Home | History | Annotate | Download | only in Reader
      1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
      2 //
      3 //                     The LLVM Compiler Infrastructure
      4 //
      5 // This file is distributed under the University of Illinois Open Source
      6 // License. See LICENSE.TXT for details.
      7 //
      8 //===----------------------------------------------------------------------===//
      9 
     10 #include "llvm/Bitcode/ReaderWriter.h"
     11 #include "llvm/ADT/STLExtras.h"
     12 #include "llvm/ADT/SmallString.h"
     13 #include "llvm/ADT/SmallVector.h"
     14 #include "llvm/ADT/Triple.h"
     15 #include "llvm/Bitcode/BitstreamReader.h"
     16 #include "llvm/Bitcode/LLVMBitCodes.h"
     17 #include "llvm/IR/AutoUpgrade.h"
     18 #include "llvm/IR/Constants.h"
     19 #include "llvm/IR/DebugInfo.h"
     20 #include "llvm/IR/DebugInfoMetadata.h"
     21 #include "llvm/IR/DerivedTypes.h"
     22 #include "llvm/IR/DiagnosticPrinter.h"
     23 #include "llvm/IR/GVMaterializer.h"
     24 #include "llvm/IR/InlineAsm.h"
     25 #include "llvm/IR/IntrinsicInst.h"
     26 #include "llvm/IR/LLVMContext.h"
     27 #include "llvm/IR/Module.h"
     28 #include "llvm/IR/OperandTraits.h"
     29 #include "llvm/IR/Operator.h"
     30 #include "llvm/IR/FunctionInfo.h"
     31 #include "llvm/IR/ValueHandle.h"
     32 #include "llvm/Support/DataStream.h"
     33 #include "llvm/Support/ManagedStatic.h"
     34 #include "llvm/Support/MathExtras.h"
     35 #include "llvm/Support/MemoryBuffer.h"
     36 #include "llvm/Support/raw_ostream.h"
     37 #include <deque>
     38 using namespace llvm;
     39 
     40 namespace {
     41 enum {
     42   SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
     43 };
     44 
     45 class BitcodeReaderValueList {
     46   std::vector<WeakVH> ValuePtrs;
     47 
     48   /// As we resolve forward-referenced constants, we add information about them
     49   /// to this vector.  This allows us to resolve them in bulk instead of
     50   /// resolving each reference at a time.  See the code in
     51   /// ResolveConstantForwardRefs for more information about this.
     52   ///
     53   /// The key of this vector is the placeholder constant, the value is the slot
     54   /// number that holds the resolved value.
     55   typedef std::vector<std::pair<Constant*, unsigned> > ResolveConstantsTy;
     56   ResolveConstantsTy ResolveConstants;
     57   LLVMContext &Context;
     58 public:
     59   BitcodeReaderValueList(LLVMContext &C) : Context(C) {}
     60   ~BitcodeReaderValueList() {
     61     assert(ResolveConstants.empty() && "Constants not resolved?");
     62   }
     63 
     64   // vector compatibility methods
     65   unsigned size() const { return ValuePtrs.size(); }
     66   void resize(unsigned N) { ValuePtrs.resize(N); }
     67   void push_back(Value *V) { ValuePtrs.emplace_back(V); }
     68 
     69   void clear() {
     70     assert(ResolveConstants.empty() && "Constants not resolved?");
     71     ValuePtrs.clear();
     72   }
     73 
     74   Value *operator[](unsigned i) const {
     75     assert(i < ValuePtrs.size());
     76     return ValuePtrs[i];
     77   }
     78 
     79   Value *back() const { return ValuePtrs.back(); }
     80     void pop_back() { ValuePtrs.pop_back(); }
     81   bool empty() const { return ValuePtrs.empty(); }
     82   void shrinkTo(unsigned N) {
     83     assert(N <= size() && "Invalid shrinkTo request!");
     84     ValuePtrs.resize(N);
     85   }
     86 
     87   Constant *getConstantFwdRef(unsigned Idx, Type *Ty);
     88   Value *getValueFwdRef(unsigned Idx, Type *Ty);
     89 
     90   void assignValue(Value *V, unsigned Idx);
     91 
     92   /// Once all constants are read, this method bulk resolves any forward
     93   /// references.
     94   void resolveConstantForwardRefs();
     95 };
     96 
     97 class BitcodeReaderMDValueList {
     98   unsigned NumFwdRefs;
     99   bool AnyFwdRefs;
    100   unsigned MinFwdRef;
    101   unsigned MaxFwdRef;
    102   std::vector<TrackingMDRef> MDValuePtrs;
    103 
    104   LLVMContext &Context;
    105 public:
    106   BitcodeReaderMDValueList(LLVMContext &C)
    107       : NumFwdRefs(0), AnyFwdRefs(false), Context(C) {}
    108 
    109   // vector compatibility methods
    110   unsigned size() const       { return MDValuePtrs.size(); }
    111   void resize(unsigned N)     { MDValuePtrs.resize(N); }
    112   void push_back(Metadata *MD) { MDValuePtrs.emplace_back(MD); }
    113   void clear()                { MDValuePtrs.clear();  }
    114   Metadata *back() const      { return MDValuePtrs.back(); }
    115   void pop_back()             { MDValuePtrs.pop_back(); }
    116   bool empty() const          { return MDValuePtrs.empty(); }
    117 
    118   Metadata *operator[](unsigned i) const {
    119     assert(i < MDValuePtrs.size());
    120     return MDValuePtrs[i];
    121   }
    122 
    123   void shrinkTo(unsigned N) {
    124     assert(N <= size() && "Invalid shrinkTo request!");
    125     MDValuePtrs.resize(N);
    126   }
    127 
    128   Metadata *getValueFwdRef(unsigned Idx);
    129   void assignValue(Metadata *MD, unsigned Idx);
    130   void tryToResolveCycles();
    131 };
    132 
    133 class BitcodeReader : public GVMaterializer {
    134   LLVMContext &Context;
    135   Module *TheModule = nullptr;
    136   std::unique_ptr<MemoryBuffer> Buffer;
    137   std::unique_ptr<BitstreamReader> StreamFile;
    138   BitstreamCursor Stream;
    139   // Next offset to start scanning for lazy parsing of function bodies.
    140   uint64_t NextUnreadBit = 0;
    141   // Last function offset found in the VST.
    142   uint64_t LastFunctionBlockBit = 0;
    143   bool SeenValueSymbolTable = false;
    144   uint64_t VSTOffset = 0;
    145   // Contains an arbitrary and optional string identifying the bitcode producer
    146   std::string ProducerIdentification;
    147   // Number of module level metadata records specified by the
    148   // MODULE_CODE_METADATA_VALUES record.
    149   unsigned NumModuleMDs = 0;
    150   // Support older bitcode without the MODULE_CODE_METADATA_VALUES record.
    151   bool SeenModuleValuesRecord = false;
    152 
    153   std::vector<Type*> TypeList;
    154   BitcodeReaderValueList ValueList;
    155   BitcodeReaderMDValueList MDValueList;
    156   std::vector<Comdat *> ComdatList;
    157   SmallVector<Instruction *, 64> InstructionList;
    158 
    159   std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInits;
    160   std::vector<std::pair<GlobalAlias*, unsigned> > AliasInits;
    161   std::vector<std::pair<Function*, unsigned> > FunctionPrefixes;
    162   std::vector<std::pair<Function*, unsigned> > FunctionPrologues;
    163   std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFns;
    164 
    165   SmallVector<Instruction*, 64> InstsWithTBAATag;
    166 
    167   /// The set of attributes by index.  Index zero in the file is for null, and
    168   /// is thus not represented here.  As such all indices are off by one.
    169   std::vector<AttributeSet> MAttributes;
    170 
    171   /// The set of attribute groups.
    172   std::map<unsigned, AttributeSet> MAttributeGroups;
    173 
    174   /// While parsing a function body, this is a list of the basic blocks for the
    175   /// function.
    176   std::vector<BasicBlock*> FunctionBBs;
    177 
    178   // When reading the module header, this list is populated with functions that
    179   // have bodies later in the file.
    180   std::vector<Function*> FunctionsWithBodies;
    181 
    182   // When intrinsic functions are encountered which require upgrading they are
    183   // stored here with their replacement function.
    184   typedef DenseMap<Function*, Function*> UpgradedIntrinsicMap;
    185   UpgradedIntrinsicMap UpgradedIntrinsics;
    186 
    187   // Map the bitcode's custom MDKind ID to the Module's MDKind ID.
    188   DenseMap<unsigned, unsigned> MDKindMap;
    189 
    190   // Several operations happen after the module header has been read, but
    191   // before function bodies are processed. This keeps track of whether
    192   // we've done this yet.
    193   bool SeenFirstFunctionBody = false;
    194 
    195   /// When function bodies are initially scanned, this map contains info about
    196   /// where to find deferred function body in the stream.
    197   DenseMap<Function*, uint64_t> DeferredFunctionInfo;
    198 
    199   /// When Metadata block is initially scanned when parsing the module, we may
    200   /// choose to defer parsing of the metadata. This vector contains info about
    201   /// which Metadata blocks are deferred.
    202   std::vector<uint64_t> DeferredMetadataInfo;
    203 
    204   /// These are basic blocks forward-referenced by block addresses.  They are
    205   /// inserted lazily into functions when they're loaded.  The basic block ID is
    206   /// its index into the vector.
    207   DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs;
    208   std::deque<Function *> BasicBlockFwdRefQueue;
    209 
    210   /// Indicates that we are using a new encoding for instruction operands where
    211   /// most operands in the current FUNCTION_BLOCK are encoded relative to the
    212   /// instruction number, for a more compact encoding.  Some instruction
    213   /// operands are not relative to the instruction ID: basic block numbers, and
    214   /// types. Once the old style function blocks have been phased out, we would
    215   /// not need this flag.
    216   bool UseRelativeIDs = false;
    217 
    218   /// True if all functions will be materialized, negating the need to process
    219   /// (e.g.) blockaddress forward references.
    220   bool WillMaterializeAllForwardRefs = false;
    221 
    222   /// True if any Metadata block has been materialized.
    223   bool IsMetadataMaterialized = false;
    224 
    225   bool StripDebugInfo = false;
    226 
    227   /// Functions that need to be matched with subprograms when upgrading old
    228   /// metadata.
    229   SmallDenseMap<Function *, DISubprogram *, 16> FunctionsWithSPs;
    230 
    231   std::vector<std::string> BundleTags;
    232 
    233 public:
    234   std::error_code error(BitcodeError E, const Twine &Message);
    235   std::error_code error(BitcodeError E);
    236   std::error_code error(const Twine &Message);
    237 
    238   BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context);
    239   BitcodeReader(LLVMContext &Context);
    240   ~BitcodeReader() override { freeState(); }
    241 
    242   std::error_code materializeForwardReferencedFunctions();
    243 
    244   void freeState();
    245 
    246   void releaseBuffer();
    247 
    248   std::error_code materialize(GlobalValue *GV) override;
    249   std::error_code materializeModule() override;
    250   std::vector<StructType *> getIdentifiedStructTypes() const override;
    251 
    252   /// \brief Main interface to parsing a bitcode buffer.
    253   /// \returns true if an error occurred.
    254   std::error_code parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer,
    255                                    Module *M,
    256                                    bool ShouldLazyLoadMetadata = false);
    257 
    258   /// \brief Cheap mechanism to just extract module triple
    259   /// \returns true if an error occurred.
    260   ErrorOr<std::string> parseTriple();
    261 
    262   /// Cheap mechanism to just extract the identification block out of bitcode.
    263   ErrorOr<std::string> parseIdentificationBlock();
    264 
    265   static uint64_t decodeSignRotatedValue(uint64_t V);
    266 
    267   /// Materialize any deferred Metadata block.
    268   std::error_code materializeMetadata() override;
    269 
    270   void setStripDebugInfo() override;
    271 
    272   /// Save the mapping between the metadata values and the corresponding
    273   /// value id that were recorded in the MDValueList during parsing. If
    274   /// OnlyTempMD is true, then only record those entries that are still
    275   /// temporary metadata. This interface is used when metadata linking is
    276   /// performed as a postpass, such as during function importing.
    277   void saveMDValueList(DenseMap<const Metadata *, unsigned> &MDValueToValIDMap,
    278                        bool OnlyTempMD) override;
    279 
    280 private:
    281   /// Parse the "IDENTIFICATION_BLOCK_ID" block, populate the
    282   // ProducerIdentification data member, and do some basic enforcement on the
    283   // "epoch" encoded in the bitcode.
    284   std::error_code parseBitcodeVersion();
    285 
    286   std::vector<StructType *> IdentifiedStructTypes;
    287   StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name);
    288   StructType *createIdentifiedStructType(LLVMContext &Context);
    289 
    290   Type *getTypeByID(unsigned ID);
    291   Value *getFnValueByID(unsigned ID, Type *Ty) {
    292     if (Ty && Ty->isMetadataTy())
    293       return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID));
    294     return ValueList.getValueFwdRef(ID, Ty);
    295   }
    296   Metadata *getFnMetadataByID(unsigned ID) {
    297     return MDValueList.getValueFwdRef(ID);
    298   }
    299   BasicBlock *getBasicBlock(unsigned ID) const {
    300     if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID
    301     return FunctionBBs[ID];
    302   }
    303   AttributeSet getAttributes(unsigned i) const {
    304     if (i-1 < MAttributes.size())
    305       return MAttributes[i-1];
    306     return AttributeSet();
    307   }
    308 
    309   /// Read a value/type pair out of the specified record from slot 'Slot'.
    310   /// Increment Slot past the number of slots used in the record. Return true on
    311   /// failure.
    312   bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
    313                         unsigned InstNum, Value *&ResVal) {
    314     if (Slot == Record.size()) return true;
    315     unsigned ValNo = (unsigned)Record[Slot++];
    316     // Adjust the ValNo, if it was encoded relative to the InstNum.
    317     if (UseRelativeIDs)
    318       ValNo = InstNum - ValNo;
    319     if (ValNo < InstNum) {
    320       // If this is not a forward reference, just return the value we already
    321       // have.
    322       ResVal = getFnValueByID(ValNo, nullptr);
    323       return ResVal == nullptr;
    324     }
    325     if (Slot == Record.size())
    326       return true;
    327 
    328     unsigned TypeNo = (unsigned)Record[Slot++];
    329     ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo));
    330     return ResVal == nullptr;
    331   }
    332 
    333   /// Read a value out of the specified record from slot 'Slot'. Increment Slot
    334   /// past the number of slots used by the value in the record. Return true if
    335   /// there is an error.
    336   bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
    337                 unsigned InstNum, Type *Ty, Value *&ResVal) {
    338     if (getValue(Record, Slot, InstNum, Ty, ResVal))
    339       return true;
    340     // All values currently take a single record slot.
    341     ++Slot;
    342     return false;
    343   }
    344 
    345   /// Like popValue, but does not increment the Slot number.
    346   bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
    347                 unsigned InstNum, Type *Ty, Value *&ResVal) {
    348     ResVal = getValue(Record, Slot, InstNum, Ty);
    349     return ResVal == nullptr;
    350   }
    351 
    352   /// Version of getValue that returns ResVal directly, or 0 if there is an
    353   /// error.
    354   Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
    355                   unsigned InstNum, Type *Ty) {
    356     if (Slot == Record.size()) return nullptr;
    357     unsigned ValNo = (unsigned)Record[Slot];
    358     // Adjust the ValNo, if it was encoded relative to the InstNum.
    359     if (UseRelativeIDs)
    360       ValNo = InstNum - ValNo;
    361     return getFnValueByID(ValNo, Ty);
    362   }
    363 
    364   /// Like getValue, but decodes signed VBRs.
    365   Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
    366                         unsigned InstNum, Type *Ty) {
    367     if (Slot == Record.size()) return nullptr;
    368     unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]);
    369     // Adjust the ValNo, if it was encoded relative to the InstNum.
    370     if (UseRelativeIDs)
    371       ValNo = InstNum - ValNo;
    372     return getFnValueByID(ValNo, Ty);
    373   }
    374 
    375   /// Converts alignment exponent (i.e. power of two (or zero)) to the
    376   /// corresponding alignment to use. If alignment is too large, returns
    377   /// a corresponding error code.
    378   std::error_code parseAlignmentValue(uint64_t Exponent, unsigned &Alignment);
    379   std::error_code parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind);
    380   std::error_code parseModule(uint64_t ResumeBit,
    381                               bool ShouldLazyLoadMetadata = false);
    382   std::error_code parseAttributeBlock();
    383   std::error_code parseAttributeGroupBlock();
    384   std::error_code parseTypeTable();
    385   std::error_code parseTypeTableBody();
    386   std::error_code parseOperandBundleTags();
    387 
    388   ErrorOr<Value *> recordValue(SmallVectorImpl<uint64_t> &Record,
    389                                unsigned NameIndex, Triple &TT);
    390   std::error_code parseValueSymbolTable(uint64_t Offset = 0);
    391   std::error_code parseConstants();
    392   std::error_code rememberAndSkipFunctionBodies();
    393   std::error_code rememberAndSkipFunctionBody();
    394   /// Save the positions of the Metadata blocks and skip parsing the blocks.
    395   std::error_code rememberAndSkipMetadata();
    396   std::error_code parseFunctionBody(Function *F);
    397   std::error_code globalCleanup();
    398   std::error_code resolveGlobalAndAliasInits();
    399   std::error_code parseMetadata(bool ModuleLevel = false);
    400   std::error_code parseMetadataKinds();
    401   std::error_code parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record);
    402   std::error_code parseMetadataAttachment(Function &F);
    403   ErrorOr<std::string> parseModuleTriple();
    404   std::error_code parseUseLists();
    405   std::error_code initStream(std::unique_ptr<DataStreamer> Streamer);
    406   std::error_code initStreamFromBuffer();
    407   std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer);
    408   std::error_code findFunctionInStream(
    409       Function *F,
    410       DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator);
    411 };
    412 
    413 /// Class to manage reading and parsing function summary index bitcode
    414 /// files/sections.
    415 class FunctionIndexBitcodeReader {
    416   DiagnosticHandlerFunction DiagnosticHandler;
    417 
    418   /// Eventually points to the function index built during parsing.
    419   FunctionInfoIndex *TheIndex = nullptr;
    420 
    421   std::unique_ptr<MemoryBuffer> Buffer;
    422   std::unique_ptr<BitstreamReader> StreamFile;
    423   BitstreamCursor Stream;
    424 
    425   /// \brief Used to indicate whether we are doing lazy parsing of summary data.
    426   ///
    427   /// If false, the summary section is fully parsed into the index during
    428   /// the initial parse. Otherwise, if true, the caller is expected to
    429   /// invoke \a readFunctionSummary for each summary needed, and the summary
    430   /// section is thus parsed lazily.
    431   bool IsLazy = false;
    432 
    433   /// Used to indicate whether caller only wants to check for the presence
    434   /// of the function summary bitcode section. All blocks are skipped,
    435   /// but the SeenFuncSummary boolean is set.
    436   bool CheckFuncSummaryPresenceOnly = false;
    437 
    438   /// Indicates whether we have encountered a function summary section
    439   /// yet during parsing, used when checking if file contains function
    440   /// summary section.
    441   bool SeenFuncSummary = false;
    442 
    443   /// \brief Map populated during function summary section parsing, and
    444   /// consumed during ValueSymbolTable parsing.
    445   ///
    446   /// Used to correlate summary records with VST entries. For the per-module
    447   /// index this maps the ValueID to the parsed function summary, and
    448   /// for the combined index this maps the summary record's bitcode
    449   /// offset to the function summary (since in the combined index the
    450   /// VST records do not hold value IDs but rather hold the function
    451   /// summary record offset).
    452   DenseMap<uint64_t, std::unique_ptr<FunctionSummary>> SummaryMap;
    453 
    454   /// Map populated during module path string table parsing, from the
    455   /// module ID to a string reference owned by the index's module
    456   /// path string table, used to correlate with combined index function
    457   /// summary records.
    458   DenseMap<uint64_t, StringRef> ModuleIdMap;
    459 
    460 public:
    461   std::error_code error(BitcodeError E, const Twine &Message);
    462   std::error_code error(BitcodeError E);
    463   std::error_code error(const Twine &Message);
    464 
    465   FunctionIndexBitcodeReader(MemoryBuffer *Buffer,
    466                              DiagnosticHandlerFunction DiagnosticHandler,
    467                              bool IsLazy = false,
    468                              bool CheckFuncSummaryPresenceOnly = false);
    469   FunctionIndexBitcodeReader(DiagnosticHandlerFunction DiagnosticHandler,
    470                              bool IsLazy = false,
    471                              bool CheckFuncSummaryPresenceOnly = false);
    472   ~FunctionIndexBitcodeReader() { freeState(); }
    473 
    474   void freeState();
    475 
    476   void releaseBuffer();
    477 
    478   /// Check if the parser has encountered a function summary section.
    479   bool foundFuncSummary() { return SeenFuncSummary; }
    480 
    481   /// \brief Main interface to parsing a bitcode buffer.
    482   /// \returns true if an error occurred.
    483   std::error_code parseSummaryIndexInto(std::unique_ptr<DataStreamer> Streamer,
    484                                         FunctionInfoIndex *I);
    485 
    486   /// \brief Interface for parsing a function summary lazily.
    487   std::error_code parseFunctionSummary(std::unique_ptr<DataStreamer> Streamer,
    488                                        FunctionInfoIndex *I,
    489                                        size_t FunctionSummaryOffset);
    490 
    491 private:
    492   std::error_code parseModule();
    493   std::error_code parseValueSymbolTable();
    494   std::error_code parseEntireSummary();
    495   std::error_code parseModuleStringTable();
    496   std::error_code initStream(std::unique_ptr<DataStreamer> Streamer);
    497   std::error_code initStreamFromBuffer();
    498   std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer);
    499 };
    500 } // namespace
    501 
    502 BitcodeDiagnosticInfo::BitcodeDiagnosticInfo(std::error_code EC,
    503                                              DiagnosticSeverity Severity,
    504                                              const Twine &Msg)
    505     : DiagnosticInfo(DK_Bitcode, Severity), Msg(Msg), EC(EC) {}
    506 
    507 void BitcodeDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; }
    508 
    509 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler,
    510                              std::error_code EC, const Twine &Message) {
    511   BitcodeDiagnosticInfo DI(EC, DS_Error, Message);
    512   DiagnosticHandler(DI);
    513   return EC;
    514 }
    515 
    516 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler,
    517                              std::error_code EC) {
    518   return error(DiagnosticHandler, EC, EC.message());
    519 }
    520 
    521 static std::error_code error(LLVMContext &Context, std::error_code EC,
    522                              const Twine &Message) {
    523   return error([&](const DiagnosticInfo &DI) { Context.diagnose(DI); }, EC,
    524                Message);
    525 }
    526 
    527 static std::error_code error(LLVMContext &Context, std::error_code EC) {
    528   return error(Context, EC, EC.message());
    529 }
    530 
    531 static std::error_code error(LLVMContext &Context, const Twine &Message) {
    532   return error(Context, make_error_code(BitcodeError::CorruptedBitcode),
    533                Message);
    534 }
    535 
    536 std::error_code BitcodeReader::error(BitcodeError E, const Twine &Message) {
    537   if (!ProducerIdentification.empty()) {
    538     return ::error(Context, make_error_code(E),
    539                    Message + " (Producer: '" + ProducerIdentification +
    540                        "' Reader: 'LLVM " + LLVM_VERSION_STRING "')");
    541   }
    542   return ::error(Context, make_error_code(E), Message);
    543 }
    544 
    545 std::error_code BitcodeReader::error(const Twine &Message) {
    546   if (!ProducerIdentification.empty()) {
    547     return ::error(Context, make_error_code(BitcodeError::CorruptedBitcode),
    548                    Message + " (Producer: '" + ProducerIdentification +
    549                        "' Reader: 'LLVM " + LLVM_VERSION_STRING "')");
    550   }
    551   return ::error(Context, make_error_code(BitcodeError::CorruptedBitcode),
    552                  Message);
    553 }
    554 
    555 std::error_code BitcodeReader::error(BitcodeError E) {
    556   return ::error(Context, make_error_code(E));
    557 }
    558 
    559 BitcodeReader::BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context)
    560     : Context(Context), Buffer(Buffer), ValueList(Context),
    561       MDValueList(Context) {}
    562 
    563 BitcodeReader::BitcodeReader(LLVMContext &Context)
    564     : Context(Context), Buffer(nullptr), ValueList(Context),
    565       MDValueList(Context) {}
    566 
    567 std::error_code BitcodeReader::materializeForwardReferencedFunctions() {
    568   if (WillMaterializeAllForwardRefs)
    569     return std::error_code();
    570 
    571   // Prevent recursion.
    572   WillMaterializeAllForwardRefs = true;
    573 
    574   while (!BasicBlockFwdRefQueue.empty()) {
    575     Function *F = BasicBlockFwdRefQueue.front();
    576     BasicBlockFwdRefQueue.pop_front();
    577     assert(F && "Expected valid function");
    578     if (!BasicBlockFwdRefs.count(F))
    579       // Already materialized.
    580       continue;
    581 
    582     // Check for a function that isn't materializable to prevent an infinite
    583     // loop.  When parsing a blockaddress stored in a global variable, there
    584     // isn't a trivial way to check if a function will have a body without a
    585     // linear search through FunctionsWithBodies, so just check it here.
    586     if (!F->isMaterializable())
    587       return error("Never resolved function from blockaddress");
    588 
    589     // Try to materialize F.
    590     if (std::error_code EC = materialize(F))
    591       return EC;
    592   }
    593   assert(BasicBlockFwdRefs.empty() && "Function missing from queue");
    594 
    595   // Reset state.
    596   WillMaterializeAllForwardRefs = false;
    597   return std::error_code();
    598 }
    599 
    600 void BitcodeReader::freeState() {
    601   Buffer = nullptr;
    602   std::vector<Type*>().swap(TypeList);
    603   ValueList.clear();
    604   MDValueList.clear();
    605   std::vector<Comdat *>().swap(ComdatList);
    606 
    607   std::vector<AttributeSet>().swap(MAttributes);
    608   std::vector<BasicBlock*>().swap(FunctionBBs);
    609   std::vector<Function*>().swap(FunctionsWithBodies);
    610   DeferredFunctionInfo.clear();
    611   DeferredMetadataInfo.clear();
    612   MDKindMap.clear();
    613 
    614   assert(BasicBlockFwdRefs.empty() && "Unresolved blockaddress fwd references");
    615   BasicBlockFwdRefQueue.clear();
    616 }
    617 
    618 //===----------------------------------------------------------------------===//
    619 //  Helper functions to implement forward reference resolution, etc.
    620 //===----------------------------------------------------------------------===//
    621 
    622 /// Convert a string from a record into an std::string, return true on failure.
    623 template <typename StrTy>
    624 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx,
    625                             StrTy &Result) {
    626   if (Idx > Record.size())
    627     return true;
    628 
    629   for (unsigned i = Idx, e = Record.size(); i != e; ++i)
    630     Result += (char)Record[i];
    631   return false;
    632 }
    633 
    634 static bool hasImplicitComdat(size_t Val) {
    635   switch (Val) {
    636   default:
    637     return false;
    638   case 1:  // Old WeakAnyLinkage
    639   case 4:  // Old LinkOnceAnyLinkage
    640   case 10: // Old WeakODRLinkage
    641   case 11: // Old LinkOnceODRLinkage
    642     return true;
    643   }
    644 }
    645 
    646 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) {
    647   switch (Val) {
    648   default: // Map unknown/new linkages to external
    649   case 0:
    650     return GlobalValue::ExternalLinkage;
    651   case 2:
    652     return GlobalValue::AppendingLinkage;
    653   case 3:
    654     return GlobalValue::InternalLinkage;
    655   case 5:
    656     return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
    657   case 6:
    658     return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
    659   case 7:
    660     return GlobalValue::ExternalWeakLinkage;
    661   case 8:
    662     return GlobalValue::CommonLinkage;
    663   case 9:
    664     return GlobalValue::PrivateLinkage;
    665   case 12:
    666     return GlobalValue::AvailableExternallyLinkage;
    667   case 13:
    668     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
    669   case 14:
    670     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage
    671   case 15:
    672     return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage
    673   case 1: // Old value with implicit comdat.
    674   case 16:
    675     return GlobalValue::WeakAnyLinkage;
    676   case 10: // Old value with implicit comdat.
    677   case 17:
    678     return GlobalValue::WeakODRLinkage;
    679   case 4: // Old value with implicit comdat.
    680   case 18:
    681     return GlobalValue::LinkOnceAnyLinkage;
    682   case 11: // Old value with implicit comdat.
    683   case 19:
    684     return GlobalValue::LinkOnceODRLinkage;
    685   }
    686 }
    687 
    688 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) {
    689   switch (Val) {
    690   default: // Map unknown visibilities to default.
    691   case 0: return GlobalValue::DefaultVisibility;
    692   case 1: return GlobalValue::HiddenVisibility;
    693   case 2: return GlobalValue::ProtectedVisibility;
    694   }
    695 }
    696 
    697 static GlobalValue::DLLStorageClassTypes
    698 getDecodedDLLStorageClass(unsigned Val) {
    699   switch (Val) {
    700   default: // Map unknown values to default.
    701   case 0: return GlobalValue::DefaultStorageClass;
    702   case 1: return GlobalValue::DLLImportStorageClass;
    703   case 2: return GlobalValue::DLLExportStorageClass;
    704   }
    705 }
    706 
    707 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) {
    708   switch (Val) {
    709     case 0: return GlobalVariable::NotThreadLocal;
    710     default: // Map unknown non-zero value to general dynamic.
