Home | History | Annotate | Download | only in Scalar
      1 //===- LoopStrengthReduce.cpp - Strength Reduce IVs in Loops --------------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 //
     10 // This transformation analyzes and transforms the induction variables (and
     11 // computations derived from them) into forms suitable for efficient execution
     12 // on the target.
     13 //
     14 // This pass performs a strength reduction on array references inside loops that
     15 // have as one or more of their components the loop induction variable, it
     16 // rewrites expressions to take advantage of scaled-index addressing modes
     17 // available on the target, and it performs a variety of other optimizations
     18 // related to loop induction variables.
     19 //
     20 // Terminology note: this code has a lot of handling for "post-increment" or
     21 // "post-inc" users. This is not talking about post-increment addressing modes;
     22 // it is instead talking about code like this:
     23 //
     24 //   %i = phi [ 0, %entry ], [ %i.next, %latch ]
     25 //   ...
     26 //   %i.next = add %i, 1
     27 //   %c = icmp eq %i.next, %n
     28 //
     29 // The SCEV for %i is {0,+,1}<%L>. The SCEV for %i.next is {1,+,1}<%L>, however
     30 // it's useful to think about these as the same register, with some uses using
     31 // the value of the register before the add and some using it after. In this
     32 // example, the icmp is a post-increment user, since it uses %i.next, which is
     33 // the value of the induction variable after the increment. The other common
     34 // case of post-increment users is users outside the loop.
     35 //
     36 // TODO: More sophistication in the way Formulae are generated and filtered.
     37 //
     38 // TODO: Handle multiple loops at a time.
     39 //
     40 // TODO: Should the addressing mode BaseGV be changed to a ConstantExpr instead
     41 //       of a GlobalValue?
     42 //
     43 // TODO: When truncation is free, truncate ICmp users' operands to make it a
     44 //       smaller encoding (on x86 at least).
     45 //
     46 // TODO: When a negated register is used by an add (such as in a list of
     47 //       multiple base registers, or as the increment expression in an addrec),
     48 //       we may not actually need both reg and (-1 * reg) in registers; the
     49 //       negation can be implemented by using a sub instead of an add. The
     50 //       lack of support for taking this into consideration when making
     51 //       register pressure decisions is partly worked around by the "Special"
     52 //       use kind.
     53 //
     54 //===----------------------------------------------------------------------===//
     55 
     56 #include "llvm/Transforms/Scalar.h"
     57 #include "llvm/ADT/DenseSet.h"
     58 #include "llvm/ADT/Hashing.h"
     59 #include "llvm/ADT/STLExtras.h"
     60 #include "llvm/ADT/SetVector.h"
     61 #include "llvm/ADT/SmallBitVector.h"
     62 #include "llvm/Analysis/IVUsers.h"
     63 #include "llvm/Analysis/LoopPass.h"
     64 #include "llvm/Analysis/ScalarEvolutionExpander.h"
     65 #include "llvm/Analysis/TargetTransformInfo.h"
     66 #include "llvm/IR/Constants.h"
     67 #include "llvm/IR/DerivedTypes.h"
     68 #include "llvm/IR/Dominators.h"
     69 #include "llvm/IR/Instructions.h"
     70 #include "llvm/IR/IntrinsicInst.h"
     71 #include "llvm/IR/Module.h"
     72 #include "llvm/IR/ValueHandle.h"
     73 #include "llvm/Support/CommandLine.h"
     74 #include "llvm/Support/Debug.h"
     75 #include "llvm/Support/raw_ostream.h"
     76 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
     77 #include "llvm/Transforms/Utils/Local.h"
     78 #include <algorithm>
     79 using namespace llvm;
     80 
     81 #define DEBUG_TYPE "loop-reduce"
     82 
     83 /// MaxIVUsers is an arbitrary threshold that provides an early opportunitiy for
     84 /// bail out. This threshold is far beyond the number of users that LSR can
     85 /// conceivably solve, so it should not affect generated code, but catches the
     86 /// worst cases before LSR burns too much compile time and stack space.
     87 static const unsigned MaxIVUsers = 200;
     88 
     89 // Temporary flag to cleanup congruent phis after LSR phi expansion.
     90 // It's currently disabled until we can determine whether it's truly useful or
     91 // not. The flag should be removed after the v3.0 release.
     92 // This is now needed for ivchains.
     93 static cl::opt<bool> EnablePhiElim(
     94   "enable-lsr-phielim", cl::Hidden, cl::init(true),
     95   cl::desc("Enable LSR phi elimination"));
     96 
     97 #ifndef NDEBUG
     98 // Stress test IV chain generation.
     99 static cl::opt<bool> StressIVChain(
    100   "stress-ivchain", cl::Hidden, cl::init(false),
    101   cl::desc("Stress test LSR IV chains"));
    102 #else
    103 static bool StressIVChain = false;
    104 #endif
    105 
    106 namespace {
    107 
    108 struct MemAccessTy {
    109   /// Used in situations where the accessed memory type is unknown.
    110   static const unsigned UnknownAddressSpace = ~0u;
    111 
    112   Type *MemTy;
    113   unsigned AddrSpace;
    114 
    115   MemAccessTy() : MemTy(nullptr), AddrSpace(UnknownAddressSpace) {}
    116 
    117   MemAccessTy(Type *Ty, unsigned AS) :
    118     MemTy(Ty), AddrSpace(AS) {}
    119 
    120   bool operator==(MemAccessTy Other) const {
    121     return MemTy == Other.MemTy && AddrSpace == Other.AddrSpace;
    122   }
    123 
    124   bool operator!=(MemAccessTy Other) const { return !(*this == Other); }
    125 
    126   static MemAccessTy getUnknown(LLVMContext &Ctx) {
    127     return MemAccessTy(Type::getVoidTy(Ctx), UnknownAddressSpace);
    128   }
    129 };
    130 
    131 /// This class holds data which is used to order reuse candidates.
    132 class RegSortData {
    133 public:
    134   /// This represents the set of LSRUse indices which reference
    135   /// a particular register.
    136   SmallBitVector UsedByIndices;
    137 
    138   void print(raw_ostream &OS) const;
    139   void dump() const;
    140 };
    141 
    142 }
    143 
    144 void RegSortData::print(raw_ostream &OS) const {
    145   OS << "[NumUses=" << UsedByIndices.count() << ']';
    146 }
    147 
    148 LLVM_DUMP_METHOD
    149 void RegSortData::dump() const {
    150   print(errs()); errs() << '\n';
    151 }
    152 
    153 namespace {
    154 
    155 /// Map register candidates to information about how they are used.
    156 class RegUseTracker {
    157   typedef DenseMap<const SCEV *, RegSortData> RegUsesTy;
    158 
    159   RegUsesTy RegUsesMap;
    160   SmallVector<const SCEV *, 16> RegSequence;
    161 
    162 public:
    163   void countRegister(const SCEV *Reg, size_t LUIdx);
    164   void dropRegister(const SCEV *Reg, size_t LUIdx);
    165   void swapAndDropUse(size_t LUIdx, size_t LastLUIdx);
    166 
    167   bool isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const;
    168 
    169   const SmallBitVector &getUsedByIndices(const SCEV *Reg) const;
    170 
    171   void clear();
    172 
    173   typedef SmallVectorImpl<const SCEV *>::iterator iterator;
    174   typedef SmallVectorImpl<const SCEV *>::const_iterator const_iterator;
    175   iterator begin() { return RegSequence.begin(); }
    176   iterator end()   { return RegSequence.end(); }
    177   const_iterator begin() const { return RegSequence.begin(); }
    178   const_iterator end() const   { return RegSequence.end(); }
    179 };
    180 
    181 }
    182 
    183 void
    184 RegUseTracker::countRegister(const SCEV *Reg, size_t LUIdx) {
    185   std::pair<RegUsesTy::iterator, bool> Pair =
    186     RegUsesMap.insert(std::make_pair(Reg, RegSortData()));
    187   RegSortData &RSD = Pair.first->second;
    188   if (Pair.second)
    189     RegSequence.push_back(Reg);
    190   RSD.UsedByIndices.resize(std::max(RSD.UsedByIndices.size(), LUIdx + 1));
    191   RSD.UsedByIndices.set(LUIdx);
    192 }
    193 
    194 void
    195 RegUseTracker::dropRegister(const SCEV *Reg, size_t LUIdx) {
    196   RegUsesTy::iterator It = RegUsesMap.find(Reg);
    197   assert(It != RegUsesMap.end());
    198   RegSortData &RSD = It->second;
    199   assert(RSD.UsedByIndices.size() > LUIdx);
    200   RSD.UsedByIndices.reset(LUIdx);
    201 }
    202 
    203 void
    204 RegUseTracker::swapAndDropUse(size_t LUIdx, size_t LastLUIdx) {
    205   assert(LUIdx <= LastLUIdx);
    206 
    207   // Update RegUses. The data structure is not optimized for this purpose;
    208   // we must iterate through it and update each of the bit vectors.
    209   for (auto &Pair : RegUsesMap) {
    210     SmallBitVector &UsedByIndices = Pair.second.UsedByIndices;
    211     if (LUIdx < UsedByIndices.size())
    212       UsedByIndices[LUIdx] =
    213         LastLUIdx < UsedByIndices.size() ? UsedByIndices[LastLUIdx] : 0;
    214     UsedByIndices.resize(std::min(UsedByIndices.size(), LastLUIdx));
    215   }
    216 }
    217 
    218 bool
    219 RegUseTracker::isRegUsedByUsesOtherThan(const SCEV *Reg, size_t LUIdx) const {
    220   RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
    221   if (I == RegUsesMap.end())
    222     return false;
    223   const SmallBitVector &UsedByIndices = I->second.UsedByIndices;
    224   int i = UsedByIndices.find_first();
    225   if (i == -1) return false;
    226   if ((size_t)i != LUIdx) return true;
    227   return UsedByIndices.find_next(i) != -1;
    228 }
    229 
    230 const SmallBitVector &RegUseTracker::getUsedByIndices(const SCEV *Reg) const {
    231   RegUsesTy::const_iterator I = RegUsesMap.find(Reg);
    232   assert(I != RegUsesMap.end() && "Unknown register!");
    233   return I->second.UsedByIndices;
    234 }
    235 
    236 void RegUseTracker::clear() {
    237   RegUsesMap.clear();
    238   RegSequence.clear();
    239 }
    240 
    241 namespace {
    242 
    243 /// This class holds information that describes a formula for computing
    244 /// satisfying a use. It may include broken-out immediates and scaled registers.
    245 struct Formula {
    246   /// Global base address used for complex addressing.
    247   GlobalValue *BaseGV;
    248 
    249   /// Base offset for complex addressing.
    250   int64_t BaseOffset;
    251 
    252   /// Whether any complex addressing has a base register.
    253   bool HasBaseReg;
    254 
    255   /// The scale of any complex addressing.
    256   int64_t Scale;
    257 
    258   /// The list of "base" registers for this use. When this is non-empty. The
    259   /// canonical representation of a formula is
    260   /// 1. BaseRegs.size > 1 implies ScaledReg != NULL and
    261   /// 2. ScaledReg != NULL implies Scale != 1 || !BaseRegs.empty().
    262   /// #1 enforces that the scaled register is always used when at least two
    263   /// registers are needed by the formula: e.g., reg1 + reg2 is reg1 + 1 * reg2.
    264   /// #2 enforces that 1 * reg is reg.
    265   /// This invariant can be temporarly broken while building a formula.
    266   /// However, every formula inserted into the LSRInstance must be in canonical
    267   /// form.
    268   SmallVector<const SCEV *, 4> BaseRegs;
    269 
    270   /// The 'scaled' register for this use. This should be non-null when Scale is
    271   /// not zero.
    272   const SCEV *ScaledReg;
    273 
    274   /// An additional constant offset which added near the use. This requires a
    275   /// temporary register, but the offset itself can live in an add immediate
    276   /// field rather than a register.
    277   int64_t UnfoldedOffset;
    278 
    279   Formula()
    280       : BaseGV(nullptr), BaseOffset(0), HasBaseReg(false), Scale(0),
    281         ScaledReg(nullptr), UnfoldedOffset(0) {}
    282 
    283   void initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE);
    284 
    285   bool isCanonical() const;
    286 
    287   void canonicalize();
    288 
    289   bool unscale();
    290 
    291   size_t getNumRegs() const;
    292   Type *getType() const;
    293 
    294   void deleteBaseReg(const SCEV *&S);
    295 
    296   bool referencesReg(const SCEV *S) const;
    297   bool hasRegsUsedByUsesOtherThan(size_t LUIdx,
    298                                   const RegUseTracker &RegUses) const;
    299 
    300   void print(raw_ostream &OS) const;
    301   void dump() const;
    302 };
    303 
    304 }
    305 
    306 /// Recursion helper for initialMatch.
    307 static void DoInitialMatch(const SCEV *S, Loop *L,
    308                            SmallVectorImpl<const SCEV *> &Good,
    309                            SmallVectorImpl<const SCEV *> &Bad,
    310                            ScalarEvolution &SE) {
    311   // Collect expressions which properly dominate the loop header.
    312   if (SE.properlyDominates(S, L->getHeader())) {
    313     Good.push_back(S);
    314     return;
    315   }
    316 
    317   // Look at add operands.
    318   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
    319     for (const SCEV *S : Add->operands())
    320       DoInitialMatch(S, L, Good, Bad, SE);
    321     return;
    322   }
    323 
    324   // Look at addrec operands.
    325   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
    326     if (!AR->getStart()->isZero()) {
    327       DoInitialMatch(AR->getStart(), L, Good, Bad, SE);
    328       DoInitialMatch(SE.getAddRecExpr(SE.getConstant(AR->getType(), 0),
    329                                       AR->getStepRecurrence(SE),
    330                                       // FIXME: AR->getNoWrapFlags()
    331                                       AR->getLoop(), SCEV::FlagAnyWrap),
    332                      L, Good, Bad, SE);
    333       return;
    334     }
    335 
    336   // Handle a multiplication by -1 (negation) if it didn't fold.
    337   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S))
    338     if (Mul->getOperand(0)->isAllOnesValue()) {
    339       SmallVector<const SCEV *, 4> Ops(Mul->op_begin()+1, Mul->op_end());
    340       const SCEV *NewMul = SE.getMulExpr(Ops);
    341 
    342       SmallVector<const SCEV *, 4> MyGood;
    343       SmallVector<const SCEV *, 4> MyBad;
    344       DoInitialMatch(NewMul, L, MyGood, MyBad, SE);
    345       const SCEV *NegOne = SE.getSCEV(ConstantInt::getAllOnesValue(
    346         SE.getEffectiveSCEVType(NewMul->getType())));
    347       for (const SCEV *S : MyGood)
    348         Good.push_back(SE.getMulExpr(NegOne, S));
    349       for (const SCEV *S : MyBad)
    350         Bad.push_back(SE.getMulExpr(NegOne, S));
    351       return;
    352     }
    353 
    354   // Ok, we can't do anything interesting. Just stuff the whole thing into a
    355   // register and hope for the best.
    356   Bad.push_back(S);
    357 }
    358 
    359 /// Incorporate loop-variant parts of S into this Formula, attempting to keep
    360 /// all loop-invariant and loop-computable values in a single base register.
    361 void Formula::initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) {
    362   SmallVector<const SCEV *, 4> Good;
    363   SmallVector<const SCEV *, 4> Bad;
    364   DoInitialMatch(S, L, Good, Bad, SE);
    365   if (!Good.empty()) {
    366     const SCEV *Sum = SE.getAddExpr(Good);
    367     if (!Sum->isZero())
    368       BaseRegs.push_back(Sum);
    369     HasBaseReg = true;
    370   }
    371   if (!Bad.empty()) {
    372     const SCEV *Sum = SE.getAddExpr(Bad);
    373     if (!Sum->isZero())
    374       BaseRegs.push_back(Sum);
    375     HasBaseReg = true;
    376   }
    377   canonicalize();
    378 }
    379 
    380 /// \brief Check whether or not this formula statisfies the canonical
    381 /// representation.
    382 /// \see Formula::BaseRegs.
    383 bool Formula::isCanonical() const {
    384   if (ScaledReg)
    385     return Scale != 1 || !BaseRegs.empty();
    386   return BaseRegs.size() <= 1;
    387 }
    388 
    389 /// \brief Helper method to morph a formula into its canonical representation.
    390 /// \see Formula::BaseRegs.
    391 /// Every formula having more than one base register, must use the ScaledReg
    392 /// field. Otherwise, we would have to do special cases everywhere in LSR
    393 /// to treat reg1 + reg2 + ... the same way as reg1 + 1*reg2 + ...
    394 /// On the other hand, 1*reg should be canonicalized into reg.
    395 void Formula::canonicalize() {
    396   if (isCanonical())
    397     return;
    398   // So far we did not need this case. This is easy to implement but it is
    399   // useless to maintain dead code. Beside it could hurt compile time.
    400   assert(!BaseRegs.empty() && "1*reg => reg, should not be needed.");
    401   // Keep the invariant sum in BaseRegs and one of the variant sum in ScaledReg.
    402   ScaledReg = BaseRegs.back();
    403   BaseRegs.pop_back();
    404   Scale = 1;
    405   size_t BaseRegsSize = BaseRegs.size();
    406   size_t Try = 0;
    407   // If ScaledReg is an invariant, try to find a variant expression.
    408   while (Try < BaseRegsSize && !isa<SCEVAddRecExpr>(ScaledReg))
    409     std::swap(ScaledReg, BaseRegs[Try++]);
    410 }
    411 
    412 /// \brief Get rid of the scale in the formula.
    413 /// In other words, this method morphes reg1 + 1*reg2 into reg1 + reg2.
    414 /// \return true if it was possible to get rid of the scale, false otherwise.
    415 /// \note After this operation the formula may not be in the canonical form.
    416 bool Formula::unscale() {
    417   if (Scale != 1)
    418     return false;
    419   Scale = 0;
    420   BaseRegs.push_back(ScaledReg);
    421   ScaledReg = nullptr;
    422   return true;
    423 }
    424 
    425 /// Return the total number of register operands used by this formula. This does
    426 /// not include register uses implied by non-constant addrec strides.
    427 size_t Formula::getNumRegs() const {
    428   return !!ScaledReg + BaseRegs.size();
    429 }
    430 
    431 /// Return the type of this formula, if it has one, or null otherwise. This type
    432 /// is meaningless except for the bit size.
    433 Type *Formula::getType() const {
    434   return !BaseRegs.empty() ? BaseRegs.front()->getType() :
    435          ScaledReg ? ScaledReg->getType() :
    436          BaseGV ? BaseGV->getType() :
    437          nullptr;
    438 }
    439 
    440 /// Delete the given base reg from the BaseRegs list.
    441 void Formula::deleteBaseReg(const SCEV *&S) {
    442   if (&S != &BaseRegs.back())
    443     std::swap(S, BaseRegs.back());
    444   BaseRegs.pop_back();
    445 }
    446 
    447 /// Test if this formula references the given register.
    448 bool Formula::referencesReg(const SCEV *S) const {
    449   return S == ScaledReg ||
    450          std::find(BaseRegs.begin(), BaseRegs.end(), S) != BaseRegs.end();
    451 }
    452 
    453 /// Test whether this formula uses registers which are used by uses other than
    454 /// the use with the given index.
    455 bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx,
    456                                          const RegUseTracker &RegUses) const {
    457   if (ScaledReg)
    458     if (RegUses.isRegUsedByUsesOtherThan(ScaledReg, LUIdx))
    459       return true;
    460   for (const SCEV *BaseReg : BaseRegs)
    461     if (RegUses.isRegUsedByUsesOtherThan(BaseReg, LUIdx))
    462       return true;
    463   return false;
    464 }
    465 
    466 void Formula::print(raw_ostream &OS) const {
    467   bool First = true;
    468   if (BaseGV) {
    469     if (!First) OS << " + "; else First = false;
    470     BaseGV->printAsOperand(OS, /*PrintType=*/false);
    471   }
    472   if (BaseOffset != 0) {
    473     if (!First) OS << " + "; else First = false;
    474     OS << BaseOffset;
    475   }
    476   for (const SCEV *BaseReg : BaseRegs) {
    477     if (!First) OS << " + "; else First = false;
    478     OS << "reg(" << *BaseReg << ')';
    479   }
    480   if (HasBaseReg && BaseRegs.empty()) {
    481     if (!First) OS << " + "; else First = false;
    482     OS << "**error: HasBaseReg**";
    483   } else if (!HasBaseReg && !BaseRegs.empty()) {
    484     if (!First) OS << " + "; else First = false;
    485     OS << "**error: !HasBaseReg**";
    486   }
    487   if (Scale != 0) {
    488     if (!First) OS << " + "; else First = false;
    489     OS << Scale << "*reg(";
    490     if (ScaledReg)
    491       OS << *ScaledReg;
    492     else
    493       OS << "<unknown>";
    494     OS << ')';
    495   }
    496   if (UnfoldedOffset != 0) {
    497     if (!First) OS << " + ";
    498     OS << "imm(" << UnfoldedOffset << ')';
    499   }
    500 }
    501 
    502 LLVM_DUMP_METHOD
    503 void Formula::dump() const {
    504   print(errs()); errs() << '\n';
    505 }
    506 
    507 /// Return true if the given addrec can be sign-extended without changing its
    508 /// value.
    509 static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
    510   Type *WideTy =
    511     IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1);
    512   return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy));
    513 }
    514 
    515 /// Return true if the given add can be sign-extended without changing its
    516 /// value.
    517 static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) {
    518   Type *WideTy =
    519     IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1);
    520   return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy));
    521 }
    522 
    523 /// Return true if the given mul can be sign-extended without changing its
    524 /// value.
    525 static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) {
    526   Type *WideTy =
    527     IntegerType::get(SE.getContext(),
    528                      SE.getTypeSizeInBits(M->getType()) * M->getNumOperands());
    529   return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy));
    530 }
    531 
    532 /// Return an expression for LHS /s RHS, if it can be determined and if the
    533 /// remainder is known to be zero, or null otherwise. If IgnoreSignificantBits
    534 /// is true, expressions like (X * Y) /s Y are simplified to Y, ignoring that
    535 /// the multiplication may overflow, which is useful when the result will be
    536 /// used in a context where the most significant bits are ignored.
    537 static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS,
    538                                 ScalarEvolution &SE,
    539                                 bool IgnoreSignificantBits = false) {
    540   // Handle the trivial case, which works for any SCEV type.
    541   if (LHS == RHS)
    542     return SE.getConstant(LHS->getType(), 1);
    543 
    544   // Handle a few RHS special cases.
    545   const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS);
    546   if (RC) {
    547     const APInt &RA = RC->getAPInt();
    548     // Handle x /s -1 as x * -1, to give ScalarEvolution a chance to do
    549     // some folding.
    550     if (RA.isAllOnesValue())
    551       return SE.getMulExpr(LHS, RC);
    552     // Handle x /s 1 as x.
    553     if (RA == 1)
    554       return LHS;
    555   }
    556 
    557   // Check for a division of a constant by a constant.
    558   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(LHS)) {
    559     if (!RC)
    560       return nullptr;
    561     const APInt &LA = C->getAPInt();
    562     const APInt &RA = RC->getAPInt();
    563     if (LA.srem(RA) != 0)
    564       return nullptr;
    565     return SE.getConstant(LA.sdiv(RA));
    566   }
    567 
    568   // Distribute the sdiv over addrec operands, if the addrec doesn't overflow.
    569   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) {
    570     if (IgnoreSignificantBits || isAddRecSExtable(AR, SE)) {
    571       const SCEV *Step = getExactSDiv(AR->getStepRecurrence(SE), RHS, SE,
    572                                       IgnoreSignificantBits);
    573       if (!Step) return nullptr;
    574       const SCEV *Start = getExactSDiv(AR->getStart(), RHS, SE,
    575                                        IgnoreSignificantBits);
    576       if (!Start) return nullptr;
    577       // FlagNW is independent of the start value, step direction, and is
    578       // preserved with smaller magnitude steps.
    579       // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
    580       return SE.getAddRecExpr(Start, Step, AR->getLoop(), SCEV::FlagAnyWrap);
    581     }
    582     return nullptr;
    583   }
    584 
    585   // Distribute the sdiv over add operands, if the add doesn't overflow.
    586   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(LHS)) {
    587     if (IgnoreSignificantBits || isAddSExtable(Add, SE)) {
    588       SmallVector<const SCEV *, 8> Ops;
    589       for (const SCEV *S : Add->operands()) {
    590         const SCEV *Op = getExactSDiv(S, RHS, SE, IgnoreSignificantBits);
    591         if (!Op) return nullptr;
    592         Ops.push_back(Op);
    593       }
    594       return SE.getAddExpr(Ops);
    595     }
    596     return nullptr;
    597   }
    598 
    599   // Check for a multiply operand that we can pull RHS out of.
    600   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS)) {
    601     if (IgnoreSignificantBits || isMulSExtable(Mul, SE)) {
    602       SmallVector<const SCEV *, 4> Ops;
    603       bool Found = false;
    604       for (const SCEV *S : Mul->operands()) {
    605         if (!Found)
    606           if (const SCEV *Q = getExactSDiv(S, RHS, SE,
    607                                            IgnoreSignificantBits)) {
    608             S = Q;
    609             Found = true;
    610           }
    611         Ops.push_back(S);
    612       }
    613       return Found ? SE.getMulExpr(Ops) : nullptr;
    614     }
    615     return nullptr;
    616   }
    617 
    618   // Otherwise we don't know.
    619   return nullptr;
    620 }
    621 
    622 /// If S involves the addition of a constant integer value, return that integer
    623 /// value, and mutate S to point to a new SCEV with that value excluded.
    624 static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) {
    625   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
    626     if (C->getAPInt().getMinSignedBits() <= 64) {
    627       S = SE.getConstant(C->getType(), 0);
    628       return C->getValue()->getSExtValue();
    629     }
    630   } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
    631     SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
    632     int64_t Result = ExtractImmediate(NewOps.front(), SE);
    633     if (Result != 0)
    634       S = SE.getAddExpr(NewOps);
    635     return Result;
    636   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
    637     SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
    638     int64_t Result = ExtractImmediate(NewOps.front(), SE);
    639     if (Result != 0)
    640       S = SE.getAddRecExpr(NewOps, AR->getLoop(),
    641                            // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
    642                            SCEV::FlagAnyWrap);
    643     return Result;
    644   }
    645   return 0;
    646 }
    647 
    648 /// If S involves the addition of a GlobalValue address, return that symbol, and
    649 /// mutate S to point to a new SCEV with that value excluded.
    650 static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) {
    651   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
    652     if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) {
    653       S = SE.getConstant(GV->getType(), 0);
    654       return GV;
    655     }
    656   } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
    657     SmallVector<const SCEV *, 8> NewOps(Add->op_begin(), Add->op_end());
    658     GlobalValue *Result = ExtractSymbol(NewOps.back(), SE);
    659     if (Result)
    660       S = SE.getAddExpr(NewOps);
    661     return Result;
    662   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
    663     SmallVector<const SCEV *, 8> NewOps(AR->op_begin(), AR->op_end());
    664     GlobalValue *Result = ExtractSymbol(NewOps.front(), SE);
    665     if (Result)
    666       S = SE.getAddRecExpr(NewOps, AR->getLoop(),
    667                            // FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
    668                            SCEV::FlagAnyWrap);
    669     return Result;
    670   }
    671   return nullptr;
    672 }
    673 
    674 /// Returns true if the specified instruction is using the specified value as an
    675 /// address.
    676 static bool isAddressUse(Instruction *Inst, Value *OperandVal) {
    677   bool isAddress = isa<LoadInst>(Inst);
    678   if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
    679     if (SI->getOperand(1) == OperandVal)
    680       isAddress = true;
    681   } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
    682     // Addressing modes can also be folded into prefetches and a variety
    683     // of intrinsics.
