1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Bitcode/ReaderWriter.h" 11 #include "llvm/ADT/STLExtras.h" 12 #include "llvm/ADT/SmallString.h" 13 #include "llvm/ADT/SmallVector.h" 14 #include "llvm/ADT/Triple.h" 15 #include "llvm/Bitcode/BitstreamReader.h" 16 #include "llvm/Bitcode/LLVMBitCodes.h" 17 #include "llvm/IR/AutoUpgrade.h" 18 #include "llvm/IR/Constants.h" 19 #include "llvm/IR/DebugInfo.h" 20 #include "llvm/IR/DebugInfoMetadata.h" 21 #include "llvm/IR/DerivedTypes.h" 22 #include "llvm/IR/DiagnosticPrinter.h" 23 #include "llvm/IR/GVMaterializer.h" 24 #include "llvm/IR/InlineAsm.h" 25 #include "llvm/IR/IntrinsicInst.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/IR/OperandTraits.h" 29 #include "llvm/IR/Operator.h" 30 #include "llvm/IR/FunctionInfo.h" 31 #include "llvm/IR/ValueHandle.h" 32 #include "llvm/Support/DataStream.h" 33 #include "llvm/Support/ManagedStatic.h" 34 #include "llvm/Support/MathExtras.h" 35 #include "llvm/Support/MemoryBuffer.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include <deque> 38 using namespace llvm; 39 40 namespace { 41 enum { 42 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 43 }; 44 45 class BitcodeReaderValueList { 46 std::vector<WeakVH> ValuePtrs; 47 48 /// As we resolve forward-referenced constants, we add information about them 49 /// to this vector. This allows us to resolve them in bulk instead of 50 /// resolving each reference at a time. See the code in 51 /// ResolveConstantForwardRefs for more information about this. 52 /// 53 /// The key of this vector is the placeholder constant, the value is the slot 54 /// number that holds the resolved value. 55 typedef std::vector<std::pair<Constant*, unsigned> > ResolveConstantsTy; 56 ResolveConstantsTy ResolveConstants; 57 LLVMContext &Context; 58 public: 59 BitcodeReaderValueList(LLVMContext &C) : Context(C) {} 60 ~BitcodeReaderValueList() { 61 assert(ResolveConstants.empty() && "Constants not resolved?"); 62 } 63 64 // vector compatibility methods 65 unsigned size() const { return ValuePtrs.size(); } 66 void resize(unsigned N) { ValuePtrs.resize(N); } 67 void push_back(Value *V) { ValuePtrs.emplace_back(V); } 68 69 void clear() { 70 assert(ResolveConstants.empty() && "Constants not resolved?"); 71 ValuePtrs.clear(); 72 } 73 74 Value *operator[](unsigned i) const { 75 assert(i < ValuePtrs.size()); 76 return ValuePtrs[i]; 77 } 78 79 Value *back() const { return ValuePtrs.back(); } 80 void pop_back() { ValuePtrs.pop_back(); } 81 bool empty() const { return ValuePtrs.empty(); } 82 void shrinkTo(unsigned N) { 83 assert(N <= size() && "Invalid shrinkTo request!"); 84 ValuePtrs.resize(N); 85 } 86 87 Constant *getConstantFwdRef(unsigned Idx, Type *Ty); 88 Value *getValueFwdRef(unsigned Idx, Type *Ty); 89 90 void assignValue(Value *V, unsigned Idx); 91 92 /// Once all constants are read, this method bulk resolves any forward 93 /// references. 94 void resolveConstantForwardRefs(); 95 }; 96 97 class BitcodeReaderMDValueList { 98 unsigned NumFwdRefs; 99 bool AnyFwdRefs; 100 unsigned MinFwdRef; 101 unsigned MaxFwdRef; 102 std::vector<TrackingMDRef> MDValuePtrs; 103 104 LLVMContext &Context; 105 public: 106 BitcodeReaderMDValueList(LLVMContext &C) 107 : NumFwdRefs(0), AnyFwdRefs(false), Context(C) {} 108 109 // vector compatibility methods 110 unsigned size() const { return MDValuePtrs.size(); } 111 void resize(unsigned N) { MDValuePtrs.resize(N); } 112 void push_back(Metadata *MD) { MDValuePtrs.emplace_back(MD); } 113 void clear() { MDValuePtrs.clear(); } 114 Metadata *back() const { return MDValuePtrs.back(); } 115 void pop_back() { MDValuePtrs.pop_back(); } 116 bool empty() const { return MDValuePtrs.empty(); } 117 118 Metadata *operator[](unsigned i) const { 119 assert(i < MDValuePtrs.size()); 120 return MDValuePtrs[i]; 121 } 122 123 void shrinkTo(unsigned N) { 124 assert(N <= size() && "Invalid shrinkTo request!"); 125 MDValuePtrs.resize(N); 126 } 127 128 Metadata *getValueFwdRef(unsigned Idx); 129 void assignValue(Metadata *MD, unsigned Idx); 130 void tryToResolveCycles(); 131 }; 132 133 class BitcodeReader : public GVMaterializer { 134 LLVMContext &Context; 135 Module *TheModule = nullptr; 136 std::unique_ptr<MemoryBuffer> Buffer; 137 std::unique_ptr<BitstreamReader> StreamFile; 138 BitstreamCursor Stream; 139 // Next offset to start scanning for lazy parsing of function bodies. 140 uint64_t NextUnreadBit = 0; 141 // Last function offset found in the VST. 142 uint64_t LastFunctionBlockBit = 0; 143 bool SeenValueSymbolTable = false; 144 uint64_t VSTOffset = 0; 145 // Contains an arbitrary and optional string identifying the bitcode producer 146 std::string ProducerIdentification; 147 // Number of module level metadata records specified by the 148 // MODULE_CODE_METADATA_VALUES record. 149 unsigned NumModuleMDs = 0; 150 // Support older bitcode without the MODULE_CODE_METADATA_VALUES record. 151 bool SeenModuleValuesRecord = false; 152 153 std::vector<Type*> TypeList; 154 BitcodeReaderValueList ValueList; 155 BitcodeReaderMDValueList MDValueList; 156 std::vector<Comdat *> ComdatList; 157 SmallVector<Instruction *, 64> InstructionList; 158 159 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInits; 160 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInits; 161 std::vector<std::pair<Function*, unsigned> > FunctionPrefixes; 162 std::vector<std::pair<Function*, unsigned> > FunctionPrologues; 163 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFns; 164 165 SmallVector<Instruction*, 64> InstsWithTBAATag; 166 167 /// The set of attributes by index. Index zero in the file is for null, and 168 /// is thus not represented here. As such all indices are off by one. 169 std::vector<AttributeSet> MAttributes; 170 171 /// The set of attribute groups. 172 std::map<unsigned, AttributeSet> MAttributeGroups; 173 174 /// While parsing a function body, this is a list of the basic blocks for the 175 /// function. 176 std::vector<BasicBlock*> FunctionBBs; 177 178 // When reading the module header, this list is populated with functions that 179 // have bodies later in the file. 180 std::vector<Function*> FunctionsWithBodies; 181 182 // When intrinsic functions are encountered which require upgrading they are 183 // stored here with their replacement function. 184 typedef DenseMap<Function*, Function*> UpgradedIntrinsicMap; 185 UpgradedIntrinsicMap UpgradedIntrinsics; 186 187 // Map the bitcode's custom MDKind ID to the Module's MDKind ID. 188 DenseMap<unsigned, unsigned> MDKindMap; 189 190 // Several operations happen after the module header has been read, but 191 // before function bodies are processed. This keeps track of whether 192 // we've done this yet. 193 bool SeenFirstFunctionBody = false; 194 195 /// When function bodies are initially scanned, this map contains info about 196 /// where to find deferred function body in the stream. 197 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 198 199 /// When Metadata block is initially scanned when parsing the module, we may 200 /// choose to defer parsing of the metadata. This vector contains info about 201 /// which Metadata blocks are deferred. 202 std::vector<uint64_t> DeferredMetadataInfo; 203 204 /// These are basic blocks forward-referenced by block addresses. They are 205 /// inserted lazily into functions when they're loaded. The basic block ID is 206 /// its index into the vector. 207 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 208 std::deque<Function *> BasicBlockFwdRefQueue; 209 210 /// Indicates that we are using a new encoding for instruction operands where 211 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 212 /// instruction number, for a more compact encoding. Some instruction 213 /// operands are not relative to the instruction ID: basic block numbers, and 214 /// types. Once the old style function blocks have been phased out, we would 215 /// not need this flag. 216 bool UseRelativeIDs = false; 217 218 /// True if all functions will be materialized, negating the need to process 219 /// (e.g.) blockaddress forward references. 220 bool WillMaterializeAllForwardRefs = false; 221 222 /// True if any Metadata block has been materialized. 223 bool IsMetadataMaterialized = false; 224 225 bool StripDebugInfo = false; 226 227 /// Functions that need to be matched with subprograms when upgrading old 228 /// metadata. 229 SmallDenseMap<Function *, DISubprogram *, 16> FunctionsWithSPs; 230 231 std::vector<std::string> BundleTags; 232 233 public: 234 std::error_code error(BitcodeError E, const Twine &Message); 235 std::error_code error(BitcodeError E); 236 std::error_code error(const Twine &Message); 237 238 BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context); 239 BitcodeReader(LLVMContext &Context); 240 ~BitcodeReader() override { freeState(); } 241 242 std::error_code materializeForwardReferencedFunctions(); 243 244 void freeState(); 245 246 void releaseBuffer(); 247 248 std::error_code materialize(GlobalValue *GV) override; 249 std::error_code materializeModule() override; 250 std::vector<StructType *> getIdentifiedStructTypes() const override; 251 252 /// \brief Main interface to parsing a bitcode buffer. 253 /// \returns true if an error occurred. 254 std::error_code parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer, 255 Module *M, 256 bool ShouldLazyLoadMetadata = false); 257 258 /// \brief Cheap mechanism to just extract module triple 259 /// \returns true if an error occurred. 260 ErrorOr<std::string> parseTriple(); 261 262 /// Cheap mechanism to just extract the identification block out of bitcode. 263 ErrorOr<std::string> parseIdentificationBlock(); 264 265 static uint64_t decodeSignRotatedValue(uint64_t V); 266 267 /// Materialize any deferred Metadata block. 268 std::error_code materializeMetadata() override; 269 270 void setStripDebugInfo() override; 271 272 /// Save the mapping between the metadata values and the corresponding 273 /// value id that were recorded in the MDValueList during parsing. If 274 /// OnlyTempMD is true, then only record those entries that are still 275 /// temporary metadata. This interface is used when metadata linking is 276 /// performed as a postpass, such as during function importing. 277 void saveMDValueList(DenseMap<const Metadata *, unsigned> &MDValueToValIDMap, 278 bool OnlyTempMD) override; 279 280 private: 281 /// Parse the "IDENTIFICATION_BLOCK_ID" block, populate the 282 // ProducerIdentification data member, and do some basic enforcement on the 283 // "epoch" encoded in the bitcode. 284 std::error_code parseBitcodeVersion(); 285 286 std::vector<StructType *> IdentifiedStructTypes; 287 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 288 StructType *createIdentifiedStructType(LLVMContext &Context); 289 290 Type *getTypeByID(unsigned ID); 291 Value *getFnValueByID(unsigned ID, Type *Ty) { 292 if (Ty && Ty->isMetadataTy()) 293 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 294 return ValueList.getValueFwdRef(ID, Ty); 295 } 296 Metadata *getFnMetadataByID(unsigned ID) { 297 return MDValueList.getValueFwdRef(ID); 298 } 299 BasicBlock *getBasicBlock(unsigned ID) const { 300 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 301 return FunctionBBs[ID]; 302 } 303 AttributeSet getAttributes(unsigned i) const { 304 if (i-1 < MAttributes.size()) 305 return MAttributes[i-1]; 306 return AttributeSet(); 307 } 308 309 /// Read a value/type pair out of the specified record from slot 'Slot'. 310 /// Increment Slot past the number of slots used in the record. Return true on 311 /// failure. 312 bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 313 unsigned InstNum, Value *&ResVal) { 314 if (Slot == Record.size()) return true; 315 unsigned ValNo = (unsigned)Record[Slot++]; 316 // Adjust the ValNo, if it was encoded relative to the InstNum. 317 if (UseRelativeIDs) 318 ValNo = InstNum - ValNo; 319 if (ValNo < InstNum) { 320 // If this is not a forward reference, just return the value we already 321 // have. 322 ResVal = getFnValueByID(ValNo, nullptr); 323 return ResVal == nullptr; 324 } 325 if (Slot == Record.size()) 326 return true; 327 328 unsigned TypeNo = (unsigned)Record[Slot++]; 329 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 330 return ResVal == nullptr; 331 } 332 333 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 334 /// past the number of slots used by the value in the record. Return true if 335 /// there is an error. 336 bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 337 unsigned InstNum, Type *Ty, Value *&ResVal) { 338 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 339 return true; 340 // All values currently take a single record slot. 341 ++Slot; 342 return false; 343 } 344 345 /// Like popValue, but does not increment the Slot number. 346 bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 347 unsigned InstNum, Type *Ty, Value *&ResVal) { 348 ResVal = getValue(Record, Slot, InstNum, Ty); 349 return ResVal == nullptr; 350 } 351 352 /// Version of getValue that returns ResVal directly, or 0 if there is an 353 /// error. 354 Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 355 unsigned InstNum, Type *Ty) { 356 if (Slot == Record.size()) return nullptr; 357 unsigned ValNo = (unsigned)Record[Slot]; 358 // Adjust the ValNo, if it was encoded relative to the InstNum. 359 if (UseRelativeIDs) 360 ValNo = InstNum - ValNo; 361 return getFnValueByID(ValNo, Ty); 362 } 363 364 /// Like getValue, but decodes signed VBRs. 365 Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 366 unsigned InstNum, Type *Ty) { 367 if (Slot == Record.size()) return nullptr; 368 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 369 // Adjust the ValNo, if it was encoded relative to the InstNum. 370 if (UseRelativeIDs) 371 ValNo = InstNum - ValNo; 372 return getFnValueByID(ValNo, Ty); 373 } 374 375 /// Converts alignment exponent (i.e. power of two (or zero)) to the 376 /// corresponding alignment to use. If alignment is too large, returns 377 /// a corresponding error code. 378 std::error_code parseAlignmentValue(uint64_t Exponent, unsigned &Alignment); 379 std::error_code parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 380 std::error_code parseModule(uint64_t ResumeBit, 381 bool ShouldLazyLoadMetadata = false); 382 std::error_code parseAttributeBlock(); 383 std::error_code parseAttributeGroupBlock(); 384 std::error_code parseTypeTable(); 385 std::error_code parseTypeTableBody(); 386 std::error_code parseOperandBundleTags(); 387 388 ErrorOr<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 389 unsigned NameIndex, Triple &TT); 390 std::error_code parseValueSymbolTable(uint64_t Offset = 0); 391 std::error_code parseConstants(); 392 std::error_code rememberAndSkipFunctionBodies(); 393 std::error_code rememberAndSkipFunctionBody(); 394 /// Save the positions of the Metadata blocks and skip parsing the blocks. 395 std::error_code rememberAndSkipMetadata(); 396 std::error_code parseFunctionBody(Function *F); 397 std::error_code globalCleanup(); 398 std::error_code resolveGlobalAndAliasInits(); 399 std::error_code parseMetadata(bool ModuleLevel = false); 400 std::error_code parseMetadataKinds(); 401 std::error_code parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record); 402 std::error_code parseMetadataAttachment(Function &F); 403 ErrorOr<std::string> parseModuleTriple(); 404 std::error_code parseUseLists(); 405 std::error_code initStream(std::unique_ptr<DataStreamer> Streamer); 406 std::error_code initStreamFromBuffer(); 407 std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer); 408 std::error_code findFunctionInStream( 409 Function *F, 410 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 411 }; 412 413 /// Class to manage reading and parsing function summary index bitcode 414 /// files/sections. 415 class FunctionIndexBitcodeReader { 416 DiagnosticHandlerFunction DiagnosticHandler; 417 418 /// Eventually points to the function index built during parsing. 419 FunctionInfoIndex *TheIndex = nullptr; 420 421 std::unique_ptr<MemoryBuffer> Buffer; 422 std::unique_ptr<BitstreamReader> StreamFile; 423 BitstreamCursor Stream; 424 425 /// \brief Used to indicate whether we are doing lazy parsing of summary data. 426 /// 427 /// If false, the summary section is fully parsed into the index during 428 /// the initial parse. Otherwise, if true, the caller is expected to 429 /// invoke \a readFunctionSummary for each summary needed, and the summary 430 /// section is thus parsed lazily. 431 bool IsLazy = false; 432 433 /// Used to indicate whether caller only wants to check for the presence 434 /// of the function summary bitcode section. All blocks are skipped, 435 /// but the SeenFuncSummary boolean is set. 436 bool CheckFuncSummaryPresenceOnly = false; 437 438 /// Indicates whether we have encountered a function summary section 439 /// yet during parsing, used when checking if file contains function 440 /// summary section. 441 bool SeenFuncSummary = false; 442 443 /// \brief Map populated during function summary section parsing, and 444 /// consumed during ValueSymbolTable parsing. 445 /// 446 /// Used to correlate summary records with VST entries. For the per-module 447 /// index this maps the ValueID to the parsed function summary, and 448 /// for the combined index this maps the summary record's bitcode 449 /// offset to the function summary (since in the combined index the 450 /// VST records do not hold value IDs but rather hold the function 451 /// summary record offset). 452 DenseMap<uint64_t, std::unique_ptr<FunctionSummary>> SummaryMap; 453 454 /// Map populated during module path string table parsing, from the 455 /// module ID to a string reference owned by the index's module 456 /// path string table, used to correlate with combined index function 457 /// summary records. 458 DenseMap<uint64_t, StringRef> ModuleIdMap; 459 460 public: 461 std::error_code error(BitcodeError E, const Twine &Message); 462 std::error_code error(BitcodeError E); 463 std::error_code error(const Twine &Message); 464 465 FunctionIndexBitcodeReader(MemoryBuffer *Buffer, 466 DiagnosticHandlerFunction DiagnosticHandler, 467 bool IsLazy = false, 468 bool CheckFuncSummaryPresenceOnly = false); 469 FunctionIndexBitcodeReader(DiagnosticHandlerFunction DiagnosticHandler, 470 bool IsLazy = false, 471 bool CheckFuncSummaryPresenceOnly = false); 472 ~FunctionIndexBitcodeReader() { freeState(); } 473 474 void freeState(); 475 476 void releaseBuffer(); 477 478 /// Check if the parser has encountered a function summary section. 479 bool foundFuncSummary() { return SeenFuncSummary; } 480 481 /// \brief Main interface to parsing a bitcode buffer. 482 /// \returns true if an error occurred. 483 std::error_code parseSummaryIndexInto(std::unique_ptr<DataStreamer> Streamer, 484 FunctionInfoIndex *I); 485 486 /// \brief Interface for parsing a function summary lazily. 487 std::error_code parseFunctionSummary(std::unique_ptr<DataStreamer> Streamer, 488 FunctionInfoIndex *I, 489 size_t FunctionSummaryOffset); 490 491 private: 492 std::error_code parseModule(); 493 std::error_code parseValueSymbolTable(); 494 std::error_code parseEntireSummary(); 495 std::error_code parseModuleStringTable(); 496 std::error_code initStream(std::unique_ptr<DataStreamer> Streamer); 497 std::error_code initStreamFromBuffer(); 498 std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer); 499 }; 500 } // namespace 501 502 BitcodeDiagnosticInfo::BitcodeDiagnosticInfo(std::error_code EC, 503 DiagnosticSeverity Severity, 504 const Twine &Msg) 505 : DiagnosticInfo(DK_Bitcode, Severity), Msg(Msg), EC(EC) {} 506 507 void BitcodeDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; } 508 509 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler, 510 std::error_code EC, const Twine &Message) { 511 BitcodeDiagnosticInfo DI(EC, DS_Error, Message); 512 DiagnosticHandler(DI); 513 return EC; 514 } 515 516 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler, 517 std::error_code EC) { 518 return error(DiagnosticHandler, EC, EC.message()); 519 } 520 521 static std::error_code error(LLVMContext &Context, std::error_code EC, 522 const Twine &Message) { 523 return error([&](const DiagnosticInfo &DI) { Context.diagnose(DI); }, EC, 524 Message); 525 } 526 527 static std::error_code error(LLVMContext &Context, std::error_code EC) { 528 return error(Context, EC, EC.message()); 529 } 530 531 static std::error_code error(LLVMContext &Context, const Twine &Message) { 532 return error(Context, make_error_code(BitcodeError::CorruptedBitcode), 533 Message); 534 } 535 536 std::error_code BitcodeReader::error(BitcodeError E, const Twine &Message) { 537 if (!ProducerIdentification.empty()) { 538 return ::error(Context, make_error_code(E), 539 Message + " (Producer: '" + ProducerIdentification + 540 "' Reader: 'LLVM " + LLVM_VERSION_STRING "')"); 541 } 542 return ::error(Context, make_error_code(E), Message); 543 } 544 545 std::error_code BitcodeReader::error(const Twine &Message) { 546 if (!ProducerIdentification.empty()) { 547 return ::error(Context, make_error_code(BitcodeError::CorruptedBitcode), 548 Message + " (Producer: '" + ProducerIdentification + 549 "' Reader: 'LLVM " + LLVM_VERSION_STRING "')"); 550 } 551 return ::error(Context, make_error_code(BitcodeError::CorruptedBitcode), 552 Message); 553 } 554 555 std::error_code BitcodeReader::error(BitcodeError E) { 556 return ::error(Context, make_error_code(E)); 557 } 558 559 BitcodeReader::BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context) 560 : Context(Context), Buffer(Buffer), ValueList(Context), 561 MDValueList(Context) {} 562 563 BitcodeReader::BitcodeReader(LLVMContext &Context) 564 : Context(Context), Buffer(nullptr), ValueList(Context), 565 MDValueList(Context) {} 566 567 std::error_code BitcodeReader::materializeForwardReferencedFunctions() { 568 if (WillMaterializeAllForwardRefs) 569 return std::error_code(); 570 571 // Prevent recursion. 572 WillMaterializeAllForwardRefs = true; 573 574 while (!BasicBlockFwdRefQueue.empty()) { 575 Function *F = BasicBlockFwdRefQueue.front(); 576 BasicBlockFwdRefQueue.pop_front(); 577 assert(F && "Expected valid function"); 578 if (!BasicBlockFwdRefs.count(F)) 579 // Already materialized. 580 continue; 581 582 // Check for a function that isn't materializable to prevent an infinite 583 // loop. When parsing a blockaddress stored in a global variable, there 584 // isn't a trivial way to check if a function will have a body without a 585 // linear search through FunctionsWithBodies, so just check it here. 586 if (!F->isMaterializable()) 587 return error("Never resolved function from blockaddress"); 588 589 // Try to materialize F. 590 if (std::error_code EC = materialize(F)) 591 return EC; 592 } 593 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 594 595 // Reset state. 596 WillMaterializeAllForwardRefs = false; 597 return std::error_code(); 598 } 599 600 void BitcodeReader::freeState() { 601 Buffer = nullptr; 602 std::vector<Type*>().swap(TypeList); 603 ValueList.clear(); 604 MDValueList.clear(); 605 std::vector<Comdat *>().swap(ComdatList); 606 607 std::vector<AttributeSet>().swap(MAttributes); 608 std::vector<BasicBlock*>().swap(FunctionBBs); 609 std::vector<Function*>().swap(FunctionsWithBodies); 610 DeferredFunctionInfo.clear(); 611 DeferredMetadataInfo.clear(); 612 MDKindMap.clear(); 613 614 assert(BasicBlockFwdRefs.empty() && "Unresolved blockaddress fwd references"); 615 BasicBlockFwdRefQueue.clear(); 616 } 617 618 //===----------------------------------------------------------------------===// 619 // Helper functions to implement forward reference resolution, etc. 620 //===----------------------------------------------------------------------===// 621 622 /// Convert a string from a record into an std::string, return true on failure. 623 template <typename StrTy> 624 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 625 StrTy &Result) { 626 if (Idx > Record.size()) 627 return true; 628 629 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 630 Result += (char)Record[i]; 631 return false; 632 } 633 634 static bool hasImplicitComdat(size_t Val) { 635 switch (Val) { 636 default: 637 return false; 638 case 1: // Old WeakAnyLinkage 639 case 4: // Old LinkOnceAnyLinkage 640 case 10: // Old WeakODRLinkage 641 case 11: // Old LinkOnceODRLinkage 642 return true; 643 } 644 } 645 646 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 647 switch (Val) { 648 default: // Map unknown/new linkages to external 649 case 0: 650 return GlobalValue::ExternalLinkage; 651 case 2: 652 return GlobalValue::AppendingLinkage; 653 case 3: 654 return GlobalValue::InternalLinkage; 655 case 5: 656 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 657 case 6: 658 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 659 case 7: 660 return GlobalValue::ExternalWeakLinkage; 661 case 8: 662 return GlobalValue::CommonLinkage; 663 case 9: 664 return GlobalValue::PrivateLinkage; 665 case 12: 666 return GlobalValue::AvailableExternallyLinkage; 667 case 13: 668 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 669 case 14: 670 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 671 case 15: 672 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 673 case 1: // Old value with implicit comdat. 674 case 16: 675 return GlobalValue::WeakAnyLinkage; 676 case 10: // Old value with implicit comdat. 677 case 17: 678 return GlobalValue::WeakODRLinkage; 679 case 4: // Old value with implicit comdat. 680 case 18: 681 return GlobalValue::LinkOnceAnyLinkage; 682 case 11: // Old value with implicit comdat. 683 case 19: 684 return GlobalValue::LinkOnceODRLinkage; 685 } 686 } 687 688 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 689 switch (Val) { 690 default: // Map unknown visibilities to default. 691 case 0: return GlobalValue::DefaultVisibility; 692 case 1: return GlobalValue::HiddenVisibility; 693 case 2: return GlobalValue::ProtectedVisibility; 694 } 695 } 696 697 static GlobalValue::DLLStorageClassTypes 698 getDecodedDLLStorageClass(unsigned Val) { 699 switch (Val) { 700 default: // Map unknown values to default. 