    711     case 1: return GlobalVariable::GeneralDynamicTLSModel;
    712     case 2: return GlobalVariable::LocalDynamicTLSModel;
    713     case 3: return GlobalVariable::InitialExecTLSModel;
    714     case 4: return GlobalVariable::LocalExecTLSModel;
    715   }
    716 }
    717 
    718 static int getDecodedCastOpcode(unsigned Val) {
    719   switch (Val) {
    720   default: return -1;
    721   case bitc::CAST_TRUNC   : return Instruction::Trunc;
    722   case bitc::CAST_ZEXT    : return Instruction::ZExt;
    723   case bitc::CAST_SEXT    : return Instruction::SExt;
    724   case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
    725   case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
    726   case bitc::CAST_UITOFP  : return Instruction::UIToFP;
    727   case bitc::CAST_SITOFP  : return Instruction::SIToFP;
    728   case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
    729   case bitc::CAST_FPEXT   : return Instruction::FPExt;
    730   case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
    731   case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
    732   case bitc::CAST_BITCAST : return Instruction::BitCast;
    733   case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast;
    734   }
    735 }
    736 
    737 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) {
    738   bool IsFP = Ty->isFPOrFPVectorTy();
    739   // BinOps are only valid for int/fp or vector of int/fp types
    740   if (!IsFP && !Ty->isIntOrIntVectorTy())
    741     return -1;
    742 
    743   switch (Val) {
    744   default:
    745     return -1;
    746   case bitc::BINOP_ADD:
    747     return IsFP ? Instruction::FAdd : Instruction::Add;
    748   case bitc::BINOP_SUB:
    749     return IsFP ? Instruction::FSub : Instruction::Sub;
    750   case bitc::BINOP_MUL:
    751     return IsFP ? Instruction::FMul : Instruction::Mul;
    752   case bitc::BINOP_UDIV:
    753     return IsFP ? -1 : Instruction::UDiv;
    754   case bitc::BINOP_SDIV:
    755     return IsFP ? Instruction::FDiv : Instruction::SDiv;
    756   case bitc::BINOP_UREM:
    757     return IsFP ? -1 : Instruction::URem;
    758   case bitc::BINOP_SREM:
    759     return IsFP ? Instruction::FRem : Instruction::SRem;
    760   case bitc::BINOP_SHL:
    761     return IsFP ? -1 : Instruction::Shl;
    762   case bitc::BINOP_LSHR:
    763     return IsFP ? -1 : Instruction::LShr;
    764   case bitc::BINOP_ASHR:
    765     return IsFP ? -1 : Instruction::AShr;
    766   case bitc::BINOP_AND:
    767     return IsFP ? -1 : Instruction::And;
    768   case bitc::BINOP_OR:
    769     return IsFP ? -1 : Instruction::Or;
    770   case bitc::BINOP_XOR:
    771     return IsFP ? -1 : Instruction::Xor;
    772   }
    773 }
    774 
    775 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) {
    776   switch (Val) {
    777   default: return AtomicRMWInst::BAD_BINOP;
    778   case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
    779   case bitc::RMW_ADD: return AtomicRMWInst::Add;
    780   case bitc::RMW_SUB: return AtomicRMWInst::Sub;
    781   case bitc::RMW_AND: return AtomicRMWInst::And;
    782   case bitc::RMW_NAND: return AtomicRMWInst::Nand;
    783   case bitc::RMW_OR: return AtomicRMWInst::Or;
    784   case bitc::RMW_XOR: return AtomicRMWInst::Xor;
    785   case bitc::RMW_MAX: return AtomicRMWInst::Max;
    786   case bitc::RMW_MIN: return AtomicRMWInst::Min;
    787   case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
    788   case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
    789   }
    790 }
    791 
    792 static AtomicOrdering getDecodedOrdering(unsigned Val) {
    793   switch (Val) {
    794   case bitc::ORDERING_NOTATOMIC: return NotAtomic;
    795   case bitc::ORDERING_UNORDERED: return Unordered;
    796   case bitc::ORDERING_MONOTONIC: return Monotonic;
    797   case bitc::ORDERING_ACQUIRE: return Acquire;
    798   case bitc::ORDERING_RELEASE: return Release;
    799   case bitc::ORDERING_ACQREL: return AcquireRelease;
    800   default: // Map unknown orderings to sequentially-consistent.
    801   case bitc::ORDERING_SEQCST: return SequentiallyConsistent;
    802   }
    803 }
    804 
    805 static SynchronizationScope getDecodedSynchScope(unsigned Val) {
    806   switch (Val) {
    807   case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread;
    808   default: // Map unknown scopes to cross-thread.
    809   case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread;
    810   }
    811 }
    812 
    813 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) {
    814   switch (Val) {
    815   default: // Map unknown selection kinds to any.
    816   case bitc::COMDAT_SELECTION_KIND_ANY:
    817     return Comdat::Any;
    818   case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH:
    819     return Comdat::ExactMatch;
    820   case bitc::COMDAT_SELECTION_KIND_LARGEST:
    821     return Comdat::Largest;
    822   case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES:
    823     return Comdat::NoDuplicates;
    824   case bitc::COMDAT_SELECTION_KIND_SAME_SIZE:
    825     return Comdat::SameSize;
    826   }
    827 }
    828 
    829 static FastMathFlags getDecodedFastMathFlags(unsigned Val) {
    830   FastMathFlags FMF;
    831   if (0 != (Val & FastMathFlags::UnsafeAlgebra))
    832     FMF.setUnsafeAlgebra();
    833   if (0 != (Val & FastMathFlags::NoNaNs))
    834     FMF.setNoNaNs();
    835   if (0 != (Val & FastMathFlags::NoInfs))
    836     FMF.setNoInfs();
    837   if (0 != (Val & FastMathFlags::NoSignedZeros))
    838     FMF.setNoSignedZeros();
    839   if (0 != (Val & FastMathFlags::AllowReciprocal))
    840     FMF.setAllowReciprocal();
    841   return FMF;
    842 }
    843 
    844 static void upgradeDLLImportExportLinkage(llvm::GlobalValue *GV, unsigned Val) {
    845   switch (Val) {
    846   case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break;
    847   case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break;
    848   }
    849 }
    850 
    851 namespace llvm {
    852 namespace {
    853 /// \brief A class for maintaining the slot number definition
    854 /// as a placeholder for the actual definition for forward constants defs.
    855 class ConstantPlaceHolder : public ConstantExpr {
    856   void operator=(const ConstantPlaceHolder &) = delete;
    857 
    858 public:
    859   // allocate space for exactly one operand
    860   void *operator new(size_t s) { return User::operator new(s, 1); }
    861   explicit ConstantPlaceHolder(Type *Ty, LLVMContext &Context)
    862       : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) {
    863     Op<0>() = UndefValue::get(Type::getInt32Ty(Context));
    864   }
    865 
    866   /// \brief Methods to support type inquiry through isa, cast, and dyn_cast.
    867   static bool classof(const Value *V) {
    868     return isa<ConstantExpr>(V) &&
    869            cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1;
    870   }
    871 
    872   /// Provide fast operand accessors
    873   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
    874 };
    875 }
    876 
    877 // FIXME: can we inherit this from ConstantExpr?
    878 template <>
    879 struct OperandTraits<ConstantPlaceHolder> :
    880   public FixedNumOperandTraits<ConstantPlaceHolder, 1> {
    881 };
    882 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value)
    883 }
    884 
    885 void BitcodeReaderValueList::assignValue(Value *V, unsigned Idx) {
    886   if (Idx == size()) {
    887     push_back(V);
    888     return;
    889   }
    890 
    891   if (Idx >= size())
    892     resize(Idx+1);
    893 
    894   WeakVH &OldV = ValuePtrs[Idx];
    895   if (!OldV) {
    896     OldV = V;
    897     return;
    898   }
    899 
    900   // Handle constants and non-constants (e.g. instrs) differently for
    901   // efficiency.
    902   if (Constant *PHC = dyn_cast<Constant>(&*OldV)) {
    903     ResolveConstants.push_back(std::make_pair(PHC, Idx));
    904     OldV = V;
    905   } else {
    906     // If there was a forward reference to this value, replace it.
    907     Value *PrevVal = OldV;
    908     OldV->replaceAllUsesWith(V);
    909     delete PrevVal;
    910   }
    911 
    912   return;
    913 }
    914 
    915 
    916 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx,
    917                                                     Type *Ty) {
    918   if (Idx >= size())
    919     resize(Idx + 1);
    920 
    921   if (Value *V = ValuePtrs[Idx]) {
    922     if (Ty != V->getType())
    923       report_fatal_error("Type mismatch in constant table!");
    924     return cast<Constant>(V);
    925   }
    926 
    927   // Create and return a placeholder, which will later be RAUW'd.
    928   Constant *C = new ConstantPlaceHolder(Ty, Context);
    929   ValuePtrs[Idx] = C;
    930   return C;
    931 }
    932 
    933 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) {
    934   // Bail out for a clearly invalid value. This would make us call resize(0)
    935   if (Idx == UINT_MAX)
    936     return nullptr;
    937 
    938   if (Idx >= size())
    939     resize(Idx + 1);
    940 
    941   if (Value *V = ValuePtrs[Idx]) {
    942     // If the types don't match, it's invalid.
    943     if (Ty && Ty != V->getType())
    944       return nullptr;
    945     return V;
    946   }
    947 
    948   // No type specified, must be invalid reference.
    949   if (!Ty) return nullptr;
    950 
    951   // Create and return a placeholder, which will later be RAUW'd.
    952   Value *V = new Argument(Ty);
    953   ValuePtrs[Idx] = V;
    954   return V;
    955 }
    956 
    957 /// Once all constants are read, this method bulk resolves any forward
    958 /// references.  The idea behind this is that we sometimes get constants (such
    959 /// as large arrays) which reference *many* forward ref constants.  Replacing
    960 /// each of these causes a lot of thrashing when building/reuniquing the
    961 /// constant.  Instead of doing this, we look at all the uses and rewrite all
    962 /// the place holders at once for any constant that uses a placeholder.
    963 void BitcodeReaderValueList::resolveConstantForwardRefs() {
    964   // Sort the values by-pointer so that they are efficient to look up with a
    965   // binary search.
    966   std::sort(ResolveConstants.begin(), ResolveConstants.end());
    967 
    968   SmallVector<Constant*, 64> NewOps;
    969 
    970   while (!ResolveConstants.empty()) {
    971     Value *RealVal = operator[](ResolveConstants.back().second);
    972     Constant *Placeholder = ResolveConstants.back().first;
    973     ResolveConstants.pop_back();
    974 
    975     // Loop over all users of the placeholder, updating them to reference the
    976     // new value.  If they reference more than one placeholder, update them all
    977     // at once.
    978     while (!Placeholder->use_empty()) {
    979       auto UI = Placeholder->user_begin();
    980       User *U = *UI;
    981 
    982       // If the using object isn't uniqued, just update the operands.  This
    983       // handles instructions and initializers for global variables.
    984       if (!isa<Constant>(U) || isa<GlobalValue>(U)) {
    985         UI.getUse().set(RealVal);
    986         continue;
    987       }
    988 
    989       // Otherwise, we have a constant that uses the placeholder.  Replace that
    990       // constant with a new constant that has *all* placeholder uses updated.
    991       Constant *UserC = cast<Constant>(U);
    992       for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end();
    993            I != E; ++I) {
    994         Value *NewOp;
    995         if (!isa<ConstantPlaceHolder>(*I)) {
    996           // Not a placeholder reference.
    997           NewOp = *I;
    998         } else if (*I == Placeholder) {
    999           // Common case is that it just references this one placeholder.
   1000           NewOp = RealVal;
   1001         } else {
   1002           // Otherwise, look up the placeholder in ResolveConstants.
   1003           ResolveConstantsTy::iterator It =
   1004             std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(),
   1005                              std::pair<Constant*, unsigned>(cast<Constant>(*I),
   1006                                                             0));
   1007           assert(It != ResolveConstants.end() && It->first == *I);
   1008           NewOp = operator[](It->second);
   1009         }
   1010 
   1011         NewOps.push_back(cast<Constant>(NewOp));
   1012       }
   1013 
   1014       // Make the new constant.
   1015       Constant *NewC;
   1016       if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) {
   1017         NewC = ConstantArray::get(UserCA->getType(), NewOps);
   1018       } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) {
   1019         NewC = ConstantStruct::get(UserCS->getType(), NewOps);
   1020       } else if (isa<ConstantVector>(UserC)) {
   1021         NewC = ConstantVector::get(NewOps);
   1022       } else {
   1023         assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr.");
   1024         NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps);
   1025       }
   1026 
   1027       UserC->replaceAllUsesWith(NewC);
   1028       UserC->destroyConstant();
   1029       NewOps.clear();
   1030     }
   1031 
   1032     // Update all ValueHandles, they should be the only users at this point.
   1033     Placeholder->replaceAllUsesWith(RealVal);
   1034     delete Placeholder;
   1035   }
   1036 }
   1037 
   1038 void BitcodeReaderMDValueList::assignValue(Metadata *MD, unsigned Idx) {
   1039   if (Idx == size()) {
   1040     push_back(MD);
   1041     return;
   1042   }
   1043 
   1044   if (Idx >= size())
   1045     resize(Idx+1);
   1046 
   1047   TrackingMDRef &OldMD = MDValuePtrs[Idx];
   1048   if (!OldMD) {
   1049     OldMD.reset(MD);
   1050     return;
   1051   }
   1052 
   1053   // If there was a forward reference to this value, replace it.
   1054   TempMDTuple PrevMD(cast<MDTuple>(OldMD.get()));
   1055   PrevMD->replaceAllUsesWith(MD);
   1056   --NumFwdRefs;
   1057 }
   1058 
   1059 Metadata *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) {
   1060   if (Idx >= size())
   1061     resize(Idx + 1);
   1062 
   1063   if (Metadata *MD = MDValuePtrs[Idx])
   1064     return MD;
   1065 
   1066   // Track forward refs to be resolved later.
   1067   if (AnyFwdRefs) {
   1068     MinFwdRef = std::min(MinFwdRef, Idx);
   1069     MaxFwdRef = std::max(MaxFwdRef, Idx);
   1070   } else {
   1071     AnyFwdRefs = true;
   1072     MinFwdRef = MaxFwdRef = Idx;
   1073   }
   1074   ++NumFwdRefs;
   1075 
   1076   // Create and return a placeholder, which will later be RAUW'd.
   1077   Metadata *MD = MDNode::getTemporary(Context, None).release();
   1078   MDValuePtrs[Idx].reset(MD);
   1079   return MD;
   1080 }
   1081 
   1082 void BitcodeReaderMDValueList::tryToResolveCycles() {
   1083   if (!AnyFwdRefs)
   1084     // Nothing to do.
   1085     return;
   1086 
   1087   if (NumFwdRefs)
   1088     // Still forward references... can't resolve cycles.
   1089     return;
   1090 
   1091   // Resolve any cycles.
   1092   for (unsigned I = MinFwdRef, E = MaxFwdRef + 1; I != E; ++I) {
   1093     auto &MD = MDValuePtrs[I];
   1094     auto *N = dyn_cast_or_null<MDNode>(MD);
   1095     if (!N)
   1096       continue;
   1097 
   1098     assert(!N->isTemporary() && "Unexpected forward reference");
   1099     N->resolveCycles();
   1100   }
   1101 
   1102   // Make sure we return early again until there's another forward ref.
   1103   AnyFwdRefs = false;
   1104 }
   1105 
   1106 Type *BitcodeReader::getTypeByID(unsigned ID) {
   1107   // The type table size is always specified correctly.
   1108   if (ID >= TypeList.size())
   1109     return nullptr;
   1110 
   1111   if (Type *Ty = TypeList[ID])
   1112     return Ty;
   1113 
   1114   // If we have a forward reference, the only possible case is when it is to a
   1115   // named struct.  Just create a placeholder for now.
   1116   return TypeList[ID] = createIdentifiedStructType(Context);
   1117 }
   1118 
   1119 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
   1120                                                       StringRef Name) {
   1121   auto *Ret = StructType::create(Context, Name);
   1122   IdentifiedStructTypes.push_back(Ret);
   1123   return Ret;
   1124 }
   1125 
   1126 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
   1127   auto *Ret = StructType::create(Context);
   1128   IdentifiedStructTypes.push_back(Ret);
   1129   return Ret;
   1130 }
   1131 
   1132 
   1133 //===----------------------------------------------------------------------===//
   1134 //  Functions for parsing blocks from the bitcode file
   1135 //===----------------------------------------------------------------------===//
   1136 
   1137 
   1138 /// \brief This fills an AttrBuilder object with the LLVM attributes that have
   1139 /// been decoded from the given integer. This function must stay in sync with
   1140 /// 'encodeLLVMAttributesForBitcode'.
   1141 static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
   1142                                            uint64_t EncodedAttrs) {
   1143   // FIXME: Remove in 4.0.
   1144 
   1145   // The alignment is stored as a 16-bit raw value from bits 31--16.  We shift
   1146   // the bits above 31 down by 11 bits.
   1147   unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
   1148   assert((!Alignment || isPowerOf2_32(Alignment)) &&
   1149          "Alignment must be a power of two.");
   1150 
   1151   if (Alignment)
   1152     B.addAlignmentAttr(Alignment);
   1153   B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
   1154                 (EncodedAttrs & 0xffff));
   1155 }
   1156 
   1157 std::error_code BitcodeReader::parseAttributeBlock() {
   1158   if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
   1159     return error("Invalid record");
   1160 
   1161   if (!MAttributes.empty())
   1162     return error("Invalid multiple blocks");
   1163 
   1164   SmallVector<uint64_t, 64> Record;
   1165 
   1166   SmallVector<AttributeSet, 8> Attrs;
   1167 
   1168   // Read all the records.
   1169   while (1) {
   1170     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
   1171 
   1172     switch (Entry.Kind) {
   1173     case BitstreamEntry::SubBlock: // Handled for us already.
   1174     case BitstreamEntry::Error:
   1175       return error("Malformed block");
   1176     case BitstreamEntry::EndBlock:
   1177       return std::error_code();
   1178     case BitstreamEntry::Record:
   1179       // The interesting case.
   1180       break;
   1181     }
   1182 
   1183     // Read a record.
   1184     Record.clear();
   1185     switch (Stream.readRecord(Entry.ID, Record)) {
   1186     default:  // Default behavior: ignore.
   1187       break;
   1188     case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...]
   1189       // FIXME: Remove in 4.0.
   1190       if (Record.size() & 1)
   1191         return error("Invalid record");
   1192 
   1193       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
   1194         AttrBuilder B;
   1195         decodeLLVMAttributesForBitcode(B, Record[i+1]);
   1196         Attrs.push_back(AttributeSet::get(Context, Record[i], B));
   1197       }
   1198 
   1199       MAttributes.push_back(AttributeSet::get(Context, Attrs));
   1200       Attrs.clear();
   1201       break;
   1202     }
   1203     case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...]
   1204       for (unsigned i = 0, e = Record.size(); i != e; ++i)
   1205         Attrs.push_back(MAttributeGroups[Record[i]]);
   1206 
   1207       MAttributes.push_back(AttributeSet::get(Context, Attrs));
   1208       Attrs.clear();
   1209       break;
   1210     }
   1211     }
   1212   }
   1213 }
   1214 
   1215 // Returns Attribute::None on unrecognized codes.
   1216 static Attribute::AttrKind getAttrFromCode(uint64_t Code) {
   1217   switch (Code) {
   1218   default:
   1219     return Attribute::None;
   1220   case bitc::ATTR_KIND_ALIGNMENT:
   1221     return Attribute::Alignment;
   1222   case bitc::ATTR_KIND_ALWAYS_INLINE:
   1223     return Attribute::AlwaysInline;
   1224   case bitc::ATTR_KIND_ARGMEMONLY:
   1225     return Attribute::ArgMemOnly;
   1226   case bitc::ATTR_KIND_BUILTIN:
   1227     return Attribute::Builtin;
   1228   case bitc::ATTR_KIND_BY_VAL:
   1229     return Attribute::ByVal;
   1230   case bitc::ATTR_KIND_IN_ALLOCA:
   1231     return Attribute::InAlloca;
   1232   case bitc::ATTR_KIND_COLD:
   1233     return Attribute::Cold;
   1234   case bitc::ATTR_KIND_CONVERGENT:
   1235     return Attribute::Convergent;
   1236   case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY:
   1237     return Attribute::InaccessibleMemOnly;
   1238   case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY:
   1239     return Attribute::InaccessibleMemOrArgMemOnly;
   1240   case bitc::ATTR_KIND_INLINE_HINT:
   1241     return Attribute::InlineHint;
   1242   case bitc::ATTR_KIND_IN_REG:
   1243     return Attribute::InReg;
   1244   case bitc::ATTR_KIND_JUMP_TABLE:
   1245     return Attribute::JumpTable;
   1246   case bitc::ATTR_KIND_MIN_SIZE:
   1247     return Attribute::MinSize;
   1248   case bitc::ATTR_KIND_NAKED:
   1249     return Attribute::Naked;
   1250   case bitc::ATTR_KIND_NEST:
   1251     return Attribute::Nest;
   1252   case bitc::ATTR_KIND_NO_ALIAS:
   1253     return Attribute::NoAlias;
   1254   case bitc::ATTR_KIND_NO_BUILTIN:
   1255     return Attribute::NoBuiltin;
   1256   case bitc::ATTR_KIND_NO_CAPTURE:
   1257     return Attribute::NoCapture;
   1258   case bitc::ATTR_KIND_NO_DUPLICATE:
   1259     return Attribute::NoDuplicate;
   1260   case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT:
   1261     return Attribute::NoImplicitFloat;
   1262   case bitc::ATTR_KIND_NO_INLINE:
   1263     return Attribute::NoInline;
   1264   case bitc::ATTR_KIND_NO_RECURSE:
   1265     return Attribute::NoRecurse;
   1266   case bitc::ATTR_KIND_NON_LAZY_BIND:
   1267     return Attribute::NonLazyBind;
   1268   case bitc::ATTR_KIND_NON_NULL:
   1269     return Attribute::NonNull;
   1270   case bitc::ATTR_KIND_DEREFERENCEABLE:
   1271     return Attribute::Dereferenceable;
   1272   case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL:
   1273     return Attribute::DereferenceableOrNull;
   1274   case bitc::ATTR_KIND_NO_RED_ZONE:
   1275     return Attribute::NoRedZone;
   1276   case bitc::ATTR_KIND_NO_RETURN:
   1277     return Attribute::NoReturn;
   1278   case bitc::ATTR_KIND_NO_UNWIND:
   1279     return Attribute::NoUnwind;
   1280   case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE:
   1281     return Attribute::OptimizeForSize;
   1282   case bitc::ATTR_KIND_OPTIMIZE_NONE:
   1283     return Attribute::OptimizeNone;
   1284   case bitc::ATTR_KIND_READ_NONE:
   1285     return Attribute::ReadNone;
   1286   case bitc::ATTR_KIND_READ_ONLY:
   1287     return Attribute::ReadOnly;
   1288   case bitc::ATTR_KIND_RETURNED:
   1289     return Attribute::Returned;
   1290   case bitc::ATTR_KIND_RETURNS_TWICE:
   1291     return Attribute::ReturnsTwice;
   1292   case bitc::ATTR_KIND_S_EXT:
   1293     return Attribute::SExt;
   1294   case bitc::ATTR_KIND_STACK_ALIGNMENT:
   1295     return Attribute::StackAlignment;
   1296   case bitc::ATTR_KIND_STACK_PROTECT:
   1297     return Attribute::StackProtect;
   1298   case bitc::ATTR_KIND_STACK_PROTECT_REQ:
   1299     return Attribute::StackProtectReq;
   1300   case bitc::ATTR_KIND_STACK_PROTECT_STRONG:
   1301     return Attribute::StackProtectStrong;
   1302   case bitc::ATTR_KIND_SAFESTACK:
   1303     return Attribute::SafeStack;
   1304   case bitc::ATTR_KIND_STRUCT_RET:
   1305     return Attribute::StructRet;
   1306   case bitc::ATTR_KIND_SANITIZE_ADDRESS:
   1307     return Attribute::SanitizeAddress;
   1308   case bitc::ATTR_KIND_SANITIZE_THREAD:
   1309     return Attribute::SanitizeThread;
   1310   case bitc::ATTR_KIND_SANITIZE_MEMORY:
   1311     return Attribute::SanitizeMemory;
   1312   case bitc::ATTR_KIND_UW_TABLE:
   1313     return Attribute::UWTable;
   1314   case bitc::ATTR_KIND_Z_EXT:
   1315     return Attribute::ZExt;
   1316   }
   1317 }
   1318 
   1319 std::error_code BitcodeReader::parseAlignmentValue(uint64_t Exponent,
   1320                                                    unsigned &Alignment) {
   1321   // Note: Alignment in bitcode files is incremented by 1, so that zero
   1322   // can be used for default alignment.
   1323   if (Exponent > Value::MaxAlignmentExponent + 1)
   1324     return error("Invalid alignment value");
   1325   Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1;
   1326   return std::error_code();
   1327 }
   1328 
   1329 std::error_code BitcodeReader::parseAttrKind(uint64_t Code,
   1330                                              Attribute::AttrKind *Kind) {
   1331   *Kind = getAttrFromCode(Code);
   1332   if (*Kind == Attribute::None)
   1333     return error(BitcodeError::CorruptedBitcode,
   1334                  "Unknown attribute kind (" + Twine(Code) + ")");
   1335   return std::error_code();
   1336 }
   1337 
   1338 std::error_code BitcodeReader::parseAttributeGroupBlock() {
   1339   if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID))
   1340     return error("Invalid record");
   1341 
   1342   if (!MAttributeGroups.empty())
   1343     return error("Invalid multiple blocks");
   1344 
   1345   SmallVector<uint64_t, 64> Record;
   1346 
   1347   // Read all the records.
   1348   while (1) {
   1349     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
   1350 
   1351     switch (Entry.Kind) {
   1352     case BitstreamEntry::SubBlock: // Handled for us already.
   1353     case BitstreamEntry::Error:
   1354       return error("Malformed block");
   1355     case BitstreamEntry::EndBlock:
   1356       return std::error_code();
   1357     case BitstreamEntry::Record:
   1358       // The interesting case.
   1359       break;
   1360     }
   1361 
   1362     // Read a record.
   1363     Record.clear();
   1364     switch (Stream.readRecord(Entry.ID, Record)) {
   1365     default:  // Default behavior: ignore.
   1366       break;
   1367     case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
   1368       if (Record.size() < 3)
   1369         return error("Invalid record");
   1370 
   1371       uint64_t GrpID = Record[0];
   1372       uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
   1373 
   1374       AttrBuilder B;
   1375       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
   1376         if (Record[i] == 0) {        // Enum attribute
   1377           Attribute::AttrKind Kind;
   1378           if (std::error_code EC = parseAttrKind(Record[++i], &Kind))
   1379             return EC;
   1380 
   1381           B.addAttribute(Kind);
   1382         } else if (Record[i] == 1) { // Integer attribute
   1383           Attribute::AttrKind Kind;
   1384           if (std::error_code EC = parseAttrKind(Record[++i], &Kind))
   1385             return EC;
   1386           if (Kind == Attribute::Alignment)
   1387             B.addAlignmentAttr(Record[++i]);
   1388           else if (Kind == Attribute::StackAlignment)
   1389             B.addStackAlignmentAttr(Record[++i]);
   1390           else if (Kind == Attribute::Dereferenceable)
   1391             B.addDereferenceableAttr(Record[++i]);
   1392           else if (Kind == Attribute::DereferenceableOrNull)
   1393             B.addDereferenceableOrNullAttr(Record[++i]);
   1394         } else {                     // String attribute
   1395           assert((Record[i] == 3 || Record[i] == 4) &&
   1396                  "Invalid attribute group entry");
   1397           bool HasValue = (Record[i++] == 4);
   1398           SmallString<64> KindStr;
   1399           SmallString<64> ValStr;
   1400 
   1401           while (Record[i] != 0 && i != e)
   1402             KindStr += Record[i++];
   1403           assert(Record[i] == 0 && "Kind string not null terminated");
   1404 
   1405           if (HasValue) {
   1406             // Has a value associated with it.
   1407             ++i; // Skip the '0' that terminates the "kind" string.
   1408             while (Record[i] != 0 && i != e)
   1409               ValStr += Record[i++];
   1410             assert(Record[i] == 0 && "Value string not null terminated");
   1411           }
   1412 
   1413           B.addAttribute(KindStr.str(), ValStr.str());
   1414         }
   1415       }
   1416 
   1417       MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B);
   1418       break;
   1419     }
   1420     }
   1421   }
   1422 }
   1423 
   1424 std::error_code BitcodeReader::parseTypeTable() {
   1425   if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
   1426     return error("Invalid record");
   1427 
   1428   return parseTypeTableBody();
   1429 }
   1430 
   1431 std::error_code BitcodeReader::parseTypeTableBody() {
   1432   if (!TypeList.empty())
   1433     return error("Invalid multiple blocks");
   1434 
   1435   SmallVector<uint64_t, 64> Record;
   1436   unsigned NumRecords = 0;
   1437 
   1438   SmallString<64> TypeName;
   1439 
   1440   // Read all the records for this type table.
   1441   while (1) {
   1442     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
   1443 
   1444     switch (Entry.Kind) {
   1445     case BitstreamEntry::SubBlock: // Handled for us already.
   1446     case BitstreamEntry::Error:
   1447       return error("Malformed block");
   1448     case BitstreamEntry::EndBlock:
   1449       if (NumRecords != TypeList.size())
   1450         return error("Malformed block");
   1451       return std::error_code();
   1452     case BitstreamEntry::Record:
   1453       // The interesting case.
   1454       break;
   1455     }
   1456 
   1457     // Read a record.
   1458     Record.clear();
   1459     Type *ResultTy = nullptr;
   1460     switch (Stream.readRecord(Entry.ID, Record)) {
   1461     default:
   1462       return error("Invalid value");
   1463     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
   1464       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
   1465       // type list.  This allows us to reserve space.