    684     switch (II->getIntrinsicID()) {
    685       default: break;
    686       case Intrinsic::prefetch:
    687       case Intrinsic::x86_sse_storeu_ps:
    688       case Intrinsic::x86_sse2_storeu_pd:
    689       case Intrinsic::x86_sse2_storeu_dq:
    690       case Intrinsic::x86_sse2_storel_dq:
    691         if (II->getArgOperand(0) == OperandVal)
    692           isAddress = true;
    693         break;
    694     }
    695   }
    696   return isAddress;
    697 }
    698 
    699 /// Return the type of the memory being accessed.
    700 static MemAccessTy getAccessType(const Instruction *Inst) {
    701   MemAccessTy AccessTy(Inst->getType(), MemAccessTy::UnknownAddressSpace);
    702   if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
    703     AccessTy.MemTy = SI->getOperand(0)->getType();
    704     AccessTy.AddrSpace = SI->getPointerAddressSpace();
    705   } else if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
    706     AccessTy.AddrSpace = LI->getPointerAddressSpace();
    707   } else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
    708     // Addressing modes can also be folded into prefetches and a variety
    709     // of intrinsics.
    710     switch (II->getIntrinsicID()) {
    711     default: break;
    712     case Intrinsic::x86_sse_storeu_ps:
    713     case Intrinsic::x86_sse2_storeu_pd:
    714     case Intrinsic::x86_sse2_storeu_dq:
    715     case Intrinsic::x86_sse2_storel_dq:
    716       AccessTy.MemTy = II->getArgOperand(0)->getType();
    717       break;
    718     }
    719   }
    720 
    721   // All pointers have the same requirements, so canonicalize them to an
    722   // arbitrary pointer type to minimize variation.
    723   if (PointerType *PTy = dyn_cast<PointerType>(AccessTy.MemTy))
    724     AccessTy.MemTy = PointerType::get(IntegerType::get(PTy->getContext(), 1),
    725                                       PTy->getAddressSpace());
    726 
    727   return AccessTy;
    728 }
    729 
    730 /// Return true if this AddRec is already a phi in its loop.
    731 static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
    732   for (BasicBlock::iterator I = AR->getLoop()->getHeader()->begin();
    733        PHINode *PN = dyn_cast<PHINode>(I); ++I) {
    734     if (SE.isSCEVable(PN->getType()) &&
    735         (SE.getEffectiveSCEVType(PN->getType()) ==
    736          SE.getEffectiveSCEVType(AR->getType())) &&
    737         SE.getSCEV(PN) == AR)
    738       return true;
    739   }
    740   return false;
    741 }
    742 
    743 /// Check if expanding this expression is likely to incur significant cost. This
    744 /// is tricky because SCEV doesn't track which expressions are actually computed
    745 /// by the current IR.
    746 ///
    747 /// We currently allow expansion of IV increments that involve adds,
    748 /// multiplication by constants, and AddRecs from existing phis.
    749 ///
    750 /// TODO: Allow UDivExpr if we can find an existing IV increment that is an
    751 /// obvious multiple of the UDivExpr.
    752 static bool isHighCostExpansion(const SCEV *S,
    753                                 SmallPtrSetImpl<const SCEV*> &Processed,
    754                                 ScalarEvolution &SE) {
    755   // Zero/One operand expressions
    756   switch (S->getSCEVType()) {
    757   case scUnknown:
    758   case scConstant:
    759     return false;
    760   case scTruncate:
    761     return isHighCostExpansion(cast<SCEVTruncateExpr>(S)->getOperand(),
    762                                Processed, SE);
    763   case scZeroExtend:
    764     return isHighCostExpansion(cast<SCEVZeroExtendExpr>(S)->getOperand(),
    765                                Processed, SE);
    766   case scSignExtend:
    767     return isHighCostExpansion(cast<SCEVSignExtendExpr>(S)->getOperand(),
    768                                Processed, SE);
    769   }
    770 
    771   if (!Processed.insert(S).second)
    772     return false;
    773 
    774   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
    775     for (const SCEV *S : Add->operands()) {
    776       if (isHighCostExpansion(S, Processed, SE))
    777         return true;
    778     }
    779     return false;
    780   }
    781 
    782   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
    783     if (Mul->getNumOperands() == 2) {
    784       // Multiplication by a constant is ok
    785       if (isa<SCEVConstant>(Mul->getOperand(0)))
    786         return isHighCostExpansion(Mul->getOperand(1), Processed, SE);
    787 
    788       // If we have the value of one operand, check if an existing
    789       // multiplication already generates this expression.
    790       if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(Mul->getOperand(1))) {
    791         Value *UVal = U->getValue();
    792         for (User *UR : UVal->users()) {
    793           // If U is a constant, it may be used by a ConstantExpr.
    794           Instruction *UI = dyn_cast<Instruction>(UR);
    795           if (UI && UI->getOpcode() == Instruction::Mul &&
    796               SE.isSCEVable(UI->getType())) {
    797             return SE.getSCEV(UI) == Mul;
    798           }
    799         }
    800       }
    801     }
    802   }
    803 
    804   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
    805     if (isExistingPhi(AR, SE))
    806       return false;
    807   }
    808 
    809   // Fow now, consider any other type of expression (div/mul/min/max) high cost.
    810   return true;
    811 }
    812 
    813 /// If any of the instructions is the specified set are trivially dead, delete
    814 /// them and see if this makes any of their operands subsequently dead.
    815 static bool
    816 DeleteTriviallyDeadInstructions(SmallVectorImpl<WeakVH> &DeadInsts) {
    817   bool Changed = false;
    818 
    819   while (!DeadInsts.empty()) {
    820     Value *V = DeadInsts.pop_back_val();
    821     Instruction *I = dyn_cast_or_null<Instruction>(V);
    822 
    823     if (!I || !isInstructionTriviallyDead(I))
    824       continue;
    825 
    826     for (Use &O : I->operands())
    827       if (Instruction *U = dyn_cast<Instruction>(O)) {
    828         O = nullptr;
    829         if (U->use_empty())
    830           DeadInsts.emplace_back(U);
    831       }
    832 
    833     I->eraseFromParent();
    834     Changed = true;
    835   }
    836 
    837   return Changed;
    838 }
    839 
    840 namespace {
    841 class LSRUse;
    842 }
    843 
    844 /// \brief Check if the addressing mode defined by \p F is completely
    845 /// folded in \p LU at isel time.
    846 /// This includes address-mode folding and special icmp tricks.
    847 /// This function returns true if \p LU can accommodate what \p F
    848 /// defines and up to 1 base + 1 scaled + offset.
    849 /// In other words, if \p F has several base registers, this function may
    850 /// still return true. Therefore, users still need to account for
    851 /// additional base registers and/or unfolded offsets to derive an
    852 /// accurate cost model.
    853 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
    854                                  const LSRUse &LU, const Formula &F);
    855 // Get the cost of the scaling factor used in F for LU.
    856 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI,
    857                                      const LSRUse &LU, const Formula &F);
    858 
    859 namespace {
    860 
    861 /// This class is used to measure and compare candidate formulae.
    862 class Cost {
    863   /// TODO: Some of these could be merged. Also, a lexical ordering
    864   /// isn't always optimal.
    865   unsigned NumRegs;
    866   unsigned AddRecCost;
    867   unsigned NumIVMuls;
    868   unsigned NumBaseAdds;
    869   unsigned ImmCost;
    870   unsigned SetupCost;
    871   unsigned ScaleCost;
    872 
    873 public:
    874   Cost()
    875     : NumRegs(0), AddRecCost(0), NumIVMuls(0), NumBaseAdds(0), ImmCost(0),
    876       SetupCost(0), ScaleCost(0) {}
    877 
    878   bool operator<(const Cost &Other) const;
    879 
    880   void Lose();
    881 
    882 #ifndef NDEBUG
    883   // Once any of the metrics loses, they must all remain losers.
    884   bool isValid() {
    885     return ((NumRegs | AddRecCost | NumIVMuls | NumBaseAdds
    886              | ImmCost | SetupCost | ScaleCost) != ~0u)
    887       || ((NumRegs & AddRecCost & NumIVMuls & NumBaseAdds
    888            & ImmCost & SetupCost & ScaleCost) == ~0u);
    889   }
    890 #endif
    891 
    892   bool isLoser() {
    893     assert(isValid() && "invalid cost");
    894     return NumRegs == ~0u;
    895   }
    896 
    897   void RateFormula(const TargetTransformInfo &TTI,
    898                    const Formula &F,
    899                    SmallPtrSetImpl<const SCEV *> &Regs,
    900                    const DenseSet<const SCEV *> &VisitedRegs,
    901                    const Loop *L,
    902                    const SmallVectorImpl<int64_t> &Offsets,
    903                    ScalarEvolution &SE, DominatorTree &DT,
    904                    const LSRUse &LU,
    905                    SmallPtrSetImpl<const SCEV *> *LoserRegs = nullptr);
    906 
    907   void print(raw_ostream &OS) const;
    908   void dump() const;
    909 
    910 private:
    911   void RateRegister(const SCEV *Reg,
    912                     SmallPtrSetImpl<const SCEV *> &Regs,
    913                     const Loop *L,
    914                     ScalarEvolution &SE, DominatorTree &DT);
    915   void RatePrimaryRegister(const SCEV *Reg,
    916                            SmallPtrSetImpl<const SCEV *> &Regs,
    917                            const Loop *L,
    918                            ScalarEvolution &SE, DominatorTree &DT,
    919                            SmallPtrSetImpl<const SCEV *> *LoserRegs);
    920 };
    921 
    922 }
    923 
    924 /// Tally up interesting quantities from the given register.
    925 void Cost::RateRegister(const SCEV *Reg,
    926                         SmallPtrSetImpl<const SCEV *> &Regs,
    927                         const Loop *L,
    928                         ScalarEvolution &SE, DominatorTree &DT) {
    929   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Reg)) {
    930     // If this is an addrec for another loop, don't second-guess its addrec phi
    931     // nodes. LSR isn't currently smart enough to reason about more than one
    932     // loop at a time. LSR has already run on inner loops, will not run on outer
    933     // loops, and cannot be expected to change sibling loops.
    934     if (AR->getLoop() != L) {
    935       // If the AddRec exists, consider it's register free and leave it alone.
    936       if (isExistingPhi(AR, SE))
    937         return;
    938 
    939       // Otherwise, do not consider this formula at all.
    940       Lose();
    941       return;
    942     }
    943     AddRecCost += 1; /// TODO: This should be a function of the stride.
    944 
    945     // Add the step value register, if it needs one.
    946     // TODO: The non-affine case isn't precisely modeled here.
    947     if (!AR->isAffine() || !isa<SCEVConstant>(AR->getOperand(1))) {
    948       if (!Regs.count(AR->getOperand(1))) {
    949         RateRegister(AR->getOperand(1), Regs, L, SE, DT);
    950         if (isLoser())
    951           return;
    952       }
    953     }
    954   }
    955   ++NumRegs;
    956 
    957   // Rough heuristic; favor registers which don't require extra setup
    958   // instructions in the preheader.
    959   if (!isa<SCEVUnknown>(Reg) &&
    960       !isa<SCEVConstant>(Reg) &&
    961       !(isa<SCEVAddRecExpr>(Reg) &&
    962         (isa<SCEVUnknown>(cast<SCEVAddRecExpr>(Reg)->getStart()) ||
    963          isa<SCEVConstant>(cast<SCEVAddRecExpr>(Reg)->getStart()))))
    964     ++SetupCost;
    965 
    966     NumIVMuls += isa<SCEVMulExpr>(Reg) &&
    967                  SE.hasComputableLoopEvolution(Reg, L);
    968 }
    969 
    970 /// Record this register in the set. If we haven't seen it before, rate
    971 /// it. Optional LoserRegs provides a way to declare any formula that refers to
    972 /// one of those regs an instant loser.
    973 void Cost::RatePrimaryRegister(const SCEV *Reg,
    974                                SmallPtrSetImpl<const SCEV *> &Regs,
    975                                const Loop *L,
    976                                ScalarEvolution &SE, DominatorTree &DT,
    977                                SmallPtrSetImpl<const SCEV *> *LoserRegs) {
    978   if (LoserRegs && LoserRegs->count(Reg)) {
    979     Lose();
    980     return;
    981   }
    982   if (Regs.insert(Reg).second) {
    983     RateRegister(Reg, Regs, L, SE, DT);
    984     if (LoserRegs && isLoser())
    985       LoserRegs->insert(Reg);
    986   }
    987 }
    988 
    989 void Cost::RateFormula(const TargetTransformInfo &TTI,
    990                        const Formula &F,
    991                        SmallPtrSetImpl<const SCEV *> &Regs,
    992                        const DenseSet<const SCEV *> &VisitedRegs,
    993                        const Loop *L,
    994                        const SmallVectorImpl<int64_t> &Offsets,
    995                        ScalarEvolution &SE, DominatorTree &DT,
    996                        const LSRUse &LU,
    997                        SmallPtrSetImpl<const SCEV *> *LoserRegs) {
    998   assert(F.isCanonical() && "Cost is accurate only for canonical formula");
    999   // Tally up the registers.
   1000   if (const SCEV *ScaledReg = F.ScaledReg) {
   1001     if (VisitedRegs.count(ScaledReg)) {
   1002       Lose();
   1003       return;
   1004     }
   1005     RatePrimaryRegister(ScaledReg, Regs, L, SE, DT, LoserRegs);
   1006     if (isLoser())
   1007       return;
   1008   }
   1009   for (const SCEV *BaseReg : F.BaseRegs) {
   1010     if (VisitedRegs.count(BaseReg)) {
   1011       Lose();
   1012       return;
   1013     }
   1014     RatePrimaryRegister(BaseReg, Regs, L, SE, DT, LoserRegs);
   1015     if (isLoser())
   1016       return;
   1017   }
   1018 
   1019   // Determine how many (unfolded) adds we'll need inside the loop.
   1020   size_t NumBaseParts = F.getNumRegs();
   1021   if (NumBaseParts > 1)
   1022     // Do not count the base and a possible second register if the target
   1023     // allows to fold 2 registers.
   1024     NumBaseAdds +=
   1025         NumBaseParts - (1 + (F.Scale && isAMCompletelyFolded(TTI, LU, F)));
   1026   NumBaseAdds += (F.UnfoldedOffset != 0);
   1027 
   1028   // Accumulate non-free scaling amounts.
   1029   ScaleCost += getScalingFactorCost(TTI, LU, F);
   1030 
   1031   // Tally up the non-zero immediates.
   1032   for (int64_t O : Offsets) {
   1033     int64_t Offset = (uint64_t)O + F.BaseOffset;
   1034     if (F.BaseGV)
   1035       ImmCost += 64; // Handle symbolic values conservatively.
   1036                      // TODO: This should probably be the pointer size.
   1037     else if (Offset != 0)
   1038       ImmCost += APInt(64, Offset, true).getMinSignedBits();
   1039   }
   1040   assert(isValid() && "invalid cost");
   1041 }
   1042 
   1043 /// Set this cost to a losing value.
   1044 void Cost::Lose() {
   1045   NumRegs = ~0u;
   1046   AddRecCost = ~0u;
   1047   NumIVMuls = ~0u;
   1048   NumBaseAdds = ~0u;
   1049   ImmCost = ~0u;
   1050   SetupCost = ~0u;
   1051   ScaleCost = ~0u;
   1052 }
   1053 
   1054 /// Choose the lower cost.
   1055 bool Cost::operator<(const Cost &Other) const {
   1056   return std::tie(NumRegs, AddRecCost, NumIVMuls, NumBaseAdds, ScaleCost,
   1057                   ImmCost, SetupCost) <
   1058          std::tie(Other.NumRegs, Other.AddRecCost, Other.NumIVMuls,
   1059                   Other.NumBaseAdds, Other.ScaleCost, Other.ImmCost,
   1060                   Other.SetupCost);
   1061 }
   1062 
   1063 void Cost::print(raw_ostream &OS) const {
   1064   OS << NumRegs << " reg" << (NumRegs == 1 ? "" : "s");
   1065   if (AddRecCost != 0)
   1066     OS << ", with addrec cost " << AddRecCost;
   1067   if (NumIVMuls != 0)
   1068     OS << ", plus " << NumIVMuls << " IV mul" << (NumIVMuls == 1 ? "" : "s");
   1069   if (NumBaseAdds != 0)
   1070     OS << ", plus " << NumBaseAdds << " base add"
   1071        << (NumBaseAdds == 1 ? "" : "s");
   1072   if (ScaleCost != 0)
   1073     OS << ", plus " << ScaleCost << " scale cost";
   1074   if (ImmCost != 0)
   1075     OS << ", plus " << ImmCost << " imm cost";
   1076   if (SetupCost != 0)
   1077     OS << ", plus " << SetupCost << " setup cost";
   1078 }
   1079 
   1080 LLVM_DUMP_METHOD
   1081 void Cost::dump() const {
   1082   print(errs()); errs() << '\n';
   1083 }
   1084 
   1085 namespace {
   1086 
   1087 /// An operand value in an instruction which is to be replaced with some
   1088 /// equivalent, possibly strength-reduced, replacement.
   1089 struct LSRFixup {
   1090   /// The instruction which will be updated.
   1091   Instruction *UserInst;
   1092 
   1093   /// The operand of the instruction which will be replaced. The operand may be
   1094   /// used more than once; every instance will be replaced.
   1095   Value *OperandValToReplace;
   1096 
   1097   /// If this user is to use the post-incremented value of an induction
   1098   /// variable, this variable is non-null and holds the loop associated with the
   1099   /// induction variable.
   1100   PostIncLoopSet PostIncLoops;
   1101 
   1102   /// The index of the LSRUse describing the expression which this fixup needs,
   1103   /// minus an offset (below).
   1104   size_t LUIdx;
   1105 
   1106   /// A constant offset to be added to the LSRUse expression.  This allows
   1107   /// multiple fixups to share the same LSRUse with different offsets, for
   1108   /// example in an unrolled loop.
   1109   int64_t Offset;
   1110 
   1111   bool isUseFullyOutsideLoop(const Loop *L) const;
   1112 
   1113   LSRFixup();
   1114 
   1115   void print(raw_ostream &OS) const;
   1116   void dump() const;
   1117 };
   1118 
   1119 }
   1120 
   1121 LSRFixup::LSRFixup()
   1122   : UserInst(nullptr), OperandValToReplace(nullptr), LUIdx(~size_t(0)),
   1123     Offset(0) {}
   1124 
   1125 /// Test whether this fixup always uses its value outside of the given loop.
   1126 bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const {
   1127   // PHI nodes use their value in their incoming blocks.
   1128   if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) {
   1129     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
   1130       if (PN->getIncomingValue(i) == OperandValToReplace &&
   1131           L->contains(PN->getIncomingBlock(i)))
   1132         return false;
   1133     return true;
   1134   }
   1135 
   1136   return !L->contains(UserInst);
   1137 }
   1138 
   1139 void LSRFixup::print(raw_ostream &OS) const {
   1140   OS << "UserInst=";
   1141   // Store is common and interesting enough to be worth special-casing.
   1142   if (StoreInst *Store = dyn_cast<StoreInst>(UserInst)) {
   1143     OS << "store ";
   1144     Store->getOperand(0)->printAsOperand(OS, /*PrintType=*/false);
   1145   } else if (UserInst->getType()->isVoidTy())
   1146     OS << UserInst->getOpcodeName();
   1147   else
   1148     UserInst->printAsOperand(OS, /*PrintType=*/false);
   1149 
   1150   OS << ", OperandValToReplace=";
   1151   OperandValToReplace->printAsOperand(OS, /*PrintType=*/false);
   1152 
   1153   for (const Loop *PIL : PostIncLoops) {
   1154     OS << ", PostIncLoop=";
   1155     PIL->getHeader()->printAsOperand(OS, /*PrintType=*/false);
   1156   }
   1157 
   1158   if (LUIdx != ~size_t(0))
   1159     OS << ", LUIdx=" << LUIdx;
   1160 
   1161   if (Offset != 0)
   1162     OS << ", Offset=" << Offset;
   1163 }
   1164 
   1165 LLVM_DUMP_METHOD
   1166 void LSRFixup::dump() const {
   1167   print(errs()); errs() << '\n';
   1168 }
   1169 
   1170 namespace {
   1171 
   1172 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of sorted
   1173 /// SmallVectors of const SCEV*.
   1174 struct UniquifierDenseMapInfo {
   1175   static SmallVector<const SCEV *, 4> getEmptyKey() {
   1176     SmallVector<const SCEV *, 4>  V;
   1177     V.push_back(reinterpret_cast<const SCEV *>(-1));
   1178     return V;
   1179   }
   1180 
   1181   static SmallVector<const SCEV *, 4> getTombstoneKey() {
   1182     SmallVector<const SCEV *, 4> V;
   1183     V.push_back(reinterpret_cast<const SCEV *>(-2));
   1184     return V;
   1185   }
   1186 
   1187   static unsigned getHashValue(const SmallVector<const SCEV *, 4> &V) {
   1188     return static_cast<unsigned>(hash_combine_range(V.begin(), V.end()));
   1189   }
   1190 
   1191   static bool isEqual(const SmallVector<const SCEV *, 4> &LHS,
   1192                       const SmallVector<const SCEV *, 4> &RHS) {
   1193     return LHS == RHS;
   1194   }
   1195 };
   1196 
   1197 /// This class holds the state that LSR keeps for each use in IVUsers, as well
   1198 /// as uses invented by LSR itself. It includes information about what kinds of
   1199 /// things can be folded into the user, information about the user itself, and
   1200 /// information about how the use may be satisfied.  TODO: Represent multiple
   1201 /// users of the same expression in common?
   1202 class LSRUse {
   1203   DenseSet<SmallVector<const SCEV *, 4>, UniquifierDenseMapInfo> Uniquifier;
   1204 
   1205 public:
   1206   /// An enum for a kind of use, indicating what types of scaled and immediate
   1207   /// operands it might support.
   1208   enum KindType {
   1209     Basic,   ///< A normal use, with no folding.
   1210     Special, ///< A special case of basic, allowing -1 scales.
   1211     Address, ///< An address use; folding according to TargetLowering
   1212     ICmpZero ///< An equality icmp with both operands folded into one.
   1213     // TODO: Add a generic icmp too?
   1214   };
   1215 
   1216   typedef PointerIntPair<const SCEV *, 2, KindType> SCEVUseKindPair;
   1217 
   1218   KindType Kind;
   1219   MemAccessTy AccessTy;
   1220 
   1221   SmallVector<int64_t, 8> Offsets;
   1222   int64_t MinOffset;
   1223   int64_t MaxOffset;
   1224 
   1225   /// This records whether all of the fixups using this LSRUse are outside of
   1226   /// the loop, in which case some special-case heuristics may be used.
   1227   bool AllFixupsOutsideLoop;
   1228 
   1229   /// RigidFormula is set to true to guarantee that this use will be associated
   1230   /// with a single formula--the one that initially matched. Some SCEV
   1231   /// expressions cannot be expanded. This allows LSR to consider the registers
   1232   /// used by those expressions without the need to expand them later after
   1233   /// changing the formula.
   1234   bool RigidFormula;
   1235 
   1236   /// This records the widest use type for any fixup using this
   1237   /// LSRUse. FindUseWithSimilarFormula can't consider uses with different max
   1238   /// fixup widths to be equivalent, because the narrower one may be relying on
   1239   /// the implicit truncation to truncate away bogus bits.
   1240   Type *WidestFixupType;
   1241 
   1242   /// A list of ways to build a value that can satisfy this user.  After the
   1243   /// list is populated, one of these is selected heuristically and used to
   1244   /// formulate a replacement for OperandValToReplace in UserInst.
   1245   SmallVector<Formula, 12> Formulae;
   1246 
   1247   /// The set of register candidates used by all formulae in this LSRUse.
   1248   SmallPtrSet<const SCEV *, 4> Regs;
   1249 
   1250   LSRUse(KindType K, MemAccessTy AT)
   1251       : Kind(K), AccessTy(AT), MinOffset(INT64_MAX), MaxOffset(INT64_MIN),
   1252         AllFixupsOutsideLoop(true), RigidFormula(false),
   1253         WidestFixupType(nullptr) {}
   1254 
   1255   bool HasFormulaWithSameRegs(const Formula &F) const;
   1256   bool InsertFormula(const Formula &F);
   1257   void DeleteFormula(Formula &F);
   1258   void RecomputeRegs(size_t LUIdx, RegUseTracker &Reguses);
   1259 
   1260   void print(raw_ostream &OS) const;
   1261   void dump() const;
   1262 };
   1263 
   1264 }
   1265 
   1266 /// Test whether this use as a formula which has the same registers as the given
   1267 /// formula.
   1268 bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const {
   1269   SmallVector<const SCEV *, 4> Key = F.BaseRegs;
   1270   if (F.ScaledReg) Key.push_back(F.ScaledReg);
   1271   // Unstable sort by host order ok, because this is only used for uniquifying.
   1272   std::sort(Key.begin(), Key.end());
   1273   return Uniquifier.count(Key);
   1274 }
   1275 
   1276 /// If the given formula has not yet been inserted, add it to the list, and
   1277 /// return true. Return false otherwise.  The formula must be in canonical form.
   1278 bool LSRUse::InsertFormula(const Formula &F) {
   1279   assert(F.isCanonical() && "Invalid canonical representation");
   1280 
   1281   if (!Formulae.empty() && RigidFormula)
   1282     return false;
   1283 
   1284   SmallVector<const SCEV *, 4> Key = F.BaseRegs;
   1285   if (F.ScaledReg) Key.push_back(F.ScaledReg);
   1286   // Unstable sort by host order ok, because this is only used for uniquifying.
   1287   std::sort(Key.begin(), Key.end());
   1288 
   1289   if (!Uniquifier.insert(Key).second)
   1290     return false;
   1291 
   1292   // Using a register to hold the value of 0 is not profitable.
   1293   assert((!F.ScaledReg || !F.ScaledReg->isZero()) &&
   1294          "Zero allocated in a scaled register!");
   1295 #ifndef NDEBUG
   1296   for (const SCEV *BaseReg : F.BaseRegs)
   1297     assert(!BaseReg->isZero() && "Zero allocated in a base register!");
   1298 #endif
   1299 
   1300   // Add the formula to the list.
   1301   Formulae.push_back(F);
   1302 
   1303   // Record registers now being used by this use.
   1304   Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
   1305   if (F.ScaledReg)
   1306     Regs.insert(F.ScaledReg);
   1307 
   1308   return true;
   1309 }
   1310 
   1311 /// Remove the given formula from this use's list.
   1312 void LSRUse::DeleteFormula(Formula &F) {
   1313   if (&F != &Formulae.back())
   1314     std::swap(F, Formulae.back());
   1315   Formulae.pop_back();
   1316 }
   1317 
   1318 /// Recompute the Regs field, and update RegUses.
   1319 void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) {
   1320   // Now that we've filtered out some formulae, recompute the Regs set.
   1321   SmallPtrSet<const SCEV *, 4> OldRegs = std::move(Regs);
   1322   Regs.clear();
   1323   for (const Formula &F : Formulae) {
   1324     if (F.ScaledReg) Regs.insert(F.ScaledReg);
   1325     Regs.insert(F.BaseRegs.begin(), F.BaseRegs.end());
   1326   }
   1327 
   1328   // Update the RegTracker.
