
   1554       continue;
   1555 
   1556     for (unsigned R = Defs.find_first(); R; R = Defs.find_next(R)) {
   1557       BitTracker::RegisterRef MR;
   1558       if (!findMatch(R, MR, AVB))
   1559         continue;
   1560       DebugLoc DL = I->getDebugLoc();
   1561       auto *FRC = HBS::getFinalVRegClass(MR, MRI);
   1562       unsigned NewR = MRI.createVirtualRegister(FRC);
   1563       auto At = I->isPHI() ? B.getFirstNonPHI() : I;
   1564       BuildMI(B, At, DL, HII.get(TargetOpcode::COPY), NewR)
   1565         .addReg(MR.Reg, 0, MR.Sub);
   1566       BT.put(BitTracker::RegisterRef(NewR), BT.get(MR));
   1567     }
   1568   }
   1569 
   1570   return Changed;
   1571 }
   1572 
   1573 
   1574 bool CopyPropagation::isCopyReg(unsigned Opc) {
   1575   switch (Opc) {
   1576     case TargetOpcode::COPY:
   1577     case TargetOpcode::REG_SEQUENCE:
   1578     case Hexagon::A2_tfr:
   1579     case Hexagon::A2_tfrp:
   1580     case Hexagon::A2_combinew:
   1581     case Hexagon::A4_combineir:
   1582     case Hexagon::A4_combineri:
   1583       return true;
   1584     default:
   1585       break;
   1586   }
   1587   return false;
   1588 }
   1589 
   1590 
   1591 bool CopyPropagation::propagateRegCopy(MachineInstr &MI) {
   1592   bool Changed = false;
   1593   unsigned Opc = MI.getOpcode();
   1594   BitTracker::RegisterRef RD = MI.getOperand(0);
   1595   assert(MI.getOperand(0).getSubReg() == 0);
   1596 
   1597   switch (Opc) {
   1598     case TargetOpcode::COPY:
   1599     case Hexagon::A2_tfr:
   1600     case Hexagon::A2_tfrp: {
   1601       BitTracker::RegisterRef RS = MI.getOperand(1);
   1602       if (!HBS::isTransparentCopy(RD, RS, MRI))
   1603         break;
   1604       if (RS.Sub != 0)
   1605         Changed = HBS::replaceRegWithSub(RD.Reg, RS.Reg, RS.Sub, MRI);
   1606       else
   1607         Changed = HBS::replaceReg(RD.Reg, RS.Reg, MRI);
   1608       break;
   1609     }
   1610     case TargetOpcode::REG_SEQUENCE: {
   1611       BitTracker::RegisterRef SL, SH;
   1612       if (HBS::parseRegSequence(MI, SL, SH)) {
   1613         Changed = HBS::replaceSubWithSub(RD.Reg, Hexagon::subreg_loreg,
   1614                                          SL.Reg, SL.Sub, MRI);
   1615         Changed |= HBS::replaceSubWithSub(RD.Reg, Hexagon::subreg_hireg,
   1616                                           SH.Reg, SH.Sub, MRI);
   1617       }
   1618       break;
   1619     }
   1620     case Hexagon::A2_combinew: {
   1621       BitTracker::RegisterRef RH = MI.getOperand(1), RL = MI.getOperand(2);
   1622       Changed = HBS::replaceSubWithSub(RD.Reg, Hexagon::subreg_loreg,
   1623                                        RL.Reg, RL.Sub, MRI);
   1624       Changed |= HBS::replaceSubWithSub(RD.Reg, Hexagon::subreg_hireg,
   1625                                         RH.Reg, RH.Sub, MRI);
   1626       break;
   1627     }
   1628     case Hexagon::A4_combineir:
   1629     case Hexagon::A4_combineri: {
   1630       unsigned SrcX = (Opc == Hexagon::A4_combineir) ? 2 : 1;
   1631       unsigned Sub = (Opc == Hexagon::A4_combineir) ? Hexagon::subreg_loreg
   1632                                                     : Hexagon::subreg_hireg;
   1633       BitTracker::RegisterRef RS = MI.getOperand(SrcX);
   1634       Changed = HBS::replaceSubWithSub(RD.Reg, Sub, RS.Reg, RS.Sub, MRI);
   1635       break;
   1636     }
   1637   }
   1638   return Changed;
   1639 }
   1640 
   1641 
   1642 bool CopyPropagation::processBlock(MachineBasicBlock &B, const RegisterSet&) {
   1643   std::vector<MachineInstr*> Instrs;
   1644   for (auto I = B.rbegin(), E = B.rend(); I != E; ++I)
   1645     Instrs.push_back(&*I);
   1646 
   1647   bool Changed = false;
   1648   for (auto I : Instrs) {
   1649     unsigned Opc = I->getOpcode();
   1650     if (!CopyPropagation::isCopyReg(Opc))
   1651       continue;
   1652     Changed |= propagateRegCopy(*I);
   1653   }
   1654 
   1655   return Changed;
   1656 }
   1657 
   1658 
   1659 //
   1660 // Bit simplification
   1661 //
   1662 // Recognize patterns that can be simplified and replace them with the
   1663 // simpler forms.
   1664 // This is by no means complete
   1665 namespace {
   1666   class BitSimplification : public Transformation {
   1667   public:
   1668     BitSimplification(BitTracker &bt, const HexagonInstrInfo &hii,
   1669         MachineRegisterInfo &mri)
   1670       : Transformation(true), HII(hii), MRI(mri), BT(bt) {}
   1671     bool processBlock(MachineBasicBlock &B, const RegisterSet &AVs) override;
   1672   private:
   1673     struct RegHalf : public BitTracker::RegisterRef {
   1674       bool Low;  // Low/High halfword.
   1675     };
   1676 
   1677     bool matchHalf(unsigned SelfR, const BitTracker::RegisterCell &RC,
   1678           unsigned B, RegHalf &RH);
   1679 
   1680     bool matchPackhl(unsigned SelfR, const BitTracker::RegisterCell &RC,
   1681           BitTracker::RegisterRef &Rs, BitTracker::RegisterRef &Rt);
   1682     unsigned getCombineOpcode(bool HLow, bool LLow);
   1683 
   1684     bool genStoreUpperHalf(MachineInstr *MI);
   1685     bool genStoreImmediate(MachineInstr *MI);
   1686     bool genPackhl(MachineInstr *MI, BitTracker::RegisterRef RD,
   1687           const BitTracker::RegisterCell &RC);
   1688     bool genExtractHalf(MachineInstr *MI, BitTracker::RegisterRef RD,
   1689           const BitTracker::RegisterCell &RC);
   1690     bool genCombineHalf(MachineInstr *MI, BitTracker::RegisterRef RD,
   1691           const BitTracker::RegisterCell &RC);
   1692     bool genExtractLow(MachineInstr *MI, BitTracker::RegisterRef RD,
   1693           const BitTracker::RegisterCell &RC);
   1694     bool simplifyTstbit(MachineInstr *MI, BitTracker::RegisterRef RD,
   1695           const BitTracker::RegisterCell &RC);
   1696 
   1697     const HexagonInstrInfo &HII;
   1698     MachineRegisterInfo &MRI;
   1699     BitTracker &BT;
   1700   };
   1701 }
   1702 
   1703 
   1704 // Check if the bits [B..B+16) in register cell RC form a valid halfword,
   1705 // i.e. [0..16), [16..32), etc. of some register. If so, return true and
   1706 // set the information about the found register in RH.