   1466       if (Record.size() < 1)
   1467         return error("Invalid record");
   1468       TypeList.resize(Record[0]);
   1469       continue;
   1470     case bitc::TYPE_CODE_VOID:      // VOID
   1471       ResultTy = Type::getVoidTy(Context);
   1472       break;
   1473     case bitc::TYPE_CODE_HALF:     // HALF
   1474       ResultTy = Type::getHalfTy(Context);
   1475       break;
   1476     case bitc::TYPE_CODE_FLOAT:     // FLOAT
   1477       ResultTy = Type::getFloatTy(Context);
   1478       break;
   1479     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
   1480       ResultTy = Type::getDoubleTy(Context);
   1481       break;
   1482     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
   1483       ResultTy = Type::getX86_FP80Ty(Context);
   1484       break;
   1485     case bitc::TYPE_CODE_FP128:     // FP128
   1486       ResultTy = Type::getFP128Ty(Context);
   1487       break;
   1488     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
   1489       ResultTy = Type::getPPC_FP128Ty(Context);
   1490       break;
   1491     case bitc::TYPE_CODE_LABEL:     // LABEL
   1492       ResultTy = Type::getLabelTy(Context);
   1493       break;
   1494     case bitc::TYPE_CODE_METADATA:  // METADATA
   1495       ResultTy = Type::getMetadataTy(Context);
   1496       break;
   1497     case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
   1498       ResultTy = Type::getX86_MMXTy(Context);
   1499       break;
   1500     case bitc::TYPE_CODE_TOKEN:     // TOKEN
   1501       ResultTy = Type::getTokenTy(Context);
   1502       break;
   1503     case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width]
   1504       if (Record.size() < 1)
   1505         return error("Invalid record");
   1506 
   1507       uint64_t NumBits = Record[0];
   1508       if (NumBits < IntegerType::MIN_INT_BITS ||
   1509           NumBits > IntegerType::MAX_INT_BITS)
   1510         return error("Bitwidth for integer type out of range");
   1511       ResultTy = IntegerType::get(Context, NumBits);
   1512       break;
   1513     }
   1514     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
   1515                                     //          [pointee type, address space]
   1516       if (Record.size() < 1)
   1517         return error("Invalid record");
   1518       unsigned AddressSpace = 0;
   1519       if (Record.size() == 2)
   1520         AddressSpace = Record[1];
   1521       ResultTy = getTypeByID(Record[0]);
   1522       if (!ResultTy ||
   1523           !PointerType::isValidElementType(ResultTy))
   1524         return error("Invalid type");
   1525       ResultTy = PointerType::get(ResultTy, AddressSpace);
   1526       break;
   1527     }
   1528     case bitc::TYPE_CODE_FUNCTION_OLD: {
   1529       // FIXME: attrid is dead, remove it in LLVM 4.0
   1530       // FUNCTION: [vararg, attrid, retty, paramty x N]
   1531       if (Record.size() < 3)
   1532         return error("Invalid record");
   1533       SmallVector<Type*, 8> ArgTys;
   1534       for (unsigned i = 3, e = Record.size(); i != e; ++i) {
   1535         if (Type *T = getTypeByID(Record[i]))
   1536           ArgTys.push_back(T);
   1537         else
   1538           break;
   1539       }
   1540 
   1541       ResultTy = getTypeByID(Record[2]);
   1542       if (!ResultTy || ArgTys.size() < Record.size()-3)
   1543         return error("Invalid type");
   1544 
   1545       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
   1546       break;
   1547     }
   1548     case bitc::TYPE_CODE_FUNCTION: {
   1549       // FUNCTION: [vararg, retty, paramty x N]
   1550       if (Record.size() < 2)
   1551         return error("Invalid record");
   1552       SmallVector<Type*, 8> ArgTys;
   1553       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
   1554         if (Type *T = getTypeByID(Record[i])) {
   1555           if (!FunctionType::isValidArgumentType(T))
   1556             return error("Invalid function argument type");
   1557           ArgTys.push_back(T);
   1558         }
   1559         else
   1560           break;
   1561       }
   1562 
   1563       ResultTy = getTypeByID(Record[1]);
   1564       if (!ResultTy || ArgTys.size() < Record.size()-2)
   1565         return error("Invalid type");
   1566 
   1567       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
   1568       break;
   1569     }
   1570     case bitc::TYPE_CODE_STRUCT_ANON: {  // STRUCT: [ispacked, eltty x N]
   1571       if (Record.size() < 1)
   1572         return error("Invalid record");
   1573       SmallVector<Type*, 8> EltTys;
   1574       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
   1575         if (Type *T = getTypeByID(Record[i]))
   1576           EltTys.push_back(T);
   1577         else
   1578           break;
   1579       }
   1580       if (EltTys.size() != Record.size()-1)
   1581         return error("Invalid type");
   1582       ResultTy = StructType::get(Context, EltTys, Record[0]);
   1583       break;
   1584     }
   1585     case bitc::TYPE_CODE_STRUCT_NAME:   // STRUCT_NAME: [strchr x N]
   1586       if (convertToString(Record, 0, TypeName))
   1587         return error("Invalid record");
   1588       continue;
   1589 
   1590     case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
   1591       if (Record.size() < 1)
   1592         return error("Invalid record");
   1593 
   1594       if (NumRecords >= TypeList.size())
   1595         return error("Invalid TYPE table");
   1596 
   1597       // Check to see if this was forward referenced, if so fill in the temp.
   1598       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
   1599       if (Res) {
   1600         Res->setName(TypeName);
   1601         TypeList[NumRecords] = nullptr;
   1602       } else  // Otherwise, create a new struct.
   1603         Res = createIdentifiedStructType(Context, TypeName);
   1604       TypeName.clear();
   1605 
   1606       SmallVector<Type*, 8> EltTys;
   1607       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
   1608         if (Type *T = getTypeByID(Record[i]))
   1609           EltTys.push_back(T);
   1610         else
   1611           break;
   1612       }
   1613       if (EltTys.size() != Record.size()-1)
   1614         return error("Invalid record");
   1615       Res->setBody(EltTys, Record[0]);
   1616       ResultTy = Res;
   1617       break;
   1618     }
   1619     case bitc::TYPE_CODE_OPAQUE: {       // OPAQUE: []
   1620       if (Record.size() != 1)
   1621         return error("Invalid record");
   1622 
   1623       if (NumRecords >= TypeList.size())
   1624         return error("Invalid TYPE table");
   1625 
   1626       // Check to see if this was forward referenced, if so fill in the temp.
   1627       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
   1628       if (Res) {
   1629         Res->setName(TypeName);
   1630         TypeList[NumRecords] = nullptr;
   1631       } else  // Otherwise, create a new struct with no body.
   1632         Res = createIdentifiedStructType(Context, TypeName);
   1633       TypeName.clear();
   1634       ResultTy = Res;
   1635       break;
   1636     }
   1637     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
   1638       if (Record.size() < 2)
   1639         return error("Invalid record");
   1640       ResultTy = getTypeByID(Record[1]);
   1641       if (!ResultTy || !ArrayType::isValidElementType(ResultTy))
   1642         return error("Invalid type");
   1643       ResultTy = ArrayType::get(ResultTy, Record[0]);
   1644       break;
   1645     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty]
   1646       if (Record.size() < 2)
   1647         return error("Invalid record");
   1648       if (Record[0] == 0)
   1649         return error("Invalid vector length");
   1650       ResultTy = getTypeByID(Record[1]);
   1651       if (!ResultTy || !StructType::isValidElementType(ResultTy))
   1652         return error("Invalid type");
   1653       ResultTy = VectorType::get(ResultTy, Record[0]);
   1654       break;
   1655     }
   1656 
   1657     if (NumRecords >= TypeList.size())
   1658       return error("Invalid TYPE table");
   1659     if (TypeList[NumRecords])
   1660       return error(
   1661           "Invalid TYPE table: Only named structs can be forward referenced");
   1662     assert(ResultTy && "Didn't read a type?");
   1663     TypeList[NumRecords++] = ResultTy;
   1664   }
   1665 }
   1666 
   1667 std::error_code BitcodeReader::parseOperandBundleTags() {
   1668   if (Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID))
   1669     return error("Invalid record");
   1670 
   1671   if (!BundleTags.empty())
   1672     return error("Invalid multiple blocks");
   1673 
   1674   SmallVector<uint64_t, 64> Record;
   1675 
   1676   while (1) {
   1677     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
   1678 
   1679     switch (Entry.Kind) {
   1680     case BitstreamEntry::SubBlock: // Handled for us already.
   1681     case BitstreamEntry::Error:
   1682       return error("Malformed block");
   1683     case BitstreamEntry::EndBlock:
   1684       return std::error_code();
   1685     case BitstreamEntry::Record:
   1686       // The interesting case.
   1687       break;
   1688     }
   1689 
   1690     // Tags are implicitly mapped to integers by their order.
   1691 
   1692     if (Stream.readRecord(Entry.ID, Record) != bitc::OPERAND_BUNDLE_TAG)
   1693       return error("Invalid record");
   1694 
   1695     // OPERAND_BUNDLE_TAG: [strchr x N]
   1696     BundleTags.emplace_back();
   1697     if (convertToString(Record, 0, BundleTags.back()))
   1698       return error("Invalid record");
   1699     Record.clear();
   1700   }
   1701 }
   1702 
   1703 /// Associate a value with its name from the given index in the provided record.
   1704 ErrorOr<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record,
   1705                                             unsigned NameIndex, Triple &TT) {
   1706   SmallString<128> ValueName;
   1707   if (convertToString(Record, NameIndex, ValueName))
   1708     return error("Invalid record");
   1709   unsigned ValueID = Record[0];
   1710   if (ValueID >= ValueList.size() || !ValueList[ValueID])
   1711     return error("Invalid record");
   1712   Value *V = ValueList[ValueID];
   1713 
   1714   StringRef NameStr(ValueName.data(), ValueName.size());
   1715   if (NameStr.find_first_of(0) != StringRef::npos)
   1716     return error("Invalid value name");
   1717   V->setName(NameStr);
   1718   auto *GO = dyn_cast<GlobalObject>(V);
   1719   if (GO) {
   1720     if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) {
   1721       if (TT.isOSBinFormatMachO())
   1722         GO->setComdat(nullptr);
   1723       else
   1724         GO->setComdat(TheModule->getOrInsertComdat(V->getName()));
   1725     }
   1726   }
   1727   return V;
   1728 }
   1729 
   1730 /// Parse the value symbol table at either the current parsing location or
   1731 /// at the given bit offset if provided.
   1732 std::error_code BitcodeReader::parseValueSymbolTable(uint64_t Offset) {
   1733   uint64_t CurrentBit;
   1734   // Pass in the Offset to distinguish between calling for the module-level
   1735   // VST (where we want to jump to the VST offset) and the function-level
   1736   // VST (where we don't).
   1737   if (Offset > 0) {
   1738     // Save the current parsing location so we can jump back at the end
   1739     // of the VST read.
   1740     CurrentBit = Stream.GetCurrentBitNo();
   1741     Stream.JumpToBit(Offset * 32);
   1742 #ifndef NDEBUG
   1743     // Do some checking if we are in debug mode.
   1744     BitstreamEntry Entry = Stream.advance();
   1745     assert(Entry.Kind == BitstreamEntry::SubBlock);
   1746     assert(Entry.ID == bitc::VALUE_SYMTAB_BLOCK_ID);
   1747 #else
   1748     // In NDEBUG mode ignore the output so we don't get an unused variable
   1749     // warning.
   1750     Stream.advance();
   1751 #endif
   1752   }
   1753 
   1754   // Compute the delta between the bitcode indices in the VST (the word offset
   1755   // to the word-aligned ENTER_SUBBLOCK for the function block, and that
   1756   // expected by the lazy reader. The reader's EnterSubBlock expects to have
   1757   // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID
   1758   // (size BlockIDWidth). Note that we access the stream's AbbrevID width here
   1759   // just before entering the VST subblock because: 1) the EnterSubBlock
   1760   // changes the AbbrevID width; 2) the VST block is nested within the same
   1761   // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same
   1762   // AbbrevID width before calling EnterSubBlock; and 3) when we want to
   1763   // jump to the FUNCTION_BLOCK using this offset later, we don't want
   1764   // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK.
   1765   unsigned FuncBitcodeOffsetDelta =
   1766       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
   1767 
   1768   if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
   1769     return error("Invalid record");
   1770 
   1771   SmallVector<uint64_t, 64> Record;
   1772 
   1773   Triple TT(TheModule->getTargetTriple());
   1774 
   1775   // Read all the records for this value table.
   1776   SmallString<128> ValueName;
   1777   while (1) {
   1778     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
   1779 
   1780     switch (Entry.Kind) {
   1781     case BitstreamEntry::SubBlock: // Handled for us already.
   1782     case BitstreamEntry::Error:
   1783       return error("Malformed block");
   1784     case BitstreamEntry::EndBlock:
   1785       if (Offset > 0)
   1786         Stream.JumpToBit(CurrentBit);
   1787       return std::error_code();
   1788     case BitstreamEntry::Record:
   1789       // The interesting case.
   1790       break;
   1791     }
   1792 
   1793     // Read a record.
   1794     Record.clear();
   1795     switch (Stream.readRecord(Entry.ID, Record)) {
   1796     default:  // Default behavior: unknown type.
   1797       break;
   1798     case bitc::VST_CODE_ENTRY: {  // VST_ENTRY: [valueid, namechar x N]
   1799       ErrorOr<Value *> ValOrErr = recordValue(Record, 1, TT);
   1800       if (std::error_code EC = ValOrErr.getError())
   1801         return EC;
   1802       ValOrErr.get();
   1803       break;
   1804     }
   1805     case bitc::VST_CODE_FNENTRY: {
   1806       // VST_FNENTRY: [valueid, offset, namechar x N]
   1807       ErrorOr<Value *> ValOrErr = recordValue(Record, 2, TT);
   1808       if (std::error_code EC = ValOrErr.getError())
   1809         return EC;
   1810       Value *V = ValOrErr.get();
   1811 
   1812       auto *GO = dyn_cast<GlobalObject>(V);
   1813       if (!GO) {
   1814         // If this is an alias, need to get the actual Function object
   1815         // it aliases, in order to set up the DeferredFunctionInfo entry below.
   1816         auto *GA = dyn_cast<GlobalAlias>(V);
   1817         if (GA)
   1818           GO = GA->getBaseObject();
   1819         assert(GO);
   1820       }
   1821 
   1822       uint64_t FuncWordOffset = Record[1];
   1823       Function *F = dyn_cast<Function>(GO);
   1824       assert(F);
   1825       uint64_t FuncBitOffset = FuncWordOffset * 32;
   1826       DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta;
   1827       // Set the LastFunctionBlockBit to point to the last function block.
   1828       // Later when parsing is resumed after function materialization,
   1829       // we can simply skip that last function block.
   1830       if (FuncBitOffset > LastFunctionBlockBit)
   1831         LastFunctionBlockBit = FuncBitOffset;
   1832       break;
   1833     }
   1834     case bitc::VST_CODE_BBENTRY: {
   1835       if (convertToString(Record, 1, ValueName))
   1836         return error("Invalid record");
   1837       BasicBlock *BB = getBasicBlock(Record[0]);
   1838       if (!BB)
   1839         return error("Invalid record");
   1840 
   1841       BB->setName(StringRef(ValueName.data(), ValueName.size()));
   1842       ValueName.clear();
   1843       break;
   1844     }
   1845     }
   1846   }
   1847 }
   1848 
   1849 /// Parse a single METADATA_KIND record, inserting result in MDKindMap.
   1850 std::error_code
   1851 BitcodeReader::parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record) {
   1852   if (Record.size() < 2)
   1853     return error("Invalid record");
   1854 
   1855   unsigned Kind = Record[0];
   1856   SmallString<8> Name(Record.begin() + 1, Record.end());
   1857 
   1858   unsigned NewKind = TheModule->getMDKindID(Name.str());
   1859   if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second)
   1860     return error("Conflicting METADATA_KIND records");
   1861   return std::error_code();
   1862 }
   1863 
   1864 static int64_t unrotateSign(uint64_t U) { return U & 1 ? ~(U >> 1) : U >> 1; }
   1865 
   1866 /// Parse a METADATA_BLOCK. If ModuleLevel is true then we are parsing
   1867 /// module level metadata.
   1868 std::error_code BitcodeReader::parseMetadata(bool ModuleLevel) {
   1869   IsMetadataMaterialized = true;
   1870   unsigned NextMDValueNo = MDValueList.size();
   1871   if (ModuleLevel && SeenModuleValuesRecord) {
   1872     // Now that we are parsing the module level metadata, we want to restart
   1873     // the numbering of the MD values, and replace temp MD created earlier
   1874     // with their real values. If we saw a METADATA_VALUE record then we
   1875     // would have set the MDValueList size to the number specified in that
   1876     // record, to support parsing function-level metadata first, and we need
   1877     // to reset back to 0 to fill the MDValueList in with the parsed module
   1878     // The function-level metadata parsing should have reset the MDValueList
   1879     // size back to the value reported by the METADATA_VALUE record, saved in
   1880     // NumModuleMDs.
   1881     assert(NumModuleMDs == MDValueList.size() &&
   1882            "Expected MDValueList to only contain module level values");
   1883     NextMDValueNo = 0;
   1884   }
   1885 
   1886   if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID))
   1887     return error("Invalid record");
   1888 
   1889   SmallVector<uint64_t, 64> Record;
   1890 
   1891   auto getMD =
   1892       [&](unsigned ID) -> Metadata *{ return MDValueList.getValueFwdRef(ID); };
   1893   auto getMDOrNull = [&](unsigned ID) -> Metadata *{
   1894     if (ID)
   1895       return getMD(ID - 1);
   1896     return nullptr;
   1897   };
   1898   auto getMDString = [&](unsigned ID) -> MDString *{
   1899     // This requires that the ID is not really a forward reference.  In
   1900     // particular, the MDString must already have been resolved.
   1901     return cast_or_null<MDString>(getMDOrNull(ID));
   1902   };
   1903 
   1904 #define GET_OR_DISTINCT(CLASS, DISTINCT, ARGS)                                 \
   1905   (DISTINCT ? CLASS::getDistinct ARGS : CLASS::get ARGS)
   1906 
   1907   // Read all the records.
   1908   while (1) {
   1909     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
   1910 
   1911     switch (Entry.Kind) {
   1912     case BitstreamEntry::SubBlock: // Handled for us already.
   1913     case BitstreamEntry::Error:
   1914       return error("Malformed block");
   1915     case BitstreamEntry::EndBlock:
   1916       MDValueList.tryToResolveCycles();
   1917       assert((!(ModuleLevel && SeenModuleValuesRecord) ||
   1918               NumModuleMDs == MDValueList.size()) &&
   1919              "Inconsistent bitcode: METADATA_VALUES mismatch");
   1920       return std::error_code();
   1921     case BitstreamEntry::Record:
   1922       // The interesting case.
   1923       break;
   1924     }
   1925 
   1926     // Read a record.
   1927     Record.clear();
   1928     unsigned Code = Stream.readRecord(Entry.ID, Record);
   1929     bool IsDistinct = false;
   1930     switch (Code) {
   1931     default:  // Default behavior: ignore.
   1932       break;
   1933     case bitc::METADATA_NAME: {
   1934       // Read name of the named metadata.
   1935       SmallString<8> Name(Record.begin(), Record.end());
   1936       Record.clear();
   1937       Code = Stream.ReadCode();
   1938 
   1939       unsigned NextBitCode = Stream.readRecord(Code, Record);
   1940       if (NextBitCode != bitc::METADATA_NAMED_NODE)
   1941         return error("METADATA_NAME not followed by METADATA_NAMED_NODE");
   1942 
   1943       // Read named metadata elements.
   1944       unsigned Size = Record.size();
   1945       NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name);
   1946       for (unsigned i = 0; i != Size; ++i) {
   1947         MDNode *MD = dyn_cast_or_null<MDNode>(MDValueList.getValueFwdRef(Record[i]));
   1948         if (!MD)
   1949           return error("Invalid record");
   1950         NMD->addOperand(MD);
   1951       }
   1952       break;
   1953     }
   1954     case bitc::METADATA_OLD_FN_NODE: {
   1955       // FIXME: Remove in 4.0.
   1956       // This is a LocalAsMetadata record, the only type of function-local
   1957       // metadata.
   1958       if (Record.size() % 2 == 1)
   1959         return error("Invalid record");
   1960 
   1961       // If this isn't a LocalAsMetadata record, we're dropping it.  This used
   1962       // to be legal, but there's no upgrade path.
   1963       auto dropRecord = [&] {
   1964         MDValueList.assignValue(MDNode::get(Context, None), NextMDValueNo++);
   1965       };
   1966       if (Record.size() != 2) {
   1967         dropRecord();
   1968         break;
   1969       }
   1970 
   1971       Type *Ty = getTypeByID(Record[0]);
   1972       if (Ty->isMetadataTy() || Ty->isVoidTy()) {
   1973         dropRecord();
   1974         break;
   1975       }
   1976 
   1977       MDValueList.assignValue(
   1978           LocalAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)),
   1979           NextMDValueNo++);
   1980       break;
   1981     }
   1982     case bitc::METADATA_OLD_NODE: {
   1983       // FIXME: Remove in 4.0.
   1984       if (Record.size() % 2 == 1)
   1985         return error("Invalid record");
   1986 
   1987       unsigned Size = Record.size();
   1988       SmallVector<Metadata *, 8> Elts;
   1989       for (unsigned i = 0; i != Size; i += 2) {
   1990         Type *Ty = getTypeByID(Record[i]);
   1991         if (!Ty)
   1992           return error("Invalid record");
   1993         if (Ty->isMetadataTy())
   1994           Elts.push_back(MDValueList.getValueFwdRef(Record[i+1]));
   1995         else if (!Ty->isVoidTy()) {
   1996           auto *MD =
   1997               ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty));
   1998           assert(isa<ConstantAsMetadata>(MD) &&
   1999                  "Expected non-function-local metadata");
   2000           Elts.push_back(MD);
   2001         } else
   2002           Elts.push_back(nullptr);
   2003       }
   2004       MDValueList.assignValue(MDNode::get(Context, Elts), NextMDValueNo++);
   2005       break;
   2006     }
   2007     case bitc::METADATA_VALUE: {
   2008       if (Record.size() != 2)
   2009         return error("Invalid record");
   2010 
   2011       Type *Ty = getTypeByID(Record[0]);
   2012       if (Ty->isMetadataTy() || Ty->isVoidTy())
   2013         return error("Invalid record");
   2014 
   2015       MDValueList.assignValue(
   2016           ValueAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)),
   2017           NextMDValueNo++);
   2018       break;
   2019     }
   2020     case bitc::METADATA_DISTINCT_NODE:
   2021       IsDistinct = true;
   2022       // fallthrough...
   2023     case bitc::METADATA_NODE: {
   2024       SmallVector<Metadata *, 8> Elts;
   2025       Elts.reserve(Record.size());
   2026       for (unsigned ID : Record)
   2027         Elts.push_back(ID ? MDValueList.getValueFwdRef(ID - 1) : nullptr);
   2028       MDValueList.assignValue(IsDistinct ? MDNode::getDistinct(Context, Elts)
   2029                                          : MDNode::get(Context, Elts),
   2030                               NextMDValueNo++);
   2031       break;
   2032     }
   2033     case bitc::METADATA_LOCATION: {
   2034       if (Record.size() != 5)
   2035         return error("Invalid record");
   2036 
   2037       unsigned Line = Record[1];
   2038       unsigned Column = Record[2];
   2039       MDNode *Scope = cast<MDNode>(MDValueList.getValueFwdRef(Record[3]));
   2040       Metadata *InlinedAt =
   2041           Record[4] ? MDValueList.getValueFwdRef(Record[4] - 1) : nullptr;
   2042       MDValueList.assignValue(
   2043           GET_OR_DISTINCT(DILocation, Record[0],
   2044                           (Context, Line, Column, Scope, InlinedAt)),
   2045           NextMDValueNo++);
   2046       break;
   2047     }
   2048     case bitc::METADATA_GENERIC_DEBUG: {
   2049       if (Record.size() < 4)
   2050         return error("Invalid record");
   2051 
   2052       unsigned Tag = Record[1];
   2053       unsigned Version = Record[2];
   2054 
   2055       if (Tag >= 1u << 16 || Version != 0)
   2056         return error("Invalid record");
   2057 
   2058       auto *Header = getMDString(Record[3]);
   2059       SmallVector<Metadata *, 8> DwarfOps;
   2060       for (unsigned I = 4, E = Record.size(); I != E; ++I)
   2061         DwarfOps.push_back(Record[I] ? MDValueList.getValueFwdRef(Record[I] - 1)
   2062                                      : nullptr);
   2063       MDValueList.assignValue(GET_OR_DISTINCT(GenericDINode, Record[0],
   2064                                               (Context, Tag, Header, DwarfOps)),
   2065                               NextMDValueNo++);
   2066       break;
   2067     }
   2068     case bitc::METADATA_SUBRANGE: {
   2069       if (Record.size() != 3)
   2070         return error("Invalid record");
   2071 
   2072       MDValueList.assignValue(
   2073           GET_OR_DISTINCT(DISubrange, Record[0],
   2074                           (Context, Record[1], unrotateSign(Record[2]))),
   2075           NextMDValueNo++);
   2076       break;
   2077     }
   2078     case bitc::METADATA_ENUMERATOR: {
   2079       if (Record.size() != 3)
   2080         return error("Invalid record");
   2081 
   2082       MDValueList.assignValue(GET_OR_DISTINCT(DIEnumerator, Record[0],
   2083                                               (Context, unrotateSign(Record[1]),
   2084                                                getMDString(Record[2]))),
   2085                               NextMDValueNo++);
   2086       break;
   2087     }
   2088     case bitc::METADATA_BASIC_TYPE: {
   2089       if (Record.size() != 6)
   2090         return error("Invalid record");
   2091 
   2092       MDValueList.assignValue(
   2093           GET_OR_DISTINCT(DIBasicType, Record[0],
   2094                           (Context, Record[1], getMDString(Record[2]),
   2095                            Record[3], Record[4], Record[5])),
   2096           NextMDValueNo++);
   2097       break;
   2098     }
   2099     case bitc::METADATA_DERIVED_TYPE: {
   2100       if (Record.size() != 12)
   2101         return error("Invalid record");
   2102 
   2103       MDValueList.assignValue(
   2104           GET_OR_DISTINCT(DIDerivedType, Record[0],
   2105                           (Context, Record[1], getMDString(Record[2]),
   2106                            getMDOrNull(Record[3]), Record[4],
   2107                            getMDOrNull(Record[5]), getMDOrNull(Record[6]),
   2108                            Record[7], Record[8], Record[9], Record[10],
   2109                            getMDOrNull(Record[11]))),
   2110           NextMDValueNo++);
   2111       break;
   2112     }
   2113     case bitc::METADATA_COMPOSITE_TYPE: {
   2114       if (Record.size() != 16)
   2115         return error("Invalid record");
   2116 
   2117       MDValueList.assignValue(
   2118           GET_OR_DISTINCT(DICompositeType, Record[0],
   2119                           (Context, Record[1], getMDString(Record[2]),
   2120                            getMDOrNull(Record[3]), Record[4],
   2121                            getMDOrNull(Record[5]), getMDOrNull(Record[6]),
   2122                            Record[7], Record[8], Record[9], Record[10],
   2123                            getMDOrNull(Record[11]), Record[12],
   2124                            getMDOrNull(Record[13]), getMDOrNull(Record[14]),
   2125                            getMDString(Record[15]))),
   2126           NextMDValueNo++);
   2127       break;
   2128     }
   2129     case bitc::METADATA_SUBROUTINE_TYPE: {
   2130       if (Record.size() != 3)
   2131         return error("Invalid record");
   2132 
   2133       MDValueList.assignValue(
   2134           GET_OR_DISTINCT(DISubroutineType, Record[0],
   2135                           (Context, Record[1], getMDOrNull(Record[2]))),
   2136           NextMDValueNo++);
   2137       break;
   2138     }
   2139 
   2140     case bitc::METADATA_MODULE: {
   2141       if (Record.size() != 6)
   2142         return error("Invalid record");
   2143 
   2144       MDValueList.assignValue(
   2145           GET_OR_DISTINCT(DIModule, Record[0],
   2146                           (Context, getMDOrNull(Record[1]),
   2147                           getMDString(Record[2]), getMDString(Record[3]),
   2148                           getMDString(Record[4]), getMDString(Record[5]))),
   2149           NextMDValueNo++);
   2150       break;
   2151     }
   2152 
   2153     case bitc::METADATA_FILE: {
   2154       if (Record.size() != 3)
   2155         return error("Invalid record");
   2156 
   2157       MDValueList.assignValue(
   2158           GET_OR_DISTINCT(DIFile, Record[0], (Context, getMDString(Record[1]),
   2159                                               getMDString(Record[2]))),
   2160           NextMDValueNo++);
   2161       break;
   2162     }
   2163     case bitc::METADATA_COMPILE_UNIT: {
   2164       if (Record.size() < 14 || Record.size() > 16)
   2165         return error("Invalid record");
   2166 
   2167       // Ignore Record[0], which indicates whether this compile unit is
   2168       // distinct.  It's always distinct.
   2169       MDValueList.assignValue(
   2170           DICompileUnit::getDistinct(
   2171               Context, Record[1], getMDOrNull(Record[2]),
   2172               getMDString(Record[3]), Record[4], getMDString(Record[5]),
   2173               Record[6], getMDString(Record[7]), Record[8],
   2174               getMDOrNull(Record[9]), getMDOrNull(Record[10]),
   2175               getMDOrNull(Record[11]), getMDOrNull(Record[12]),
   2176               getMDOrNull(Record[13]),
   2177               Record.size() <= 15 ? 0 : getMDOrNull(Record[15]),
   2178               Record.size() <= 14 ? 0 : Record[14]),
   2179           NextMDValueNo++);
   2180       break;
   2181     }
   2182     case bitc::METADATA_SUBPROGRAM: {
   2183       if (Record.size() != 18 && Record.size() != 19)
   2184         return error("Invalid record");
   2185 
   2186       bool HasFn = Record.size() == 19;
   2187       DISubprogram *SP = GET_OR_DISTINCT(
   2188           DISubprogram,
   2189           Record[0] || Record[8], // All definitions should be distinct.
   2190           (Context, getMDOrNull(Record[1]), getMDString(Record[2]),
   2191            getMDString(Record[3]), getMDOrNull(Record[4]), Record[5],
   2192            getMDOrNull(Record[6]), Record[7], Record[8], Record[9],
   2193            getMDOrNull(Record[10]), Record[11], Record[12], Record[13],
   2194            Record[14], getMDOrNull(Record[15 + HasFn]),
   2195            getMDOrNull(Record[16 + HasFn]), getMDOrNull(Record[17 + HasFn])));
   2196       MDValueList.assignValue(SP, NextMDValueNo++);
   2197 
   2198       // Upgrade sp->function mapping to function->sp mapping.