701 case 0: return GlobalValue::DefaultStorageClass; 702 case 1: return GlobalValue::DLLImportStorageClass; 703 case 2: return GlobalValue::DLLExportStorageClass; 704 } 705 } 706 707 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 708 switch (Val) { 709 case 0: return GlobalVariable::NotThreadLocal; 710 default: // Map unknown non-zero value to general dynamic. 711 case 1: return GlobalVariable::GeneralDynamicTLSModel; 712 case 2: return GlobalVariable::LocalDynamicTLSModel; 713 case 3: return GlobalVariable::InitialExecTLSModel; 714 case 4: return GlobalVariable::LocalExecTLSModel; 715 } 716 } 717 718 static int getDecodedCastOpcode(unsigned Val) { 719 switch (Val) { 720 default: return -1; 721 case bitc::CAST_TRUNC : return Instruction::Trunc; 722 case bitc::CAST_ZEXT : return Instruction::ZExt; 723 case bitc::CAST_SEXT : return Instruction::SExt; 724 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 725 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 726 case bitc::CAST_UITOFP : return Instruction::UIToFP; 727 case bitc::CAST_SITOFP : return Instruction::SIToFP; 728 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 729 case bitc::CAST_FPEXT : return Instruction::FPExt; 730 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 731 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 732 case bitc::CAST_BITCAST : return Instruction::BitCast; 733 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 734 } 735 } 736 737 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 738 bool IsFP = Ty->isFPOrFPVectorTy(); 739 // BinOps are only valid for int/fp or vector of int/fp types 740 if (!IsFP && !Ty->isIntOrIntVectorTy()) 741 return -1; 742 743 switch (Val) { 744 default: 745 return -1; 746 case bitc::BINOP_ADD: 747 return IsFP ? Instruction::FAdd : Instruction::Add; 748 case bitc::BINOP_SUB: 749 return IsFP ? Instruction::FSub : Instruction::Sub; 750 case bitc::BINOP_MUL: 751 return IsFP ? Instruction::FMul : Instruction::Mul; 752 case bitc::BINOP_UDIV: 753 return IsFP ? -1 : Instruction::UDiv; 754 case bitc::BINOP_SDIV: 755 return IsFP ? Instruction::FDiv : Instruction::SDiv; 756 case bitc::BINOP_UREM: 757 return IsFP ? -1 : Instruction::URem; 758 case bitc::BINOP_SREM: 759 return IsFP ? Instruction::FRem : Instruction::SRem; 760 case bitc::BINOP_SHL: 761 return IsFP ? -1 : Instruction::Shl; 762 case bitc::BINOP_LSHR: 763 return IsFP ? -1 : Instruction::LShr; 764 case bitc::BINOP_ASHR: 765 return IsFP ? -1 : Instruction::AShr; 766 case bitc::BINOP_AND: 767 return IsFP ? -1 : Instruction::And; 768 case bitc::BINOP_OR: 769 return IsFP ? -1 : Instruction::Or; 770 case bitc::BINOP_XOR: 771 return IsFP ? -1 : Instruction::Xor; 772 } 773 } 774 775 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 776 switch (Val) { 777 default: return AtomicRMWInst::BAD_BINOP; 778 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 779 case bitc::RMW_ADD: return AtomicRMWInst::Add; 780 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 781 case bitc::RMW_AND: return AtomicRMWInst::And; 782 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 783 case bitc::RMW_OR: return AtomicRMWInst::Or; 784 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 785 case bitc::RMW_MAX: return AtomicRMWInst::Max; 786 case bitc::RMW_MIN: return AtomicRMWInst::Min; 787 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 788 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 789 } 790 } 791 792 static AtomicOrdering getDecodedOrdering(unsigned Val) { 793 switch (Val) { 794 case bitc::ORDERING_NOTATOMIC: return NotAtomic; 795 case bitc::ORDERING_UNORDERED: return Unordered; 796 case bitc::ORDERING_MONOTONIC: return Monotonic; 797 case bitc::ORDERING_ACQUIRE: return Acquire; 798 case bitc::ORDERING_RELEASE: return Release; 799 case bitc::ORDERING_ACQREL: return AcquireRelease; 800 default: // Map unknown orderings to sequentially-consistent. 801 case bitc::ORDERING_SEQCST: return SequentiallyConsistent; 802 } 803 } 804 805 static SynchronizationScope getDecodedSynchScope(unsigned Val) { 806 switch (Val) { 807 case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread; 808 default: // Map unknown scopes to cross-thread. 809 case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread; 810 } 811 } 812 813 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 814 switch (Val) { 815 default: // Map unknown selection kinds to any. 816 case bitc::COMDAT_SELECTION_KIND_ANY: 817 return Comdat::Any; 818 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 819 return Comdat::ExactMatch; 820 case bitc::COMDAT_SELECTION_KIND_LARGEST: 821 return Comdat::Largest; 822 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 823 return Comdat::NoDuplicates; 824 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 825 return Comdat::SameSize; 826 } 827 } 828 829 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 830 FastMathFlags FMF; 831 if (0 != (Val & FastMathFlags::UnsafeAlgebra)) 832 FMF.setUnsafeAlgebra(); 833 if (0 != (Val & FastMathFlags::NoNaNs)) 834 FMF.setNoNaNs(); 835 if (0 != (Val & FastMathFlags::NoInfs)) 836 FMF.setNoInfs(); 837 if (0 != (Val & FastMathFlags::NoSignedZeros)) 838 FMF.setNoSignedZeros(); 839 if (0 != (Val & FastMathFlags::AllowReciprocal)) 840 FMF.setAllowReciprocal(); 841 return FMF; 842 } 843 844 static void upgradeDLLImportExportLinkage(llvm::GlobalValue *GV, unsigned Val) { 845 switch (Val) { 846 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 847 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 848 } 849 } 850 851 namespace llvm { 852 namespace { 853 /// \brief A class for maintaining the slot number definition 854 /// as a placeholder for the actual definition for forward constants defs. 855 class ConstantPlaceHolder : public ConstantExpr { 856 void operator=(const ConstantPlaceHolder &) = delete; 857 858 public: 859 // allocate space for exactly one operand 860 void *operator new(size_t s) { return User::operator new(s, 1); } 861 explicit ConstantPlaceHolder(Type *Ty, LLVMContext &Context) 862 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) { 863 Op<0>() = UndefValue::get(Type::getInt32Ty(Context)); 864 } 865 866 /// \brief Methods to support type inquiry through isa, cast, and dyn_cast. 867 static bool classof(const Value *V) { 868 return isa<ConstantExpr>(V) && 869 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1; 870 } 871 872 /// Provide fast operand accessors 873 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 874 }; 875 } 876 877 // FIXME: can we inherit this from ConstantExpr? 878 template <> 879 struct OperandTraits<ConstantPlaceHolder> : 880 public FixedNumOperandTraits<ConstantPlaceHolder, 1> { 881 }; 882 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value) 883 } 884 885 void BitcodeReaderValueList::assignValue(Value *V, unsigned Idx) { 886 if (Idx == size()) { 887 push_back(V); 888 return; 889 } 890 891 if (Idx >= size()) 892 resize(Idx+1); 893 894 WeakVH &OldV = ValuePtrs[Idx]; 895 if (!OldV) { 896 OldV = V; 897 return; 898 } 899 900 // Handle constants and non-constants (e.g. instrs) differently for 901 // efficiency. 902 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) { 903 ResolveConstants.push_back(std::make_pair(PHC, Idx)); 904 OldV = V; 905 } else { 906 // If there was a forward reference to this value, replace it. 907 Value *PrevVal = OldV; 908 OldV->replaceAllUsesWith(V); 909 delete PrevVal; 910 } 911 912 return; 913 } 914 915 916 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, 917 Type *Ty) { 918 if (Idx >= size()) 919 resize(Idx + 1); 920 921 if (Value *V = ValuePtrs[Idx]) { 922 if (Ty != V->getType()) 923 report_fatal_error("Type mismatch in constant table!"); 924 return cast<Constant>(V); 925 } 926 927 // Create and return a placeholder, which will later be RAUW'd. 928 Constant *C = new ConstantPlaceHolder(Ty, Context); 929 ValuePtrs[Idx] = C; 930 return C; 931 } 932 933 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) { 934 // Bail out for a clearly invalid value. This would make us call resize(0) 935 if (Idx == UINT_MAX) 936 return nullptr; 937 938 if (Idx >= size()) 939 resize(Idx + 1); 940 941 if (Value *V = ValuePtrs[Idx]) { 942 // If the types don't match, it's invalid. 943 if (Ty && Ty != V->getType()) 944 return nullptr; 945 return V; 946 } 947 948 // No type specified, must be invalid reference. 949 if (!Ty) return nullptr; 950 951 // Create and return a placeholder, which will later be RAUW'd. 952 Value *V = new Argument(Ty); 953 ValuePtrs[Idx] = V; 954 return V; 955 } 956 957 /// Once all constants are read, this method bulk resolves any forward 958 /// references. The idea behind this is that we sometimes get constants (such 959 /// as large arrays) which reference *many* forward ref constants. Replacing 960 /// each of these causes a lot of thrashing when building/reuniquing the 961 /// constant. Instead of doing this, we look at all the uses and rewrite all 962 /// the place holders at once for any constant that uses a placeholder. 963 void BitcodeReaderValueList::resolveConstantForwardRefs() { 964 // Sort the values by-pointer so that they are efficient to look up with a 965 // binary search. 966 std::sort(ResolveConstants.begin(), ResolveConstants.end()); 967 968 SmallVector<Constant*, 64> NewOps; 969 970 while (!ResolveConstants.empty()) { 971 Value *RealVal = operator[](ResolveConstants.back().second); 972 Constant *Placeholder = ResolveConstants.back().first; 973 ResolveConstants.pop_back(); 974 975 // Loop over all users of the placeholder, updating them to reference the 976 // new value. If they reference more than one placeholder, update them all 977 // at once. 978 while (!Placeholder->use_empty()) { 979 auto UI = Placeholder->user_begin(); 980 User *U = *UI; 981 982 // If the using object isn't uniqued, just update the operands. This 983 // handles instructions and initializers for global variables. 984 if (!isa<Constant>(U) || isa<GlobalValue>(U)) { 985 UI.getUse().set(RealVal); 986 continue; 987 } 988 989 // Otherwise, we have a constant that uses the placeholder. Replace that 990 // constant with a new constant that has *all* placeholder uses updated. 991 Constant *UserC = cast<Constant>(U); 992 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end(); 993 I != E; ++I) { 994 Value *NewOp; 995 if (!isa<ConstantPlaceHolder>(*I)) { 996 // Not a placeholder reference. 997 NewOp = *I; 998 } else if (*I == Placeholder) { 999 // Common case is that it just references this one placeholder. 1000 NewOp = RealVal; 1001 } else { 1002 // Otherwise, look up the placeholder in ResolveConstants. 1003 ResolveConstantsTy::iterator It = 1004 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(), 1005 std::pair<Constant*, unsigned>(cast<Constant>(*I), 1006 0)); 1007 assert(It != ResolveConstants.end() && It->first == *I); 1008 NewOp = operator[](It->second); 1009 } 1010 1011 NewOps.push_back(cast<Constant>(NewOp)); 1012 } 1013 1014 // Make the new constant. 1015 Constant *NewC; 1016 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) { 1017 NewC = ConstantArray::get(UserCA->getType(), NewOps); 1018 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) { 1019 NewC = ConstantStruct::get(UserCS->getType(), NewOps); 1020 } else if (isa<ConstantVector>(UserC)) { 1021 NewC = ConstantVector::get(NewOps); 1022 } else { 1023 assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr."); 1024 NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps); 1025 } 1026 1027 UserC->replaceAllUsesWith(NewC); 1028 UserC->destroyConstant(); 1029 NewOps.clear(); 1030 } 1031 1032 // Update all ValueHandles, they should be the only users at this point. 1033 Placeholder->replaceAllUsesWith(RealVal); 1034 delete Placeholder; 1035 } 1036 } 1037 1038 void BitcodeReaderMDValueList::assignValue(Metadata *MD, unsigned Idx) { 1039 if (Idx == size()) { 1040 push_back(MD); 1041 return; 1042 } 1043 1044 if (Idx >= size()) 1045 resize(Idx+1); 1046 1047 TrackingMDRef &OldMD = MDValuePtrs[Idx]; 1048 if (!OldMD) { 1049 OldMD.reset(MD); 1050 return; 1051 } 1052 1053 // If there was a forward reference to this value, replace it. 1054 TempMDTuple PrevMD(cast<MDTuple>(OldMD.get())); 1055 PrevMD->replaceAllUsesWith(MD); 1056 --NumFwdRefs; 1057 } 1058 1059 Metadata *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) { 1060 if (Idx >= size()) 1061 resize(Idx + 1); 1062 1063 if (Metadata *MD = MDValuePtrs[Idx]) 1064 return MD; 1065 1066 // Track forward refs to be resolved later. 1067 if (AnyFwdRefs) { 1068 MinFwdRef = std::min(MinFwdRef, Idx); 1069 MaxFwdRef = std::max(MaxFwdRef, Idx); 1070 } else { 1071 AnyFwdRefs = true; 1072 MinFwdRef = MaxFwdRef = Idx; 1073 } 1074 ++NumFwdRefs; 1075 1076 // Create and return a placeholder, which will later be RAUW'd. 1077 Metadata *MD = MDNode::getTemporary(Context, None).release(); 1078 MDValuePtrs[Idx].reset(MD); 1079 return MD; 1080 } 1081 1082 void BitcodeReaderMDValueList::tryToResolveCycles() { 1083 if (!AnyFwdRefs) 1084 // Nothing to do. 1085 return; 1086 1087 if (NumFwdRefs) 1088 // Still forward references... can't resolve cycles. 1089 return; 1090 1091 // Resolve any cycles. 1092 for (unsigned I = MinFwdRef, E = MaxFwdRef + 1; I != E; ++I) { 1093 auto &MD = MDValuePtrs[I]; 1094 auto *N = dyn_cast_or_null<MDNode>(MD); 1095 if (!N) 1096 continue; 1097 1098 assert(!N->isTemporary() && "Unexpected forward reference"); 1099 N->resolveCycles(); 1100 } 1101 1102 // Make sure we return early again until there's another forward ref. 1103 AnyFwdRefs = false; 1104 } 1105 1106 Type *BitcodeReader::getTypeByID(unsigned ID) { 1107 // The type table size is always specified correctly. 1108 if (ID >= TypeList.size()) 1109 return nullptr; 1110 1111 if (Type *Ty = TypeList[ID]) 1112 return Ty; 1113 1114 // If we have a forward reference, the only possible case is when it is to a 1115 // named struct. Just create a placeholder for now. 1116 return TypeList[ID] = createIdentifiedStructType(Context); 1117 } 1118 1119 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1120 StringRef Name) { 1121 auto *Ret = StructType::create(Context, Name); 1122 IdentifiedStructTypes.push_back(Ret); 1123 return Ret; 1124 } 1125 1126 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1127 auto *Ret = StructType::create(Context); 1128 IdentifiedStructTypes.push_back(Ret); 1129 return Ret; 1130 } 1131 1132 1133 //===----------------------------------------------------------------------===// 1134 // Functions for parsing blocks from the bitcode file 1135 //===----------------------------------------------------------------------===// 1136 1137 1138 /// \brief This fills an AttrBuilder object with the LLVM attributes that have 1139 /// been decoded from the given integer. This function must stay in sync with 1140 /// 'encodeLLVMAttributesForBitcode'. 1141 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1142 uint64_t EncodedAttrs) { 1143 // FIXME: Remove in 4.0. 1144 1145 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1146 // the bits above 31 down by 11 bits. 1147 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1148 assert((!Alignment || isPowerOf2_32(Alignment)) && 1149 "Alignment must be a power of two."); 1150 1151 if (Alignment) 1152 B.addAlignmentAttr(Alignment); 1153 B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1154 (EncodedAttrs & 0xffff)); 1155 } 1156 1157 std::error_code BitcodeReader::parseAttributeBlock() { 1158 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1159 return error("Invalid record"); 1160 1161 if (!MAttributes.empty()) 1162 return error("Invalid multiple blocks"); 1163 1164 SmallVector<uint64_t, 64> Record; 1165 1166 SmallVector<AttributeSet, 8> Attrs; 1167 1168 // Read all the records. 1169 while (1) { 1170 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1171 1172 switch (Entry.Kind) { 1173 case BitstreamEntry::SubBlock: // Handled for us already. 1174 case BitstreamEntry::Error: 1175 return error("Malformed block"); 1176 case BitstreamEntry::EndBlock: 1177 return std::error_code(); 1178 case BitstreamEntry::Record: 1179 // The interesting case. 1180 break; 1181 } 1182 1183 // Read a record. 1184 Record.clear(); 1185 switch (Stream.readRecord(Entry.ID, Record)) { 1186 default: // Default behavior: ignore. 1187 break; 1188 case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...] 1189 // FIXME: Remove in 4.0. 1190 if (Record.size() & 1) 1191 return error("Invalid record"); 1192 1193 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1194 AttrBuilder B; 1195 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1196 Attrs.push_back(AttributeSet::get(Context, Record[i], B)); 1197 } 1198 1199 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1200 Attrs.clear(); 1201 break; 1202 } 1203 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...] 1204 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1205 Attrs.push_back(MAttributeGroups[Record[i]]); 1206 1207 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1208 Attrs.clear(); 1209 break; 1210 } 1211 } 1212 } 1213 } 1214 1215 // Returns Attribute::None on unrecognized codes. 1216 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1217 switch (Code) { 1218 default: 1219 return Attribute::None; 1220 case bitc::ATTR_KIND_ALIGNMENT: 1221 return Attribute::Alignment; 1222 case bitc::ATTR_KIND_ALWAYS_INLINE: 1223 return Attribute::AlwaysInline; 1224 case bitc::ATTR_KIND_ARGMEMONLY: 1225 return Attribute::ArgMemOnly; 1226 case bitc::ATTR_KIND_BUILTIN: 1227 return Attribute::Builtin; 1228 case bitc::ATTR_KIND_BY_VAL: 1229 return Attribute::ByVal; 1230 case bitc::ATTR_KIND_IN_ALLOCA: 1231 return Attribute::InAlloca; 1232 case bitc::ATTR_KIND_COLD: 1233 return Attribute::Cold; 1234 case bitc::ATTR_KIND_CONVERGENT: 1235 return Attribute::Convergent; 1236 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 1237 return Attribute::InaccessibleMemOnly; 1238 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 1239 return Attribute::InaccessibleMemOrArgMemOnly; 1240 case bitc::ATTR_KIND_INLINE_HINT: 1241 return Attribute::InlineHint; 1242 case bitc::ATTR_KIND_IN_REG: 1243 return Attribute::InReg; 1244 case bitc::ATTR_KIND_JUMP_TABLE: 1245 return Attribute::JumpTable; 1246 case bitc::ATTR_KIND_MIN_SIZE: 1247 return Attribute::MinSize; 1248 case bitc::ATTR_KIND_NAKED: 1249 return Attribute::Naked; 1250 case bitc::ATTR_KIND_NEST: 1251 return Attribute::Nest; 1252 case bitc::ATTR_KIND_NO_ALIAS: 1253 return Attribute::NoAlias; 1254 case bitc::ATTR_KIND_NO_BUILTIN: 1255 return Attribute::NoBuiltin; 1256 case bitc::ATTR_KIND_NO_CAPTURE: 1257 return Attribute::NoCapture; 1258 case bitc::ATTR_KIND_NO_DUPLICATE: 1259 return Attribute::NoDuplicate; 1260 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1261 return Attribute::NoImplicitFloat; 1262 case bitc::ATTR_KIND_NO_INLINE: 1263 return Attribute::NoInline; 1264 case bitc::ATTR_KIND_NO_RECURSE: 1265 return Attribute::NoRecurse; 1266 case bitc::ATTR_KIND_NON_LAZY_BIND: 1267 return Attribute::NonLazyBind; 1268 case bitc::ATTR_KIND_NON_NULL: 1269 return Attribute::NonNull; 1270 case bitc::ATTR_KIND_DEREFERENCEABLE: 1271 return Attribute::Dereferenceable; 1272 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1273 return Attribute::DereferenceableOrNull; 1274 case bitc::ATTR_KIND_NO_RED_ZONE: 1275 return Attribute::NoRedZone; 1276 case bitc::ATTR_KIND_NO_RETURN: 1277 return Attribute::NoReturn; 1278 case bitc::ATTR_KIND_NO_UNWIND: 1279 return Attribute::NoUnwind; 1280 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1281 return Attribute::OptimizeForSize; 1282 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1283 return Attribute::OptimizeNone; 1284 case bitc::ATTR_KIND_READ_NONE: 1285 return Attribute::ReadNone; 1286 case bitc::ATTR_KIND_READ_ONLY: 1287 return Attribute::ReadOnly; 1288 case bitc::ATTR_KIND_RETURNED: 1289 return Attribute::Returned; 1290 case bitc::ATTR_KIND_RETURNS_TWICE: 1291 return Attribute::ReturnsTwice; 1292 case bitc::ATTR_KIND_S_EXT: 1293 return Attribute::SExt; 1294 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1295 return Attribute::StackAlignment; 1296 case bitc::ATTR_KIND_STACK_PROTECT: 1297 return Attribute::StackProtect; 1298 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1299 return Attribute::StackProtectReq; 1300 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1301 return Attribute::StackProtectStrong; 1302 case bitc::ATTR_KIND_SAFESTACK: 1303 return Attribute::SafeStack; 1304 case bitc::ATTR_KIND_STRUCT_RET: 1305 return Attribute::StructRet; 1306 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1307 return Attribute::SanitizeAddress; 1308 case bitc::ATTR_KIND_SANITIZE_THREAD: 1309 return Attribute::SanitizeThread; 1310 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1311 return Attribute::SanitizeMemory; 1312 case bitc::ATTR_KIND_UW_TABLE: 1313 return Attribute::UWTable; 1314 case bitc::ATTR_KIND_Z_EXT: 1315 return Attribute::ZExt; 1316 } 1317 } 1318 1319 std::error_code BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1320 unsigned &Alignment) { 1321 // Note: Alignment in bitcode files is incremented by 1, so that zero 1322 // can be used for default alignment. 1323 if (Exponent > Value::MaxAlignmentExponent + 1) 1324 return error("Invalid alignment value"); 1325 Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1; 1326 return std::error_code(); 1327 } 1328 1329 std::error_code BitcodeReader::parseAttrKind(uint64_t Code, 1330 Attribute::AttrKind *Kind) { 1331 *Kind = getAttrFromCode(Code); 1332 if (*Kind == Attribute::None) 1333 return error(BitcodeError::CorruptedBitcode, 1334 "Unknown attribute kind (" + Twine(Code) + ")"); 1335 return std::error_code(); 1336 } 1337 1338 std::error_code BitcodeReader::parseAttributeGroupBlock() { 1339 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1340 return error("Invalid record"); 1341 1342 if (!MAttributeGroups.empty()) 1343 return error("Invalid multiple blocks"); 1344 1345 SmallVector<uint64_t, 64> Record; 1346 1347 // Read all the records. 1348 while (1) { 1349 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1350 1351 switch (Entry.Kind) { 1352 case BitstreamEntry::SubBlock: // Handled for us already. 1353 case BitstreamEntry::Error: 1354 return error("Malformed block"); 1355 case BitstreamEntry::EndBlock: 1356 return std::error_code(); 1357 case BitstreamEntry::Record: 1358 // The interesting case. 1359 break; 1360 } 1361 1362 // Read a record. 1363 Record.clear(); 1364 switch (Stream.readRecord(Entry.ID, Record)) { 1365 default: // Default behavior: ignore. 1366 break; 1367 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1368 if (Record.size() < 3) 1369 return error("Invalid record"); 1370 1371 uint64_t GrpID = Record[0]; 1372 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1373 1374 AttrBuilder B; 1375 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1376 if (Record[i] == 0) { // Enum attribute 1377 Attribute::AttrKind Kind; 1378 if (std::error_code EC = parseAttrKind(Record[++i], &Kind)) 1379 return EC; 1380 1381 B.addAttribute(Kind); 1382 } else if (Record[i] == 1) { // Integer attribute 1383 Attribute::AttrKind Kind; 1384 if (std::error_code EC = parseAttrKind(Record[++i], &Kind)) 1385 return EC; 1386 if (Kind == Attribute::Alignment) 1387 B.addAlignmentAttr(Record[++i]); 1388 else if (Kind == Attribute::StackAlignment) 1389 B.addStackAlignmentAttr(Record[++i]); 1390 else if (Kind == Attribute::Dereferenceable) 1391 B.addDereferenceableAttr(Record[++i]); 1392 else if (Kind == Attribute::DereferenceableOrNull) 1393 B.addDereferenceableOrNullAttr(Record[++i]); 1394 } else { // String attribute 1395 assert((Record[i] == 3 || Record[i] == 4) && 1396 "Invalid attribute group entry"); 1397 bool HasValue = (Record[i++] == 4); 1398 SmallString<64> KindStr; 1399 SmallString<64> ValStr; 1400 1401 while (Record[i] != 0 && i != e) 1402 KindStr += Record[i++]; 1403 assert(Record[i] == 0 && "Kind string not null terminated"); 1404 1405 if (HasValue) { 1406 // Has a value associated with it. 1407 ++i; // Skip the '0' that terminates the "kind" string. 1408 while (Record[i] != 0 && i != e) 1409 ValStr += Record[i++]; 1410 assert(Record[i] == 0 && "Value string not null terminated"); 1411 } 1412 1413 B.addAttribute(KindStr.str(), ValStr.str()); 1414 } 1415 } 1416 1417 MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B); 1418 break; 1419 } 1420 } 1421 } 1422 } 1423 1424 std::error_code BitcodeReader::parseTypeTable() { 1425 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1426 return error("Invalid record"); 1427 1428 return parseTypeTableBody(); 1429 } 1430 1431 std::error_code BitcodeReader::parseTypeTableBody() { 1432 if (!TypeList.empty()) 1433 return error("Invalid multiple blocks"); 1434 1435 SmallVector<uint64_t, 64> Record; 1436 unsigned NumRecords = 0; 1437 1438 SmallString<64> TypeName; 1439 1440 // Read all the records for this type table. 1441 while (1) { 1442 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1443 1444 switch (Entry.Kind) { 1445 case BitstreamEntry::SubBlock: // Handled for us already. 1446 case BitstreamEntry::Error: 1447 return error("Malformed block"); 1448 case BitstreamEntry::EndBlock: 1449 if (NumRecords != TypeList.size()) 1450 return error("Malformed block"); 1451 return std::error_code(); 1452 case BitstreamEntry::Record: 1453 // The interesting case. 1454 break; 1455 } 1456 1457 // Read a record. 1458 Record.clear(); 1459 Type *ResultTy = nullptr; 1460 switch (Stream.readRecord(Entry.ID, Record)) { 1461 default: 1462 return error("Invalid value"); 1463 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1464 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1465 // type list. This allows us to reserve space. 