   1707 bool BitSimplification::matchHalf(unsigned SelfR,
   1708       const BitTracker::RegisterCell &RC, unsigned B, RegHalf &RH) {
   1709   // XXX This could be searching in the set of available registers, in case
   1710   // the match is not exact.
   1711 
   1712   // Match 16-bit chunks, where the RC[B..B+15] references exactly one
   1713   // register and all the bits B..B+15 match between RC and the register.
   1714   // This is meant to match "v1[0-15]", where v1 = { [0]:0 [1-15]:v1... },
   1715   // and RC = { [0]:0 [1-15]:v1[1-15]... }.
   1716   bool Low = false;
   1717   unsigned I = B;
   1718   while (I < B+16 && RC[I].num())
   1719     I++;
   1720   if (I == B+16)
   1721     return false;
   1722 
   1723   unsigned Reg = RC[I].RefI.Reg;
   1724   unsigned P = RC[I].RefI.Pos;    // The RefI.Pos will be advanced by I-B.
   1725   if (P < I-B)
   1726     return false;
   1727   unsigned Pos = P - (I-B);
   1728 
   1729   if (Reg == 0 || Reg == SelfR)    // Don't match "self".
   1730     return false;
   1731   if (!TargetRegisterInfo::isVirtualRegister(Reg))
   1732     return false;
   1733   if (!BT.has(Reg))
   1734     return false;
   1735 
   1736   const BitTracker::RegisterCell &SC = BT.lookup(Reg);
   1737   if (Pos+16 > SC.width())
   1738     return false;
   1739 
   1740   for (unsigned i = 0; i < 16; ++i) {
   1741     const BitTracker::BitValue &RV = RC[i+B];
   1742     if (RV.Type == BitTracker::BitValue::Ref) {
   1743       if (RV.RefI.Reg != Reg)
   1744         return false;
   1745       if (RV.RefI.Pos != i+Pos)
   1746         return false;
   1747       continue;
   1748     }
   1749     if (RC[i+B] != SC[i+Pos])
   1750       return false;
   1751   }
   1752 
   1753   unsigned Sub = 0;
   1754   switch (Pos) {
   1755     case 0:
   1756       Sub = Hexagon::subreg_loreg;
   1757       Low = true;
   1758       break;
   1759     case 16:
   1760       Sub = Hexagon::subreg_loreg;
   1761       Low = false;
   1762       break;
   1763     case 32:
   1764       Sub = Hexagon::subreg_hireg;
   1765       Low = true;
   1766       break;
   1767     case 48:
   1768       Sub = Hexagon::subreg_hireg;
   1769       Low = false;
   1770       break;
   1771     default:
   1772       return false;
   1773   }
   1774 
   1775   RH.Reg = Reg;
   1776   RH.Sub = Sub;
   1777   RH.Low = Low;
   1778   // If the subregister is not valid with the register, set it to 0.
   1779   if (!HBS::getFinalVRegClass(RH, MRI))
   1780     RH.Sub = 0;
   1781 
   1782   return true;
   1783 }
   1784 
   1785 
   1786 // Check if RC matches the pattern of a S2_packhl. If so, return true and
   1787 // set the inputs Rs and Rt.
   1788 bool BitSimplification::matchPackhl(unsigned SelfR,
   1789       const BitTracker::RegisterCell &RC, BitTracker::RegisterRef &Rs,
   1790       BitTracker::RegisterRef &Rt) {
   1791   RegHalf L1, H1, L2, H2;
   1792 
   1793   if (!matchHalf(SelfR, RC, 0, L2)  || !matchHalf(SelfR, RC, 16, L1))
   1794     return false;
   1795   if (!matchHalf(SelfR, RC, 32, H2) || !matchHalf(SelfR, RC, 48, H1))
   1796     return false;
   1797 
   1798   // Rs = H1.L1, Rt = H2.L2
   1799   if (H1.Reg != L1.Reg || H1.Sub != L1.Sub || H1.Low || !L1.Low)
   1800     return false;
   1801   if (H2.Reg != L2.Reg || H2.Sub != L2.Sub || H2.Low || !L2.Low)
   1802     return false;
   1803 
   1804   Rs = H1;
   1805   Rt = H2;
   1806   return true;
   1807 }
   1808 
   1809 
   1810 unsigned BitSimplification::getCombineOpcode(bool HLow, bool LLow) {
   1811   return HLow ? LLow ? Hexagon::A2_combine_ll
   1812                      : Hexagon::A2_combine_lh
   1813               : LLow ? Hexagon::A2_combine_hl
   1814                      : Hexagon::A2_combine_hh;
   1815 }
   1816 
   1817 
   1818 // If MI stores the upper halfword of a register (potentially obtained via
   1819 // shifts or extracts), replace it with a storerf instruction. This could
   1820 // cause the "extraction" code to become dead.
   1821 bool BitSimplification::genStoreUpperHalf(MachineInstr *MI) {
   1822   unsigned Opc = MI->getOpcode();
   1823   if (Opc != Hexagon::S2_storerh_io)
   1824     return false;
   1825 
   1826   MachineOperand &ValOp = MI->getOperand(2);
   1827   BitTracker::RegisterRef RS = ValOp;
   1828   if (!BT.has(RS.Reg))
   1829     return false;
   1830   const BitTracker::RegisterCell &RC = BT.lookup(RS.Reg);
   1831   RegHalf H;
   1832   if (!matchHalf(0, RC, 0, H))
   1833     return false;
   1834   if (H.Low)
   1835     return false;
   1836   MI->setDesc(HII.get(Hexagon::S2_storerf_io));
   1837   ValOp.setReg(H.Reg);
   1838   ValOp.setSubReg(H.Sub);
   1839   return true;
   1840 }
   1841 
   1842 
   1843 // If MI stores a value known at compile-time, and the value is within a range
   1844 // that avoids using constant-extenders, replace it with a store-immediate.
   1845 bool BitSimplification::genStoreImmediate(MachineInstr *MI) {
   1846   unsigned Opc = MI->getOpcode();
   1847   unsigned Align = 0;
   1848   switch (Opc) {
   1849     case Hexagon::S2_storeri_io:
   1850       Align++;
   1851     case Hexagon::S2_storerh_io:
   1852       Align++;
   1853     case Hexagon::S2_storerb_io:
   1854       break;
   1855     default:
   1856       return false;
   1857   }
   1858 
   1859   // Avoid stores to frame-indices (due to an unknown offset).