   2199       if (HasFn && Record[15]) {
   2200         if (auto *CMD = dyn_cast<ConstantAsMetadata>(getMDOrNull(Record[15])))
   2201           if (auto *F = dyn_cast<Function>(CMD->getValue())) {
   2202             if (F->isMaterializable())
   2203               // Defer until materialized; unmaterialized functions may not have
   2204               // metadata.
   2205               FunctionsWithSPs[F] = SP;
   2206             else if (!F->empty())
   2207               F->setSubprogram(SP);
   2208           }
   2209       }
   2210       break;
   2211     }
   2212     case bitc::METADATA_LEXICAL_BLOCK: {
   2213       if (Record.size() != 5)
   2214         return error("Invalid record");
   2215 
   2216       MDValueList.assignValue(
   2217           GET_OR_DISTINCT(DILexicalBlock, Record[0],
   2218                           (Context, getMDOrNull(Record[1]),
   2219                            getMDOrNull(Record[2]), Record[3], Record[4])),
   2220           NextMDValueNo++);
   2221       break;
   2222     }
   2223     case bitc::METADATA_LEXICAL_BLOCK_FILE: {
   2224       if (Record.size() != 4)
   2225         return error("Invalid record");
   2226 
   2227       MDValueList.assignValue(
   2228           GET_OR_DISTINCT(DILexicalBlockFile, Record[0],
   2229                           (Context, getMDOrNull(Record[1]),
   2230                            getMDOrNull(Record[2]), Record[3])),
   2231           NextMDValueNo++);
   2232       break;
   2233     }
   2234     case bitc::METADATA_NAMESPACE: {
   2235       if (Record.size() != 5)
   2236         return error("Invalid record");
   2237 
   2238       MDValueList.assignValue(
   2239           GET_OR_DISTINCT(DINamespace, Record[0],
   2240                           (Context, getMDOrNull(Record[1]),
   2241                            getMDOrNull(Record[2]), getMDString(Record[3]),
   2242                            Record[4])),
   2243           NextMDValueNo++);
   2244       break;
   2245     }
   2246     case bitc::METADATA_MACRO: {
   2247       if (Record.size() != 5)
   2248         return error("Invalid record");
   2249 
   2250       MDValueList.assignValue(
   2251           GET_OR_DISTINCT(DIMacro, Record[0],
   2252                           (Context, Record[1], Record[2],
   2253                            getMDString(Record[3]), getMDString(Record[4]))),
   2254           NextMDValueNo++);
   2255       break;
   2256     }
   2257     case bitc::METADATA_MACRO_FILE: {
   2258       if (Record.size() != 5)
   2259         return error("Invalid record");
   2260 
   2261       MDValueList.assignValue(
   2262           GET_OR_DISTINCT(DIMacroFile, Record[0],
   2263                           (Context, Record[1], Record[2],
   2264                            getMDOrNull(Record[3]), getMDOrNull(Record[4]))),
   2265           NextMDValueNo++);
   2266       break;
   2267     }
   2268     case bitc::METADATA_TEMPLATE_TYPE: {
   2269       if (Record.size() != 3)
   2270         return error("Invalid record");
   2271 
   2272       MDValueList.assignValue(GET_OR_DISTINCT(DITemplateTypeParameter,
   2273                                               Record[0],
   2274                                               (Context, getMDString(Record[1]),
   2275                                                getMDOrNull(Record[2]))),
   2276                               NextMDValueNo++);
   2277       break;
   2278     }
   2279     case bitc::METADATA_TEMPLATE_VALUE: {
   2280       if (Record.size() != 5)
   2281         return error("Invalid record");
   2282 
   2283       MDValueList.assignValue(
   2284           GET_OR_DISTINCT(DITemplateValueParameter, Record[0],
   2285                           (Context, Record[1], getMDString(Record[2]),
   2286                            getMDOrNull(Record[3]), getMDOrNull(Record[4]))),
   2287           NextMDValueNo++);
   2288       break;
   2289     }
   2290     case bitc::METADATA_GLOBAL_VAR: {
   2291       if (Record.size() != 11)
   2292         return error("Invalid record");
   2293 
   2294       MDValueList.assignValue(
   2295           GET_OR_DISTINCT(DIGlobalVariable, Record[0],
   2296                           (Context, getMDOrNull(Record[1]),
   2297                            getMDString(Record[2]), getMDString(Record[3]),
   2298                            getMDOrNull(Record[4]), Record[5],
   2299                            getMDOrNull(Record[6]), Record[7], Record[8],
   2300                            getMDOrNull(Record[9]), getMDOrNull(Record[10]))),
   2301           NextMDValueNo++);
   2302       break;
   2303     }
   2304     case bitc::METADATA_LOCAL_VAR: {
   2305       // 10th field is for the obseleted 'inlinedAt:' field.
   2306       if (Record.size() < 8 || Record.size() > 10)
   2307         return error("Invalid record");
   2308 
   2309       // 2nd field used to be an artificial tag, either DW_TAG_auto_variable or
   2310       // DW_TAG_arg_variable.
   2311       bool HasTag = Record.size() > 8;
   2312       MDValueList.assignValue(
   2313           GET_OR_DISTINCT(DILocalVariable, Record[0],
   2314                           (Context, getMDOrNull(Record[1 + HasTag]),
   2315                            getMDString(Record[2 + HasTag]),
   2316                            getMDOrNull(Record[3 + HasTag]), Record[4 + HasTag],
   2317                            getMDOrNull(Record[5 + HasTag]), Record[6 + HasTag],
   2318                            Record[7 + HasTag])),
   2319           NextMDValueNo++);
   2320       break;
   2321     }
   2322     case bitc::METADATA_EXPRESSION: {
   2323       if (Record.size() < 1)
   2324         return error("Invalid record");
   2325 
   2326       MDValueList.assignValue(
   2327           GET_OR_DISTINCT(DIExpression, Record[0],
   2328                           (Context, makeArrayRef(Record).slice(1))),
   2329           NextMDValueNo++);
   2330       break;
   2331     }
   2332     case bitc::METADATA_OBJC_PROPERTY: {
   2333       if (Record.size() != 8)
   2334         return error("Invalid record");
   2335 
   2336       MDValueList.assignValue(
   2337           GET_OR_DISTINCT(DIObjCProperty, Record[0],
   2338                           (Context, getMDString(Record[1]),
   2339                            getMDOrNull(Record[2]), Record[3],
   2340                            getMDString(Record[4]), getMDString(Record[5]),
   2341                            Record[6], getMDOrNull(Record[7]))),
   2342           NextMDValueNo++);
   2343       break;
   2344     }
   2345     case bitc::METADATA_IMPORTED_ENTITY: {
   2346       if (Record.size() != 6)
   2347         return error("Invalid record");
   2348 
   2349       MDValueList.assignValue(
   2350           GET_OR_DISTINCT(DIImportedEntity, Record[0],
   2351                           (Context, Record[1], getMDOrNull(Record[2]),
   2352                            getMDOrNull(Record[3]), Record[4],
   2353                            getMDString(Record[5]))),
   2354           NextMDValueNo++);
   2355       break;
   2356     }
   2357     case bitc::METADATA_STRING: {
   2358       std::string String(Record.begin(), Record.end());
   2359       llvm::UpgradeMDStringConstant(String);
   2360       Metadata *MD = MDString::get(Context, String);
   2361       MDValueList.assignValue(MD, NextMDValueNo++);
   2362       break;
   2363     }
   2364     case bitc::METADATA_KIND: {
   2365       // Support older bitcode files that had METADATA_KIND records in a
   2366       // block with METADATA_BLOCK_ID.
   2367       if (std::error_code EC = parseMetadataKindRecord(Record))
   2368         return EC;
   2369       break;
   2370     }
   2371     }
   2372   }
   2373 #undef GET_OR_DISTINCT
   2374 }
   2375 
   2376 /// Parse the metadata kinds out of the METADATA_KIND_BLOCK.
   2377 std::error_code BitcodeReader::parseMetadataKinds() {
   2378   if (Stream.EnterSubBlock(bitc::METADATA_KIND_BLOCK_ID))
   2379     return error("Invalid record");
   2380 
   2381   SmallVector<uint64_t, 64> Record;
   2382 
   2383   // Read all the records.
   2384   while (1) {
   2385     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
   2386 
   2387     switch (Entry.Kind) {
   2388     case BitstreamEntry::SubBlock: // Handled for us already.
   2389     case BitstreamEntry::Error:
   2390       return error("Malformed block");
   2391     case BitstreamEntry::EndBlock:
   2392       return std::error_code();
   2393     case BitstreamEntry::Record:
   2394       // The interesting case.
   2395       break;
   2396     }
   2397 
   2398     // Read a record.
   2399     Record.clear();
   2400     unsigned Code = Stream.readRecord(Entry.ID, Record);
   2401     switch (Code) {
   2402     default: // Default behavior: ignore.
   2403       break;
   2404     case bitc::METADATA_KIND: {
   2405       if (std::error_code EC = parseMetadataKindRecord(Record))
   2406         return EC;
   2407       break;
   2408     }
   2409     }
   2410   }
   2411 }
   2412 
   2413 /// Decode a signed value stored with the sign bit in the LSB for dense VBR
   2414 /// encoding.
   2415 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
   2416   if ((V & 1) == 0)
   2417     return V >> 1;
   2418   if (V != 1)
   2419     return -(V >> 1);
   2420   // There is no such thing as -0 with integers.  "-0" really means MININT.
   2421   return 1ULL << 63;
   2422 }
   2423 
   2424 /// Resolve all of the initializers for global values and aliases that we can.
   2425 std::error_code BitcodeReader::resolveGlobalAndAliasInits() {
   2426   std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist;
   2427   std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist;
   2428   std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist;
   2429   std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist;
   2430   std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFnWorklist;
   2431 
   2432   GlobalInitWorklist.swap(GlobalInits);
   2433   AliasInitWorklist.swap(AliasInits);
   2434   FunctionPrefixWorklist.swap(FunctionPrefixes);
   2435   FunctionPrologueWorklist.swap(FunctionPrologues);
   2436   FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns);
   2437 
   2438   while (!GlobalInitWorklist.empty()) {
   2439     unsigned ValID = GlobalInitWorklist.back().second;
   2440     if (ValID >= ValueList.size()) {
   2441       // Not ready to resolve this yet, it requires something later in the file.
   2442       GlobalInits.push_back(GlobalInitWorklist.back());
   2443     } else {
   2444       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
   2445         GlobalInitWorklist.back().first->setInitializer(C);
   2446       else
   2447         return error("Expected a constant");
   2448     }
   2449     GlobalInitWorklist.pop_back();
   2450   }
   2451 
   2452   while (!AliasInitWorklist.empty()) {
   2453     unsigned ValID = AliasInitWorklist.back().second;
   2454     if (ValID >= ValueList.size()) {
   2455       AliasInits.push_back(AliasInitWorklist.back());
   2456     } else {
   2457       Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]);
   2458       if (!C)
   2459         return error("Expected a constant");
   2460       GlobalAlias *Alias = AliasInitWorklist.back().first;
   2461       if (C->getType() != Alias->getType())
   2462         return error("Alias and aliasee types don't match");
   2463       Alias->setAliasee(C);
   2464     }
   2465     AliasInitWorklist.pop_back();
   2466   }
   2467 
   2468   while (!FunctionPrefixWorklist.empty()) {
   2469     unsigned ValID = FunctionPrefixWorklist.back().second;
   2470     if (ValID >= ValueList.size()) {
   2471       FunctionPrefixes.push_back(FunctionPrefixWorklist.back());
   2472     } else {
   2473       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
   2474         FunctionPrefixWorklist.back().first->setPrefixData(C);
   2475       else
   2476         return error("Expected a constant");
   2477     }
   2478     FunctionPrefixWorklist.pop_back();
   2479   }
   2480 
   2481   while (!FunctionPrologueWorklist.empty()) {
   2482     unsigned ValID = FunctionPrologueWorklist.back().second;
   2483     if (ValID >= ValueList.size()) {
   2484       FunctionPrologues.push_back(FunctionPrologueWorklist.back());
   2485     } else {
   2486       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
   2487         FunctionPrologueWorklist.back().first->setPrologueData(C);
   2488       else
   2489         return error("Expected a constant");
   2490     }
   2491     FunctionPrologueWorklist.pop_back();
   2492   }
   2493 
   2494   while (!FunctionPersonalityFnWorklist.empty()) {
   2495     unsigned ValID = FunctionPersonalityFnWorklist.back().second;
   2496     if (ValID >= ValueList.size()) {
   2497       FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back());
   2498     } else {
   2499       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
   2500         FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C);
   2501       else
   2502         return error("Expected a constant");
   2503     }
   2504     FunctionPersonalityFnWorklist.pop_back();
   2505   }
   2506 
   2507   return std::error_code();
   2508 }
   2509 
   2510 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
   2511   SmallVector<uint64_t, 8> Words(Vals.size());
   2512   std::transform(Vals.begin(), Vals.end(), Words.begin(),
   2513                  BitcodeReader::decodeSignRotatedValue);
   2514 
   2515   return APInt(TypeBits, Words);
   2516 }
   2517 
   2518 std::error_code BitcodeReader::parseConstants() {
   2519   if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
   2520     return error("Invalid record");
   2521 
   2522   SmallVector<uint64_t, 64> Record;
   2523 
   2524   // Read all the records for this value table.
   2525   Type *CurTy = Type::getInt32Ty(Context);
   2526   unsigned NextCstNo = ValueList.size();
   2527   while (1) {
   2528     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
   2529 
   2530     switch (Entry.Kind) {
   2531     case BitstreamEntry::SubBlock: // Handled for us already.
   2532     case BitstreamEntry::Error:
   2533       return error("Malformed block");
   2534     case BitstreamEntry::EndBlock:
   2535       if (NextCstNo != ValueList.size())
   2536         return error("Invalid ronstant reference");
   2537 
   2538       // Once all the constants have been read, go through and resolve forward
   2539       // references.
   2540       ValueList.resolveConstantForwardRefs();
   2541       return std::error_code();
   2542     case BitstreamEntry::Record:
   2543       // The interesting case.
   2544       break;
   2545     }
   2546 
   2547     // Read a record.
   2548     Record.clear();
   2549     Value *V = nullptr;
   2550     unsigned BitCode = Stream.readRecord(Entry.ID, Record);
   2551     switch (BitCode) {
   2552     default:  // Default behavior: unknown constant
   2553     case bitc::CST_CODE_UNDEF:     // UNDEF
   2554       V = UndefValue::get(CurTy);
   2555       break;
   2556     case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
   2557       if (Record.empty())
   2558         return error("Invalid record");
   2559       if (Record[0] >= TypeList.size() || !TypeList[Record[0]])
   2560         return error("Invalid record");
   2561       CurTy = TypeList[Record[0]];
   2562       continue;  // Skip the ValueList manipulation.
   2563     case bitc::CST_CODE_NULL:      // NULL
   2564       V = Constant::getNullValue(CurTy);
   2565       break;
   2566     case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
   2567       if (!CurTy->isIntegerTy() || Record.empty())
   2568         return error("Invalid record");
   2569       V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
   2570       break;
   2571     case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
   2572       if (!CurTy->isIntegerTy() || Record.empty())
   2573         return error("Invalid record");
   2574 
   2575       APInt VInt =
   2576           readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth());
   2577       V = ConstantInt::get(Context, VInt);
   2578 
   2579       break;
   2580     }
   2581     case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
   2582       if (Record.empty())
   2583         return error("Invalid record");
   2584       if (CurTy->isHalfTy())
   2585         V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf,
   2586                                              APInt(16, (uint16_t)Record[0])));
   2587       else if (CurTy->isFloatTy())
   2588         V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle,
   2589                                              APInt(32, (uint32_t)Record[0])));
   2590       else if (CurTy->isDoubleTy())
   2591         V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble,
   2592                                              APInt(64, Record[0])));
   2593       else if (CurTy->isX86_FP80Ty()) {
   2594         // Bits are not stored the same way as a normal i80 APInt, compensate.
   2595         uint64_t Rearrange[2];
   2596         Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
   2597         Rearrange[1] = Record[0] >> 48;
   2598         V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended,
   2599                                              APInt(80, Rearrange)));
   2600       } else if (CurTy->isFP128Ty())
   2601         V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad,
   2602                                              APInt(128, Record)));
   2603       else if (CurTy->isPPC_FP128Ty())
   2604         V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble,
   2605                                              APInt(128, Record)));
   2606       else
   2607         V = UndefValue::get(CurTy);
   2608       break;
   2609     }
   2610 
   2611     case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
   2612       if (Record.empty())
   2613         return error("Invalid record");
   2614 
   2615       unsigned Size = Record.size();
   2616       SmallVector<Constant*, 16> Elts;
   2617 
   2618       if (StructType *STy = dyn_cast<StructType>(CurTy)) {
   2619         for (unsigned i = 0; i != Size; ++i)
   2620           Elts.push_back(ValueList.getConstantFwdRef(Record[i],
   2621                                                      STy->getElementType(i)));
   2622         V = ConstantStruct::get(STy, Elts);
   2623       } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
   2624         Type *EltTy = ATy->getElementType();
   2625         for (unsigned i = 0; i != Size; ++i)
   2626           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
   2627         V = ConstantArray::get(ATy, Elts);
   2628       } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
   2629         Type *EltTy = VTy->getElementType();
   2630         for (unsigned i = 0; i != Size; ++i)
   2631           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
   2632         V = ConstantVector::get(Elts);
   2633       } else {
   2634         V = UndefValue::get(CurTy);
   2635       }
   2636       break;
   2637     }
   2638     case bitc::CST_CODE_STRING:    // STRING: [values]
   2639     case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
   2640       if (Record.empty())
   2641         return error("Invalid record");
   2642 
   2643       SmallString<16> Elts(Record.begin(), Record.end());
   2644       V = ConstantDataArray::getString(Context, Elts,
   2645                                        BitCode == bitc::CST_CODE_CSTRING);
   2646       break;
   2647     }
   2648     case bitc::CST_CODE_DATA: {// DATA: [n x value]
   2649       if (Record.empty())
   2650         return error("Invalid record");
   2651 
   2652       Type *EltTy = cast<SequentialType>(CurTy)->getElementType();
   2653       if (EltTy->isIntegerTy(8)) {
   2654         SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
   2655         if (isa<VectorType>(CurTy))
   2656           V = ConstantDataVector::get(Context, Elts);
   2657         else
   2658           V = ConstantDataArray::get(Context, Elts);
   2659       } else if (EltTy->isIntegerTy(16)) {
   2660         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
   2661         if (isa<VectorType>(CurTy))
   2662           V = ConstantDataVector::get(Context, Elts);
   2663         else
   2664           V = ConstantDataArray::get(Context, Elts);
   2665       } else if (EltTy->isIntegerTy(32)) {
   2666         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
   2667         if (isa<VectorType>(CurTy))
   2668           V = ConstantDataVector::get(Context, Elts);
   2669         else
   2670           V = ConstantDataArray::get(Context, Elts);
   2671       } else if (EltTy->isIntegerTy(64)) {
   2672         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
   2673         if (isa<VectorType>(CurTy))
   2674           V = ConstantDataVector::get(Context, Elts);
   2675         else
   2676           V = ConstantDataArray::get(Context, Elts);
   2677       } else if (EltTy->isHalfTy()) {
   2678         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
   2679         if (isa<VectorType>(CurTy))
   2680           V = ConstantDataVector::getFP(Context, Elts);
   2681         else
   2682           V = ConstantDataArray::getFP(Context, Elts);
   2683       } else if (EltTy->isFloatTy()) {
   2684         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
   2685         if (isa<VectorType>(CurTy))
   2686           V = ConstantDataVector::getFP(Context, Elts);
   2687         else
   2688           V = ConstantDataArray::getFP(Context, Elts);
   2689       } else if (EltTy->isDoubleTy()) {
   2690         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
   2691         if (isa<VectorType>(CurTy))
   2692           V = ConstantDataVector::getFP(Context, Elts);
   2693         else
   2694           V = ConstantDataArray::getFP(Context, Elts);
   2695       } else {
   2696         return error("Invalid type for value");
   2697       }
   2698       break;
   2699     }
   2700 
   2701     case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
   2702       if (Record.size() < 3)
   2703         return error("Invalid record");
   2704       int Opc = getDecodedBinaryOpcode(Record[0], CurTy);
   2705       if (Opc < 0) {
   2706         V = UndefValue::get(CurTy);  // Unknown binop.
   2707       } else {
   2708         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
   2709         Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
   2710         unsigned Flags = 0;
   2711         if (Record.size() >= 4) {
   2712           if (Opc == Instruction::Add ||
   2713               Opc == Instruction::Sub ||
   2714               Opc == Instruction::Mul ||
   2715               Opc == Instruction::Shl) {
   2716             if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
   2717               Flags |= OverflowingBinaryOperator::NoSignedWrap;
   2718             if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
   2719               Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
   2720           } else if (Opc == Instruction::SDiv ||
   2721                      Opc == Instruction::UDiv ||
   2722                      Opc == Instruction::LShr ||
   2723                      Opc == Instruction::AShr) {
   2724             if (Record[3] & (1 << bitc::PEO_EXACT))
   2725               Flags |= SDivOperator::IsExact;
   2726           }
   2727         }
   2728         V = ConstantExpr::get(Opc, LHS, RHS, Flags);
   2729       }
   2730       break;
   2731     }
   2732     case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
   2733       if (Record.size() < 3)
   2734         return error("Invalid record");
   2735       int Opc = getDecodedCastOpcode(Record[0]);
   2736       if (Opc < 0) {
   2737         V = UndefValue::get(CurTy);  // Unknown cast.
   2738       } else {
   2739         Type *OpTy = getTypeByID(Record[1]);
   2740         if (!OpTy)
   2741           return error("Invalid record");
   2742         Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
   2743         V = UpgradeBitCastExpr(Opc, Op, CurTy);
   2744         if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy);
   2745       }
   2746       break;
   2747     }
   2748     case bitc::CST_CODE_CE_INBOUNDS_GEP:
   2749     case bitc::CST_CODE_CE_GEP: {  // CE_GEP:        [n x operands]
   2750       unsigned OpNum = 0;
   2751       Type *PointeeType = nullptr;
   2752       if (Record.size() % 2)
   2753         PointeeType = getTypeByID(Record[OpNum++]);
   2754       SmallVector<Constant*, 16> Elts;
   2755       while (OpNum != Record.size()) {
   2756         Type *ElTy = getTypeByID(Record[OpNum++]);
   2757         if (!ElTy)
   2758           return error("Invalid record");
   2759         Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy));
   2760       }
   2761 
   2762       if (PointeeType &&
   2763           PointeeType !=
   2764               cast<SequentialType>(Elts[0]->getType()->getScalarType())
   2765                   ->getElementType())
   2766         return error("Explicit gep operator type does not match pointee type "
   2767                      "of pointer operand");
   2768 
   2769       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
   2770       V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices,
   2771                                          BitCode ==
   2772                                              bitc::CST_CODE_CE_INBOUNDS_GEP);
   2773       break;
   2774     }
   2775     case bitc::CST_CODE_CE_SELECT: {  // CE_SELECT: [opval#, opval#, opval#]
   2776       if (Record.size() < 3)
   2777         return error("Invalid record");
   2778 
   2779       Type *SelectorTy = Type::getInt1Ty(Context);
   2780 
   2781       // The selector might be an i1 or an <n x i1>
   2782       // Get the type from the ValueList before getting a forward ref.
   2783       if (VectorType *VTy = dyn_cast<VectorType>(CurTy))
   2784         if (Value *V = ValueList[Record[0]])
   2785           if (SelectorTy != V->getType())
   2786             SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements());
   2787 
   2788       V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
   2789                                                               SelectorTy),
   2790                                   ValueList.getConstantFwdRef(Record[1],CurTy),
   2791                                   ValueList.getConstantFwdRef(Record[2],CurTy));
   2792       break;
   2793     }
   2794     case bitc::CST_CODE_CE_EXTRACTELT
   2795         : { // CE_EXTRACTELT: [opty, opval, opty, opval]
   2796       if (Record.size() < 3)
   2797         return error("Invalid record");
   2798       VectorType *OpTy =
   2799         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
   2800       if (!OpTy)
   2801         return error("Invalid record");
   2802       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
   2803       Constant *Op1 = nullptr;
   2804       if (Record.size() == 4) {
   2805         Type *IdxTy = getTypeByID(Record[2]);
   2806         if (!IdxTy)
   2807           return error("Invalid record");
   2808         Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy);
   2809       } else // TODO: Remove with llvm 4.0
   2810         Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
   2811       if (!Op1)
   2812         return error("Invalid record");
   2813       V = ConstantExpr::getExtractElement(Op0, Op1);
   2814       break;
   2815     }
   2816     case bitc::CST_CODE_CE_INSERTELT
   2817         : { // CE_INSERTELT: [opval, opval, opty, opval]
   2818       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
   2819       if (Record.size() < 3 || !OpTy)
   2820         return error("Invalid record");
   2821       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
   2822       Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
   2823                                                   OpTy->getElementType());
   2824       Constant *Op2 = nullptr;
   2825       if (Record.size() == 4) {
   2826         Type *IdxTy = getTypeByID(Record[2]);
   2827         if (!IdxTy)
   2828           return error("Invalid record");
   2829         Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy);
   2830       } else // TODO: Remove with llvm 4.0
   2831         Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
   2832       if (!Op2)
   2833         return error("Invalid record");
   2834       V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
   2835       break;
   2836     }
   2837     case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
   2838       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
   2839       if (Record.size() < 3 || !OpTy)
   2840         return error("Invalid record");
   2841       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
   2842       Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
   2843       Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
   2844                                                  OpTy->getNumElements());
   2845       Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
   2846       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
   2847       break;
   2848     }
   2849     case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
   2850       VectorType *RTy = dyn_cast<VectorType>(CurTy);
   2851       VectorType *OpTy =
   2852         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
   2853       if (Record.size() < 4 || !RTy || !OpTy)
   2854         return error("Invalid record");
   2855       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
   2856       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
   2857       Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
   2858                                                  RTy->getNumElements());
   2859       Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
   2860       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
   2861       break;
   2862     }
   2863     case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
   2864       if (Record.size() < 4)
   2865         return error("Invalid record");
   2866       Type *OpTy = getTypeByID(Record[0]);
   2867       if (!OpTy)
   2868         return error("Invalid record");
   2869       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
   2870       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
   2871 
   2872       if (OpTy->isFPOrFPVectorTy())
   2873         V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
   2874       else
   2875         V = ConstantExpr::getICmp(Record[3], Op0, Op1);
   2876       break;
   2877     }
   2878     // This maintains backward compatibility, pre-asm dialect keywords.
   2879     // FIXME: Remove with the 4.0 release.
   2880     case bitc::CST_CODE_INLINEASM_OLD: {
   2881       if (Record.size() < 2)
   2882         return error("Invalid record");
   2883       std::string AsmStr, ConstrStr;
   2884       bool HasSideEffects = Record[0] & 1;
   2885       bool IsAlignStack = Record[0] >> 1;
   2886       unsigned AsmStrSize = Record[1];
   2887       if (2+AsmStrSize >= Record.size())
   2888         return error("Invalid record");
   2889       unsigned ConstStrSize = Record[2+AsmStrSize];
   2890       if (3+AsmStrSize+ConstStrSize > Record.size())
   2891         return error("Invalid record");
   2892 
   2893       for (unsigned i = 0; i != AsmStrSize; ++i)
   2894         AsmStr += (char)Record[2+i];
   2895       for (unsigned i = 0; i != ConstStrSize; ++i)
   2896         ConstrStr += (char)Record[3+AsmStrSize+i];
   2897       PointerType *PTy = cast<PointerType>(CurTy);
   2898       V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
   2899                          AsmStr, ConstrStr, HasSideEffects, IsAlignStack);
   2900       break;
   2901     }
   2902     // This version adds support for the asm dialect keywords (e.g.,
   2903     // inteldialect).
   2904     case bitc::CST_CODE_INLINEASM: {
   2905       if (Record.size() < 2)
   2906         return error("Invalid record");
   2907       std::string AsmStr, ConstrStr;
   2908       bool HasSideEffects = Record[0] & 1;
   2909       bool IsAlignStack = (Record[0] >> 1) & 1;
   2910       unsigned AsmDialect = Record[0] >> 2;
   2911       unsigned AsmStrSize = Record[1];
   2912       if (2+AsmStrSize >= Record.size())
   2913         return error("Invalid record");
   2914       unsigned ConstStrSize = Record[2+AsmStrSize];
   2915       if (3+AsmStrSize+ConstStrSize > Record.size())
   2916         return error("Invalid record");
   2917 
   2918       for (unsigned i = 0; i != AsmStrSize; ++i)
   2919         AsmStr += (char)Record[2+i];
   2920       for (unsigned i = 0; i != ConstStrSize; ++i)
   2921         ConstrStr += (char)Record[3+AsmStrSize+i];
   2922       PointerType *PTy = cast<PointerType>(CurTy);
   2923       V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
   2924                          AsmStr, ConstrStr, HasSideEffects, IsAlignStack,
   2925                          InlineAsm::AsmDialect(AsmDialect));
   2926       break;
   2927     }
   2928     case bitc::CST_CODE_BLOCKADDRESS:{
   2929       if (Record.size() < 3)
   2930         return error("Invalid record");
   2931       Type *FnTy = getTypeByID(Record[0]);
   2932       if (!FnTy)
   2933         return error("Invalid record");
   2934       Function *Fn =
   2935         dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
   2936       if (!Fn)
   2937         return error("Invalid record");
   2938 
   2939       // If the function is already parsed we can insert the block address right
   2940       // away.
   2941       BasicBlock *BB;
   2942       unsigned BBID = Record[2];
   2943       if (!BBID)
   2944         // Invalid reference to entry block.