   1329   for (const SCEV *S : OldRegs)
   1330     if (!Regs.count(S))
   1331       RegUses.dropRegister(S, LUIdx);
   1332 }
   1333 
   1334 void LSRUse::print(raw_ostream &OS) const {
   1335   OS << "LSR Use: Kind=";
   1336   switch (Kind) {
   1337   case Basic:    OS << "Basic"; break;
   1338   case Special:  OS << "Special"; break;
   1339   case ICmpZero: OS << "ICmpZero"; break;
   1340   case Address:
   1341     OS << "Address of ";
   1342     if (AccessTy.MemTy->isPointerTy())
   1343       OS << "pointer"; // the full pointer type could be really verbose
   1344     else {
   1345       OS << *AccessTy.MemTy;
   1346     }
   1347 
   1348     OS << " in addrspace(" << AccessTy.AddrSpace << ')';
   1349   }
   1350 
   1351   OS << ", Offsets={";
   1352   bool NeedComma = false;
   1353   for (int64_t O : Offsets) {
   1354     if (NeedComma) OS << ',';
   1355     OS << O;
   1356     NeedComma = true;
   1357   }
   1358   OS << '}';
   1359 
   1360   if (AllFixupsOutsideLoop)
   1361     OS << ", all-fixups-outside-loop";
   1362 
   1363   if (WidestFixupType)
   1364     OS << ", widest fixup type: " << *WidestFixupType;
   1365 }
   1366 
   1367 LLVM_DUMP_METHOD
   1368 void LSRUse::dump() const {
   1369   print(errs()); errs() << '\n';
   1370 }
   1371 
   1372 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
   1373                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
   1374                                  GlobalValue *BaseGV, int64_t BaseOffset,
   1375                                  bool HasBaseReg, int64_t Scale) {
   1376   switch (Kind) {
   1377   case LSRUse::Address:
   1378     return TTI.isLegalAddressingMode(AccessTy.MemTy, BaseGV, BaseOffset,
   1379                                      HasBaseReg, Scale, AccessTy.AddrSpace);
   1380 
   1381   case LSRUse::ICmpZero:
   1382     // There's not even a target hook for querying whether it would be legal to
   1383     // fold a GV into an ICmp.
   1384     if (BaseGV)
   1385       return false;
   1386 
   1387     // ICmp only has two operands; don't allow more than two non-trivial parts.
   1388     if (Scale != 0 && HasBaseReg && BaseOffset != 0)
   1389       return false;
   1390 
   1391     // ICmp only supports no scale or a -1 scale, as we can "fold" a -1 scale by
   1392     // putting the scaled register in the other operand of the icmp.
   1393     if (Scale != 0 && Scale != -1)
   1394       return false;
   1395 
   1396     // If we have low-level target information, ask the target if it can fold an
   1397     // integer immediate on an icmp.
   1398     if (BaseOffset != 0) {
   1399       // We have one of:
   1400       // ICmpZero     BaseReg + BaseOffset => ICmp BaseReg, -BaseOffset
   1401       // ICmpZero -1*ScaleReg + BaseOffset => ICmp ScaleReg, BaseOffset
   1402       // Offs is the ICmp immediate.
   1403       if (Scale == 0)
   1404         // The cast does the right thing with INT64_MIN.
   1405         BaseOffset = -(uint64_t)BaseOffset;
   1406       return TTI.isLegalICmpImmediate(BaseOffset);
   1407     }
   1408 
   1409     // ICmpZero BaseReg + -1*ScaleReg => ICmp BaseReg, ScaleReg
   1410     return true;
   1411 
   1412   case LSRUse::Basic:
   1413     // Only handle single-register values.
   1414     return !BaseGV && Scale == 0 && BaseOffset == 0;
   1415 
   1416   case LSRUse::Special:
   1417     // Special case Basic to handle -1 scales.
   1418     return !BaseGV && (Scale == 0 || Scale == -1) && BaseOffset == 0;
   1419   }
   1420 
   1421   llvm_unreachable("Invalid LSRUse Kind!");
   1422 }
   1423 
   1424 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
   1425                                  int64_t MinOffset, int64_t MaxOffset,
   1426                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
   1427                                  GlobalValue *BaseGV, int64_t BaseOffset,
   1428                                  bool HasBaseReg, int64_t Scale) {
   1429   // Check for overflow.
   1430   if (((int64_t)((uint64_t)BaseOffset + MinOffset) > BaseOffset) !=
   1431       (MinOffset > 0))
   1432     return false;
   1433   MinOffset = (uint64_t)BaseOffset + MinOffset;
   1434   if (((int64_t)((uint64_t)BaseOffset + MaxOffset) > BaseOffset) !=
   1435       (MaxOffset > 0))
   1436     return false;
   1437   MaxOffset = (uint64_t)BaseOffset + MaxOffset;
   1438 
   1439   return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MinOffset,
   1440                               HasBaseReg, Scale) &&
   1441          isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, MaxOffset,
   1442                               HasBaseReg, Scale);
   1443 }
   1444 
   1445 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
   1446                                  int64_t MinOffset, int64_t MaxOffset,
   1447                                  LSRUse::KindType Kind, MemAccessTy AccessTy,
   1448                                  const Formula &F) {
   1449   // For the purpose of isAMCompletelyFolded either having a canonical formula
   1450   // or a scale not equal to zero is correct.
   1451   // Problems may arise from non canonical formulae having a scale == 0.
   1452   // Strictly speaking it would best to just rely on canonical formulae.
   1453   // However, when we generate the scaled formulae, we first check that the
   1454   // scaling factor is profitable before computing the actual ScaledReg for
   1455   // compile time sake.
   1456   assert((F.isCanonical() || F.Scale != 0));
   1457   return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy,
   1458                               F.BaseGV, F.BaseOffset, F.HasBaseReg, F.Scale);
   1459 }
   1460 
   1461 /// Test whether we know how to expand the current formula.
   1462 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset,
   1463                        int64_t MaxOffset, LSRUse::KindType Kind,
   1464                        MemAccessTy AccessTy, GlobalValue *BaseGV,
   1465                        int64_t BaseOffset, bool HasBaseReg, int64_t Scale) {
   1466   // We know how to expand completely foldable formulae.
   1467   return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV,
   1468                               BaseOffset, HasBaseReg, Scale) ||
   1469          // Or formulae that use a base register produced by a sum of base
   1470          // registers.
   1471          (Scale == 1 &&
   1472           isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy,
   1473                                BaseGV, BaseOffset, true, 0));
   1474 }
   1475 
   1476 static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset,
   1477                        int64_t MaxOffset, LSRUse::KindType Kind,
   1478                        MemAccessTy AccessTy, const Formula &F) {
   1479   return isLegalUse(TTI, MinOffset, MaxOffset, Kind, AccessTy, F.BaseGV,
   1480                     F.BaseOffset, F.HasBaseReg, F.Scale);
   1481 }
   1482 
   1483 static bool isAMCompletelyFolded(const TargetTransformInfo &TTI,
   1484                                  const LSRUse &LU, const Formula &F) {
   1485   return isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind,
   1486                               LU.AccessTy, F.BaseGV, F.BaseOffset, F.HasBaseReg,
   1487                               F.Scale);
   1488 }
   1489 
   1490 static unsigned getScalingFactorCost(const TargetTransformInfo &TTI,
   1491                                      const LSRUse &LU, const Formula &F) {
   1492   if (!F.Scale)
   1493     return 0;
   1494 
   1495   // If the use is not completely folded in that instruction, we will have to
   1496   // pay an extra cost only for scale != 1.
   1497   if (!isAMCompletelyFolded(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind,
   1498                             LU.AccessTy, F))
   1499     return F.Scale != 1;
   1500 
   1501   switch (LU.Kind) {
   1502   case LSRUse::Address: {
   1503     // Check the scaling factor cost with both the min and max offsets.
   1504     int ScaleCostMinOffset = TTI.getScalingFactorCost(
   1505         LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MinOffset, F.HasBaseReg,
   1506         F.Scale, LU.AccessTy.AddrSpace);
   1507     int ScaleCostMaxOffset = TTI.getScalingFactorCost(
   1508         LU.AccessTy.MemTy, F.BaseGV, F.BaseOffset + LU.MaxOffset, F.HasBaseReg,
   1509         F.Scale, LU.AccessTy.AddrSpace);
   1510 
   1511     assert(ScaleCostMinOffset >= 0 && ScaleCostMaxOffset >= 0 &&
   1512            "Legal addressing mode has an illegal cost!");
   1513     return std::max(ScaleCostMinOffset, ScaleCostMaxOffset);
   1514   }
   1515   case LSRUse::ICmpZero:
   1516   case LSRUse::Basic:
   1517   case LSRUse::Special:
   1518     // The use is completely folded, i.e., everything is folded into the
   1519     // instruction.
   1520     return 0;
   1521   }
   1522 
   1523   llvm_unreachable("Invalid LSRUse Kind!");
   1524 }
   1525 
   1526 static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
   1527                              LSRUse::KindType Kind, MemAccessTy AccessTy,
   1528                              GlobalValue *BaseGV, int64_t BaseOffset,
   1529                              bool HasBaseReg) {
   1530   // Fast-path: zero is always foldable.
   1531   if (BaseOffset == 0 && !BaseGV) return true;
   1532 
   1533   // Conservatively, create an address with an immediate and a
   1534   // base and a scale.
   1535   int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
   1536 
   1537   // Canonicalize a scale of 1 to a base register if the formula doesn't
   1538   // already have a base register.
   1539   if (!HasBaseReg && Scale == 1) {
   1540     Scale = 0;
   1541     HasBaseReg = true;
   1542   }
   1543 
   1544   return isAMCompletelyFolded(TTI, Kind, AccessTy, BaseGV, BaseOffset,
   1545                               HasBaseReg, Scale);
   1546 }
   1547 
   1548 static bool isAlwaysFoldable(const TargetTransformInfo &TTI,
   1549                              ScalarEvolution &SE, int64_t MinOffset,
   1550                              int64_t MaxOffset, LSRUse::KindType Kind,
   1551                              MemAccessTy AccessTy, const SCEV *S,
   1552                              bool HasBaseReg) {
   1553   // Fast-path: zero is always foldable.
   1554   if (S->isZero()) return true;
   1555 
   1556   // Conservatively, create an address with an immediate and a
   1557   // base and a scale.
   1558   int64_t BaseOffset = ExtractImmediate(S, SE);
   1559   GlobalValue *BaseGV = ExtractSymbol(S, SE);
   1560 
   1561   // If there's anything else involved, it's not foldable.
   1562   if (!S->isZero()) return false;
   1563 
   1564   // Fast-path: zero is always foldable.
   1565   if (BaseOffset == 0 && !BaseGV) return true;
   1566 
   1567   // Conservatively, create an address with an immediate and a
   1568   // base and a scale.
   1569   int64_t Scale = Kind == LSRUse::ICmpZero ? -1 : 1;
   1570 
   1571   return isAMCompletelyFolded(TTI, MinOffset, MaxOffset, Kind, AccessTy, BaseGV,
   1572                               BaseOffset, HasBaseReg, Scale);
   1573 }
   1574 
   1575 namespace {
   1576 
   1577 /// An individual increment in a Chain of IV increments.  Relate an IV user to
   1578 /// an expression that computes the IV it uses from the IV used by the previous
   1579 /// link in the Chain.
   1580 ///
   1581 /// For the head of a chain, IncExpr holds the absolute SCEV expression for the
   1582 /// original IVOperand. The head of the chain's IVOperand is only valid during
   1583 /// chain collection, before LSR replaces IV users. During chain generation,
   1584 /// IncExpr can be used to find the new IVOperand that computes the same
   1585 /// expression.
   1586 struct IVInc {
   1587   Instruction *UserInst;
   1588   Value* IVOperand;
   1589   const SCEV *IncExpr;
   1590 
   1591   IVInc(Instruction *U, Value *O, const SCEV *E):
   1592     UserInst(U), IVOperand(O), IncExpr(E) {}
   1593 };
   1594 
   1595 // The list of IV increments in program order.  We typically add the head of a
   1596 // chain without finding subsequent links.
   1597 struct IVChain {
   1598   SmallVector<IVInc,1> Incs;
   1599   const SCEV *ExprBase;
   1600 
   1601   IVChain() : ExprBase(nullptr) {}
   1602 
   1603   IVChain(const IVInc &Head, const SCEV *Base)
   1604     : Incs(1, Head), ExprBase(Base) {}
   1605 
   1606   typedef SmallVectorImpl<IVInc>::const_iterator const_iterator;
   1607 
   1608   // Return the first increment in the chain.
   1609   const_iterator begin() const {
   1610     assert(!Incs.empty());
   1611     return std::next(Incs.begin());
   1612   }
   1613   const_iterator end() const {
   1614     return Incs.end();
   1615   }
   1616 
   1617   // Returns true if this chain contains any increments.
   1618   bool hasIncs() const { return Incs.size() >= 2; }
   1619 
   1620   // Add an IVInc to the end of this chain.
   1621   void add(const IVInc &X) { Incs.push_back(X); }
   1622 
   1623   // Returns the last UserInst in the chain.
   1624   Instruction *tailUserInst() const { return Incs.back().UserInst; }
   1625 
   1626   // Returns true if IncExpr can be profitably added to this chain.
   1627   bool isProfitableIncrement(const SCEV *OperExpr,
   1628                              const SCEV *IncExpr,
   1629                              ScalarEvolution&);
   1630 };
   1631 
   1632 /// Helper for CollectChains to track multiple IV increment uses.  Distinguish
   1633 /// between FarUsers that definitely cross IV increments and NearUsers that may
   1634 /// be used between IV increments.
   1635 struct ChainUsers {
   1636   SmallPtrSet<Instruction*, 4> FarUsers;
   1637   SmallPtrSet<Instruction*, 4> NearUsers;
   1638 };
   1639 
   1640 /// This class holds state for the main loop strength reduction logic.
   1641 class LSRInstance {
   1642   IVUsers &IU;
   1643   ScalarEvolution &SE;
   1644   DominatorTree &DT;
   1645   LoopInfo &LI;
   1646   const TargetTransformInfo &TTI;
   1647   Loop *const L;
   1648   bool Changed;
   1649 
   1650   /// This is the insert position that the current loop's induction variable
   1651   /// increment should be placed. In simple loops, this is the latch block's
   1652   /// terminator. But in more complicated cases, this is a position which will
   1653   /// dominate all the in-loop post-increment users.
   1654   Instruction *IVIncInsertPos;
   1655 
   1656   /// Interesting factors between use strides.
   1657   SmallSetVector<int64_t, 8> Factors;
   1658 
   1659   /// Interesting use types, to facilitate truncation reuse.
   1660   SmallSetVector<Type *, 4> Types;
   1661 
   1662   /// The list of operands which are to be replaced.
   1663   SmallVector<LSRFixup, 16> Fixups;
   1664 
   1665   /// The list of interesting uses.
   1666   SmallVector<LSRUse, 16> Uses;
   1667 
   1668   /// Track which uses use which register candidates.
   1669   RegUseTracker RegUses;
   1670 
   1671   // Limit the number of chains to avoid quadratic behavior. We don't expect to
   1672   // have more than a few IV increment chains in a loop. Missing a Chain falls
   1673   // back to normal LSR behavior for those uses.
   1674   static const unsigned MaxChains = 8;
   1675 
   1676   /// IV users can form a chain of IV increments.
   1677   SmallVector<IVChain, MaxChains> IVChainVec;
   1678 
   1679   /// IV users that belong to profitable IVChains.
   1680   SmallPtrSet<Use*, MaxChains> IVIncSet;
   1681 
   1682   void OptimizeShadowIV();
   1683   bool FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse);
   1684   ICmpInst *OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse);
   1685   void OptimizeLoopTermCond();
   1686 
   1687   void ChainInstruction(Instruction *UserInst, Instruction *IVOper,
   1688                         SmallVectorImpl<ChainUsers> &ChainUsersVec);
   1689   void FinalizeChain(IVChain &Chain);
   1690   void CollectChains();
   1691   void GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
   1692                        SmallVectorImpl<WeakVH> &DeadInsts);
   1693 
   1694   void CollectInterestingTypesAndFactors();
   1695   void CollectFixupsAndInitialFormulae();
   1696 
   1697   LSRFixup &getNewFixup() {
   1698     Fixups.push_back(LSRFixup());
   1699     return Fixups.back();
   1700   }
   1701 
   1702   // Support for sharing of LSRUses between LSRFixups.
   1703   typedef DenseMap<LSRUse::SCEVUseKindPair, size_t> UseMapTy;
   1704   UseMapTy UseMap;
   1705 
   1706   bool reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg,
   1707                           LSRUse::KindType Kind, MemAccessTy AccessTy);
   1708 
   1709   std::pair<size_t, int64_t> getUse(const SCEV *&Expr, LSRUse::KindType Kind,
   1710                                     MemAccessTy AccessTy);
   1711 
   1712   void DeleteUse(LSRUse &LU, size_t LUIdx);
   1713 
   1714   LSRUse *FindUseWithSimilarFormula(const Formula &F, const LSRUse &OrigLU);
   1715 
   1716   void InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
   1717   void InsertSupplementalFormula(const SCEV *S, LSRUse &LU, size_t LUIdx);
   1718   void CountRegisters(const Formula &F, size_t LUIdx);
   1719   bool InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F);
   1720 
   1721   void CollectLoopInvariantFixupsAndFormulae();
   1722 
   1723   void GenerateReassociations(LSRUse &LU, unsigned LUIdx, Formula Base,
   1724                               unsigned Depth = 0);
   1725 
   1726   void GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx,
   1727                                   const Formula &Base, unsigned Depth,
   1728                                   size_t Idx, bool IsScaledReg = false);
   1729   void GenerateCombinations(LSRUse &LU, unsigned LUIdx, Formula Base);
   1730   void GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx,
   1731                                    const Formula &Base, size_t Idx,
   1732                                    bool IsScaledReg = false);
   1733   void GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
   1734   void GenerateConstantOffsetsImpl(LSRUse &LU, unsigned LUIdx,
   1735                                    const Formula &Base,
   1736                                    const SmallVectorImpl<int64_t> &Worklist,
   1737                                    size_t Idx, bool IsScaledReg = false);
   1738   void GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx, Formula Base);
   1739   void GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx, Formula Base);
   1740   void GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base);
   1741   void GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base);
   1742   void GenerateCrossUseConstantOffsets();
   1743   void GenerateAllReuseFormulae();
   1744 
   1745   void FilterOutUndesirableDedicatedRegisters();
   1746 
   1747   size_t EstimateSearchSpaceComplexity() const;
   1748   void NarrowSearchSpaceByDetectingSupersets();
   1749   void NarrowSearchSpaceByCollapsingUnrolledCode();
   1750   void NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
   1751   void NarrowSearchSpaceByPickingWinnerRegs();
   1752   void NarrowSearchSpaceUsingHeuristics();
   1753 
   1754   void SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
   1755                     Cost &SolutionCost,
   1756                     SmallVectorImpl<const Formula *> &Workspace,
   1757                     const Cost &CurCost,
   1758                     const SmallPtrSet<const SCEV *, 16> &CurRegs,
   1759                     DenseSet<const SCEV *> &VisitedRegs) const;
   1760   void Solve(SmallVectorImpl<const Formula *> &Solution) const;
   1761 
   1762   BasicBlock::iterator
   1763     HoistInsertPosition(BasicBlock::iterator IP,
   1764                         const SmallVectorImpl<Instruction *> &Inputs) const;
   1765   BasicBlock::iterator
   1766     AdjustInsertPositionForExpand(BasicBlock::iterator IP,
   1767                                   const LSRFixup &LF,
   1768                                   const LSRUse &LU,
   1769                                   SCEVExpander &Rewriter) const;
   1770 
   1771   Value *Expand(const LSRFixup &LF,
   1772                 const Formula &F,
   1773                 BasicBlock::iterator IP,
   1774                 SCEVExpander &Rewriter,
   1775                 SmallVectorImpl<WeakVH> &DeadInsts) const;
   1776   void RewriteForPHI(PHINode *PN, const LSRFixup &LF,
   1777                      const Formula &F,
   1778                      SCEVExpander &Rewriter,
   1779                      SmallVectorImpl<WeakVH> &DeadInsts) const;
   1780   void Rewrite(const LSRFixup &LF,
   1781                const Formula &F,
   1782                SCEVExpander &Rewriter,
   1783                SmallVectorImpl<WeakVH> &DeadInsts) const;
   1784   void ImplementSolution(const SmallVectorImpl<const Formula *> &Solution);
   1785 
   1786 public:
   1787   LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE, DominatorTree &DT,
   1788               LoopInfo &LI, const TargetTransformInfo &TTI);
   1789 
   1790   bool getChanged() const { return Changed; }
   1791 
   1792   void print_factors_and_types(raw_ostream &OS) const;
   1793   void print_fixups(raw_ostream &OS) const;
   1794   void print_uses(raw_ostream &OS) const;
   1795   void print(raw_ostream &OS) const;
   1796   void dump() const;
   1797 };
   1798 
   1799 }
   1800 
   1801 /// If IV is used in a int-to-float cast inside the loop then try to eliminate
   1802 /// the cast operation.
   1803 void LSRInstance::OptimizeShadowIV() {
   1804   const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
   1805   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
   1806     return;
   1807 
   1808   for (IVUsers::const_iterator UI = IU.begin(), E = IU.end();
   1809        UI != E; /* empty */) {
   1810     IVUsers::const_iterator CandidateUI = UI;
   1811     ++UI;
   1812     Instruction *ShadowUse = CandidateUI->getUser();
   1813     Type *DestTy = nullptr;
   1814     bool IsSigned = false;
   1815 
   1816     /* If shadow use is a int->float cast then insert a second IV
   1817        to eliminate this cast.
   1818 
   1819          for (unsigned i = 0; i < n; ++i)
   1820            foo((double)i);
   1821 
   1822        is transformed into
   1823 
   1824          double d = 0.0;
   1825          for (unsigned i = 0; i < n; ++i, ++d)
   1826            foo(d);
   1827     */
   1828     if (UIToFPInst *UCast = dyn_cast<UIToFPInst>(CandidateUI->getUser())) {
   1829       IsSigned = false;
   1830       DestTy = UCast->getDestTy();
   1831     }
   1832     else if (SIToFPInst *SCast = dyn_cast<SIToFPInst>(CandidateUI->getUser())) {
   1833       IsSigned = true;
   1834       DestTy = SCast->getDestTy();
   1835     }
   1836     if (!DestTy) continue;
   1837 
   1838     // If target does not support DestTy natively then do not apply
   1839     // this transformation.
   1840     if (!TTI.isTypeLegal(DestTy)) continue;
   1841 
   1842     PHINode *PH = dyn_cast<PHINode>(ShadowUse->getOperand(0));
   1843     if (!PH) continue;
   1844     if (PH->getNumIncomingValues() != 2) continue;
   1845 
   1846     Type *SrcTy = PH->getType();
   1847     int Mantissa = DestTy->getFPMantissaWidth();
   1848     if (Mantissa == -1) continue;
   1849     if ((int)SE.getTypeSizeInBits(SrcTy) > Mantissa)
   1850       continue;
   1851 
   1852     unsigned Entry, Latch;
   1853     if (PH->getIncomingBlock(0) == L->getLoopPreheader()) {
   1854       Entry = 0;
   1855       Latch = 1;
   1856     } else {
   1857       Entry = 1;
   1858       Latch = 0;
   1859     }
   1860 
   1861     ConstantInt *Init = dyn_cast<ConstantInt>(PH->getIncomingValue(Entry));
   1862     if (!Init) continue;
   1863     Constant *NewInit = ConstantFP::get(DestTy, IsSigned ?
   1864                                         (double)Init->getSExtValue() :
   1865                                         (double)Init->getZExtValue());
   1866 
   1867     BinaryOperator *Incr =
   1868       dyn_cast<BinaryOperator>(PH->getIncomingValue(Latch));
   1869     if (!Incr) continue;
   1870     if (Incr->getOpcode() != Instruction::Add
   1871         && Incr->getOpcode() != Instruction::Sub)
   1872       continue;
   1873 
   1874     /* Initialize new IV, double d = 0.0 in above example. */
   1875     ConstantInt *C = nullptr;
   1876     if (Incr->getOperand(0) == PH)
   1877       C = dyn_cast<ConstantInt>(Incr->getOperand(1));
   1878     else if (Incr->getOperand(1) == PH)
   1879       C = dyn_cast<ConstantInt>(Incr->getOperand(0));
   1880     else
   1881       continue;
   1882 
   1883     if (!C) continue;
   1884 
   1885     // Ignore negative constants, as the code below doesn't handle them
   1886     // correctly. TODO: Remove this restriction.
   1887     if (!C->getValue().isStrictlyPositive()) continue;
   1888 
   1889     /* Add new PHINode. */
   1890     PHINode *NewPH = PHINode::Create(DestTy, 2, "IV.S.", PH);
   1891 
   1892     /* create new increment. '++d' in above example. */
   1893     Constant *CFP = ConstantFP::get(DestTy, C->getZExtValue());
   1894     BinaryOperator *NewIncr =
   1895       BinaryOperator::Create(Incr->getOpcode() == Instruction::Add ?
   1896                                Instruction::FAdd : Instruction::FSub,
   1897                              NewPH, CFP, "IV.S.next.", Incr);
   1898 
   1899     NewPH->addIncoming(NewInit, PH->getIncomingBlock(Entry));
   1900     NewPH->addIncoming(NewIncr, PH->getIncomingBlock(Latch));
   1901 
   1902     /* Remove cast operation */
   1903     ShadowUse->replaceAllUsesWith(NewPH);
   1904     ShadowUse->eraseFromParent();
   1905     Changed = true;
   1906     break;
   1907   }
   1908 }
   1909 
   1910 /// If Cond has an operand that is an expression of an IV, set the IV user and
   1911 /// stride information and return true, otherwise return false.
   1912 bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) {
   1913   for (IVStrideUse &U : IU)
   1914     if (U.getUser() == Cond) {
   1915       // NOTE: we could handle setcc instructions with multiple uses here, but
   1916       // InstCombine does it as well for simple uses, it's not clear that it
   1917       // occurs enough in real life to handle.
   1918       CondUse = &U;
   1919       return true;
   1920     }
   1921   return false;
   1922 }
   1923 
   1924 /// Rewrite the loop's terminating condition if it uses a max computation.
   1925 ///
   1926 /// This is a narrow solution to a specific, but acute, problem. For loops
   1927 /// like this:
   1928 ///
   1929 ///   i = 0;
   1930 ///   do {
   1931 ///     p[i] = 0.0;
   1932 ///   } while (++i < n);
   1933 ///
   1934 /// the trip count isn't just 'n', because 'n' might not be positive. And
   1935 /// unfortunately this can come up even for loops where the user didn't use
   1936 /// a C do-while loop. For example, seemingly well-behaved top-test loops
   1937 /// will commonly be lowered like this:
   1938 //
   1939 ///   if (n > 0) {
   1940 ///     i = 0;
   1941 ///     do {
   1942 ///       p[i] = 0.0;
   1943 ///     } while (++i < n);
   1944 ///   }
   1945 ///
   1946 /// and then it's possible for subsequent optimization to obscure the if
   1947 /// test in such a way that indvars can't find it.
   1948 ///
   1949 /// When indvars can't find the if test in loops like this, it creates a
   1950 /// max expression, which allows it to give the loop a canonical
   1951 /// induction variable:
   1952 ///
   1953 ///   i = 0;
   1954 ///   max = n < 1 ? 1 : n;
   1955 ///   do {
   1956 ///     p[i] = 0.0;
   1957 ///   } while (++i != max);
   1958 ///
   1959 /// Canonical induction variables are necessary because the loop passes
   1960 /// are designed around them. The most obvious example of this is the
   1961 /// LoopInfo analysis, which doesn't remember trip count values. It
   1962 /// expects to be able to rediscover the trip count each time it is
   1963 /// needed, and it does this using a simple analysis that only succeeds if
   1964 /// the loop has a canonical induction variable.
   1965 ///
   1966 /// However, when it comes time to generate code, the maximum operation
   1967 /// can be quite costly, especially if it's inside of an outer loop.
   1968 ///
   1969 /// This function solves this problem by detecting this type of loop and
   1970 /// rewriting their conditions from ICMP_NE back to ICMP_SLT, and deleting
   1971 /// the instructions for the maximum computation.
   1972 ///
   1973 ICmpInst *LSRInstance::OptimizeMax(ICmpInst *Cond, IVStrideUse* &CondUse) {
   1974   // Check that the loop matches the pattern we're looking for.