   1860   if (!MI->getOperand(0).isReg())
   1861     return false;
   1862   MachineOperand &OffOp = MI->getOperand(1);
   1863   if (!OffOp.isImm())
   1864     return false;
   1865 
   1866   int64_t Off = OffOp.getImm();
   1867   // Offset is u6:a. Sadly, there is no isShiftedUInt(n,x).
   1868   if (!isUIntN(6+Align, Off) || (Off & ((1<<Align)-1)))
   1869     return false;
   1870   // Source register:
   1871   BitTracker::RegisterRef RS = MI->getOperand(2);
   1872   if (!BT.has(RS.Reg))
   1873     return false;
   1874   const BitTracker::RegisterCell &RC = BT.lookup(RS.Reg);
   1875   uint64_t U;
   1876   if (!HBS::getConst(RC, 0, RC.width(), U))
   1877     return false;
   1878 
   1879   // Only consider 8-bit values to avoid constant-extenders.
   1880   int V;
   1881   switch (Opc) {
   1882     case Hexagon::S2_storerb_io:
   1883       V = int8_t(U);
   1884       break;
   1885     case Hexagon::S2_storerh_io:
   1886       V = int16_t(U);
   1887       break;
   1888     case Hexagon::S2_storeri_io:
   1889       V = int32_t(U);
   1890       break;
   1891   }
   1892   if (!isInt<8>(V))
   1893     return false;
   1894 
   1895   MI->RemoveOperand(2);
   1896   switch (Opc) {
   1897     case Hexagon::S2_storerb_io:
   1898       MI->setDesc(HII.get(Hexagon::S4_storeirb_io));
   1899       break;
   1900     case Hexagon::S2_storerh_io:
   1901       MI->setDesc(HII.get(Hexagon::S4_storeirh_io));
   1902       break;
   1903     case Hexagon::S2_storeri_io:
   1904       MI->setDesc(HII.get(Hexagon::S4_storeiri_io));
   1905       break;
   1906   }
   1907   MI->addOperand(MachineOperand::CreateImm(V));
   1908   return true;
   1909 }
   1910 
   1911 
   1912 // If MI is equivalent o S2_packhl, generate the S2_packhl. MI could be the
   1913 // last instruction in a sequence that results in something equivalent to
   1914 // the pack-halfwords. The intent is to cause the entire sequence to become
   1915 // dead.
   1916 bool BitSimplification::genPackhl(MachineInstr *MI,
   1917       BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) {
   1918   unsigned Opc = MI->getOpcode();
   1919   if (Opc == Hexagon::S2_packhl)
   1920     return false;
   1921   BitTracker::RegisterRef Rs, Rt;
   1922   if (!matchPackhl(RD.Reg, RC, Rs, Rt))
   1923     return false;
   1924 
   1925   MachineBasicBlock &B = *MI->getParent();
   1926   unsigned NewR = MRI.createVirtualRegister(&Hexagon::DoubleRegsRegClass);
   1927   DebugLoc DL = MI->getDebugLoc();
   1928   BuildMI(B, MI, DL, HII.get(Hexagon::S2_packhl), NewR)
   1929       .addReg(Rs.Reg, 0, Rs.Sub)
   1930       .addReg(Rt.Reg, 0, Rt.Sub);
   1931   HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI);
   1932   BT.put(BitTracker::RegisterRef(NewR), RC);
   1933   return true;
   1934 }
   1935 
   1936 
   1937 // If MI produces halfword of the input in the low half of the output,
   1938 // replace it with zero-extend or extractu.
   1939 bool BitSimplification::genExtractHalf(MachineInstr *MI,
   1940       BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) {
   1941   RegHalf L;
   1942   // Check for halfword in low 16 bits, zeros elsewhere.
   1943   if (!matchHalf(RD.Reg, RC, 0, L) || !HBS::isZero(RC, 16, 16))
   1944     return false;
   1945 
   1946   unsigned Opc = MI->getOpcode();
   1947   MachineBasicBlock &B = *MI->getParent();
   1948   DebugLoc DL = MI->getDebugLoc();
   1949 
   1950   // Prefer zxth, since zxth can go in any slot, while extractu only in
   1951   // slots 2 and 3.
   1952   unsigned NewR = 0;
   1953   if (L.Low && Opc != Hexagon::A2_zxth) {
   1954     NewR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
   1955     BuildMI(B, MI, DL, HII.get(Hexagon::A2_zxth), NewR)
   1956         .addReg(L.Reg, 0, L.Sub);
   1957   } else if (!L.Low && Opc != Hexagon::S2_extractu) {
   1958     NewR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
   1959     BuildMI(B, MI, DL, HII.get(Hexagon::S2_extractu), NewR)
   1960         .addReg(L.Reg, 0, L.Sub)
   1961         .addImm(16)
   1962         .addImm(16);
   1963   }
   1964   if (NewR == 0)
   1965     return false;
   1966   HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI);
   1967   BT.put(BitTracker::RegisterRef(NewR), RC);
   1968   return true;
   1969 }
   1970 
   1971 
   1972 // If MI is equivalent to a combine(.L/.H, .L/.H) replace with with the
   1973 // combine.
   1974 bool BitSimplification::genCombineHalf(MachineInstr *MI,
   1975       BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) {
   1976   RegHalf L, H;
   1977   // Check for combine h/l
   1978   if (!matchHalf(RD.Reg, RC, 0, L) || !matchHalf(RD.Reg, RC, 16, H))
   1979     return false;
   1980   // Do nothing if this is just a reg copy.
   1981   if (L.Reg == H.Reg && L.Sub == H.Sub && !H.Low && L.Low)
   1982     return false;
   1983 
   1984   unsigned Opc = MI->getOpcode();
   1985   unsigned COpc = getCombineOpcode(H.Low, L.Low);
   1986   if (COpc == Opc)
   1987     return false;
   1988 
   1989   MachineBasicBlock &B = *MI->getParent();
   1990   DebugLoc DL = MI->getDebugLoc();
   1991   unsigned NewR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
   1992   BuildMI(B, MI, DL, HII.get(COpc), NewR)
   1993       .addReg(H.Reg, 0, H.Sub)
   1994       .addReg(L.Reg, 0, L.Sub);
   1995   HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI);
   1996   BT.put(BitTracker::RegisterRef(NewR), RC);
   1997   return true;
   1998 }
   1999 
   2000 
   2001 // If MI resets high bits of a register and keeps the lower ones, replace it
   2002 // with zero-extend byte/half, and-immediate, or extractu, as appropriate.