   2945         return error("Invalid ID");
   2946       if (!Fn->empty()) {
   2947         Function::iterator BBI = Fn->begin(), BBE = Fn->end();
   2948         for (size_t I = 0, E = BBID; I != E; ++I) {
   2949           if (BBI == BBE)
   2950             return error("Invalid ID");
   2951           ++BBI;
   2952         }
   2953         BB = &*BBI;
   2954       } else {
   2955         // Otherwise insert a placeholder and remember it so it can be inserted
   2956         // when the function is parsed.
   2957         auto &FwdBBs = BasicBlockFwdRefs[Fn];
   2958         if (FwdBBs.empty())
   2959           BasicBlockFwdRefQueue.push_back(Fn);
   2960         if (FwdBBs.size() < BBID + 1)
   2961           FwdBBs.resize(BBID + 1);
   2962         if (!FwdBBs[BBID])
   2963           FwdBBs[BBID] = BasicBlock::Create(Context);
   2964         BB = FwdBBs[BBID];
   2965       }
   2966       V = BlockAddress::get(Fn, BB);
   2967       break;
   2968     }
   2969     }
   2970 
   2971     ValueList.assignValue(V, NextCstNo);
   2972     ++NextCstNo;
   2973   }
   2974 }
   2975 
   2976 std::error_code BitcodeReader::parseUseLists() {
   2977   if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
   2978     return error("Invalid record");
   2979 
   2980   // Read all the records.
   2981   SmallVector<uint64_t, 64> Record;
   2982   while (1) {
   2983     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
   2984 
   2985     switch (Entry.Kind) {
   2986     case BitstreamEntry::SubBlock: // Handled for us already.
   2987     case BitstreamEntry::Error:
   2988       return error("Malformed block");
   2989     case BitstreamEntry::EndBlock:
   2990       return std::error_code();
   2991     case BitstreamEntry::Record:
   2992       // The interesting case.
   2993       break;
   2994     }
   2995 
   2996     // Read a use list record.
   2997     Record.clear();
   2998     bool IsBB = false;
   2999     switch (Stream.readRecord(Entry.ID, Record)) {
   3000     default:  // Default behavior: unknown type.
   3001       break;
   3002     case bitc::USELIST_CODE_BB:
   3003       IsBB = true;
   3004       // fallthrough
   3005     case bitc::USELIST_CODE_DEFAULT: {
   3006       unsigned RecordLength = Record.size();
   3007       if (RecordLength < 3)
   3008         // Records should have at least an ID and two indexes.
   3009         return error("Invalid record");
   3010       unsigned ID = Record.back();
   3011       Record.pop_back();
   3012 
   3013       Value *V;
   3014       if (IsBB) {
   3015         assert(ID < FunctionBBs.size() && "Basic block not found");
   3016         V = FunctionBBs[ID];
   3017       } else
   3018         V = ValueList[ID];
   3019       unsigned NumUses = 0;
   3020       SmallDenseMap<const Use *, unsigned, 16> Order;
   3021       for (const Use &U : V->materialized_uses()) {
   3022         if (++NumUses > Record.size())
   3023           break;
   3024         Order[&U] = Record[NumUses - 1];
   3025       }
   3026       if (Order.size() != Record.size() || NumUses > Record.size())
   3027         // Mismatches can happen if the functions are being materialized lazily
   3028         // (out-of-order), or a value has been upgraded.
   3029         break;
   3030 
   3031       V->sortUseList([&](const Use &L, const Use &R) {
   3032         return Order.lookup(&L) < Order.lookup(&R);
   3033       });
   3034       break;
   3035     }
   3036     }
   3037   }
   3038 }
   3039 
   3040 /// When we see the block for metadata, remember where it is and then skip it.
   3041 /// This lets us lazily deserialize the metadata.
   3042 std::error_code BitcodeReader::rememberAndSkipMetadata() {
   3043   // Save the current stream state.
   3044   uint64_t CurBit = Stream.GetCurrentBitNo();
   3045   DeferredMetadataInfo.push_back(CurBit);
   3046 
   3047   // Skip over the block for now.
   3048   if (Stream.SkipBlock())
   3049     return error("Invalid record");
   3050   return std::error_code();
   3051 }
   3052 
   3053 std::error_code BitcodeReader::materializeMetadata() {
   3054   for (uint64_t BitPos : DeferredMetadataInfo) {
   3055     // Move the bit stream to the saved position.
   3056     Stream.JumpToBit(BitPos);
   3057     if (std::error_code EC = parseMetadata(true))
   3058       return EC;
   3059   }
   3060   DeferredMetadataInfo.clear();
   3061   return std::error_code();
   3062 }
   3063 
   3064 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; }
   3065 
   3066 void BitcodeReader::saveMDValueList(
   3067     DenseMap<const Metadata *, unsigned> &MDValueToValIDMap, bool OnlyTempMD) {
   3068   for (unsigned ValID = 0; ValID < MDValueList.size(); ++ValID) {
   3069     Metadata *MD = MDValueList[ValID];
   3070     auto *N = dyn_cast_or_null<MDNode>(MD);
   3071     // Save all values if !OnlyTempMD, otherwise just the temporary metadata.
   3072     if (!OnlyTempMD || (N && N->isTemporary())) {
   3073       // Will call this after materializing each function, in order to
   3074       // handle remapping of the function's instructions/metadata.
   3075       // See if we already have an entry in that case.
   3076       if (OnlyTempMD && MDValueToValIDMap.count(MD)) {
   3077         assert(MDValueToValIDMap[MD] == ValID &&
   3078                "Inconsistent metadata value id");
   3079         continue;
   3080       }
   3081       MDValueToValIDMap[MD] = ValID;
   3082     }
   3083   }
   3084 }
   3085 
   3086 /// When we see the block for a function body, remember where it is and then
   3087 /// skip it.  This lets us lazily deserialize the functions.
   3088 std::error_code BitcodeReader::rememberAndSkipFunctionBody() {
   3089   // Get the function we are talking about.
   3090   if (FunctionsWithBodies.empty())
   3091     return error("Insufficient function protos");
   3092 
   3093   Function *Fn = FunctionsWithBodies.back();
   3094   FunctionsWithBodies.pop_back();
   3095 
   3096   // Save the current stream state.
   3097   uint64_t CurBit = Stream.GetCurrentBitNo();
   3098   assert(
   3099       (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) &&
   3100       "Mismatch between VST and scanned function offsets");
   3101   DeferredFunctionInfo[Fn] = CurBit;
   3102 
   3103   // Skip over the function block for now.
   3104   if (Stream.SkipBlock())
   3105     return error("Invalid record");
   3106   return std::error_code();
   3107 }
   3108 
   3109 std::error_code BitcodeReader::globalCleanup() {
   3110   // Patch the initializers for globals and aliases up.
   3111   resolveGlobalAndAliasInits();
   3112   if (!GlobalInits.empty() || !AliasInits.empty())
   3113     return error("Malformed global initializer set");
   3114 
   3115   // Look for intrinsic functions which need to be upgraded at some point
   3116   for (Function &F : *TheModule) {
   3117     Function *NewFn;
   3118     if (UpgradeIntrinsicFunction(&F, NewFn))
   3119       UpgradedIntrinsics[&F] = NewFn;
   3120   }
   3121 
   3122   // Look for global variables which need to be renamed.
   3123   for (GlobalVariable &GV : TheModule->globals())
   3124     UpgradeGlobalVariable(&GV);
   3125 
   3126   // Force deallocation of memory for these vectors to favor the client that
   3127   // want lazy deserialization.
   3128   std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits);
   3129   std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits);
   3130   return std::error_code();
   3131 }
   3132 
   3133 /// Support for lazy parsing of function bodies. This is required if we
   3134 /// either have an old bitcode file without a VST forward declaration record,
   3135 /// or if we have an anonymous function being materialized, since anonymous
   3136 /// functions do not have a name and are therefore not in the VST.
   3137 std::error_code BitcodeReader::rememberAndSkipFunctionBodies() {
   3138   Stream.JumpToBit(NextUnreadBit);
   3139 
   3140   if (Stream.AtEndOfStream())
   3141     return error("Could not find function in stream");
   3142 
   3143   if (!SeenFirstFunctionBody)
   3144     return error("Trying to materialize functions before seeing function blocks");
   3145 
   3146   // An old bitcode file with the symbol table at the end would have
   3147   // finished the parse greedily.
   3148   assert(SeenValueSymbolTable);
   3149 
   3150   SmallVector<uint64_t, 64> Record;
   3151 
   3152   while (1) {
   3153     BitstreamEntry Entry = Stream.advance();
   3154     switch (Entry.Kind) {
   3155     default:
   3156       return error("Expect SubBlock");
   3157     case BitstreamEntry::SubBlock:
   3158       switch (Entry.ID) {
   3159       default:
   3160         return error("Expect function block");
   3161       case bitc::FUNCTION_BLOCK_ID:
   3162         if (std::error_code EC = rememberAndSkipFunctionBody())
   3163           return EC;
   3164         NextUnreadBit = Stream.GetCurrentBitNo();
   3165         return std::error_code();
   3166       }
   3167     }
   3168   }
   3169 }
   3170 
   3171 std::error_code BitcodeReader::parseBitcodeVersion() {
   3172   if (Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID))
   3173     return error("Invalid record");
   3174 
   3175   // Read all the records.
   3176   SmallVector<uint64_t, 64> Record;
   3177   while (1) {
   3178     BitstreamEntry Entry = Stream.advance();
   3179 
   3180     switch (Entry.Kind) {
   3181     default:
   3182     case BitstreamEntry::Error:
   3183       return error("Malformed block");
   3184     case BitstreamEntry::EndBlock:
   3185       return std::error_code();
   3186     case BitstreamEntry::Record:
   3187       // The interesting case.
   3188       break;
   3189     }
   3190 
   3191     // Read a record.
   3192     Record.clear();
   3193     unsigned BitCode = Stream.readRecord(Entry.ID, Record);
   3194     switch (BitCode) {
   3195     default: // Default behavior: reject
   3196       return error("Invalid value");
   3197     case bitc::IDENTIFICATION_CODE_STRING: { // IDENTIFICATION:      [strchr x
   3198                                              // N]
   3199       convertToString(Record, 0, ProducerIdentification);
   3200       break;
   3201     }
   3202     case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH:      [epoch#]
   3203       unsigned epoch = (unsigned)Record[0];
   3204       if (epoch != bitc::BITCODE_CURRENT_EPOCH) {
   3205         return error(
   3206           Twine("Incompatible epoch: Bitcode '") + Twine(epoch) +
   3207           "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'");
   3208       }
   3209     }
   3210     }
   3211   }
   3212 }
   3213 
   3214 std::error_code BitcodeReader::parseModule(uint64_t ResumeBit,
   3215                                            bool ShouldLazyLoadMetadata) {
   3216   if (ResumeBit)
   3217     Stream.JumpToBit(ResumeBit);
   3218   else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
   3219     return error("Invalid record");
   3220 
   3221   SmallVector<uint64_t, 64> Record;
   3222   std::vector<std::string> SectionTable;
   3223   std::vector<std::string> GCTable;
   3224 
   3225   // Read all the records for this module.
   3226   while (1) {
   3227     BitstreamEntry Entry = Stream.advance();
   3228 
   3229     switch (Entry.Kind) {
   3230     case BitstreamEntry::Error:
   3231       return error("Malformed block");
   3232     case BitstreamEntry::EndBlock:
   3233       return globalCleanup();
   3234 
   3235     case BitstreamEntry::SubBlock:
   3236       switch (Entry.ID) {
   3237       default:  // Skip unknown content.
   3238         if (Stream.SkipBlock())
   3239           return error("Invalid record");
   3240         break;
   3241       case bitc::BLOCKINFO_BLOCK_ID:
   3242         if (Stream.ReadBlockInfoBlock())
   3243           return error("Malformed block");
   3244         break;
   3245       case bitc::PARAMATTR_BLOCK_ID:
   3246         if (std::error_code EC = parseAttributeBlock())
   3247           return EC;
   3248         break;
   3249       case bitc::PARAMATTR_GROUP_BLOCK_ID:
   3250         if (std::error_code EC = parseAttributeGroupBlock())
   3251           return EC;
   3252         break;
   3253       case bitc::TYPE_BLOCK_ID_NEW:
   3254         if (std::error_code EC = parseTypeTable())
   3255           return EC;
   3256         break;
   3257       case bitc::VALUE_SYMTAB_BLOCK_ID:
   3258         if (!SeenValueSymbolTable) {
   3259           // Either this is an old form VST without function index and an
   3260           // associated VST forward declaration record (which would have caused
   3261           // the VST to be jumped to and parsed before it was encountered
   3262           // normally in the stream), or there were no function blocks to
   3263           // trigger an earlier parsing of the VST.
   3264           assert(VSTOffset == 0 || FunctionsWithBodies.empty());
   3265           if (std::error_code EC = parseValueSymbolTable())
   3266             return EC;
   3267           SeenValueSymbolTable = true;
   3268         } else {
   3269           // We must have had a VST forward declaration record, which caused
   3270           // the parser to jump to and parse the VST earlier.
   3271           assert(VSTOffset > 0);
   3272           if (Stream.SkipBlock())
   3273             return error("Invalid record");
   3274         }
   3275         break;
   3276       case bitc::CONSTANTS_BLOCK_ID:
   3277         if (std::error_code EC = parseConstants())
   3278           return EC;
   3279         if (std::error_code EC = resolveGlobalAndAliasInits())
   3280           return EC;
   3281         break;
   3282       case bitc::METADATA_BLOCK_ID:
   3283         if (ShouldLazyLoadMetadata && !IsMetadataMaterialized) {
   3284           if (std::error_code EC = rememberAndSkipMetadata())
   3285             return EC;
   3286           break;
   3287         }
   3288         assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata");
   3289         if (std::error_code EC = parseMetadata(true))
   3290           return EC;
   3291         break;
   3292       case bitc::METADATA_KIND_BLOCK_ID:
   3293         if (std::error_code EC = parseMetadataKinds())
   3294           return EC;
   3295         break;
   3296       case bitc::FUNCTION_BLOCK_ID:
   3297         // If this is the first function body we've seen, reverse the
   3298         // FunctionsWithBodies list.
   3299         if (!SeenFirstFunctionBody) {
   3300           std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
   3301           if (std::error_code EC = globalCleanup())
   3302             return EC;
   3303           SeenFirstFunctionBody = true;
   3304         }
   3305 
   3306         if (VSTOffset > 0) {
   3307           // If we have a VST forward declaration record, make sure we
   3308           // parse the VST now if we haven't already. It is needed to
   3309           // set up the DeferredFunctionInfo vector for lazy reading.
   3310           if (!SeenValueSymbolTable) {
   3311             if (std::error_code EC =
   3312                     BitcodeReader::parseValueSymbolTable(VSTOffset))
   3313               return EC;
   3314             SeenValueSymbolTable = true;
   3315             // Fall through so that we record the NextUnreadBit below.
   3316             // This is necessary in case we have an anonymous function that
   3317             // is later materialized. Since it will not have a VST entry we
   3318             // need to fall back to the lazy parse to find its offset.
   3319           } else {
   3320             // If we have a VST forward declaration record, but have already
   3321             // parsed the VST (just above, when the first function body was
   3322             // encountered here), then we are resuming the parse after
   3323             // materializing functions. The ResumeBit points to the
   3324             // start of the last function block recorded in the
   3325             // DeferredFunctionInfo map. Skip it.
   3326             if (Stream.SkipBlock())
   3327               return error("Invalid record");
   3328             continue;
   3329           }
   3330         }
   3331 
   3332         // Support older bitcode files that did not have the function
   3333         // index in the VST, nor a VST forward declaration record, as
   3334         // well as anonymous functions that do not have VST entries.
   3335         // Build the DeferredFunctionInfo vector on the fly.
   3336         if (std::error_code EC = rememberAndSkipFunctionBody())
   3337           return EC;
   3338 
   3339         // Suspend parsing when we reach the function bodies. Subsequent
   3340         // materialization calls will resume it when necessary. If the bitcode
   3341         // file is old, the symbol table will be at the end instead and will not
   3342         // have been seen yet. In this case, just finish the parse now.
   3343         if (SeenValueSymbolTable) {
   3344           NextUnreadBit = Stream.GetCurrentBitNo();
   3345           return std::error_code();
   3346         }
   3347         break;
   3348       case bitc::USELIST_BLOCK_ID:
   3349         if (std::error_code EC = parseUseLists())
   3350           return EC;
   3351         break;
   3352       case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID:
   3353         if (std::error_code EC = parseOperandBundleTags())
   3354           return EC;
   3355         break;
   3356       }
   3357       continue;
   3358 
   3359     case BitstreamEntry::Record:
   3360       // The interesting case.
   3361       break;
   3362     }
   3363 
   3364 
   3365     // Read a record.
   3366     auto BitCode = Stream.readRecord(Entry.ID, Record);
   3367     switch (BitCode) {
   3368     default: break;  // Default behavior, ignore unknown content.
   3369     case bitc::MODULE_CODE_VERSION: {  // VERSION: [version#]
   3370       if (Record.size() < 1)
   3371         return error("Invalid record");
   3372       // Only version #0 and #1 are supported so far.
   3373       unsigned module_version = Record[0];
   3374       switch (module_version) {
   3375         default:
   3376           return error("Invalid value");
   3377         case 0:
   3378           UseRelativeIDs = false;
   3379           break;
   3380         case 1:
   3381           UseRelativeIDs = true;
   3382           break;
   3383       }
   3384       break;
   3385     }
   3386     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
   3387       std::string S;
   3388       if (convertToString(Record, 0, S))
   3389         return error("Invalid record");
   3390       TheModule->setTargetTriple(S);
   3391       break;
   3392     }
   3393     case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
   3394       std::string S;
   3395       if (convertToString(Record, 0, S))
   3396         return error("Invalid record");
   3397       TheModule->setDataLayout(S);
   3398       break;
   3399     }
   3400     case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
   3401       std::string S;
   3402       if (convertToString(Record, 0, S))
   3403         return error("Invalid record");
   3404       TheModule->setModuleInlineAsm(S);
   3405       break;
   3406     }
   3407     case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
   3408       // FIXME: Remove in 4.0.
   3409       std::string S;
   3410       if (convertToString(Record, 0, S))
   3411         return error("Invalid record");
   3412       // Ignore value.
   3413       break;
   3414     }
   3415     case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
   3416       std::string S;
   3417       if (convertToString(Record, 0, S))
   3418         return error("Invalid record");
   3419       SectionTable.push_back(S);
   3420       break;
   3421     }
   3422     case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
   3423       std::string S;
   3424       if (convertToString(Record, 0, S))
   3425         return error("Invalid record");
   3426       GCTable.push_back(S);
   3427       break;
   3428     }
   3429     case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name]
   3430       if (Record.size() < 2)
   3431         return error("Invalid record");
   3432       Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]);
   3433       unsigned ComdatNameSize = Record[1];
   3434       std::string ComdatName;
   3435       ComdatName.reserve(ComdatNameSize);
   3436       for (unsigned i = 0; i != ComdatNameSize; ++i)
   3437         ComdatName += (char)Record[2 + i];
   3438       Comdat *C = TheModule->getOrInsertComdat(ComdatName);
   3439       C->setSelectionKind(SK);
   3440       ComdatList.push_back(C);
   3441       break;
   3442     }
   3443     // GLOBALVAR: [pointer type, isconst, initid,
   3444     //             linkage, alignment, section, visibility, threadlocal,
   3445     //             unnamed_addr, externally_initialized, dllstorageclass,
   3446     //             comdat]
   3447     case bitc::MODULE_CODE_GLOBALVAR: {
   3448       if (Record.size() < 6)
   3449         return error("Invalid record");
   3450       Type *Ty = getTypeByID(Record[0]);
   3451       if (!Ty)
   3452         return error("Invalid record");
   3453       bool isConstant = Record[1] & 1;
   3454       bool explicitType = Record[1] & 2;
   3455       unsigned AddressSpace;
   3456       if (explicitType) {
   3457         AddressSpace = Record[1] >> 2;
   3458       } else {
   3459         if (!Ty->isPointerTy())
   3460           return error("Invalid type for value");
   3461         AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
   3462         Ty = cast<PointerType>(Ty)->getElementType();
   3463       }
   3464 
   3465       uint64_t RawLinkage = Record[3];
   3466       GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
   3467       unsigned Alignment;
   3468       if (std::error_code EC = parseAlignmentValue(Record[4], Alignment))
   3469         return EC;
   3470       std::string Section;
   3471       if (Record[5]) {
   3472         if (Record[5]-1 >= SectionTable.size())
   3473           return error("Invalid ID");
   3474         Section = SectionTable[Record[5]-1];
   3475       }
   3476       GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
   3477       // Local linkage must have default visibility.
   3478       if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage))
   3479         // FIXME: Change to an error if non-default in 4.0.
   3480         Visibility = getDecodedVisibility(Record[6]);
   3481 
   3482       GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
   3483       if (Record.size() > 7)
   3484         TLM = getDecodedThreadLocalMode(Record[7]);
   3485 
   3486       bool UnnamedAddr = false;
   3487       if (Record.size() > 8)
   3488         UnnamedAddr = Record[8];
   3489 
   3490       bool ExternallyInitialized = false;
   3491       if (Record.size() > 9)
   3492         ExternallyInitialized = Record[9];
   3493 
   3494       GlobalVariable *NewGV =
   3495         new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr,
   3496                            TLM, AddressSpace, ExternallyInitialized);
   3497       NewGV->setAlignment(Alignment);
   3498       if (!Section.empty())
   3499         NewGV->setSection(Section);
   3500       NewGV->setVisibility(Visibility);
   3501       NewGV->setUnnamedAddr(UnnamedAddr);
   3502 
   3503       if (Record.size() > 10)
   3504         NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10]));
   3505       else
   3506         upgradeDLLImportExportLinkage(NewGV, RawLinkage);
   3507 
   3508       ValueList.push_back(NewGV);
   3509 
   3510       // Remember which value to use for the global initializer.
   3511       if (unsigned InitID = Record[2])
   3512         GlobalInits.push_back(std::make_pair(NewGV, InitID-1));
   3513 
   3514       if (Record.size() > 11) {
   3515         if (unsigned ComdatID = Record[11]) {
   3516           if (ComdatID > ComdatList.size())
   3517             return error("Invalid global variable comdat ID");
   3518           NewGV->setComdat(ComdatList[ComdatID - 1]);
   3519         }
   3520       } else if (hasImplicitComdat(RawLinkage)) {
   3521         NewGV->setComdat(reinterpret_cast<Comdat *>(1));
   3522       }
   3523       break;
   3524     }
   3525     // FUNCTION:  [type, callingconv, isproto, linkage, paramattr,
   3526     //             alignment, section, visibility, gc, unnamed_addr,
   3527     //             prologuedata, dllstorageclass, comdat, prefixdata]
   3528     case bitc::MODULE_CODE_FUNCTION: {
   3529       if (Record.size() < 8)
   3530         return error("Invalid record");
   3531       Type *Ty = getTypeByID(Record[0]);
   3532       if (!Ty)
   3533         return error("Invalid record");
   3534       if (auto *PTy = dyn_cast<PointerType>(Ty))
   3535         Ty = PTy->getElementType();
   3536       auto *FTy = dyn_cast<FunctionType>(Ty);
   3537       if (!FTy)
   3538         return error("Invalid type for value");
   3539       auto CC = static_cast<CallingConv::ID>(Record[1]);
   3540       if (CC & ~CallingConv::MaxID)
   3541         return error("Invalid calling convention ID");
   3542 
   3543       Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage,
   3544                                         "", TheModule);
   3545 
   3546       Func->setCallingConv(CC);
   3547       bool isProto = Record[2];
   3548       uint64_t RawLinkage = Record[3];
   3549       Func->setLinkage(getDecodedLinkage(RawLinkage));
   3550       Func->setAttributes(getAttributes(Record[4]));
   3551 
   3552       unsigned Alignment;
   3553       if (std::error_code EC = parseAlignmentValue(Record[5], Alignment))
   3554         return EC;
   3555       Func->setAlignment(Alignment);
   3556       if (Record[6]) {
   3557         if (Record[6]-1 >= SectionTable.size())
   3558           return error("Invalid ID");
   3559         Func->setSection(SectionTable[Record[6]-1]);
   3560       }
   3561       // Local linkage must have default visibility.
   3562       if (!Func->hasLocalLinkage())
   3563         // FIXME: Change to an error if non-default in 4.0.
   3564         Func->setVisibility(getDecodedVisibility(Record[7]));
   3565       if (Record.size() > 8 && Record[8]) {
   3566         if (Record[8]-1 >= GCTable.size())
   3567           return error("Invalid ID");
   3568         Func->setGC(GCTable[Record[8]-1].c_str());
   3569       }
   3570       bool UnnamedAddr = false;
   3571       if (Record.size() > 9)
   3572         UnnamedAddr = Record[9];
   3573       Func->setUnnamedAddr(UnnamedAddr);
   3574       if (Record.size() > 10 && Record[10] != 0)
   3575         FunctionPrologues.push_back(std::make_pair(Func, Record[10]-1));
   3576 
   3577       if (Record.size() > 11)
   3578         Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11]));
   3579       else
   3580         upgradeDLLImportExportLinkage(Func, RawLinkage);
   3581 
   3582       if (Record.size() > 12) {
   3583         if (unsigned ComdatID = Record[12]) {
   3584           if (ComdatID > ComdatList.size())
   3585             return error("Invalid function comdat ID");
   3586           Func->setComdat(ComdatList[ComdatID - 1]);
   3587         }
   3588       } else if (hasImplicitComdat(RawLinkage)) {
   3589         Func->setComdat(reinterpret_cast<Comdat *>(1));
   3590       }
   3591 
   3592       if (Record.size() > 13 && Record[13] != 0)
   3593         FunctionPrefixes.push_back(std::make_pair(Func, Record[13]-1));
   3594 
   3595       if (Record.size() > 14 && Record[14] != 0)
   3596         FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1));
   3597 
   3598       ValueList.push_back(Func);
   3599 
   3600       // If this is a function with a body, remember the prototype we are
   3601       // creating now, so that we can match up the body with them later.
   3602       if (!isProto) {
   3603         Func->setIsMaterializable(true);
   3604         FunctionsWithBodies.push_back(Func);
   3605         DeferredFunctionInfo[Func] = 0;
   3606       }
   3607       break;
   3608     }
   3609     // ALIAS: [alias type, addrspace, aliasee val#, linkage]
   3610     // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, dllstorageclass]
   3611     case bitc::MODULE_CODE_ALIAS:
   3612     case bitc::MODULE_CODE_ALIAS_OLD: {
   3613       bool NewRecord = BitCode == bitc::MODULE_CODE_ALIAS;
   3614       if (Record.size() < (3 + (unsigned)NewRecord))
   3615         return error("Invalid record");
   3616       unsigned OpNum = 0;
   3617       Type *Ty = getTypeByID(Record[OpNum++]);
   3618       if (!Ty)
   3619         return error("Invalid record");
   3620 
   3621       unsigned AddrSpace;
   3622       if (!NewRecord) {
   3623         auto *PTy = dyn_cast<PointerType>(Ty);
   3624         if (!PTy)
   3625           return error("Invalid type for value");
   3626         Ty = PTy->getElementType();
   3627         AddrSpace = PTy->getAddressSpace();
   3628       } else {
   3629         AddrSpace = Record[OpNum++];
   3630       }
   3631 
   3632       auto Val = Record[OpNum++];
   3633       auto Linkage = Record[OpNum++];
   3634       auto *NewGA = GlobalAlias::create(
   3635           Ty, AddrSpace, getDecodedLinkage(Linkage), "", TheModule);
   3636       // Old bitcode files didn't have visibility field.
   3637       // Local linkage must have default visibility.
   3638       if (OpNum != Record.size()) {
   3639         auto VisInd = OpNum++;
   3640         if (!NewGA->hasLocalLinkage())
   3641           // FIXME: Change to an error if non-default in 4.0.
   3642           NewGA->setVisibility(getDecodedVisibility(Record[VisInd]));
   3643       }
   3644       if (OpNum != Record.size())
   3645         NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++]));
   3646       else
   3647         upgradeDLLImportExportLinkage(NewGA, Linkage);
   3648       if (OpNum != Record.size())
   3649         NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++]));
   3650       if (OpNum != Record.size())
   3651         NewGA->setUnnamedAddr(Record[OpNum++]);
   3652       ValueList.push_back(NewGA);
   3653       AliasInits.push_back(std::make_pair(NewGA, Val));
   3654       break;
   3655     }
   3656     /// MODULE_CODE_PURGEVALS: [numvals]
   3657     case bitc::MODULE_CODE_PURGEVALS:
   3658       // Trim down the value list to the specified size.
   3659       if (Record.size() < 1 || Record[0] > ValueList.size())
   3660         return error("Invalid record");
   3661       ValueList.shrinkTo(Record[0]);
   3662       break;
   3663     /// MODULE_CODE_VSTOFFSET: [offset]
   3664     case bitc::MODULE_CODE_VSTOFFSET:
   3665       if (Record.size() < 1)
   3666         return error("Invalid record");
   3667       VSTOffset = Record[0];
   3668       break;
   3669     /// MODULE_CODE_METADATA_VALUES: [numvals]
   3670     case bitc::MODULE_CODE_METADATA_VALUES:
   3671       if (Record.size() < 1)
   3672         return error("Invalid record");
   3673       assert(!IsMetadataMaterialized);
   3674       // This record contains the number of metadata values in the module-level
   3675       // METADATA_BLOCK. It is used to support lazy parsing of metadata as
   3676       // a postpass, where we will parse function-level metadata first.
   3677       // This is needed because the ids of metadata are assigned implicitly
   3678       // based on their ordering in the bitcode, with the function-level
   3679       // metadata ids starting after the module-level metadata ids. Otherwise,
   3680       // we would have to parse the module-level metadata block to prime the
   3681       // MDValueList when we are lazy loading metadata during function
   3682       // importing. Initialize the MDValueList size here based on the
   3683       // record value, regardless of whether we are doing lazy metadata
   3684       // loading, so that we have consistent handling and assertion
   3685       // checking in parseMetadata for module-level metadata.
   3686       NumModuleMDs = Record[0];
   3687       SeenModuleValuesRecord = true;
   3688       assert(MDValueList.size() == 0);
   3689       MDValueList.resize(NumModuleMDs);
   3690       break;
   3691     }
   3692     Record.clear();
   3693   }
   3694 }
   3695 
   3696 /// Helper to read the header common to all bitcode files.