   1975   if (Cond->getPredicate() != CmpInst::ICMP_EQ &&
   1976       Cond->getPredicate() != CmpInst::ICMP_NE)
   1977     return Cond;
   1978 
   1979   SelectInst *Sel = dyn_cast<SelectInst>(Cond->getOperand(1));
   1980   if (!Sel || !Sel->hasOneUse()) return Cond;
   1981 
   1982   const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
   1983   if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
   1984     return Cond;
   1985   const SCEV *One = SE.getConstant(BackedgeTakenCount->getType(), 1);
   1986 
   1987   // Add one to the backedge-taken count to get the trip count.
   1988   const SCEV *IterationCount = SE.getAddExpr(One, BackedgeTakenCount);
   1989   if (IterationCount != SE.getSCEV(Sel)) return Cond;
   1990 
   1991   // Check for a max calculation that matches the pattern. There's no check
   1992   // for ICMP_ULE here because the comparison would be with zero, which
   1993   // isn't interesting.
   1994   CmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
   1995   const SCEVNAryExpr *Max = nullptr;
   1996   if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(BackedgeTakenCount)) {
   1997     Pred = ICmpInst::ICMP_SLE;
   1998     Max = S;
   1999   } else if (const SCEVSMaxExpr *S = dyn_cast<SCEVSMaxExpr>(IterationCount)) {
   2000     Pred = ICmpInst::ICMP_SLT;
   2001     Max = S;
   2002   } else if (const SCEVUMaxExpr *U = dyn_cast<SCEVUMaxExpr>(IterationCount)) {
   2003     Pred = ICmpInst::ICMP_ULT;
   2004     Max = U;
   2005   } else {
   2006     // No match; bail.
   2007     return Cond;
   2008   }
   2009 
   2010   // To handle a max with more than two operands, this optimization would
   2011   // require additional checking and setup.
   2012   if (Max->getNumOperands() != 2)
   2013     return Cond;
   2014 
   2015   const SCEV *MaxLHS = Max->getOperand(0);
   2016   const SCEV *MaxRHS = Max->getOperand(1);
   2017 
   2018   // ScalarEvolution canonicalizes constants to the left. For < and >, look
   2019   // for a comparison with 1. For <= and >=, a comparison with zero.
   2020   if (!MaxLHS ||
   2021       (ICmpInst::isTrueWhenEqual(Pred) ? !MaxLHS->isZero() : (MaxLHS != One)))
   2022     return Cond;
   2023 
   2024   // Check the relevant induction variable for conformance to
   2025   // the pattern.
   2026   const SCEV *IV = SE.getSCEV(Cond->getOperand(0));
   2027   const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(IV);
   2028   if (!AR || !AR->isAffine() ||
   2029       AR->getStart() != One ||
   2030       AR->getStepRecurrence(SE) != One)
   2031     return Cond;
   2032 
   2033   assert(AR->getLoop() == L &&
   2034          "Loop condition operand is an addrec in a different loop!");
   2035 
   2036   // Check the right operand of the select, and remember it, as it will
   2037   // be used in the new comparison instruction.
   2038   Value *NewRHS = nullptr;
   2039   if (ICmpInst::isTrueWhenEqual(Pred)) {
   2040     // Look for n+1, and grab n.
   2041     if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(1)))
   2042       if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1)))
   2043          if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS)
   2044            NewRHS = BO->getOperand(0);
   2045     if (AddOperator *BO = dyn_cast<AddOperator>(Sel->getOperand(2)))
   2046       if (ConstantInt *BO1 = dyn_cast<ConstantInt>(BO->getOperand(1)))
   2047         if (BO1->isOne() && SE.getSCEV(BO->getOperand(0)) == MaxRHS)
   2048           NewRHS = BO->getOperand(0);
   2049     if (!NewRHS)
   2050       return Cond;
   2051   } else if (SE.getSCEV(Sel->getOperand(1)) == MaxRHS)
   2052     NewRHS = Sel->getOperand(1);
   2053   else if (SE.getSCEV(Sel->getOperand(2)) == MaxRHS)
   2054     NewRHS = Sel->getOperand(2);
   2055   else if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(MaxRHS))
   2056     NewRHS = SU->getValue();
   2057   else
   2058     // Max doesn't match expected pattern.
   2059     return Cond;
   2060 
   2061   // Determine the new comparison opcode. It may be signed or unsigned,
   2062   // and the original comparison may be either equality or inequality.
   2063   if (Cond->getPredicate() == CmpInst::ICMP_EQ)
   2064     Pred = CmpInst::getInversePredicate(Pred);
   2065 
   2066   // Ok, everything looks ok to change the condition into an SLT or SGE and
   2067   // delete the max calculation.
   2068   ICmpInst *NewCond =
   2069     new ICmpInst(Cond, Pred, Cond->getOperand(0), NewRHS, "scmp");
   2070 
   2071   // Delete the max calculation instructions.
   2072   Cond->replaceAllUsesWith(NewCond);
   2073   CondUse->setUser(NewCond);
   2074   Instruction *Cmp = cast<Instruction>(Sel->getOperand(0));
   2075   Cond->eraseFromParent();
   2076   Sel->eraseFromParent();
   2077   if (Cmp->use_empty())
   2078     Cmp->eraseFromParent();
   2079   return NewCond;
   2080 }
   2081 
   2082 /// Change loop terminating condition to use the postinc iv when possible.
   2083 void
   2084 LSRInstance::OptimizeLoopTermCond() {
   2085   SmallPtrSet<Instruction *, 4> PostIncs;
   2086 
   2087   BasicBlock *LatchBlock = L->getLoopLatch();
   2088   SmallVector<BasicBlock*, 8> ExitingBlocks;
   2089   L->getExitingBlocks(ExitingBlocks);
   2090 
   2091   for (BasicBlock *ExitingBlock : ExitingBlocks) {
   2092 
   2093     // Get the terminating condition for the loop if possible.  If we
   2094     // can, we want to change it to use a post-incremented version of its
   2095     // induction variable, to allow coalescing the live ranges for the IV into
   2096     // one register value.
   2097 
   2098     BranchInst *TermBr = dyn_cast<BranchInst>(ExitingBlock->getTerminator());
   2099     if (!TermBr)
   2100       continue;
   2101     // FIXME: Overly conservative, termination condition could be an 'or' etc..
   2102     if (TermBr->isUnconditional() || !isa<ICmpInst>(TermBr->getCondition()))
   2103       continue;
   2104 
   2105     // Search IVUsesByStride to find Cond's IVUse if there is one.
   2106     IVStrideUse *CondUse = nullptr;
   2107     ICmpInst *Cond = cast<ICmpInst>(TermBr->getCondition());
   2108     if (!FindIVUserForCond(Cond, CondUse))
   2109       continue;
   2110 
   2111     // If the trip count is computed in terms of a max (due to ScalarEvolution
   2112     // being unable to find a sufficient guard, for example), change the loop
   2113     // comparison to use SLT or ULT instead of NE.
   2114     // One consequence of doing this now is that it disrupts the count-down
   2115     // optimization. That's not always a bad thing though, because in such
   2116     // cases it may still be worthwhile to avoid a max.
   2117     Cond = OptimizeMax(Cond, CondUse);
   2118 
   2119     // If this exiting block dominates the latch block, it may also use
   2120     // the post-inc value if it won't be shared with other uses.
   2121     // Check for dominance.
   2122     if (!DT.dominates(ExitingBlock, LatchBlock))
   2123       continue;
   2124 
   2125     // Conservatively avoid trying to use the post-inc value in non-latch
   2126     // exits if there may be pre-inc users in intervening blocks.
   2127     if (LatchBlock != ExitingBlock)
   2128       for (IVUsers::const_iterator UI = IU.begin(), E = IU.end(); UI != E; ++UI)
   2129         // Test if the use is reachable from the exiting block. This dominator
   2130         // query is a conservative approximation of reachability.
   2131         if (&*UI != CondUse &&
   2132             !DT.properlyDominates(UI->getUser()->getParent(), ExitingBlock)) {
   2133           // Conservatively assume there may be reuse if the quotient of their
   2134           // strides could be a legal scale.
   2135           const SCEV *A = IU.getStride(*CondUse, L);
   2136           const SCEV *B = IU.getStride(*UI, L);
   2137           if (!A || !B) continue;
   2138           if (SE.getTypeSizeInBits(A->getType()) !=
   2139               SE.getTypeSizeInBits(B->getType())) {
   2140             if (SE.getTypeSizeInBits(A->getType()) >
   2141                 SE.getTypeSizeInBits(B->getType()))
   2142               B = SE.getSignExtendExpr(B, A->getType());
   2143             else
   2144               A = SE.getSignExtendExpr(A, B->getType());
   2145           }
   2146           if (const SCEVConstant *D =
   2147                 dyn_cast_or_null<SCEVConstant>(getExactSDiv(B, A, SE))) {
   2148             const ConstantInt *C = D->getValue();
   2149             // Stride of one or negative one can have reuse with non-addresses.
   2150             if (C->isOne() || C->isAllOnesValue())
   2151               goto decline_post_inc;
   2152             // Avoid weird situations.
   2153             if (C->getValue().getMinSignedBits() >= 64 ||
   2154                 C->getValue().isMinSignedValue())
   2155               goto decline_post_inc;
   2156             // Check for possible scaled-address reuse.
   2157             MemAccessTy AccessTy = getAccessType(UI->getUser());
   2158             int64_t Scale = C->getSExtValue();
   2159             if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr,
   2160                                           /*BaseOffset=*/0,
   2161                                           /*HasBaseReg=*/false, Scale,
   2162                                           AccessTy.AddrSpace))
   2163               goto decline_post_inc;
   2164             Scale = -Scale;
   2165             if (TTI.isLegalAddressingMode(AccessTy.MemTy, /*BaseGV=*/nullptr,
   2166                                           /*BaseOffset=*/0,
   2167                                           /*HasBaseReg=*/false, Scale,
   2168                                           AccessTy.AddrSpace))
   2169               goto decline_post_inc;
   2170           }
   2171         }
   2172 
   2173     DEBUG(dbgs() << "  Change loop exiting icmp to use postinc iv: "
   2174                  << *Cond << '\n');
   2175 
   2176     // It's possible for the setcc instruction to be anywhere in the loop, and
   2177     // possible for it to have multiple users.  If it is not immediately before
   2178     // the exiting block branch, move it.
   2179     if (&*++BasicBlock::iterator(Cond) != TermBr) {
   2180       if (Cond->hasOneUse()) {
   2181         Cond->moveBefore(TermBr);
   2182       } else {
   2183         // Clone the terminating condition and insert into the loopend.
   2184         ICmpInst *OldCond = Cond;
   2185         Cond = cast<ICmpInst>(Cond->clone());
   2186         Cond->setName(L->getHeader()->getName() + ".termcond");
   2187         ExitingBlock->getInstList().insert(TermBr->getIterator(), Cond);
   2188 
   2189         // Clone the IVUse, as the old use still exists!
   2190         CondUse = &IU.AddUser(Cond, CondUse->getOperandValToReplace());
   2191         TermBr->replaceUsesOfWith(OldCond, Cond);
   2192       }
   2193     }
   2194 
   2195     // If we get to here, we know that we can transform the setcc instruction to
   2196     // use the post-incremented version of the IV, allowing us to coalesce the
   2197     // live ranges for the IV correctly.
   2198     CondUse->transformToPostInc(L);
   2199     Changed = true;
   2200 
   2201     PostIncs.insert(Cond);
   2202   decline_post_inc:;
   2203   }
   2204 
   2205   // Determine an insertion point for the loop induction variable increment. It
   2206   // must dominate all the post-inc comparisons we just set up, and it must
   2207   // dominate the loop latch edge.
   2208   IVIncInsertPos = L->getLoopLatch()->getTerminator();
   2209   for (Instruction *Inst : PostIncs) {
   2210     BasicBlock *BB =
   2211       DT.findNearestCommonDominator(IVIncInsertPos->getParent(),
   2212                                     Inst->getParent());
   2213     if (BB == Inst->getParent())
   2214       IVIncInsertPos = Inst;
   2215     else if (BB != IVIncInsertPos->getParent())
   2216       IVIncInsertPos = BB->getTerminator();
   2217   }
   2218 }
   2219 
   2220 /// Determine if the given use can accommodate a fixup at the given offset and
   2221 /// other details. If so, update the use and return true.
   2222 bool LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset,
   2223                                      bool HasBaseReg, LSRUse::KindType Kind,
   2224                                      MemAccessTy AccessTy) {
   2225   int64_t NewMinOffset = LU.MinOffset;
   2226   int64_t NewMaxOffset = LU.MaxOffset;
   2227   MemAccessTy NewAccessTy = AccessTy;
   2228 
   2229   // Check for a mismatched kind. It's tempting to collapse mismatched kinds to
   2230   // something conservative, however this can pessimize in the case that one of
   2231   // the uses will have all its uses outside the loop, for example.
   2232   if (LU.Kind != Kind)
   2233     return false;
   2234 
   2235   // Check for a mismatched access type, and fall back conservatively as needed.
   2236   // TODO: Be less conservative when the type is similar and can use the same
   2237   // addressing modes.
   2238   if (Kind == LSRUse::Address) {
   2239     if (AccessTy != LU.AccessTy)
   2240       NewAccessTy = MemAccessTy::getUnknown(AccessTy.MemTy->getContext());
   2241   }
   2242 
   2243   // Conservatively assume HasBaseReg is true for now.
   2244   if (NewOffset < LU.MinOffset) {
   2245     if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr,
   2246                           LU.MaxOffset - NewOffset, HasBaseReg))
   2247       return false;
   2248     NewMinOffset = NewOffset;
   2249   } else if (NewOffset > LU.MaxOffset) {
   2250     if (!isAlwaysFoldable(TTI, Kind, NewAccessTy, /*BaseGV=*/nullptr,
   2251                           NewOffset - LU.MinOffset, HasBaseReg))
   2252       return false;
   2253     NewMaxOffset = NewOffset;
   2254   }
   2255 
   2256   // Update the use.
   2257   LU.MinOffset = NewMinOffset;
   2258   LU.MaxOffset = NewMaxOffset;
   2259   LU.AccessTy = NewAccessTy;
   2260   if (NewOffset != LU.Offsets.back())
   2261     LU.Offsets.push_back(NewOffset);
   2262   return true;
   2263 }
   2264 
   2265 /// Return an LSRUse index and an offset value for a fixup which needs the given
   2266 /// expression, with the given kind and optional access type.  Either reuse an
   2267 /// existing use or create a new one, as needed.
   2268 std::pair<size_t, int64_t> LSRInstance::getUse(const SCEV *&Expr,
   2269                                                LSRUse::KindType Kind,
   2270                                                MemAccessTy AccessTy) {
   2271   const SCEV *Copy = Expr;
   2272   int64_t Offset = ExtractImmediate(Expr, SE);
   2273 
   2274   // Basic uses can't accept any offset, for example.
   2275   if (!isAlwaysFoldable(TTI, Kind, AccessTy, /*BaseGV=*/ nullptr,
   2276                         Offset, /*HasBaseReg=*/ true)) {
   2277     Expr = Copy;
   2278     Offset = 0;
   2279   }
   2280 
   2281   std::pair<UseMapTy::iterator, bool> P =
   2282     UseMap.insert(std::make_pair(LSRUse::SCEVUseKindPair(Expr, Kind), 0));
   2283   if (!P.second) {
   2284     // A use already existed with this base.
   2285     size_t LUIdx = P.first->second;
   2286     LSRUse &LU = Uses[LUIdx];
   2287     if (reconcileNewOffset(LU, Offset, /*HasBaseReg=*/true, Kind, AccessTy))
   2288       // Reuse this use.
   2289       return std::make_pair(LUIdx, Offset);
   2290   }
   2291 
   2292   // Create a new use.
   2293   size_t LUIdx = Uses.size();
   2294   P.first->second = LUIdx;
   2295   Uses.push_back(LSRUse(Kind, AccessTy));
   2296   LSRUse &LU = Uses[LUIdx];
   2297 
   2298   // We don't need to track redundant offsets, but we don't need to go out
   2299   // of our way here to avoid them.
   2300   if (LU.Offsets.empty() || Offset != LU.Offsets.back())
   2301     LU.Offsets.push_back(Offset);
   2302 
   2303   LU.MinOffset = Offset;
   2304   LU.MaxOffset = Offset;
   2305   return std::make_pair(LUIdx, Offset);
   2306 }
   2307 
   2308 /// Delete the given use from the Uses list.
   2309 void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) {
   2310   if (&LU != &Uses.back())
   2311     std::swap(LU, Uses.back());
   2312   Uses.pop_back();
   2313 
   2314   // Update RegUses.
   2315   RegUses.swapAndDropUse(LUIdx, Uses.size());
   2316 }
   2317 
   2318 /// Look for a use distinct from OrigLU which is has a formula that has the same
   2319 /// registers as the given formula.
   2320 LSRUse *
   2321 LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF,
   2322                                        const LSRUse &OrigLU) {
   2323   // Search all uses for the formula. This could be more clever.
   2324   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
   2325     LSRUse &LU = Uses[LUIdx];
   2326     // Check whether this use is close enough to OrigLU, to see whether it's
   2327     // worthwhile looking through its formulae.
   2328     // Ignore ICmpZero uses because they may contain formulae generated by
   2329     // GenerateICmpZeroScales, in which case adding fixup offsets may
   2330     // be invalid.
   2331     if (&LU != &OrigLU &&
   2332         LU.Kind != LSRUse::ICmpZero &&
   2333         LU.Kind == OrigLU.Kind && OrigLU.AccessTy == LU.AccessTy &&
   2334         LU.WidestFixupType == OrigLU.WidestFixupType &&
   2335         LU.HasFormulaWithSameRegs(OrigF)) {
   2336       // Scan through this use's formulae.
   2337       for (const Formula &F : LU.Formulae) {
   2338         // Check to see if this formula has the same registers and symbols
   2339         // as OrigF.
   2340         if (F.BaseRegs == OrigF.BaseRegs &&
   2341             F.ScaledReg == OrigF.ScaledReg &&
   2342             F.BaseGV == OrigF.BaseGV &&
   2343             F.Scale == OrigF.Scale &&
   2344             F.UnfoldedOffset == OrigF.UnfoldedOffset) {
   2345           if (F.BaseOffset == 0)
   2346             return &LU;
   2347           // This is the formula where all the registers and symbols matched;
   2348           // there aren't going to be any others. Since we declined it, we
   2349           // can skip the rest of the formulae and proceed to the next LSRUse.
   2350           break;
   2351         }
   2352       }
   2353     }
   2354   }
   2355 
   2356   // Nothing looked good.
   2357   return nullptr;
   2358 }
   2359 
   2360 void LSRInstance::CollectInterestingTypesAndFactors() {
   2361   SmallSetVector<const SCEV *, 4> Strides;
   2362 
   2363   // Collect interesting types and strides.
   2364   SmallVector<const SCEV *, 4> Worklist;
   2365   for (const IVStrideUse &U : IU) {
   2366     const SCEV *Expr = IU.getExpr(U);
   2367 
   2368     // Collect interesting types.
   2369     Types.insert(SE.getEffectiveSCEVType(Expr->getType()));
   2370 
   2371     // Add strides for mentioned loops.
   2372     Worklist.push_back(Expr);
   2373     do {
   2374       const SCEV *S = Worklist.pop_back_val();
   2375       if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
   2376         if (AR->getLoop() == L)
   2377           Strides.insert(AR->getStepRecurrence(SE));
   2378         Worklist.push_back(AR->getStart());
   2379       } else if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
   2380         Worklist.append(Add->op_begin(), Add->op_end());
   2381       }
   2382     } while (!Worklist.empty());
   2383   }
   2384 
   2385   // Compute interesting factors from the set of interesting strides.
   2386   for (SmallSetVector<const SCEV *, 4>::const_iterator
   2387        I = Strides.begin(), E = Strides.end(); I != E; ++I)
   2388     for (SmallSetVector<const SCEV *, 4>::const_iterator NewStrideIter =
   2389          std::next(I); NewStrideIter != E; ++NewStrideIter) {
   2390       const SCEV *OldStride = *I;
   2391       const SCEV *NewStride = *NewStrideIter;
   2392 
   2393       if (SE.getTypeSizeInBits(OldStride->getType()) !=
   2394           SE.getTypeSizeInBits(NewStride->getType())) {
   2395         if (SE.getTypeSizeInBits(OldStride->getType()) >
   2396             SE.getTypeSizeInBits(NewStride->getType()))
   2397           NewStride = SE.getSignExtendExpr(NewStride, OldStride->getType());
   2398         else
   2399           OldStride = SE.getSignExtendExpr(OldStride, NewStride->getType());
   2400       }
   2401       if (const SCEVConstant *Factor =
   2402             dyn_cast_or_null<SCEVConstant>(getExactSDiv(NewStride, OldStride,
   2403                                                         SE, true))) {
   2404         if (Factor->getAPInt().getMinSignedBits() <= 64)
   2405           Factors.insert(Factor->getAPInt().getSExtValue());
   2406       } else if (const SCEVConstant *Factor =
   2407                    dyn_cast_or_null<SCEVConstant>(getExactSDiv(OldStride,
   2408                                                                NewStride,
   2409                                                                SE, true))) {
   2410         if (Factor->getAPInt().getMinSignedBits() <= 64)
   2411           Factors.insert(Factor->getAPInt().getSExtValue());
   2412       }
   2413     }
   2414 
   2415   // If all uses use the same type, don't bother looking for truncation-based
   2416   // reuse.
   2417   if (Types.size() == 1)
   2418     Types.clear();
   2419 
   2420   DEBUG(print_factors_and_types(dbgs()));
   2421 }
   2422 
   2423 /// Helper for CollectChains that finds an IV operand (computed by an AddRec in
   2424 /// this loop) within [OI,OE) or returns OE. If IVUsers mapped Instructions to
   2425 /// IVStrideUses, we could partially skip this.
   2426 static User::op_iterator
   2427 findIVOperand(User::op_iterator OI, User::op_iterator OE,
   2428               Loop *L, ScalarEvolution &SE) {
   2429   for(; OI != OE; ++OI) {
   2430     if (Instruction *Oper = dyn_cast<Instruction>(*OI)) {
   2431       if (!SE.isSCEVable(Oper->getType()))
   2432         continue;
   2433 
   2434       if (const SCEVAddRecExpr *AR =
   2435           dyn_cast<SCEVAddRecExpr>(SE.getSCEV(Oper))) {
   2436         if (AR->getLoop() == L)
   2437           break;
   2438       }
   2439     }
   2440   }
   2441   return OI;
   2442 }
   2443 
   2444 /// IVChain logic must consistenctly peek base TruncInst operands, so wrap it in
   2445 /// a convenient helper.
   2446 static Value *getWideOperand(Value *Oper) {
   2447   if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper))
   2448     return Trunc->getOperand(0);
   2449   return Oper;
   2450 }
   2451 
   2452 /// Return true if we allow an IV chain to include both types.
   2453 static bool isCompatibleIVType(Value *LVal, Value *RVal) {
   2454   Type *LType = LVal->getType();
   2455   Type *RType = RVal->getType();
   2456   return (LType == RType) || (LType->isPointerTy() && RType->isPointerTy());
   2457 }
   2458 
   2459 /// Return an approximation of this SCEV expression's "base", or NULL for any
   2460 /// constant. Returning the expression itself is conservative. Returning a
   2461 /// deeper subexpression is more precise and valid as long as it isn't less
   2462 /// complex than another subexpression. For expressions involving multiple
   2463 /// unscaled values, we need to return the pointer-type SCEVUnknown. This avoids
   2464 /// forming chains across objects, such as: PrevOper==a[i], IVOper==b[i],
   2465 /// IVInc==b-a.
   2466 ///
   2467 /// Since SCEVUnknown is the rightmost type, and pointers are the rightmost
   2468 /// SCEVUnknown, we simply return the rightmost SCEV operand.
   2469 static const SCEV *getExprBase(const SCEV *S) {
   2470   switch (S->getSCEVType()) {
   2471   default: // uncluding scUnknown.
   2472     return S;
   2473   case scConstant:
   2474     return nullptr;
   2475   case scTruncate:
   2476     return getExprBase(cast<SCEVTruncateExpr>(S)->getOperand());
   2477   case scZeroExtend:
   2478     return getExprBase(cast<SCEVZeroExtendExpr>(S)->getOperand());
   2479   case scSignExtend:
   2480     return getExprBase(cast<SCEVSignExtendExpr>(S)->getOperand());
   2481   case scAddExpr: {
   2482     // Skip over scaled operands (scMulExpr) to follow add operands as long as
   2483     // there's nothing more complex.
   2484     // FIXME: not sure if we want to recognize negation.
   2485     const SCEVAddExpr *Add = cast<SCEVAddExpr>(S);
   2486     for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(Add->op_end()),
   2487            E(Add->op_begin()); I != E; ++I) {
   2488       const SCEV *SubExpr = *I;
   2489       if (SubExpr->getSCEVType() == scAddExpr)
   2490         return getExprBase(SubExpr);
   2491 
   2492       if (SubExpr->getSCEVType() != scMulExpr)
   2493         return SubExpr;
   2494     }
   2495     return S; // all operands are scaled, be conservative.
   2496   }
   2497   case scAddRecExpr:
   2498     return getExprBase(cast<SCEVAddRecExpr>(S)->getStart());
   2499   }
   2500 }
   2501 
   2502 /// Return true if the chain increment is profitable to expand into a loop
   2503 /// invariant value, which may require its own register. A profitable chain
   2504 /// increment will be an offset relative to the same base. We allow such offsets
   2505 /// to potentially be used as chain increment as long as it's not obviously
   2506 /// expensive to expand using real instructions.
   2507 bool IVChain::isProfitableIncrement(const SCEV *OperExpr,
   2508                                     const SCEV *IncExpr,
   2509                                     ScalarEvolution &SE) {
   2510   // Aggressively form chains when -stress-ivchain.
   2511   if (StressIVChain)
   2512     return true;
   2513 
   2514   // Do not replace a constant offset from IV head with a nonconstant IV
   2515   // increment.
   2516   if (!isa<SCEVConstant>(IncExpr)) {
   2517     const SCEV *HeadExpr = SE.getSCEV(getWideOperand(Incs[0].IVOperand));
   2518     if (isa<SCEVConstant>(SE.getMinusSCEV(OperExpr, HeadExpr)))
   2519       return 0;
   2520   }
   2521 
   2522   SmallPtrSet<const SCEV*, 8> Processed;
   2523   return !isHighCostExpansion(IncExpr, Processed, SE);
   2524 }
   2525 
   2526 /// Return true if the number of registers needed for the chain is estimated to
   2527 /// be less than the number required for the individual IV users. First prohibit
   2528 /// any IV users that keep the IV live across increments (the Users set should
   2529 /// be empty). Next count the number and type of increments in the chain.
   2530 ///
   2531 /// Chaining IVs can lead to considerable code bloat if ISEL doesn't
   2532 /// effectively use postinc addressing modes. Only consider it profitable it the
   2533 /// increments can be computed in fewer registers when chained.
   2534 ///
   2535 /// TODO: Consider IVInc free if it's already used in another chains.
   2536 static bool
   2537 isProfitableChain(IVChain &Chain, SmallPtrSetImpl<Instruction*> &Users,
   2538                   ScalarEvolution &SE, const TargetTransformInfo &TTI) {
   2539   if (StressIVChain)
   2540     return true;
   2541 
   2542   if (!Chain.hasIncs())
   2543     return false;
   2544 
   2545   if (!Users.empty()) {
   2546     DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " users:\n";
   2547           for (Instruction *Inst : Users) {
   2548             dbgs() << "  " << *Inst << "\n";
   2549           });
   2550     return false;
   2551   }
   2552   assert(!Chain.Incs.empty() && "empty IV chains are not allowed");
   2553 
   2554   // The chain itself may require a register, so intialize cost to 1.
   2555   int cost = 1;
   2556 
   2557   // A complete chain likely eliminates the need for keeping the original IV in
   2558   // a register. LSR does not currently know how to form a complete chain unless
   2559   // the header phi already exists.