   2003 bool BitSimplification::genExtractLow(MachineInstr *MI,
   2004       BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) {
   2005   unsigned Opc = MI->getOpcode();
   2006   switch (Opc) {
   2007     case Hexagon::A2_zxtb:
   2008     case Hexagon::A2_zxth:
   2009     case Hexagon::S2_extractu:
   2010       return false;
   2011   }
   2012   if (Opc == Hexagon::A2_andir && MI->getOperand(2).isImm()) {
   2013     int32_t Imm = MI->getOperand(2).getImm();
   2014     if (isInt<10>(Imm))
   2015       return false;
   2016   }
   2017 
   2018   if (MI->hasUnmodeledSideEffects() || MI->isInlineAsm())
   2019     return false;
   2020   unsigned W = RC.width();
   2021   while (W > 0 && RC[W-1].is(0))
   2022     W--;
   2023   if (W == 0 || W == RC.width())
   2024     return false;
   2025   unsigned NewOpc = (W == 8)  ? Hexagon::A2_zxtb
   2026                   : (W == 16) ? Hexagon::A2_zxth
   2027                   : (W < 10)  ? Hexagon::A2_andir
   2028                   : Hexagon::S2_extractu;
   2029   MachineBasicBlock &B = *MI->getParent();
   2030   DebugLoc DL = MI->getDebugLoc();
   2031 
   2032   for (auto &Op : MI->uses()) {
   2033     if (!Op.isReg())
   2034       continue;
   2035     BitTracker::RegisterRef RS = Op;
   2036     if (!BT.has(RS.Reg))
   2037       continue;
   2038     const BitTracker::RegisterCell &SC = BT.lookup(RS.Reg);
   2039     unsigned BN, BW;
   2040     if (!HBS::getSubregMask(RS, BN, BW, MRI))
   2041       continue;
   2042     if (BW < W || !HBS::isEqual(RC, 0, SC, BN, W))
   2043       continue;
   2044 
   2045     unsigned NewR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
   2046     auto MIB = BuildMI(B, MI, DL, HII.get(NewOpc), NewR)
   2047                   .addReg(RS.Reg, 0, RS.Sub);
   2048     if (NewOpc == Hexagon::A2_andir)
   2049       MIB.addImm((1 << W) - 1);
   2050     else if (NewOpc == Hexagon::S2_extractu)
   2051       MIB.addImm(W).addImm(0);
   2052     HBS::replaceSubWithSub(RD.Reg, RD.Sub, NewR, 0, MRI);
   2053     BT.put(BitTracker::RegisterRef(NewR), RC);
   2054     return true;
   2055   }
   2056   return false;
   2057 }
   2058 
   2059 
   2060 // Check for tstbit simplification opportunity, where the bit being checked
   2061 // can be tracked back to another register. For example:
   2062 //   vreg2 = S2_lsr_i_r  vreg1, 5
   2063 //   vreg3 = S2_tstbit_i vreg2, 0
   2064 // =>
   2065 //   vreg3 = S2_tstbit_i vreg1, 5
   2066 bool BitSimplification::simplifyTstbit(MachineInstr *MI,
   2067       BitTracker::RegisterRef RD, const BitTracker::RegisterCell &RC) {
   2068   unsigned Opc = MI->getOpcode();
   2069   if (Opc != Hexagon::S2_tstbit_i)
   2070     return false;
   2071 
   2072   unsigned BN = MI->getOperand(2).getImm();
   2073   BitTracker::RegisterRef RS = MI->getOperand(1);
   2074   unsigned F, W;
   2075   DebugLoc DL = MI->getDebugLoc();
   2076   if (!BT.has(RS.Reg) || !HBS::getSubregMask(RS, F, W, MRI))
   2077     return false;
   2078   MachineBasicBlock &B = *MI->getParent();
   2079 
   2080   const BitTracker::RegisterCell &SC = BT.lookup(RS.Reg);
   2081   const BitTracker::BitValue &V = SC[F+BN];
   2082   if (V.Type == BitTracker::BitValue::Ref && V.RefI.Reg != RS.Reg) {
   2083     const TargetRegisterClass *TC = MRI.getRegClass(V.RefI.Reg);
   2084     // Need to map V.RefI.Reg to a 32-bit register, i.e. if it is
   2085     // a double register, need to use a subregister and adjust bit
   2086     // number.
   2087     unsigned P = UINT_MAX;
   2088     BitTracker::RegisterRef RR(V.RefI.Reg, 0);
   2089     if (TC == &Hexagon::DoubleRegsRegClass) {
   2090       P = V.RefI.Pos;
   2091       RR.Sub = Hexagon::subreg_loreg;
   2092       if (P >= 32) {
   2093         P -= 32;
   2094         RR.Sub = Hexagon::subreg_hireg;
   2095       }
   2096     } else if (TC == &Hexagon::IntRegsRegClass) {
   2097       P = V.RefI.Pos;
   2098     }
   2099     if (P != UINT_MAX) {
   2100       unsigned NewR = MRI.createVirtualRegister(&Hexagon::PredRegsRegClass);
   2101       BuildMI(B, MI, DL, HII.get(Hexagon::S2_tstbit_i), NewR)
   2102           .addReg(RR.Reg, 0, RR.Sub)
   2103           .addImm(P);
   2104       HBS::replaceReg(RD.Reg, NewR, MRI);
   2105       BT.put(NewR, RC);
   2106       return true;
   2107     }
   2108   } else if (V.is(0) || V.is(1)) {
   2109     unsigned NewR = MRI.createVirtualRegister(&Hexagon::PredRegsRegClass);
   2110     unsigned NewOpc = V.is(0) ? Hexagon::TFR_PdFalse : Hexagon::TFR_PdTrue;
   2111     BuildMI(B, MI, DL, HII.get(NewOpc), NewR);
   2112     HBS::replaceReg(RD.Reg, NewR, MRI);
   2113     return true;
   2114   }
   2115 
   2116   return false;
   2117 }
   2118 
   2119 
   2120 bool BitSimplification::processBlock(MachineBasicBlock &B,
   2121       const RegisterSet &AVs) {
   2122   bool Changed = false;
   2123   RegisterSet AVB = AVs;
   2124   RegisterSet Defs;
   2125 
   2126   for (auto I = B.begin(), E = B.end(); I != E; ++I, AVB.insert(Defs)) {
   2127     MachineInstr *MI = &*I;
   2128     Defs.clear();
   2129     HBS::getInstrDefs(*MI, Defs);
   2130 
   2131     unsigned Opc = MI->getOpcode();
   2132     if (Opc == TargetOpcode::COPY || Opc == TargetOpcode::REG_SEQUENCE)
   2133       continue;
   2134 
   2135     if (MI->mayStore()) {
   2136       bool T = genStoreUpperHalf(MI);
   2137       T = T || genStoreImmediate(MI);
   2138       Changed |= T;
   2139       continue;
   2140     }
   2141 
   2142     if (Defs.count() != 1)
   2143       continue;
   2144     const MachineOperand &Op0 = MI->getOperand(0);
   2145     if (!Op0.isReg() || !Op0.isDef())
   2146       continue;
   2147     BitTracker::RegisterRef RD = Op0;
   2148     if (!BT.has(RD.Reg))
   2149       continue;
   2150     const TargetRegisterClass *FRC = HBS::getFinalVRegClass(RD, MRI);
   2151     const BitTracker::RegisterCell &RC = BT.lookup(RD.Reg);
   2152 
   2153     if (FRC->getID() == Hexagon::DoubleRegsRegClassID) {
   2154       bool T = genPackhl(MI, RD, RC);
   2155       Changed |= T;
   2156       continue;
   2157     }
   2158 
   2159     if (FRC->getID() == Hexagon::IntRegsRegClassID) {
   2160       bool T = genExtractHalf(MI, RD, RC);
   2161       T = T || genCombineHalf(MI, RD, RC);
   2162       T = T || genExtractLow(MI, RD, RC);
   2163       Changed |= T;
   2164       continue;
   2165     }
   2166 
   2167     if (FRC->getID() == Hexagon::PredRegsRegClassID) {
   2168       bool T = simplifyTstbit(MI, RD, RC);
   2169       Changed |= T;
   2170       continue;
   2171     }
   2172   }
   2173   return Changed;
   2174 }
   2175 
   2176 
   2177 bool HexagonBitSimplify::runOnMachineFunction(MachineFunction &MF) {
   2178   auto &HST = MF.getSubtarget<HexagonSubtarget>();
   2179   auto &HRI = *HST.getRegisterInfo();
   2180   auto &HII = *HST.getInstrInfo();
   2181 
   2182   MDT = &getAnalysis<MachineDominatorTree>();
   2183   MachineRegisterInfo &MRI = MF.getRegInfo();
   2184   bool Changed;
   2185 
   2186   Changed = DeadCodeElimination(MF, *MDT).run();
   2187 
   2188   const HexagonEvaluator HE(HRI, MRI, HII, MF);