   3697 static bool hasValidBitcodeHeader(BitstreamCursor &Stream) {
   3698   // Sniff for the signature.
   3699   if (Stream.Read(8) != 'B' ||
   3700       Stream.Read(8) != 'C' ||
   3701       Stream.Read(4) != 0x0 ||
   3702       Stream.Read(4) != 0xC ||
   3703       Stream.Read(4) != 0xE ||
   3704       Stream.Read(4) != 0xD)
   3705     return false;
   3706   return true;
   3707 }
   3708 
   3709 std::error_code
   3710 BitcodeReader::parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer,
   3711                                 Module *M, bool ShouldLazyLoadMetadata) {
   3712   TheModule = M;
   3713 
   3714   if (std::error_code EC = initStream(std::move(Streamer)))
   3715     return EC;
   3716 
   3717   // Sniff for the signature.
   3718   if (!hasValidBitcodeHeader(Stream))
   3719     return error("Invalid bitcode signature");
   3720 
   3721   // We expect a number of well-defined blocks, though we don't necessarily
   3722   // need to understand them all.
   3723   while (1) {
   3724     if (Stream.AtEndOfStream()) {
   3725       // We didn't really read a proper Module.
   3726       return error("Malformed IR file");
   3727     }
   3728 
   3729     BitstreamEntry Entry =
   3730       Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs);
   3731 
   3732     if (Entry.Kind != BitstreamEntry::SubBlock)
   3733       return error("Malformed block");
   3734 
   3735     if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) {
   3736       parseBitcodeVersion();
   3737       continue;
   3738     }
   3739 
   3740     if (Entry.ID == bitc::MODULE_BLOCK_ID)
   3741       return parseModule(0, ShouldLazyLoadMetadata);
   3742 
   3743     if (Stream.SkipBlock())
   3744       return error("Invalid record");
   3745   }
   3746 }
   3747 
   3748 ErrorOr<std::string> BitcodeReader::parseModuleTriple() {
   3749   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
   3750     return error("Invalid record");
   3751 
   3752   SmallVector<uint64_t, 64> Record;
   3753 
   3754   std::string Triple;
   3755   // Read all the records for this module.
   3756   while (1) {
   3757     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
   3758 
   3759     switch (Entry.Kind) {
   3760     case BitstreamEntry::SubBlock: // Handled for us already.
   3761     case BitstreamEntry::Error:
   3762       return error("Malformed block");
   3763     case BitstreamEntry::EndBlock:
   3764       return Triple;
   3765     case BitstreamEntry::Record:
   3766       // The interesting case.
   3767       break;
   3768     }
   3769 
   3770     // Read a record.
   3771     switch (Stream.readRecord(Entry.ID, Record)) {
   3772     default: break;  // Default behavior, ignore unknown content.
   3773     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
   3774       std::string S;
   3775       if (convertToString(Record, 0, S))
   3776         return error("Invalid record");
   3777       Triple = S;
   3778       break;
   3779     }
   3780     }
   3781     Record.clear();
   3782   }
   3783   llvm_unreachable("Exit infinite loop");
   3784 }
   3785 
   3786 ErrorOr<std::string> BitcodeReader::parseTriple() {
   3787   if (std::error_code EC = initStream(nullptr))
   3788     return EC;
   3789 
   3790   // Sniff for the signature.
   3791   if (!hasValidBitcodeHeader(Stream))
   3792     return error("Invalid bitcode signature");
   3793 
   3794   // We expect a number of well-defined blocks, though we don't necessarily
   3795   // need to understand them all.
   3796   while (1) {
   3797     BitstreamEntry Entry = Stream.advance();
   3798 
   3799     switch (Entry.Kind) {
   3800     case BitstreamEntry::Error:
   3801       return error("Malformed block");
   3802     case BitstreamEntry::EndBlock:
   3803       return std::error_code();
   3804 
   3805     case BitstreamEntry::SubBlock:
   3806       if (Entry.ID == bitc::MODULE_BLOCK_ID)
   3807         return parseModuleTriple();
   3808 
   3809       // Ignore other sub-blocks.
   3810       if (Stream.SkipBlock())
   3811         return error("Malformed block");
   3812       continue;
   3813 
   3814     case BitstreamEntry::Record:
   3815       Stream.skipRecord(Entry.ID);
   3816       continue;
   3817     }
   3818   }
   3819 }
   3820 
   3821 ErrorOr<std::string> BitcodeReader::parseIdentificationBlock() {
   3822   if (std::error_code EC = initStream(nullptr))
   3823     return EC;
   3824 
   3825   // Sniff for the signature.
   3826   if (!hasValidBitcodeHeader(Stream))
   3827     return error("Invalid bitcode signature");
   3828 
   3829   // We expect a number of well-defined blocks, though we don't necessarily
   3830   // need to understand them all.
   3831   while (1) {
   3832     BitstreamEntry Entry = Stream.advance();
   3833     switch (Entry.Kind) {
   3834     case BitstreamEntry::Error:
   3835       return error("Malformed block");
   3836     case BitstreamEntry::EndBlock:
   3837       return std::error_code();
   3838 
   3839     case BitstreamEntry::SubBlock:
   3840       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) {
   3841         if (std::error_code EC = parseBitcodeVersion())
   3842           return EC;
   3843         return ProducerIdentification;
   3844       }
   3845       // Ignore other sub-blocks.
   3846       if (Stream.SkipBlock())
   3847         return error("Malformed block");
   3848       continue;
   3849     case BitstreamEntry::Record:
   3850       Stream.skipRecord(Entry.ID);
   3851       continue;
   3852     }
   3853   }
   3854 }
   3855 
   3856 /// Parse metadata attachments.
   3857 std::error_code BitcodeReader::parseMetadataAttachment(Function &F) {
   3858   if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID))
   3859     return error("Invalid record");
   3860 
   3861   SmallVector<uint64_t, 64> Record;
   3862   while (1) {
   3863     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
   3864 
   3865     switch (Entry.Kind) {
   3866     case BitstreamEntry::SubBlock: // Handled for us already.
   3867     case BitstreamEntry::Error:
   3868       return error("Malformed block");
   3869     case BitstreamEntry::EndBlock:
   3870       return std::error_code();
   3871     case BitstreamEntry::Record:
   3872       // The interesting case.
   3873       break;
   3874     }
   3875 
   3876     // Read a metadata attachment record.
   3877     Record.clear();
   3878     switch (Stream.readRecord(Entry.ID, Record)) {
   3879     default:  // Default behavior: ignore.
   3880       break;
   3881     case bitc::METADATA_ATTACHMENT: {
   3882       unsigned RecordLength = Record.size();
   3883       if (Record.empty())
   3884         return error("Invalid record");
   3885       if (RecordLength % 2 == 0) {
   3886         // A function attachment.
   3887         for (unsigned I = 0; I != RecordLength; I += 2) {
   3888           auto K = MDKindMap.find(Record[I]);
   3889           if (K == MDKindMap.end())
   3890             return error("Invalid ID");
   3891           Metadata *MD = MDValueList.getValueFwdRef(Record[I + 1]);
   3892           F.setMetadata(K->second, cast<MDNode>(MD));
   3893         }
   3894         continue;
   3895       }
   3896 
   3897       // An instruction attachment.
   3898       Instruction *Inst = InstructionList[Record[0]];
   3899       for (unsigned i = 1; i != RecordLength; i = i+2) {
   3900         unsigned Kind = Record[i];
   3901         DenseMap<unsigned, unsigned>::iterator I =
   3902           MDKindMap.find(Kind);
   3903         if (I == MDKindMap.end())
   3904           return error("Invalid ID");
   3905         Metadata *Node = MDValueList.getValueFwdRef(Record[i + 1]);
   3906         if (isa<LocalAsMetadata>(Node))
   3907           // Drop the attachment.  This used to be legal, but there's no
   3908           // upgrade path.
   3909           break;
   3910         Inst->setMetadata(I->second, cast<MDNode>(Node));
   3911         if (I->second == LLVMContext::MD_tbaa)
   3912           InstsWithTBAATag.push_back(Inst);
   3913       }
   3914       break;
   3915     }
   3916     }
   3917   }
   3918 }
   3919 
   3920 static std::error_code typeCheckLoadStoreInst(Type *ValType, Type *PtrType) {
   3921   LLVMContext &Context = PtrType->getContext();
   3922   if (!isa<PointerType>(PtrType))
   3923     return error(Context, "Load/Store operand is not a pointer type");
   3924   Type *ElemType = cast<PointerType>(PtrType)->getElementType();
   3925 
   3926   if (ValType && ValType != ElemType)
   3927     return error(Context, "Explicit load/store type does not match pointee "
   3928                           "type of pointer operand");
   3929   if (!PointerType::isLoadableOrStorableType(ElemType))
   3930     return error(Context, "Cannot load/store from pointer");
   3931   return std::error_code();
   3932 }
   3933 
   3934 /// Lazily parse the specified function body block.
   3935 std::error_code BitcodeReader::parseFunctionBody(Function *F) {
   3936   if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
   3937     return error("Invalid record");
   3938 
   3939   InstructionList.clear();
   3940   unsigned ModuleValueListSize = ValueList.size();
   3941   unsigned ModuleMDValueListSize = MDValueList.size();
   3942 
   3943   // Add all the function arguments to the value table.
   3944   for (Argument &I : F->args())
   3945     ValueList.push_back(&I);
   3946 
   3947   unsigned NextValueNo = ValueList.size();
   3948   BasicBlock *CurBB = nullptr;
   3949   unsigned CurBBNo = 0;
   3950 
   3951   DebugLoc LastLoc;
   3952   auto getLastInstruction = [&]() -> Instruction * {
   3953     if (CurBB && !CurBB->empty())
   3954       return &CurBB->back();
   3955     else if (CurBBNo && FunctionBBs[CurBBNo - 1] &&
   3956              !FunctionBBs[CurBBNo - 1]->empty())
   3957       return &FunctionBBs[CurBBNo - 1]->back();
   3958     return nullptr;
   3959   };
   3960 
   3961   std::vector<OperandBundleDef> OperandBundles;
   3962 
   3963   // Read all the records.
   3964   SmallVector<uint64_t, 64> Record;
   3965   while (1) {
   3966     BitstreamEntry Entry = Stream.advance();
   3967 
   3968     switch (Entry.Kind) {
   3969     case BitstreamEntry::Error:
   3970       return error("Malformed block");
   3971     case BitstreamEntry::EndBlock:
   3972       goto OutOfRecordLoop;
   3973 
   3974     case BitstreamEntry::SubBlock:
   3975       switch (Entry.ID) {
   3976       default:  // Skip unknown content.
   3977         if (Stream.SkipBlock())
   3978           return error("Invalid record");
   3979         break;
   3980       case bitc::CONSTANTS_BLOCK_ID:
   3981         if (std::error_code EC = parseConstants())
   3982           return EC;
   3983         NextValueNo = ValueList.size();
   3984         break;
   3985       case bitc::VALUE_SYMTAB_BLOCK_ID:
   3986         if (std::error_code EC = parseValueSymbolTable())
   3987           return EC;
   3988         break;
   3989       case bitc::METADATA_ATTACHMENT_ID:
   3990         if (std::error_code EC = parseMetadataAttachment(*F))
   3991           return EC;
   3992         break;
   3993       case bitc::METADATA_BLOCK_ID:
   3994         if (std::error_code EC = parseMetadata())
   3995           return EC;
   3996         break;
   3997       case bitc::USELIST_BLOCK_ID:
   3998         if (std::error_code EC = parseUseLists())
   3999           return EC;
   4000         break;
   4001       }
   4002       continue;
   4003 
   4004     case BitstreamEntry::Record:
   4005       // The interesting case.
   4006       break;
   4007     }
   4008 
   4009     // Read a record.
   4010     Record.clear();
   4011     Instruction *I = nullptr;
   4012     unsigned BitCode = Stream.readRecord(Entry.ID, Record);
   4013     switch (BitCode) {
   4014     default: // Default behavior: reject
   4015       return error("Invalid value");
   4016     case bitc::FUNC_CODE_DECLAREBLOCKS: {   // DECLAREBLOCKS: [nblocks]
   4017       if (Record.size() < 1 || Record[0] == 0)
   4018         return error("Invalid record");
   4019       // Create all the basic blocks for the function.
   4020       FunctionBBs.resize(Record[0]);
   4021 
   4022       // See if anything took the address of blocks in this function.
   4023       auto BBFRI = BasicBlockFwdRefs.find(F);
   4024       if (BBFRI == BasicBlockFwdRefs.end()) {
   4025         for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
   4026           FunctionBBs[i] = BasicBlock::Create(Context, "", F);
   4027       } else {
   4028         auto &BBRefs = BBFRI->second;
   4029         // Check for invalid basic block references.
   4030         if (BBRefs.size() > FunctionBBs.size())
   4031           return error("Invalid ID");
   4032         assert(!BBRefs.empty() && "Unexpected empty array");
   4033         assert(!BBRefs.front() && "Invalid reference to entry block");
   4034         for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E;
   4035              ++I)
   4036           if (I < RE && BBRefs[I]) {
   4037             BBRefs[I]->insertInto(F);
   4038             FunctionBBs[I] = BBRefs[I];
   4039           } else {
   4040             FunctionBBs[I] = BasicBlock::Create(Context, "", F);
   4041           }
   4042 
   4043         // Erase from the table.
   4044         BasicBlockFwdRefs.erase(BBFRI);
   4045       }
   4046 
   4047       CurBB = FunctionBBs[0];
   4048       continue;
   4049     }
   4050 
   4051     case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
   4052       // This record indicates that the last instruction is at the same
   4053       // location as the previous instruction with a location.
   4054       I = getLastInstruction();
   4055 
   4056       if (!I)
   4057         return error("Invalid record");
   4058       I->setDebugLoc(LastLoc);
   4059       I = nullptr;
   4060       continue;
   4061 
   4062     case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
   4063       I = getLastInstruction();
   4064       if (!I || Record.size() < 4)
   4065         return error("Invalid record");
   4066 
   4067       unsigned Line = Record[0], Col = Record[1];
   4068       unsigned ScopeID = Record[2], IAID = Record[3];
   4069 
   4070       MDNode *Scope = nullptr, *IA = nullptr;
   4071       if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1));
   4072       if (IAID)    IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1));
   4073       LastLoc = DebugLoc::get(Line, Col, Scope, IA);
   4074       I->setDebugLoc(LastLoc);
   4075       I = nullptr;
   4076       continue;
   4077     }
   4078 
   4079     case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
   4080       unsigned OpNum = 0;
   4081       Value *LHS, *RHS;
   4082       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
   4083           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) ||
   4084           OpNum+1 > Record.size())
   4085         return error("Invalid record");
   4086 
   4087       int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
   4088       if (Opc == -1)
   4089         return error("Invalid record");
   4090       I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
   4091       InstructionList.push_back(I);
   4092       if (OpNum < Record.size()) {
   4093         if (Opc == Instruction::Add ||
   4094             Opc == Instruction::Sub ||
   4095             Opc == Instruction::Mul ||
   4096             Opc == Instruction::Shl) {
   4097           if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
   4098             cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
   4099           if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
   4100             cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
   4101         } else if (Opc == Instruction::SDiv ||
   4102                    Opc == Instruction::UDiv ||
   4103                    Opc == Instruction::LShr ||
   4104                    Opc == Instruction::AShr) {
   4105           if (Record[OpNum] & (1 << bitc::PEO_EXACT))
   4106             cast<BinaryOperator>(I)->setIsExact(true);
   4107         } else if (isa<FPMathOperator>(I)) {
   4108           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
   4109           if (FMF.any())
   4110             I->setFastMathFlags(FMF);
   4111         }
   4112 
   4113       }
   4114       break;
   4115     }
   4116     case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
   4117       unsigned OpNum = 0;
   4118       Value *Op;
   4119       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
   4120           OpNum+2 != Record.size())
   4121         return error("Invalid record");
   4122 
   4123       Type *ResTy = getTypeByID(Record[OpNum]);
   4124       int Opc = getDecodedCastOpcode(Record[OpNum + 1]);
   4125       if (Opc == -1 || !ResTy)
   4126         return error("Invalid record");
   4127       Instruction *Temp = nullptr;
   4128       if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) {
   4129         if (Temp) {
   4130           InstructionList.push_back(Temp);
   4131           CurBB->getInstList().push_back(Temp);
   4132         }
   4133       } else {
   4134         auto CastOp = (Instruction::CastOps)Opc;
   4135         if (!CastInst::castIsValid(CastOp, Op, ResTy))
   4136           return error("Invalid cast");
   4137         I = CastInst::Create(CastOp, Op, ResTy);
   4138       }
   4139       InstructionList.push_back(I);
   4140       break;
   4141     }
   4142     case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD:
   4143     case bitc::FUNC_CODE_INST_GEP_OLD:
   4144     case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands]
   4145       unsigned OpNum = 0;
   4146 
   4147       Type *Ty;
   4148       bool InBounds;
   4149 
   4150       if (BitCode == bitc::FUNC_CODE_INST_GEP) {
   4151         InBounds = Record[OpNum++];
   4152         Ty = getTypeByID(Record[OpNum++]);
   4153       } else {
   4154         InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD;
   4155         Ty = nullptr;
   4156       }
   4157 
   4158       Value *BasePtr;
   4159       if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
   4160         return error("Invalid record");
   4161 
   4162       if (!Ty)
   4163         Ty = cast<SequentialType>(BasePtr->getType()->getScalarType())
   4164                  ->getElementType();
   4165       else if (Ty !=
   4166                cast<SequentialType>(BasePtr->getType()->getScalarType())
   4167                    ->getElementType())
   4168         return error(
   4169             "Explicit gep type does not match pointee type of pointer operand");
   4170 
   4171       SmallVector<Value*, 16> GEPIdx;
   4172       while (OpNum != Record.size()) {
   4173         Value *Op;
   4174         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
   4175           return error("Invalid record");
   4176         GEPIdx.push_back(Op);
   4177       }
   4178 
   4179       I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx);
   4180 
   4181       InstructionList.push_back(I);
   4182       if (InBounds)
   4183         cast<GetElementPtrInst>(I)->setIsInBounds(true);
   4184       break;
   4185     }
   4186 
   4187     case bitc::FUNC_CODE_INST_EXTRACTVAL: {
   4188                                        // EXTRACTVAL: [opty, opval, n x indices]
   4189       unsigned OpNum = 0;
   4190       Value *Agg;
   4191       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
   4192         return error("Invalid record");
   4193 
   4194       unsigned RecSize = Record.size();
   4195       if (OpNum == RecSize)
   4196         return error("EXTRACTVAL: Invalid instruction with 0 indices");
   4197 
   4198       SmallVector<unsigned, 4> EXTRACTVALIdx;
   4199       Type *CurTy = Agg->getType();
   4200       for (; OpNum != RecSize; ++OpNum) {
   4201         bool IsArray = CurTy->isArrayTy();
   4202         bool IsStruct = CurTy->isStructTy();
   4203         uint64_t Index = Record[OpNum];
   4204 
   4205         if (!IsStruct && !IsArray)
   4206           return error("EXTRACTVAL: Invalid type");
   4207         if ((unsigned)Index != Index)
   4208           return error("Invalid value");
   4209         if (IsStruct && Index >= CurTy->subtypes().size())
   4210           return error("EXTRACTVAL: Invalid struct index");
   4211         if (IsArray && Index >= CurTy->getArrayNumElements())
   4212           return error("EXTRACTVAL: Invalid array index");
   4213         EXTRACTVALIdx.push_back((unsigned)Index);
   4214 
   4215         if (IsStruct)
   4216           CurTy = CurTy->subtypes()[Index];
   4217         else
   4218           CurTy = CurTy->subtypes()[0];
   4219       }
   4220 
   4221       I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
   4222       InstructionList.push_back(I);
   4223       break;
   4224     }
   4225 
   4226     case bitc::FUNC_CODE_INST_INSERTVAL: {
   4227                            // INSERTVAL: [opty, opval, opty, opval, n x indices]
   4228       unsigned OpNum = 0;
   4229       Value *Agg;
   4230       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
   4231         return error("Invalid record");
   4232       Value *Val;
   4233       if (getValueTypePair(Record, OpNum, NextValueNo, Val))
   4234         return error("Invalid record");
   4235 
   4236       unsigned RecSize = Record.size();
   4237       if (OpNum == RecSize)
   4238         return error("INSERTVAL: Invalid instruction with 0 indices");
   4239 
   4240       SmallVector<unsigned, 4> INSERTVALIdx;
   4241       Type *CurTy = Agg->getType();
   4242       for (; OpNum != RecSize; ++OpNum) {
   4243         bool IsArray = CurTy->isArrayTy();
   4244         bool IsStruct = CurTy->isStructTy();
   4245         uint64_t Index = Record[OpNum];
   4246 
   4247         if (!IsStruct && !IsArray)
   4248           return error("INSERTVAL: Invalid type");
   4249         if ((unsigned)Index != Index)
   4250           return error("Invalid value");
   4251         if (IsStruct && Index >= CurTy->subtypes().size())
   4252           return error("INSERTVAL: Invalid struct index");
   4253         if (IsArray && Index >= CurTy->getArrayNumElements())
   4254           return error("INSERTVAL: Invalid array index");
   4255 
   4256         INSERTVALIdx.push_back((unsigned)Index);
   4257         if (IsStruct)
   4258           CurTy = CurTy->subtypes()[Index];
   4259         else
   4260           CurTy = CurTy->subtypes()[0];
   4261       }
   4262 
   4263       if (CurTy != Val->getType())
   4264         return error("Inserted value type doesn't match aggregate type");
   4265 
   4266       I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
   4267       InstructionList.push_back(I);
   4268       break;
   4269     }
   4270 
   4271     case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
   4272       // obsolete form of select
   4273       // handles select i1 ... in old bitcode
   4274       unsigned OpNum = 0;
   4275       Value *TrueVal, *FalseVal, *Cond;
   4276       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
   4277           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
   4278           popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond))
   4279         return error("Invalid record");
   4280 
   4281       I = SelectInst::Create(Cond, TrueVal, FalseVal);
   4282       InstructionList.push_back(I);
   4283       break;
   4284     }
   4285 
   4286     case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
   4287       // new form of select
   4288       // handles select i1 or select [N x i1]
   4289       unsigned OpNum = 0;
   4290       Value *TrueVal, *FalseVal, *Cond;
   4291       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
   4292           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
   4293           getValueTypePair(Record, OpNum, NextValueNo, Cond))
   4294         return error("Invalid record");
   4295 
   4296       // select condition can be either i1 or [N x i1]
   4297       if (VectorType* vector_type =
   4298           dyn_cast<VectorType>(Cond->getType())) {
   4299         // expect <n x i1>
   4300         if (vector_type->getElementType() != Type::getInt1Ty(Context))
   4301           return error("Invalid type for value");
   4302       } else {
   4303         // expect i1
   4304         if (Cond->getType() != Type::getInt1Ty(Context))
   4305           return error("Invalid type for value");
   4306       }
   4307 
   4308       I = SelectInst::Create(Cond, TrueVal, FalseVal);
   4309       InstructionList.push_back(I);
   4310       break;
   4311     }
   4312 
   4313     case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
   4314       unsigned OpNum = 0;
   4315       Value *Vec, *Idx;
   4316       if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
   4317           getValueTypePair(Record, OpNum, NextValueNo, Idx))
   4318         return error("Invalid record");
   4319       if (!Vec->getType()->isVectorTy())
   4320         return error("Invalid type for value");
   4321       I = ExtractElementInst::Create(Vec, Idx);
   4322       InstructionList.push_back(I);
   4323       break;
   4324     }
   4325 
   4326     case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
   4327       unsigned OpNum = 0;
   4328       Value *Vec, *Elt, *Idx;
   4329       if (getValueTypePair(Record, OpNum, NextValueNo, Vec))
   4330         return error("Invalid record");
   4331       if (!Vec->getType()->isVectorTy())
   4332         return error("Invalid type for value");
   4333       if (popValue(Record, OpNum, NextValueNo,
   4334                    cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
   4335           getValueTypePair(Record, OpNum, NextValueNo, Idx))
   4336         return error("Invalid record");
   4337       I = InsertElementInst::Create(Vec, Elt, Idx);
   4338       InstructionList.push_back(I);
   4339       break;
   4340     }
   4341 
   4342     case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
   4343       unsigned OpNum = 0;
   4344       Value *Vec1, *Vec2, *Mask;
   4345       if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
   4346           popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2))
   4347         return error("Invalid record");
   4348 
   4349       if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
   4350         return error("Invalid record");
   4351       if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy())
   4352         return error("Invalid type for value");
   4353       I = new ShuffleVectorInst(Vec1, Vec2, Mask);
   4354       InstructionList.push_back(I);
   4355       break;
   4356     }
   4357 
   4358     case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
   4359       // Old form of ICmp/FCmp returning bool
   4360       // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
   4361       // both legal on vectors but had different behaviour.
   4362     case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
   4363       // FCmp/ICmp returning bool or vector of bool
   4364 
   4365       unsigned OpNum = 0;
   4366       Value *LHS, *RHS;
   4367       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
   4368           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS))
   4369         return error("Invalid record");
   4370 
   4371       unsigned PredVal = Record[OpNum];
   4372       bool IsFP = LHS->getType()->isFPOrFPVectorTy();
   4373       FastMathFlags FMF;
   4374       if (IsFP && Record.size() > OpNum+1)
   4375         FMF = getDecodedFastMathFlags(Record[++OpNum]);
   4376 
   4377       if (OpNum+1 != Record.size())
   4378         return error("Invalid record");
   4379 
   4380       if (LHS->getType()->isFPOrFPVectorTy())
   4381         I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS);
   4382       else
   4383         I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS);
   4384 
   4385       if (FMF.any())
   4386         I->setFastMathFlags(FMF);
   4387       InstructionList.push_back(I);
   4388       break;
   4389     }
   4390 
   4391     case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
   4392       {
   4393         unsigned Size = Record.size();
   4394         if (Size == 0) {
   4395           I = ReturnInst::Create(Context);
   4396           InstructionList.push_back(I);
   4397           break;
   4398         }
   4399 
   4400         unsigned OpNum = 0;
   4401         Value *Op = nullptr;
   4402         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
   4403           return error("Invalid record");
   4404         if (OpNum != Record.size())
   4405           return error("Invalid record");
   4406 
   4407         I = ReturnInst::Create(Context, Op);
   4408         InstructionList.push_back(I);
   4409         break;
   4410       }
   4411     case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
   4412       if (Record.size() != 1 && Record.size() != 3)
   4413         return error("Invalid record");
   4414       BasicBlock *TrueDest = getBasicBlock(Record[0]);
   4415       if (!TrueDest)
   4416         return error("Invalid record");
   4417 
   4418       if (Record.size() == 1) {
   4419         I = BranchInst::Create(TrueDest);
   4420         InstructionList.push_back(I);
   4421       }
   4422       else {
   4423         BasicBlock *FalseDest = getBasicBlock(Record[1]);
   4424         Value *Cond = getValue(Record, 2, NextValueNo,
   4425                                Type::getInt1Ty(Context));
   4426         if (!FalseDest || !Cond)
   4427           return error("Invalid record");
   4428         I = BranchInst::Create(TrueDest, FalseDest, Cond);
   4429         InstructionList.push_back(I);
   4430       }
   4431       break;
   4432     }
   4433     case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#]
   4434       if (Record.size() != 1 && Record.size() != 2)
   4435         return error("Invalid record");
   4436       unsigned Idx = 0;
   4437       Value *CleanupPad =
   4438           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
   4439       if (!CleanupPad)
   4440         return error("Invalid record");
   4441       BasicBlock *UnwindDest = nullptr;
   4442       if (Record.size() == 2) {
   4443         UnwindDest = getBasicBlock(Record[Idx++]);
   4444         if (!UnwindDest)
   4445           return error("Invalid record");
   4446       }
   4447 
   4448       I = CleanupReturnInst::Create(CleanupPad, UnwindDest);
   4449       InstructionList.push_back(I);
   4450       break;
   4451     }
   4452     case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#]
   4453       if (Record.size() != 2)
   4454         return error("Invalid record");
   4455       unsigned Idx = 0;
   4456       Value *CatchPad =
   4457           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
   4458       if (!CatchPad)
   4459         return error("Invalid record");
   4460       BasicBlock *BB = getBasicBlock(Record[Idx++]);
   4461       if (!BB)
   4462         return error("Invalid record");
   4463 
   4464       I = CatchReturnInst::Create(CatchPad, BB);
   4465       InstructionList.push_back(I);
   4466       break;
   4467     }
   4468     case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?]
   4469       // We must have, at minimum, the outer scope and the number of arguments.
   4470       if (Record.size() < 2)
   4471         return error("Invalid record");
   4472 
   4473       unsigned Idx = 0;
   4474 
   4475       Value *ParentPad =
   4476           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
   4477 
   4478       unsigned NumHandlers = Record[Idx++];
   4479 
   4480       SmallVector<BasicBlock *, 2> Handlers;
   4481       for (unsigned Op = 0; Op != NumHandlers; ++Op) {
   4482         BasicBlock *BB = getBasicBlock(Record[Idx++]);
   4483         if (!BB)
   4484           return error("Invalid record");
   4485         Handlers.push_back(BB);
   4486       }
   4487 
   4488       BasicBlock *UnwindDest = nullptr;
   4489       if (Idx + 1 == Record.size()) {
   4490         UnwindDest = getBasicBlock(Record[Idx++]);
   4491         if (!UnwindDest)
   4492           return error("Invalid record");
   4493       }
   4494 
   4495       if (Record.size() != Idx)
   4496         return error("Invalid record");
   4497 
   4498       auto *CatchSwitch =
   4499           CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers);
   4500       for (BasicBlock *Handler : Handlers)
   4501         CatchSwitch->addHandler(Handler);
   4502       I = CatchSwitch;
   4503       InstructionList.push_back(I);
   4504       break;
   4505     }
   4506     case bitc::FUNC_CODE_INST_CATCHPAD:
   4507     case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*]
   4508       // We must have, at minimum, the outer scope and the number of arguments.