   2560   if (isa<PHINode>(Chain.tailUserInst())
   2561       && SE.getSCEV(Chain.tailUserInst()) == Chain.Incs[0].IncExpr) {
   2562     --cost;
   2563   }
   2564   const SCEV *LastIncExpr = nullptr;
   2565   unsigned NumConstIncrements = 0;
   2566   unsigned NumVarIncrements = 0;
   2567   unsigned NumReusedIncrements = 0;
   2568   for (const IVInc &Inc : Chain) {
   2569     if (Inc.IncExpr->isZero())
   2570       continue;
   2571 
   2572     // Incrementing by zero or some constant is neutral. We assume constants can
   2573     // be folded into an addressing mode or an add's immediate operand.
   2574     if (isa<SCEVConstant>(Inc.IncExpr)) {
   2575       ++NumConstIncrements;
   2576       continue;
   2577     }
   2578 
   2579     if (Inc.IncExpr == LastIncExpr)
   2580       ++NumReusedIncrements;
   2581     else
   2582       ++NumVarIncrements;
   2583 
   2584     LastIncExpr = Inc.IncExpr;
   2585   }
   2586   // An IV chain with a single increment is handled by LSR's postinc
   2587   // uses. However, a chain with multiple increments requires keeping the IV's
   2588   // value live longer than it needs to be if chained.
   2589   if (NumConstIncrements > 1)
   2590     --cost;
   2591 
   2592   // Materializing increment expressions in the preheader that didn't exist in
   2593   // the original code may cost a register. For example, sign-extended array
   2594   // indices can produce ridiculous increments like this:
   2595   // IV + ((sext i32 (2 * %s) to i64) + (-1 * (sext i32 %s to i64)))
   2596   cost += NumVarIncrements;
   2597 
   2598   // Reusing variable increments likely saves a register to hold the multiple of
   2599   // the stride.
   2600   cost -= NumReusedIncrements;
   2601 
   2602   DEBUG(dbgs() << "Chain: " << *Chain.Incs[0].UserInst << " Cost: " << cost
   2603                << "\n");
   2604 
   2605   return cost < 0;
   2606 }
   2607 
   2608 /// Add this IV user to an existing chain or make it the head of a new chain.
   2609 void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper,
   2610                                    SmallVectorImpl<ChainUsers> &ChainUsersVec) {
   2611   // When IVs are used as types of varying widths, they are generally converted
   2612   // to a wider type with some uses remaining narrow under a (free) trunc.
   2613   Value *const NextIV = getWideOperand(IVOper);
   2614   const SCEV *const OperExpr = SE.getSCEV(NextIV);
   2615   const SCEV *const OperExprBase = getExprBase(OperExpr);
   2616 
   2617   // Visit all existing chains. Check if its IVOper can be computed as a
   2618   // profitable loop invariant increment from the last link in the Chain.
   2619   unsigned ChainIdx = 0, NChains = IVChainVec.size();
   2620   const SCEV *LastIncExpr = nullptr;
   2621   for (; ChainIdx < NChains; ++ChainIdx) {
   2622     IVChain &Chain = IVChainVec[ChainIdx];
   2623 
   2624     // Prune the solution space aggressively by checking that both IV operands
   2625     // are expressions that operate on the same unscaled SCEVUnknown. This
   2626     // "base" will be canceled by the subsequent getMinusSCEV call. Checking
   2627     // first avoids creating extra SCEV expressions.
   2628     if (!StressIVChain && Chain.ExprBase != OperExprBase)
   2629       continue;
   2630 
   2631     Value *PrevIV = getWideOperand(Chain.Incs.back().IVOperand);
   2632     if (!isCompatibleIVType(PrevIV, NextIV))
   2633       continue;
   2634 
   2635     // A phi node terminates a chain.
   2636     if (isa<PHINode>(UserInst) && isa<PHINode>(Chain.tailUserInst()))
   2637       continue;
   2638 
   2639     // The increment must be loop-invariant so it can be kept in a register.
   2640     const SCEV *PrevExpr = SE.getSCEV(PrevIV);
   2641     const SCEV *IncExpr = SE.getMinusSCEV(OperExpr, PrevExpr);
   2642     if (!SE.isLoopInvariant(IncExpr, L))
   2643       continue;
   2644 
   2645     if (Chain.isProfitableIncrement(OperExpr, IncExpr, SE)) {
   2646       LastIncExpr = IncExpr;
   2647       break;
   2648     }
   2649   }
   2650   // If we haven't found a chain, create a new one, unless we hit the max. Don't
   2651   // bother for phi nodes, because they must be last in the chain.
   2652   if (ChainIdx == NChains) {
   2653     if (isa<PHINode>(UserInst))
   2654       return;
   2655     if (NChains >= MaxChains && !StressIVChain) {
   2656       DEBUG(dbgs() << "IV Chain Limit\n");
   2657       return;
   2658     }
   2659     LastIncExpr = OperExpr;
   2660     // IVUsers may have skipped over sign/zero extensions. We don't currently
   2661     // attempt to form chains involving extensions unless they can be hoisted
   2662     // into this loop's AddRec.
   2663     if (!isa<SCEVAddRecExpr>(LastIncExpr))
   2664       return;
   2665     ++NChains;
   2666     IVChainVec.push_back(IVChain(IVInc(UserInst, IVOper, LastIncExpr),
   2667                                  OperExprBase));
   2668     ChainUsersVec.resize(NChains);
   2669     DEBUG(dbgs() << "IV Chain#" << ChainIdx << " Head: (" << *UserInst
   2670                  << ") IV=" << *LastIncExpr << "\n");
   2671   } else {
   2672     DEBUG(dbgs() << "IV Chain#" << ChainIdx << "  Inc: (" << *UserInst
   2673                  << ") IV+" << *LastIncExpr << "\n");
   2674     // Add this IV user to the end of the chain.
   2675     IVChainVec[ChainIdx].add(IVInc(UserInst, IVOper, LastIncExpr));
   2676   }
   2677   IVChain &Chain = IVChainVec[ChainIdx];
   2678 
   2679   SmallPtrSet<Instruction*,4> &NearUsers = ChainUsersVec[ChainIdx].NearUsers;
   2680   // This chain's NearUsers become FarUsers.
   2681   if (!LastIncExpr->isZero()) {
   2682     ChainUsersVec[ChainIdx].FarUsers.insert(NearUsers.begin(),
   2683                                             NearUsers.end());
   2684     NearUsers.clear();
   2685   }
   2686 
   2687   // All other uses of IVOperand become near uses of the chain.
   2688   // We currently ignore intermediate values within SCEV expressions, assuming
   2689   // they will eventually be used be the current chain, or can be computed
   2690   // from one of the chain increments. To be more precise we could
   2691   // transitively follow its user and only add leaf IV users to the set.
   2692   for (User *U : IVOper->users()) {
   2693     Instruction *OtherUse = dyn_cast<Instruction>(U);
   2694     if (!OtherUse)
   2695       continue;
   2696     // Uses in the chain will no longer be uses if the chain is formed.
   2697     // Include the head of the chain in this iteration (not Chain.begin()).
   2698     IVChain::const_iterator IncIter = Chain.Incs.begin();
   2699     IVChain::const_iterator IncEnd = Chain.Incs.end();
   2700     for( ; IncIter != IncEnd; ++IncIter) {
   2701       if (IncIter->UserInst == OtherUse)
   2702         break;
   2703     }
   2704     if (IncIter != IncEnd)
   2705       continue;
   2706 
   2707     if (SE.isSCEVable(OtherUse->getType())
   2708         && !isa<SCEVUnknown>(SE.getSCEV(OtherUse))
   2709         && IU.isIVUserOrOperand(OtherUse)) {
   2710       continue;
   2711     }
   2712     NearUsers.insert(OtherUse);
   2713   }
   2714 
   2715   // Since this user is part of the chain, it's no longer considered a use
   2716   // of the chain.
   2717   ChainUsersVec[ChainIdx].FarUsers.erase(UserInst);
   2718 }
   2719 
   2720 /// Populate the vector of Chains.
   2721 ///
   2722 /// This decreases ILP at the architecture level. Targets with ample registers,
   2723 /// multiple memory ports, and no register renaming probably don't want
   2724 /// this. However, such targets should probably disable LSR altogether.
   2725 ///
   2726 /// The job of LSR is to make a reasonable choice of induction variables across
   2727 /// the loop. Subsequent passes can easily "unchain" computation exposing more
   2728 /// ILP *within the loop* if the target wants it.
   2729 ///
   2730 /// Finding the best IV chain is potentially a scheduling problem. Since LSR
   2731 /// will not reorder memory operations, it will recognize this as a chain, but
   2732 /// will generate redundant IV increments. Ideally this would be corrected later
   2733 /// by a smart scheduler:
   2734 ///        = A[i]
   2735 ///        = A[i+x]
   2736 /// A[i]   =
   2737 /// A[i+x] =
   2738 ///
   2739 /// TODO: Walk the entire domtree within this loop, not just the path to the
   2740 /// loop latch. This will discover chains on side paths, but requires
   2741 /// maintaining multiple copies of the Chains state.
   2742 void LSRInstance::CollectChains() {
   2743   DEBUG(dbgs() << "Collecting IV Chains.\n");
   2744   SmallVector<ChainUsers, 8> ChainUsersVec;
   2745 
   2746   SmallVector<BasicBlock *,8> LatchPath;
   2747   BasicBlock *LoopHeader = L->getHeader();
   2748   for (DomTreeNode *Rung = DT.getNode(L->getLoopLatch());
   2749        Rung->getBlock() != LoopHeader; Rung = Rung->getIDom()) {
   2750     LatchPath.push_back(Rung->getBlock());
   2751   }
   2752   LatchPath.push_back(LoopHeader);
   2753 
   2754   // Walk the instruction stream from the loop header to the loop latch.
   2755   for (SmallVectorImpl<BasicBlock *>::reverse_iterator
   2756          BBIter = LatchPath.rbegin(), BBEnd = LatchPath.rend();
   2757        BBIter != BBEnd; ++BBIter) {
   2758     for (BasicBlock::iterator I = (*BBIter)->begin(), E = (*BBIter)->end();
   2759          I != E; ++I) {
   2760       // Skip instructions that weren't seen by IVUsers analysis.
   2761       if (isa<PHINode>(I) || !IU.isIVUserOrOperand(&*I))
   2762         continue;
   2763 
   2764       // Ignore users that are part of a SCEV expression. This way we only
   2765       // consider leaf IV Users. This effectively rediscovers a portion of
   2766       // IVUsers analysis but in program order this time.
   2767       if (SE.isSCEVable(I->getType()) && !isa<SCEVUnknown>(SE.getSCEV(&*I)))
   2768         continue;
   2769 
   2770       // Remove this instruction from any NearUsers set it may be in.
   2771       for (unsigned ChainIdx = 0, NChains = IVChainVec.size();
   2772            ChainIdx < NChains; ++ChainIdx) {
   2773         ChainUsersVec[ChainIdx].NearUsers.erase(&*I);
   2774       }
   2775       // Search for operands that can be chained.
   2776       SmallPtrSet<Instruction*, 4> UniqueOperands;
   2777       User::op_iterator IVOpEnd = I->op_end();
   2778       User::op_iterator IVOpIter = findIVOperand(I->op_begin(), IVOpEnd, L, SE);
   2779       while (IVOpIter != IVOpEnd) {
   2780         Instruction *IVOpInst = cast<Instruction>(*IVOpIter);
   2781         if (UniqueOperands.insert(IVOpInst).second)
   2782           ChainInstruction(&*I, IVOpInst, ChainUsersVec);
   2783         IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE);
   2784       }
   2785     } // Continue walking down the instructions.
   2786   } // Continue walking down the domtree.
   2787   // Visit phi backedges to determine if the chain can generate the IV postinc.
   2788   for (BasicBlock::iterator I = L->getHeader()->begin();
   2789        PHINode *PN = dyn_cast<PHINode>(I); ++I) {
   2790     if (!SE.isSCEVable(PN->getType()))
   2791       continue;
   2792 
   2793     Instruction *IncV =
   2794       dyn_cast<Instruction>(PN->getIncomingValueForBlock(L->getLoopLatch()));
   2795     if (IncV)
   2796       ChainInstruction(PN, IncV, ChainUsersVec);
   2797   }
   2798   // Remove any unprofitable chains.
   2799   unsigned ChainIdx = 0;
   2800   for (unsigned UsersIdx = 0, NChains = IVChainVec.size();
   2801        UsersIdx < NChains; ++UsersIdx) {
   2802     if (!isProfitableChain(IVChainVec[UsersIdx],
   2803                            ChainUsersVec[UsersIdx].FarUsers, SE, TTI))
   2804       continue;
   2805     // Preserve the chain at UsesIdx.
   2806     if (ChainIdx != UsersIdx)
   2807       IVChainVec[ChainIdx] = IVChainVec[UsersIdx];
   2808     FinalizeChain(IVChainVec[ChainIdx]);
   2809     ++ChainIdx;
   2810   }
   2811   IVChainVec.resize(ChainIdx);
   2812 }
   2813 
   2814 void LSRInstance::FinalizeChain(IVChain &Chain) {
   2815   assert(!Chain.Incs.empty() && "empty IV chains are not allowed");
   2816   DEBUG(dbgs() << "Final Chain: " << *Chain.Incs[0].UserInst << "\n");
   2817 
   2818   for (const IVInc &Inc : Chain) {
   2819     DEBUG(dbgs() << "        Inc: " << Inc.UserInst << "\n");
   2820     auto UseI = std::find(Inc.UserInst->op_begin(), Inc.UserInst->op_end(),
   2821                           Inc.IVOperand);
   2822     assert(UseI != Inc.UserInst->op_end() && "cannot find IV operand");
   2823     IVIncSet.insert(UseI);
   2824   }
   2825 }
   2826 
   2827 /// Return true if the IVInc can be folded into an addressing mode.
   2828 static bool canFoldIVIncExpr(const SCEV *IncExpr, Instruction *UserInst,
   2829                              Value *Operand, const TargetTransformInfo &TTI) {
   2830   const SCEVConstant *IncConst = dyn_cast<SCEVConstant>(IncExpr);
   2831   if (!IncConst || !isAddressUse(UserInst, Operand))
   2832     return false;
   2833 
   2834   if (IncConst->getAPInt().getMinSignedBits() > 64)
   2835     return false;
   2836 
   2837   MemAccessTy AccessTy = getAccessType(UserInst);
   2838   int64_t IncOffset = IncConst->getValue()->getSExtValue();
   2839   if (!isAlwaysFoldable(TTI, LSRUse::Address, AccessTy, /*BaseGV=*/nullptr,
   2840                         IncOffset, /*HaseBaseReg=*/false))
   2841     return false;
   2842 
   2843   return true;
   2844 }
   2845 
   2846 /// Generate an add or subtract for each IVInc in a chain to materialize the IV
   2847 /// user's operand from the previous IV user's operand.
   2848 void LSRInstance::GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
   2849                                   SmallVectorImpl<WeakVH> &DeadInsts) {
   2850   // Find the new IVOperand for the head of the chain. It may have been replaced
   2851   // by LSR.
   2852   const IVInc &Head = Chain.Incs[0];
   2853   User::op_iterator IVOpEnd = Head.UserInst->op_end();
   2854   // findIVOperand returns IVOpEnd if it can no longer find a valid IV user.
   2855   User::op_iterator IVOpIter = findIVOperand(Head.UserInst->op_begin(),
   2856                                              IVOpEnd, L, SE);
   2857   Value *IVSrc = nullptr;
   2858   while (IVOpIter != IVOpEnd) {
   2859     IVSrc = getWideOperand(*IVOpIter);
   2860 
   2861     // If this operand computes the expression that the chain needs, we may use
   2862     // it. (Check this after setting IVSrc which is used below.)
   2863     //
   2864     // Note that if Head.IncExpr is wider than IVSrc, then this phi is too
   2865     // narrow for the chain, so we can no longer use it. We do allow using a
   2866     // wider phi, assuming the LSR checked for free truncation. In that case we
   2867     // should already have a truncate on this operand such that
   2868     // getSCEV(IVSrc) == IncExpr.
   2869     if (SE.getSCEV(*IVOpIter) == Head.IncExpr
   2870         || SE.getSCEV(IVSrc) == Head.IncExpr) {
   2871       break;
   2872     }
   2873     IVOpIter = findIVOperand(std::next(IVOpIter), IVOpEnd, L, SE);
   2874   }
   2875   if (IVOpIter == IVOpEnd) {
   2876     // Gracefully give up on this chain.
   2877     DEBUG(dbgs() << "Concealed chain head: " << *Head.UserInst << "\n");
   2878     return;
   2879   }
   2880 
   2881   DEBUG(dbgs() << "Generate chain at: " << *IVSrc << "\n");
   2882   Type *IVTy = IVSrc->getType();
   2883   Type *IntTy = SE.getEffectiveSCEVType(IVTy);
   2884   const SCEV *LeftOverExpr = nullptr;
   2885   for (const IVInc &Inc : Chain) {
   2886     Instruction *InsertPt = Inc.UserInst;
   2887     if (isa<PHINode>(InsertPt))
   2888       InsertPt = L->getLoopLatch()->getTerminator();
   2889 
   2890     // IVOper will replace the current IV User's operand. IVSrc is the IV
   2891     // value currently held in a register.
   2892     Value *IVOper = IVSrc;
   2893     if (!Inc.IncExpr->isZero()) {
   2894       // IncExpr was the result of subtraction of two narrow values, so must
   2895       // be signed.
   2896       const SCEV *IncExpr = SE.getNoopOrSignExtend(Inc.IncExpr, IntTy);
   2897       LeftOverExpr = LeftOverExpr ?
   2898         SE.getAddExpr(LeftOverExpr, IncExpr) : IncExpr;
   2899     }
   2900     if (LeftOverExpr && !LeftOverExpr->isZero()) {
   2901       // Expand the IV increment.
   2902       Rewriter.clearPostInc();
   2903       Value *IncV = Rewriter.expandCodeFor(LeftOverExpr, IntTy, InsertPt);
   2904       const SCEV *IVOperExpr = SE.getAddExpr(SE.getUnknown(IVSrc),
   2905                                              SE.getUnknown(IncV));
   2906       IVOper = Rewriter.expandCodeFor(IVOperExpr, IVTy, InsertPt);
   2907 
   2908       // If an IV increment can't be folded, use it as the next IV value.
   2909       if (!canFoldIVIncExpr(LeftOverExpr, Inc.UserInst, Inc.IVOperand, TTI)) {
   2910         assert(IVTy == IVOper->getType() && "inconsistent IV increment type");
   2911         IVSrc = IVOper;
   2912         LeftOverExpr = nullptr;
   2913       }
   2914     }
   2915     Type *OperTy = Inc.IVOperand->getType();
   2916     if (IVTy != OperTy) {
   2917       assert(SE.getTypeSizeInBits(IVTy) >= SE.getTypeSizeInBits(OperTy) &&
   2918              "cannot extend a chained IV");
   2919       IRBuilder<> Builder(InsertPt);
   2920       IVOper = Builder.CreateTruncOrBitCast(IVOper, OperTy, "lsr.chain");
   2921     }
   2922     Inc.UserInst->replaceUsesOfWith(Inc.IVOperand, IVOper);
   2923     DeadInsts.emplace_back(Inc.IVOperand);
   2924   }
   2925   // If LSR created a new, wider phi, we may also replace its postinc. We only
   2926   // do this if we also found a wide value for the head of the chain.
   2927   if (isa<PHINode>(Chain.tailUserInst())) {
   2928     for (BasicBlock::iterator I = L->getHeader()->begin();
   2929          PHINode *Phi = dyn_cast<PHINode>(I); ++I) {
   2930       if (!isCompatibleIVType(Phi, IVSrc))
   2931         continue;
   2932       Instruction *PostIncV = dyn_cast<Instruction>(
   2933         Phi->getIncomingValueForBlock(L->getLoopLatch()));
   2934       if (!PostIncV || (SE.getSCEV(PostIncV) != SE.getSCEV(IVSrc)))
   2935         continue;
   2936       Value *IVOper = IVSrc;
   2937       Type *PostIncTy = PostIncV->getType();
   2938       if (IVTy != PostIncTy) {
   2939         assert(PostIncTy->isPointerTy() && "mixing int/ptr IV types");
   2940         IRBuilder<> Builder(L->getLoopLatch()->getTerminator());
   2941         Builder.SetCurrentDebugLocation(PostIncV->getDebugLoc());
   2942         IVOper = Builder.CreatePointerCast(IVSrc, PostIncTy, "lsr.chain");
   2943       }
   2944       Phi->replaceUsesOfWith(PostIncV, IVOper);
   2945       DeadInsts.emplace_back(PostIncV);
   2946     }
   2947   }
   2948 }
   2949 
   2950 void LSRInstance::CollectFixupsAndInitialFormulae() {
   2951   for (const IVStrideUse &U : IU) {
   2952     Instruction *UserInst = U.getUser();
   2953     // Skip IV users that are part of profitable IV Chains.
   2954     User::op_iterator UseI = std::find(UserInst->op_begin(), UserInst->op_end(),
   2955                                        U.getOperandValToReplace());
   2956     assert(UseI != UserInst->op_end() && "cannot find IV operand");
   2957     if (IVIncSet.count(UseI))
   2958       continue;
   2959 
   2960     // Record the uses.
   2961     LSRFixup &LF = getNewFixup();
   2962     LF.UserInst = UserInst;
   2963     LF.OperandValToReplace = U.getOperandValToReplace();
   2964     LF.PostIncLoops = U.getPostIncLoops();
   2965 
   2966     LSRUse::KindType Kind = LSRUse::Basic;
   2967     MemAccessTy AccessTy;
   2968     if (isAddressUse(LF.UserInst, LF.OperandValToReplace)) {
   2969       Kind = LSRUse::Address;
   2970       AccessTy = getAccessType(LF.UserInst);
   2971     }
   2972 
   2973     const SCEV *S = IU.getExpr(U);
   2974 
   2975     // Equality (== and !=) ICmps are special. We can rewrite (i == N) as
   2976     // (N - i == 0), and this allows (N - i) to be the expression that we work
   2977     // with rather than just N or i, so we can consider the register
   2978     // requirements for both N and i at the same time. Limiting this code to
   2979     // equality icmps is not a problem because all interesting loops use
   2980     // equality icmps, thanks to IndVarSimplify.
   2981     if (ICmpInst *CI = dyn_cast<ICmpInst>(LF.UserInst))
   2982       if (CI->isEquality()) {
   2983         // Swap the operands if needed to put the OperandValToReplace on the
   2984         // left, for consistency.
   2985         Value *NV = CI->getOperand(1);
   2986         if (NV == LF.OperandValToReplace) {
   2987           CI->setOperand(1, CI->getOperand(0));
   2988           CI->setOperand(0, NV);
   2989           NV = CI->getOperand(1);
   2990           Changed = true;
   2991         }
   2992 
   2993         // x == y  -->  x - y == 0
   2994         const SCEV *N = SE.getSCEV(NV);
   2995         if (SE.isLoopInvariant(N, L) && isSafeToExpand(N, SE)) {
   2996           // S is normalized, so normalize N before folding it into S
   2997           // to keep the result normalized.
   2998           N = TransformForPostIncUse(Normalize, N, CI, nullptr,
   2999                                      LF.PostIncLoops, SE, DT);
   3000           Kind = LSRUse::ICmpZero;
   3001           S = SE.getMinusSCEV(N, S);
   3002         }
   3003 
   3004         // -1 and the negations of all interesting strides (except the negation
   3005         // of -1) are now also interesting.
   3006         for (size_t i = 0, e = Factors.size(); i != e; ++i)
   3007           if (Factors[i] != -1)
   3008             Factors.insert(-(uint64_t)Factors[i]);
   3009         Factors.insert(-1);
   3010       }
   3011 
   3012     // Set up the initial formula for this use.
   3013     std::pair<size_t, int64_t> P = getUse(S, Kind, AccessTy);
   3014     LF.LUIdx = P.first;
   3015     LF.Offset = P.second;
   3016     LSRUse &LU = Uses[LF.LUIdx];
   3017     LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
   3018     if (!LU.WidestFixupType ||
   3019         SE.getTypeSizeInBits(LU.WidestFixupType) <
   3020         SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
   3021       LU.WidestFixupType = LF.OperandValToReplace->getType();
   3022 
   3023     // If this is the first use of this LSRUse, give it a formula.
   3024     if (LU.Formulae.empty()) {
   3025       InsertInitialFormula(S, LU, LF.LUIdx);
   3026       CountRegisters(LU.Formulae.back(), LF.LUIdx);
   3027     }
   3028   }
   3029 
   3030   DEBUG(print_fixups(dbgs()));
   3031 }
   3032 
   3033 /// Insert a formula for the given expression into the given use, separating out
   3034 /// loop-variant portions from loop-invariant and loop-computable portions.
   3035 void
   3036 LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) {
   3037   // Mark uses whose expressions cannot be expanded.
   3038   if (!isSafeToExpand(S, SE))
   3039     LU.RigidFormula = true;
   3040 
   3041   Formula F;
   3042   F.initialMatch(S, L, SE);
   3043   bool Inserted = InsertFormula(LU, LUIdx, F);
   3044   assert(Inserted && "Initial formula already exists!"); (void)Inserted;
   3045 }
   3046 
   3047 /// Insert a simple single-register formula for the given expression into the
   3048 /// given use.
   3049 void
   3050 LSRInstance::InsertSupplementalFormula(const SCEV *S,
   3051                                        LSRUse &LU, size_t LUIdx) {
   3052   Formula F;
   3053   F.BaseRegs.push_back(S);
   3054   F.HasBaseReg = true;
   3055   bool Inserted = InsertFormula(LU, LUIdx, F);
   3056   assert(Inserted && "Supplemental formula already exists!"); (void)Inserted;
   3057 }
   3058 
   3059 /// Note which registers are used by the given formula, updating RegUses.
   3060 void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) {
   3061   if (F.ScaledReg)
   3062     RegUses.countRegister(F.ScaledReg, LUIdx);
   3063   for (const SCEV *BaseReg : F.BaseRegs)
   3064     RegUses.countRegister(BaseReg, LUIdx);
   3065 }
   3066 
   3067 /// If the given formula has not yet been inserted, add it to the list, and
   3068 /// return true. Return false otherwise.
   3069 bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) {
   3070   // Do not insert formula that we will not be able to expand.
   3071   assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F) &&
   3072          "Formula is illegal");
   3073   if (!LU.InsertFormula(F))
   3074     return false;
   3075 
   3076   CountRegisters(F, LUIdx);
   3077   return true;
   3078 }
   3079 
   3080 /// Check for other uses of loop-invariant values which we're tracking. These
   3081 /// other uses will pin these values in registers, making them less profitable
   3082 /// for elimination.
   3083 /// TODO: This currently misses non-constant addrec step registers.
   3084 /// TODO: Should this give more weight to users inside the loop?
   3085 void
   3086 LSRInstance::CollectLoopInvariantFixupsAndFormulae() {
   3087   SmallVector<const SCEV *, 8> Worklist(RegUses.begin(), RegUses.end());
   3088   SmallPtrSet<const SCEV *, 32> Visited;
   3089 
   3090   while (!Worklist.empty()) {
   3091     const SCEV *S = Worklist.pop_back_val();
   3092 
   3093     // Don't process the same SCEV twice
   3094     if (!Visited.insert(S).second)
   3095       continue;
   3096 
   3097     if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S))
   3098       Worklist.append(N->op_begin(), N->op_end());
   3099     else if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S))
   3100       Worklist.push_back(C->getOperand());
   3101     else if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
   3102       Worklist.push_back(D->getLHS());
   3103       Worklist.push_back(D->getRHS());
   3104     } else if (const SCEVUnknown *US = dyn_cast<SCEVUnknown>(S)) {
   3105       const Value *V = US->getValue();
   3106       if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
   3107         // Look for instructions defined outside the loop.
   3108         if (L->contains(Inst)) continue;
   3109       } else if (isa<UndefValue>(V))
   3110         // Undef doesn't have a live range, so it doesn't matter.