   2189   BitTracker BT(HE, MF);
   2190   DEBUG(BT.trace(true));
   2191   BT.run();
   2192 
   2193   MachineBasicBlock &Entry = MF.front();
   2194 
   2195   RegisterSet AIG;  // Available registers for IG.
   2196   ConstGeneration ImmG(BT, HII, MRI);
   2197   Changed |= visitBlock(Entry, ImmG, AIG);
   2198 
   2199   RegisterSet ARE;  // Available registers for RIE.
   2200   RedundantInstrElimination RIE(BT, HII, MRI);
   2201   Changed |= visitBlock(Entry, RIE, ARE);
   2202 
   2203   RegisterSet ACG;  // Available registers for CG.
   2204   CopyGeneration CopyG(BT, HII, MRI);
   2205   Changed |= visitBlock(Entry, CopyG, ACG);
   2206 
   2207   RegisterSet ACP;  // Available registers for CP.
   2208   CopyPropagation CopyP(HRI, MRI);
   2209   Changed |= visitBlock(Entry, CopyP, ACP);
   2210 
   2211   Changed = DeadCodeElimination(MF, *MDT).run() || Changed;
   2212 
   2213   BT.run();
   2214   RegisterSet ABS;  // Available registers for BS.
   2215   BitSimplification BitS(BT, HII, MRI);
   2216   Changed |= visitBlock(Entry, BitS, ABS);
   2217 
   2218   Changed = DeadCodeElimination(MF, *MDT).run() || Changed;
   2219 
   2220   if (Changed) {
   2221     for (auto &B : MF)
   2222       for (auto &I : B)
   2223         I.clearKillInfo();
   2224     DeadCodeElimination(MF, *MDT).run();
   2225   }
   2226   return Changed;
   2227 }
   2228 
   2229 
   2230 // Recognize loops where the code at the end of the loop matches the code
   2231 // before the entry of the loop, and the matching code is such that is can
   2232 // be simplified. This pass relies on the bit simplification above and only
   2233 // prepares code in a way that can be handled by the bit simplifcation.
   2234 //
   2235 // This is the motivating testcase (and explanation):
   2236 //
   2237 // {
   2238 //   loop0(.LBB0_2, r1)      // %for.body.preheader
   2239 //   r5:4 = memd(r0++#8)
   2240 // }
   2241 // {
   2242 //   r3 = lsr(r4, #16)
   2243 //   r7:6 = combine(r5, r5)
   2244 // }
   2245 // {
   2246 //   r3 = insert(r5, #16, #16)
   2247 //   r7:6 = vlsrw(r7:6, #16)
   2248 // }
   2249 // .LBB0_2:
   2250 // {
   2251 //   memh(r2+#4) = r5
   2252 //   memh(r2+#6) = r6            # R6 is really R5.H
   2253 // }
   2254 // {
   2255 //   r2 = add(r2, #8)
   2256 //   memh(r2+#0) = r4
   2257 //   memh(r2+#2) = r3            # R3 is really R4.H
   2258 // }
   2259 // {
   2260 //   r5:4 = memd(r0++#8)
   2261 // }
   2262 // {                             # "Shuffling" code that sets up R3 and R6
   2263 //   r3 = lsr(r4, #16)           # so that their halves can be stored in the
   2264 //   r7:6 = combine(r5, r5)      # next iteration. This could be folded into
   2265 // }                             # the stores if the code was at the beginning
   2266 // {                             # of the loop iteration. Since the same code
   2267 //   r3 = insert(r5, #16, #16)   # precedes the loop, it can actually be moved
   2268 //   r7:6 = vlsrw(r7:6, #16)     # there.