1466 if (Record.size() < 1) 1467 return error("Invalid record"); 1468 TypeList.resize(Record[0]); 1469 continue; 1470 case bitc::TYPE_CODE_VOID: // VOID 1471 ResultTy = Type::getVoidTy(Context); 1472 break; 1473 case bitc::TYPE_CODE_HALF: // HALF 1474 ResultTy = Type::getHalfTy(Context); 1475 break; 1476 case bitc::TYPE_CODE_FLOAT: // FLOAT 1477 ResultTy = Type::getFloatTy(Context); 1478 break; 1479 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1480 ResultTy = Type::getDoubleTy(Context); 1481 break; 1482 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1483 ResultTy = Type::getX86_FP80Ty(Context); 1484 break; 1485 case bitc::TYPE_CODE_FP128: // FP128 1486 ResultTy = Type::getFP128Ty(Context); 1487 break; 1488 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1489 ResultTy = Type::getPPC_FP128Ty(Context); 1490 break; 1491 case bitc::TYPE_CODE_LABEL: // LABEL 1492 ResultTy = Type::getLabelTy(Context); 1493 break; 1494 case bitc::TYPE_CODE_METADATA: // METADATA 1495 ResultTy = Type::getMetadataTy(Context); 1496 break; 1497 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1498 ResultTy = Type::getX86_MMXTy(Context); 1499 break; 1500 case bitc::TYPE_CODE_TOKEN: // TOKEN 1501 ResultTy = Type::getTokenTy(Context); 1502 break; 1503 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1504 if (Record.size() < 1) 1505 return error("Invalid record"); 1506 1507 uint64_t NumBits = Record[0]; 1508 if (NumBits < IntegerType::MIN_INT_BITS || 1509 NumBits > IntegerType::MAX_INT_BITS) 1510 return error("Bitwidth for integer type out of range"); 1511 ResultTy = IntegerType::get(Context, NumBits); 1512 break; 1513 } 1514 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1515 // [pointee type, address space] 1516 if (Record.size() < 1) 1517 return error("Invalid record"); 1518 unsigned AddressSpace = 0; 1519 if (Record.size() == 2) 1520 AddressSpace = Record[1]; 1521 ResultTy = getTypeByID(Record[0]); 1522 if (!ResultTy || 1523 !PointerType::isValidElementType(ResultTy)) 1524 return error("Invalid type"); 1525 ResultTy = PointerType::get(ResultTy, AddressSpace); 1526 break; 1527 } 1528 case bitc::TYPE_CODE_FUNCTION_OLD: { 1529 // FIXME: attrid is dead, remove it in LLVM 4.0 1530 // FUNCTION: [vararg, attrid, retty, paramty x N] 1531 if (Record.size() < 3) 1532 return error("Invalid record"); 1533 SmallVector<Type*, 8> ArgTys; 1534 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1535 if (Type *T = getTypeByID(Record[i])) 1536 ArgTys.push_back(T); 1537 else 1538 break; 1539 } 1540 1541 ResultTy = getTypeByID(Record[2]); 1542 if (!ResultTy || ArgTys.size() < Record.size()-3) 1543 return error("Invalid type"); 1544 1545 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1546 break; 1547 } 1548 case bitc::TYPE_CODE_FUNCTION: { 1549 // FUNCTION: [vararg, retty, paramty x N] 1550 if (Record.size() < 2) 1551 return error("Invalid record"); 1552 SmallVector<Type*, 8> ArgTys; 1553 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1554 if (Type *T = getTypeByID(Record[i])) { 1555 if (!FunctionType::isValidArgumentType(T)) 1556 return error("Invalid function argument type"); 1557 ArgTys.push_back(T); 1558 } 1559 else 1560 break; 1561 } 1562 1563 ResultTy = getTypeByID(Record[1]); 1564 if (!ResultTy || ArgTys.size() < Record.size()-2) 1565 return error("Invalid type"); 1566 1567 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1568 break; 1569 } 1570 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1571 if (Record.size() < 1) 1572 return error("Invalid record"); 1573 SmallVector<Type*, 8> EltTys; 1574 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1575 if (Type *T = getTypeByID(Record[i])) 1576 EltTys.push_back(T); 1577 else 1578 break; 1579 } 1580 if (EltTys.size() != Record.size()-1) 1581 return error("Invalid type"); 1582 ResultTy = StructType::get(Context, EltTys, Record[0]); 1583 break; 1584 } 1585 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1586 if (convertToString(Record, 0, TypeName)) 1587 return error("Invalid record"); 1588 continue; 1589 1590 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1591 if (Record.size() < 1) 1592 return error("Invalid record"); 1593 1594 if (NumRecords >= TypeList.size()) 1595 return error("Invalid TYPE table"); 1596 1597 // Check to see if this was forward referenced, if so fill in the temp. 1598 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1599 if (Res) { 1600 Res->setName(TypeName); 1601 TypeList[NumRecords] = nullptr; 1602 } else // Otherwise, create a new struct. 1603 Res = createIdentifiedStructType(Context, TypeName); 1604 TypeName.clear(); 1605 1606 SmallVector<Type*, 8> EltTys; 1607 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1608 if (Type *T = getTypeByID(Record[i])) 1609 EltTys.push_back(T); 1610 else 1611 break; 1612 } 1613 if (EltTys.size() != Record.size()-1) 1614 return error("Invalid record"); 1615 Res->setBody(EltTys, Record[0]); 1616 ResultTy = Res; 1617 break; 1618 } 1619 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1620 if (Record.size() != 1) 1621 return error("Invalid record"); 1622 1623 if (NumRecords >= TypeList.size()) 1624 return error("Invalid TYPE table"); 1625 1626 // Check to see if this was forward referenced, if so fill in the temp. 1627 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1628 if (Res) { 1629 Res->setName(TypeName); 1630 TypeList[NumRecords] = nullptr; 1631 } else // Otherwise, create a new struct with no body. 1632 Res = createIdentifiedStructType(Context, TypeName); 1633 TypeName.clear(); 1634 ResultTy = Res; 1635 break; 1636 } 1637 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1638 if (Record.size() < 2) 1639 return error("Invalid record"); 1640 ResultTy = getTypeByID(Record[1]); 1641 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1642 return error("Invalid type"); 1643 ResultTy = ArrayType::get(ResultTy, Record[0]); 1644 break; 1645 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 1646 if (Record.size() < 2) 1647 return error("Invalid record"); 1648 if (Record[0] == 0) 1649 return error("Invalid vector length"); 1650 ResultTy = getTypeByID(Record[1]); 1651 if (!ResultTy || !StructType::isValidElementType(ResultTy)) 1652 return error("Invalid type"); 1653 ResultTy = VectorType::get(ResultTy, Record[0]); 1654 break; 1655 } 1656 1657 if (NumRecords >= TypeList.size()) 1658 return error("Invalid TYPE table"); 1659 if (TypeList[NumRecords]) 1660 return error( 1661 "Invalid TYPE table: Only named structs can be forward referenced"); 1662 assert(ResultTy && "Didn't read a type?"); 1663 TypeList[NumRecords++] = ResultTy; 1664 } 1665 } 1666 1667 std::error_code BitcodeReader::parseOperandBundleTags() { 1668 if (Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 1669 return error("Invalid record"); 1670 1671 if (!BundleTags.empty()) 1672 return error("Invalid multiple blocks"); 1673 1674 SmallVector<uint64_t, 64> Record; 1675 1676 while (1) { 1677 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1678 1679 switch (Entry.Kind) { 1680 case BitstreamEntry::SubBlock: // Handled for us already. 1681 case BitstreamEntry::Error: 1682 return error("Malformed block"); 1683 case BitstreamEntry::EndBlock: 1684 return std::error_code(); 1685 case BitstreamEntry::Record: 1686 // The interesting case. 1687 break; 1688 } 1689 1690 // Tags are implicitly mapped to integers by their order. 1691 1692 if (Stream.readRecord(Entry.ID, Record) != bitc::OPERAND_BUNDLE_TAG) 1693 return error("Invalid record"); 1694 1695 // OPERAND_BUNDLE_TAG: [strchr x N] 1696 BundleTags.emplace_back(); 1697 if (convertToString(Record, 0, BundleTags.back())) 1698 return error("Invalid record"); 1699 Record.clear(); 1700 } 1701 } 1702 1703 /// Associate a value with its name from the given index in the provided record. 1704 ErrorOr<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 1705 unsigned NameIndex, Triple &TT) { 1706 SmallString<128> ValueName; 1707 if (convertToString(Record, NameIndex, ValueName)) 1708 return error("Invalid record"); 1709 unsigned ValueID = Record[0]; 1710 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 1711 return error("Invalid record"); 1712 Value *V = ValueList[ValueID]; 1713 1714 StringRef NameStr(ValueName.data(), ValueName.size()); 1715 if (NameStr.find_first_of(0) != StringRef::npos) 1716 return error("Invalid value name"); 1717 V->setName(NameStr); 1718 auto *GO = dyn_cast<GlobalObject>(V); 1719 if (GO) { 1720 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 1721 if (TT.isOSBinFormatMachO()) 1722 GO->setComdat(nullptr); 1723 else 1724 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 1725 } 1726 } 1727 return V; 1728 } 1729 1730 /// Parse the value symbol table at either the current parsing location or 1731 /// at the given bit offset if provided. 1732 std::error_code BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 1733 uint64_t CurrentBit; 1734 // Pass in the Offset to distinguish between calling for the module-level 1735 // VST (where we want to jump to the VST offset) and the function-level 1736 // VST (where we don't). 1737 if (Offset > 0) { 1738 // Save the current parsing location so we can jump back at the end 1739 // of the VST read. 1740 CurrentBit = Stream.GetCurrentBitNo(); 1741 Stream.JumpToBit(Offset * 32); 1742 #ifndef NDEBUG 1743 // Do some checking if we are in debug mode. 1744 BitstreamEntry Entry = Stream.advance(); 1745 assert(Entry.Kind == BitstreamEntry::SubBlock); 1746 assert(Entry.ID == bitc::VALUE_SYMTAB_BLOCK_ID); 1747 #else 1748 // In NDEBUG mode ignore the output so we don't get an unused variable 1749 // warning. 1750 Stream.advance(); 1751 #endif 1752 } 1753 1754 // Compute the delta between the bitcode indices in the VST (the word offset 1755 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 1756 // expected by the lazy reader. The reader's EnterSubBlock expects to have 1757 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 1758 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 1759 // just before entering the VST subblock because: 1) the EnterSubBlock 1760 // changes the AbbrevID width; 2) the VST block is nested within the same 1761 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 1762 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 1763 // jump to the FUNCTION_BLOCK using this offset later, we don't want 1764 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 1765 unsigned FuncBitcodeOffsetDelta = 1766 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 1767 1768 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1769 return error("Invalid record"); 1770 1771 SmallVector<uint64_t, 64> Record; 1772 1773 Triple TT(TheModule->getTargetTriple()); 1774 1775 // Read all the records for this value table. 1776 SmallString<128> ValueName; 1777 while (1) { 1778 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1779 1780 switch (Entry.Kind) { 1781 case BitstreamEntry::SubBlock: // Handled for us already. 1782 case BitstreamEntry::Error: 1783 return error("Malformed block"); 1784 case BitstreamEntry::EndBlock: 1785 if (Offset > 0) 1786 Stream.JumpToBit(CurrentBit); 1787 return std::error_code(); 1788 case BitstreamEntry::Record: 1789 // The interesting case. 1790 break; 1791 } 1792 1793 // Read a record. 1794 Record.clear(); 1795 switch (Stream.readRecord(Entry.ID, Record)) { 1796 default: // Default behavior: unknown type. 1797 break; 1798 case bitc::VST_CODE_ENTRY: { // VST_ENTRY: [valueid, namechar x N] 1799 ErrorOr<Value *> ValOrErr = recordValue(Record, 1, TT); 1800 if (std::error_code EC = ValOrErr.getError()) 1801 return EC; 1802 ValOrErr.get(); 1803 break; 1804 } 1805 case bitc::VST_CODE_FNENTRY: { 1806 // VST_FNENTRY: [valueid, offset, namechar x N] 1807 ErrorOr<Value *> ValOrErr = recordValue(Record, 2, TT); 1808 if (std::error_code EC = ValOrErr.getError()) 1809 return EC; 1810 Value *V = ValOrErr.get(); 1811 1812 auto *GO = dyn_cast<GlobalObject>(V); 1813 if (!GO) { 1814 // If this is an alias, need to get the actual Function object 1815 // it aliases, in order to set up the DeferredFunctionInfo entry below. 1816 auto *GA = dyn_cast<GlobalAlias>(V); 1817 if (GA) 1818 GO = GA->getBaseObject(); 1819 assert(GO); 1820 } 1821 1822 uint64_t FuncWordOffset = Record[1]; 1823 Function *F = dyn_cast<Function>(GO); 1824 assert(F); 1825 uint64_t FuncBitOffset = FuncWordOffset * 32; 1826 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 1827 // Set the LastFunctionBlockBit to point to the last function block. 1828 // Later when parsing is resumed after function materialization, 1829 // we can simply skip that last function block. 1830 if (FuncBitOffset > LastFunctionBlockBit) 1831 LastFunctionBlockBit = FuncBitOffset; 1832 break; 1833 } 1834 case bitc::VST_CODE_BBENTRY: { 1835 if (convertToString(Record, 1, ValueName)) 1836 return error("Invalid record"); 1837 BasicBlock *BB = getBasicBlock(Record[0]); 1838 if (!BB) 1839 return error("Invalid record"); 1840 1841 BB->setName(StringRef(ValueName.data(), ValueName.size())); 1842 ValueName.clear(); 1843 break; 1844 } 1845 } 1846 } 1847 } 1848 1849 /// Parse a single METADATA_KIND record, inserting result in MDKindMap. 1850 std::error_code 1851 BitcodeReader::parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record) { 1852 if (Record.size() < 2) 1853 return error("Invalid record"); 1854 1855 unsigned Kind = Record[0]; 1856 SmallString<8> Name(Record.begin() + 1, Record.end()); 1857 1858 unsigned NewKind = TheModule->getMDKindID(Name.str()); 1859 if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second) 1860 return error("Conflicting METADATA_KIND records"); 1861 return std::error_code(); 1862 } 1863 1864 static int64_t unrotateSign(uint64_t U) { return U & 1 ? ~(U >> 1) : U >> 1; } 1865 1866 /// Parse a METADATA_BLOCK. If ModuleLevel is true then we are parsing 1867 /// module level metadata. 1868 std::error_code BitcodeReader::parseMetadata(bool ModuleLevel) { 1869 IsMetadataMaterialized = true; 1870 unsigned NextMDValueNo = MDValueList.size(); 1871 if (ModuleLevel && SeenModuleValuesRecord) { 1872 // Now that we are parsing the module level metadata, we want to restart 1873 // the numbering of the MD values, and replace temp MD created earlier 1874 // with their real values. If we saw a METADATA_VALUE record then we 1875 // would have set the MDValueList size to the number specified in that 1876 // record, to support parsing function-level metadata first, and we need 1877 // to reset back to 0 to fill the MDValueList in with the parsed module 1878 // The function-level metadata parsing should have reset the MDValueList 1879 // size back to the value reported by the METADATA_VALUE record, saved in 1880 // NumModuleMDs. 1881 assert(NumModuleMDs == MDValueList.size() && 1882 "Expected MDValueList to only contain module level values"); 1883 NextMDValueNo = 0; 1884 } 1885 1886 if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID)) 1887 return error("Invalid record"); 1888 1889 SmallVector<uint64_t, 64> Record; 1890 1891 auto getMD = 1892 [&](unsigned ID) -> Metadata *{ return MDValueList.getValueFwdRef(ID); }; 1893 auto getMDOrNull = [&](unsigned ID) -> Metadata *{ 1894 if (ID) 1895 return getMD(ID - 1); 1896 return nullptr; 1897 }; 1898 auto getMDString = [&](unsigned ID) -> MDString *{ 1899 // This requires that the ID is not really a forward reference. In 1900 // particular, the MDString must already have been resolved. 1901 return cast_or_null<MDString>(getMDOrNull(ID)); 1902 }; 1903 1904 #define GET_OR_DISTINCT(CLASS, DISTINCT, ARGS) \ 1905 (DISTINCT ? CLASS::getDistinct ARGS : CLASS::get ARGS) 1906 1907 // Read all the records. 1908 while (1) { 1909 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1910 1911 switch (Entry.Kind) { 1912 case BitstreamEntry::SubBlock: // Handled for us already. 1913 case BitstreamEntry::Error: 1914 return error("Malformed block"); 1915 case BitstreamEntry::EndBlock: 1916 MDValueList.tryToResolveCycles(); 1917 assert((!(ModuleLevel && SeenModuleValuesRecord) || 1918 NumModuleMDs == MDValueList.size()) && 1919 "Inconsistent bitcode: METADATA_VALUES mismatch"); 1920 return std::error_code(); 1921 case BitstreamEntry::Record: 1922 // The interesting case. 1923 break; 1924 } 1925 1926 // Read a record. 1927 Record.clear(); 1928 unsigned Code = Stream.readRecord(Entry.ID, Record); 1929 bool IsDistinct = false; 1930 switch (Code) { 1931 default: // Default behavior: ignore. 1932 break; 1933 case bitc::METADATA_NAME: { 1934 // Read name of the named metadata. 1935 SmallString<8> Name(Record.begin(), Record.end()); 1936 Record.clear(); 1937 Code = Stream.ReadCode(); 1938 1939 unsigned NextBitCode = Stream.readRecord(Code, Record); 1940 if (NextBitCode != bitc::METADATA_NAMED_NODE) 1941 return error("METADATA_NAME not followed by METADATA_NAMED_NODE"); 1942 1943 // Read named metadata elements. 1944 unsigned Size = Record.size(); 1945 NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name); 1946 for (unsigned i = 0; i != Size; ++i) { 1947 MDNode *MD = dyn_cast_or_null<MDNode>(MDValueList.getValueFwdRef(Record[i])); 1948 if (!MD) 1949 return error("Invalid record"); 1950 NMD->addOperand(MD); 1951 } 1952 break; 1953 } 1954 case bitc::METADATA_OLD_FN_NODE: { 1955 // FIXME: Remove in 4.0. 1956 // This is a LocalAsMetadata record, the only type of function-local 1957 // metadata. 1958 if (Record.size() % 2 == 1) 1959 return error("Invalid record"); 1960 1961 // If this isn't a LocalAsMetadata record, we're dropping it. This used 1962 // to be legal, but there's no upgrade path. 1963 auto dropRecord = [&] { 1964 MDValueList.assignValue(MDNode::get(Context, None), NextMDValueNo++); 1965 }; 1966 if (Record.size() != 2) { 1967 dropRecord(); 1968 break; 1969 } 1970 1971 Type *Ty = getTypeByID(Record[0]); 1972 if (Ty->isMetadataTy() || Ty->isVoidTy()) { 1973 dropRecord(); 1974 break; 1975 } 1976 1977 MDValueList.assignValue( 1978 LocalAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 1979 NextMDValueNo++); 1980 break; 1981 } 1982 case bitc::METADATA_OLD_NODE: { 1983 // FIXME: Remove in 4.0. 1984 if (Record.size() % 2 == 1) 1985 return error("Invalid record"); 1986 1987 unsigned Size = Record.size(); 1988 SmallVector<Metadata *, 8> Elts; 1989 for (unsigned i = 0; i != Size; i += 2) { 1990 Type *Ty = getTypeByID(Record[i]); 1991 if (!Ty) 1992 return error("Invalid record"); 1993 if (Ty->isMetadataTy()) 1994 Elts.push_back(MDValueList.getValueFwdRef(Record[i+1])); 1995 else if (!Ty->isVoidTy()) { 1996 auto *MD = 1997 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty)); 1998 assert(isa<ConstantAsMetadata>(MD) && 1999 "Expected non-function-local metadata"); 2000 Elts.push_back(MD); 2001 } else 2002 Elts.push_back(nullptr); 2003 } 2004 MDValueList.assignValue(MDNode::get(Context, Elts), NextMDValueNo++); 2005 break; 2006 } 2007 case bitc::METADATA_VALUE: { 2008 if (Record.size() != 2) 2009 return error("Invalid record"); 2010 2011 Type *Ty = getTypeByID(Record[0]); 2012 if (Ty->isMetadataTy() || Ty->isVoidTy()) 2013 return error("Invalid record"); 2014 2015 MDValueList.assignValue( 2016 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 2017 NextMDValueNo++); 2018 break; 2019 } 2020 case bitc::METADATA_DISTINCT_NODE: 2021 IsDistinct = true; 2022 // fallthrough... 2023 case bitc::METADATA_NODE: { 2024 SmallVector<Metadata *, 8> Elts; 2025 Elts.reserve(Record.size()); 2026 for (unsigned ID : Record) 2027 Elts.push_back(ID ? MDValueList.getValueFwdRef(ID - 1) : nullptr); 2028 MDValueList.assignValue(IsDistinct ? MDNode::getDistinct(Context, Elts) 2029 : MDNode::get(Context, Elts), 2030 NextMDValueNo++); 2031 break; 2032 } 2033 case bitc::METADATA_LOCATION: { 2034 if (Record.size() != 5) 2035 return error("Invalid record"); 2036 2037 unsigned Line = Record[1]; 2038 unsigned Column = Record[2]; 2039 MDNode *Scope = cast<MDNode>(MDValueList.getValueFwdRef(Record[3])); 2040 Metadata *InlinedAt = 2041 Record[4] ? MDValueList.getValueFwdRef(Record[4] - 1) : nullptr; 2042 MDValueList.assignValue( 2043 GET_OR_DISTINCT(DILocation, Record[0], 2044 (Context, Line, Column, Scope, InlinedAt)), 2045 NextMDValueNo++); 2046 break; 2047 } 2048 case bitc::METADATA_GENERIC_DEBUG: { 2049 if (Record.size() < 4) 2050 return error("Invalid record"); 2051 2052 unsigned Tag = Record[1]; 2053 unsigned Version = Record[2]; 2054 2055 if (Tag >= 1u << 16 || Version != 0) 2056 return error("Invalid record"); 2057 2058 auto *Header = getMDString(Record[3]); 2059 SmallVector<Metadata *, 8> DwarfOps; 2060 for (unsigned I = 4, E = Record.size(); I != E; ++I) 2061 DwarfOps.push_back(Record[I] ? MDValueList.getValueFwdRef(Record[I] - 1) 2062 : nullptr); 2063 MDValueList.assignValue(GET_OR_DISTINCT(GenericDINode, Record[0], 2064 (Context, Tag, Header, DwarfOps)), 2065 NextMDValueNo++); 2066 break; 2067 } 2068 case bitc::METADATA_SUBRANGE: { 2069 if (Record.size() != 3) 2070 return error("Invalid record"); 2071 2072 MDValueList.assignValue( 2073 GET_OR_DISTINCT(DISubrange, Record[0], 2074 (Context, Record[1], unrotateSign(Record[2]))), 2075 NextMDValueNo++); 2076 break; 2077 } 2078 case bitc::METADATA_ENUMERATOR: { 2079 if (Record.size() != 3) 2080 return error("Invalid record"); 2081 2082 MDValueList.assignValue(GET_OR_DISTINCT(DIEnumerator, Record[0], 2083 (Context, unrotateSign(Record[1]), 2084 getMDString(Record[2]))), 2085 NextMDValueNo++); 2086 break; 2087 } 2088 case bitc::METADATA_BASIC_TYPE: { 2089 if (Record.size() != 6) 2090 return error("Invalid record"); 2091 2092 MDValueList.assignValue( 2093 GET_OR_DISTINCT(DIBasicType, Record[0], 2094 (Context, Record[1], getMDString(Record[2]), 2095 Record[3], Record[4], Record[5])), 2096 NextMDValueNo++); 2097 break; 2098 } 2099 case bitc::METADATA_DERIVED_TYPE: { 2100 if (Record.size() != 12) 2101 return error("Invalid record"); 2102 2103 MDValueList.assignValue( 2104 GET_OR_DISTINCT(DIDerivedType, Record[0], 2105 (Context, Record[1], getMDString(Record[2]), 2106 getMDOrNull(Record[3]), Record[4], 2107 getMDOrNull(Record[5]), getMDOrNull(Record[6]), 2108 Record[7], Record[8], Record[9], Record[10], 2109 getMDOrNull(Record[11]))), 2110 NextMDValueNo++); 2111 break; 2112 } 2113 case bitc::METADATA_COMPOSITE_TYPE: { 2114 if (Record.size() != 16) 2115 return error("Invalid record"); 2116 2117 MDValueList.assignValue( 2118 GET_OR_DISTINCT(DICompositeType, Record[0], 2119 (Context, Record[1], getMDString(Record[2]), 2120 getMDOrNull(Record[3]), Record[4], 2121 getMDOrNull(Record[5]), getMDOrNull(Record[6]), 2122 Record[7], Record[8], Record[9], Record[10], 2123 getMDOrNull(Record[11]), Record[12], 2124 getMDOrNull(Record[13]), getMDOrNull(Record[14]), 2125 getMDString(Record[15]))), 2126 NextMDValueNo++); 2127 break; 2128 } 2129 case bitc::METADATA_SUBROUTINE_TYPE: { 2130 if (Record.size() != 3) 2131 return error("Invalid record"); 2132 2133 MDValueList.assignValue( 2134 GET_OR_DISTINCT(DISubroutineType, Record[0], 2135 (Context, Record[1], getMDOrNull(Record[2]))), 2136 NextMDValueNo++); 2137 break; 2138 } 2139 2140 case bitc::METADATA_MODULE: { 2141 if (Record.size() != 6) 2142 return error("Invalid record"); 2143 2144 MDValueList.assignValue( 2145 GET_OR_DISTINCT(DIModule, Record[0], 2146 (Context, getMDOrNull(Record[1]), 2147 getMDString(Record[2]), getMDString(Record[3]), 2148 getMDString(Record[4]), getMDString(Record[5]))), 2149 NextMDValueNo++); 2150 break; 2151 } 2152 2153 case bitc::METADATA_FILE: { 2154 if (Record.size() != 3) 2155 return error("Invalid record"); 2156 2157 MDValueList.assignValue( 2158 GET_OR_DISTINCT(DIFile, Record[0], (Context, getMDString(Record[1]), 2159 getMDString(Record[2]))), 2160 NextMDValueNo++); 2161 break; 2162 } 2163 case bitc::METADATA_COMPILE_UNIT: { 2164 if (Record.size() < 14 || Record.size() > 16) 2165 return error("Invalid record"); 2166 2167 // Ignore Record[0], which indicates whether this compile unit is 2168 // distinct. It's always distinct. 2169 MDValueList.assignValue( 2170 DICompileUnit::getDistinct( 2171 Context, Record[1], getMDOrNull(Record[2]), 2172 getMDString(Record[3]), Record[4], getMDString(Record[5]), 2173 Record[6], getMDString(Record[7]), Record[8], 2174 getMDOrNull(Record[9]), getMDOrNull(Record[10]), 2175 getMDOrNull(Record[11]), getMDOrNull(Record[12]), 2176 getMDOrNull(Record[13]), 2177 Record.size() <= 15 ? 0 : getMDOrNull(Record[15]), 2178 Record.size() <= 14 ? 0 : Record[14]), 2179 NextMDValueNo++); 2180 break; 2181 } 2182 case bitc::METADATA_SUBPROGRAM: { 2183 if (Record.size() != 18 && Record.size() != 19) 2184 return error("Invalid record"); 2185 2186 bool HasFn = Record.size() == 19; 2187 DISubprogram *SP = GET_OR_DISTINCT( 2188 DISubprogram, 2189 Record[0] || Record[8], // All definitions should be distinct. 2190 (Context, getMDOrNull(Record[1]), getMDString(Record[2]), 2191 getMDString(Record[3]), getMDOrNull(Record[4]), Record[5], 2192 getMDOrNull(Record[6]), Record[7], Record[8], Record[9], 2193 getMDOrNull(Record[10]), Record[11], Record[12], Record[13], 2194 Record[14], getMDOrNull(Record[15 + HasFn]), 2195 getMDOrNull(Record[16 + HasFn]), getMDOrNull(Record[17 + HasFn]))); 2196 MDValueList.assignValue(SP, NextMDValueNo++); 2197 2198 // Upgrade sp->function mapping to function->sp mapping. 2199 if (HasFn && Record[15]) { 2200 if (auto *CMD = dyn_cast<ConstantAsMetadata>(getMDOrNull(Record[15]))) 2201 if (auto *F = dyn_cast<Function>(CMD->getValue())) { 2202 if (F->isMaterializable()) 2203 // Defer until materialized; unmaterialized functions may not have 2204 // metadata. 