   4509       if (Record.size() < 2)
   4510         return error("Invalid record");
   4511 
   4512       unsigned Idx = 0;
   4513 
   4514       Value *ParentPad =
   4515           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
   4516 
   4517       unsigned NumArgOperands = Record[Idx++];
   4518 
   4519       SmallVector<Value *, 2> Args;
   4520       for (unsigned Op = 0; Op != NumArgOperands; ++Op) {
   4521         Value *Val;
   4522         if (getValueTypePair(Record, Idx, NextValueNo, Val))
   4523           return error("Invalid record");
   4524         Args.push_back(Val);
   4525       }
   4526 
   4527       if (Record.size() != Idx)
   4528         return error("Invalid record");
   4529 
   4530       if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD)
   4531         I = CleanupPadInst::Create(ParentPad, Args);
   4532       else
   4533         I = CatchPadInst::Create(ParentPad, Args);
   4534       InstructionList.push_back(I);
   4535       break;
   4536     }
   4537     case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
   4538       // Check magic
   4539       if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
   4540         // "New" SwitchInst format with case ranges. The changes to write this
   4541         // format were reverted but we still recognize bitcode that uses it.
   4542         // Hopefully someday we will have support for case ranges and can use
   4543         // this format again.
   4544 
   4545         Type *OpTy = getTypeByID(Record[1]);
   4546         unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
   4547 
   4548         Value *Cond = getValue(Record, 2, NextValueNo, OpTy);
   4549         BasicBlock *Default = getBasicBlock(Record[3]);
   4550         if (!OpTy || !Cond || !Default)
   4551           return error("Invalid record");
   4552 
   4553         unsigned NumCases = Record[4];
   4554 
   4555         SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
   4556         InstructionList.push_back(SI);
   4557 
   4558         unsigned CurIdx = 5;
   4559         for (unsigned i = 0; i != NumCases; ++i) {
   4560           SmallVector<ConstantInt*, 1> CaseVals;
   4561           unsigned NumItems = Record[CurIdx++];
   4562           for (unsigned ci = 0; ci != NumItems; ++ci) {
   4563             bool isSingleNumber = Record[CurIdx++];
   4564 
   4565             APInt Low;
   4566             unsigned ActiveWords = 1;
   4567             if (ValueBitWidth > 64)
   4568               ActiveWords = Record[CurIdx++];
   4569             Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords),
   4570                                 ValueBitWidth);
   4571             CurIdx += ActiveWords;
   4572 
   4573             if (!isSingleNumber) {
   4574               ActiveWords = 1;
   4575               if (ValueBitWidth > 64)
   4576                 ActiveWords = Record[CurIdx++];
   4577               APInt High = readWideAPInt(
   4578                   makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth);
   4579               CurIdx += ActiveWords;
   4580 
   4581               // FIXME: It is not clear whether values in the range should be
   4582               // compared as signed or unsigned values. The partially
   4583               // implemented changes that used this format in the past used
   4584               // unsigned comparisons.
   4585               for ( ; Low.ule(High); ++Low)
   4586                 CaseVals.push_back(ConstantInt::get(Context, Low));
   4587             } else
   4588               CaseVals.push_back(ConstantInt::get(Context, Low));
   4589           }
   4590           BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
   4591           for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(),
   4592                  cve = CaseVals.end(); cvi != cve; ++cvi)
   4593             SI->addCase(*cvi, DestBB);
   4594         }
   4595         I = SI;
   4596         break;
   4597       }
   4598 
   4599       // Old SwitchInst format without case ranges.
   4600 
   4601       if (Record.size() < 3 || (Record.size() & 1) == 0)
   4602         return error("Invalid record");
   4603       Type *OpTy = getTypeByID(Record[0]);
   4604       Value *Cond = getValue(Record, 1, NextValueNo, OpTy);
   4605       BasicBlock *Default = getBasicBlock(Record[2]);
   4606       if (!OpTy || !Cond || !Default)
   4607         return error("Invalid record");
   4608       unsigned NumCases = (Record.size()-3)/2;
   4609       SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
   4610       InstructionList.push_back(SI);
   4611       for (unsigned i = 0, e = NumCases; i != e; ++i) {
   4612         ConstantInt *CaseVal =
   4613           dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
   4614         BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
   4615         if (!CaseVal || !DestBB) {
   4616           delete SI;
   4617           return error("Invalid record");
   4618         }
   4619         SI->addCase(CaseVal, DestBB);
   4620       }
   4621       I = SI;
   4622       break;
   4623     }
   4624     case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
   4625       if (Record.size() < 2)
   4626         return error("Invalid record");
   4627       Type *OpTy = getTypeByID(Record[0]);
   4628       Value *Address = getValue(Record, 1, NextValueNo, OpTy);
   4629       if (!OpTy || !Address)
   4630         return error("Invalid record");
   4631       unsigned NumDests = Record.size()-2;
   4632       IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
   4633       InstructionList.push_back(IBI);
   4634       for (unsigned i = 0, e = NumDests; i != e; ++i) {
   4635         if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
   4636           IBI->addDestination(DestBB);
   4637         } else {
   4638           delete IBI;
   4639           return error("Invalid record");
   4640         }
   4641       }
   4642       I = IBI;
   4643       break;
   4644     }
   4645 
   4646     case bitc::FUNC_CODE_INST_INVOKE: {
   4647       // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
   4648       if (Record.size() < 4)
   4649         return error("Invalid record");
   4650       unsigned OpNum = 0;
   4651       AttributeSet PAL = getAttributes(Record[OpNum++]);
   4652       unsigned CCInfo = Record[OpNum++];
   4653       BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]);
   4654       BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]);
   4655 
   4656       FunctionType *FTy = nullptr;
   4657       if (CCInfo >> 13 & 1 &&
   4658           !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]))))
   4659         return error("Explicit invoke type is not a function type");
   4660 
   4661       Value *Callee;
   4662       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
   4663         return error("Invalid record");
   4664 
   4665       PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
   4666       if (!CalleeTy)
   4667         return error("Callee is not a pointer");
   4668       if (!FTy) {
   4669         FTy = dyn_cast<FunctionType>(CalleeTy->getElementType());
   4670         if (!FTy)
   4671           return error("Callee is not of pointer to function type");
   4672       } else if (CalleeTy->getElementType() != FTy)
   4673         return error("Explicit invoke type does not match pointee type of "
   4674                      "callee operand");
   4675       if (Record.size() < FTy->getNumParams() + OpNum)
   4676         return error("Insufficient operands to call");
   4677 
   4678       SmallVector<Value*, 16> Ops;
   4679       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
   4680         Ops.push_back(getValue(Record, OpNum, NextValueNo,
   4681                                FTy->getParamType(i)));
   4682         if (!Ops.back())
   4683           return error("Invalid record");
   4684       }
   4685 
   4686       if (!FTy->isVarArg()) {
   4687         if (Record.size() != OpNum)
   4688           return error("Invalid record");
   4689       } else {
   4690         // Read type/value pairs for varargs params.
   4691         while (OpNum != Record.size()) {
   4692           Value *Op;
   4693           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
   4694             return error("Invalid record");
   4695           Ops.push_back(Op);
   4696         }
   4697       }
   4698 
   4699       I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops, OperandBundles);
   4700       OperandBundles.clear();
   4701       InstructionList.push_back(I);
   4702       cast<InvokeInst>(I)->setCallingConv(
   4703           static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo));
   4704       cast<InvokeInst>(I)->setAttributes(PAL);
   4705       break;
   4706     }
   4707     case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
   4708       unsigned Idx = 0;
   4709       Value *Val = nullptr;
   4710       if (getValueTypePair(Record, Idx, NextValueNo, Val))
   4711         return error("Invalid record");
   4712       I = ResumeInst::Create(Val);
   4713       InstructionList.push_back(I);
   4714       break;
   4715     }
   4716     case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
   4717       I = new UnreachableInst(Context);
   4718       InstructionList.push_back(I);
   4719       break;
   4720     case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
   4721       if (Record.size() < 1 || ((Record.size()-1)&1))
   4722         return error("Invalid record");
   4723       Type *Ty = getTypeByID(Record[0]);
   4724       if (!Ty)
   4725         return error("Invalid record");
   4726 
   4727       PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2);
   4728       InstructionList.push_back(PN);
   4729 
   4730       for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
   4731         Value *V;
   4732         // With the new function encoding, it is possible that operands have
   4733         // negative IDs (for forward references).  Use a signed VBR
   4734         // representation to keep the encoding small.
   4735         if (UseRelativeIDs)
   4736           V = getValueSigned(Record, 1+i, NextValueNo, Ty);
   4737         else
   4738           V = getValue(Record, 1+i, NextValueNo, Ty);
   4739         BasicBlock *BB = getBasicBlock(Record[2+i]);
   4740         if (!V || !BB)
   4741           return error("Invalid record");
   4742         PN->addIncoming(V, BB);
   4743       }
   4744       I = PN;
   4745       break;
   4746     }
   4747 
   4748     case bitc::FUNC_CODE_INST_LANDINGPAD:
   4749     case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: {
   4750       // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
   4751       unsigned Idx = 0;
   4752       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) {
   4753         if (Record.size() < 3)
   4754           return error("Invalid record");
   4755       } else {
   4756         assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD);
   4757         if (Record.size() < 4)
   4758           return error("Invalid record");
   4759       }
   4760       Type *Ty = getTypeByID(Record[Idx++]);
   4761       if (!Ty)
   4762         return error("Invalid record");
   4763       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) {
   4764         Value *PersFn = nullptr;
   4765         if (getValueTypePair(Record, Idx, NextValueNo, PersFn))
   4766           return error("Invalid record");
   4767 
   4768         if (!F->hasPersonalityFn())
   4769           F->setPersonalityFn(cast<Constant>(PersFn));
   4770         else if (F->getPersonalityFn() != cast<Constant>(PersFn))
   4771           return error("Personality function mismatch");
   4772       }
   4773 
   4774       bool IsCleanup = !!Record[Idx++];
   4775       unsigned NumClauses = Record[Idx++];
   4776       LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses);
   4777       LP->setCleanup(IsCleanup);
   4778       for (unsigned J = 0; J != NumClauses; ++J) {
   4779         LandingPadInst::ClauseType CT =
   4780           LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
   4781         Value *Val;
   4782 
   4783         if (getValueTypePair(Record, Idx, NextValueNo, Val)) {
   4784           delete LP;
   4785           return error("Invalid record");
   4786         }
   4787 
   4788         assert((CT != LandingPadInst::Catch ||
   4789                 !isa<ArrayType>(Val->getType())) &&
   4790                "Catch clause has a invalid type!");
   4791         assert((CT != LandingPadInst::Filter ||
   4792                 isa<ArrayType>(Val->getType())) &&
   4793                "Filter clause has invalid type!");
   4794         LP->addClause(cast<Constant>(Val));
   4795       }
   4796 
   4797       I = LP;
   4798       InstructionList.push_back(I);
   4799       break;
   4800     }
   4801 
   4802     case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
   4803       if (Record.size() != 4)
   4804         return error("Invalid record");
   4805       uint64_t AlignRecord = Record[3];
   4806       const uint64_t InAllocaMask = uint64_t(1) << 5;
   4807       const uint64_t ExplicitTypeMask = uint64_t(1) << 6;
   4808       // Reserve bit 7 for SwiftError flag.
   4809       // const uint64_t SwiftErrorMask = uint64_t(1) << 7;
   4810       const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask;
   4811       bool InAlloca = AlignRecord & InAllocaMask;
   4812       Type *Ty = getTypeByID(Record[0]);
   4813       if ((AlignRecord & ExplicitTypeMask) == 0) {
   4814         auto *PTy = dyn_cast_or_null<PointerType>(Ty);
   4815         if (!PTy)
   4816           return error("Old-style alloca with a non-pointer type");
   4817         Ty = PTy->getElementType();
   4818       }
   4819       Type *OpTy = getTypeByID(Record[1]);
   4820       Value *Size = getFnValueByID(Record[2], OpTy);
   4821       unsigned Align;
   4822       if (std::error_code EC =
   4823               parseAlignmentValue(AlignRecord & ~FlagMask, Align)) {
   4824         return EC;
   4825       }
   4826       if (!Ty || !Size)
   4827         return error("Invalid record");
   4828       AllocaInst *AI = new AllocaInst(Ty, Size, Align);
   4829       AI->setUsedWithInAlloca(InAlloca);
   4830       I = AI;
   4831       InstructionList.push_back(I);
   4832       break;
   4833     }
   4834     case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
   4835       unsigned OpNum = 0;
   4836       Value *Op;
   4837       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
   4838           (OpNum + 2 != Record.size() && OpNum + 3 != Record.size()))
   4839         return error("Invalid record");
   4840 
   4841       Type *Ty = nullptr;
   4842       if (OpNum + 3 == Record.size())
   4843         Ty = getTypeByID(Record[OpNum++]);
   4844       if (std::error_code EC = typeCheckLoadStoreInst(Ty, Op->getType()))
   4845         return EC;
   4846       if (!Ty)
   4847         Ty = cast<PointerType>(Op->getType())->getElementType();
   4848 
   4849       unsigned Align;
   4850       if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align))
   4851         return EC;
   4852       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align);
   4853 
   4854       InstructionList.push_back(I);
   4855       break;
   4856     }
   4857     case bitc::FUNC_CODE_INST_LOADATOMIC: {
   4858        // LOADATOMIC: [opty, op, align, vol, ordering, synchscope]
   4859       unsigned OpNum = 0;
   4860       Value *Op;
   4861       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
   4862           (OpNum + 4 != Record.size() && OpNum + 5 != Record.size()))
   4863         return error("Invalid record");
   4864 
   4865       Type *Ty = nullptr;
   4866       if (OpNum + 5 == Record.size())
   4867         Ty = getTypeByID(Record[OpNum++]);
   4868       if (std::error_code EC = typeCheckLoadStoreInst(Ty, Op->getType()))
   4869         return EC;
   4870       if (!Ty)
   4871         Ty = cast<PointerType>(Op->getType())->getElementType();
   4872 
   4873       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
   4874       if (Ordering == NotAtomic || Ordering == Release ||
   4875           Ordering == AcquireRelease)
   4876         return error("Invalid record");
   4877       if (Ordering != NotAtomic && Record[OpNum] == 0)
   4878         return error("Invalid record");
   4879       SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]);
   4880 
   4881       unsigned Align;
   4882       if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align))
   4883         return EC;
   4884       I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SynchScope);
   4885 
   4886       InstructionList.push_back(I);
   4887       break;
   4888     }
   4889     case bitc::FUNC_CODE_INST_STORE:
   4890     case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol]
   4891       unsigned OpNum = 0;
   4892       Value *Val, *Ptr;
   4893       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
   4894           (BitCode == bitc::FUNC_CODE_INST_STORE
   4895                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
   4896                : popValue(Record, OpNum, NextValueNo,
   4897                           cast<PointerType>(Ptr->getType())->getElementType(),
   4898                           Val)) ||
   4899           OpNum + 2 != Record.size())
   4900         return error("Invalid record");
   4901 
   4902       if (std::error_code EC =
   4903               typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
   4904         return EC;
   4905       unsigned Align;
   4906       if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align))
   4907         return EC;
   4908       I = new StoreInst(Val, Ptr, Record[OpNum+1], Align);
   4909       InstructionList.push_back(I);
   4910       break;
   4911     }
   4912     case bitc::FUNC_CODE_INST_STOREATOMIC:
   4913     case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: {
   4914       // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope]
   4915       unsigned OpNum = 0;
   4916       Value *Val, *Ptr;
   4917       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
   4918           (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC
   4919                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
   4920                : popValue(Record, OpNum, NextValueNo,
   4921                           cast<PointerType>(Ptr->getType())->getElementType(),
   4922                           Val)) ||
   4923           OpNum + 4 != Record.size())
   4924         return error("Invalid record");
   4925 
   4926       if (std::error_code EC =
   4927               typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
   4928         return EC;
   4929       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
   4930       if (Ordering == NotAtomic || Ordering == Acquire ||
   4931           Ordering == AcquireRelease)
   4932         return error("Invalid record");
   4933       SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]);
   4934       if (Ordering != NotAtomic && Record[OpNum] == 0)
   4935         return error("Invalid record");
   4936 
   4937       unsigned Align;
   4938       if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align))
   4939         return EC;
   4940       I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SynchScope);
   4941       InstructionList.push_back(I);
   4942       break;
   4943     }
   4944     case bitc::FUNC_CODE_INST_CMPXCHG_OLD:
   4945     case bitc::FUNC_CODE_INST_CMPXCHG: {
   4946       // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope,
   4947       //          failureordering?, isweak?]
   4948       unsigned OpNum = 0;
   4949       Value *Ptr, *Cmp, *New;
   4950       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
   4951           (BitCode == bitc::FUNC_CODE_INST_CMPXCHG
   4952                ? getValueTypePair(Record, OpNum, NextValueNo, Cmp)
   4953                : popValue(Record, OpNum, NextValueNo,
   4954                           cast<PointerType>(Ptr->getType())->getElementType(),
   4955                           Cmp)) ||
   4956           popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) ||
   4957           Record.size() < OpNum + 3 || Record.size() > OpNum + 5)
   4958         return error("Invalid record");
   4959       AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]);
   4960       if (SuccessOrdering == NotAtomic || SuccessOrdering == Unordered)
   4961         return error("Invalid record");
   4962       SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 2]);
   4963 
   4964       if (std::error_code EC =
   4965               typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
   4966         return EC;
   4967       AtomicOrdering FailureOrdering;
   4968       if (Record.size() < 7)
   4969         FailureOrdering =
   4970             AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering);
   4971       else
   4972         FailureOrdering = getDecodedOrdering(Record[OpNum + 3]);
   4973 
   4974       I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering,
   4975                                 SynchScope);
   4976       cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
   4977 
   4978       if (Record.size() < 8) {
   4979         // Before weak cmpxchgs existed, the instruction simply returned the
   4980         // value loaded from memory, so bitcode files from that era will be
   4981         // expecting the first component of a modern cmpxchg.
   4982         CurBB->getInstList().push_back(I);
   4983         I = ExtractValueInst::Create(I, 0);
   4984       } else {
   4985         cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]);
   4986       }
   4987 
   4988       InstructionList.push_back(I);
   4989       break;
   4990     }
   4991     case bitc::FUNC_CODE_INST_ATOMICRMW: {
   4992       // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope]
   4993       unsigned OpNum = 0;
   4994       Value *Ptr, *Val;
   4995       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
   4996           popValue(Record, OpNum, NextValueNo,
   4997                     cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
   4998           OpNum+4 != Record.size())
   4999         return error("Invalid record");
   5000       AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]);
   5001       if (Operation < AtomicRMWInst::FIRST_BINOP ||
   5002           Operation > AtomicRMWInst::LAST_BINOP)
   5003         return error("Invalid record");
   5004       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
   5005       if (Ordering == NotAtomic || Ordering == Unordered)
   5006         return error("Invalid record");
   5007       SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]);
   5008       I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope);
   5009       cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]);
   5010       InstructionList.push_back(I);
   5011       break;
   5012     }
   5013     case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope]
   5014       if (2 != Record.size())
   5015         return error("Invalid record");
   5016       AtomicOrdering Ordering = getDecodedOrdering(Record[0]);
   5017       if (Ordering == NotAtomic || Ordering == Unordered ||
   5018           Ordering == Monotonic)
   5019         return error("Invalid record");
   5020       SynchronizationScope SynchScope = getDecodedSynchScope(Record[1]);
   5021       I = new FenceInst(Context, Ordering, SynchScope);
   5022       InstructionList.push_back(I);
   5023       break;
   5024     }
   5025     case bitc::FUNC_CODE_INST_CALL: {
   5026       // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...]
   5027       if (Record.size() < 3)
   5028         return error("Invalid record");
   5029 
   5030       unsigned OpNum = 0;
   5031       AttributeSet PAL = getAttributes(Record[OpNum++]);
   5032       unsigned CCInfo = Record[OpNum++];
   5033 
   5034       FastMathFlags FMF;
   5035       if ((CCInfo >> bitc::CALL_FMF) & 1) {
   5036         FMF = getDecodedFastMathFlags(Record[OpNum++]);
   5037         if (!FMF.any())
   5038           return error("Fast math flags indicator set for call with no FMF");
   5039       }
   5040 
   5041       FunctionType *FTy = nullptr;
   5042       if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 &&
   5043           !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]))))
   5044         return error("Explicit call type is not a function type");
   5045 
   5046       Value *Callee;
   5047       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
   5048         return error("Invalid record");
   5049 
   5050       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
   5051       if (!OpTy)
   5052         return error("Callee is not a pointer type");
   5053       if (!FTy) {
   5054         FTy = dyn_cast<FunctionType>(OpTy->getElementType());
   5055         if (!FTy)
   5056           return error("Callee is not of pointer to function type");
   5057       } else if (OpTy->getElementType() != FTy)
   5058         return error("Explicit call type does not match pointee type of "
   5059                      "callee operand");
   5060       if (Record.size() < FTy->getNumParams() + OpNum)
   5061         return error("Insufficient operands to call");
   5062 
   5063       SmallVector<Value*, 16> Args;
   5064       // Read the fixed params.
   5065       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
   5066         if (FTy->getParamType(i)->isLabelTy())
   5067           Args.push_back(getBasicBlock(Record[OpNum]));
   5068         else
   5069           Args.push_back(getValue(Record, OpNum, NextValueNo,
   5070                                   FTy->getParamType(i)));
   5071         if (!Args.back())
   5072           return error("Invalid record");
   5073       }
   5074 
   5075       // Read type/value pairs for varargs params.
   5076       if (!FTy->isVarArg()) {
   5077         if (OpNum != Record.size())
   5078           return error("Invalid record");
   5079       } else {
   5080         while (OpNum != Record.size()) {
   5081           Value *Op;
   5082           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
   5083             return error("Invalid record");
   5084           Args.push_back(Op);
   5085         }
   5086       }
   5087 
   5088       I = CallInst::Create(FTy, Callee, Args, OperandBundles);
   5089       OperandBundles.clear();
   5090       InstructionList.push_back(I);
   5091       cast<CallInst>(I)->setCallingConv(
   5092           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
   5093       CallInst::TailCallKind TCK = CallInst::TCK_None;
   5094       if (CCInfo & 1 << bitc::CALL_TAIL)
   5095         TCK = CallInst::TCK_Tail;
   5096       if (CCInfo & (1 << bitc::CALL_MUSTTAIL))
   5097         TCK = CallInst::TCK_MustTail;
   5098       if (CCInfo & (1 << bitc::CALL_NOTAIL))
   5099         TCK = CallInst::TCK_NoTail;
   5100       cast<CallInst>(I)->setTailCallKind(TCK);
   5101       cast<CallInst>(I)->setAttributes(PAL);
   5102       if (FMF.any()) {
   5103         if (!isa<FPMathOperator>(I))
   5104           return error("Fast-math-flags specified for call without "
   5105                        "floating-point scalar or vector return type");
   5106         I->setFastMathFlags(FMF);
   5107       }
   5108       break;
   5109     }
   5110     case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
   5111       if (Record.size() < 3)
   5112         return error("Invalid record");
   5113       Type *OpTy = getTypeByID(Record[0]);
   5114       Value *Op = getValue(Record, 1, NextValueNo, OpTy);
   5115       Type *ResTy = getTypeByID(Record[2]);
   5116       if (!OpTy || !Op || !ResTy)
   5117         return error("Invalid record");
   5118       I = new VAArgInst(Op, ResTy);
   5119       InstructionList.push_back(I);
   5120       break;
   5121     }
   5122 
   5123     case bitc::FUNC_CODE_OPERAND_BUNDLE: {
   5124       // A call or an invoke can be optionally prefixed with some variable
   5125       // number of operand bundle blocks.  These blocks are read into
   5126       // OperandBundles and consumed at the next call or invoke instruction.
   5127 
   5128       if (Record.size() < 1 || Record[0] >= BundleTags.size())
   5129         return error("Invalid record");
   5130 
   5131       std::vector<Value *> Inputs;
   5132 
   5133       unsigned OpNum = 1;
   5134       while (OpNum != Record.size()) {
   5135         Value *Op;
   5136         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
   5137           return error("Invalid record");
   5138         Inputs.push_back(Op);
   5139       }
   5140 
   5141       OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs));
   5142       continue;
   5143     }
   5144     }
   5145 
   5146     // Add instruction to end of current BB.  If there is no current BB, reject
   5147     // this file.
   5148     if (!CurBB) {
   5149       delete I;
   5150       return error("Invalid instruction with no BB");
   5151     }
   5152     if (!OperandBundles.empty()) {
   5153       delete I;
   5154       return error("Operand bundles found with no consumer");
   5155     }
   5156     CurBB->getInstList().push_back(I);
   5157 
   5158     // If this was a terminator instruction, move to the next block.
   5159     if (isa<TerminatorInst>(I)) {
   5160       ++CurBBNo;
   5161       CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr;
   5162     }
   5163 
   5164     // Non-void values get registered in the value table for future use.
   5165     if (I && !I->getType()->isVoidTy())
   5166       ValueList.assignValue(I, NextValueNo++);
   5167   }
   5168 
   5169 OutOfRecordLoop:
   5170 
   5171   if (!OperandBundles.empty())
   5172     return error("Operand bundles found with no consumer");
   5173 
   5174   // Check the function list for unresolved values.
   5175   if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
   5176     if (!A->getParent()) {
   5177       // We found at least one unresolved value.  Nuke them all to avoid leaks.
   5178       for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
   5179         if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) {
   5180           A->replaceAllUsesWith(UndefValue::get(A->getType()));
   5181           delete A;
   5182         }
   5183       }
   5184       return error("Never resolved value found in function");
   5185     }
   5186   }
   5187 
   5188   // FIXME: Check for unresolved forward-declared metadata references
   5189   // and clean up leaks.
   5190 
   5191   // Trim the value list down to the size it was before we parsed this function.
   5192   ValueList.shrinkTo(ModuleValueListSize);
   5193   MDValueList.shrinkTo(ModuleMDValueListSize);
   5194   std::vector<BasicBlock*>().swap(FunctionBBs);
   5195   return std::error_code();
   5196 }
   5197 
   5198 /// Find the function body in the bitcode stream
   5199 std::error_code BitcodeReader::findFunctionInStream(
   5200     Function *F,
   5201     DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) {
   5202   while (DeferredFunctionInfoIterator->second == 0) {
   5203     // This is the fallback handling for the old format bitcode that
   5204     // didn't contain the function index in the VST, or when we have
   5205     // an anonymous function which would not have a VST entry.
   5206     // Assert that we have one of those two cases.
   5207     assert(VSTOffset == 0 || !F->hasName());
   5208     // Parse the next body in the stream and set its position in the
   5209     // DeferredFunctionInfo map.
   5210     if (std::error_code EC = rememberAndSkipFunctionBodies())
   5211       return EC;
   5212   }
   5213   return std::error_code();
   5214 }
   5215 
   5216 //===----------------------------------------------------------------------===//
   5217 // GVMaterializer implementation
   5218 //===----------------------------------------------------------------------===//
   5219 
   5220 void BitcodeReader::releaseBuffer() { Buffer.release(); }
   5221 
   5222 std::error_code BitcodeReader::materialize(GlobalValue *GV) {
   5223   // In older bitcode we must materialize the metadata before parsing
   5224   // any functions, in order to set up the MDValueList properly.
   5225   if (!SeenModuleValuesRecord) {
   5226     if (std::error_code EC = materializeMetadata())
   5227       return EC;
   5228   }
   5229 
   5230   Function *F = dyn_cast<Function>(GV);
   5231   // If it's not a function or is already material, ignore the request.
   5232   if (!F || !F->isMaterializable())
   5233     return std::error_code();
   5234 
   5235   DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
   5236   assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
   5237   // If its position is recorded as 0, its body is somewhere in the stream
   5238   // but we haven't seen it yet.
   5239   if (DFII->second == 0)
   5240     if (std::error_code EC = findFunctionInStream(F, DFII))
   5241       return EC;
   5242 
   5243   // Move the bit stream to the saved position of the deferred function body.
   5244   Stream.JumpToBit(DFII->second);
   5245 
   5246   if (std::error_code EC = parseFunctionBody(F))
   5247     return EC;
   5248   F->setIsMaterializable(false);
   5249 
   5250   if (StripDebugInfo)
   5251     stripDebugInfo(*F);
   5252 
   5253   // Upgrade any old intrinsic calls in the function.
   5254   for (auto &I : UpgradedIntrinsics) {
   5255     for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
   5256          UI != UE;) {
   5257       User *U = *UI;
   5258       ++UI;
   5259       if (CallInst *CI = dyn_cast<CallInst>(U))
   5260         UpgradeIntrinsicCall(CI, I.second);
   5261     }
   5262   }
   5263 
   5264   // Finish fn->subprogram upgrade for materialized functions.
   5265   if (DISubprogram *SP = FunctionsWithSPs.lookup(F))
   5266     F->setSubprogram(SP);
   5267 
   5268   // Bring in any functions that this function forward-referenced via
   5269   // blockaddresses.
   5270   return materializeForwardReferencedFunctions();
   5271 }
   5272 
   5273 std::error_code BitcodeReader::materializeModule() {
   5274   if (std::error_code EC = materializeMetadata())
   5275     return EC;
   5276 
   5277   // Promise to materialize all forward references.
   5278   WillMaterializeAllForwardRefs = true;
   5279 
   5280   // Iterate over the module, deserializing any functions that are still on
   5281   // disk.
   5282   for (Function &F : *TheModule) {
   5283     if (std::error_code EC = materialize(&F))
   5284       return EC;
   5285   }
   5286   // At this point, if there are any function bodies, parse the rest of
   5287   // the bits in the module past the last function block we have recorded
   5288   // through either lazy scanning or the VST.
   5289   if (LastFunctionBlockBit || NextUnreadBit)
   5290     parseModule(LastFunctionBlockBit > NextUnreadBit ? LastFunctionBlockBit
   5291                                                      : NextUnreadBit);
   5292 
   5293   // Check that all block address forward references got resolved (as we
   5294   // promised above).