   2269 // }:endloop0
   2270 //
   2271 //
   2272 // The outcome:
   2273 //
   2274 // {
   2275 //   loop0(.LBB0_2, r1)
   2276 //   r5:4 = memd(r0++#8)
   2277 // }
   2278 // .LBB0_2:
   2279 // {
   2280 //   memh(r2+#4) = r5
   2281 //   memh(r2+#6) = r5.h
   2282 // }
   2283 // {
   2284 //   r2 = add(r2, #8)
   2285 //   memh(r2+#0) = r4
   2286 //   memh(r2+#2) = r4.h
   2287 // }
   2288 // {
   2289 //   r5:4 = memd(r0++#8)
   2290 // }:endloop0
   2291 
   2292 namespace llvm {
   2293   FunctionPass *createHexagonLoopRescheduling();
   2294   void initializeHexagonLoopReschedulingPass(PassRegistry&);
   2295 }
   2296 
   2297 namespace {
   2298   class HexagonLoopRescheduling : public MachineFunctionPass {
   2299   public:
   2300     static char ID;
   2301     HexagonLoopRescheduling() : MachineFunctionPass(ID),
   2302         HII(0), HRI(0), MRI(0), BTP(0) {
   2303       initializeHexagonLoopReschedulingPass(*PassRegistry::getPassRegistry());
   2304     }
   2305 
   2306     bool runOnMachineFunction(MachineFunction &MF) override;
   2307 
   2308   private:
   2309     const HexagonInstrInfo *HII;
   2310     const HexagonRegisterInfo *HRI;
   2311     MachineRegisterInfo *MRI;
   2312     BitTracker *BTP;
   2313 
   2314     struct LoopCand {
   2315       LoopCand(MachineBasicBlock *lb, MachineBasicBlock *pb,
   2316             MachineBasicBlock *eb) : LB(lb), PB(pb), EB(eb) {}
   2317       MachineBasicBlock *LB, *PB, *EB;
   2318     };
   2319     typedef std::vector<MachineInstr*> InstrList;
   2320     struct InstrGroup {
   2321       BitTracker::RegisterRef Inp, Out;
   2322       InstrList Ins;
   2323     };
   2324     struct PhiInfo {
   2325       PhiInfo(MachineInstr &P, MachineBasicBlock &B);
   2326       unsigned DefR;
   2327       BitTracker::RegisterRef LR, PR;
   2328       MachineBasicBlock *LB, *PB;
   2329     };
   2330 
   2331     static unsigned getDefReg(const MachineInstr *MI);
   2332     bool isConst(unsigned Reg) const;
   2333     bool isBitShuffle(const MachineInstr *MI, unsigned DefR) const;
   2334     bool isStoreInput(const MachineInstr *MI, unsigned DefR) const;
   2335     bool isShuffleOf(unsigned OutR, unsigned InpR) const;
   2336     bool isSameShuffle(unsigned OutR1, unsigned InpR1, unsigned OutR2,
   2337         unsigned &InpR2) const;
   2338     void moveGroup(InstrGroup &G, MachineBasicBlock &LB, MachineBasicBlock &PB,
   2339         MachineBasicBlock::iterator At, unsigned OldPhiR, unsigned NewPredR);
   2340     bool processLoop(LoopCand &C);
   2341   };
   2342 }
   2343 
   2344 char HexagonLoopRescheduling::ID = 0;
   2345 
   2346 INITIALIZE_PASS(HexagonLoopRescheduling, "hexagon-loop-resched",
   2347   "Hexagon Loop Rescheduling", false, false)
   2348 
   2349 
   2350 HexagonLoopRescheduling::PhiInfo::PhiInfo(MachineInstr &P,
   2351       MachineBasicBlock &B) {
   2352   DefR = HexagonLoopRescheduling::getDefReg(&P);
   2353   LB = &B;
   2354   PB = nullptr;
   2355   for (unsigned i = 1, n = P.getNumOperands(); i < n; i += 2) {
   2356     const MachineOperand &OpB = P.getOperand(i+1);
   2357     if (OpB.getMBB() == &B) {
   2358       LR = P.getOperand(i);
   2359       continue;
   2360     }
   2361     PB = OpB.getMBB();
   2362     PR = P.getOperand(i);
   2363   }
   2364 }
   2365 
   2366 
   2367 unsigned HexagonLoopRescheduling::getDefReg(const MachineInstr *MI) {
   2368   RegisterSet Defs;
   2369   HBS::getInstrDefs(*MI, Defs);
   2370   if (Defs.count() != 1)
   2371     return 0;
   2372   return Defs.find_first();
   2373 }
   2374 
   2375 
   2376 bool HexagonLoopRescheduling::isConst(unsigned Reg) const {
   2377   if (!BTP->has(Reg))
   2378     return false;
   2379   const BitTracker::RegisterCell &RC = BTP->lookup(Reg);
   2380   for (unsigned i = 0, w = RC.width(); i < w; ++i) {
   2381     const BitTracker::BitValue &V = RC[i];
   2382     if (!V.is(0) && !V.is(1))
   2383       return false;
   2384   }
   2385   return true;
   2386 }
   2387 
   2388 
   2389 bool HexagonLoopRescheduling::isBitShuffle(const MachineInstr *MI,
   2390       unsigned DefR) const {
   2391   unsigned Opc = MI->getOpcode();
   2392   switch (Opc) {
   2393     case TargetOpcode::COPY:
   2394     case Hexagon::S2_lsr_i_r:
   2395     case Hexagon::S2_asr_i_r:
   2396     case Hexagon::S2_asl_i_r:
   2397     case Hexagon::S2_lsr_i_p:
   2398     case Hexagon::S2_asr_i_p:
   2399     case Hexagon::S2_asl_i_p:
   2400     case Hexagon::S2_insert:
   2401     case Hexagon::A2_or:
   2402     case Hexagon::A2_orp:
   2403     case Hexagon::A2_and:
   2404     case Hexagon::A2_andp:
   2405     case Hexagon::A2_combinew:
   2406     case Hexagon::A4_combineri:
   2407     case Hexagon::A4_combineir:
   2408     case Hexagon::A2_combineii:
   2409     case Hexagon::A4_combineii:
   2410     case Hexagon::A2_combine_ll:
   2411     case Hexagon::A2_combine_lh:
   2412     case Hexagon::A2_combine_hl:
   2413     case Hexagon::A2_combine_hh:
   2414       return true;
   2415   }
   2416   return false;
   2417 }
   2418 
   2419 
   2420 bool HexagonLoopRescheduling::isStoreInput(const MachineInstr *MI,
   2421       unsigned InpR) const {
   2422   for (unsigned i = 0, n = MI->getNumOperands(); i < n; ++i) {
   2423     const MachineOperand &Op = MI->getOperand(i);
   2424     if (!Op.isReg())
   2425       continue;
   2426     if (Op.getReg() == InpR)
   2427       return i == n-1;
   2428   }
   2429   return false;
   2430 }
   2431 
   2432 
   2433 bool HexagonLoopRescheduling::isShuffleOf(unsigned OutR, unsigned InpR) const {
   2434   if (!BTP->has(OutR) || !BTP->has(InpR))
   2435     return false;
   2436   const BitTracker::RegisterCell &OutC = BTP->lookup(OutR);
   2437   for (unsigned i = 0, w = OutC.width(); i < w; ++i) {
   2438     const BitTracker::BitValue &V = OutC[i];
   2439     if (V.Type != BitTracker::BitValue::Ref)
   2440       continue;
   2441     if (V.RefI.Reg != InpR)
   2442       return false;
   2443   }
   2444   return true;
   2445 }
   2446 
   2447 
   2448 bool HexagonLoopRescheduling::isSameShuffle(unsigned OutR1, unsigned InpR1,
   2449       unsigned OutR2, unsigned &InpR2) const {
   2450   if (!BTP->has(OutR1) || !BTP->has(InpR1) || !BTP->has(OutR2))
   2451     return false;
   2452   const BitTracker::RegisterCell &OutC1 = BTP->lookup(OutR1);
   2453   const BitTracker::RegisterCell &OutC2 = BTP->lookup(OutR2);
   2454   unsigned W = OutC1.width();
   2455   unsigned MatchR = 0;
   2456   if (W != OutC2.width())