2205 FunctionsWithSPs[F] = SP; 2206 else if (!F->empty()) 2207 F->setSubprogram(SP); 2208 } 2209 } 2210 break; 2211 } 2212 case bitc::METADATA_LEXICAL_BLOCK: { 2213 if (Record.size() != 5) 2214 return error("Invalid record"); 2215 2216 MDValueList.assignValue( 2217 GET_OR_DISTINCT(DILexicalBlock, Record[0], 2218 (Context, getMDOrNull(Record[1]), 2219 getMDOrNull(Record[2]), Record[3], Record[4])), 2220 NextMDValueNo++); 2221 break; 2222 } 2223 case bitc::METADATA_LEXICAL_BLOCK_FILE: { 2224 if (Record.size() != 4) 2225 return error("Invalid record"); 2226 2227 MDValueList.assignValue( 2228 GET_OR_DISTINCT(DILexicalBlockFile, Record[0], 2229 (Context, getMDOrNull(Record[1]), 2230 getMDOrNull(Record[2]), Record[3])), 2231 NextMDValueNo++); 2232 break; 2233 } 2234 case bitc::METADATA_NAMESPACE: { 2235 if (Record.size() != 5) 2236 return error("Invalid record"); 2237 2238 MDValueList.assignValue( 2239 GET_OR_DISTINCT(DINamespace, Record[0], 2240 (Context, getMDOrNull(Record[1]), 2241 getMDOrNull(Record[2]), getMDString(Record[3]), 2242 Record[4])), 2243 NextMDValueNo++); 2244 break; 2245 } 2246 case bitc::METADATA_MACRO: { 2247 if (Record.size() != 5) 2248 return error("Invalid record"); 2249 2250 MDValueList.assignValue( 2251 GET_OR_DISTINCT(DIMacro, Record[0], 2252 (Context, Record[1], Record[2], 2253 getMDString(Record[3]), getMDString(Record[4]))), 2254 NextMDValueNo++); 2255 break; 2256 } 2257 case bitc::METADATA_MACRO_FILE: { 2258 if (Record.size() != 5) 2259 return error("Invalid record"); 2260 2261 MDValueList.assignValue( 2262 GET_OR_DISTINCT(DIMacroFile, Record[0], 2263 (Context, Record[1], Record[2], 2264 getMDOrNull(Record[3]), getMDOrNull(Record[4]))), 2265 NextMDValueNo++); 2266 break; 2267 } 2268 case bitc::METADATA_TEMPLATE_TYPE: { 2269 if (Record.size() != 3) 2270 return error("Invalid record"); 2271 2272 MDValueList.assignValue(GET_OR_DISTINCT(DITemplateTypeParameter, 2273 Record[0], 2274 (Context, getMDString(Record[1]), 2275 getMDOrNull(Record[2]))), 2276 NextMDValueNo++); 2277 break; 2278 } 2279 case bitc::METADATA_TEMPLATE_VALUE: { 2280 if (Record.size() != 5) 2281 return error("Invalid record"); 2282 2283 MDValueList.assignValue( 2284 GET_OR_DISTINCT(DITemplateValueParameter, Record[0], 2285 (Context, Record[1], getMDString(Record[2]), 2286 getMDOrNull(Record[3]), getMDOrNull(Record[4]))), 2287 NextMDValueNo++); 2288 break; 2289 } 2290 case bitc::METADATA_GLOBAL_VAR: { 2291 if (Record.size() != 11) 2292 return error("Invalid record"); 2293 2294 MDValueList.assignValue( 2295 GET_OR_DISTINCT(DIGlobalVariable, Record[0], 2296 (Context, getMDOrNull(Record[1]), 2297 getMDString(Record[2]), getMDString(Record[3]), 2298 getMDOrNull(Record[4]), Record[5], 2299 getMDOrNull(Record[6]), Record[7], Record[8], 2300 getMDOrNull(Record[9]), getMDOrNull(Record[10]))), 2301 NextMDValueNo++); 2302 break; 2303 } 2304 case bitc::METADATA_LOCAL_VAR: { 2305 // 10th field is for the obseleted 'inlinedAt:' field. 2306 if (Record.size() < 8 || Record.size() > 10) 2307 return error("Invalid record"); 2308 2309 // 2nd field used to be an artificial tag, either DW_TAG_auto_variable or 2310 // DW_TAG_arg_variable. 2311 bool HasTag = Record.size() > 8; 2312 MDValueList.assignValue( 2313 GET_OR_DISTINCT(DILocalVariable, Record[0], 2314 (Context, getMDOrNull(Record[1 + HasTag]), 2315 getMDString(Record[2 + HasTag]), 2316 getMDOrNull(Record[3 + HasTag]), Record[4 + HasTag], 2317 getMDOrNull(Record[5 + HasTag]), Record[6 + HasTag], 2318 Record[7 + HasTag])), 2319 NextMDValueNo++); 2320 break; 2321 } 2322 case bitc::METADATA_EXPRESSION: { 2323 if (Record.size() < 1) 2324 return error("Invalid record"); 2325 2326 MDValueList.assignValue( 2327 GET_OR_DISTINCT(DIExpression, Record[0], 2328 (Context, makeArrayRef(Record).slice(1))), 2329 NextMDValueNo++); 2330 break; 2331 } 2332 case bitc::METADATA_OBJC_PROPERTY: { 2333 if (Record.size() != 8) 2334 return error("Invalid record"); 2335 2336 MDValueList.assignValue( 2337 GET_OR_DISTINCT(DIObjCProperty, Record[0], 2338 (Context, getMDString(Record[1]), 2339 getMDOrNull(Record[2]), Record[3], 2340 getMDString(Record[4]), getMDString(Record[5]), 2341 Record[6], getMDOrNull(Record[7]))), 2342 NextMDValueNo++); 2343 break; 2344 } 2345 case bitc::METADATA_IMPORTED_ENTITY: { 2346 if (Record.size() != 6) 2347 return error("Invalid record"); 2348 2349 MDValueList.assignValue( 2350 GET_OR_DISTINCT(DIImportedEntity, Record[0], 2351 (Context, Record[1], getMDOrNull(Record[2]), 2352 getMDOrNull(Record[3]), Record[4], 2353 getMDString(Record[5]))), 2354 NextMDValueNo++); 2355 break; 2356 } 2357 case bitc::METADATA_STRING: { 2358 std::string String(Record.begin(), Record.end()); 2359 llvm::UpgradeMDStringConstant(String); 2360 Metadata *MD = MDString::get(Context, String); 2361 MDValueList.assignValue(MD, NextMDValueNo++); 2362 break; 2363 } 2364 case bitc::METADATA_KIND: { 2365 // Support older bitcode files that had METADATA_KIND records in a 2366 // block with METADATA_BLOCK_ID. 2367 if (std::error_code EC = parseMetadataKindRecord(Record)) 2368 return EC; 2369 break; 2370 } 2371 } 2372 } 2373 #undef GET_OR_DISTINCT 2374 } 2375 2376 /// Parse the metadata kinds out of the METADATA_KIND_BLOCK. 2377 std::error_code BitcodeReader::parseMetadataKinds() { 2378 if (Stream.EnterSubBlock(bitc::METADATA_KIND_BLOCK_ID)) 2379 return error("Invalid record"); 2380 2381 SmallVector<uint64_t, 64> Record; 2382 2383 // Read all the records. 2384 while (1) { 2385 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2386 2387 switch (Entry.Kind) { 2388 case BitstreamEntry::SubBlock: // Handled for us already. 2389 case BitstreamEntry::Error: 2390 return error("Malformed block"); 2391 case BitstreamEntry::EndBlock: 2392 return std::error_code(); 2393 case BitstreamEntry::Record: 2394 // The interesting case. 2395 break; 2396 } 2397 2398 // Read a record. 2399 Record.clear(); 2400 unsigned Code = Stream.readRecord(Entry.ID, Record); 2401 switch (Code) { 2402 default: // Default behavior: ignore. 2403 break; 2404 case bitc::METADATA_KIND: { 2405 if (std::error_code EC = parseMetadataKindRecord(Record)) 2406 return EC; 2407 break; 2408 } 2409 } 2410 } 2411 } 2412 2413 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2414 /// encoding. 2415 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2416 if ((V & 1) == 0) 2417 return V >> 1; 2418 if (V != 1) 2419 return -(V >> 1); 2420 // There is no such thing as -0 with integers. "-0" really means MININT. 2421 return 1ULL << 63; 2422 } 2423 2424 /// Resolve all of the initializers for global values and aliases that we can. 2425 std::error_code BitcodeReader::resolveGlobalAndAliasInits() { 2426 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 2427 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist; 2428 std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist; 2429 std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist; 2430 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFnWorklist; 2431 2432 GlobalInitWorklist.swap(GlobalInits); 2433 AliasInitWorklist.swap(AliasInits); 2434 FunctionPrefixWorklist.swap(FunctionPrefixes); 2435 FunctionPrologueWorklist.swap(FunctionPrologues); 2436 FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns); 2437 2438 while (!GlobalInitWorklist.empty()) { 2439 unsigned ValID = GlobalInitWorklist.back().second; 2440 if (ValID >= ValueList.size()) { 2441 // Not ready to resolve this yet, it requires something later in the file. 2442 GlobalInits.push_back(GlobalInitWorklist.back()); 2443 } else { 2444 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2445 GlobalInitWorklist.back().first->setInitializer(C); 2446 else 2447 return error("Expected a constant"); 2448 } 2449 GlobalInitWorklist.pop_back(); 2450 } 2451 2452 while (!AliasInitWorklist.empty()) { 2453 unsigned ValID = AliasInitWorklist.back().second; 2454 if (ValID >= ValueList.size()) { 2455 AliasInits.push_back(AliasInitWorklist.back()); 2456 } else { 2457 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 2458 if (!C) 2459 return error("Expected a constant"); 2460 GlobalAlias *Alias = AliasInitWorklist.back().first; 2461 if (C->getType() != Alias->getType()) 2462 return error("Alias and aliasee types don't match"); 2463 Alias->setAliasee(C); 2464 } 2465 AliasInitWorklist.pop_back(); 2466 } 2467 2468 while (!FunctionPrefixWorklist.empty()) { 2469 unsigned ValID = FunctionPrefixWorklist.back().second; 2470 if (ValID >= ValueList.size()) { 2471 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 2472 } else { 2473 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2474 FunctionPrefixWorklist.back().first->setPrefixData(C); 2475 else 2476 return error("Expected a constant"); 2477 } 2478 FunctionPrefixWorklist.pop_back(); 2479 } 2480 2481 while (!FunctionPrologueWorklist.empty()) { 2482 unsigned ValID = FunctionPrologueWorklist.back().second; 2483 if (ValID >= ValueList.size()) { 2484 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 2485 } else { 2486 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2487 FunctionPrologueWorklist.back().first->setPrologueData(C); 2488 else 2489 return error("Expected a constant"); 2490 } 2491 FunctionPrologueWorklist.pop_back(); 2492 } 2493 2494 while (!FunctionPersonalityFnWorklist.empty()) { 2495 unsigned ValID = FunctionPersonalityFnWorklist.back().second; 2496 if (ValID >= ValueList.size()) { 2497 FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back()); 2498 } else { 2499 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2500 FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C); 2501 else 2502 return error("Expected a constant"); 2503 } 2504 FunctionPersonalityFnWorklist.pop_back(); 2505 } 2506 2507 return std::error_code(); 2508 } 2509 2510 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2511 SmallVector<uint64_t, 8> Words(Vals.size()); 2512 std::transform(Vals.begin(), Vals.end(), Words.begin(), 2513 BitcodeReader::decodeSignRotatedValue); 2514 2515 return APInt(TypeBits, Words); 2516 } 2517 2518 std::error_code BitcodeReader::parseConstants() { 2519 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2520 return error("Invalid record"); 2521 2522 SmallVector<uint64_t, 64> Record; 2523 2524 // Read all the records for this value table. 2525 Type *CurTy = Type::getInt32Ty(Context); 2526 unsigned NextCstNo = ValueList.size(); 2527 while (1) { 2528 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2529 2530 switch (Entry.Kind) { 2531 case BitstreamEntry::SubBlock: // Handled for us already. 2532 case BitstreamEntry::Error: 2533 return error("Malformed block"); 2534 case BitstreamEntry::EndBlock: 2535 if (NextCstNo != ValueList.size()) 2536 return error("Invalid ronstant reference"); 2537 2538 // Once all the constants have been read, go through and resolve forward 2539 // references. 2540 ValueList.resolveConstantForwardRefs(); 2541 return std::error_code(); 2542 case BitstreamEntry::Record: 2543 // The interesting case. 2544 break; 2545 } 2546 2547 // Read a record. 2548 Record.clear(); 2549 Value *V = nullptr; 2550 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 2551 switch (BitCode) { 2552 default: // Default behavior: unknown constant 2553 case bitc::CST_CODE_UNDEF: // UNDEF 2554 V = UndefValue::get(CurTy); 2555 break; 2556 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2557 if (Record.empty()) 2558 return error("Invalid record"); 2559 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2560 return error("Invalid record"); 2561 CurTy = TypeList[Record[0]]; 2562 continue; // Skip the ValueList manipulation. 2563 case bitc::CST_CODE_NULL: // NULL 2564 V = Constant::getNullValue(CurTy); 2565 break; 2566 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2567 if (!CurTy->isIntegerTy() || Record.empty()) 2568 return error("Invalid record"); 2569 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2570 break; 2571 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2572 if (!CurTy->isIntegerTy() || Record.empty()) 2573 return error("Invalid record"); 2574 2575 APInt VInt = 2576 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 2577 V = ConstantInt::get(Context, VInt); 2578 2579 break; 2580 } 2581 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2582 if (Record.empty()) 2583 return error("Invalid record"); 2584 if (CurTy->isHalfTy()) 2585 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf, 2586 APInt(16, (uint16_t)Record[0]))); 2587 else if (CurTy->isFloatTy()) 2588 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle, 2589 APInt(32, (uint32_t)Record[0]))); 2590 else if (CurTy->isDoubleTy()) 2591 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble, 2592 APInt(64, Record[0]))); 2593 else if (CurTy->isX86_FP80Ty()) { 2594 // Bits are not stored the same way as a normal i80 APInt, compensate. 2595 uint64_t Rearrange[2]; 2596 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2597 Rearrange[1] = Record[0] >> 48; 2598 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended, 2599 APInt(80, Rearrange))); 2600 } else if (CurTy->isFP128Ty()) 2601 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad, 2602 APInt(128, Record))); 2603 else if (CurTy->isPPC_FP128Ty()) 2604 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble, 2605 APInt(128, Record))); 2606 else 2607 V = UndefValue::get(CurTy); 2608 break; 2609 } 2610 2611 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2612 if (Record.empty()) 2613 return error("Invalid record"); 2614 2615 unsigned Size = Record.size(); 2616 SmallVector<Constant*, 16> Elts; 2617 2618 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2619 for (unsigned i = 0; i != Size; ++i) 2620 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2621 STy->getElementType(i))); 2622 V = ConstantStruct::get(STy, Elts); 2623 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2624 Type *EltTy = ATy->getElementType(); 2625 for (unsigned i = 0; i != Size; ++i) 2626 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2627 V = ConstantArray::get(ATy, Elts); 2628 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2629 Type *EltTy = VTy->getElementType(); 2630 for (unsigned i = 0; i != Size; ++i) 2631 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2632 V = ConstantVector::get(Elts); 2633 } else { 2634 V = UndefValue::get(CurTy); 2635 } 2636 break; 2637 } 2638 case bitc::CST_CODE_STRING: // STRING: [values] 2639 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2640 if (Record.empty()) 2641 return error("Invalid record"); 2642 2643 SmallString<16> Elts(Record.begin(), Record.end()); 2644 V = ConstantDataArray::getString(Context, Elts, 2645 BitCode == bitc::CST_CODE_CSTRING); 2646 break; 2647 } 2648 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2649 if (Record.empty()) 2650 return error("Invalid record"); 2651 2652 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 2653 if (EltTy->isIntegerTy(8)) { 2654 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2655 if (isa<VectorType>(CurTy)) 2656 V = ConstantDataVector::get(Context, Elts); 2657 else 2658 V = ConstantDataArray::get(Context, Elts); 2659 } else if (EltTy->isIntegerTy(16)) { 2660 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2661 if (isa<VectorType>(CurTy)) 2662 V = ConstantDataVector::get(Context, Elts); 2663 else 2664 V = ConstantDataArray::get(Context, Elts); 2665 } else if (EltTy->isIntegerTy(32)) { 2666 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2667 if (isa<VectorType>(CurTy)) 2668 V = ConstantDataVector::get(Context, Elts); 2669 else 2670 V = ConstantDataArray::get(Context, Elts); 2671 } else if (EltTy->isIntegerTy(64)) { 2672 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2673 if (isa<VectorType>(CurTy)) 2674 V = ConstantDataVector::get(Context, Elts); 2675 else 2676 V = ConstantDataArray::get(Context, Elts); 2677 } else if (EltTy->isHalfTy()) { 2678 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2679 if (isa<VectorType>(CurTy)) 2680 V = ConstantDataVector::getFP(Context, Elts); 2681 else 2682 V = ConstantDataArray::getFP(Context, Elts); 2683 } else if (EltTy->isFloatTy()) { 2684 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2685 if (isa<VectorType>(CurTy)) 2686 V = ConstantDataVector::getFP(Context, Elts); 2687 else 2688 V = ConstantDataArray::getFP(Context, Elts); 2689 } else if (EltTy->isDoubleTy()) { 2690 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2691 if (isa<VectorType>(CurTy)) 2692 V = ConstantDataVector::getFP(Context, Elts); 2693 else 2694 V = ConstantDataArray::getFP(Context, Elts); 2695 } else { 2696 return error("Invalid type for value"); 2697 } 2698 break; 2699 } 2700 2701 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 2702 if (Record.size() < 3) 2703 return error("Invalid record"); 2704 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 2705 if (Opc < 0) { 2706 V = UndefValue::get(CurTy); // Unknown binop. 2707 } else { 2708 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2709 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 2710 unsigned Flags = 0; 2711 if (Record.size() >= 4) { 2712 if (Opc == Instruction::Add || 2713 Opc == Instruction::Sub || 2714 Opc == Instruction::Mul || 2715 Opc == Instruction::Shl) { 2716 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2717 Flags |= OverflowingBinaryOperator::NoSignedWrap; 2718 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2719 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2720 } else if (Opc == Instruction::SDiv || 2721 Opc == Instruction::UDiv || 2722 Opc == Instruction::LShr || 2723 Opc == Instruction::AShr) { 2724 if (Record[3] & (1 << bitc::PEO_EXACT)) 2725 Flags |= SDivOperator::IsExact; 2726 } 2727 } 2728 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 2729 } 2730 break; 2731 } 2732 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 2733 if (Record.size() < 3) 2734 return error("Invalid record"); 2735 int Opc = getDecodedCastOpcode(Record[0]); 2736 if (Opc < 0) { 2737 V = UndefValue::get(CurTy); // Unknown cast. 2738 } else { 2739 Type *OpTy = getTypeByID(Record[1]); 2740 if (!OpTy) 2741 return error("Invalid record"); 2742 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 2743 V = UpgradeBitCastExpr(Opc, Op, CurTy); 2744 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 2745 } 2746 break; 2747 } 2748 case bitc::CST_CODE_CE_INBOUNDS_GEP: 2749 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands] 2750 unsigned OpNum = 0; 2751 Type *PointeeType = nullptr; 2752 if (Record.size() % 2) 2753 PointeeType = getTypeByID(Record[OpNum++]); 2754 SmallVector<Constant*, 16> Elts; 2755 while (OpNum != Record.size()) { 2756 Type *ElTy = getTypeByID(Record[OpNum++]); 2757 if (!ElTy) 2758 return error("Invalid record"); 2759 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 2760 } 2761 2762 if (PointeeType && 2763 PointeeType != 2764 cast<SequentialType>(Elts[0]->getType()->getScalarType()) 2765 ->getElementType()) 2766 return error("Explicit gep operator type does not match pointee type " 2767 "of pointer operand"); 2768 2769 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2770 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 2771 BitCode == 2772 bitc::CST_CODE_CE_INBOUNDS_GEP); 2773 break; 2774 } 2775 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 2776 if (Record.size() < 3) 2777 return error("Invalid record"); 2778 2779 Type *SelectorTy = Type::getInt1Ty(Context); 2780 2781 // The selector might be an i1 or an <n x i1> 2782 // Get the type from the ValueList before getting a forward ref. 2783 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 2784 if (Value *V = ValueList[Record[0]]) 2785 if (SelectorTy != V->getType()) 2786 SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements()); 2787 2788 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 2789 SelectorTy), 2790 ValueList.getConstantFwdRef(Record[1],CurTy), 2791 ValueList.getConstantFwdRef(Record[2],CurTy)); 2792 break; 2793 } 2794 case bitc::CST_CODE_CE_EXTRACTELT 2795 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 2796 if (Record.size() < 3) 2797 return error("Invalid record"); 2798 VectorType *OpTy = 2799 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2800 if (!OpTy) 2801 return error("Invalid record"); 2802 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2803 Constant *Op1 = nullptr; 2804 if (Record.size() == 4) { 2805 Type *IdxTy = getTypeByID(Record[2]); 2806 if (!IdxTy) 2807 return error("Invalid record"); 2808 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2809 } else // TODO: Remove with llvm 4.0 2810 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2811 if (!Op1) 2812 return error("Invalid record"); 2813 V = ConstantExpr::getExtractElement(Op0, Op1); 2814 break; 2815 } 2816 case bitc::CST_CODE_CE_INSERTELT 2817 : { // CE_INSERTELT: [opval, opval, opty, opval] 2818 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2819 if (Record.size() < 3 || !OpTy) 2820 return error("Invalid record"); 2821 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2822 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 2823 OpTy->getElementType()); 2824 Constant *Op2 = nullptr; 2825 if (Record.size() == 4) { 2826 Type *IdxTy = getTypeByID(Record[2]); 2827 if (!IdxTy) 2828 return error("Invalid record"); 2829 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2830 } else // TODO: Remove with llvm 4.0 2831 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2832 if (!Op2) 2833 return error("Invalid record"); 2834 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 2835 break; 2836 } 2837 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 2838 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2839 if (Record.size() < 3 || !OpTy) 2840 return error("Invalid record"); 2841 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2842 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 2843 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2844 OpTy->getNumElements()); 2845 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 2846 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2847 break; 2848 } 2849 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 2850 VectorType *RTy = dyn_cast<VectorType>(CurTy); 2851 VectorType *OpTy = 2852 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2853 if (Record.size() < 4 || !RTy || !OpTy) 2854 return error("Invalid record"); 2855 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2856 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2857 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2858 RTy->getNumElements()); 2859 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 2860 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2861 break; 2862 } 2863 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 2864 if (Record.size() < 4) 2865 return error("Invalid record"); 2866 Type *OpTy = getTypeByID(Record[0]); 2867 if (!OpTy) 2868 return error("Invalid record"); 2869 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2870 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2871 2872 if (OpTy->isFPOrFPVectorTy()) 2873 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 2874 else 2875 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2876 break; 2877 } 2878 // This maintains backward compatibility, pre-asm dialect keywords. 2879 // FIXME: Remove with the 4.0 release. 2880 case bitc::CST_CODE_INLINEASM_OLD: { 2881 if (Record.size() < 2) 2882 return error("Invalid record"); 2883 std::string AsmStr, ConstrStr; 2884 bool HasSideEffects = Record[0] & 1; 2885 bool IsAlignStack = Record[0] >> 1; 2886 unsigned AsmStrSize = Record[1]; 2887 if (2+AsmStrSize >= Record.size()) 2888 return error("Invalid record"); 2889 unsigned ConstStrSize = Record[2+AsmStrSize]; 2890 if (3+AsmStrSize+ConstStrSize > Record.size()) 2891 return error("Invalid record"); 2892 2893 for (unsigned i = 0; i != AsmStrSize; ++i) 2894 AsmStr += (char)Record[2+i]; 2895 for (unsigned i = 0; i != ConstStrSize; ++i) 2896 ConstrStr += (char)Record[3+AsmStrSize+i]; 2897 PointerType *PTy = cast<PointerType>(CurTy); 2898 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2899 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 2900 break; 2901 } 2902 // This version adds support for the asm dialect keywords (e.g., 2903 // inteldialect). 2904 case bitc::CST_CODE_INLINEASM: { 2905 if (Record.size() < 2) 2906 return error("Invalid record"); 2907 std::string AsmStr, ConstrStr; 2908 bool HasSideEffects = Record[0] & 1; 2909 bool IsAlignStack = (Record[0] >> 1) & 1; 2910 unsigned AsmDialect = Record[0] >> 2; 2911 unsigned AsmStrSize = Record[1]; 2912 if (2+AsmStrSize >= Record.size()) 2913 return error("Invalid record"); 2914 unsigned ConstStrSize = Record[2+AsmStrSize]; 2915 if (3+AsmStrSize+ConstStrSize > Record.size()) 2916 return error("Invalid record"); 2917 2918 for (unsigned i = 0; i != AsmStrSize; ++i) 2919 AsmStr += (char)Record[2+i]; 2920 for (unsigned i = 0; i != ConstStrSize; ++i) 2921 ConstrStr += (char)Record[3+AsmStrSize+i]; 2922 PointerType *PTy = cast<PointerType>(CurTy); 2923 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2924 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 2925 InlineAsm::AsmDialect(AsmDialect)); 2926 break; 2927 } 2928 case bitc::CST_CODE_BLOCKADDRESS:{ 2929 if (Record.size() < 3) 2930 return error("Invalid record"); 2931 Type *FnTy = getTypeByID(Record[0]); 2932 if (!FnTy) 2933 return error("Invalid record"); 2934 Function *Fn = 2935 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 2936 if (!Fn) 2937 return error("Invalid record"); 2938 2939 // If the function is already parsed we can insert the block address right 2940 // away. 2941 BasicBlock *BB; 2942 unsigned BBID = Record[2]; 2943 if (!BBID) 2944 // Invalid reference to entry block. 2945 return error("Invalid ID"); 2946 if (!Fn->empty()) { 2947 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 2948 for (size_t I = 0, E = BBID; I != E; ++I) { 2949 if (BBI == BBE) 2950 return error("Invalid ID"); 2951 ++BBI; 2952 } 2953 BB = &*BBI; 2954 } else { 2955 // Otherwise insert a placeholder and remember it so it can be inserted 2956 // when the function is parsed. 2957 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 2958 if (FwdBBs.empty()) 2959 BasicBlockFwdRefQueue.push_back(Fn); 2960 if (FwdBBs.size() < BBID + 1) 2961 FwdBBs.resize(BBID + 1); 2962 if (!FwdBBs[BBID]) 2963 FwdBBs[BBID] = BasicBlock::Create(Context); 2964 BB = FwdBBs[BBID]; 2965 } 2966 V = BlockAddress::get(Fn, BB); 2967 break; 2968 } 2969 } 2970 2971 ValueList.assignValue(V, NextCstNo); 2972 ++NextCstNo; 2973 } 2974 } 2975 2976 std::error_code BitcodeReader::parseUseLists() { 2977 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 2978 return error("Invalid record"); 2979 2980 // Read all the records. 2981 SmallVector<uint64_t, 64> Record; 2982 while (1) { 2983 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2984 2985 switch (Entry.Kind) { 2986 case BitstreamEntry::SubBlock: // Handled for us already. 2987 case BitstreamEntry::Error: 2988 return error("Malformed block"); 2989 case BitstreamEntry::EndBlock: 2990 return std::error_code(); 2991 case BitstreamEntry::Record: 2992 // The interesting case. 2993 break; 2994 } 2995 2996 // Read a use list record. 