   3111         continue;
   3112       for (const Use &U : V->uses()) {
   3113         const Instruction *UserInst = dyn_cast<Instruction>(U.getUser());
   3114         // Ignore non-instructions.
   3115         if (!UserInst)
   3116           continue;
   3117         // Ignore instructions in other functions (as can happen with
   3118         // Constants).
   3119         if (UserInst->getParent()->getParent() != L->getHeader()->getParent())
   3120           continue;
   3121         // Ignore instructions not dominated by the loop.
   3122         const BasicBlock *UseBB = !isa<PHINode>(UserInst) ?
   3123           UserInst->getParent() :
   3124           cast<PHINode>(UserInst)->getIncomingBlock(
   3125             PHINode::getIncomingValueNumForOperand(U.getOperandNo()));
   3126         if (!DT.dominates(L->getHeader(), UseBB))
   3127           continue;
   3128         // Don't bother if the instruction is in a BB which ends in an EHPad.
   3129         if (UseBB->getTerminator()->isEHPad())
   3130           continue;
   3131         // Ignore uses which are part of other SCEV expressions, to avoid
   3132         // analyzing them multiple times.
   3133         if (SE.isSCEVable(UserInst->getType())) {
   3134           const SCEV *UserS = SE.getSCEV(const_cast<Instruction *>(UserInst));
   3135           // If the user is a no-op, look through to its uses.
   3136           if (!isa<SCEVUnknown>(UserS))
   3137             continue;
   3138           if (UserS == US) {
   3139             Worklist.push_back(
   3140               SE.getUnknown(const_cast<Instruction *>(UserInst)));
   3141             continue;
   3142           }
   3143         }
   3144         // Ignore icmp instructions which are already being analyzed.
   3145         if (const ICmpInst *ICI = dyn_cast<ICmpInst>(UserInst)) {
   3146           unsigned OtherIdx = !U.getOperandNo();
   3147           Value *OtherOp = const_cast<Value *>(ICI->getOperand(OtherIdx));
   3148           if (SE.hasComputableLoopEvolution(SE.getSCEV(OtherOp), L))
   3149             continue;
   3150         }
   3151 
   3152         LSRFixup &LF = getNewFixup();
   3153         LF.UserInst = const_cast<Instruction *>(UserInst);
   3154         LF.OperandValToReplace = U;
   3155         std::pair<size_t, int64_t> P = getUse(
   3156             S, LSRUse::Basic, MemAccessTy());
   3157         LF.LUIdx = P.first;
   3158         LF.Offset = P.second;
   3159         LSRUse &LU = Uses[LF.LUIdx];
   3160         LU.AllFixupsOutsideLoop &= LF.isUseFullyOutsideLoop(L);
   3161         if (!LU.WidestFixupType ||
   3162             SE.getTypeSizeInBits(LU.WidestFixupType) <
   3163             SE.getTypeSizeInBits(LF.OperandValToReplace->getType()))
   3164           LU.WidestFixupType = LF.OperandValToReplace->getType();
   3165         InsertSupplementalFormula(US, LU, LF.LUIdx);
   3166         CountRegisters(LU.Formulae.back(), Uses.size() - 1);
   3167         break;
   3168       }
   3169     }
   3170   }
   3171 }
   3172 
   3173 /// Split S into subexpressions which can be pulled out into separate
   3174 /// registers. If C is non-null, multiply each subexpression by C.
   3175 ///
   3176 /// Return remainder expression after factoring the subexpressions captured by
   3177 /// Ops. If Ops is complete, return NULL.
   3178 static const SCEV *CollectSubexprs(const SCEV *S, const SCEVConstant *C,
   3179                                    SmallVectorImpl<const SCEV *> &Ops,
   3180                                    const Loop *L,
   3181                                    ScalarEvolution &SE,
   3182                                    unsigned Depth = 0) {
   3183   // Arbitrarily cap recursion to protect compile time.
   3184   if (Depth >= 3)
   3185     return S;
   3186 
   3187   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
   3188     // Break out add operands.
   3189     for (const SCEV *S : Add->operands()) {
   3190       const SCEV *Remainder = CollectSubexprs(S, C, Ops, L, SE, Depth+1);
   3191       if (Remainder)
   3192         Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder);
   3193     }
   3194     return nullptr;
   3195   } else if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
   3196     // Split a non-zero base out of an addrec.
   3197     if (AR->getStart()->isZero())
   3198       return S;
   3199 
   3200     const SCEV *Remainder = CollectSubexprs(AR->getStart(),
   3201                                             C, Ops, L, SE, Depth+1);
   3202     // Split the non-zero AddRec unless it is part of a nested recurrence that
   3203     // does not pertain to this loop.
   3204     if (Remainder && (AR->getLoop() == L || !isa<SCEVAddRecExpr>(Remainder))) {
   3205       Ops.push_back(C ? SE.getMulExpr(C, Remainder) : Remainder);
   3206       Remainder = nullptr;
   3207     }
   3208     if (Remainder != AR->getStart()) {
   3209       if (!Remainder)
   3210         Remainder = SE.getConstant(AR->getType(), 0);
   3211       return SE.getAddRecExpr(Remainder,
   3212                               AR->getStepRecurrence(SE),
   3213                               AR->getLoop(),
   3214                               //FIXME: AR->getNoWrapFlags(SCEV::FlagNW)
   3215                               SCEV::FlagAnyWrap);
   3216     }
   3217   } else if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
   3218     // Break (C * (a + b + c)) into C*a + C*b + C*c.
   3219     if (Mul->getNumOperands() != 2)
   3220       return S;
   3221     if (const SCEVConstant *Op0 =
   3222         dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
   3223       C = C ? cast<SCEVConstant>(SE.getMulExpr(C, Op0)) : Op0;
   3224       const SCEV *Remainder =
   3225         CollectSubexprs(Mul->getOperand(1), C, Ops, L, SE, Depth+1);
   3226       if (Remainder)
   3227         Ops.push_back(SE.getMulExpr(C, Remainder));
   3228       return nullptr;
   3229     }
   3230   }
   3231   return S;
   3232 }
   3233 
   3234 /// \brief Helper function for LSRInstance::GenerateReassociations.
   3235 void LSRInstance::GenerateReassociationsImpl(LSRUse &LU, unsigned LUIdx,
   3236                                              const Formula &Base,
   3237                                              unsigned Depth, size_t Idx,
   3238                                              bool IsScaledReg) {
   3239   const SCEV *BaseReg = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
   3240   SmallVector<const SCEV *, 8> AddOps;
   3241   const SCEV *Remainder = CollectSubexprs(BaseReg, nullptr, AddOps, L, SE);
   3242   if (Remainder)
   3243     AddOps.push_back(Remainder);
   3244 
   3245   if (AddOps.size() == 1)
   3246     return;
   3247 
   3248   for (SmallVectorImpl<const SCEV *>::const_iterator J = AddOps.begin(),
   3249                                                      JE = AddOps.end();
   3250        J != JE; ++J) {
   3251 
   3252     // Loop-variant "unknown" values are uninteresting; we won't be able to
   3253     // do anything meaningful with them.
   3254     if (isa<SCEVUnknown>(*J) && !SE.isLoopInvariant(*J, L))
   3255       continue;
   3256 
   3257     // Don't pull a constant into a register if the constant could be folded
   3258     // into an immediate field.
   3259     if (isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind,
   3260                          LU.AccessTy, *J, Base.getNumRegs() > 1))
   3261       continue;
   3262 
   3263     // Collect all operands except *J.
   3264     SmallVector<const SCEV *, 8> InnerAddOps(
   3265         ((const SmallVector<const SCEV *, 8> &)AddOps).begin(), J);
   3266     InnerAddOps.append(std::next(J),
   3267                        ((const SmallVector<const SCEV *, 8> &)AddOps).end());
   3268 
   3269     // Don't leave just a constant behind in a register if the constant could
   3270     // be folded into an immediate field.
   3271     if (InnerAddOps.size() == 1 &&
   3272         isAlwaysFoldable(TTI, SE, LU.MinOffset, LU.MaxOffset, LU.Kind,
   3273                          LU.AccessTy, InnerAddOps[0], Base.getNumRegs() > 1))
   3274       continue;
   3275 
   3276     const SCEV *InnerSum = SE.getAddExpr(InnerAddOps);
   3277     if (InnerSum->isZero())
   3278       continue;
   3279     Formula F = Base;
   3280 
   3281     // Add the remaining pieces of the add back into the new formula.
   3282     const SCEVConstant *InnerSumSC = dyn_cast<SCEVConstant>(InnerSum);
   3283     if (InnerSumSC && SE.getTypeSizeInBits(InnerSumSC->getType()) <= 64 &&
   3284         TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
   3285                                 InnerSumSC->getValue()->getZExtValue())) {
   3286       F.UnfoldedOffset =
   3287           (uint64_t)F.UnfoldedOffset + InnerSumSC->getValue()->getZExtValue();
   3288       if (IsScaledReg)
   3289         F.ScaledReg = nullptr;
   3290       else
   3291         F.BaseRegs.erase(F.BaseRegs.begin() + Idx);
   3292     } else if (IsScaledReg)
   3293       F.ScaledReg = InnerSum;
   3294     else
   3295       F.BaseRegs[Idx] = InnerSum;
   3296 
   3297     // Add J as its own register, or an unfolded immediate.
   3298     const SCEVConstant *SC = dyn_cast<SCEVConstant>(*J);
   3299     if (SC && SE.getTypeSizeInBits(SC->getType()) <= 64 &&
   3300         TTI.isLegalAddImmediate((uint64_t)F.UnfoldedOffset +
   3301                                 SC->getValue()->getZExtValue()))
   3302       F.UnfoldedOffset =
   3303           (uint64_t)F.UnfoldedOffset + SC->getValue()->getZExtValue();
   3304     else
   3305       F.BaseRegs.push_back(*J);
   3306     // We may have changed the number of register in base regs, adjust the
   3307     // formula accordingly.
   3308     F.canonicalize();
   3309 
   3310     if (InsertFormula(LU, LUIdx, F))
   3311       // If that formula hadn't been seen before, recurse to find more like
   3312       // it.
   3313       GenerateReassociations(LU, LUIdx, LU.Formulae.back(), Depth + 1);
   3314   }
   3315 }
   3316 
   3317 /// Split out subexpressions from adds and the bases of addrecs.
   3318 void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx,
   3319                                          Formula Base, unsigned Depth) {
   3320   assert(Base.isCanonical() && "Input must be in the canonical form");
   3321   // Arbitrarily cap recursion to protect compile time.
   3322   if (Depth >= 3)
   3323     return;
   3324 
   3325   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
   3326     GenerateReassociationsImpl(LU, LUIdx, Base, Depth, i);
   3327 
   3328   if (Base.Scale == 1)
   3329     GenerateReassociationsImpl(LU, LUIdx, Base, Depth,
   3330                                /* Idx */ -1, /* IsScaledReg */ true);
   3331 }
   3332 
   3333 ///  Generate a formula consisting of all of the loop-dominating registers added
   3334 /// into a single register.
   3335 void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx,
   3336                                        Formula Base) {
   3337   // This method is only interesting on a plurality of registers.
   3338   if (Base.BaseRegs.size() + (Base.Scale == 1) <= 1)
   3339     return;
   3340 
   3341   // Flatten the representation, i.e., reg1 + 1*reg2 => reg1 + reg2, before
   3342   // processing the formula.
   3343   Base.unscale();
   3344   Formula F = Base;
   3345   F.BaseRegs.clear();
   3346   SmallVector<const SCEV *, 4> Ops;
   3347   for (const SCEV *BaseReg : Base.BaseRegs) {
   3348     if (SE.properlyDominates(BaseReg, L->getHeader()) &&
   3349         !SE.hasComputableLoopEvolution(BaseReg, L))
   3350       Ops.push_back(BaseReg);
   3351     else
   3352       F.BaseRegs.push_back(BaseReg);
   3353   }
   3354   if (Ops.size() > 1) {
   3355     const SCEV *Sum = SE.getAddExpr(Ops);
   3356     // TODO: If Sum is zero, it probably means ScalarEvolution missed an
   3357     // opportunity to fold something. For now, just ignore such cases
   3358     // rather than proceed with zero in a register.
   3359     if (!Sum->isZero()) {
   3360       F.BaseRegs.push_back(Sum);
   3361       F.canonicalize();
   3362       (void)InsertFormula(LU, LUIdx, F);
   3363     }
   3364   }
   3365 }
   3366 
   3367 /// \brief Helper function for LSRInstance::GenerateSymbolicOffsets.
   3368 void LSRInstance::GenerateSymbolicOffsetsImpl(LSRUse &LU, unsigned LUIdx,
   3369                                               const Formula &Base, size_t Idx,
   3370                                               bool IsScaledReg) {
   3371   const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
   3372   GlobalValue *GV = ExtractSymbol(G, SE);
   3373   if (G->isZero() || !GV)
   3374     return;
   3375   Formula F = Base;
   3376   F.BaseGV = GV;
   3377   if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F))
   3378     return;
   3379   if (IsScaledReg)
   3380     F.ScaledReg = G;
   3381   else
   3382     F.BaseRegs[Idx] = G;
   3383   (void)InsertFormula(LU, LUIdx, F);
   3384 }
   3385 
   3386 /// Generate reuse formulae using symbolic offsets.
   3387 void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx,
   3388                                           Formula Base) {
   3389   // We can't add a symbolic offset if the address already contains one.
   3390   if (Base.BaseGV) return;
   3391 
   3392   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
   3393     GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, i);
   3394   if (Base.Scale == 1)
   3395     GenerateSymbolicOffsetsImpl(LU, LUIdx, Base, /* Idx */ -1,
   3396                                 /* IsScaledReg */ true);
   3397 }
   3398 
   3399 /// \brief Helper function for LSRInstance::GenerateConstantOffsets.
   3400 void LSRInstance::GenerateConstantOffsetsImpl(
   3401     LSRUse &LU, unsigned LUIdx, const Formula &Base,
   3402     const SmallVectorImpl<int64_t> &Worklist, size_t Idx, bool IsScaledReg) {
   3403   const SCEV *G = IsScaledReg ? Base.ScaledReg : Base.BaseRegs[Idx];
   3404   for (int64_t Offset : Worklist) {
   3405     Formula F = Base;
   3406     F.BaseOffset = (uint64_t)Base.BaseOffset - Offset;
   3407     if (isLegalUse(TTI, LU.MinOffset - Offset, LU.MaxOffset - Offset, LU.Kind,
   3408                    LU.AccessTy, F)) {
   3409       // Add the offset to the base register.
   3410       const SCEV *NewG = SE.getAddExpr(SE.getConstant(G->getType(), Offset), G);
   3411       // If it cancelled out, drop the base register, otherwise update it.
   3412       if (NewG->isZero()) {
   3413         if (IsScaledReg) {
   3414           F.Scale = 0;
   3415           F.ScaledReg = nullptr;
   3416         } else
   3417           F.deleteBaseReg(F.BaseRegs[Idx]);
   3418         F.canonicalize();
   3419       } else if (IsScaledReg)
   3420         F.ScaledReg = NewG;
   3421       else
   3422         F.BaseRegs[Idx] = NewG;
   3423 
   3424       (void)InsertFormula(LU, LUIdx, F);
   3425     }
   3426   }
   3427 
   3428   int64_t Imm = ExtractImmediate(G, SE);
   3429   if (G->isZero() || Imm == 0)
   3430     return;
   3431   Formula F = Base;
   3432   F.BaseOffset = (uint64_t)F.BaseOffset + Imm;
   3433   if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F))
   3434     return;
   3435   if (IsScaledReg)
   3436     F.ScaledReg = G;
   3437   else
   3438     F.BaseRegs[Idx] = G;
   3439   (void)InsertFormula(LU, LUIdx, F);
   3440 }
   3441 
   3442 /// GenerateConstantOffsets - Generate reuse formulae using symbolic offsets.
   3443 void LSRInstance::GenerateConstantOffsets(LSRUse &LU, unsigned LUIdx,
   3444                                           Formula Base) {
   3445   // TODO: For now, just add the min and max offset, because it usually isn't
   3446   // worthwhile looking at everything inbetween.
   3447   SmallVector<int64_t, 2> Worklist;
   3448   Worklist.push_back(LU.MinOffset);
   3449   if (LU.MaxOffset != LU.MinOffset)
   3450     Worklist.push_back(LU.MaxOffset);
   3451 
   3452   for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
   3453     GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, i);
   3454   if (Base.Scale == 1)
   3455     GenerateConstantOffsetsImpl(LU, LUIdx, Base, Worklist, /* Idx */ -1,
   3456                                 /* IsScaledReg */ true);
   3457 }
   3458 
   3459 /// For ICmpZero, check to see if we can scale up the comparison. For example, x
   3460 /// == y -> x*c == y*c.
   3461 void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx,
   3462                                          Formula Base) {
   3463   if (LU.Kind != LSRUse::ICmpZero) return;
   3464 
   3465   // Determine the integer type for the base formula.
   3466   Type *IntTy = Base.getType();
   3467   if (!IntTy) return;
   3468   if (SE.getTypeSizeInBits(IntTy) > 64) return;
   3469 
   3470   // Don't do this if there is more than one offset.
   3471   if (LU.MinOffset != LU.MaxOffset) return;
   3472 
   3473   assert(!Base.BaseGV && "ICmpZero use is not legal!");
   3474 
   3475   // Check each interesting stride.
   3476   for (int64_t Factor : Factors) {
   3477     // Check that the multiplication doesn't overflow.
   3478     if (Base.BaseOffset == INT64_MIN && Factor == -1)
   3479       continue;
   3480     int64_t NewBaseOffset = (uint64_t)Base.BaseOffset * Factor;
   3481     if (NewBaseOffset / Factor != Base.BaseOffset)
   3482       continue;
   3483     // If the offset will be truncated at this use, check that it is in bounds.
   3484     if (!IntTy->isPointerTy() &&
   3485         !ConstantInt::isValueValidForType(IntTy, NewBaseOffset))
   3486       continue;
   3487 
   3488     // Check that multiplying with the use offset doesn't overflow.
   3489     int64_t Offset = LU.MinOffset;
   3490     if (Offset == INT64_MIN && Factor == -1)
   3491       continue;
   3492     Offset = (uint64_t)Offset * Factor;
   3493     if (Offset / Factor != LU.MinOffset)
   3494       continue;
   3495     // If the offset will be truncated at this use, check that it is in bounds.
   3496     if (!IntTy->isPointerTy() &&
   3497         !ConstantInt::isValueValidForType(IntTy, Offset))
   3498       continue;
   3499 
   3500     Formula F = Base;
   3501     F.BaseOffset = NewBaseOffset;
   3502 
   3503     // Check that this scale is legal.
   3504     if (!isLegalUse(TTI, Offset, Offset, LU.Kind, LU.AccessTy, F))
   3505       continue;
   3506 
   3507     // Compensate for the use having MinOffset built into it.
   3508     F.BaseOffset = (uint64_t)F.BaseOffset + Offset - LU.MinOffset;
   3509 
   3510     const SCEV *FactorS = SE.getConstant(IntTy, Factor);
   3511 
   3512     // Check that multiplying with each base register doesn't overflow.
   3513     for (size_t i = 0, e = F.BaseRegs.size(); i != e; ++i) {
   3514       F.BaseRegs[i] = SE.getMulExpr(F.BaseRegs[i], FactorS);
   3515       if (getExactSDiv(F.BaseRegs[i], FactorS, SE) != Base.BaseRegs[i])
   3516         goto next;
   3517     }
   3518 
   3519     // Check that multiplying with the scaled register doesn't overflow.
   3520     if (F.ScaledReg) {
   3521       F.ScaledReg = SE.getMulExpr(F.ScaledReg, FactorS);
   3522       if (getExactSDiv(F.ScaledReg, FactorS, SE) != Base.ScaledReg)
   3523         continue;
   3524     }
   3525 
   3526     // Check that multiplying with the unfolded offset doesn't overflow.
   3527     if (F.UnfoldedOffset != 0) {
   3528       if (F.UnfoldedOffset == INT64_MIN && Factor == -1)
   3529         continue;
   3530       F.UnfoldedOffset = (uint64_t)F.UnfoldedOffset * Factor;
   3531       if (F.UnfoldedOffset / Factor != Base.UnfoldedOffset)
   3532         continue;
   3533       // If the offset will be truncated, check that it is in bounds.
   3534       if (!IntTy->isPointerTy() &&
   3535           !ConstantInt::isValueValidForType(IntTy, F.UnfoldedOffset))
   3536         continue;
   3537     }
   3538 
   3539     // If we make it here and it's legal, add it.
   3540     (void)InsertFormula(LU, LUIdx, F);
   3541   next:;
   3542   }
   3543 }
   3544 
   3545 /// Generate stride factor reuse formulae by making use of scaled-offset address
   3546 /// modes, for example.
   3547 void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) {
   3548   // Determine the integer type for the base formula.
   3549   Type *IntTy = Base.getType();
   3550   if (!IntTy) return;
   3551 
   3552   // If this Formula already has a scaled register, we can't add another one.
   3553   // Try to unscale the formula to generate a better scale.
   3554   if (Base.Scale != 0 && !Base.unscale())
   3555     return;
   3556 
   3557   assert(Base.Scale == 0 && "unscale did not did its job!");
   3558 
   3559   // Check each interesting stride.
   3560   for (int64_t Factor : Factors) {
   3561     Base.Scale = Factor;
   3562     Base.HasBaseReg = Base.BaseRegs.size() > 1;
   3563     // Check whether this scale is going to be legal.
   3564     if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
   3565                     Base)) {
   3566       // As a special-case, handle special out-of-loop Basic users specially.
   3567       // TODO: Reconsider this special case.
   3568       if (LU.Kind == LSRUse::Basic &&
   3569           isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LSRUse::Special,
   3570                      LU.AccessTy, Base) &&
   3571           LU.AllFixupsOutsideLoop)
   3572         LU.Kind = LSRUse::Special;
   3573       else
   3574         continue;
   3575     }
   3576     // For an ICmpZero, negating a solitary base register won't lead to
   3577     // new solutions.
   3578     if (LU.Kind == LSRUse::ICmpZero &&
   3579         !Base.HasBaseReg && Base.BaseOffset == 0 && !Base.BaseGV)
   3580       continue;
   3581     // For each addrec base reg, apply the scale, if possible.
   3582     for (size_t i = 0, e = Base.BaseRegs.size(); i != e; ++i)
   3583       if (const SCEVAddRecExpr *AR =
   3584             dyn_cast<SCEVAddRecExpr>(Base.BaseRegs[i])) {
   3585         const SCEV *FactorS = SE.getConstant(IntTy, Factor);
   3586         if (FactorS->isZero())
   3587           continue;
   3588         // Divide out the factor, ignoring high bits, since we'll be
   3589         // scaling the value back up in the end.
   3590         if (const SCEV *Quotient = getExactSDiv(AR, FactorS, SE, true)) {
   3591           // TODO: This could be optimized to avoid all the copying.
   3592           Formula F = Base;
   3593           F.ScaledReg = Quotient;
   3594           F.deleteBaseReg(F.BaseRegs[i]);
   3595           // The canonical representation of 1*reg is reg, which is already in
   3596           // Base. In that case, do not try to insert the formula, it will be
   3597           // rejected anyway.
   3598           if (F.Scale == 1 && F.BaseRegs.empty())
   3599             continue;
   3600           (void)InsertFormula(LU, LUIdx, F);
   3601         }
   3602       }
   3603   }
   3604 }
   3605 
   3606 /// Generate reuse formulae from different IV types.
   3607 void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) {
   3608   // Don't bother truncating symbolic values.
   3609   if (Base.BaseGV) return;
   3610 
   3611   // Determine the integer type for the base formula.
   3612   Type *DstTy = Base.getType();
   3613   if (!DstTy) return;
   3614   DstTy = SE.getEffectiveSCEVType(DstTy);
   3615 
   3616   for (Type *SrcTy : Types) {
   3617     if (SrcTy != DstTy && TTI.isTruncateFree(SrcTy, DstTy)) {
   3618       Formula F = Base;
   3619 
   3620       if (F.ScaledReg) F.ScaledReg = SE.getAnyExtendExpr(F.ScaledReg, SrcTy);
   3621       for (const SCEV *&BaseReg : F.BaseRegs)
   3622         BaseReg = SE.getAnyExtendExpr(BaseReg, SrcTy);
   3623 
   3624       // TODO: This assumes we've done basic processing on all uses and
   3625       // have an idea what the register usage is.
   3626       if (!F.hasRegsUsedByUsesOtherThan(LUIdx, RegUses))
   3627         continue;
   3628 
   3629       (void)InsertFormula(LU, LUIdx, F);
   3630     }
   3631   }
   3632 }
   3633 
   3634 namespace {
   3635 
   3636 /// Helper class for GenerateCrossUseConstantOffsets. It's used to defer
   3637 /// modifications so that the search phase doesn't have to worry about the data
   3638 /// structures moving underneath it.
   3639 struct WorkItem {
   3640   size_t LUIdx;
   3641   int64_t Imm;
   3642   const SCEV *OrigReg;
   3643 
   3644   WorkItem(size_t LI, int64_t I, const SCEV *R)
   3645     : LUIdx(LI), Imm(I), OrigReg(R) {}
   3646 
   3647   void print(raw_ostream &OS) const;
   3648   void dump() const;
   3649 };
   3650 
   3651 }
   3652 
   3653 void WorkItem::print(raw_ostream &OS) const {
   3654   OS << "in formulae referencing " << *OrigReg << " in use " << LUIdx
   3655      << " , add offset " << Imm;
   3656 }
   3657 
   3658 LLVM_DUMP_METHOD
   3659 void WorkItem::dump() const {
   3660   print(errs()); errs() << '\n';
   3661 }
   3662 
   3663 /// Look for registers which are a constant distance apart and try to form reuse
   3664 /// opportunities between them.
   3665 void LSRInstance::GenerateCrossUseConstantOffsets() {
   3666   // Group the registers by their value without any added constant offset.
   3667   typedef std::map<int64_t, const SCEV *> ImmMapTy;
   3668   DenseMap<const SCEV *, ImmMapTy> Map;
   3669   DenseMap<const SCEV *, SmallBitVector> UsedByIndicesMap;
   3670   SmallVector<const SCEV *, 8> Sequence;
   3671   for (const SCEV *Use : RegUses) {
   3672     const SCEV *Reg = Use; // Make a copy for ExtractImmediate to modify.
   3673     int64_t Imm = ExtractImmediate(Reg, SE);
   3674     auto Pair = Map.insert(std::make_pair(Reg, ImmMapTy()));
   3675     if (Pair.second)
   3676       Sequence.push_back(Reg);
   3677     Pair.first->second.insert(std::make_pair(Imm, Use));
   3678     UsedByIndicesMap[Reg] |= RegUses.getUsedByIndices(Use);
   3679   }
   3680 
   3681   // Now examine each set of registers with the same base value. Build up
   3682   // a list of work to do and do the work in a separate step so that we're
   3683   // not adding formulae and register counts while we're searching.
   3684   SmallVector<WorkItem, 32> WorkItems;
   3685   SmallSet<std::pair<size_t, int64_t>, 32> UniqueItems;
   3686   for (const SCEV *Reg : Sequence) {
   3687     const ImmMapTy &Imms = Map.find(Reg)->second;
   3688 
   3689     // It's not worthwhile looking for reuse if there's only one offset.
   3690     if (Imms.size() == 1)
   3691       continue;
   3692 
   3693     DEBUG(dbgs() << "Generating cross-use offsets for " << *Reg << ':';
   3694           for (const auto &Entry : Imms)
   3695             dbgs() << ' ' << Entry.first;
   3696           dbgs() << '\n');
   3697 
   3698     // Examine each offset.