   2457     return false;
   2458   for (unsigned i = 0; i < W; ++i) {
   2459     const BitTracker::BitValue &V1 = OutC1[i], &V2 = OutC2[i];
   2460     if (V1.Type != V2.Type || V1.Type == BitTracker::BitValue::One)
   2461       return false;
   2462     if (V1.Type != BitTracker::BitValue::Ref)
   2463       continue;
   2464     if (V1.RefI.Pos != V2.RefI.Pos)
   2465       return false;
   2466     if (V1.RefI.Reg != InpR1)
   2467       return false;
   2468     if (V2.RefI.Reg == 0 || V2.RefI.Reg == OutR2)
   2469       return false;
   2470     if (!MatchR)
   2471       MatchR = V2.RefI.Reg;
   2472     else if (V2.RefI.Reg != MatchR)
   2473       return false;
   2474   }
   2475   InpR2 = MatchR;
   2476   return true;
   2477 }
   2478 
   2479 
   2480 void HexagonLoopRescheduling::moveGroup(InstrGroup &G, MachineBasicBlock &LB,
   2481       MachineBasicBlock &PB, MachineBasicBlock::iterator At, unsigned OldPhiR,
   2482       unsigned NewPredR) {
   2483   DenseMap<unsigned,unsigned> RegMap;
   2484 
   2485   const TargetRegisterClass *PhiRC = MRI->getRegClass(NewPredR);
   2486   unsigned PhiR = MRI->createVirtualRegister(PhiRC);
   2487   BuildMI(LB, At, At->getDebugLoc(), HII->get(TargetOpcode::PHI), PhiR)
   2488     .addReg(NewPredR)
   2489     .addMBB(&PB)
   2490     .addReg(G.Inp.Reg)
   2491     .addMBB(&LB);
   2492   RegMap.insert(std::make_pair(G.Inp.Reg, PhiR));
   2493 
   2494   for (unsigned i = G.Ins.size(); i > 0; --i) {
   2495     const MachineInstr *SI = G.Ins[i-1];
   2496     unsigned DR = getDefReg(SI);
   2497     const TargetRegisterClass *RC = MRI->getRegClass(DR);
   2498     unsigned NewDR = MRI->createVirtualRegister(RC);
   2499     DebugLoc DL = SI->getDebugLoc();
   2500 
   2501     auto MIB = BuildMI(LB, At, DL, HII->get(SI->getOpcode()), NewDR);
   2502     for (unsigned j = 0, m = SI->getNumOperands(); j < m; ++j) {
   2503       const MachineOperand &Op = SI->getOperand(j);
   2504       if (!Op.isReg()) {
   2505         MIB.addOperand(Op);
   2506         continue;
   2507       }
   2508       if (!Op.isUse())
   2509         continue;
   2510       unsigned UseR = RegMap[Op.getReg()];
   2511       MIB.addReg(UseR, 0, Op.getSubReg());
   2512     }
   2513     RegMap.insert(std::make_pair(DR, NewDR));
   2514   }
   2515 
   2516   HBS::replaceReg(OldPhiR, RegMap[G.Out.Reg], *MRI);
   2517 }
   2518 
   2519 
   2520 bool HexagonLoopRescheduling::processLoop(LoopCand &C) {
   2521   DEBUG(dbgs() << "Processing loop in BB#" << C.LB->getNumber() << "\n");
   2522   std::vector<PhiInfo> Phis;
   2523   for (auto &I : *C.LB) {
   2524     if (!I.isPHI())
   2525       break;
   2526     unsigned PR = getDefReg(&I);
   2527     if (isConst(PR))
   2528       continue;
   2529     bool BadUse = false, GoodUse = false;
   2530     for (auto UI = MRI->use_begin(PR), UE = MRI->use_end(); UI != UE; ++UI) {
   2531       MachineInstr *UseI = UI->getParent();
   2532       if (UseI->getParent() != C.LB) {
   2533         BadUse = true;
   2534         break;
   2535       }
   2536       if (isBitShuffle(UseI, PR) || isStoreInput(UseI, PR))
   2537         GoodUse = true;
   2538     }
   2539     if (BadUse || !GoodUse)
   2540       continue;
   2541 
   2542     Phis.push_back(PhiInfo(I, *C.LB));
   2543   }
   2544 
   2545   DEBUG({
   2546     dbgs() << "Phis: {";
   2547     for (auto &I : Phis) {
   2548       dbgs() << ' ' << PrintReg(I.DefR, HRI) << "=phi("
   2549              << PrintReg(I.PR.Reg, HRI, I.PR.Sub) << ":b" << I.PB->getNumber()
   2550              << ',' << PrintReg(I.LR.Reg, HRI, I.LR.Sub) << ":b"
   2551              << I.LB->getNumber() << ')';
   2552     }
   2553     dbgs() << " }\n";
   2554   });
   2555 
   2556   if (Phis.empty())
   2557     return false;
   2558 
   2559   bool Changed = false;
   2560   InstrList ShufIns;
   2561 
   2562   // Go backwards in the block: for each bit shuffling instruction, check
   2563   // if that instruction could potentially be moved to the front of the loop:
   2564   // the output of the loop cannot be used in a non-shuffling instruction
   2565   // in this loop.
   2566   for (auto I = C.LB->rbegin(), E = C.LB->rend(); I != E; ++I) {
   2567     if (I->isTerminator())
   2568       continue;
   2569     if (I->isPHI())
   2570       break;
   2571 
   2572     RegisterSet Defs;
   2573     HBS::getInstrDefs(*I, Defs);
   2574     if (Defs.count() != 1)
   2575       continue;
   2576     unsigned DefR = Defs.find_first();
   2577     if (!TargetRegisterInfo::isVirtualRegister(DefR))
   2578       continue;
   2579     if (!isBitShuffle(&*I, DefR))
   2580       continue;
   2581 
   2582     bool BadUse = false;
   2583     for (auto UI = MRI->use_begin(DefR), UE = MRI->use_end(); UI != UE; ++UI) {
   2584       MachineInstr *UseI = UI->getParent();
   2585       if (UseI->getParent() == C.LB) {
   2586         if (UseI->isPHI()) {
   2587           // If the use is in a phi node in this loop, then it should be
   2588           // the value corresponding to the back edge.
   2589           unsigned Idx = UI.getOperandNo();
   2590           if (UseI->getOperand(Idx+1).getMBB() != C.LB)
   2591             BadUse = true;
   2592         } else {
   2593           auto F = std::find(ShufIns.begin(), ShufIns.end(), UseI);
   2594           if (F == ShufIns.end())
   2595             BadUse = true;
   2596         }
   2597       } else {
   2598         // There is a use outside of the loop, but there is no epilog block
   2599         // suitable for a copy-out.
   2600         if (C.EB == nullptr)
   2601           BadUse = true;
   2602       }
   2603       if (BadUse)
   2604         break;
   2605     }
   2606 
   2607     if (BadUse)
   2608       continue;
   2609     ShufIns.push_back(&*I);
   2610   }
   2611 
   2612   // Partition the list of shuffling instructions into instruction groups,
   2613   // where each group has to be moved as a whole (i.e. a group is a chain of
   2614   // dependent instructions). A group produces a single live output register,
   2615   // which is meant to be the input of the loop phi node (although this is
   2616   // not checked here yet). It also uses a single register as its input,
   2617   // which is some value produced in the loop body. After moving the group
   2618   // to the beginning of the loop, that input register would need to be
   2619   // the loop-carried register (through a phi node) instead of the (currently
   2620   // loop-carried) output register.