2997 Record.clear(); 2998 bool IsBB = false; 2999 switch (Stream.readRecord(Entry.ID, Record)) { 3000 default: // Default behavior: unknown type. 3001 break; 3002 case bitc::USELIST_CODE_BB: 3003 IsBB = true; 3004 // fallthrough 3005 case bitc::USELIST_CODE_DEFAULT: { 3006 unsigned RecordLength = Record.size(); 3007 if (RecordLength < 3) 3008 // Records should have at least an ID and two indexes. 3009 return error("Invalid record"); 3010 unsigned ID = Record.back(); 3011 Record.pop_back(); 3012 3013 Value *V; 3014 if (IsBB) { 3015 assert(ID < FunctionBBs.size() && "Basic block not found"); 3016 V = FunctionBBs[ID]; 3017 } else 3018 V = ValueList[ID]; 3019 unsigned NumUses = 0; 3020 SmallDenseMap<const Use *, unsigned, 16> Order; 3021 for (const Use &U : V->materialized_uses()) { 3022 if (++NumUses > Record.size()) 3023 break; 3024 Order[&U] = Record[NumUses - 1]; 3025 } 3026 if (Order.size() != Record.size() || NumUses > Record.size()) 3027 // Mismatches can happen if the functions are being materialized lazily 3028 // (out-of-order), or a value has been upgraded. 3029 break; 3030 3031 V->sortUseList([&](const Use &L, const Use &R) { 3032 return Order.lookup(&L) < Order.lookup(&R); 3033 }); 3034 break; 3035 } 3036 } 3037 } 3038 } 3039 3040 /// When we see the block for metadata, remember where it is and then skip it. 3041 /// This lets us lazily deserialize the metadata. 3042 std::error_code BitcodeReader::rememberAndSkipMetadata() { 3043 // Save the current stream state. 3044 uint64_t CurBit = Stream.GetCurrentBitNo(); 3045 DeferredMetadataInfo.push_back(CurBit); 3046 3047 // Skip over the block for now. 3048 if (Stream.SkipBlock()) 3049 return error("Invalid record"); 3050 return std::error_code(); 3051 } 3052 3053 std::error_code BitcodeReader::materializeMetadata() { 3054 for (uint64_t BitPos : DeferredMetadataInfo) { 3055 // Move the bit stream to the saved position. 3056 Stream.JumpToBit(BitPos); 3057 if (std::error_code EC = parseMetadata(true)) 3058 return EC; 3059 } 3060 DeferredMetadataInfo.clear(); 3061 return std::error_code(); 3062 } 3063 3064 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 3065 3066 void BitcodeReader::saveMDValueList( 3067 DenseMap<const Metadata *, unsigned> &MDValueToValIDMap, bool OnlyTempMD) { 3068 for (unsigned ValID = 0; ValID < MDValueList.size(); ++ValID) { 3069 Metadata *MD = MDValueList[ValID]; 3070 auto *N = dyn_cast_or_null<MDNode>(MD); 3071 // Save all values if !OnlyTempMD, otherwise just the temporary metadata. 3072 if (!OnlyTempMD || (N && N->isTemporary())) { 3073 // Will call this after materializing each function, in order to 3074 // handle remapping of the function's instructions/metadata. 3075 // See if we already have an entry in that case. 3076 if (OnlyTempMD && MDValueToValIDMap.count(MD)) { 3077 assert(MDValueToValIDMap[MD] == ValID && 3078 "Inconsistent metadata value id"); 3079 continue; 3080 } 3081 MDValueToValIDMap[MD] = ValID; 3082 } 3083 } 3084 } 3085 3086 /// When we see the block for a function body, remember where it is and then 3087 /// skip it. This lets us lazily deserialize the functions. 3088 std::error_code BitcodeReader::rememberAndSkipFunctionBody() { 3089 // Get the function we are talking about. 3090 if (FunctionsWithBodies.empty()) 3091 return error("Insufficient function protos"); 3092 3093 Function *Fn = FunctionsWithBodies.back(); 3094 FunctionsWithBodies.pop_back(); 3095 3096 // Save the current stream state. 3097 uint64_t CurBit = Stream.GetCurrentBitNo(); 3098 assert( 3099 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 3100 "Mismatch between VST and scanned function offsets"); 3101 DeferredFunctionInfo[Fn] = CurBit; 3102 3103 // Skip over the function block for now. 3104 if (Stream.SkipBlock()) 3105 return error("Invalid record"); 3106 return std::error_code(); 3107 } 3108 3109 std::error_code BitcodeReader::globalCleanup() { 3110 // Patch the initializers for globals and aliases up. 3111 resolveGlobalAndAliasInits(); 3112 if (!GlobalInits.empty() || !AliasInits.empty()) 3113 return error("Malformed global initializer set"); 3114 3115 // Look for intrinsic functions which need to be upgraded at some point 3116 for (Function &F : *TheModule) { 3117 Function *NewFn; 3118 if (UpgradeIntrinsicFunction(&F, NewFn)) 3119 UpgradedIntrinsics[&F] = NewFn; 3120 } 3121 3122 // Look for global variables which need to be renamed. 3123 for (GlobalVariable &GV : TheModule->globals()) 3124 UpgradeGlobalVariable(&GV); 3125 3126 // Force deallocation of memory for these vectors to favor the client that 3127 // want lazy deserialization. 3128 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 3129 std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits); 3130 return std::error_code(); 3131 } 3132 3133 /// Support for lazy parsing of function bodies. This is required if we 3134 /// either have an old bitcode file without a VST forward declaration record, 3135 /// or if we have an anonymous function being materialized, since anonymous 3136 /// functions do not have a name and are therefore not in the VST. 3137 std::error_code BitcodeReader::rememberAndSkipFunctionBodies() { 3138 Stream.JumpToBit(NextUnreadBit); 3139 3140 if (Stream.AtEndOfStream()) 3141 return error("Could not find function in stream"); 3142 3143 if (!SeenFirstFunctionBody) 3144 return error("Trying to materialize functions before seeing function blocks"); 3145 3146 // An old bitcode file with the symbol table at the end would have 3147 // finished the parse greedily. 3148 assert(SeenValueSymbolTable); 3149 3150 SmallVector<uint64_t, 64> Record; 3151 3152 while (1) { 3153 BitstreamEntry Entry = Stream.advance(); 3154 switch (Entry.Kind) { 3155 default: 3156 return error("Expect SubBlock"); 3157 case BitstreamEntry::SubBlock: 3158 switch (Entry.ID) { 3159 default: 3160 return error("Expect function block"); 3161 case bitc::FUNCTION_BLOCK_ID: 3162 if (std::error_code EC = rememberAndSkipFunctionBody()) 3163 return EC; 3164 NextUnreadBit = Stream.GetCurrentBitNo(); 3165 return std::error_code(); 3166 } 3167 } 3168 } 3169 } 3170 3171 std::error_code BitcodeReader::parseBitcodeVersion() { 3172 if (Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 3173 return error("Invalid record"); 3174 3175 // Read all the records. 3176 SmallVector<uint64_t, 64> Record; 3177 while (1) { 3178 BitstreamEntry Entry = Stream.advance(); 3179 3180 switch (Entry.Kind) { 3181 default: 3182 case BitstreamEntry::Error: 3183 return error("Malformed block"); 3184 case BitstreamEntry::EndBlock: 3185 return std::error_code(); 3186 case BitstreamEntry::Record: 3187 // The interesting case. 3188 break; 3189 } 3190 3191 // Read a record. 3192 Record.clear(); 3193 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 3194 switch (BitCode) { 3195 default: // Default behavior: reject 3196 return error("Invalid value"); 3197 case bitc::IDENTIFICATION_CODE_STRING: { // IDENTIFICATION: [strchr x 3198 // N] 3199 convertToString(Record, 0, ProducerIdentification); 3200 break; 3201 } 3202 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 3203 unsigned epoch = (unsigned)Record[0]; 3204 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 3205 return error( 3206 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 3207 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 3208 } 3209 } 3210 } 3211 } 3212 } 3213 3214 std::error_code BitcodeReader::parseModule(uint64_t ResumeBit, 3215 bool ShouldLazyLoadMetadata) { 3216 if (ResumeBit) 3217 Stream.JumpToBit(ResumeBit); 3218 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3219 return error("Invalid record"); 3220 3221 SmallVector<uint64_t, 64> Record; 3222 std::vector<std::string> SectionTable; 3223 std::vector<std::string> GCTable; 3224 3225 // Read all the records for this module. 3226 while (1) { 3227 BitstreamEntry Entry = Stream.advance(); 3228 3229 switch (Entry.Kind) { 3230 case BitstreamEntry::Error: 3231 return error("Malformed block"); 3232 case BitstreamEntry::EndBlock: 3233 return globalCleanup(); 3234 3235 case BitstreamEntry::SubBlock: 3236 switch (Entry.ID) { 3237 default: // Skip unknown content. 3238 if (Stream.SkipBlock()) 3239 return error("Invalid record"); 3240 break; 3241 case bitc::BLOCKINFO_BLOCK_ID: 3242 if (Stream.ReadBlockInfoBlock()) 3243 return error("Malformed block"); 3244 break; 3245 case bitc::PARAMATTR_BLOCK_ID: 3246 if (std::error_code EC = parseAttributeBlock()) 3247 return EC; 3248 break; 3249 case bitc::PARAMATTR_GROUP_BLOCK_ID: 3250 if (std::error_code EC = parseAttributeGroupBlock()) 3251 return EC; 3252 break; 3253 case bitc::TYPE_BLOCK_ID_NEW: 3254 if (std::error_code EC = parseTypeTable()) 3255 return EC; 3256 break; 3257 case bitc::VALUE_SYMTAB_BLOCK_ID: 3258 if (!SeenValueSymbolTable) { 3259 // Either this is an old form VST without function index and an 3260 // associated VST forward declaration record (which would have caused 3261 // the VST to be jumped to and parsed before it was encountered 3262 // normally in the stream), or there were no function blocks to 3263 // trigger an earlier parsing of the VST. 3264 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 3265 if (std::error_code EC = parseValueSymbolTable()) 3266 return EC; 3267 SeenValueSymbolTable = true; 3268 } else { 3269 // We must have had a VST forward declaration record, which caused 3270 // the parser to jump to and parse the VST earlier. 3271 assert(VSTOffset > 0); 3272 if (Stream.SkipBlock()) 3273 return error("Invalid record"); 3274 } 3275 break; 3276 case bitc::CONSTANTS_BLOCK_ID: 3277 if (std::error_code EC = parseConstants()) 3278 return EC; 3279 if (std::error_code EC = resolveGlobalAndAliasInits()) 3280 return EC; 3281 break; 3282 case bitc::METADATA_BLOCK_ID: 3283 if (ShouldLazyLoadMetadata && !IsMetadataMaterialized) { 3284 if (std::error_code EC = rememberAndSkipMetadata()) 3285 return EC; 3286 break; 3287 } 3288 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 3289 if (std::error_code EC = parseMetadata(true)) 3290 return EC; 3291 break; 3292 case bitc::METADATA_KIND_BLOCK_ID: 3293 if (std::error_code EC = parseMetadataKinds()) 3294 return EC; 3295 break; 3296 case bitc::FUNCTION_BLOCK_ID: 3297 // If this is the first function body we've seen, reverse the 3298 // FunctionsWithBodies list. 3299 if (!SeenFirstFunctionBody) { 3300 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 3301 if (std::error_code EC = globalCleanup()) 3302 return EC; 3303 SeenFirstFunctionBody = true; 3304 } 3305 3306 if (VSTOffset > 0) { 3307 // If we have a VST forward declaration record, make sure we 3308 // parse the VST now if we haven't already. It is needed to 3309 // set up the DeferredFunctionInfo vector for lazy reading. 3310 if (!SeenValueSymbolTable) { 3311 if (std::error_code EC = 3312 BitcodeReader::parseValueSymbolTable(VSTOffset)) 3313 return EC; 3314 SeenValueSymbolTable = true; 3315 // Fall through so that we record the NextUnreadBit below. 3316 // This is necessary in case we have an anonymous function that 3317 // is later materialized. Since it will not have a VST entry we 3318 // need to fall back to the lazy parse to find its offset. 3319 } else { 3320 // If we have a VST forward declaration record, but have already 3321 // parsed the VST (just above, when the first function body was 3322 // encountered here), then we are resuming the parse after 3323 // materializing functions. The ResumeBit points to the 3324 // start of the last function block recorded in the 3325 // DeferredFunctionInfo map. Skip it. 3326 if (Stream.SkipBlock()) 3327 return error("Invalid record"); 3328 continue; 3329 } 3330 } 3331 3332 // Support older bitcode files that did not have the function 3333 // index in the VST, nor a VST forward declaration record, as 3334 // well as anonymous functions that do not have VST entries. 3335 // Build the DeferredFunctionInfo vector on the fly. 3336 if (std::error_code EC = rememberAndSkipFunctionBody()) 3337 return EC; 3338 3339 // Suspend parsing when we reach the function bodies. Subsequent 3340 // materialization calls will resume it when necessary. If the bitcode 3341 // file is old, the symbol table will be at the end instead and will not 3342 // have been seen yet. In this case, just finish the parse now. 3343 if (SeenValueSymbolTable) { 3344 NextUnreadBit = Stream.GetCurrentBitNo(); 3345 return std::error_code(); 3346 } 3347 break; 3348 case bitc::USELIST_BLOCK_ID: 3349 if (std::error_code EC = parseUseLists()) 3350 return EC; 3351 break; 3352 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 3353 if (std::error_code EC = parseOperandBundleTags()) 3354 return EC; 3355 break; 3356 } 3357 continue; 3358 3359 case BitstreamEntry::Record: 3360 // The interesting case. 3361 break; 3362 } 3363 3364 3365 // Read a record. 3366 auto BitCode = Stream.readRecord(Entry.ID, Record); 3367 switch (BitCode) { 3368 default: break; // Default behavior, ignore unknown content. 3369 case bitc::MODULE_CODE_VERSION: { // VERSION: [version#] 3370 if (Record.size() < 1) 3371 return error("Invalid record"); 3372 // Only version #0 and #1 are supported so far. 3373 unsigned module_version = Record[0]; 3374 switch (module_version) { 3375 default: 3376 return error("Invalid value"); 3377 case 0: 3378 UseRelativeIDs = false; 3379 break; 3380 case 1: 3381 UseRelativeIDs = true; 3382 break; 3383 } 3384 break; 3385 } 3386 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3387 std::string S; 3388 if (convertToString(Record, 0, S)) 3389 return error("Invalid record"); 3390 TheModule->setTargetTriple(S); 3391 break; 3392 } 3393 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 3394 std::string S; 3395 if (convertToString(Record, 0, S)) 3396 return error("Invalid record"); 3397 TheModule->setDataLayout(S); 3398 break; 3399 } 3400 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 3401 std::string S; 3402 if (convertToString(Record, 0, S)) 3403 return error("Invalid record"); 3404 TheModule->setModuleInlineAsm(S); 3405 break; 3406 } 3407 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 3408 // FIXME: Remove in 4.0. 3409 std::string S; 3410 if (convertToString(Record, 0, S)) 3411 return error("Invalid record"); 3412 // Ignore value. 3413 break; 3414 } 3415 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 3416 std::string S; 3417 if (convertToString(Record, 0, S)) 3418 return error("Invalid record"); 3419 SectionTable.push_back(S); 3420 break; 3421 } 3422 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 3423 std::string S; 3424 if (convertToString(Record, 0, S)) 3425 return error("Invalid record"); 3426 GCTable.push_back(S); 3427 break; 3428 } 3429 case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name] 3430 if (Record.size() < 2) 3431 return error("Invalid record"); 3432 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 3433 unsigned ComdatNameSize = Record[1]; 3434 std::string ComdatName; 3435 ComdatName.reserve(ComdatNameSize); 3436 for (unsigned i = 0; i != ComdatNameSize; ++i) 3437 ComdatName += (char)Record[2 + i]; 3438 Comdat *C = TheModule->getOrInsertComdat(ComdatName); 3439 C->setSelectionKind(SK); 3440 ComdatList.push_back(C); 3441 break; 3442 } 3443 // GLOBALVAR: [pointer type, isconst, initid, 3444 // linkage, alignment, section, visibility, threadlocal, 3445 // unnamed_addr, externally_initialized, dllstorageclass, 3446 // comdat] 3447 case bitc::MODULE_CODE_GLOBALVAR: { 3448 if (Record.size() < 6) 3449 return error("Invalid record"); 3450 Type *Ty = getTypeByID(Record[0]); 3451 if (!Ty) 3452 return error("Invalid record"); 3453 bool isConstant = Record[1] & 1; 3454 bool explicitType = Record[1] & 2; 3455 unsigned AddressSpace; 3456 if (explicitType) { 3457 AddressSpace = Record[1] >> 2; 3458 } else { 3459 if (!Ty->isPointerTy()) 3460 return error("Invalid type for value"); 3461 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 3462 Ty = cast<PointerType>(Ty)->getElementType(); 3463 } 3464 3465 uint64_t RawLinkage = Record[3]; 3466 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 3467 unsigned Alignment; 3468 if (std::error_code EC = parseAlignmentValue(Record[4], Alignment)) 3469 return EC; 3470 std::string Section; 3471 if (Record[5]) { 3472 if (Record[5]-1 >= SectionTable.size()) 3473 return error("Invalid ID"); 3474 Section = SectionTable[Record[5]-1]; 3475 } 3476 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 3477 // Local linkage must have default visibility. 3478 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 3479 // FIXME: Change to an error if non-default in 4.0. 3480 Visibility = getDecodedVisibility(Record[6]); 3481 3482 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 3483 if (Record.size() > 7) 3484 TLM = getDecodedThreadLocalMode(Record[7]); 3485 3486 bool UnnamedAddr = false; 3487 if (Record.size() > 8) 3488 UnnamedAddr = Record[8]; 3489 3490 bool ExternallyInitialized = false; 3491 if (Record.size() > 9) 3492 ExternallyInitialized = Record[9]; 3493 3494 GlobalVariable *NewGV = 3495 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr, 3496 TLM, AddressSpace, ExternallyInitialized); 3497 NewGV->setAlignment(Alignment); 3498 if (!Section.empty()) 3499 NewGV->setSection(Section); 3500 NewGV->setVisibility(Visibility); 3501 NewGV->setUnnamedAddr(UnnamedAddr); 3502 3503 if (Record.size() > 10) 3504 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 3505 else 3506 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 3507 3508 ValueList.push_back(NewGV); 3509 3510 // Remember which value to use for the global initializer. 3511 if (unsigned InitID = Record[2]) 3512 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 3513 3514 if (Record.size() > 11) { 3515 if (unsigned ComdatID = Record[11]) { 3516 if (ComdatID > ComdatList.size()) 3517 return error("Invalid global variable comdat ID"); 3518 NewGV->setComdat(ComdatList[ComdatID - 1]); 3519 } 3520 } else if (hasImplicitComdat(RawLinkage)) { 3521 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 3522 } 3523 break; 3524 } 3525 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 3526 // alignment, section, visibility, gc, unnamed_addr, 3527 // prologuedata, dllstorageclass, comdat, prefixdata] 3528 case bitc::MODULE_CODE_FUNCTION: { 3529 if (Record.size() < 8) 3530 return error("Invalid record"); 3531 Type *Ty = getTypeByID(Record[0]); 3532 if (!Ty) 3533 return error("Invalid record"); 3534 if (auto *PTy = dyn_cast<PointerType>(Ty)) 3535 Ty = PTy->getElementType(); 3536 auto *FTy = dyn_cast<FunctionType>(Ty); 3537 if (!FTy) 3538 return error("Invalid type for value"); 3539 auto CC = static_cast<CallingConv::ID>(Record[1]); 3540 if (CC & ~CallingConv::MaxID) 3541 return error("Invalid calling convention ID"); 3542 3543 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 3544 "", TheModule); 3545 3546 Func->setCallingConv(CC); 3547 bool isProto = Record[2]; 3548 uint64_t RawLinkage = Record[3]; 3549 Func->setLinkage(getDecodedLinkage(RawLinkage)); 3550 Func->setAttributes(getAttributes(Record[4])); 3551 3552 unsigned Alignment; 3553 if (std::error_code EC = parseAlignmentValue(Record[5], Alignment)) 3554 return EC; 3555 Func->setAlignment(Alignment); 3556 if (Record[6]) { 3557 if (Record[6]-1 >= SectionTable.size()) 3558 return error("Invalid ID"); 3559 Func->setSection(SectionTable[Record[6]-1]); 3560 } 3561 // Local linkage must have default visibility. 3562 if (!Func->hasLocalLinkage()) 3563 // FIXME: Change to an error if non-default in 4.0. 3564 Func->setVisibility(getDecodedVisibility(Record[7])); 3565 if (Record.size() > 8 && Record[8]) { 3566 if (Record[8]-1 >= GCTable.size()) 3567 return error("Invalid ID"); 3568 Func->setGC(GCTable[Record[8]-1].c_str()); 3569 } 3570 bool UnnamedAddr = false; 3571 if (Record.size() > 9) 3572 UnnamedAddr = Record[9]; 3573 Func->setUnnamedAddr(UnnamedAddr); 3574 if (Record.size() > 10 && Record[10] != 0) 3575 FunctionPrologues.push_back(std::make_pair(Func, Record[10]-1)); 3576 3577 if (Record.size() > 11) 3578 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 3579 else 3580 upgradeDLLImportExportLinkage(Func, RawLinkage); 3581 3582 if (Record.size() > 12) { 3583 if (unsigned ComdatID = Record[12]) { 3584 if (ComdatID > ComdatList.size()) 3585 return error("Invalid function comdat ID"); 3586 Func->setComdat(ComdatList[ComdatID - 1]); 3587 } 3588 } else if (hasImplicitComdat(RawLinkage)) { 3589 Func->setComdat(reinterpret_cast<Comdat *>(1)); 3590 } 3591 3592 if (Record.size() > 13 && Record[13] != 0) 3593 FunctionPrefixes.push_back(std::make_pair(Func, Record[13]-1)); 3594 3595 if (Record.size() > 14 && Record[14] != 0) 3596 FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1)); 3597 3598 ValueList.push_back(Func); 3599 3600 // If this is a function with a body, remember the prototype we are 3601 // creating now, so that we can match up the body with them later. 3602 if (!isProto) { 3603 Func->setIsMaterializable(true); 3604 FunctionsWithBodies.push_back(Func); 3605 DeferredFunctionInfo[Func] = 0; 3606 } 3607 break; 3608 } 3609 // ALIAS: [alias type, addrspace, aliasee val#, linkage] 3610 // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, dllstorageclass] 3611 case bitc::MODULE_CODE_ALIAS: 3612 case bitc::MODULE_CODE_ALIAS_OLD: { 3613 bool NewRecord = BitCode == bitc::MODULE_CODE_ALIAS; 3614 if (Record.size() < (3 + (unsigned)NewRecord)) 3615 return error("Invalid record"); 3616 unsigned OpNum = 0; 3617 Type *Ty = getTypeByID(Record[OpNum++]); 3618 if (!Ty) 3619 return error("Invalid record"); 3620 3621 unsigned AddrSpace; 3622 if (!NewRecord) { 3623 auto *PTy = dyn_cast<PointerType>(Ty); 3624 if (!PTy) 3625 return error("Invalid type for value"); 3626 Ty = PTy->getElementType(); 3627 AddrSpace = PTy->getAddressSpace(); 3628 } else { 3629 AddrSpace = Record[OpNum++]; 3630 } 3631 3632 auto Val = Record[OpNum++]; 3633 auto Linkage = Record[OpNum++]; 3634 auto *NewGA = GlobalAlias::create( 3635 Ty, AddrSpace, getDecodedLinkage(Linkage), "", TheModule); 3636 // Old bitcode files didn't have visibility field. 3637 // Local linkage must have default visibility. 3638 if (OpNum != Record.size()) { 3639 auto VisInd = OpNum++; 3640 if (!NewGA->hasLocalLinkage()) 3641 // FIXME: Change to an error if non-default in 4.0. 3642 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 3643 } 3644 if (OpNum != Record.size()) 3645 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++])); 3646 else 3647 upgradeDLLImportExportLinkage(NewGA, Linkage); 3648 if (OpNum != Record.size()) 3649 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 3650 if (OpNum != Record.size()) 3651 NewGA->setUnnamedAddr(Record[OpNum++]); 3652 ValueList.push_back(NewGA); 3653 AliasInits.push_back(std::make_pair(NewGA, Val)); 3654 break; 3655 } 3656 /// MODULE_CODE_PURGEVALS: [numvals] 3657 case bitc::MODULE_CODE_PURGEVALS: 3658 // Trim down the value list to the specified size. 3659 if (Record.size() < 1 || Record[0] > ValueList.size()) 3660 return error("Invalid record"); 3661 ValueList.shrinkTo(Record[0]); 3662 break; 3663 /// MODULE_CODE_VSTOFFSET: [offset] 3664 case bitc::MODULE_CODE_VSTOFFSET: 3665 if (Record.size() < 1) 3666 return error("Invalid record"); 3667 VSTOffset = Record[0]; 3668 break; 3669 /// MODULE_CODE_METADATA_VALUES: [numvals] 3670 case bitc::MODULE_CODE_METADATA_VALUES: 3671 if (Record.size() < 1) 3672 return error("Invalid record"); 3673 assert(!IsMetadataMaterialized); 3674 // This record contains the number of metadata values in the module-level 3675 // METADATA_BLOCK. It is used to support lazy parsing of metadata as 3676 // a postpass, where we will parse function-level metadata first. 3677 // This is needed because the ids of metadata are assigned implicitly 3678 // based on their ordering in the bitcode, with the function-level 3679 // metadata ids starting after the module-level metadata ids. Otherwise, 3680 // we would have to parse the module-level metadata block to prime the 3681 // MDValueList when we are lazy loading metadata during function 3682 // importing. Initialize the MDValueList size here based on the 3683 // record value, regardless of whether we are doing lazy metadata 3684 // loading, so that we have consistent handling and assertion 3685 // checking in parseMetadata for module-level metadata. 3686 NumModuleMDs = Record[0]; 3687 SeenModuleValuesRecord = true; 3688 assert(MDValueList.size() == 0); 3689 MDValueList.resize(NumModuleMDs); 3690 break; 3691 } 3692 Record.clear(); 3693 } 3694 } 3695 3696 /// Helper to read the header common to all bitcode files. 3697 static bool hasValidBitcodeHeader(BitstreamCursor &Stream) { 3698 // Sniff for the signature. 3699 if (Stream.Read(8) != 'B' || 3700 Stream.Read(8) != 'C' || 3701 Stream.Read(4) != 0x0 || 3702 Stream.Read(4) != 0xC || 3703 Stream.Read(4) != 0xE || 3704 Stream.Read(4) != 0xD) 3705 return false; 3706 return true; 3707 } 3708 3709 std::error_code 3710 BitcodeReader::parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer, 3711 Module *M, bool ShouldLazyLoadMetadata) { 3712 TheModule = M; 3713 3714 if (std::error_code EC = initStream(std::move(Streamer))) 3715 return EC; 3716 3717 // Sniff for the signature. 3718 if (!hasValidBitcodeHeader(Stream)) 3719 return error("Invalid bitcode signature"); 3720 3721 // We expect a number of well-defined blocks, though we don't necessarily 3722 // need to understand them all. 3723 while (1) { 3724 if (Stream.AtEndOfStream()) { 3725 // We didn't really read a proper Module. 3726 return error("Malformed IR file"); 3727 } 3728 3729 BitstreamEntry Entry = 3730 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 3731 3732 if (Entry.Kind != BitstreamEntry::SubBlock) 3733 return error("Malformed block"); 3734 3735 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 3736 parseBitcodeVersion(); 3737 continue; 3738 } 3739 3740 if (Entry.ID == bitc::MODULE_BLOCK_ID) 3741 return parseModule(0, ShouldLazyLoadMetadata); 3742 3743 if (Stream.SkipBlock()) 3744 return error("Invalid record"); 3745 } 3746 } 3747 3748 ErrorOr<std::string> BitcodeReader::parseModuleTriple() { 3749 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3750 return error("Invalid record"); 3751 3752 SmallVector<uint64_t, 64> Record; 3753 3754 std::string Triple; 3755 // Read all the records for this module. 