   3699     for (ImmMapTy::const_iterator J = Imms.begin(), JE = Imms.end();
   3700          J != JE; ++J) {
   3701       const SCEV *OrigReg = J->second;
   3702 
   3703       int64_t JImm = J->first;
   3704       const SmallBitVector &UsedByIndices = RegUses.getUsedByIndices(OrigReg);
   3705 
   3706       if (!isa<SCEVConstant>(OrigReg) &&
   3707           UsedByIndicesMap[Reg].count() == 1) {
   3708         DEBUG(dbgs() << "Skipping cross-use reuse for " << *OrigReg << '\n');
   3709         continue;
   3710       }
   3711 
   3712       // Conservatively examine offsets between this orig reg a few selected
   3713       // other orig regs.
   3714       ImmMapTy::const_iterator OtherImms[] = {
   3715         Imms.begin(), std::prev(Imms.end()),
   3716         Imms.lower_bound((Imms.begin()->first + std::prev(Imms.end())->first) /
   3717                          2)
   3718       };
   3719       for (size_t i = 0, e = array_lengthof(OtherImms); i != e; ++i) {
   3720         ImmMapTy::const_iterator M = OtherImms[i];
   3721         if (M == J || M == JE) continue;
   3722 
   3723         // Compute the difference between the two.
   3724         int64_t Imm = (uint64_t)JImm - M->first;
   3725         for (int LUIdx = UsedByIndices.find_first(); LUIdx != -1;
   3726              LUIdx = UsedByIndices.find_next(LUIdx))
   3727           // Make a memo of this use, offset, and register tuple.
   3728           if (UniqueItems.insert(std::make_pair(LUIdx, Imm)).second)
   3729             WorkItems.push_back(WorkItem(LUIdx, Imm, OrigReg));
   3730       }
   3731     }
   3732   }
   3733 
   3734   Map.clear();
   3735   Sequence.clear();
   3736   UsedByIndicesMap.clear();
   3737   UniqueItems.clear();
   3738 
   3739   // Now iterate through the worklist and add new formulae.
   3740   for (const WorkItem &WI : WorkItems) {
   3741     size_t LUIdx = WI.LUIdx;
   3742     LSRUse &LU = Uses[LUIdx];
   3743     int64_t Imm = WI.Imm;
   3744     const SCEV *OrigReg = WI.OrigReg;
   3745 
   3746     Type *IntTy = SE.getEffectiveSCEVType(OrigReg->getType());
   3747     const SCEV *NegImmS = SE.getSCEV(ConstantInt::get(IntTy, -(uint64_t)Imm));
   3748     unsigned BitWidth = SE.getTypeSizeInBits(IntTy);
   3749 
   3750     // TODO: Use a more targeted data structure.
   3751     for (size_t L = 0, LE = LU.Formulae.size(); L != LE; ++L) {
   3752       Formula F = LU.Formulae[L];
   3753       // FIXME: The code for the scaled and unscaled registers looks
   3754       // very similar but slightly different. Investigate if they
   3755       // could be merged. That way, we would not have to unscale the
   3756       // Formula.
   3757       F.unscale();
   3758       // Use the immediate in the scaled register.
   3759       if (F.ScaledReg == OrigReg) {
   3760         int64_t Offset = (uint64_t)F.BaseOffset + Imm * (uint64_t)F.Scale;
   3761         // Don't create 50 + reg(-50).
   3762         if (F.referencesReg(SE.getSCEV(
   3763                    ConstantInt::get(IntTy, -(uint64_t)Offset))))
   3764           continue;
   3765         Formula NewF = F;
   3766         NewF.BaseOffset = Offset;
   3767         if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
   3768                         NewF))
   3769           continue;
   3770         NewF.ScaledReg = SE.getAddExpr(NegImmS, NewF.ScaledReg);
   3771 
   3772         // If the new scale is a constant in a register, and adding the constant
   3773         // value to the immediate would produce a value closer to zero than the
   3774         // immediate itself, then the formula isn't worthwhile.
   3775         if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewF.ScaledReg))
   3776           if (C->getValue()->isNegative() != (NewF.BaseOffset < 0) &&
   3777               (C->getAPInt().abs() * APInt(BitWidth, F.Scale))
   3778                   .ule(std::abs(NewF.BaseOffset)))
   3779             continue;
   3780 
   3781         // OK, looks good.
   3782         NewF.canonicalize();
   3783         (void)InsertFormula(LU, LUIdx, NewF);
   3784       } else {
   3785         // Use the immediate in a base register.
   3786         for (size_t N = 0, NE = F.BaseRegs.size(); N != NE; ++N) {
   3787           const SCEV *BaseReg = F.BaseRegs[N];
   3788           if (BaseReg != OrigReg)
   3789             continue;
   3790           Formula NewF = F;
   3791           NewF.BaseOffset = (uint64_t)NewF.BaseOffset + Imm;
   3792           if (!isLegalUse(TTI, LU.MinOffset, LU.MaxOffset,
   3793                           LU.Kind, LU.AccessTy, NewF)) {
   3794             if (!TTI.isLegalAddImmediate((uint64_t)NewF.UnfoldedOffset + Imm))
   3795               continue;
   3796             NewF = F;
   3797             NewF.UnfoldedOffset = (uint64_t)NewF.UnfoldedOffset + Imm;
   3798           }
   3799           NewF.BaseRegs[N] = SE.getAddExpr(NegImmS, BaseReg);
   3800 
   3801           // If the new formula has a constant in a register, and adding the
   3802           // constant value to the immediate would produce a value closer to
   3803           // zero than the immediate itself, then the formula isn't worthwhile.
   3804           for (const SCEV *NewReg : NewF.BaseRegs)
   3805             if (const SCEVConstant *C = dyn_cast<SCEVConstant>(NewReg))
   3806               if ((C->getAPInt() + NewF.BaseOffset)
   3807                       .abs()
   3808                       .slt(std::abs(NewF.BaseOffset)) &&
   3809                   (C->getAPInt() + NewF.BaseOffset).countTrailingZeros() >=
   3810                       countTrailingZeros<uint64_t>(NewF.BaseOffset))
   3811                 goto skip_formula;
   3812 
   3813           // Ok, looks good.
   3814           NewF.canonicalize();
   3815           (void)InsertFormula(LU, LUIdx, NewF);
   3816           break;
   3817         skip_formula:;
   3818         }
   3819       }
   3820     }
   3821   }
   3822 }
   3823 
   3824 /// Generate formulae for each use.
   3825 void
   3826 LSRInstance::GenerateAllReuseFormulae() {
   3827   // This is split into multiple loops so that hasRegsUsedByUsesOtherThan
   3828   // queries are more precise.
   3829   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
   3830     LSRUse &LU = Uses[LUIdx];
   3831     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
   3832       GenerateReassociations(LU, LUIdx, LU.Formulae[i]);
   3833     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
   3834       GenerateCombinations(LU, LUIdx, LU.Formulae[i]);
   3835   }
   3836   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
   3837     LSRUse &LU = Uses[LUIdx];
   3838     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
   3839       GenerateSymbolicOffsets(LU, LUIdx, LU.Formulae[i]);
   3840     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
   3841       GenerateConstantOffsets(LU, LUIdx, LU.Formulae[i]);
   3842     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
   3843       GenerateICmpZeroScales(LU, LUIdx, LU.Formulae[i]);
   3844     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
   3845       GenerateScales(LU, LUIdx, LU.Formulae[i]);
   3846   }
   3847   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
   3848     LSRUse &LU = Uses[LUIdx];
   3849     for (size_t i = 0, f = LU.Formulae.size(); i != f; ++i)
   3850       GenerateTruncates(LU, LUIdx, LU.Formulae[i]);
   3851   }
   3852 
   3853   GenerateCrossUseConstantOffsets();
   3854 
   3855   DEBUG(dbgs() << "\n"
   3856                   "After generating reuse formulae:\n";
   3857         print_uses(dbgs()));
   3858 }
   3859 
   3860 /// If there are multiple formulae with the same set of registers used
   3861 /// by other uses, pick the best one and delete the others.
   3862 void LSRInstance::FilterOutUndesirableDedicatedRegisters() {
   3863   DenseSet<const SCEV *> VisitedRegs;
   3864   SmallPtrSet<const SCEV *, 16> Regs;
   3865   SmallPtrSet<const SCEV *, 16> LoserRegs;
   3866 #ifndef NDEBUG
   3867   bool ChangedFormulae = false;
   3868 #endif
   3869 
   3870   // Collect the best formula for each unique set of shared registers. This
   3871   // is reset for each use.
   3872   typedef DenseMap<SmallVector<const SCEV *, 4>, size_t, UniquifierDenseMapInfo>
   3873     BestFormulaeTy;
   3874   BestFormulaeTy BestFormulae;
   3875 
   3876   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
   3877     LSRUse &LU = Uses[LUIdx];
   3878     DEBUG(dbgs() << "Filtering for use "; LU.print(dbgs()); dbgs() << '\n');
   3879 
   3880     bool Any = false;
   3881     for (size_t FIdx = 0, NumForms = LU.Formulae.size();
   3882          FIdx != NumForms; ++FIdx) {
   3883       Formula &F = LU.Formulae[FIdx];
   3884 
   3885       // Some formulas are instant losers. For example, they may depend on
   3886       // nonexistent AddRecs from other loops. These need to be filtered
   3887       // immediately, otherwise heuristics could choose them over others leading
   3888       // to an unsatisfactory solution. Passing LoserRegs into RateFormula here
   3889       // avoids the need to recompute this information across formulae using the
   3890       // same bad AddRec. Passing LoserRegs is also essential unless we remove
   3891       // the corresponding bad register from the Regs set.
   3892       Cost CostF;
   3893       Regs.clear();
   3894       CostF.RateFormula(TTI, F, Regs, VisitedRegs, L, LU.Offsets, SE, DT, LU,
   3895                         &LoserRegs);
   3896       if (CostF.isLoser()) {
   3897         // During initial formula generation, undesirable formulae are generated
   3898         // by uses within other loops that have some non-trivial address mode or
   3899         // use the postinc form of the IV. LSR needs to provide these formulae
   3900         // as the basis of rediscovering the desired formula that uses an AddRec
   3901         // corresponding to the existing phi. Once all formulae have been
   3902         // generated, these initial losers may be pruned.
   3903         DEBUG(dbgs() << "  Filtering loser "; F.print(dbgs());
   3904               dbgs() << "\n");
   3905       }
   3906       else {
   3907         SmallVector<const SCEV *, 4> Key;
   3908         for (const SCEV *Reg : F.BaseRegs) {
   3909           if (RegUses.isRegUsedByUsesOtherThan(Reg, LUIdx))
   3910             Key.push_back(Reg);
   3911         }
   3912         if (F.ScaledReg &&
   3913             RegUses.isRegUsedByUsesOtherThan(F.ScaledReg, LUIdx))
   3914           Key.push_back(F.ScaledReg);
   3915         // Unstable sort by host order ok, because this is only used for
   3916         // uniquifying.
   3917         std::sort(Key.begin(), Key.end());
   3918 
   3919         std::pair<BestFormulaeTy::const_iterator, bool> P =
   3920           BestFormulae.insert(std::make_pair(Key, FIdx));
   3921         if (P.second)
   3922           continue;
   3923 
   3924         Formula &Best = LU.Formulae[P.first->second];
   3925 
   3926         Cost CostBest;
   3927         Regs.clear();
   3928         CostBest.RateFormula(TTI, Best, Regs, VisitedRegs, L, LU.Offsets, SE,
   3929                              DT, LU);
   3930         if (CostF < CostBest)
   3931           std::swap(F, Best);
   3932         DEBUG(dbgs() << "  Filtering out formula "; F.print(dbgs());
   3933               dbgs() << "\n"
   3934                         "    in favor of formula "; Best.print(dbgs());
   3935               dbgs() << '\n');
   3936       }
   3937 #ifndef NDEBUG
   3938       ChangedFormulae = true;
   3939 #endif
   3940       LU.DeleteFormula(F);
   3941       --FIdx;
   3942       --NumForms;
   3943       Any = true;
   3944     }
   3945 
   3946     // Now that we've filtered out some formulae, recompute the Regs set.
   3947     if (Any)
   3948       LU.RecomputeRegs(LUIdx, RegUses);
   3949 
   3950     // Reset this to prepare for the next use.
   3951     BestFormulae.clear();
   3952   }
   3953 
   3954   DEBUG(if (ChangedFormulae) {
   3955           dbgs() << "\n"
   3956                     "After filtering out undesirable candidates:\n";
   3957           print_uses(dbgs());
   3958         });
   3959 }
   3960 
   3961 // This is a rough guess that seems to work fairly well.
   3962 static const size_t ComplexityLimit = UINT16_MAX;
   3963 
   3964 /// Estimate the worst-case number of solutions the solver might have to
   3965 /// consider. It almost never considers this many solutions because it prune the
   3966 /// search space, but the pruning isn't always sufficient.
   3967 size_t LSRInstance::EstimateSearchSpaceComplexity() const {
   3968   size_t Power = 1;
   3969   for (const LSRUse &LU : Uses) {
   3970     size_t FSize = LU.Formulae.size();
   3971     if (FSize >= ComplexityLimit) {
   3972       Power = ComplexityLimit;
   3973       break;
   3974     }
   3975     Power *= FSize;
   3976     if (Power >= ComplexityLimit)
   3977       break;
   3978   }
   3979   return Power;
   3980 }
   3981 
   3982 /// When one formula uses a superset of the registers of another formula, it
   3983 /// won't help reduce register pressure (though it may not necessarily hurt
   3984 /// register pressure); remove it to simplify the system.
   3985 void LSRInstance::NarrowSearchSpaceByDetectingSupersets() {
   3986   if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
   3987     DEBUG(dbgs() << "The search space is too complex.\n");
   3988 
   3989     DEBUG(dbgs() << "Narrowing the search space by eliminating formulae "
   3990                     "which use a superset of registers used by other "
   3991                     "formulae.\n");
   3992 
   3993     for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
   3994       LSRUse &LU = Uses[LUIdx];
   3995       bool Any = false;
   3996       for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
   3997         Formula &F = LU.Formulae[i];
   3998         // Look for a formula with a constant or GV in a register. If the use
   3999         // also has a formula with that same value in an immediate field,
   4000         // delete the one that uses a register.
   4001         for (SmallVectorImpl<const SCEV *>::const_iterator
   4002              I = F.BaseRegs.begin(), E = F.BaseRegs.end(); I != E; ++I) {
   4003           if (const SCEVConstant *C = dyn_cast<SCEVConstant>(*I)) {
   4004             Formula NewF = F;
   4005             NewF.BaseOffset += C->getValue()->getSExtValue();
   4006             NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
   4007                                 (I - F.BaseRegs.begin()));
   4008             if (LU.HasFormulaWithSameRegs(NewF)) {
   4009               DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n');
   4010               LU.DeleteFormula(F);
   4011               --i;
   4012               --e;
   4013               Any = true;
   4014               break;
   4015             }
   4016           } else if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(*I)) {
   4017             if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue()))
   4018               if (!F.BaseGV) {
   4019                 Formula NewF = F;
   4020                 NewF.BaseGV = GV;
   4021                 NewF.BaseRegs.erase(NewF.BaseRegs.begin() +
   4022                                     (I - F.BaseRegs.begin()));
   4023                 if (LU.HasFormulaWithSameRegs(NewF)) {
   4024                   DEBUG(dbgs() << "  Deleting "; F.print(dbgs());
   4025                         dbgs() << '\n');
   4026                   LU.DeleteFormula(F);
   4027                   --i;
   4028                   --e;
   4029                   Any = true;
   4030                   break;
   4031                 }
   4032               }
   4033           }
   4034         }
   4035       }
   4036       if (Any)
   4037         LU.RecomputeRegs(LUIdx, RegUses);
   4038     }
   4039 
   4040     DEBUG(dbgs() << "After pre-selection:\n";
   4041           print_uses(dbgs()));
   4042   }
   4043 }
   4044 
   4045 /// When there are many registers for expressions like A, A+1, A+2, etc.,
   4046 /// allocate a single register for them.
   4047 void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() {
   4048   if (EstimateSearchSpaceComplexity() < ComplexityLimit)
   4049     return;
   4050 
   4051   DEBUG(dbgs() << "The search space is too complex.\n"
   4052                   "Narrowing the search space by assuming that uses separated "
   4053                   "by a constant offset will use the same registers.\n");
   4054 
   4055   // This is especially useful for unrolled loops.
   4056 
   4057   for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
   4058     LSRUse &LU = Uses[LUIdx];
   4059     for (const Formula &F : LU.Formulae) {
   4060       if (F.BaseOffset == 0 || (F.Scale != 0 && F.Scale != 1))
   4061         continue;
   4062 
   4063       LSRUse *LUThatHas = FindUseWithSimilarFormula(F, LU);
   4064       if (!LUThatHas)
   4065         continue;
   4066 
   4067       if (!reconcileNewOffset(*LUThatHas, F.BaseOffset, /*HasBaseReg=*/ false,
   4068                               LU.Kind, LU.AccessTy))
   4069         continue;
   4070 
   4071       DEBUG(dbgs() << "  Deleting use "; LU.print(dbgs()); dbgs() << '\n');
   4072 
   4073       LUThatHas->AllFixupsOutsideLoop &= LU.AllFixupsOutsideLoop;
   4074 
   4075       // Update the relocs to reference the new use.
   4076       for (LSRFixup &Fixup : Fixups) {
   4077         if (Fixup.LUIdx == LUIdx) {
   4078           Fixup.LUIdx = LUThatHas - &Uses.front();
   4079           Fixup.Offset += F.BaseOffset;
   4080           // Add the new offset to LUThatHas' offset list.
   4081           if (LUThatHas->Offsets.back() != Fixup.Offset) {
   4082             LUThatHas->Offsets.push_back(Fixup.Offset);
   4083             if (Fixup.Offset > LUThatHas->MaxOffset)
   4084               LUThatHas->MaxOffset = Fixup.Offset;
   4085             if (Fixup.Offset < LUThatHas->MinOffset)
   4086               LUThatHas->MinOffset = Fixup.Offset;
   4087           }
   4088           DEBUG(dbgs() << "New fixup has offset " << Fixup.Offset << '\n');
   4089         }
   4090         if (Fixup.LUIdx == NumUses-1)
   4091           Fixup.LUIdx = LUIdx;
   4092       }
   4093 
   4094       // Delete formulae from the new use which are no longer legal.
   4095       bool Any = false;
   4096       for (size_t i = 0, e = LUThatHas->Formulae.size(); i != e; ++i) {
   4097         Formula &F = LUThatHas->Formulae[i];
   4098         if (!isLegalUse(TTI, LUThatHas->MinOffset, LUThatHas->MaxOffset,
   4099                         LUThatHas->Kind, LUThatHas->AccessTy, F)) {
   4100           DEBUG(dbgs() << "  Deleting "; F.print(dbgs());
   4101                 dbgs() << '\n');
   4102           LUThatHas->DeleteFormula(F);
   4103           --i;
   4104           --e;
   4105           Any = true;
   4106         }
   4107       }
   4108 
   4109       if (Any)
   4110         LUThatHas->RecomputeRegs(LUThatHas - &Uses.front(), RegUses);
   4111 
   4112       // Delete the old use.
   4113       DeleteUse(LU, LUIdx);
   4114       --LUIdx;
   4115       --NumUses;
   4116       break;
   4117     }
   4118   }
   4119 
   4120   DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
   4121 }
   4122 
   4123 /// Call FilterOutUndesirableDedicatedRegisters again, if necessary, now that
   4124 /// we've done more filtering, as it may be able to find more formulae to
   4125 /// eliminate.
   4126 void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){
   4127   if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
   4128     DEBUG(dbgs() << "The search space is too complex.\n");
   4129 
   4130     DEBUG(dbgs() << "Narrowing the search space by re-filtering out "
   4131                     "undesirable dedicated registers.\n");
   4132 
   4133     FilterOutUndesirableDedicatedRegisters();
   4134 
   4135     DEBUG(dbgs() << "After pre-selection:\n";
   4136           print_uses(dbgs()));
   4137   }
   4138 }
   4139 
   4140 /// Pick a register which seems likely to be profitable, and then in any use
   4141 /// which has any reference to that register, delete all formulae which do not
   4142 /// reference that register.
   4143 void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() {
   4144   // With all other options exhausted, loop until the system is simple
   4145   // enough to handle.
   4146   SmallPtrSet<const SCEV *, 4> Taken;
   4147   while (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
   4148     // Ok, we have too many of formulae on our hands to conveniently handle.
   4149     // Use a rough heuristic to thin out the list.
   4150     DEBUG(dbgs() << "The search space is too complex.\n");
   4151 
   4152     // Pick the register which is used by the most LSRUses, which is likely
   4153     // to be a good reuse register candidate.
   4154     const SCEV *Best = nullptr;
   4155     unsigned BestNum = 0;
   4156     for (const SCEV *Reg : RegUses) {
   4157       if (Taken.count(Reg))
   4158         continue;
   4159       if (!Best)
   4160         Best = Reg;
   4161       else {
   4162         unsigned Count = RegUses.getUsedByIndices(Reg).count();
   4163         if (Count > BestNum) {
   4164           Best = Reg;
   4165           BestNum = Count;
   4166         }
   4167       }
   4168     }
   4169 
   4170     DEBUG(dbgs() << "Narrowing the search space by assuming " << *Best
   4171                  << " will yield profitable reuse.\n");
   4172     Taken.insert(Best);
   4173 
   4174     // In any use with formulae which references this register, delete formulae
   4175     // which don't reference it.
   4176     for (size_t LUIdx = 0, NumUses = Uses.size(); LUIdx != NumUses; ++LUIdx) {
   4177       LSRUse &LU = Uses[LUIdx];
   4178       if (!LU.Regs.count(Best)) continue;
   4179 
   4180       bool Any = false;
   4181       for (size_t i = 0, e = LU.Formulae.size(); i != e; ++i) {
   4182         Formula &F = LU.Formulae[i];
   4183         if (!F.referencesReg(Best)) {
   4184           DEBUG(dbgs() << "  Deleting "; F.print(dbgs()); dbgs() << '\n');
   4185           LU.DeleteFormula(F);
   4186           --e;
   4187           --i;
   4188           Any = true;
   4189           assert(e != 0 && "Use has no formulae left! Is Regs inconsistent?");
   4190           continue;
   4191         }
   4192       }
   4193 
   4194       if (Any)
   4195         LU.RecomputeRegs(LUIdx, RegUses);
   4196     }
   4197 
   4198     DEBUG(dbgs() << "After pre-selection:\n";
   4199           print_uses(dbgs()));
   4200   }
   4201 }
   4202 
   4203 /// If there are an extraordinary number of formulae to choose from, use some
   4204 /// rough heuristics to prune down the number of formulae. This keeps the main
   4205 /// solver from taking an extraordinary amount of time in some worst-case
   4206 /// scenarios.
   4207 void LSRInstance::NarrowSearchSpaceUsingHeuristics() {
   4208   NarrowSearchSpaceByDetectingSupersets();
   4209   NarrowSearchSpaceByCollapsingUnrolledCode();
   4210   NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters();
   4211   NarrowSearchSpaceByPickingWinnerRegs();
   4212 }
   4213 
   4214 /// This is the recursive solver.
   4215 void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
   4216                                Cost &SolutionCost,
   4217                                SmallVectorImpl<const Formula *> &Workspace,
   4218                                const Cost &CurCost,
   4219                                const SmallPtrSet<const SCEV *, 16> &CurRegs,
   4220                                DenseSet<const SCEV *> &VisitedRegs) const {
   4221   // Some ideas:
   4222   //  - prune more:
   4223   //    - use more aggressive filtering
   4224   //    - sort the formula so that the most profitable solutions are found first
   4225   //    - sort the uses too
   4226   //  - search faster:
   4227   //    - don't compute a cost, and then compare. compare while computing a cost
   4228   //      and bail early.
   4229   //    - track register sets with SmallBitVector
   4230 
   4231   const LSRUse &LU = Uses[Workspace.size()];
   4232 
   4233   // If this use references any register that's already a part of the
   4234   // in-progress solution, consider it a requirement that a formula must
   4235   // reference that register in order to be considered. This prunes out
   4236   // unprofitable searching.
   4237   SmallSetVector<const SCEV *, 4> ReqRegs;
   4238   for (const SCEV *S : CurRegs)
   4239     if (LU.Regs.count(S))
   4240       ReqRegs.insert(S);
   4241 
   4242   SmallPtrSet<const SCEV *, 16> NewRegs;
   4243   Cost NewCost;
   4244   for (const Formula &F : LU.Formulae) {
   4245     // Ignore formulae which may not be ideal in terms of register reuse of
   4246     // ReqRegs.  The formula should use all required registers before
   4247     // introducing new ones.
   4248     int NumReqRegsToFind = std::min(F.getNumRegs(), ReqRegs.size());
   4249     for (const SCEV *Reg : ReqRegs) {
   4250       if ((F.ScaledReg && F.ScaledReg == Reg) ||
   4251           std::find(F.BaseRegs.begin(), F.BaseRegs.end(), Reg) !=
   4252           F.BaseRegs.end()) {
   4253         --NumReqRegsToFind;
   4254         if (NumReqRegsToFind == 0)
   4255           break;
   4256       }
   4257     }
   4258     if (NumReqRegsToFind != 0) {
   4259       // If none of the formulae satisfied the required registers, then we could
   4260       // clear ReqRegs and try again. Currently, we simply give up in this case.
   4261       continue;
   4262     }
   4263 
   4264     // Evaluate the cost of the current formula. If it's already worse than
   4265     // the current best, prune the search at that point.
   4266     NewCost = CurCost;
   4267     NewRegs = CurRegs;
   4268     NewCost.RateFormula(TTI, F, NewRegs, VisitedRegs, L, LU.Offsets, SE, DT,
   4269                         LU);
   4270     if (NewCost < SolutionCost) {
   4271       Workspace.push_back(&F);
   4272       if (Workspace.size() != Uses.size()) {
   4273         SolveRecurse(Solution, SolutionCost, Workspace, NewCost,
   4274                      NewRegs, VisitedRegs);
   4275         if (F.getNumRegs() == 1 && Workspace.size() == 1)
   4276           VisitedRegs.insert(F.ScaledReg ? F.ScaledReg : F.BaseRegs[0]);
   4277       } else {
   4278         DEBUG(dbgs() << "New best at "; NewCost.print(dbgs());
   4279               dbgs() << ".\n Regs:";
   4280               for (const SCEV *S : NewRegs)
   4281                 dbgs() << ' ' << *S;
   4282               dbgs() << '\n');
   4283 
   4284         SolutionCost = NewCost;
   4285         Solution = Workspace;
   4286       }
   4287       Workspace.pop_back();
   4288     }
   4289   }
   4290 }
   4291 
   4292 /// Choose one formula from each use. Return the results in the given Solution
   4293 /// vector.
   4294 void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const {
   4295   SmallVector<const Formula *, 8> Workspace;
   4296   Cost SolutionCost;
   4297   SolutionCost.Lose();
   4298   Cost CurCost;
   4299   SmallPtrSet<const SCEV *, 16> CurRegs;
   4300   DenseSet<const SCEV *> VisitedRegs;
   4301   Workspace.reserve(Uses.size());
   4302 
   4303   // SolveRecurse does all the work.
   4304   SolveRecurse(Solution, SolutionCost, Workspace, CurCost,
   4305                CurRegs, VisitedRegs);
   4306   if (Solution.empty()) {
   4307     DEBUG(dbgs() << "\nNo Satisfactory Solution\n");
   4308     return;
   4309   }
   4310 
   4311   // Ok, we've now made all our decisions.
   4312   DEBUG(dbgs() << "\n"
   4313                   "The chosen solution requires "; SolutionCost.print(dbgs());
   4314         dbgs() << ":\n";
   4315         for (size_t i = 0, e = Uses.size(); i != e; ++i) {
   4316           dbgs() << "  ";
   4317           Uses[i].print(dbgs());
   4318           dbgs() << "\n"
   4319                     "    ";
   4320           Solution[i]->print(dbgs());
   4321           dbgs() << '\n';
   4322         });
   4323 
   4324   assert(Solution.size() == Uses.size() && "Malformed solution!");
   4325 }
   4326 
   4327 /// Helper for AdjustInsertPositionForExpand. Climb up the dominator tree far as
   4328 /// we can go while still being dominated by the input positions. This helps
   4329 /// canonicalize the insert position, which encourages sharing.