   5295   if (!BasicBlockFwdRefs.empty())
   5296     return error("Never resolved function from blockaddress");
   5297 
   5298   // Upgrade any intrinsic calls that slipped through (should not happen!) and
   5299   // delete the old functions to clean up. We can't do this unless the entire
   5300   // module is materialized because there could always be another function body
   5301   // with calls to the old function.
   5302   for (auto &I : UpgradedIntrinsics) {
   5303     for (auto *U : I.first->users()) {
   5304       if (CallInst *CI = dyn_cast<CallInst>(U))
   5305         UpgradeIntrinsicCall(CI, I.second);
   5306     }
   5307     if (!I.first->use_empty())
   5308       I.first->replaceAllUsesWith(I.second);
   5309     I.first->eraseFromParent();
   5310   }
   5311   UpgradedIntrinsics.clear();
   5312 
   5313   for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++)
   5314     UpgradeInstWithTBAATag(InstsWithTBAATag[I]);
   5315 
   5316   UpgradeDebugInfo(*TheModule);
   5317   return std::error_code();
   5318 }
   5319 
   5320 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const {
   5321   return IdentifiedStructTypes;
   5322 }
   5323 
   5324 std::error_code
   5325 BitcodeReader::initStream(std::unique_ptr<DataStreamer> Streamer) {
   5326   if (Streamer)
   5327     return initLazyStream(std::move(Streamer));
   5328   return initStreamFromBuffer();
   5329 }
   5330 
   5331 std::error_code BitcodeReader::initStreamFromBuffer() {
   5332   const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart();
   5333   const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
   5334 
   5335   if (Buffer->getBufferSize() & 3)
   5336     return error("Invalid bitcode signature");
   5337 
   5338   // If we have a wrapper header, parse it and ignore the non-bc file contents.
   5339   // The magic number is 0x0B17C0DE stored in little endian.
   5340   if (isBitcodeWrapper(BufPtr, BufEnd))
   5341     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
   5342       return error("Invalid bitcode wrapper header");
   5343 
   5344   StreamFile.reset(new BitstreamReader(BufPtr, BufEnd));
   5345   Stream.init(&*StreamFile);
   5346 
   5347   return std::error_code();
   5348 }
   5349 
   5350 std::error_code
   5351 BitcodeReader::initLazyStream(std::unique_ptr<DataStreamer> Streamer) {
   5352   // Check and strip off the bitcode wrapper; BitstreamReader expects never to
   5353   // see it.
   5354   auto OwnedBytes =
   5355       llvm::make_unique<StreamingMemoryObject>(std::move(Streamer));
   5356   StreamingMemoryObject &Bytes = *OwnedBytes;
   5357   StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes));
   5358   Stream.init(&*StreamFile);
   5359 
   5360   unsigned char buf[16];
   5361   if (Bytes.readBytes(buf, 16, 0) != 16)
   5362     return error("Invalid bitcode signature");
   5363 
   5364   if (!isBitcode(buf, buf + 16))
   5365     return error("Invalid bitcode signature");
   5366 
   5367   if (isBitcodeWrapper(buf, buf + 4)) {
   5368     const unsigned char *bitcodeStart = buf;
   5369     const unsigned char *bitcodeEnd = buf + 16;
   5370     SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false);
   5371     Bytes.dropLeadingBytes(bitcodeStart - buf);
   5372     Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart);
   5373   }
   5374   return std::error_code();
   5375 }
   5376 
   5377 std::error_code FunctionIndexBitcodeReader::error(BitcodeError E,
   5378                                                   const Twine &Message) {
   5379   return ::error(DiagnosticHandler, make_error_code(E), Message);
   5380 }
   5381 
   5382 std::error_code FunctionIndexBitcodeReader::error(const Twine &Message) {
   5383   return ::error(DiagnosticHandler,
   5384                  make_error_code(BitcodeError::CorruptedBitcode), Message);
   5385 }
   5386 
   5387 std::error_code FunctionIndexBitcodeReader::error(BitcodeError E) {
   5388   return ::error(DiagnosticHandler, make_error_code(E));
   5389 }
   5390 
   5391 FunctionIndexBitcodeReader::FunctionIndexBitcodeReader(
   5392     MemoryBuffer *Buffer, DiagnosticHandlerFunction DiagnosticHandler,
   5393     bool IsLazy, bool CheckFuncSummaryPresenceOnly)
   5394     : DiagnosticHandler(DiagnosticHandler), Buffer(Buffer), IsLazy(IsLazy),
   5395       CheckFuncSummaryPresenceOnly(CheckFuncSummaryPresenceOnly) {}
   5396 
   5397 FunctionIndexBitcodeReader::FunctionIndexBitcodeReader(
   5398     DiagnosticHandlerFunction DiagnosticHandler, bool IsLazy,
   5399     bool CheckFuncSummaryPresenceOnly)
   5400     : DiagnosticHandler(DiagnosticHandler), Buffer(nullptr), IsLazy(IsLazy),
   5401       CheckFuncSummaryPresenceOnly(CheckFuncSummaryPresenceOnly) {}
   5402 
   5403 void FunctionIndexBitcodeReader::freeState() { Buffer = nullptr; }
   5404 
   5405 void FunctionIndexBitcodeReader::releaseBuffer() { Buffer.release(); }
   5406 
   5407 // Specialized value symbol table parser used when reading function index
   5408 // blocks where we don't actually create global values.
   5409 // At the end of this routine the function index is populated with a map
   5410 // from function name to FunctionInfo. The function info contains
   5411 // the function block's bitcode offset as well as the offset into the
   5412 // function summary section.
   5413 std::error_code FunctionIndexBitcodeReader::parseValueSymbolTable() {
   5414   if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
   5415     return error("Invalid record");
   5416 
   5417   SmallVector<uint64_t, 64> Record;
   5418 
   5419   // Read all the records for this value table.
   5420   SmallString<128> ValueName;
   5421   while (1) {
   5422     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
   5423 
   5424     switch (Entry.Kind) {
   5425     case BitstreamEntry::SubBlock: // Handled for us already.
   5426     case BitstreamEntry::Error:
   5427       return error("Malformed block");
   5428     case BitstreamEntry::EndBlock:
   5429       return std::error_code();
   5430     case BitstreamEntry::Record:
   5431       // The interesting case.
   5432       break;
   5433     }
   5434 
   5435     // Read a record.
   5436     Record.clear();
   5437     switch (Stream.readRecord(Entry.ID, Record)) {
   5438     default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records).
   5439       break;
   5440     case bitc::VST_CODE_FNENTRY: {
   5441       // VST_FNENTRY: [valueid, offset, namechar x N]
   5442       if (convertToString(Record, 2, ValueName))
   5443         return error("Invalid record");
   5444       unsigned ValueID = Record[0];
   5445       uint64_t FuncOffset = Record[1];
   5446       std::unique_ptr<FunctionInfo> FuncInfo =
   5447           llvm::make_unique<FunctionInfo>(FuncOffset);
   5448       if (foundFuncSummary() && !IsLazy) {
   5449         DenseMap<uint64_t, std::unique_ptr<FunctionSummary>>::iterator SMI =
   5450             SummaryMap.find(ValueID);
   5451         assert(SMI != SummaryMap.end() && "Summary info not found");
   5452         FuncInfo->setFunctionSummary(std::move(SMI->second));
   5453       }
   5454       TheIndex->addFunctionInfo(ValueName, std::move(FuncInfo));
   5455 
   5456       ValueName.clear();
   5457       break;
   5458     }
   5459     case bitc::VST_CODE_COMBINED_FNENTRY: {
   5460       // VST_FNENTRY: [offset, namechar x N]
   5461       if (convertToString(Record, 1, ValueName))
   5462         return error("Invalid record");
   5463       uint64_t FuncSummaryOffset = Record[0];
   5464       std::unique_ptr<FunctionInfo> FuncInfo =
   5465           llvm::make_unique<FunctionInfo>(FuncSummaryOffset);
   5466       if (foundFuncSummary() && !IsLazy) {
   5467         DenseMap<uint64_t, std::unique_ptr<FunctionSummary>>::iterator SMI =
   5468             SummaryMap.find(FuncSummaryOffset);
   5469         assert(SMI != SummaryMap.end() && "Summary info not found");
   5470         FuncInfo->setFunctionSummary(std::move(SMI->second));
   5471       }
   5472       TheIndex->addFunctionInfo(ValueName, std::move(FuncInfo));
   5473 
   5474       ValueName.clear();
   5475       break;
   5476     }
   5477     }
   5478   }
   5479 }
   5480 
   5481 // Parse just the blocks needed for function index building out of the module.
   5482 // At the end of this routine the function Index is populated with a map
   5483 // from function name to FunctionInfo. The function info contains
   5484 // either the parsed function summary information (when parsing summaries
   5485 // eagerly), or just to the function summary record's offset
   5486 // if parsing lazily (IsLazy).
   5487 std::error_code FunctionIndexBitcodeReader::parseModule() {
   5488   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
   5489     return error("Invalid record");
   5490 
   5491   // Read the function index for this module.
   5492   while (1) {
   5493     BitstreamEntry Entry = Stream.advance();
   5494 
   5495     switch (Entry.Kind) {
   5496     case BitstreamEntry::Error:
   5497       return error("Malformed block");
   5498     case BitstreamEntry::EndBlock:
   5499       return std::error_code();
   5500 
   5501     case BitstreamEntry::SubBlock:
   5502       if (CheckFuncSummaryPresenceOnly) {
   5503         if (Entry.ID == bitc::FUNCTION_SUMMARY_BLOCK_ID) {
   5504           SeenFuncSummary = true;
   5505           // No need to parse the rest since we found the summary.
   5506           return std::error_code();
   5507         }
   5508         if (Stream.SkipBlock())
   5509           return error("Invalid record");
   5510         continue;
   5511       }
   5512       switch (Entry.ID) {
   5513       default: // Skip unknown content.
   5514         if (Stream.SkipBlock())
   5515           return error("Invalid record");
   5516         break;
   5517       case bitc::BLOCKINFO_BLOCK_ID:
   5518         // Need to parse these to get abbrev ids (e.g. for VST)
   5519         if (Stream.ReadBlockInfoBlock())
   5520           return error("Malformed block");
   5521         break;
   5522       case bitc::VALUE_SYMTAB_BLOCK_ID:
   5523         if (std::error_code EC = parseValueSymbolTable())
   5524           return EC;
   5525         break;
   5526       case bitc::FUNCTION_SUMMARY_BLOCK_ID:
   5527         SeenFuncSummary = true;
   5528         if (IsLazy) {
   5529           // Lazy parsing of summary info, skip it.
   5530           if (Stream.SkipBlock())
   5531             return error("Invalid record");
   5532         } else if (std::error_code EC = parseEntireSummary())
   5533           return EC;
   5534         break;
   5535       case bitc::MODULE_STRTAB_BLOCK_ID:
   5536         if (std::error_code EC = parseModuleStringTable())
   5537           return EC;
   5538         break;
   5539       }
   5540       continue;
   5541 
   5542     case BitstreamEntry::Record:
   5543       Stream.skipRecord(Entry.ID);
   5544       continue;
   5545     }
   5546   }
   5547 }
   5548 
   5549 // Eagerly parse the entire function summary block (i.e. for all functions
   5550 // in the index). This populates the FunctionSummary objects in
   5551 // the index.
   5552 std::error_code FunctionIndexBitcodeReader::parseEntireSummary() {
   5553   if (Stream.EnterSubBlock(bitc::FUNCTION_SUMMARY_BLOCK_ID))
   5554     return error("Invalid record");
   5555 
   5556   SmallVector<uint64_t, 64> Record;
   5557 
   5558   while (1) {
   5559     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
   5560 
   5561     switch (Entry.Kind) {
   5562     case BitstreamEntry::SubBlock: // Handled for us already.
   5563     case BitstreamEntry::Error:
   5564       return error("Malformed block");
   5565     case BitstreamEntry::EndBlock:
   5566       return std::error_code();
   5567     case BitstreamEntry::Record:
   5568       // The interesting case.
   5569       break;
   5570     }
   5571 
   5572     // Read a record. The record format depends on whether this
   5573     // is a per-module index or a combined index file. In the per-module
   5574     // case the records contain the associated value's ID for correlation
   5575     // with VST entries. In the combined index the correlation is done
   5576     // via the bitcode offset of the summary records (which were saved
   5577     // in the combined index VST entries). The records also contain
   5578     // information used for ThinLTO renaming and importing.
   5579     Record.clear();
   5580     uint64_t CurRecordBit = Stream.GetCurrentBitNo();
   5581     switch (Stream.readRecord(Entry.ID, Record)) {
   5582     default: // Default behavior: ignore.
   5583       break;
   5584     // FS_PERMODULE_ENTRY: [valueid, islocal, instcount]
   5585     case bitc::FS_CODE_PERMODULE_ENTRY: {
   5586       unsigned ValueID = Record[0];
   5587       bool IsLocal = Record[1];
   5588       unsigned InstCount = Record[2];
   5589       std::unique_ptr<FunctionSummary> FS =
   5590           llvm::make_unique<FunctionSummary>(InstCount);
   5591       FS->setLocalFunction(IsLocal);
   5592       // The module path string ref set in the summary must be owned by the
   5593       // index's module string table. Since we don't have a module path
   5594       // string table section in the per-module index, we create a single
   5595       // module path string table entry with an empty (0) ID to take
   5596       // ownership.
   5597       FS->setModulePath(
   5598           TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0));
   5599       SummaryMap[ValueID] = std::move(FS);
   5600     }
   5601     // FS_COMBINED_ENTRY: [modid, instcount]
   5602     case bitc::FS_CODE_COMBINED_ENTRY: {
   5603       uint64_t ModuleId = Record[0];
   5604       unsigned InstCount = Record[1];
   5605       std::unique_ptr<FunctionSummary> FS =
   5606           llvm::make_unique<FunctionSummary>(InstCount);
   5607       FS->setModulePath(ModuleIdMap[ModuleId]);
   5608       SummaryMap[CurRecordBit] = std::move(FS);
   5609     }
   5610     }
   5611   }
   5612   llvm_unreachable("Exit infinite loop");
   5613 }
   5614 
   5615 // Parse the  module string table block into the Index.
   5616 // This populates the ModulePathStringTable map in the index.
   5617 std::error_code FunctionIndexBitcodeReader::parseModuleStringTable() {
   5618   if (Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID))
   5619     return error("Invalid record");
   5620 
   5621   SmallVector<uint64_t, 64> Record;
   5622 
   5623   SmallString<128> ModulePath;
   5624   while (1) {
   5625     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
   5626 
   5627     switch (Entry.Kind) {
   5628     case BitstreamEntry::SubBlock: // Handled for us already.
   5629     case BitstreamEntry::Error:
   5630       return error("Malformed block");
   5631     case BitstreamEntry::EndBlock:
   5632       return std::error_code();
   5633     case BitstreamEntry::Record:
   5634       // The interesting case.
   5635       break;
   5636     }
   5637 
   5638     Record.clear();
   5639     switch (Stream.readRecord(Entry.ID, Record)) {
   5640     default: // Default behavior: ignore.
   5641       break;
   5642     case bitc::MST_CODE_ENTRY: {
   5643       // MST_ENTRY: [modid, namechar x N]
   5644       if (convertToString(Record, 1, ModulePath))
   5645         return error("Invalid record");
   5646       uint64_t ModuleId = Record[0];
   5647       StringRef ModulePathInMap = TheIndex->addModulePath(ModulePath, ModuleId);
   5648       ModuleIdMap[ModuleId] = ModulePathInMap;
   5649       ModulePath.clear();
   5650       break;
   5651     }
   5652     }
   5653   }
   5654   llvm_unreachable("Exit infinite loop");
   5655 }
   5656 
   5657 // Parse the function info index from the bitcode streamer into the given index.
   5658 std::error_code FunctionIndexBitcodeReader::parseSummaryIndexInto(
   5659     std::unique_ptr<DataStreamer> Streamer, FunctionInfoIndex *I) {
   5660   TheIndex = I;
   5661 
   5662   if (std::error_code EC = initStream(std::move(Streamer)))
   5663     return EC;
   5664 
   5665   // Sniff for the signature.
   5666   if (!hasValidBitcodeHeader(Stream))
   5667     return error("Invalid bitcode signature");
   5668 
   5669   // We expect a number of well-defined blocks, though we don't necessarily
   5670   // need to understand them all.
   5671   while (1) {
   5672     if (Stream.AtEndOfStream()) {
   5673       // We didn't really read a proper Module block.
   5674       return error("Malformed block");
   5675     }
   5676 
   5677     BitstreamEntry Entry =
   5678         Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs);
   5679 
   5680     if (Entry.Kind != BitstreamEntry::SubBlock)
   5681       return error("Malformed block");
   5682 
   5683     // If we see a MODULE_BLOCK, parse it to find the blocks needed for
   5684     // building the function summary index.
   5685     if (Entry.ID == bitc::MODULE_BLOCK_ID)
   5686       return parseModule();
   5687 
   5688     if (Stream.SkipBlock())
   5689       return error("Invalid record");
   5690   }
   5691 }
   5692 
   5693 // Parse the function information at the given offset in the buffer into
   5694 // the index. Used to support lazy parsing of function summaries from the
   5695 // combined index during importing.
   5696 // TODO: This function is not yet complete as it won't have a consumer
   5697 // until ThinLTO function importing is added.
   5698 std::error_code FunctionIndexBitcodeReader::parseFunctionSummary(
   5699     std::unique_ptr<DataStreamer> Streamer, FunctionInfoIndex *I,
   5700     size_t FunctionSummaryOffset) {
   5701   TheIndex = I;
   5702 
   5703   if (std::error_code EC = initStream(std::move(Streamer)))
   5704     return EC;
   5705 
   5706   // Sniff for the signature.
   5707   if (!hasValidBitcodeHeader(Stream))
   5708     return error("Invalid bitcode signature");
   5709 
   5710   Stream.JumpToBit(FunctionSummaryOffset);
   5711 
   5712   BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
   5713 
   5714   switch (Entry.Kind) {
   5715   default:
   5716     return error("Malformed block");
   5717   case BitstreamEntry::Record:
   5718     // The expected case.
   5719     break;
   5720   }
   5721 
   5722   // TODO: Read a record. This interface will be completed when ThinLTO
   5723   // importing is added so that it can be tested.
   5724   SmallVector<uint64_t, 64> Record;
   5725   switch (Stream.readRecord(Entry.ID, Record)) {
   5726   case bitc::FS_CODE_COMBINED_ENTRY:
   5727   default:
   5728     return error("Invalid record");
   5729   }
   5730 
   5731   return std::error_code();
   5732 }
   5733 
   5734 std::error_code
   5735 FunctionIndexBitcodeReader::initStream(std::unique_ptr<DataStreamer> Streamer) {
   5736   if (Streamer)
   5737     return initLazyStream(std::move(Streamer));
   5738   return initStreamFromBuffer();
   5739 }
   5740 
   5741 std::error_code FunctionIndexBitcodeReader::initStreamFromBuffer() {
   5742   const unsigned char *BufPtr = (const unsigned char *)Buffer->getBufferStart();
   5743   const unsigned char *BufEnd = BufPtr + Buffer->getBufferSize();
   5744 
   5745   if (Buffer->getBufferSize() & 3)
   5746     return error("Invalid bitcode signature");
   5747 
   5748   // If we have a wrapper header, parse it and ignore the non-bc file contents.
   5749   // The magic number is 0x0B17C0DE stored in little endian.
   5750   if (isBitcodeWrapper(BufPtr, BufEnd))
   5751     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
   5752       return error("Invalid bitcode wrapper header");
   5753 
   5754   StreamFile.reset(new BitstreamReader(BufPtr, BufEnd));
   5755   Stream.init(&*StreamFile);
   5756 
   5757   return std::error_code();
   5758 }
   5759 
   5760 std::error_code FunctionIndexBitcodeReader::initLazyStream(
   5761     std::unique_ptr<DataStreamer> Streamer) {
   5762   // Check and strip off the bitcode wrapper; BitstreamReader expects never to
   5763   // see it.
   5764   auto OwnedBytes =
   5765       llvm::make_unique<StreamingMemoryObject>(std::move(Streamer));
   5766   StreamingMemoryObject &Bytes = *OwnedBytes;
   5767   StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes));
   5768   Stream.init(&*StreamFile);
   5769 
   5770   unsigned char buf[16];
   5771   if (Bytes.readBytes(buf, 16, 0) != 16)
   5772     return error("Invalid bitcode signature");
   5773 
   5774   if (!isBitcode(buf, buf + 16))
   5775     return error("Invalid bitcode signature");
   5776 
   5777   if (isBitcodeWrapper(buf, buf + 4)) {
   5778     const unsigned char *bitcodeStart = buf;
   5779     const unsigned char *bitcodeEnd = buf + 16;
   5780     SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false);
   5781     Bytes.dropLeadingBytes(bitcodeStart - buf);
   5782     Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart);
   5783   }
   5784   return std::error_code();
   5785 }
   5786 
   5787 namespace {
   5788 class BitcodeErrorCategoryType : public std::error_category {
   5789   const char *name() const LLVM_NOEXCEPT override {
   5790     return "llvm.bitcode";
   5791   }
   5792   std::string message(int IE) const override {
   5793     BitcodeError E = static_cast<BitcodeError>(IE);
   5794     switch (E) {
   5795     case BitcodeError::InvalidBitcodeSignature:
   5796       return "Invalid bitcode signature";
   5797     case BitcodeError::CorruptedBitcode:
   5798       return "Corrupted bitcode";
   5799     }
   5800     llvm_unreachable("Unknown error type!");
   5801   }
   5802 };
   5803 }
   5804 
   5805 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory;
   5806 
   5807 const std::error_category &llvm::BitcodeErrorCategory() {
   5808   return *ErrorCategory;
   5809 }
   5810 
   5811 //===----------------------------------------------------------------------===//
   5812 // External interface
   5813 //===----------------------------------------------------------------------===//
   5814 
   5815 static ErrorOr<std::unique_ptr<Module>>
   5816 getBitcodeModuleImpl(std::unique_ptr<DataStreamer> Streamer, StringRef Name,
   5817                      BitcodeReader *R, LLVMContext &Context,
   5818                      bool MaterializeAll, bool ShouldLazyLoadMetadata) {
   5819   std::unique_ptr<Module> M = make_unique<Module>(Name, Context);
   5820   M->setMaterializer(R);
   5821 
   5822   auto cleanupOnError = [&](std::error_code EC) {
   5823     R->releaseBuffer(); // Never take ownership on error.
   5824     return EC;
   5825   };
   5826 
   5827   // Delay parsing Metadata if ShouldLazyLoadMetadata is true.
   5828   if (std::error_code EC = R->parseBitcodeInto(std::move(Streamer), M.get(),
   5829                                                ShouldLazyLoadMetadata))
   5830     return cleanupOnError(EC);
   5831 
   5832   if (MaterializeAll) {
   5833     // Read in the entire module, and destroy the BitcodeReader.
   5834     if (std::error_code EC = M->materializeAll())
   5835       return cleanupOnError(EC);
   5836   } else {
   5837     // Resolve forward references from blockaddresses.
   5838     if (std::error_code EC = R->materializeForwardReferencedFunctions())
   5839       return cleanupOnError(EC);
   5840   }
   5841   return std::move(M);
   5842 }
   5843 
   5844 /// \brief Get a lazy one-at-time loading module from bitcode.
   5845 ///
   5846 /// This isn't always used in a lazy context.  In particular, it's also used by
   5847 /// \a parseBitcodeFile().  If this is truly lazy, then we need to eagerly pull
   5848 /// in forward-referenced functions from block address references.
   5849 ///
   5850 /// \param[in] MaterializeAll Set to \c true if we should materialize
   5851 /// everything.
   5852 static ErrorOr<std::unique_ptr<Module>>
   5853 getLazyBitcodeModuleImpl(std::unique_ptr<MemoryBuffer> &&Buffer,
   5854                          LLVMContext &Context, bool MaterializeAll,
   5855                          bool ShouldLazyLoadMetadata = false) {
   5856   BitcodeReader *R = new BitcodeReader(Buffer.get(), Context);
   5857 
   5858   ErrorOr<std::unique_ptr<Module>> Ret =
   5859       getBitcodeModuleImpl(nullptr, Buffer->getBufferIdentifier(), R, Context,
   5860                            MaterializeAll, ShouldLazyLoadMetadata);
   5861   if (!Ret)
   5862     return Ret;
   5863 
   5864   Buffer.release(); // The BitcodeReader owns it now.
   5865   return Ret;
   5866 }
   5867 
   5868 ErrorOr<std::unique_ptr<Module>>
   5869 llvm::getLazyBitcodeModule(std::unique_ptr<MemoryBuffer> &&Buffer,
   5870                            LLVMContext &Context, bool ShouldLazyLoadMetadata) {
   5871   return getLazyBitcodeModuleImpl(std::move(Buffer), Context, false,
   5872                                   ShouldLazyLoadMetadata);
   5873 }
   5874 
   5875 ErrorOr<std::unique_ptr<Module>>
   5876 llvm::getStreamedBitcodeModule(StringRef Name,
   5877                                std::unique_ptr<DataStreamer> Streamer,
   5878                                LLVMContext &Context) {
   5879   std::unique_ptr<Module> M = make_unique<Module>(Name, Context);
   5880   BitcodeReader *R = new BitcodeReader(Context);
   5881 
   5882   return getBitcodeModuleImpl(std::move(Streamer), Name, R, Context, false,
   5883                               false);
   5884 }
   5885 
   5886 ErrorOr<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer,
   5887                                                         LLVMContext &Context) {
   5888   std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
   5889   return getLazyBitcodeModuleImpl(std::move(Buf), Context, true);
   5890   // TODO: Restore the use-lists to the in-memory state when the bitcode was
   5891   // written.  We must defer until the Module has been fully materialized.
   5892 }
   5893 
   5894 std::string llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer,
   5895                                          LLVMContext &Context) {
   5896   std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
   5897   auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context);
   5898   ErrorOr<std::string> Triple = R->parseTriple();
   5899   if (Triple.getError())
   5900     return "";
   5901   return Triple.get();
   5902 }
   5903 
   5904 std::string llvm::getBitcodeProducerString(MemoryBufferRef Buffer,
   5905                                            LLVMContext &Context) {
   5906   std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
   5907   BitcodeReader R(Buf.release(), Context);
   5908   ErrorOr<std::string> ProducerString = R.parseIdentificationBlock();
   5909   if (ProducerString.getError())
   5910     return "";
   5911   return ProducerString.get();
   5912 }
   5913 
   5914 // Parse the specified bitcode buffer, returning the function info index.
   5915 // If IsLazy is false, parse the entire function summary into
   5916 // the index. Otherwise skip the function summary section, and only create
   5917 // an index object with a map from function name to function summary offset.
   5918 // The index is used to perform lazy function summary reading later.
   5919 ErrorOr<std::unique_ptr<FunctionInfoIndex>>
   5920 llvm::getFunctionInfoIndex(MemoryBufferRef Buffer,
   5921                            DiagnosticHandlerFunction DiagnosticHandler,
   5922                            bool IsLazy) {
   5923   std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
   5924   FunctionIndexBitcodeReader R(Buf.get(), DiagnosticHandler, IsLazy);
   5925 
   5926   auto Index = llvm::make_unique<FunctionInfoIndex>();
   5927 
   5928   auto cleanupOnError = [&](std::error_code EC) {
   5929     R.releaseBuffer(); // Never take ownership on error.
   5930     return EC;
   5931   };
   5932 
   5933   if (std::error_code EC = R.parseSummaryIndexInto(nullptr, Index.get()))
   5934     return cleanupOnError(EC);
   5935 
   5936   Buf.release(); // The FunctionIndexBitcodeReader owns it now.
   5937   return std::move(Index);
   5938 }
   5939 
   5940 // Check if the given bitcode buffer contains a function summary block.
   5941 bool llvm::hasFunctionSummary(MemoryBufferRef Buffer,
   5942                               DiagnosticHandlerFunction DiagnosticHandler) {
   5943   std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
   5944   FunctionIndexBitcodeReader R(Buf.get(), DiagnosticHandler, false, true);
   5945 
   5946   auto cleanupOnError = [&](std::error_code EC) {
   5947     R.releaseBuffer(); // Never take ownership on error.
   5948     return false;
   5949   };
   5950 
   5951   if (std::error_code EC = R.parseSummaryIndexInto(nullptr, nullptr))
   5952     return cleanupOnError(EC);
   5953 
   5954   Buf.release(); // The FunctionIndexBitcodeReader owns it now.
   5955   return R.foundFuncSummary();
   5956 }
   5957 
   5958 // This method supports lazy reading of function summary data from the combined
   5959 // index during ThinLTO function importing. When reading the combined index
   5960 // file, getFunctionInfoIndex is first invoked with IsLazy=true.
   5961 // Then this method is called for each function considered for importing,
   5962 // to parse the summary information for the given function name into
   5963 // the index.
   5964 std::error_code llvm::readFunctionSummary(
   5965     MemoryBufferRef Buffer, DiagnosticHandlerFunction DiagnosticHandler,
   5966     StringRef FunctionName, std::unique_ptr<FunctionInfoIndex> Index) {
   5967   std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
   5968   FunctionIndexBitcodeReader R(Buf.get(), DiagnosticHandler);
   5969 
   5970   auto cleanupOnError = [&](std::error_code EC) {
   5971     R.releaseBuffer(); // Never take ownership on error.
   5972     return EC;
   5973   };
   5974 
   5975   // Lookup the given function name in the FunctionMap, which may
   5976   // contain a list of function infos in the case of a COMDAT. Walk through
   5977   // and parse each function summary info at the function summary offset
   5978   // recorded when parsing the value symbol table.
   5979   for (const auto &FI : Index->getFunctionInfoList(FunctionName)) {
   5980     size_t FunctionSummaryOffset = FI->bitcodeIndex();
   5981     if (std::error_code EC =
   5982             R.parseFunctionSummary(nullptr, Index.get(), FunctionSummaryOffset))
   5983       return cleanupOnError(EC);
   5984   }
   5985 
   5986   Buf.release(); // The FunctionIndexBitcodeReader owns it now.
   5987   return std::error_code();
   5988 }
   5989