3756 while (1) { 3757 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3758 3759 switch (Entry.Kind) { 3760 case BitstreamEntry::SubBlock: // Handled for us already. 3761 case BitstreamEntry::Error: 3762 return error("Malformed block"); 3763 case BitstreamEntry::EndBlock: 3764 return Triple; 3765 case BitstreamEntry::Record: 3766 // The interesting case. 3767 break; 3768 } 3769 3770 // Read a record. 3771 switch (Stream.readRecord(Entry.ID, Record)) { 3772 default: break; // Default behavior, ignore unknown content. 3773 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3774 std::string S; 3775 if (convertToString(Record, 0, S)) 3776 return error("Invalid record"); 3777 Triple = S; 3778 break; 3779 } 3780 } 3781 Record.clear(); 3782 } 3783 llvm_unreachable("Exit infinite loop"); 3784 } 3785 3786 ErrorOr<std::string> BitcodeReader::parseTriple() { 3787 if (std::error_code EC = initStream(nullptr)) 3788 return EC; 3789 3790 // Sniff for the signature. 3791 if (!hasValidBitcodeHeader(Stream)) 3792 return error("Invalid bitcode signature"); 3793 3794 // We expect a number of well-defined blocks, though we don't necessarily 3795 // need to understand them all. 3796 while (1) { 3797 BitstreamEntry Entry = Stream.advance(); 3798 3799 switch (Entry.Kind) { 3800 case BitstreamEntry::Error: 3801 return error("Malformed block"); 3802 case BitstreamEntry::EndBlock: 3803 return std::error_code(); 3804 3805 case BitstreamEntry::SubBlock: 3806 if (Entry.ID == bitc::MODULE_BLOCK_ID) 3807 return parseModuleTriple(); 3808 3809 // Ignore other sub-blocks. 3810 if (Stream.SkipBlock()) 3811 return error("Malformed block"); 3812 continue; 3813 3814 case BitstreamEntry::Record: 3815 Stream.skipRecord(Entry.ID); 3816 continue; 3817 } 3818 } 3819 } 3820 3821 ErrorOr<std::string> BitcodeReader::parseIdentificationBlock() { 3822 if (std::error_code EC = initStream(nullptr)) 3823 return EC; 3824 3825 // Sniff for the signature. 3826 if (!hasValidBitcodeHeader(Stream)) 3827 return error("Invalid bitcode signature"); 3828 3829 // We expect a number of well-defined blocks, though we don't necessarily 3830 // need to understand them all. 3831 while (1) { 3832 BitstreamEntry Entry = Stream.advance(); 3833 switch (Entry.Kind) { 3834 case BitstreamEntry::Error: 3835 return error("Malformed block"); 3836 case BitstreamEntry::EndBlock: 3837 return std::error_code(); 3838 3839 case BitstreamEntry::SubBlock: 3840 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 3841 if (std::error_code EC = parseBitcodeVersion()) 3842 return EC; 3843 return ProducerIdentification; 3844 } 3845 // Ignore other sub-blocks. 3846 if (Stream.SkipBlock()) 3847 return error("Malformed block"); 3848 continue; 3849 case BitstreamEntry::Record: 3850 Stream.skipRecord(Entry.ID); 3851 continue; 3852 } 3853 } 3854 } 3855 3856 /// Parse metadata attachments. 3857 std::error_code BitcodeReader::parseMetadataAttachment(Function &F) { 3858 if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID)) 3859 return error("Invalid record"); 3860 3861 SmallVector<uint64_t, 64> Record; 3862 while (1) { 3863 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3864 3865 switch (Entry.Kind) { 3866 case BitstreamEntry::SubBlock: // Handled for us already. 3867 case BitstreamEntry::Error: 3868 return error("Malformed block"); 3869 case BitstreamEntry::EndBlock: 3870 return std::error_code(); 3871 case BitstreamEntry::Record: 3872 // The interesting case. 3873 break; 3874 } 3875 3876 // Read a metadata attachment record. 3877 Record.clear(); 3878 switch (Stream.readRecord(Entry.ID, Record)) { 3879 default: // Default behavior: ignore. 3880 break; 3881 case bitc::METADATA_ATTACHMENT: { 3882 unsigned RecordLength = Record.size(); 3883 if (Record.empty()) 3884 return error("Invalid record"); 3885 if (RecordLength % 2 == 0) { 3886 // A function attachment. 3887 for (unsigned I = 0; I != RecordLength; I += 2) { 3888 auto K = MDKindMap.find(Record[I]); 3889 if (K == MDKindMap.end()) 3890 return error("Invalid ID"); 3891 Metadata *MD = MDValueList.getValueFwdRef(Record[I + 1]); 3892 F.setMetadata(K->second, cast<MDNode>(MD)); 3893 } 3894 continue; 3895 } 3896 3897 // An instruction attachment. 3898 Instruction *Inst = InstructionList[Record[0]]; 3899 for (unsigned i = 1; i != RecordLength; i = i+2) { 3900 unsigned Kind = Record[i]; 3901 DenseMap<unsigned, unsigned>::iterator I = 3902 MDKindMap.find(Kind); 3903 if (I == MDKindMap.end()) 3904 return error("Invalid ID"); 3905 Metadata *Node = MDValueList.getValueFwdRef(Record[i + 1]); 3906 if (isa<LocalAsMetadata>(Node)) 3907 // Drop the attachment. This used to be legal, but there's no 3908 // upgrade path. 3909 break; 3910 Inst->setMetadata(I->second, cast<MDNode>(Node)); 3911 if (I->second == LLVMContext::MD_tbaa) 3912 InstsWithTBAATag.push_back(Inst); 3913 } 3914 break; 3915 } 3916 } 3917 } 3918 } 3919 3920 static std::error_code typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 3921 LLVMContext &Context = PtrType->getContext(); 3922 if (!isa<PointerType>(PtrType)) 3923 return error(Context, "Load/Store operand is not a pointer type"); 3924 Type *ElemType = cast<PointerType>(PtrType)->getElementType(); 3925 3926 if (ValType && ValType != ElemType) 3927 return error(Context, "Explicit load/store type does not match pointee " 3928 "type of pointer operand"); 3929 if (!PointerType::isLoadableOrStorableType(ElemType)) 3930 return error(Context, "Cannot load/store from pointer"); 3931 return std::error_code(); 3932 } 3933 3934 /// Lazily parse the specified function body block. 3935 std::error_code BitcodeReader::parseFunctionBody(Function *F) { 3936 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 3937 return error("Invalid record"); 3938 3939 InstructionList.clear(); 3940 unsigned ModuleValueListSize = ValueList.size(); 3941 unsigned ModuleMDValueListSize = MDValueList.size(); 3942 3943 // Add all the function arguments to the value table. 3944 for (Argument &I : F->args()) 3945 ValueList.push_back(&I); 3946 3947 unsigned NextValueNo = ValueList.size(); 3948 BasicBlock *CurBB = nullptr; 3949 unsigned CurBBNo = 0; 3950 3951 DebugLoc LastLoc; 3952 auto getLastInstruction = [&]() -> Instruction * { 3953 if (CurBB && !CurBB->empty()) 3954 return &CurBB->back(); 3955 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 3956 !FunctionBBs[CurBBNo - 1]->empty()) 3957 return &FunctionBBs[CurBBNo - 1]->back(); 3958 return nullptr; 3959 }; 3960 3961 std::vector<OperandBundleDef> OperandBundles; 3962 3963 // Read all the records. 3964 SmallVector<uint64_t, 64> Record; 3965 while (1) { 3966 BitstreamEntry Entry = Stream.advance(); 3967 3968 switch (Entry.Kind) { 3969 case BitstreamEntry::Error: 3970 return error("Malformed block"); 3971 case BitstreamEntry::EndBlock: 3972 goto OutOfRecordLoop; 3973 3974 case BitstreamEntry::SubBlock: 3975 switch (Entry.ID) { 3976 default: // Skip unknown content. 3977 if (Stream.SkipBlock()) 3978 return error("Invalid record"); 3979 break; 3980 case bitc::CONSTANTS_BLOCK_ID: 3981 if (std::error_code EC = parseConstants()) 3982 return EC; 3983 NextValueNo = ValueList.size(); 3984 break; 3985 case bitc::VALUE_SYMTAB_BLOCK_ID: 3986 if (std::error_code EC = parseValueSymbolTable()) 3987 return EC; 3988 break; 3989 case bitc::METADATA_ATTACHMENT_ID: 3990 if (std::error_code EC = parseMetadataAttachment(*F)) 3991 return EC; 3992 break; 3993 case bitc::METADATA_BLOCK_ID: 3994 if (std::error_code EC = parseMetadata()) 3995 return EC; 3996 break; 3997 case bitc::USELIST_BLOCK_ID: 3998 if (std::error_code EC = parseUseLists()) 3999 return EC; 4000 break; 4001 } 4002 continue; 4003 4004 case BitstreamEntry::Record: 4005 // The interesting case. 4006 break; 4007 } 4008 4009 // Read a record. 4010 Record.clear(); 4011 Instruction *I = nullptr; 4012 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 4013 switch (BitCode) { 4014 default: // Default behavior: reject 4015 return error("Invalid value"); 4016 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 4017 if (Record.size() < 1 || Record[0] == 0) 4018 return error("Invalid record"); 4019 // Create all the basic blocks for the function. 4020 FunctionBBs.resize(Record[0]); 4021 4022 // See if anything took the address of blocks in this function. 4023 auto BBFRI = BasicBlockFwdRefs.find(F); 4024 if (BBFRI == BasicBlockFwdRefs.end()) { 4025 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 4026 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 4027 } else { 4028 auto &BBRefs = BBFRI->second; 4029 // Check for invalid basic block references. 4030 if (BBRefs.size() > FunctionBBs.size()) 4031 return error("Invalid ID"); 4032 assert(!BBRefs.empty() && "Unexpected empty array"); 4033 assert(!BBRefs.front() && "Invalid reference to entry block"); 4034 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 4035 ++I) 4036 if (I < RE && BBRefs[I]) { 4037 BBRefs[I]->insertInto(F); 4038 FunctionBBs[I] = BBRefs[I]; 4039 } else { 4040 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 4041 } 4042 4043 // Erase from the table. 4044 BasicBlockFwdRefs.erase(BBFRI); 4045 } 4046 4047 CurBB = FunctionBBs[0]; 4048 continue; 4049 } 4050 4051 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 4052 // This record indicates that the last instruction is at the same 4053 // location as the previous instruction with a location. 4054 I = getLastInstruction(); 4055 4056 if (!I) 4057 return error("Invalid record"); 4058 I->setDebugLoc(LastLoc); 4059 I = nullptr; 4060 continue; 4061 4062 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 4063 I = getLastInstruction(); 4064 if (!I || Record.size() < 4) 4065 return error("Invalid record"); 4066 4067 unsigned Line = Record[0], Col = Record[1]; 4068 unsigned ScopeID = Record[2], IAID = Record[3]; 4069 4070 MDNode *Scope = nullptr, *IA = nullptr; 4071 if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1)); 4072 if (IAID) IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1)); 4073 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 4074 I->setDebugLoc(LastLoc); 4075 I = nullptr; 4076 continue; 4077 } 4078 4079 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 4080 unsigned OpNum = 0; 4081 Value *LHS, *RHS; 4082 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4083 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 4084 OpNum+1 > Record.size()) 4085 return error("Invalid record"); 4086 4087 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 4088 if (Opc == -1) 4089 return error("Invalid record"); 4090 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 4091 InstructionList.push_back(I); 4092 if (OpNum < Record.size()) { 4093 if (Opc == Instruction::Add || 4094 Opc == Instruction::Sub || 4095 Opc == Instruction::Mul || 4096 Opc == Instruction::Shl) { 4097 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 4098 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 4099 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 4100 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 4101 } else if (Opc == Instruction::SDiv || 4102 Opc == Instruction::UDiv || 4103 Opc == Instruction::LShr || 4104 Opc == Instruction::AShr) { 4105 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 4106 cast<BinaryOperator>(I)->setIsExact(true); 4107 } else if (isa<FPMathOperator>(I)) { 4108 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4109 if (FMF.any()) 4110 I->setFastMathFlags(FMF); 4111 } 4112 4113 } 4114 break; 4115 } 4116 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 4117 unsigned OpNum = 0; 4118 Value *Op; 4119 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4120 OpNum+2 != Record.size()) 4121 return error("Invalid record"); 4122 4123 Type *ResTy = getTypeByID(Record[OpNum]); 4124 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 4125 if (Opc == -1 || !ResTy) 4126 return error("Invalid record"); 4127 Instruction *Temp = nullptr; 4128 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 4129 if (Temp) { 4130 InstructionList.push_back(Temp); 4131 CurBB->getInstList().push_back(Temp); 4132 } 4133 } else { 4134 auto CastOp = (Instruction::CastOps)Opc; 4135 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 4136 return error("Invalid cast"); 4137 I = CastInst::Create(CastOp, Op, ResTy); 4138 } 4139 InstructionList.push_back(I); 4140 break; 4141 } 4142 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 4143 case bitc::FUNC_CODE_INST_GEP_OLD: 4144 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 4145 unsigned OpNum = 0; 4146 4147 Type *Ty; 4148 bool InBounds; 4149 4150 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 4151 InBounds = Record[OpNum++]; 4152 Ty = getTypeByID(Record[OpNum++]); 4153 } else { 4154 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 4155 Ty = nullptr; 4156 } 4157 4158 Value *BasePtr; 4159 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 4160 return error("Invalid record"); 4161 4162 if (!Ty) 4163 Ty = cast<SequentialType>(BasePtr->getType()->getScalarType()) 4164 ->getElementType(); 4165 else if (Ty != 4166 cast<SequentialType>(BasePtr->getType()->getScalarType()) 4167 ->getElementType()) 4168 return error( 4169 "Explicit gep type does not match pointee type of pointer operand"); 4170 4171 SmallVector<Value*, 16> GEPIdx; 4172 while (OpNum != Record.size()) { 4173 Value *Op; 4174 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4175 return error("Invalid record"); 4176 GEPIdx.push_back(Op); 4177 } 4178 4179 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 4180 4181 InstructionList.push_back(I); 4182 if (InBounds) 4183 cast<GetElementPtrInst>(I)->setIsInBounds(true); 4184 break; 4185 } 4186 4187 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 4188 // EXTRACTVAL: [opty, opval, n x indices] 4189 unsigned OpNum = 0; 4190 Value *Agg; 4191 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 4192 return error("Invalid record"); 4193 4194 unsigned RecSize = Record.size(); 4195 if (OpNum == RecSize) 4196 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 4197 4198 SmallVector<unsigned, 4> EXTRACTVALIdx; 4199 Type *CurTy = Agg->getType(); 4200 for (; OpNum != RecSize; ++OpNum) { 4201 bool IsArray = CurTy->isArrayTy(); 4202 bool IsStruct = CurTy->isStructTy(); 4203 uint64_t Index = Record[OpNum]; 4204 4205 if (!IsStruct && !IsArray) 4206 return error("EXTRACTVAL: Invalid type"); 4207 if ((unsigned)Index != Index) 4208 return error("Invalid value"); 4209 if (IsStruct && Index >= CurTy->subtypes().size()) 4210 return error("EXTRACTVAL: Invalid struct index"); 4211 if (IsArray && Index >= CurTy->getArrayNumElements()) 4212 return error("EXTRACTVAL: Invalid array index"); 4213 EXTRACTVALIdx.push_back((unsigned)Index); 4214 4215 if (IsStruct) 4216 CurTy = CurTy->subtypes()[Index]; 4217 else 4218 CurTy = CurTy->subtypes()[0]; 4219 } 4220 4221 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 4222 InstructionList.push_back(I); 4223 break; 4224 } 4225 4226 case bitc::FUNC_CODE_INST_INSERTVAL: { 4227 // INSERTVAL: [opty, opval, opty, opval, n x indices] 4228 unsigned OpNum = 0; 4229 Value *Agg; 4230 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 4231 return error("Invalid record"); 4232 Value *Val; 4233 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 4234 return error("Invalid record"); 4235 4236 unsigned RecSize = Record.size(); 4237 if (OpNum == RecSize) 4238 return error("INSERTVAL: Invalid instruction with 0 indices"); 4239 4240 SmallVector<unsigned, 4> INSERTVALIdx; 4241 Type *CurTy = Agg->getType(); 4242 for (; OpNum != RecSize; ++OpNum) { 4243 bool IsArray = CurTy->isArrayTy(); 4244 bool IsStruct = CurTy->isStructTy(); 4245 uint64_t Index = Record[OpNum]; 4246 4247 if (!IsStruct && !IsArray) 4248 return error("INSERTVAL: Invalid type"); 4249 if ((unsigned)Index != Index) 4250 return error("Invalid value"); 4251 if (IsStruct && Index >= CurTy->subtypes().size()) 4252 return error("INSERTVAL: Invalid struct index"); 4253 if (IsArray && Index >= CurTy->getArrayNumElements()) 4254 return error("INSERTVAL: Invalid array index"); 4255 4256 INSERTVALIdx.push_back((unsigned)Index); 4257 if (IsStruct) 4258 CurTy = CurTy->subtypes()[Index]; 4259 else 4260 CurTy = CurTy->subtypes()[0]; 4261 } 4262 4263 if (CurTy != Val->getType()) 4264 return error("Inserted value type doesn't match aggregate type"); 4265 4266 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 4267 InstructionList.push_back(I); 4268 break; 4269 } 4270 4271 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 4272 // obsolete form of select 4273 // handles select i1 ... in old bitcode 4274 unsigned OpNum = 0; 4275 Value *TrueVal, *FalseVal, *Cond; 4276 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4277 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4278 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 4279 return error("Invalid record"); 4280 4281 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4282 InstructionList.push_back(I); 4283 break; 4284 } 4285 4286 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 4287 // new form of select 4288 // handles select i1 or select [N x i1] 4289 unsigned OpNum = 0; 4290 Value *TrueVal, *FalseVal, *Cond; 4291 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4292 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4293 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 4294 return error("Invalid record"); 4295 4296 // select condition can be either i1 or [N x i1] 4297 if (VectorType* vector_type = 4298 dyn_cast<VectorType>(Cond->getType())) { 4299 // expect <n x i1> 4300 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 4301 return error("Invalid type for value"); 4302 } else { 4303 // expect i1 4304 if (Cond->getType() != Type::getInt1Ty(Context)) 4305 return error("Invalid type for value"); 4306 } 4307 4308 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4309 InstructionList.push_back(I); 4310 break; 4311 } 4312 4313 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 4314 unsigned OpNum = 0; 4315 Value *Vec, *Idx; 4316 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 4317 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4318 return error("Invalid record"); 4319 if (!Vec->getType()->isVectorTy()) 4320 return error("Invalid type for value"); 4321 I = ExtractElementInst::Create(Vec, Idx); 4322 InstructionList.push_back(I); 4323 break; 4324 } 4325 4326 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 4327 unsigned OpNum = 0; 4328 Value *Vec, *Elt, *Idx; 4329 if (getValueTypePair(Record, OpNum, NextValueNo, Vec)) 4330 return error("Invalid record"); 4331 if (!Vec->getType()->isVectorTy()) 4332 return error("Invalid type for value"); 4333 if (popValue(Record, OpNum, NextValueNo, 4334 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 4335 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4336 return error("Invalid record"); 4337 I = InsertElementInst::Create(Vec, Elt, Idx); 4338 InstructionList.push_back(I); 4339 break; 4340 } 4341 4342 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 4343 unsigned OpNum = 0; 4344 Value *Vec1, *Vec2, *Mask; 4345 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 4346 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 4347 return error("Invalid record"); 4348 4349 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 4350 return error("Invalid record"); 4351 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 4352 return error("Invalid type for value"); 4353 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 4354 InstructionList.push_back(I); 4355 break; 4356 } 4357 4358 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 4359 // Old form of ICmp/FCmp returning bool 4360 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 4361 // both legal on vectors but had different behaviour. 4362 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 4363 // FCmp/ICmp returning bool or vector of bool 4364 4365 unsigned OpNum = 0; 4366 Value *LHS, *RHS; 4367 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4368 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS)) 4369 return error("Invalid record"); 4370 4371 unsigned PredVal = Record[OpNum]; 4372 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 4373 FastMathFlags FMF; 4374 if (IsFP && Record.size() > OpNum+1) 4375 FMF = getDecodedFastMathFlags(Record[++OpNum]); 4376 4377 if (OpNum+1 != Record.size()) 4378 return error("Invalid record"); 4379 4380 if (LHS->getType()->isFPOrFPVectorTy()) 4381 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 4382 else 4383 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 4384 4385 if (FMF.any()) 4386 I->setFastMathFlags(FMF); 4387 InstructionList.push_back(I); 4388 break; 4389 } 4390 4391 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 4392 { 4393 unsigned Size = Record.size(); 4394 if (Size == 0) { 4395 I = ReturnInst::Create(Context); 4396 InstructionList.push_back(I); 4397 break; 4398 } 4399 4400 unsigned OpNum = 0; 4401 Value *Op = nullptr; 4402 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4403 return error("Invalid record"); 4404 if (OpNum != Record.size()) 4405 return error("Invalid record"); 4406 4407 I = ReturnInst::Create(Context, Op); 4408 InstructionList.push_back(I); 4409 break; 4410 } 4411 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 4412 if (Record.size() != 1 && Record.size() != 3) 4413 return error("Invalid record"); 4414 BasicBlock *TrueDest = getBasicBlock(Record[0]); 4415 if (!TrueDest) 4416 return error("Invalid record"); 4417 4418 if (Record.size() == 1) { 4419 I = BranchInst::Create(TrueDest); 4420 InstructionList.push_back(I); 4421 } 4422 else { 4423 BasicBlock *FalseDest = getBasicBlock(Record[1]); 4424 Value *Cond = getValue(Record, 2, NextValueNo, 4425 Type::getInt1Ty(Context)); 4426 if (!FalseDest || !Cond) 4427 return error("Invalid record"); 4428 I = BranchInst::Create(TrueDest, FalseDest, Cond); 4429 InstructionList.push_back(I); 4430 } 4431 break; 4432 } 4433 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 4434 if (Record.size() != 1 && Record.size() != 2) 4435 return error("Invalid record"); 4436 unsigned Idx = 0; 4437 Value *CleanupPad = 4438 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4439 if (!CleanupPad) 4440 return error("Invalid record"); 4441 BasicBlock *UnwindDest = nullptr; 4442 if (Record.size() == 2) { 4443 UnwindDest = getBasicBlock(Record[Idx++]); 4444 if (!UnwindDest) 4445 return error("Invalid record"); 4446 } 4447 4448 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 4449 InstructionList.push_back(I); 4450 break; 4451 } 4452 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 4453 if (Record.size() != 2) 4454 return error("Invalid record"); 4455 unsigned Idx = 0; 4456 Value *CatchPad = 4457 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4458 if (!CatchPad) 4459 return error("Invalid record"); 4460 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4461 if (!BB) 4462 return error("Invalid record"); 4463 4464 I = CatchReturnInst::Create(CatchPad, BB); 4465 InstructionList.push_back(I); 4466 break; 4467 } 4468 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 4469 // We must have, at minimum, the outer scope and the number of arguments. 4470 if (Record.size() < 2) 4471 return error("Invalid record"); 4472 4473 unsigned Idx = 0; 4474 4475 Value *ParentPad = 4476 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4477 4478 unsigned NumHandlers = Record[Idx++]; 4479 4480 SmallVector<BasicBlock *, 2> Handlers; 4481 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 4482 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4483 if (!BB) 4484 return error("Invalid record"); 4485 Handlers.push_back(BB); 4486 } 4487 4488 BasicBlock *UnwindDest = nullptr; 4489 if (Idx + 1 == Record.size()) { 4490 UnwindDest = getBasicBlock(Record[Idx++]); 4491 if (!UnwindDest) 4492 return error("Invalid record"); 4493 } 4494 4495 if (Record.size() != Idx) 4496 return error("Invalid record"); 4497 4498 auto *CatchSwitch = 4499 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 4500 for (BasicBlock *Handler : Handlers) 4501 CatchSwitch->addHandler(Handler); 4502 I = CatchSwitch; 4503 InstructionList.push_back(I); 4504 break; 4505 } 4506 case bitc::FUNC_CODE_INST_CATCHPAD: 4507 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 4508 // We must have, at minimum, the outer scope and the number of arguments. 4509 if (Record.size() < 2) 4510 return error("Invalid record"); 4511 4512 unsigned Idx = 0; 4513 4514 Value *ParentPad = 4515 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4516 4517 unsigned NumArgOperands = Record[Idx++]; 4518 4519 SmallVector<Value *, 2> Args; 4520 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 4521 Value *Val; 4522 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4523 return error("Invalid record"); 4524 Args.push_back(Val); 4525 } 4526 4527 if (Record.size() != Idx) 4528 return error("Invalid record"); 4529 4530 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 4531 I = CleanupPadInst::Create(ParentPad, Args); 4532 else 4533 I = CatchPadInst::Create(ParentPad, Args); 4534 InstructionList.push_back(I); 4535 break; 4536 } 4537 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 4538 // Check magic 4539 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 4540 // "New" SwitchInst format with case ranges. The changes to write this 4541 // format were reverted but we still recognize bitcode that uses it. 4542 // Hopefully someday we will have support for case ranges and can use 4543 // this format again. 