   2621   typedef std::vector<InstrGroup> InstrGroupList;
   2622   InstrGroupList Groups;
   2623 
   2624   for (unsigned i = 0, n = ShufIns.size(); i < n; ++i) {
   2625     MachineInstr *SI = ShufIns[i];
   2626     if (SI == nullptr)
   2627       continue;
   2628 
   2629     InstrGroup G;
   2630     G.Ins.push_back(SI);
   2631     G.Out.Reg = getDefReg(SI);
   2632     RegisterSet Inputs;
   2633     HBS::getInstrUses(*SI, Inputs);
   2634 
   2635     for (unsigned j = i+1; j < n; ++j) {
   2636       MachineInstr *MI = ShufIns[j];
   2637       if (MI == nullptr)
   2638         continue;
   2639       RegisterSet Defs;
   2640       HBS::getInstrDefs(*MI, Defs);
   2641       // If this instruction does not define any pending inputs, skip it.
   2642       if (!Defs.intersects(Inputs))
   2643         continue;
   2644       // Otherwise, add it to the current group and remove the inputs that
   2645       // are defined by MI.
   2646       G.Ins.push_back(MI);
   2647       Inputs.remove(Defs);
   2648       // Then add all registers used by MI.
   2649       HBS::getInstrUses(*MI, Inputs);
   2650       ShufIns[j] = nullptr;
   2651     }
   2652 
   2653     // Only add a group if it requires at most one register.
   2654     if (Inputs.count() > 1)
   2655       continue;
   2656     auto LoopInpEq = [G] (const PhiInfo &P) -> bool {
   2657       return G.Out.Reg == P.LR.Reg;
   2658     };
   2659     if (std::find_if(Phis.begin(), Phis.end(), LoopInpEq) == Phis.end())
   2660       continue;
   2661 
   2662     G.Inp.Reg = Inputs.find_first();
   2663     Groups.push_back(G);
   2664   }
   2665 
   2666   DEBUG({
   2667     for (unsigned i = 0, n = Groups.size(); i < n; ++i) {
   2668       InstrGroup &G = Groups[i];
   2669       dbgs() << "Group[" << i << "] inp: "
   2670              << PrintReg(G.Inp.Reg, HRI, G.Inp.Sub)
   2671              << "  out: " << PrintReg(G.Out.Reg, HRI, G.Out.Sub) << "\n";
   2672       for (unsigned j = 0, m = G.Ins.size(); j < m; ++j)
   2673         dbgs() << "  " << *G.Ins[j];
   2674     }
   2675   });
   2676 
   2677   for (unsigned i = 0, n = Groups.size(); i < n; ++i) {
   2678     InstrGroup &G = Groups[i];
   2679     if (!isShuffleOf(G.Out.Reg, G.Inp.Reg))
   2680       continue;
   2681     auto LoopInpEq = [G] (const PhiInfo &P) -> bool {
   2682       return G.Out.Reg == P.LR.Reg;
   2683     };
   2684     auto F = std::find_if(Phis.begin(), Phis.end(), LoopInpEq);
   2685     if (F == Phis.end())
   2686       continue;
   2687     unsigned PredR = 0;
   2688     if (!isSameShuffle(G.Out.Reg, G.Inp.Reg, F->PR.Reg, PredR)) {
   2689       const MachineInstr *DefPredR = MRI->getVRegDef(F->PR.Reg);
   2690       unsigned Opc = DefPredR->getOpcode();
   2691       if (Opc != Hexagon::A2_tfrsi && Opc != Hexagon::A2_tfrpi)
   2692         continue;
   2693       if (!DefPredR->getOperand(1).isImm())
   2694         continue;
   2695       if (DefPredR->getOperand(1).getImm() != 0)
   2696         continue;
   2697       const TargetRegisterClass *RC = MRI->getRegClass(G.Inp.Reg);
   2698       if (RC != MRI->getRegClass(F->PR.Reg)) {
   2699         PredR = MRI->createVirtualRegister(RC);
   2700         unsigned TfrI = (RC == &Hexagon::IntRegsRegClass) ? Hexagon::A2_tfrsi
   2701                                                           : Hexagon::A2_tfrpi;
   2702         auto T = C.PB->getFirstTerminator();
   2703         DebugLoc DL = (T != C.PB->end()) ? T->getDebugLoc() : DebugLoc();
   2704         BuildMI(*C.PB, T, DL, HII->get(TfrI), PredR)
   2705           .addImm(0);
   2706       } else {
   2707         PredR = F->PR.Reg;
   2708       }
   2709     }
   2710     assert(MRI->getRegClass(PredR) == MRI->getRegClass(G.Inp.Reg));
   2711     moveGroup(G, *F->LB, *F->PB, F->LB->getFirstNonPHI(), F->DefR, PredR);
   2712     Changed = true;
   2713   }
   2714 
   2715   return Changed;
   2716 }
   2717 
   2718 
   2719 bool HexagonLoopRescheduling::runOnMachineFunction(MachineFunction &MF) {
   2720   auto &HST = MF.getSubtarget<HexagonSubtarget>();
   2721   HII = HST.getInstrInfo();
   2722   HRI = HST.getRegisterInfo();
   2723   MRI = &MF.getRegInfo();
   2724   const HexagonEvaluator HE(*HRI, *MRI, *HII, MF);
   2725   BitTracker BT(HE, MF);
   2726   DEBUG(BT.trace(true));
   2727   BT.run();
   2728   BTP = &BT;
   2729 
   2730   std::vector<LoopCand> Cand;
   2731 
   2732   for (auto &B : MF) {
   2733     if (B.pred_size() != 2 || B.succ_size() != 2)
   2734       continue;
   2735     MachineBasicBlock *PB = nullptr;
   2736     bool IsLoop = false;
   2737     for (auto PI = B.pred_begin(), PE = B.pred_end(); PI != PE; ++PI) {
   2738       if (*PI != &B)
   2739         PB = *PI;
   2740       else
   2741         IsLoop = true;
   2742     }
   2743     if (!IsLoop)
   2744       continue;
   2745 
   2746     MachineBasicBlock *EB = nullptr;
   2747     for (auto SI = B.succ_begin(), SE = B.succ_end(); SI != SE; ++SI) {
   2748       if (*SI == &B)
   2749         continue;
   2750       // Set EP to the epilog block, if it has only 1 predecessor (i.e. the
   2751       // edge from B to EP is non-critical.
   2752       if ((*SI)->pred_size() == 1)
   2753         EB = *SI;
   2754       break;
   2755     }
   2756 
   2757     Cand.push_back(LoopCand(&B, PB, EB));
   2758   }
   2759 
   2760   bool Changed = false;
   2761   for (auto &C : Cand)
   2762     Changed |= processLoop(C);
   2763 
   2764   return Changed;
   2765 }
   2766 
   2767 //===----------------------------------------------------------------------===//
   2768 //                         Public Constructor Functions
   2769 //===----------------------------------------------------------------------===//
   2770 
   2771 FunctionPass *llvm::createHexagonLoopRescheduling() {
   2772   return new HexagonLoopRescheduling();
   2773 }
   2774 
   2775 FunctionPass *llvm::createHexagonBitSimplify() {
   2776   return new HexagonBitSimplify();
   2777 }
   2778 
   2779