   4330 BasicBlock::iterator
   4331 LSRInstance::HoistInsertPosition(BasicBlock::iterator IP,
   4332                                  const SmallVectorImpl<Instruction *> &Inputs)
   4333                                                                          const {
   4334   for (;;) {
   4335     const Loop *IPLoop = LI.getLoopFor(IP->getParent());
   4336     unsigned IPLoopDepth = IPLoop ? IPLoop->getLoopDepth() : 0;
   4337 
   4338     BasicBlock *IDom;
   4339     for (DomTreeNode *Rung = DT.getNode(IP->getParent()); ; ) {
   4340       if (!Rung) return IP;
   4341       Rung = Rung->getIDom();
   4342       if (!Rung) return IP;
   4343       IDom = Rung->getBlock();
   4344 
   4345       // Don't climb into a loop though.
   4346       const Loop *IDomLoop = LI.getLoopFor(IDom);
   4347       unsigned IDomDepth = IDomLoop ? IDomLoop->getLoopDepth() : 0;
   4348       if (IDomDepth <= IPLoopDepth &&
   4349           (IDomDepth != IPLoopDepth || IDomLoop == IPLoop))
   4350         break;
   4351     }
   4352 
   4353     bool AllDominate = true;
   4354     Instruction *BetterPos = nullptr;
   4355     Instruction *Tentative = IDom->getTerminator();
   4356     for (Instruction *Inst : Inputs) {
   4357       if (Inst == Tentative || !DT.dominates(Inst, Tentative)) {
   4358         AllDominate = false;
   4359         break;
   4360       }
   4361       // Attempt to find an insert position in the middle of the block,
   4362       // instead of at the end, so that it can be used for other expansions.
   4363       if (IDom == Inst->getParent() &&
   4364           (!BetterPos || !DT.dominates(Inst, BetterPos)))
   4365         BetterPos = &*std::next(BasicBlock::iterator(Inst));
   4366     }
   4367     if (!AllDominate)
   4368       break;
   4369     if (BetterPos)
   4370       IP = BetterPos->getIterator();
   4371     else
   4372       IP = Tentative->getIterator();
   4373   }
   4374 
   4375   return IP;
   4376 }
   4377 
   4378 /// Determine an input position which will be dominated by the operands and
   4379 /// which will dominate the result.
   4380 BasicBlock::iterator
   4381 LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP,
   4382                                            const LSRFixup &LF,
   4383                                            const LSRUse &LU,
   4384                                            SCEVExpander &Rewriter) const {
   4385   // Collect some instructions which must be dominated by the
   4386   // expanding replacement. These must be dominated by any operands that
   4387   // will be required in the expansion.
   4388   SmallVector<Instruction *, 4> Inputs;
   4389   if (Instruction *I = dyn_cast<Instruction>(LF.OperandValToReplace))
   4390     Inputs.push_back(I);
   4391   if (LU.Kind == LSRUse::ICmpZero)
   4392     if (Instruction *I =
   4393           dyn_cast<Instruction>(cast<ICmpInst>(LF.UserInst)->getOperand(1)))
   4394       Inputs.push_back(I);
   4395   if (LF.PostIncLoops.count(L)) {
   4396     if (LF.isUseFullyOutsideLoop(L))
   4397       Inputs.push_back(L->getLoopLatch()->getTerminator());
   4398     else
   4399       Inputs.push_back(IVIncInsertPos);
   4400   }
   4401   // The expansion must also be dominated by the increment positions of any
   4402   // loops it for which it is using post-inc mode.
   4403   for (const Loop *PIL : LF.PostIncLoops) {
   4404     if (PIL == L) continue;
   4405 
   4406     // Be dominated by the loop exit.
   4407     SmallVector<BasicBlock *, 4> ExitingBlocks;
   4408     PIL->getExitingBlocks(ExitingBlocks);
   4409     if (!ExitingBlocks.empty()) {
   4410       BasicBlock *BB = ExitingBlocks[0];
   4411       for (unsigned i = 1, e = ExitingBlocks.size(); i != e; ++i)
   4412         BB = DT.findNearestCommonDominator(BB, ExitingBlocks[i]);
   4413       Inputs.push_back(BB->getTerminator());
   4414     }
   4415   }
   4416 
   4417   assert(!isa<PHINode>(LowestIP) && !LowestIP->isEHPad()
   4418          && !isa<DbgInfoIntrinsic>(LowestIP) &&
   4419          "Insertion point must be a normal instruction");
   4420 
   4421   // Then, climb up the immediate dominator tree as far as we can go while
   4422   // still being dominated by the input positions.
   4423   BasicBlock::iterator IP = HoistInsertPosition(LowestIP, Inputs);
   4424 
   4425   // Don't insert instructions before PHI nodes.
   4426   while (isa<PHINode>(IP)) ++IP;
   4427 
   4428   // Ignore landingpad instructions.
   4429   while (!isa<TerminatorInst>(IP) && IP->isEHPad()) ++IP;
   4430 
   4431   // Ignore debug intrinsics.
   4432   while (isa<DbgInfoIntrinsic>(IP)) ++IP;
   4433 
   4434   // Set IP below instructions recently inserted by SCEVExpander. This keeps the
   4435   // IP consistent across expansions and allows the previously inserted
   4436   // instructions to be reused by subsequent expansion.
   4437   while (Rewriter.isInsertedInstruction(&*IP) && IP != LowestIP)
   4438     ++IP;
   4439 
   4440   return IP;
   4441 }
   4442 
   4443 /// Emit instructions for the leading candidate expression for this LSRUse (this
   4444 /// is called "expanding").
   4445 Value *LSRInstance::Expand(const LSRFixup &LF,
   4446                            const Formula &F,
   4447                            BasicBlock::iterator IP,
   4448                            SCEVExpander &Rewriter,
   4449                            SmallVectorImpl<WeakVH> &DeadInsts) const {
   4450   const LSRUse &LU = Uses[LF.LUIdx];
   4451   if (LU.RigidFormula)
   4452     return LF.OperandValToReplace;
   4453 
   4454   // Determine an input position which will be dominated by the operands and
   4455   // which will dominate the result.
   4456   IP = AdjustInsertPositionForExpand(IP, LF, LU, Rewriter);
   4457 
   4458   // Inform the Rewriter if we have a post-increment use, so that it can
   4459   // perform an advantageous expansion.
   4460   Rewriter.setPostInc(LF.PostIncLoops);
   4461 
   4462   // This is the type that the user actually needs.
   4463   Type *OpTy = LF.OperandValToReplace->getType();
   4464   // This will be the type that we'll initially expand to.
   4465   Type *Ty = F.getType();
   4466   if (!Ty)
   4467     // No type known; just expand directly to the ultimate type.
   4468     Ty = OpTy;
   4469   else if (SE.getEffectiveSCEVType(Ty) == SE.getEffectiveSCEVType(OpTy))
   4470     // Expand directly to the ultimate type if it's the right size.
   4471     Ty = OpTy;
   4472   // This is the type to do integer arithmetic in.
   4473   Type *IntTy = SE.getEffectiveSCEVType(Ty);
   4474 
   4475   // Build up a list of operands to add together to form the full base.
   4476   SmallVector<const SCEV *, 8> Ops;
   4477 
   4478   // Expand the BaseRegs portion.
   4479   for (const SCEV *Reg : F.BaseRegs) {
   4480     assert(!Reg->isZero() && "Zero allocated in a base register!");
   4481 
   4482     // If we're expanding for a post-inc user, make the post-inc adjustment.
   4483     PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
   4484     Reg = TransformForPostIncUse(Denormalize, Reg,
   4485                                  LF.UserInst, LF.OperandValToReplace,
   4486                                  Loops, SE, DT);
   4487 
   4488     Ops.push_back(SE.getUnknown(Rewriter.expandCodeFor(Reg, nullptr, &*IP)));
   4489   }
   4490 
   4491   // Expand the ScaledReg portion.
   4492   Value *ICmpScaledV = nullptr;
   4493   if (F.Scale != 0) {
   4494     const SCEV *ScaledS = F.ScaledReg;
   4495 
   4496     // If we're expanding for a post-inc user, make the post-inc adjustment.
   4497     PostIncLoopSet &Loops = const_cast<PostIncLoopSet &>(LF.PostIncLoops);
   4498     ScaledS = TransformForPostIncUse(Denormalize, ScaledS,
   4499                                      LF.UserInst, LF.OperandValToReplace,
   4500                                      Loops, SE, DT);
   4501 
   4502     if (LU.Kind == LSRUse::ICmpZero) {
   4503       // Expand ScaleReg as if it was part of the base regs.
   4504       if (F.Scale == 1)
   4505         Ops.push_back(
   4506             SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr, &*IP)));
   4507       else {
   4508         // An interesting way of "folding" with an icmp is to use a negated
   4509         // scale, which we'll implement by inserting it into the other operand
   4510         // of the icmp.
   4511         assert(F.Scale == -1 &&
   4512                "The only scale supported by ICmpZero uses is -1!");
   4513         ICmpScaledV = Rewriter.expandCodeFor(ScaledS, nullptr, &*IP);
   4514       }
   4515     } else {
   4516       // Otherwise just expand the scaled register and an explicit scale,
   4517       // which is expected to be matched as part of the address.
   4518 
   4519       // Flush the operand list to suppress SCEVExpander hoisting address modes.
   4520       // Unless the addressing mode will not be folded.
   4521       if (!Ops.empty() && LU.Kind == LSRUse::Address &&
   4522           isAMCompletelyFolded(TTI, LU, F)) {
   4523         Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, &*IP);
   4524         Ops.clear();
   4525         Ops.push_back(SE.getUnknown(FullV));
   4526       }
   4527       ScaledS = SE.getUnknown(Rewriter.expandCodeFor(ScaledS, nullptr, &*IP));
   4528       if (F.Scale != 1)
   4529         ScaledS =
   4530             SE.getMulExpr(ScaledS, SE.getConstant(ScaledS->getType(), F.Scale));
   4531       Ops.push_back(ScaledS);
   4532     }
   4533   }
   4534 
   4535   // Expand the GV portion.
   4536   if (F.BaseGV) {
   4537     // Flush the operand list to suppress SCEVExpander hoisting.
   4538     if (!Ops.empty()) {
   4539       Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, &*IP);
   4540       Ops.clear();
   4541       Ops.push_back(SE.getUnknown(FullV));
   4542     }
   4543     Ops.push_back(SE.getUnknown(F.BaseGV));
   4544   }
   4545 
   4546   // Flush the operand list to suppress SCEVExpander hoisting of both folded and
   4547   // unfolded offsets. LSR assumes they both live next to their uses.
   4548   if (!Ops.empty()) {
   4549     Value *FullV = Rewriter.expandCodeFor(SE.getAddExpr(Ops), Ty, &*IP);
   4550     Ops.clear();
   4551     Ops.push_back(SE.getUnknown(FullV));
   4552   }
   4553 
   4554   // Expand the immediate portion.
   4555   int64_t Offset = (uint64_t)F.BaseOffset + LF.Offset;
   4556   if (Offset != 0) {
   4557     if (LU.Kind == LSRUse::ICmpZero) {
   4558       // The other interesting way of "folding" with an ICmpZero is to use a
   4559       // negated immediate.
   4560       if (!ICmpScaledV)
   4561         ICmpScaledV = ConstantInt::get(IntTy, -(uint64_t)Offset);
   4562       else {
   4563         Ops.push_back(SE.getUnknown(ICmpScaledV));
   4564         ICmpScaledV = ConstantInt::get(IntTy, Offset);
   4565       }
   4566     } else {
   4567       // Just add the immediate values. These again are expected to be matched
   4568       // as part of the address.
   4569       Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy, Offset)));
   4570     }
   4571   }
   4572 
   4573   // Expand the unfolded offset portion.
   4574   int64_t UnfoldedOffset = F.UnfoldedOffset;
   4575   if (UnfoldedOffset != 0) {
   4576     // Just add the immediate values.
   4577     Ops.push_back(SE.getUnknown(ConstantInt::getSigned(IntTy,
   4578                                                        UnfoldedOffset)));
   4579   }
   4580 
   4581   // Emit instructions summing all the operands.
   4582   const SCEV *FullS = Ops.empty() ?
   4583                       SE.getConstant(IntTy, 0) :
   4584                       SE.getAddExpr(Ops);
   4585   Value *FullV = Rewriter.expandCodeFor(FullS, Ty, &*IP);
   4586 
   4587   // We're done expanding now, so reset the rewriter.
   4588   Rewriter.clearPostInc();
   4589 
   4590   // An ICmpZero Formula represents an ICmp which we're handling as a
   4591   // comparison against zero. Now that we've expanded an expression for that
   4592   // form, update the ICmp's other operand.
   4593   if (LU.Kind == LSRUse::ICmpZero) {
   4594     ICmpInst *CI = cast<ICmpInst>(LF.UserInst);
   4595     DeadInsts.emplace_back(CI->getOperand(1));
   4596     assert(!F.BaseGV && "ICmp does not support folding a global value and "
   4597                            "a scale at the same time!");
   4598     if (F.Scale == -1) {
   4599       if (ICmpScaledV->getType() != OpTy) {
   4600         Instruction *Cast =
   4601           CastInst::Create(CastInst::getCastOpcode(ICmpScaledV, false,
   4602                                                    OpTy, false),
   4603                            ICmpScaledV, OpTy, "tmp", CI);
   4604         ICmpScaledV = Cast;
   4605       }
   4606       CI->setOperand(1, ICmpScaledV);
   4607     } else {
   4608       // A scale of 1 means that the scale has been expanded as part of the
   4609       // base regs.
   4610       assert((F.Scale == 0 || F.Scale == 1) &&
   4611              "ICmp does not support folding a global value and "
   4612              "a scale at the same time!");
   4613       Constant *C = ConstantInt::getSigned(SE.getEffectiveSCEVType(OpTy),
   4614                                            -(uint64_t)Offset);
   4615       if (C->getType() != OpTy)
   4616         C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
   4617                                                           OpTy, false),
   4618                                   C, OpTy);
   4619 
   4620       CI->setOperand(1, C);
   4621     }
   4622   }
   4623 
   4624   return FullV;
   4625 }
   4626 
   4627 /// Helper for Rewrite. PHI nodes are special because the use of their operands
   4628 /// effectively happens in their predecessor blocks, so the expression may need
   4629 /// to be expanded in multiple places.
   4630 void LSRInstance::RewriteForPHI(PHINode *PN,
   4631                                 const LSRFixup &LF,
   4632                                 const Formula &F,
   4633                                 SCEVExpander &Rewriter,
   4634                                 SmallVectorImpl<WeakVH> &DeadInsts) const {
   4635   DenseMap<BasicBlock *, Value *> Inserted;
   4636   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
   4637     if (PN->getIncomingValue(i) == LF.OperandValToReplace) {
   4638       BasicBlock *BB = PN->getIncomingBlock(i);
   4639 
   4640       // If this is a critical edge, split the edge so that we do not insert
   4641       // the code on all predecessor/successor paths.  We do this unless this
   4642       // is the canonical backedge for this loop, which complicates post-inc
   4643       // users.
   4644       if (e != 1 && BB->getTerminator()->getNumSuccessors() > 1 &&
   4645           !isa<IndirectBrInst>(BB->getTerminator())) {
   4646         BasicBlock *Parent = PN->getParent();
   4647         Loop *PNLoop = LI.getLoopFor(Parent);
   4648         if (!PNLoop || Parent != PNLoop->getHeader()) {
   4649           // Split the critical edge.
   4650           BasicBlock *NewBB = nullptr;
   4651           if (!Parent->isLandingPad()) {
   4652             NewBB = SplitCriticalEdge(BB, Parent,
   4653                                       CriticalEdgeSplittingOptions(&DT, &LI)
   4654                                           .setMergeIdenticalEdges()
   4655                                           .setDontDeleteUselessPHIs());
   4656           } else {
   4657             SmallVector<BasicBlock*, 2> NewBBs;
   4658             SplitLandingPadPredecessors(Parent, BB, "", "", NewBBs, &DT, &LI);
   4659             NewBB = NewBBs[0];
   4660           }
   4661           // If NewBB==NULL, then SplitCriticalEdge refused to split because all
   4662           // phi predecessors are identical. The simple thing to do is skip
   4663           // splitting in this case rather than complicate the API.
   4664           if (NewBB) {
   4665             // If PN is outside of the loop and BB is in the loop, we want to
   4666             // move the block to be immediately before the PHI block, not
   4667             // immediately after BB.
   4668             if (L->contains(BB) && !L->contains(PN))
   4669               NewBB->moveBefore(PN->getParent());
   4670 
   4671             // Splitting the edge can reduce the number of PHI entries we have.
   4672             e = PN->getNumIncomingValues();
   4673             BB = NewBB;
   4674             i = PN->getBasicBlockIndex(BB);
   4675           }
   4676         }
   4677       }
   4678 
   4679       std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> Pair =
   4680         Inserted.insert(std::make_pair(BB, static_cast<Value *>(nullptr)));
   4681       if (!Pair.second)
   4682         PN->setIncomingValue(i, Pair.first->second);
   4683       else {
   4684         Value *FullV = Expand(LF, F, BB->getTerminator()->getIterator(),
   4685                               Rewriter, DeadInsts);
   4686 
   4687         // If this is reuse-by-noop-cast, insert the noop cast.
   4688         Type *OpTy = LF.OperandValToReplace->getType();
   4689         if (FullV->getType() != OpTy)
   4690           FullV =
   4691             CastInst::Create(CastInst::getCastOpcode(FullV, false,
   4692                                                      OpTy, false),
   4693                              FullV, LF.OperandValToReplace->getType(),
   4694                              "tmp", BB->getTerminator());
   4695 
   4696         PN->setIncomingValue(i, FullV);
   4697         Pair.first->second = FullV;
   4698       }
   4699     }
   4700 }
   4701 
   4702 /// Emit instructions for the leading candidate expression for this LSRUse (this
   4703 /// is called "expanding"), and update the UserInst to reference the newly
   4704 /// expanded value.
   4705 void LSRInstance::Rewrite(const LSRFixup &LF,
   4706                           const Formula &F,
   4707                           SCEVExpander &Rewriter,
   4708                           SmallVectorImpl<WeakVH> &DeadInsts) const {
   4709   // First, find an insertion point that dominates UserInst. For PHI nodes,
   4710   // find the nearest block which dominates all the relevant uses.
   4711   if (PHINode *PN = dyn_cast<PHINode>(LF.UserInst)) {
   4712     RewriteForPHI(PN, LF, F, Rewriter, DeadInsts);
   4713   } else {
   4714     Value *FullV =
   4715         Expand(LF, F, LF.UserInst->getIterator(), Rewriter, DeadInsts);
   4716 
   4717     // If this is reuse-by-noop-cast, insert the noop cast.
   4718     Type *OpTy = LF.OperandValToReplace->getType();
   4719     if (FullV->getType() != OpTy) {
   4720       Instruction *Cast =
   4721         CastInst::Create(CastInst::getCastOpcode(FullV, false, OpTy, false),
   4722                          FullV, OpTy, "tmp", LF.UserInst);
   4723       FullV = Cast;
   4724     }
   4725 
   4726     // Update the user. ICmpZero is handled specially here (for now) because
   4727     // Expand may have updated one of the operands of the icmp already, and
   4728     // its new value may happen to be equal to LF.OperandValToReplace, in
   4729     // which case doing replaceUsesOfWith leads to replacing both operands
   4730     // with the same value. TODO: Reorganize this.
   4731     if (Uses[LF.LUIdx].Kind == LSRUse::ICmpZero)
   4732       LF.UserInst->setOperand(0, FullV);
   4733     else
   4734       LF.UserInst->replaceUsesOfWith(LF.OperandValToReplace, FullV);
   4735   }
   4736 
   4737   DeadInsts.emplace_back(LF.OperandValToReplace);
   4738 }
   4739 
   4740 /// Rewrite all the fixup locations with new values, following the chosen
   4741 /// solution.
   4742 void LSRInstance::ImplementSolution(
   4743     const SmallVectorImpl<const Formula *> &Solution) {
   4744   // Keep track of instructions we may have made dead, so that
   4745   // we can remove them after we are done working.
   4746   SmallVector<WeakVH, 16> DeadInsts;
   4747 
   4748   SCEVExpander Rewriter(SE, L->getHeader()->getModule()->getDataLayout(),
   4749                         "lsr");
   4750 #ifndef NDEBUG
   4751   Rewriter.setDebugType(DEBUG_TYPE);
   4752 #endif
   4753   Rewriter.disableCanonicalMode();
   4754   Rewriter.enableLSRMode();
   4755   Rewriter.setIVIncInsertPos(L, IVIncInsertPos);
   4756 
   4757   // Mark phi nodes that terminate chains so the expander tries to reuse them.
   4758   for (const IVChain &Chain : IVChainVec) {
   4759     if (PHINode *PN = dyn_cast<PHINode>(Chain.tailUserInst()))
   4760       Rewriter.setChainedPhi(PN);
   4761   }
   4762 
   4763   // Expand the new value definitions and update the users.
   4764   for (const LSRFixup &Fixup : Fixups) {
   4765     Rewrite(Fixup, *Solution[Fixup.LUIdx], Rewriter, DeadInsts);
   4766 
   4767     Changed = true;
   4768   }
   4769 
   4770   for (const IVChain &Chain : IVChainVec) {
   4771     GenerateIVChain(Chain, Rewriter, DeadInsts);
   4772     Changed = true;
   4773   }
   4774   // Clean up after ourselves. This must be done before deleting any
   4775   // instructions.
   4776   Rewriter.clear();
   4777 
   4778   Changed |= DeleteTriviallyDeadInstructions(DeadInsts);
   4779 }
   4780 
   4781 LSRInstance::LSRInstance(Loop *L, IVUsers &IU, ScalarEvolution &SE,
   4782                          DominatorTree &DT, LoopInfo &LI,
   4783                          const TargetTransformInfo &TTI)
   4784     : IU(IU), SE(SE), DT(DT), LI(LI), TTI(TTI), L(L), Changed(false),
   4785       IVIncInsertPos(nullptr) {
   4786   // If LoopSimplify form is not available, stay out of trouble.
   4787   if (!L->isLoopSimplifyForm())
   4788     return;
   4789 
   4790   // If there's no interesting work to be done, bail early.
   4791   if (IU.empty()) return;
   4792 
   4793   // If there's too much analysis to be done, bail early. We won't be able to
   4794   // model the problem anyway.
   4795   unsigned NumUsers = 0;
   4796   for (const IVStrideUse &U : IU) {
   4797     if (++NumUsers > MaxIVUsers) {
   4798       (void)U;
   4799       DEBUG(dbgs() << "LSR skipping loop, too many IV Users in " << U << "\n");
   4800       return;
   4801     }
   4802   }
   4803 
   4804 #ifndef NDEBUG
   4805   // All dominating loops must have preheaders, or SCEVExpander may not be able
   4806   // to materialize an AddRecExpr whose Start is an outer AddRecExpr.
   4807   //
   4808   // IVUsers analysis should only create users that are dominated by simple loop
   4809   // headers. Since this loop should dominate all of its users, its user list
   4810   // should be empty if this loop itself is not within a simple loop nest.
   4811   for (DomTreeNode *Rung = DT.getNode(L->getLoopPreheader());
   4812        Rung; Rung = Rung->getIDom()) {
   4813     BasicBlock *BB = Rung->getBlock();
   4814     const Loop *DomLoop = LI.getLoopFor(BB);
   4815     if (DomLoop && DomLoop->getHeader() == BB) {
   4816       assert(DomLoop->getLoopPreheader() && "LSR needs a simplified loop nest");
   4817     }
   4818   }
   4819 #endif // DEBUG
   4820 
   4821   DEBUG(dbgs() << "\nLSR on loop ";
   4822         L->getHeader()->printAsOperand(dbgs(), /*PrintType=*/false);
   4823         dbgs() << ":\n");
   4824 
   4825   // First, perform some low-level loop optimizations.
   4826   OptimizeShadowIV();
   4827   OptimizeLoopTermCond();
   4828 
   4829   // If loop preparation eliminates all interesting IV users, bail.
   4830   if (IU.empty()) return;
   4831 
   4832   // Skip nested loops until we can model them better with formulae.
   4833   if (!L->empty()) {
   4834     DEBUG(dbgs() << "LSR skipping outer loop " << *L << "\n");
   4835     return;
   4836   }
   4837 
   4838   // Start collecting data and preparing for the solver.
   4839   CollectChains();
   4840   CollectInterestingTypesAndFactors();
   4841   CollectFixupsAndInitialFormulae();
   4842   CollectLoopInvariantFixupsAndFormulae();
   4843 
   4844   assert(!Uses.empty() && "IVUsers reported at least one use");
   4845   DEBUG(dbgs() << "LSR found " << Uses.size() << " uses:\n";
   4846         print_uses(dbgs()));
   4847 
   4848   // Now use the reuse data to generate a bunch of interesting ways
   4849   // to formulate the values needed for the uses.
   4850   GenerateAllReuseFormulae();
   4851 
   4852   FilterOutUndesirableDedicatedRegisters();
   4853   NarrowSearchSpaceUsingHeuristics();
   4854 
   4855   SmallVector<const Formula *, 8> Solution;
   4856   Solve(Solution);
   4857 
   4858   // Release memory that is no longer needed.
   4859   Factors.clear();
   4860   Types.clear();
   4861   RegUses.clear();
   4862 
   4863   if (Solution.empty())
   4864     return;
   4865 
   4866 #ifndef NDEBUG
   4867   // Formulae should be legal.
   4868   for (const LSRUse &LU : Uses) {
   4869     for (const Formula &F : LU.Formulae)
   4870       assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy,
   4871                         F) && "Illegal formula generated!");
   4872   };
   4873 #endif
   4874 
   4875   // Now that we've decided what we want, make it so.
   4876   ImplementSolution(Solution);
   4877 }
   4878 
   4879 void LSRInstance::print_factors_and_types(raw_ostream &OS) const {
   4880   if (Factors.empty() && Types.empty()) return;
   4881 
   4882   OS << "LSR has identified the following interesting factors and types: ";
   4883   bool First = true;
   4884 
   4885   for (int64_t Factor : Factors) {
   4886     if (!First) OS << ", ";
   4887     First = false;
   4888     OS << '*' << Factor;
   4889   }
   4890 
   4891   for (Type *Ty : Types) {
   4892     if (!First) OS << ", ";
   4893     First = false;
   4894     OS << '(' << *Ty << ')';
   4895   }
   4896   OS << '\n';
   4897 }
   4898 
   4899 void LSRInstance::print_fixups(raw_ostream &OS) const {
   4900   OS << "LSR is examining the following fixup sites:\n";
   4901   for (const LSRFixup &LF : Fixups) {
   4902     dbgs() << "  ";
   4903     LF.print(OS);
   4904     OS << '\n';
   4905   }
   4906 }
   4907 
   4908 void LSRInstance::print_uses(raw_ostream &OS) const {
   4909   OS << "LSR is examining the following uses:\n";
   4910   for (const LSRUse &LU : Uses) {
   4911     dbgs() << "  ";
   4912     LU.print(OS);
   4913     OS << '\n';
   4914     for (const Formula &F : LU.Formulae) {
   4915       OS << "    ";
   4916       F.print(OS);
   4917       OS << '\n';
   4918     }
   4919   }
   4920 }
   4921 
   4922 void LSRInstance::print(raw_ostream &OS) const {
   4923   print_factors_and_types(OS);
   4924   print_fixups(OS);
   4925   print_uses(OS);
   4926 }
   4927 
   4928 LLVM_DUMP_METHOD
   4929 void LSRInstance::dump() const {
   4930   print(