4544 4545 Type *OpTy = getTypeByID(Record[1]); 4546 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 4547 4548 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 4549 BasicBlock *Default = getBasicBlock(Record[3]); 4550 if (!OpTy || !Cond || !Default) 4551 return error("Invalid record"); 4552 4553 unsigned NumCases = Record[4]; 4554 4555 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4556 InstructionList.push_back(SI); 4557 4558 unsigned CurIdx = 5; 4559 for (unsigned i = 0; i != NumCases; ++i) { 4560 SmallVector<ConstantInt*, 1> CaseVals; 4561 unsigned NumItems = Record[CurIdx++]; 4562 for (unsigned ci = 0; ci != NumItems; ++ci) { 4563 bool isSingleNumber = Record[CurIdx++]; 4564 4565 APInt Low; 4566 unsigned ActiveWords = 1; 4567 if (ValueBitWidth > 64) 4568 ActiveWords = Record[CurIdx++]; 4569 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 4570 ValueBitWidth); 4571 CurIdx += ActiveWords; 4572 4573 if (!isSingleNumber) { 4574 ActiveWords = 1; 4575 if (ValueBitWidth > 64) 4576 ActiveWords = Record[CurIdx++]; 4577 APInt High = readWideAPInt( 4578 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 4579 CurIdx += ActiveWords; 4580 4581 // FIXME: It is not clear whether values in the range should be 4582 // compared as signed or unsigned values. The partially 4583 // implemented changes that used this format in the past used 4584 // unsigned comparisons. 4585 for ( ; Low.ule(High); ++Low) 4586 CaseVals.push_back(ConstantInt::get(Context, Low)); 4587 } else 4588 CaseVals.push_back(ConstantInt::get(Context, Low)); 4589 } 4590 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 4591 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 4592 cve = CaseVals.end(); cvi != cve; ++cvi) 4593 SI->addCase(*cvi, DestBB); 4594 } 4595 I = SI; 4596 break; 4597 } 4598 4599 // Old SwitchInst format without case ranges. 4600 4601 if (Record.size() < 3 || (Record.size() & 1) == 0) 4602 return error("Invalid record"); 4603 Type *OpTy = getTypeByID(Record[0]); 4604 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 4605 BasicBlock *Default = getBasicBlock(Record[2]); 4606 if (!OpTy || !Cond || !Default) 4607 return error("Invalid record"); 4608 unsigned NumCases = (Record.size()-3)/2; 4609 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4610 InstructionList.push_back(SI); 4611 for (unsigned i = 0, e = NumCases; i != e; ++i) { 4612 ConstantInt *CaseVal = 4613 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 4614 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 4615 if (!CaseVal || !DestBB) { 4616 delete SI; 4617 return error("Invalid record"); 4618 } 4619 SI->addCase(CaseVal, DestBB); 4620 } 4621 I = SI; 4622 break; 4623 } 4624 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 4625 if (Record.size() < 2) 4626 return error("Invalid record"); 4627 Type *OpTy = getTypeByID(Record[0]); 4628 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 4629 if (!OpTy || !Address) 4630 return error("Invalid record"); 4631 unsigned NumDests = Record.size()-2; 4632 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 4633 InstructionList.push_back(IBI); 4634 for (unsigned i = 0, e = NumDests; i != e; ++i) { 4635 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 4636 IBI->addDestination(DestBB); 4637 } else { 4638 delete IBI; 4639 return error("Invalid record"); 4640 } 4641 } 4642 I = IBI; 4643 break; 4644 } 4645 4646 case bitc::FUNC_CODE_INST_INVOKE: { 4647 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 4648 if (Record.size() < 4) 4649 return error("Invalid record"); 4650 unsigned OpNum = 0; 4651 AttributeSet PAL = getAttributes(Record[OpNum++]); 4652 unsigned CCInfo = Record[OpNum++]; 4653 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 4654 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 4655 4656 FunctionType *FTy = nullptr; 4657 if (CCInfo >> 13 & 1 && 4658 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 4659 return error("Explicit invoke type is not a function type"); 4660 4661 Value *Callee; 4662 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4663 return error("Invalid record"); 4664 4665 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 4666 if (!CalleeTy) 4667 return error("Callee is not a pointer"); 4668 if (!FTy) { 4669 FTy = dyn_cast<FunctionType>(CalleeTy->getElementType()); 4670 if (!FTy) 4671 return error("Callee is not of pointer to function type"); 4672 } else if (CalleeTy->getElementType() != FTy) 4673 return error("Explicit invoke type does not match pointee type of " 4674 "callee operand"); 4675 if (Record.size() < FTy->getNumParams() + OpNum) 4676 return error("Insufficient operands to call"); 4677 4678 SmallVector<Value*, 16> Ops; 4679 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4680 Ops.push_back(getValue(Record, OpNum, NextValueNo, 4681 FTy->getParamType(i))); 4682 if (!Ops.back()) 4683 return error("Invalid record"); 4684 } 4685 4686 if (!FTy->isVarArg()) { 4687 if (Record.size() != OpNum) 4688 return error("Invalid record"); 4689 } else { 4690 // Read type/value pairs for varargs params. 4691 while (OpNum != Record.size()) { 4692 Value *Op; 4693 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4694 return error("Invalid record"); 4695 Ops.push_back(Op); 4696 } 4697 } 4698 4699 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops, OperandBundles); 4700 OperandBundles.clear(); 4701 InstructionList.push_back(I); 4702 cast<InvokeInst>(I)->setCallingConv( 4703 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 4704 cast<InvokeInst>(I)->setAttributes(PAL); 4705 break; 4706 } 4707 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 4708 unsigned Idx = 0; 4709 Value *Val = nullptr; 4710 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4711 return error("Invalid record"); 4712 I = ResumeInst::Create(Val); 4713 InstructionList.push_back(I); 4714 break; 4715 } 4716 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 4717 I = new UnreachableInst(Context); 4718 InstructionList.push_back(I); 4719 break; 4720 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 4721 if (Record.size() < 1 || ((Record.size()-1)&1)) 4722 return error("Invalid record"); 4723 Type *Ty = getTypeByID(Record[0]); 4724 if (!Ty) 4725 return error("Invalid record"); 4726 4727 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 4728 InstructionList.push_back(PN); 4729 4730 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 4731 Value *V; 4732 // With the new function encoding, it is possible that operands have 4733 // negative IDs (for forward references). Use a signed VBR 4734 // representation to keep the encoding small. 4735 if (UseRelativeIDs) 4736 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 4737 else 4738 V = getValue(Record, 1+i, NextValueNo, Ty); 4739 BasicBlock *BB = getBasicBlock(Record[2+i]); 4740 if (!V || !BB) 4741 return error("Invalid record"); 4742 PN->addIncoming(V, BB); 4743 } 4744 I = PN; 4745 break; 4746 } 4747 4748 case bitc::FUNC_CODE_INST_LANDINGPAD: 4749 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 4750 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 4751 unsigned Idx = 0; 4752 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 4753 if (Record.size() < 3) 4754 return error("Invalid record"); 4755 } else { 4756 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 4757 if (Record.size() < 4) 4758 return error("Invalid record"); 4759 } 4760 Type *Ty = getTypeByID(Record[Idx++]); 4761 if (!Ty) 4762 return error("Invalid record"); 4763 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 4764 Value *PersFn = nullptr; 4765 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 4766 return error("Invalid record"); 4767 4768 if (!F->hasPersonalityFn()) 4769 F->setPersonalityFn(cast<Constant>(PersFn)); 4770 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 4771 return error("Personality function mismatch"); 4772 } 4773 4774 bool IsCleanup = !!Record[Idx++]; 4775 unsigned NumClauses = Record[Idx++]; 4776 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 4777 LP->setCleanup(IsCleanup); 4778 for (unsigned J = 0; J != NumClauses; ++J) { 4779 LandingPadInst::ClauseType CT = 4780 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 4781 Value *Val; 4782 4783 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 4784 delete LP; 4785 return error("Invalid record"); 4786 } 4787 4788 assert((CT != LandingPadInst::Catch || 4789 !isa<ArrayType>(Val->getType())) && 4790 "Catch clause has a invalid type!"); 4791 assert((CT != LandingPadInst::Filter || 4792 isa<ArrayType>(Val->getType())) && 4793 "Filter clause has invalid type!"); 4794 LP->addClause(cast<Constant>(Val)); 4795 } 4796 4797 I = LP; 4798 InstructionList.push_back(I); 4799 break; 4800 } 4801 4802 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 4803 if (Record.size() != 4) 4804 return error("Invalid record"); 4805 uint64_t AlignRecord = Record[3]; 4806 const uint64_t InAllocaMask = uint64_t(1) << 5; 4807 const uint64_t ExplicitTypeMask = uint64_t(1) << 6; 4808 // Reserve bit 7 for SwiftError flag. 4809 // const uint64_t SwiftErrorMask = uint64_t(1) << 7; 4810 const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask; 4811 bool InAlloca = AlignRecord & InAllocaMask; 4812 Type *Ty = getTypeByID(Record[0]); 4813 if ((AlignRecord & ExplicitTypeMask) == 0) { 4814 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 4815 if (!PTy) 4816 return error("Old-style alloca with a non-pointer type"); 4817 Ty = PTy->getElementType(); 4818 } 4819 Type *OpTy = getTypeByID(Record[1]); 4820 Value *Size = getFnValueByID(Record[2], OpTy); 4821 unsigned Align; 4822 if (std::error_code EC = 4823 parseAlignmentValue(AlignRecord & ~FlagMask, Align)) { 4824 return EC; 4825 } 4826 if (!Ty || !Size) 4827 return error("Invalid record"); 4828 AllocaInst *AI = new AllocaInst(Ty, Size, Align); 4829 AI->setUsedWithInAlloca(InAlloca); 4830 I = AI; 4831 InstructionList.push_back(I); 4832 break; 4833 } 4834 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 4835 unsigned OpNum = 0; 4836 Value *Op; 4837 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4838 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 4839 return error("Invalid record"); 4840 4841 Type *Ty = nullptr; 4842 if (OpNum + 3 == Record.size()) 4843 Ty = getTypeByID(Record[OpNum++]); 4844 if (std::error_code EC = typeCheckLoadStoreInst(Ty, Op->getType())) 4845 return EC; 4846 if (!Ty) 4847 Ty = cast<PointerType>(Op->getType())->getElementType(); 4848 4849 unsigned Align; 4850 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4851 return EC; 4852 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align); 4853 4854 InstructionList.push_back(I); 4855 break; 4856 } 4857 case bitc::FUNC_CODE_INST_LOADATOMIC: { 4858 // LOADATOMIC: [opty, op, align, vol, ordering, synchscope] 4859 unsigned OpNum = 0; 4860 Value *Op; 4861 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4862 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 4863 return error("Invalid record"); 4864 4865 Type *Ty = nullptr; 4866 if (OpNum + 5 == Record.size()) 4867 Ty = getTypeByID(Record[OpNum++]); 4868 if (std::error_code EC = typeCheckLoadStoreInst(Ty, Op->getType())) 4869 return EC; 4870 if (!Ty) 4871 Ty = cast<PointerType>(Op->getType())->getElementType(); 4872 4873 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4874 if (Ordering == NotAtomic || Ordering == Release || 4875 Ordering == AcquireRelease) 4876 return error("Invalid record"); 4877 if (Ordering != NotAtomic && Record[OpNum] == 0) 4878 return error("Invalid record"); 4879 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 4880 4881 unsigned Align; 4882 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4883 return EC; 4884 I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SynchScope); 4885 4886 InstructionList.push_back(I); 4887 break; 4888 } 4889 case bitc::FUNC_CODE_INST_STORE: 4890 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 4891 unsigned OpNum = 0; 4892 Value *Val, *Ptr; 4893 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4894 (BitCode == bitc::FUNC_CODE_INST_STORE 4895 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4896 : popValue(Record, OpNum, NextValueNo, 4897 cast<PointerType>(Ptr->getType())->getElementType(), 4898 Val)) || 4899 OpNum + 2 != Record.size()) 4900 return error("Invalid record"); 4901 4902 if (std::error_code EC = 4903 typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4904 return EC; 4905 unsigned Align; 4906 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4907 return EC; 4908 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align); 4909 InstructionList.push_back(I); 4910 break; 4911 } 4912 case bitc::FUNC_CODE_INST_STOREATOMIC: 4913 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 4914 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope] 4915 unsigned OpNum = 0; 4916 Value *Val, *Ptr; 4917 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4918 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 4919 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4920 : popValue(Record, OpNum, NextValueNo, 4921 cast<PointerType>(Ptr->getType())->getElementType(), 4922 Val)) || 4923 OpNum + 4 != Record.size()) 4924 return error("Invalid record"); 4925 4926 if (std::error_code EC = 4927 typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4928 return EC; 4929 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4930 if (Ordering == NotAtomic || Ordering == Acquire || 4931 Ordering == AcquireRelease) 4932 return error("Invalid record"); 4933 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 4934 if (Ordering != NotAtomic && Record[OpNum] == 0) 4935 return error("Invalid record"); 4936 4937 unsigned Align; 4938 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4939 return EC; 4940 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SynchScope); 4941 InstructionList.push_back(I); 4942 break; 4943 } 4944 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: 4945 case bitc::FUNC_CODE_INST_CMPXCHG: { 4946 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope, 4947 // failureordering?, isweak?] 4948 unsigned OpNum = 0; 4949 Value *Ptr, *Cmp, *New; 4950 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4951 (BitCode == bitc::FUNC_CODE_INST_CMPXCHG 4952 ? getValueTypePair(Record, OpNum, NextValueNo, Cmp) 4953 : popValue(Record, OpNum, NextValueNo, 4954 cast<PointerType>(Ptr->getType())->getElementType(), 4955 Cmp)) || 4956 popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 4957 Record.size() < OpNum + 3 || Record.size() > OpNum + 5) 4958 return error("Invalid record"); 4959 AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]); 4960 if (SuccessOrdering == NotAtomic || SuccessOrdering == Unordered) 4961 return error("Invalid record"); 4962 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 2]); 4963 4964 if (std::error_code EC = 4965 typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 4966 return EC; 4967 AtomicOrdering FailureOrdering; 4968 if (Record.size() < 7) 4969 FailureOrdering = 4970 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 4971 else 4972 FailureOrdering = getDecodedOrdering(Record[OpNum + 3]); 4973 4974 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 4975 SynchScope); 4976 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 4977 4978 if (Record.size() < 8) { 4979 // Before weak cmpxchgs existed, the instruction simply returned the 4980 // value loaded from memory, so bitcode files from that era will be 4981 // expecting the first component of a modern cmpxchg. 4982 CurBB->getInstList().push_back(I); 4983 I = ExtractValueInst::Create(I, 0); 4984 } else { 4985 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 4986 } 4987 4988 InstructionList.push_back(I); 4989 break; 4990 } 4991 case bitc::FUNC_CODE_INST_ATOMICRMW: { 4992 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope] 4993 unsigned OpNum = 0; 4994 Value *Ptr, *Val; 4995 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4996 popValue(Record, OpNum, NextValueNo, 4997 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 4998 OpNum+4 != Record.size()) 4999 return error("Invalid record"); 5000 AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]); 5001 if (Operation < AtomicRMWInst::FIRST_BINOP || 5002 Operation > AtomicRMWInst::LAST_BINOP) 5003 return error("Invalid record"); 5004 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5005 if (Ordering == NotAtomic || Ordering == Unordered) 5006 return error("Invalid record"); 5007 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 5008 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope); 5009 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 5010 InstructionList.push_back(I); 5011 break; 5012 } 5013 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope] 5014 if (2 != Record.size()) 5015 return error("Invalid record"); 5016 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 5017 if (Ordering == NotAtomic || Ordering == Unordered || 5018 Ordering == Monotonic) 5019 return error("Invalid record"); 5020 SynchronizationScope SynchScope = getDecodedSynchScope(Record[1]); 5021 I = new FenceInst(Context, Ordering, SynchScope); 5022 InstructionList.push_back(I); 5023 break; 5024 } 5025 case bitc::FUNC_CODE_INST_CALL: { 5026 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 5027 if (Record.size() < 3) 5028 return error("Invalid record"); 5029 5030 unsigned OpNum = 0; 5031 AttributeSet PAL = getAttributes(Record[OpNum++]); 5032 unsigned CCInfo = Record[OpNum++]; 5033 5034 FastMathFlags FMF; 5035 if ((CCInfo >> bitc::CALL_FMF) & 1) { 5036 FMF = getDecodedFastMathFlags(Record[OpNum++]); 5037 if (!FMF.any()) 5038 return error("Fast math flags indicator set for call with no FMF"); 5039 } 5040 5041 FunctionType *FTy = nullptr; 5042 if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 && 5043 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 5044 return error("Explicit call type is not a function type"); 5045 5046 Value *Callee; 5047 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 5048 return error("Invalid record"); 5049 5050 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 5051 if (!OpTy) 5052 return error("Callee is not a pointer type"); 5053 if (!FTy) { 5054 FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 5055 if (!FTy) 5056 return error("Callee is not of pointer to function type"); 5057 } else if (OpTy->getElementType() != FTy) 5058 return error("Explicit call type does not match pointee type of " 5059 "callee operand"); 5060 if (Record.size() < FTy->getNumParams() + OpNum) 5061 return error("Insufficient operands to call"); 5062 5063 SmallVector<Value*, 16> Args; 5064 // Read the fixed params. 5065 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5066 if (FTy->getParamType(i)->isLabelTy()) 5067 Args.push_back(getBasicBlock(Record[OpNum])); 5068 else 5069 Args.push_back(getValue(Record, OpNum, NextValueNo, 5070 FTy->getParamType(i))); 5071 if (!Args.back()) 5072 return error("Invalid record"); 5073 } 5074 5075 // Read type/value pairs for varargs params. 5076 if (!FTy->isVarArg()) { 5077 if (OpNum != Record.size()) 5078 return error("Invalid record"); 5079 } else { 5080 while (OpNum != Record.size()) { 5081 Value *Op; 5082 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5083 return error("Invalid record"); 5084 Args.push_back(Op); 5085 } 5086 } 5087 5088 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 5089 OperandBundles.clear(); 5090 InstructionList.push_back(I); 5091 cast<CallInst>(I)->setCallingConv( 5092 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 5093 CallInst::TailCallKind TCK = CallInst::TCK_None; 5094 if (CCInfo & 1 << bitc::CALL_TAIL) 5095 TCK = CallInst::TCK_Tail; 5096 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 5097 TCK = CallInst::TCK_MustTail; 5098 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 5099 TCK = CallInst::TCK_NoTail; 5100 cast<CallInst>(I)->setTailCallKind(TCK); 5101 cast<CallInst>(I)->setAttributes(PAL); 5102 if (FMF.any()) { 5103 if (!isa<FPMathOperator>(I)) 5104 return error("Fast-math-flags specified for call without " 5105 "floating-point scalar or vector return type"); 5106 I->setFastMathFlags(FMF); 5107 } 5108 break; 5109 } 5110 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 5111 if (Record.size() < 3) 5112 return error("Invalid record"); 5113 Type *OpTy = getTypeByID(Record[0]); 5114 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 5115 Type *ResTy = getTypeByID(Record[2]); 5116 if (!OpTy || !Op || !ResTy) 5117 return error("Invalid record"); 5118 I = new VAArgInst(Op, ResTy); 5119 InstructionList.push_back(I); 5120 break; 5121 } 5122 5123 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 5124 // A call or an invoke can be optionally prefixed with some variable 5125 // number of operand bundle blocks. These blocks are read into 5126 // OperandBundles and consumed at the next call or invoke instruction. 5127 5128 if (Record.size() < 1 || Record[0] >= BundleTags.size()) 5129 return error("Invalid record"); 5130 5131 std::vector<Value *> Inputs; 5132 5133 unsigned OpNum = 1; 5134 while (OpNum != Record.size()) { 5135 Value *Op; 5136 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5137 return error("Invalid record"); 5138 Inputs.push_back(Op); 5139 } 5140 5141 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 5142 continue; 5143 } 5144 } 5145 5146 // Add instruction to end of current BB. If there is no current BB, reject 5147 // this file. 5148 if (!CurBB) { 5149 delete I; 5150 return error("Invalid instruction with no BB"); 5151 } 5152 if (!OperandBundles.empty()) { 5153 delete I; 5154 return error("Operand bundles found with no consumer"); 5155 } 5156 CurBB->getInstList().push_back(I); 5157 5158 // If this was a terminator instruction, move to the next block. 5159 if (isa<TerminatorInst>(I)) { 5160 ++CurBBNo; 5161 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 5162 } 5163 5164 // Non-void values get registered in the value table for future use. 5165 if (I && !I->getType()->isVoidTy()) 5166 ValueList.assignValue(I, NextValueNo++); 5167 } 5168 5169 OutOfRecordLoop: 5170 5171 if (!OperandBundles.empty()) 5172 return error("Operand bundles found with no consumer"); 5173 5174 // Check the function list for unresolved values. 5175 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 5176 if (!A->getParent()) { 5177 // We found at least one unresolved value. Nuke them all to avoid leaks. 5178 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 5179 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 5180 A->replaceAllUsesWith(UndefValue::get(A->getType())); 5181 delete A; 5182 } 5183 } 5184 return error("Never resolved value found in function"); 5185 } 5186 } 5187 5188 // FIXME: Check for unresolved forward-declared metadata references 5189 // and clean up leaks. 5190 5191 // Trim the value list down to the size it was before we parsed this function. 5192 ValueList.shrinkTo(ModuleValueListSize); 5193 MDValueList.shrinkTo(ModuleMDValueListSize); 5194 std::vector<BasicBlock*>().swap(FunctionBBs); 5195 return std::error_code(); 5196 } 5197 5198 /// Find the function body in the bitcode stream 5199 std::error_code BitcodeReader::findFunctionInStream( 5200 Function *F, 5201 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 5202 while (DeferredFunctionInfoIterator->second == 0) { 5203 // This is the fallback handling for the old format bitcode that 5204 // didn't contain the function index in the VST, or when we have 5205 // an anonymous function which would not have a VST entry. 5206 // Assert that we have one of those two cases. 5207 assert(VSTOffset == 0 || !F->hasName()); 5208 // Parse the next body in the stream and set its position in the 5209 // DeferredFunctionInfo map. 5210 if (std::error_code EC = rememberAndSkipFunctionBodies()) 5211 return EC; 5212 } 5213 return std::error_code(); 5214 } 5215 5216 //===----------------------------------------------------------------------===// 5217 // GVMaterializer implementation 5218 //===----------------------------------------------------------------------===// 5219 5220 void BitcodeReader::releaseBuffer() { Buffer.release(); } 5221 5222 std::error_code BitcodeReader::materialize(GlobalValue *GV) { 5223 // In older bitcode we must materialize the metadata before parsing 5224 // any functions, in order to set up the MDValueList properly. 5225 if (!SeenModuleValuesRecord) { 5226 if (std::error_code EC = materializeMetadata()) 5227 return EC; 5228 } 5229 5230 Function *F = dyn_cast<Function>(GV); 5231 // If it's not a function or is already material, ignore the request. 5232 if (!F || !F->isMaterializable()) 5233 return std::error_code(); 5234 5235 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 5236 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 5237 // If its position is recorded as 0, its body is somewhere in the stream 5238 // but we haven't seen it yet. 5239 if (DFII->second == 0) 5240 if (std::error_code EC = findFunctionInStream(F, DFII)) 5241 return EC; 5242 5243 // Move the bit stream to the saved position of the deferred function body. 5244 Stream.JumpToBit(DFII->second); 5245 5246 if (std::error_code EC = parseFunctionBody(F)) 5247 return EC; 5248 F->setIsMaterializable(false); 5249 5250 if (StripDebugInfo) 5251 stripDebugInfo(*F); 5252 5253 // Upgrade any old intrinsic calls in the function. 5254 for (auto &I : UpgradedIntrinsics) { 5255 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 5256 UI != UE;) { 5257 User *U = *UI; 5258 ++UI; 5259 if (CallInst *CI = dyn_cast<CallInst>(U)) 5260 UpgradeIntrinsicCall(CI, I.second); 5261 } 5262 } 5263 5264 // Finish fn->subprogram upgrade for materialized functions. 5265 if (DISubprogram *SP = FunctionsWithSPs.lookup(F)) 5266 F->setSubprogram(SP); 5267 5268 // Bring in any functions that this function forward-referenced via 5269 // blockaddresses. 5270 return materializeForwardReferencedFunctions(); 5271 } 5272 5273 std::error_code BitcodeReader::materializeModule() { 5274 if (std::error_code EC = materializeMetadata()) 5275 return EC; 5276 5277 // Promise to materialize all forward references. 5278 WillMaterializeAllForwardRefs = true; 5279 5280 // Iterate over the module, deserializing any functions that are still on 5281 // disk. 5282 for (Function &F : *TheModule) { 5283 if (std::error_code EC = materialize(&F)) 5284 return EC; 5285 } 5286 // At this point, if there are any function bodies, parse the rest of 5287 // the bits in the module past the last function block we have recorded 5288 // through either lazy scanning or the VST. 5289 if (LastFunctionBlockBit || NextUnreadBit) 5290 parseModule(LastFunctionBlockBit > NextUnreadBit ? LastFunctionBlockBit 5291 : NextUnreadBit); 5292 5293 // Check that all block address forward references got resolved (as we 5294 // promised above). 5295 if (!BasicBlockFwdRefs.empty()) 5296 return error("Never resolved function from blockaddress"); 5297 5298 // Upgrade any intrinsic calls that slipped through (should not happen!) and 5299 // delete the old functions to clean up. We can't do this unless the entire 5300 // module is materialized because there could always be another function body 5301 // with calls to the old function. 5302 for (auto &I : UpgradedIntrinsics) { 5303 for (auto *U : I.first->users()) { 5304 if (CallInst *CI = dyn_cast<CallInst>(U)) 5305 UpgradeIntrinsicCall(CI, I.second); 5306 } 5307 if (!I.first->use_empty()) 5308 I.first->replaceAllUsesWith(I.second); 5309 I.first->eraseFromParent(); 5310 } 5311 UpgradedIntrinsics.clear(); 5312 5313 for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++) 5314 UpgradeInstWithTBAATag(InstsWithTBAATag[I]); 5315 5316 UpgradeDebugInfo(*TheModule); 5317 return std::error_code(); 5318 } 5319 5320 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 5321 return IdentifiedStructTypes; 5322 } 5323 5324 std::error_code 5325 BitcodeReader::initStream(std::unique_ptr<DataStreamer> Streamer) { 5326 if (Streamer) 5327 return initLazyStream(std::move(Streamer)); 5328 return initStreamFromBuffer(); 5329 } 5330 5331 std::error_code BitcodeReader::initStreamFromBuffer() { 5332 const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart(); 5333 const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize(); 5334 5335 if (Buffer->getBufferSize() & 3) 5336 return error("Invalid bitcode signature"); 5337 5338 // If we have a wrapper header, parse it and ignore the non-bc file contents. 5339 // The magic number is 0x0B17C0DE stored in little endian. 5340 if (isBitcodeWrapper(BufPtr, BufEnd)) 5341 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 5342 return error("Invalid bitcode wrapper header"); 5343 5344 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 5345 Stream.init(&*StreamFile); 5346 5347 return std::error_code(); 5348 } 5349 5350 std::error_code 5351 BitcodeReader::initLazyStream(std::unique_ptr<DataStreamer> Streamer) { 5352 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 5353 // see it. 5354 auto OwnedBytes = 5355 llvm::make_unique<StreamingMemoryObject>(std::move(Streamer)); 5356 StreamingMemoryObject &Bytes = *OwnedBytes; 5357 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); 5358 Stream.init(&*StreamFile); 5359 5360 unsigned char buf[16]; 5361 if (Bytes.readBytes(buf, 16, 0) != 16) 5362 return error("Invalid bitcode signature"); 5363 5364 if (!isBitcode(buf, buf + 16)) 5365 return error("Invalid bitcode signature"); 5366 5367 if (isBitcodeWrapper(buf, buf + 4)) { 5368 const unsigned char *bitcodeStart = buf; 5369 const unsigned char *bitcodeEnd = buf + 16; 5370 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 5371 Bytes.dropLeadingBytes(bitcodeStart - buf); 5372 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); 5373 } 5374 return std::error_code(); 5375 } 5376 5377 std::error_code FunctionIndexBitcodeReader::error(BitcodeError E, 5378 const Twine &Message) { 5379 return ::error(DiagnosticHandler, make_error_code(E), Message); 5380 } 5381 5382 std::error_code FunctionIndexBitcodeReader::error(const Twine &Message) { 5383 return ::error(DiagnosticHandler, 5384 make_error_code(BitcodeError::CorruptedBitcode), Message); 5385 } 5386 5387 std::error_code FunctionIndexBitcodeReader::error(BitcodeError E) { 5388 return ::error(DiagnosticHandler, make_error_code(E)); 5389 } 5390 5391 FunctionIndexBitcodeReader::FunctionIndexBitcodeReader( 5392 MemoryBuffer *Buffer, DiagnosticHandlerFunction DiagnosticHandler, 5393 bool IsLazy, bool CheckFuncSummaryPresenceOnly) 5394 : DiagnosticHandler(DiagnosticHandler), Buffer(Buffer), IsLazy(IsLazy), 5395 CheckFuncSummaryPresenceOnly(CheckFuncSummaryPresenceOnly) {} 5396 5397 FunctionIndexBitcodeReader::FunctionIndexBitcodeReader( 5398 DiagnosticHandlerFunction DiagnosticHandler, bool IsLazy, 5399 bool CheckFuncSummaryPresenceOnly) 5400 : DiagnosticHandler(DiagnosticHandler), Buffer(nullptr), IsLazy(IsLazy), 5401 CheckFuncSummaryPresenceOnly(CheckFuncSummaryPresenceOnly) {} 5402 5403 void FunctionIndexBitcodeReader::freeState() { Buffer = nullptr; } 5404 5405 void FunctionIndexBitcodeReader::releaseBuffer() { Buffer.release(); } 5406 5407 // Specialized value symbol table parser used when reading function index 5408 // blocks where we don't actually create global values. 5409 // At the end of this routine the function index is populated with a map 5410 // from function name to FunctionInfo. The function info contains 5411 // the function block's bitcode offset as well as the offset into the 5412 // function summary section. 5413 std::error_code FunctionIndexBitcodeReader::parseValueSymbolTable() { 5414 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 5415 return error("Invalid record"); 5416 5417 SmallVector<uint64_t, 64> Record; 5418 5419 // Read all the records for this value table. 5420 SmallString<128> ValueName; 5421 while (1) { 5422 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5423 5424 switch (Entry.Kind) { 5425 case BitstreamEntry::SubBlock: // Handled for us already. 5426 case BitstreamEntry::Error: 5427 return error("Malformed block"); 5428 case BitstreamEntry::EndBlock: 5429 return std::error_code(); 5430 case BitstreamEntry::Record: 5431 // The interesting case. 5432 break; 5433 } 5434 5435 // Read a record. 5436 Record.clear(); 5437 switch (Stream.readRecord(Entry.ID, Record)) { 5438 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 5439 break; 5440 case bitc::VST_CODE_FNENTRY: { 5441 // VST_FNENTRY: [valueid, offset, namechar x N] 5442 if (convertToString(Record, 2, ValueName)) 5443 return error("Invalid record"); 5444 unsigned ValueID = Record[0]; 5445 uint64_t FuncOffset = Record[1]; 5446 std::unique_ptr<FunctionInfo> FuncInfo = 5447 llvm::make_unique<FunctionInfo>(FuncOffset); 5448 if (foundFuncSummary() && !IsLazy) { 5449 DenseMap<uint64_t, std::unique_ptr<FunctionSummary>>::iterator SMI = 5450 SummaryMap.find(ValueID); 5451 assert(SMI != SummaryMap.end() && "Summary info not found"); 5452 FuncInfo->setFunctionSummary(std::move(SMI->second)); 5453 } 5454 TheIndex->addFunctionInfo(ValueName, std::move(FuncInfo)); 5455 5456 ValueName.clear(); 5457 break; 5458 } 5459 case bitc::VST_CODE_COMBINED_FNENTRY: { 5460 // VST_FNENTRY: [offset, namechar x N] 5461 if (convertToString(Record, 1, ValueName)) 5462 return error("Invalid record"); 5463 uint64_t FuncSummaryOffset = Record[0]; 5464 std::unique_ptr<FunctionInfo> FuncInfo = 5465 llvm::make_unique<FunctionInfo>(FuncSummaryOffset); 5466 if (foundFuncSummary() && !IsLazy) { 5467 DenseMap<uint64_t, std::unique_ptr<FunctionSummary>>::iterator SMI = 5468 SummaryMap.find(FuncSummaryOffset); 5469 assert(SMI != SummaryMap.end() && "Summary info not found"); 5470 FuncInfo->setFunctionSummary(std::move(SMI->second)); 5471 } 5472 TheIndex->addFunctionInfo(ValueName, std::move(FuncInfo)); 5473 5474 ValueName.clear(); 5475 break; 5476 } 5477 } 5478 } 5479 } 5480 5481 // Parse just the blocks needed for function index building out of the module. 5482 // At the end of this routine the function Index is populated with a map 5483 // from function name to FunctionInfo. The function info contains 5484 // either the parsed function summary information (when parsing summaries 5485 // eagerly), or just to the function summary record's offset 5486 // if parsing lazily (IsLazy). 5487 std::error_code FunctionIndexBitcodeReader::parseModule() { 5488 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 5489 return error("Invalid record"); 5490 5491 // Read the function index for this module. 5492 while (1) { 5493 BitstreamEntry Entry = Stream.advance(); 5494 5495 switch (Entry.Kind) { 5496 case BitstreamEntry::Error: 5497 return error("Malformed block"); 5498 case BitstreamEntry::EndBlock: 5499 return std::error_code(); 5500 5501 case BitstreamEntry::SubBlock: 5502 if (CheckFuncSummaryPresenceOnly) { 5503 if (Entry.ID == bitc::FUNCTION_SUMMARY_BLOCK_ID) { 5504 SeenFuncSummary = true; 5505 // No need to parse the rest since we found the summary. 5506 return std::error_code(); 5507 } 5508 if (Stream.SkipBlock()) 5509 return error("Invalid record"); 5510 continue; 5511 } 5512 switch (Entry.ID) { 5513 default: // Skip unknown content. 5514 if (Stream.SkipBlock()) 5515 return error("Invalid record"); 5516 break; 5517 case bitc::BLOCKINFO_BLOCK_ID: 5518 // Need to parse these to get abbrev ids (e.g. for VST) 5519 if (Stream.ReadBlockInfoBlock()) 5520 return error("Malformed block"); 5521 break; 5522 case bitc::VALUE_SYMTAB_BLOCK_ID: 5523 if (std::error_code EC = parseValueSymbolTable()) 5524 return EC; 5525 break; 5526 case bitc::FUNCTION_SUMMARY_BLOCK_ID: 5527 SeenFuncSummary = true; 5528 if (IsLazy) { 5529 // Lazy parsing of summary info, skip it. 5530 if (Stream.SkipBlock()) 5531 return error("Invalid record"); 5532 } else if (std::error_code EC = parseEntireSummary()) 5533 return EC; 5534 break; 5535 case bitc::MODULE_STRTAB_BLOCK_ID: 5536 if (std::error_code EC = parseModuleStringTable()) 5537 return EC; 5538 break; 5539 } 5540 continue; 5541 5542 case BitstreamEntry::Record: 5543 Stream.skipRecord(Entry.ID); 5544 continue; 5545 } 5546 } 5547 } 5548 5549 // Eagerly parse the entire function summary block (i.e. for all functions 5550 // in the index). This populates the FunctionSummary objects in 5551 // the index. 5552 std::error_code FunctionIndexBitcodeReader::parseEntireSummary() { 5553 if (Stream.EnterSubBlock(bitc::FUNCTION_SUMMARY_BLOCK_ID)) 5554 return error("Invalid record"); 5555 5556 SmallVector<uint64_t, 64> Record; 5557 5558 while (1) { 5559 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5560 5561 switch (Entry.Kind) { 5562 case BitstreamEntry::SubBlock: // Handled for us already. 5563 case BitstreamEntry::Error: 5564 return error("Malformed block"); 5565 case BitstreamEntry::EndBlock: 5566 return std::error_code(); 5567 case BitstreamEntry::Record: 5568 // The interesting case. 5569 break; 5570 } 5571 5572 // Read a record. The record format depends on whether this 5573 // is a per-module index or a combined index file. In the per-module 5574 // case the records contain the associated value's ID for correlation 5575 // with VST entries. In the combined index the correlation is done 5576 // via the bitcode offset of the summary records (which were saved 5577 // in the combined index VST entries). The records also contain 5578 // information used for ThinLTO renaming and importing. 5579 Record.clear(); 5580 uint64_t CurRecordBit = Stream.GetCurrentBitNo(); 5581 switch (Stream.readRecord(Entry.ID, Record)) { 5582 default: // Default behavior: ignore. 5583 break; 5584 // FS_PERMODULE_ENTRY: [valueid, islocal, instcount] 5585 case bitc::FS_CODE_PERMODULE_ENTRY: { 5586 unsigned ValueID = Record[0]; 5587 bool IsLocal = Record[1]; 5588 unsigned InstCount = Record[2]; 5589 std::unique_ptr<FunctionSummary> FS = 5590 llvm::make_unique<FunctionSummary>(InstCount); 5591 FS->setLocalFunction(IsLocal); 5592 // The module path string ref set in the summary must be owned by the 5593 // index's module string table. Since we don't have a module path 5594 // string table section in the per-module index, we create a single 5595 // module path string table entry with an empty (0) ID to take 5596 // ownership. 5597 FS->setModulePath( 5598 TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)); 5599 SummaryMap[ValueID] = std::move(FS); 5600 } 5601 // FS_COMBINED_ENTRY: [modid, instcount] 5602 case bitc::FS_CODE_COMBINED_ENTRY: { 5603 uint64_t ModuleId = Record[0]; 5604 unsigned InstCount = Record[1]; 5605 std::unique_ptr<FunctionSummary> FS = 5606 llvm::make_unique<FunctionSummary>(InstCount); 5607 FS->setModulePath(ModuleIdMap[ModuleId]); 5608 SummaryMap[CurRecordBit] = std::move(FS); 5609 } 5610 } 5611 } 5612 llvm_unreachable("Exit infinite loop"); 5613 } 5614 5615 // Parse the module string table block into the Index. 5616 // This populates the ModulePathStringTable map in the index. 5617 std::error_code FunctionIndexBitcodeReader::parseModuleStringTable() { 5618 if (Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 5619 return error("Invalid record"); 5620 5621 SmallVector<uint64_t, 64> Record; 5622 5623 SmallString<128> ModulePath; 5624 while (1) { 5625 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5626 5627 switch (Entry.Kind) { 5628 case BitstreamEntry::SubBlock: // Handled for us already. 5629 case BitstreamEntry::Error: 5630 return error("Malformed block"); 5631 case BitstreamEntry::EndBlock: 5632 return std::error_code(); 5633 case BitstreamEntry::Record: 5634 // The interesting case. 5635 break; 5636 } 5637 5638 Record.clear(); 5639 switch (Stream.readRecord(Entry.ID, Record)) { 5640 default: // Default behavior: ignore. 5641 break; 5642 case bitc::MST_CODE_ENTRY: { 5643 // MST_ENTRY: [modid, namechar x N] 5644 if (convertToString(Record, 1, ModulePath)) 5645 return error("Invalid record"); 5646 uint64_t ModuleId = Record[0]; 5647 StringRef ModulePathInMap = TheIndex->addModulePath(ModulePath, ModuleId); 5648 ModuleIdMap[ModuleId] = ModulePathInMap; 5649 ModulePath.clear(); 5650 break; 5651 } 5652 } 5653 } 5654 llvm_unreachable("Exit infinite loop"); 5655 } 5656 5657 // Parse the function info index from the bitcode streamer into the given index. 5658 std::error_code FunctionIndexBitcodeReader::parseSummaryIndexInto( 5659 std::unique_ptr<DataStreamer> Streamer, FunctionInfoIndex *I) { 5660 TheIndex = I; 5661 5662 if (std::error_code EC = initStream(std::move(Streamer))) 5663 return EC; 5664 5665 // Sniff for the signature. 5666 if (!hasValidBitcodeHeader(Stream)) 5667 return error("Invalid bitcode signature"); 5668 5669 // We expect a number of well-defined blocks, though we don't necessarily 5670 // need to understand them all. 5671 while (1) { 5672 if (Stream.AtEndOfStream()) { 5673 // We didn't really read a proper Module block. 5674 return error("Malformed block"); 5675 } 5676 5677 BitstreamEntry Entry = 5678 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 5679 5680 if (Entry.Kind != BitstreamEntry::SubBlock) 5681 return error("Malformed block"); 5682 5683 // If we see a MODULE_BLOCK, parse it to find the blocks needed for 5684 // building the function summary index. 5685 if (Entry.ID == bitc::MODULE_BLOCK_ID) 5686 return parseModule(); 5687 5688 if (Stream.SkipBlock()) 5689 return error("Invalid record"); 5690 } 5691 } 5692 5693 // Parse the function information at the given offset in the buffer into 5694 // the index. Used to support lazy parsing of function summaries from the 5695 // combined index during importing. 5696 // TODO: This function is not yet complete as it won't have a consumer 5697 // until ThinLTO function importing is added. 5698 std::error_code FunctionIndexBitcodeReader::parseFunctionSummary( 5699 std::unique_ptr<DataStreamer> Streamer, FunctionInfoIndex *I, 5700 size_t FunctionSummaryOffset) { 5701 TheIndex = I; 5702 5703 if (std::error_code EC = initStream(std::move(Streamer))) 5704 return EC; 5705 5706 // Sniff for the signature. 5707 if (!hasValidBitcodeHeader(Stream)) 5708 return error("Invalid bitcode signature"); 5709 5710 Stream.JumpToBit(FunctionSummaryOffset); 5711 5712 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5713 5714 switch (Entry.Kind) { 5715 default: 5716 return error("Malformed block"); 5717 case BitstreamEntry::Record: 5718 // The expected case. 5719 break; 5720 } 5721 5722 // TODO: Read a record. This interface will be completed when ThinLTO 5723 // importing is added so that it can be tested. 5724 SmallVector<uint64_t, 64> Record; 5725 switch (Stream.readRecord(Entry.ID, Record)) { 5726 case bitc::FS_CODE_COMBINED_ENTRY: 5727 default: 5728 return error("Invalid record"); 5729 } 5730 5731 return std::error_code(); 5732 } 5733 5734 std::error_code 5735 FunctionIndexBitcodeReader::initStream(std::unique_ptr<DataStreamer> Streamer) { 5736 if (Streamer) 5737 return initLazyStream(std::move(Streamer)); 5738 return initStreamFromBuffer(); 5739 } 5740 5741 std::error_code FunctionIndexBitcodeReader::initStreamFromBuffer() { 5742 const unsigned char *BufPtr = (const unsigned char *)Buffer->getBufferStart(); 5743 const unsigned char *BufEnd = BufPtr + Buffer->getBufferSize(); 5744 5745 if (Buffer->getBufferSize() & 3) 5746 return error("Invalid bitcode signature"); 5747 5748 // If we have a wrapper header, parse it and ignore the non-bc file contents. 5749 // The magic number is 0x0B17C0DE stored in little endian. 5750 if (isBitcodeWrapper(BufPtr, BufEnd)) 5751 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 5752 return error("Invalid bitcode wrapper header"); 5753 5754 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 5755 Stream.init(&*StreamFile); 5756 5757 return std::error_code(); 5758 } 5759 5760 std::error_code FunctionIndexBitcodeReader::initLazyStream( 5761 std::unique_ptr<DataStreamer> Streamer) { 5762 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 5763 // see it. 5764 auto OwnedBytes = 5765 llvm::make_unique<StreamingMemoryObject>(std::move(Streamer)); 5766 StreamingMemoryObject &Bytes = *OwnedBytes; 5767 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); 5768 Stream.init(&*StreamFile); 5769 5770 unsigned char buf[16]; 5771 if (Bytes.readBytes(buf, 16, 0) != 16) 5772 return error("Invalid bitcode signature"); 5773 5774 if (!isBitcode(buf, buf + 16)) 5775 return error("Invalid bitcode signature"); 5776 5777 if (isBitcodeWrapper(buf, buf + 4)) { 5778 const unsigned char *bitcodeStart = buf; 5779 const unsigned char *bitcodeEnd = buf + 16; 5780 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 5781 Bytes.dropLeadingBytes(bitcodeStart - buf); 5782 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); 5783 } 5784 return std::error_code(); 5785 } 5786 5787 namespace { 5788 class BitcodeErrorCategoryType : public std::error_category { 5789 const char *name() const LLVM_NOEXCEPT override { 5790 return "llvm.bitcode"; 5791 } 5792 std::string message(int IE) const override { 5793 BitcodeError E = static_cast<BitcodeError>(IE); 5794 switch (E) { 5795 case BitcodeError::InvalidBitcodeSignature: 5796 return "Invalid bitcode signature"; 5797 case BitcodeError::CorruptedBitcode: 5798 return "Corrupted bitcode"; 5799 } 5800 llvm_unreachable("Unknown error type!"); 5801 } 5802 }; 5803 } 5804 5805 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 5806 5807 const std::error_category &llvm::BitcodeErrorCategory() { 5808 return *ErrorCategory; 5809 } 5810 5811 //===----------------------------------------------------------------------===// 5812 // External interface 5813 //===----------------------------------------------------------------------===// 5814 5815 static ErrorOr<std::unique_ptr<Module>> 5816 getBitcodeModuleImpl(std::unique_ptr<DataStreamer> Streamer, StringRef Name, 5817 BitcodeReader *R, LLVMContext &Context, 5818 bool MaterializeAll, bool ShouldLazyLoadMetadata) { 5819 std::unique_ptr<Module> M = make_unique<Module>(Name, Context); 5820 M->setMaterializer(R); 5821 5822 auto cleanupOnError = [&](std::error_code EC) { 5823 R->releaseBuffer(); // Never take ownership on error. 5824 return EC; 5825 }; 5826 5827 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 5828 if (std::error_code EC = R->parseBitcodeInto(std::move(Streamer), M.get(), 5829 ShouldLazyLoadMetadata)) 5830 return cleanupOnError(EC); 5831 5832 if (MaterializeAll) { 5833 // Read in the entire module, and destroy the BitcodeReader. 5834 if (std::error_code EC = M->materializeAll()) 5835 return cleanupOnError(EC); 5836 } else { 5837 // Resolve forward references from blockaddresses. 5838 if (std::error_code EC = R->materializeForwardReferencedFunctions()) 5839 return cleanupOnError(EC); 5840 } 5841 return std::move(M); 5842 } 5843 5844 /// \brief Get a lazy one-at-time loading module from bitcode. 5845 /// 5846 /// This isn't always used in a lazy context. In particular, it's also used by 5847 /// \a parseBitcodeFile(). If this is truly lazy, then we need to eagerly pull 5848 /// in forward-referenced functions from block address references. 5849 /// 5850 /// \param[in] MaterializeAll Set to \c true if we should materialize 5851 /// everything. 5852 static ErrorOr<std::unique_ptr<Module>> 5853 getLazyBitcodeModuleImpl(std::unique_ptr<MemoryBuffer> &&Buffer, 5854 LLVMContext &Context, bool MaterializeAll, 5855 bool ShouldLazyLoadMetadata = false) { 5856 BitcodeReader *R = new BitcodeReader(Buffer.get(), Context); 5857 5858 ErrorOr<std::unique_ptr<Module>> Ret = 5859 getBitcodeModuleImpl(nullptr, Buffer->getBufferIdentifier(), R, Context, 5860 MaterializeAll, ShouldLazyLoadMetadata); 5861 if (!Ret) 5862 return Ret; 5863 5864 Buffer.release(); // The BitcodeReader owns it now. 5865 return Ret; 5866 } 5867 5868 ErrorOr<std::unique_ptr<Module>> 5869 llvm::getLazyBitcodeModule(std::unique_ptr<MemoryBuffer> &&Buffer, 5870 LLVMContext &Context, bool ShouldLazyLoadMetadata) { 5871 return getLazyBitcodeModuleImpl(std::move(Buffer), Context, false, 5872 ShouldLazyLoadMetadata); 5873 } 5874 5875 ErrorOr<std::unique_ptr<Module>> 5876 llvm::getStreamedBitcodeModule(StringRef Name, 5877 std::unique_ptr<DataStreamer> Streamer, 5878 LLVMContext &Context) { 5879 std::unique_ptr<Module> M = make_unique<Module>(Name, Context); 5880 BitcodeReader *R = new BitcodeReader(Context); 5881 5882 return getBitcodeModuleImpl(std::move(Streamer), Name, R, Context, false, 5883 false); 5884 } 5885 5886 ErrorOr<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer, 5887 LLVMContext &Context) { 5888 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 5889 return getLazyBitcodeModuleImpl(std::move(Buf), Context, true); 5890 // TODO: Restore the use-lists to the in-memory state when the bitcode was 5891 // written. We must defer until the Module has been fully materialized. 5892 } 5893 5894 std::string llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer, 5895 LLVMContext &Context) { 5896 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 5897 auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context); 5898 ErrorOr<std::string> Triple = R->parseTriple(); 5899 if (Triple.getError()) 5900 return ""; 5901 return Triple.get(); 5902 } 5903 5904 std::string llvm::getBitcodeProducerString(MemoryBufferRef Buffer, 5905 LLVMContext &Context) { 5906 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 5907 BitcodeReader R(Buf.release(), Context); 5908 ErrorOr<std::string> ProducerString = R.parseIdentificationBlock(); 5909 if (ProducerString.getError()) 5910 return ""; 5911 return ProducerString.get(); 5912 } 5913 5914 // Parse the specified bitcode buffer, returning the function info index. 5915 // If IsLazy is false, parse the entire function summary into 5916 // the index. Otherwise skip the function summary section, and only create 5917 // an index object with a map from function name to function summary offset. 5918 // The index is used to perform lazy function summary reading later. 5919 ErrorOr<std::unique_ptr<FunctionInfoIndex>> 5920 llvm::getFunctionInfoIndex(MemoryBufferRef Buffer, 5921 DiagnosticHandlerFunction DiagnosticHandler, 5922 bool IsLazy) { 5923 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 5924 FunctionIndexBitcodeReader R(Buf.get(), DiagnosticHandler, IsLazy); 5925 5926 auto Index = llvm::make_unique<FunctionInfoIndex>(); 5927 5928 auto cleanupOnError = [&](std::error_code EC) { 5929 R.releaseBuffer(); // Never take ownership on error. 5930 return EC; 5931 }; 5932 5933 if (std::error_code EC = R.parseSummaryIndexInto(nullptr, Index.get())) 5934 return cleanupOnError(EC); 5935 5936 Buf.release(); // The FunctionIndexBitcodeReader owns it now. 5937 return std::move(Index); 5938 } 5939 5940 // Check if the given bitcode buffer contains a function summary block. 5941 bool llvm::hasFunctionSummary(MemoryBufferRef Buffer, 5942 DiagnosticHandlerFunction DiagnosticHandler) { 5943 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 5944 FunctionIndexBitcodeReader R(Buf.get(), DiagnosticHandler, false, true); 5945 5946 auto cleanupOnError = [&](std::error_code EC) { 5947 R.releaseBuffer(); // Never take ownership on error. 5948 return false; 5949 }; 5950 5951 if (std::error_code EC = R.parseSummaryIndexInto(nullptr, nullptr)) 5952 return cleanupOnError(EC); 5953 5954 Buf.release(); // The FunctionIndexBitcodeReader owns it now. 5955 return R.foundFuncSummary(); 5956 } 5957 5958 // This method supports lazy reading of function summary data from the combined 5959 // index during ThinLTO function importing. When reading the combined index 5960 // file, getFunctionInfoIndex is first invoked with IsLazy=true. 5961 // Then this method is called for each function considered for importing, 5962 // to parse the summary information for the given function name into 5963 // the index. 5964 std::error_code llvm::readFunctionSummary( 5965 MemoryBufferRef Buffer, DiagnosticHandlerFunction DiagnosticHandler, 5966 StringRef FunctionName, std::unique_ptr<FunctionInfoIndex> Index) { 5967 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 5968 FunctionIndexBitcodeReader R(Buf.get(), DiagnosticHandler); 5969 5970 auto cleanupOnError = [&](std::error_code EC) { 5971 R.releaseBuffer(); // Never take ownership on error. 5972 return EC; 5973 }; 5974 5975 // Lookup the given function name in the FunctionMap, which may 5976 // contain a list of function infos in the case of a COMDAT. Walk through 5977 // and parse each function summary info at the function summary offset 5978 // recorded when parsing the value symbol table. 5979 for (const auto &FI : Index->getFunctionInfoList(FunctionName)) { 5980 size_t FunctionSummaryOffset = FI->bitcodeIndex(); 5981 if (std::error_code EC = 5982 R.parseFunctionSummary(nullptr, Index.get(), FunctionSummaryOffset)) 5983 return cleanupOnError(EC); 5984 } 5985 5986 Buf.release(); // The FunctionIndexBitcodeReader owns it now. 5987 return std::error_code(); 5988 } 5989